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ABSTRACT

Evaluating the Accuracy of Gaze Detection for Moving Character

Sanath Narasimhan,

The University of Texas at Arlington, 2020

Supervising Professor: Deok Gun Park

Joint attention, where a caregiver and an infant follow each other’s eye gaze plays

an important role in the learning of language for new-born infants. To study joint

attention, it is required to record and analyze the joint attention in a naturalistic

environment. For this, we can use the head-mounted eye tracker. However, natural

interaction involves the body movement which affects the accuracy of the measure-

ment. In this work, I evaluated the accuracy of the eye-tracking system in the three

different scenarios: when the subject is sitting still in front of the target when the

subject looks at the target while moving the head sitting at a fixed location when

the subject moves freely within the setup while looking at the target. To track the

head pose we use an in-built plugin within Pupil Player that detects surface markers

(april13-tags) within the world camera feed and generates camera position and orien-

tation in the marker coordinate system. The evaluation shows that the gaze position

accuracy and precision are better when the scene is lit under White LED lights com-

pared with Yellow LEDs. The recordings were also replicated in a virtual environment

created in Unity3D that are modeled after real-world experimental setup. We expect

this evaluation will contribute to the development of the simulated environments for
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implementing developmental robotics which can provide simulated experiences such

as interactions of a mother and a child during various stages of infant development

(from fetus stage to 12 months of age).
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CHAPTER 1

Introduction

1.1 Goal

Pupil Labs has a product, the Pupil core, an open-source eye-tracking system with

hardware and software. The main goal is to successfully translate the eye position

from a user to the character within the virtual environment we have generated allow-

ing us to visualize how the eyes move while the user interacts with an object. The

idea is to integrate the data from the eye-tracking device into a live 3D environment

to create straight-line pointers from the eyes of a character to the location where the

character is supposed to look based on the user’s eyes.

Figure 1.1. Gaze estimation.

This helps capture the exact eye placement when a subject like a child interacts

with various objects in an environment for the first time. The challenging part would
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be the work-flow to create animations of the eyes. This can be achieved by creating a

custom script to invoke the pupil labs API in order to use the raw eye-tracking data

within the 3D environment.

1.2 Motivation

The idea of creating a virtual agent that learns to navigate its surroundings by us-

ing partial and noise inputs, similar to human beings, has been one of the main

driving factors in the field of Reinforcement learning. Countless research papers are

available where traditional and modern approaches are applied to control agents in

environments like video games. Recent advanced models like the Intrinsic Curiosity

Model [14] which allows the agent to try to explore the surrounding environment

with sparse external reward because of curiosity and Gated-Attention Architectures

for Task-Oriented Language Grounding [7] which uses input in English language to

control the agents location in the environment are tested in environments like the

VizDoom [15] and Super Mario bros environments.

Figure 1.2. Common Game environments.
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Research in the field of Neuroscience has shown that there are nuances to how

an infant learns language from its surroundings and the parents. Language acquisition

depends on the perception of the objects through various human sensory inputs like

observing the general shape and fall of the object, feeling the texture and the weight

of the object, and predicting the trajectory an object will take by observing the

effects of gravity on it. One of the research [16] concluded that joint attention plays

a major role in the accumulation of an infant’s vocabulary [17]. Joint attention [4]

is a phenomenon where a subject is able to share attention with an interacting agent

over an object simply by learning to estimate the location of interest by observing

the agent’s head pose and gaze direction. An example would be when a parent brings

a toy, like a red cube into the line of sight of the child to teach the word "red", the

child first notices the parent’s face and then tries to estimate where they are looking.

Figure 1.3. Joint attention skill development.

In order to implement phenomenons like joint attention we need to develop new

methods to help capture them and test them out in virtual environments for help-

ing improve the current state-of-the-art models in mimicking human-like intelligent

behaviours.
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Figure 1.4. Visualization of joint attention.

1.3 Outcome

The eye-tracker is mainly for capturing the infant eye placement in our IDS experi-

ments that we will conduct. One of the key ways we can observe how an infant learns

is by looking at how their eyes move when a direction is given to them, for example, if

the infant is asked to look at the red cube, the infant will turn towards the object and

start scanning the shape and the color of the object. The key is where the infant is

looking while observing a new object, this information can give us a good insight into

the process of learning and recognition that happens in the brain when a new object

is being interacted with. With these set of experiments we can evaluate the pipeline

that allows us to capture fixation data from a real world subject and translate it into

a virtual agent in a simulation.

Figure 1.5. Pupil core eye-tracker.
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Figure 1.6. Infant sustained attention.

1.4 Background

Evaluation of eye tracking is a well-known problem with some standard definitions

of Accuracy and Precision. In this scenario, the Pupil Core’s real-world accuracy is

defined by the distance error and the precision by the directional (angular) error. The

Pupil Core plugins run with OpenCV, hence use the Y-down convention coordinate

system for any data generated [12]. The gaze point detection accuracy and precision

depend upon the confidence of the pupil detection at every frame. First, a normalized

screen coordinate of the gaze is generated within world camera feed pixel coordinates

which are then converted to 3D world coordinates. The generated fixation points rely

on the gaze data and are in millimeters, with the center of the world camera lens as

the origin and are corrected for camera intrinsic. They have been several experiments

testing the real-world performance of the Pupil Pro and other similar eye-trackers [9]

along with the manufacturer’s guarantee that the 0.6 deg of accuracy and 0.08 deg of

precision under ideal conditions.
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Figure 1.7. A target.

There can be multiple error sources like user error, change is the distance to

the target (Parallax error), slippage (slight movement of the headset), and limitations

of human fixation (0.5 deg). We need to keep in mind that these errors might get

amplified when using in the virtual environment due to a change in convention and

scale.

The Head-pose plugin mainly relies on the detection of surface markers and

requires that there are sufficient frames with the majority of the markers visible to

the world camera. The generated 3D model can be customized by specifying the origin

marker within the detected marker set and uses the real-world marker length and the

scaling factor. A marker cache is maintained ensuring that the relevant surfaces are

tracked with a minimum of 2 markers for each surface. If a surface has 4 or more

markers, the probability of it being tracked is higher even when all markers of that

surface are not visible in the current frame. The generated rotations from this plugin

that uses OpenCV are in Rodrigues axis notation.

Unity3D is a game development engine that consists of various packages and

tools useful in the creation of a virtual environment. The scale of Unity is in meters

and uses a Y-up convention for the representation of the coordinate system. General

rotation notations are in either Quaternion or Euler notation. Unity3D consists of

an in-built function SphereCast that can make a point of origin, direction, and a
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radius, to cast a cylindrical ray with the thickness of the radius, returning the point

of collision of the ray. This will be useful for retrieving the gaze location in the virtual

world using the captured real-world data.

In both the virtual and the real-world environments, the targets would lie along

the X-Y plane and the distance of the target would be the Z coordinate of a gaze point.

The accuracy can be defined in this case as the deviation of the virtual gaze point

to real-world point, taking the Euclid distance along the X-Y plane. The precision

would be the difference in the viewing angles.
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CHAPTER 2

Environment

2.1 Environment Setup

The experiment is conducted in a cubicle with the targets displayed on a 27"; Dell

monitor and the subject sitting in front of the monitor on a rolling chair. Targets are

designed based on an experiment that evaluates the real-world accuracy of the eye

tracker [8] and [12]. Each Target consists of an outer circle, green, 5.9 centimeters

in diameter and an inner circle, blue, 2.3 centimeters in diameter with a total of 54

targets displayed over six rows and nine columns evenly spaced with red lines marking

the center of individual targets.

Figure 2.1. A set of 5X9 targets evenly spaced.
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There are 12 markers (each with a unique ID) placed in the cubical, 4 on each

corner of the Targets display monitor, 4 on each corner of the laptop display, and 4

on objects within the cubical. These are april36-tags, used to detect objects within a

camera feed using OpenCV and the Pupil Capture software’s Head pose tracker plugin

uses this feature to detect the camera’s position with respect to a currently visible

marker as the origin (the scale of the position is the side length of the marker in the

real world). We have kept the bottom right corner of the Targets display as the fixed

origin ( marker number 4). In order to help with the visibility of the markers an LED

light array is used which has a set of yellow lights and white lights, interchangeable.

The subject can move around in the cubical and uses the Pupil Capture software to

record the fixation points over the targets.

Figure 2.2. The experiment setup with apriltag markers, and LED lights to illumi-
nation.

2.2 3D Environment

The Unity3D environment consists of an identical camera to that of the world camera

of the eye-tracker whose location will be determined based off of the head pose tracking

data. The image of the targets is added as a texture to a 3D plane GameObject with

a smaller plane representing the bottom right corner marker. A simplified version

of the cubical is recreated. The gaze visualizer has two GameObjects, Raycast hit
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marker (black) sphere that is used for evaluating distance error, and a Raw Gaze

Direction Marker (green) disk that is used for evaluating the direction error.

Figure 2.3. The Unity3D setup with origin marker, and the gaze visualization markers
.

There are two scripts along with the virtual setup:

Data.cs

This script takes in the preprocessed, raw gaze and camera location data from the CSV

file for and loads it up for visualization. The readCSV method reads the combined

data from the preprocessed file and stores it in a temporary variable within the object

class

1 void readCSV ()

2 {

3 StreamReader inpstr = new StreamReader(filepath+cdata);

4 fixHeaders = inpstr.ReadLine ().Split(’,’);

5

6 while (! inpstr.EndOfStream)

7 {

8 string inpline = inpstr.ReadLine ();
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9 inputList.Add(inpline);

10 }

11 inpstr.Close();

12 }

Listing 2.1. readCSV method

The parselist method is used to return a row from the combined data in the correct

format, taking the index as input.

1 public double [] parseList(int Index)

2 {

3 Debug.Log("frow " + Index);

4 string [] temp = inputList[Index]. Split(’,’);

5

6 parsedRow [0] = double.Parse(temp [0]);

7

8 parsedRow [1] = double.Parse(temp [1]);

9 parsedRow [2] = double.Parse(temp [2]);

10 parsedRow [3] = double.Parse(temp [3]);

11

12 parsedRow [4] = double.Parse(temp [4]) ;

13 parsedRow [5] = double.Parse(temp [5]) ;

14 parsedRow [6] = double.Parse(temp [6]) ;

15

16 parsedRow [7] = double.Parse(temp [7]);

17 parsedRow [8] = double.Parse(temp [8]);

18 parsedRow [9] = double.Parse(temp [9]);

19

20 parsedRow [10] = double.Parse(temp [10]);
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21

22 Debug.Log(" fixationinx " + parsedRow [10]);

23

24 return parsedRow;

25 }

Listing 2.2. parseList method

CustomViz.cs

This script retrieves the data using parseList frame by frame and updates the position

of the RayCast Hit marker and Directional Hit marker. The raw data first is converted

to unity coordinate and scale done by the RecieveGaze method.

1 void ReceiveGaze(int ind)

2 {

3 Vector3 resultG = Vector3.zero;

4 Vector3 resultC = Vector3.zero;

5 Vector3 resultR = Vector3.zero;

6

7 curGazept = Data.parseList(fixationInd);

8 lastConfidence = curGazept [0];

9 //Debug.Log(" confidence for the current fixation gaze

data" + lastConfidence);

10

11 resultG.x = (float)curGazept [1];

12 resultG.y = (float)curGazept [2];

13 resultG.z = (float)curGazept [3];

14

15 resultC.x = (float)curGazept [4];

16 resultC.y = (float)curGazept [5];
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17 resultC.z = (float)curGazept [6];

18

19 resultR.x = (float)curGazept [7] * -1f;

20 resultR.y = (float)curGazept [8] ;

21 resultR.z = (float)curGazept [9] * -1f;

22

23 cfixationInd = (int)curGazept [10];

24

25 if (lastConfidence < confidenceThreshold)

26 {

27 return;

28 }

29

30 resultG = ReComputePoint(resultG , true);

31

32 fixationPoint_p = resultG;

33 //Debug.Log("Gaze point pupil after changing to Unity

Coordinate System (Y-up) " + fixationPoint_p);

34

35 //Debug.Log(" Camera location befor changing Coordinate

System" + cameraPos);

36

37 cameraPos = ReComputePoint(resultC , false);

38 //Debug.Log(" Camera location after changing to Unity

Coordinate System (Y-up)" + cameraPos);

39

40 cameraRot = ReCompRot(resultR);

41

42 localGazeDirection = resultG.normalized;

43 gazeDistance = resultG.magnitude;

13



44 }

Listing 2.3. ReceiveGaze method

The showProjected method uses the modified data to update the location of the

MainCamera first and then that of the RayCast Hit marker and Directional Hit

marker. The camera position is determined with respect to the origin marker in the

virtual environment. This method uses a Sphere caster from the Physics library of

Unity3D which takes the location of the gaze from the raw data in local Unity3D

camera coordinates, a sphere radius (0.005m by default), and the origin, a location

of the camera. The location of the collision of the ray is used as the location of the

RayCast Hit marker. The distance of the location of the gaze from the camera is

used to determine the location of the Directional Hit marker with an error correction

on the local scale.

1 void ShowProjected ()

2 {

3 gazeDirectionMarker.localScale = origMarkerScale;

4

5 Vector3 corigin = headOrigin.position;

6 Vector3 camerawc = headOrigin.TransformPoint(cameraPos);

7

8 cameraH.transform.position = camerawc;

9 cameraH.transform.rotation = cameraRot;

10

11 //Debug.Log("Cam wc " + camerawc);

12

13 Transform gazeOrigin = cameraH.transform;

14



14

15

16 Vector3 origin = gazeOrigin.position;

17 Vector3 direction = gazeOrigin.TransformDirection(

localGazeDirection);

18

19 if (Physics.SphereCast(origin , sphereCastRadius ,

direction , out RaycastHit hit , Mathf.Infinity))

20 {

21 Debug.DrawRay(origin , direction * hit.distance ,

Color.yellow);

22

23 projectionMarker.position = hit.point;

24

25 gazeDirectionMarker.position = origin + direction *

hit.distance;

26 gazeDirectionMarker.LookAt(origin);

27

28 if (errorAngleBasedMarkerRadius)

29 {

30 gazeDirectionMarker.localScale =

GetErrorAngleBasedScale(origMarkerScale , hit.distance ,

angleErrorEstimate);

31 }

32 }

33 else

34 {

35 Debug.DrawRay(origin , direction * 10, Color.white);

36 }
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37 }

Listing 2.4. ShowProjected method

2.3 Eye-tracking

The Pupil core is an open-source eye-tracking device created by Pupil Labs. They

provide three software for capturing, playing, and streaming the data collected by

the device. The device consists of two small cameras oriented at each of the user’s

eyes, and a front camera that provides a First Person View Perspective of the user.

The eye-tracker needs to be calibrated for recording the data, the calibration provides

flexible control over-focusing on the pupil placement and focuses on the input image.

There are a couple of inbuilt plugins that allow gaze-detection, surface mapping, head

pose with respect to surfaces, and fixation detection. The application also allows us

to record the streaming data. The raw data can be extracted from the recording with

another application, Pupil Player, also designed to access the recorded format and to

perform offline the same things as the Pupil Capture.

Pupil core specifications

World Camera:

30-120Hz, 90◦ FOV, 1920 X 1080 resolution.

Eye Cameras:

200Hz, 60◦ FOV
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Recording the Experiment:

The subject is seated in front of the targets on a rolling chair and is asked to fixate

over the display at different points wearing the Pupil Core tracker. The Pupil Capture

software allows us to calibrate the pupil and gaze detection with inbuilt markers and

we use a 5 point calibration method, ensuring that the confidence of pupil detection

from each eye camera is above 0.8 for stable detection.

Note :

Ensure that the subject focuses on a thin object like the tip of a pencil and

rotates their head while fixating on the object for good pupil detection and to

check if the tracker is placed correctly.

It is then used to record the gaze points throughout the session which utilizes the

feed from the two eye cameras to determine a gaze location within the world camera

feed, converts this into a 3D point with the world camera lens center as the origin.

Along with this, the world camera picks up the surface markers that help is tracking

the world camera located within the environment. To ensure that the markers are

visible we use an LED array light pointing at the markers as ambient light within the

cabin was not enough for a stable head-pose tracking. The experiment is conducted

in three different scenarios under both White LEDs and Yellow LEDs:

• With the head at a fixed distance from the targets, the subject sits still on the

rolling chair in front of the monitor and records the gaze points over the targets.
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• While moving the head at a fixed distance from the targets, the subject sits on

the rolling chair in front of the monitor and records the gaze points over the

targets.

• While moving around in the cubical, seated on the rolling chair along with the

body and head movements while looking at the targets.

Each experiment is recorded on Pupil capture after calibration is run from the

start position, storing the recorded data (NYP format) in a default folder. The subject

fixates on random targets (on an image) within the display. Pupil Player is used for

detecting fixations and head poses to save the recorded data in an accessible format.

A fixation is defined as a collection of gaze points within a depression of 1.5◦ between

600ms and 100ms and for every detected fixation, the timestamp, the start frame, end

frame, duration and a list consisting of base data, i.e timestamps of depended gaze

points are recorded by the fixation detection plugin. In Head pose tracker plugin,

marker cache is maintained to keep track of the detected markers in each frame using

which a 3D model of the surrounding is created in marker coordinates with the vertex

0 of the origin marker (can be set manually) as the model origin. Using OpenCV the

plugin determines the camera’s location and orientation at each frame where enough

markers are visible. The Pupil Player allows us to dump the raw data from the

recording into CSV files.

The three main files that we will use are:

Figure 2.4. fixations.csv.

id: fixation ID within the recording

start_timestamp: The time stamp at which the fixation was first detected

18



duration: The duration of the fixation in milliseconds

start_frame_index: The start frame number in the recording

end_frame_index: The end frame number in the recording

norm_pos_x: The x coordinate of the fixation point in the pixel coordinates of the

world camera recording

norm_pos_y: The y coordinate of the fixation point in the pixel coordinates of the

world camera recording

dispersion: The depression angle of the fixation point

confidence: The confidence in the pupil detection at current frame

method: Algorithm used for Pupil detection

gaze_point_3d_x: The x coordinate of the fixation point in the 3D world camera

coordinates

gaze_point_3d_y: The y coordinate of the fixation point in the 3D world camera

coordinates

gaze_point_3d_z: The z coordinate of the fixation point in the 3D world camera

coordinates

base_data: A list of timestamps of the gaze positions used to detect the fixation

point

Figure 2.5. gaze_positions.csv.

gaze_timestamp: The time stamp at which the gaze point was detected

world_index: Index of the frame in the world camera recording

confidence: The confidence in the pupil detection at current frame

19



norm_pos_x: The x coordinate of the gaze point in the pixel coordinates of the

world camera recording

norm_pos_y: The y coordinate of the gaze point in the pixel coordinates of the

world camera recording

base_data: A list of timestamps of the pupil data used to detect the gaze point

gaze_point_3d_x: The x coordinate of the gaze point in the 3D world camera

coordinates

gaze_point_3d_y: The y coordinate of the gaze point in the 3D world camera

coordinates

gaze_point_3d_z: The z coordinate of the gaze point in the 3D world camera

coordinates

eye_center0_3d_x: The x coordinate of the gaze point from left eye camera data

in the 3D world camera coordinates

eye_center0_3d_y: The y coordinate of the gaze point from left eye camera data

in the 3D world camera coordinates

eye_center0_3d_z: The z coordinate of the gaze point from left eye camera data

in the 3D world camera coordinates

gaze_normal0_x: The x coordinate of the gaze point in the pixel coordinates of

the world camera recording based on left eye camera data

gaze_normal0_y: The y coordinate of the gaze point in the pixel coordinates of

the world camera recording based on left eye camera data

gaze_normal0_z: The estimation of distance of the gaze point from the world

camera based on left eye camera data

eye_center1_3d_x: The x coordinate of the gaze point from right eye camera

data in the 3D world camera coordinates

eye_center1_3d_y: The y coordinate of the gaze point from right eye camera
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data in the 3D world camera coordinates

eye_center1_3d_z: The z coordinate of the gaze point from right eye camera data

in the 3D world camera coordinates

gaze_normal1_x: The x coordinate of the gaze point in the pixel coordinates of

the world camera recording based on right eye camera data

gaze_normal1_y: The x coordinate of the gaze point in the pixel coordinates of

the world camera recording based on right eye camera data

gaze_normal1_z: The estimation of distance of the gaze point from the world

camera based on right eye camera data

Figure 2.6. head_pose_tracker_poses.csv.

timestamp: The time stamp of the world camera recording at which the camera

position and orientation is detected

rotation_x: The rotation angle along x axis of the camera from marker positions

in the world camera data in the 3D marker coordinates

rotation_y: The rotation angle along y axis of the camera from marker positions

in the world camera data in the 3D marker coordinates

rotation_z: The rotation angle along z axis of the camera from marker positions in

the world camera data in the 3D marker coordinates

translation_x: The x coordinate of the camera from origin marker positions in the

world camera data in the 3D marker coordinates

translation_y: The y coordinate of the camera from origin marker positions in the
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world camera data in the 3D marker coordinates

translation_z: The z coordinate of the camera from origin marker positions in the

world camera data in the 3D marker coordinates
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CHAPTER 3

Integration

3.1 Combining the Recorded data

Before using the raw data for visualization in the virtual environment we need to make

a consolidated version of it. We use python for this purpose. First, we collect all the

base data timestamp lists for each fixation point in an experiment and create a list of

new fixation Point timestamps from the gaze data. For each fixation point, we retrieve

the fixation index, the list of closest timestamps from gaze data, and corresponding

timestamps from the head pose data, creating a dictionary for easy access. Using this

dictionary, a table containing the gaze position and confidence along with the camera

position and orientation at corresponding timestamp closest to the gaze timestamp is

created which acts as the combined input data for the Unity3D environment (saved

as CSV).

Figure 3.1. combine.csv.

confidence: The confidence in the pupil detection for current gaze point of the fix-

ation

gaze_x: The x coordinate of the gaze point from the closest time stamp in gaze

data, in the 3D world camera coordinates

gaze_y: The t coordinate of the gaze point from the closest time stamp in gaze

data, in the 3D world camera coordinates
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gaze_x: The z coordinate of the gaze point from the closest time stamp in gaze

data, in the 3D world camera coordinates

camera_x: The x coordinate of the camera from origin marker positions in the

world camera data in the 3D marker coordinates

camera_y: The y coordinate of the camera from origin marker positions in the

world camera data in the 3D marker coordinates

camera_z: The z coordinate of the camera from origin marker positions in the world

camera data in the 3D marker coordinates

camera_rx: The rotation angle along x axis of the camera from marker positions

in the world camera data in the 3D marker coordinates

camera_ry: The rotation angle along y axis of the camera from marker positions

in the world camera data in the 3D marker coordinates

camera_rz: The rotation angle along z axis of the camera from marker positions in

the world camera data in the 3D marker coordinates

fixInx: The fixation index of the gaze point

3.2 Recording Animation in the 3D Environment

The Unity 3D script Data.cs is used to read the generated combined data CSV

file into the virtual environment when the Play button is pressed. For each row in the

input file the CustomViz.cs script first retrieves the camera position and orientation,

converts it to Unity coordinate system, and updates the Main camera’s location.

Then the corresponding gaze point location is obtained from the normalized pupil

data and converted to unity coordinates, then a ray with the thickness of 0.005m is

cast from the center of the camera and the location of the collision of the ray in the

environment acts as the virtual gaze point location used as the location of RayCast
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Hit Marker (black sphere). The magnitude of gaze point is used by the Direction

marker (green disk) for visualizing the direction error. For each fixation point, we

record the location of the center of the RayCast Hit Marker as a virtual gaze po-

sition and the distance of the Direction marker from the main camera, along with

the respective Pupil Capture data. This is stored in a CSV file named Output.csv.

fixationInx:The fixation index of the gaze point

Figure 3.2. Output.csv.

pupil_f_x: The x coordinate of gaze point from Pupil capture data

pupil_f_y: The y coordinate of gaze point from Pupil capture data

pupil_f_z: The z coordinate of gaze point from Pupil capture data

unity_f_x: The x coordinate of gaze point from Unity3D data

unity_f_y: The y coordinate of gaze point from Unity3D data

unity_f_z: The z coordinate of gaze point from Unity3D data

pupil_d: The distance of the gaze point from Pupil capture data

unity_d: The distance of the gaze point from Unity3D data

confidence: The confidence of pupil detection for gaze point in Pupil capture data
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3.3 Evaluation of 3D Environment data

There are two errors that we calculate to evaluate the performance of the ex-

periments:

Directional error: The directional error is defined as the euclidean distance be-

tween the Pupil capture gaze point and the Unity3D gaze point along the X-Y plane.

This is converted to angular representation using the absolute difference between the

z coordinates of the actual and virtual gaze points.

dirEi = arcsin

√
(pxi − ux

i)2 + (pyi − uy
i)2

|pzi − uz
i|

(3.1)

Where,

pxi is The real-world gaze point’s x coordinate

pyi is The real-world gaze point’s y coordinate

pzi is The real-world gaze point’s z coordinate

ux
i is The virtual world gaze point’s x coordinate

uy
i is The virtual world gaze point’s y coordinate

uz
i is The virtual world gaze point’s z coordinate

Distance error: The distance error is defined as the difference between the viewing

angles of the actual and virtual gaze point. The viewing angle is defined using the

distance of the gaze and the z coordinate. In case of value errors the y coordinate is

used.

disEi = | arccos
pzi
pdi
− arccos

uz
i

ud
i

| (3.2)
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or

disEi = | arcsin
pyi
pdi
− arccos

uy
i

ud
i

| (3.3)

Where,

pdi is The distance of the real world gaze point from the world camera

ud
i is The distance of the virtual world gaze point from the virtual camera

For each experiment we then iterate over every fixation index to calculate the average

fixation point accuracy and precision.

adirEf j =

∑f [n]
i=f [0] dirEi

n
(3.4)

adisEf j =

∑f [n]
i=f [0] disEi

n
(3.5)

Where,

f is the list of gaze point indices for a fixation point,

n is the number of gaze points associated with the fixation point
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Result graphs:

Figure 3.3. Still Head Experiments.

Figure 3.4. Moving head Experiments.

Figure 3.5. Moving body Experiments.
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Figure 3.6. Directional Error over all Experiments.

Figure 3.7. Distance Error over all Experiments.
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Figure 3.8. Performance under White LED lights.

Figure 3.9. Performance under Yellow LED lights.
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CHAPTER 4

Conclusion

From the following graphs we can conclude that Pupil core eye-tracker can be

reliably used for recording fixation data which can be used in a simulation. The

still head experiment results according to fig 3.3, the white LEDs only help improve

slightly the accuracy and very small change in precision compared to yellow LEDs.

By observing to fig 3.4 we see that for moving head experiments the white LEDs help

improve significantly the accuracy and almost has no change in precision compared

to yellow LEDs. Finally fig 3.5 shows that for moving body the white LEDs help

improve slightly the accuracy and very small change in precision compared to yellow

LEDs. From fig 3.6 , and 3.8 we can conclude that in all scenarios lit with white

LEDs help improve the accuracy of simulation and fig 3.7 , and 3.9 show that even

precision is slightly better than under yellow LEDs.

Experiment

Name

Total

rows

Average Directional error

(decimal degrees)

Average Distance error

(decimal degrees)

DMH2 5440 6.4809232744490215 42.647877350160684

DMH1 9150 14.352453439040488 30.86266116401923

DMB2 3900 6.747919494364545 19.054756501034568

DMB1 3989 8.228726117778766 21.75002445888956

DSH2 8664 8.220661393018473 24.56927407224852

DSH1 8075 16.284118516394397 33.52183441037246
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CHAPTER 5

Future work

The next step would be combining the Pupil core eye-tracker data with Opti-

track motion capture data and to evaluate the overall performance. The april36tags

can be used to gain ground truth data for head pose tracking, comparing the OpenCV

data with the Optitrack one. This will help us further establish a concrete way of col-

lecting data for the develop of the Simulated Environment for Developmental Robotics

(SEDRo), a virtual environment meant to help cut cost in AI research by providing

a Real-world like immersion and input within a simulated environment which can be

used for training AI to learn intelligent, human-like behaviour.
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