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ABSTRACT

ANALYSIS OF COMPLEX DATA SETS USING MULTILAYER NETWORKS:

A DECOUPLING-BASED FRAMEWORK

Abhishek Santra, Ph.D.

The University of Texas at Arlington, 2020

Supervising Professor: Sharma Chakravarthy

We are on the cusp of analyzing a variety of data being collected in every walk

of life - social, biological, health-care, corporate, climate, to name a few. The data

sets are becoming diverse and complex in addition to increased size. Some of the

complexity comes from interacting entities that arise in diverse disciplines, such as

epidemiology [1], marketing strategy [2], social sciences [3], cybersecurity [4] and drug

design [5].

Data sets becoming diverse and complex entails search for appropriate models

and concomitant analytical techniques that are also efficient. Our ability to analyze

large, complex, and disparate data for a broad set of analysis objectives differentiates

big data analytics from mining which is narrow in scope both from data and analysis

perspective. For big data analytics, flexibility of analysis (different from scalability)

is important. Efficiency is important due to large number of analysis needs.

Elegantly modeling and efficiently analyzing these complex datasets to obtain

actionable knowledge presents several challenges. Traditional approaches, such as

using single graph (or a single layer network or monoplex) may not be sufficient or
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appropriate for modeling and computation flexibility. Recently, multilayer networks

have been proposed as an alternative for modeling such data elegantly.

In this thesis, we first discuss different types of multilayer networks – homoge-

neous, heterogeneous and hybrid – from a modeling perspective. The benefits of this

modeling, in terms of ease, understanding, and usage, are highlighted. Although big

data analysis has warranted many new data models, not much attention has been

paid to their modeling from requirements. Going straight from application require-

ments to data model and analysis, especially for complex data sets, is likely to be

difficult, error prone, and not extensible to say the least. Hence for data models

used in big data analysis, such as Multilayer Networks, there is a need to algorith-

mically transform the requirements using a systematic modeling approach, such as

EER (Enhanced Entity Relationship). Here, we start with application requirements

of complex data sets including analysis objectives and show how the EER approach

can be leveraged for modeling given data to generate the MLN model and appropriate

analysis expressions on them.

However, this model brings with it a new set of challenges – both algorithmically

and efficiency-wise – for its analysis. Since there are not many algorithms available

in the literature for the analysis of MLN as a whole, applying currently available

techniques to a transformed version of MLN leads to loss of information in terms of

structure and semantics. Our proposed approach is to develop an analysis frame-

work without transforming the MLN model so structure and semantics can be easily

preserved. The general framework proposed and developed in this thesis is termed

network decoupling. This framework is intended to be beneficial to all aggregate com-

putations although this thesis focuses on two of them. The essence of this approach

is to analyze each network layer individually and then use a composition function

for aggregating individual layer results. This thesis demonstrates the network de-
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coupling approach and its merits for widely-used graph aggregation analysis, such

as community and centrality. For both community and centrality detection of MLN

using Boolean operators, efficient composition functions and algorithms have been

developed and validated for Homogeneous Multilayer Networks. To demonstrate its

effectiveness, this thesis has proposed a new community definition of heterogeneous

MLNs using the same framework. This not only uses the decoupling approach based

on bipartite graph matching, but also preserves structure and semantics. Structure

and semantics preservation for MLNs (both homogeneous and heterogeneous) is cru-

cial for drill down analysis to clearly understand and interpret results. Our definition

supports a family of community detection algorithms for heterogeneous MLNs which

is very useful for matching analysis objectives. Further, for a broader analysis, we

introduce several weight metrics for bringing in individual layer community charac-

teristics on the MLN community. Essentially, this results in an extensible family of

community computations.

Finally, the framework and the algorithms proposed have been applied to real-

world (Internet Movie Database - IMDb, Database Bibliography - DBLP, UK Acci-

dents, US Airlines, Facebook) and synthetic data sets in order to validate the ap-

proach, flexibility afforded, accuracy limits, and efficiency aspects. Meticulous drill-

down analysis on the final results has been carried out to come up with few surprising

analysis results that predicted future potential events that we could verify by inde-

pendently available ground truth. Based on this work, a dashboard for visualizing

MLN analysis is underway.
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CHAPTER 1

MOTIVATION and PROBLEM STATEMENT

As data sets become more complex with diverse entity, feature, and relation-

ship types, approaches needed for their modeling and analysis also require extensions

and/or new alternatives to match the complexity of the data sets. We have already

seen a surge in the use of graph-based modeling along with a plethora of relevant

computations with the advent of social networks and large graph data sets. Even

data sets that may not be inherently graph-based may benefit from the use of graph

representation for modeling (from an understanding perspective) and for performing

different kinds of analysis that may be difficult or not possible using the traditional

Database Management System (or DBMS) or mining approaches. Data analytics re-

quires a suite of diverse techniques to analyze different kinds of data sets and derive

meaningful conclusions from them. Holistic/aggregate analysis relates to analyzing a

multi-feature data set by including the effect of different combinations of features or

perspectives. We have studied a variety of multi-entity, feature and relationship data

sets for modeling and flexible aggregate analysis to derive a general modeling and an

efficient analysis approach presented in this thesis.

In this thesis, given a set of analysis objectives for a data set comprising of

multiple entities, multiple feature and multiple relationships, we focus on three pivotal

questions (corresponding to the stages shown in Figure 1.1.)

• How to model the data set? (Stage 1)

• How to efficiently perform the analysis? (Stage 2) and,
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• How to drill down and visualize the results to infer actionable knowledge (Stage

3)?

Figure 1.1: Different Stages of Complex Data Set Analysis

1.1 Modeling of Complex Data Sets

Data sets involving interactions/relationships among the entities have tradition-

ally been modeled as simple single graphs or attributed graphs. Recently, multilayer

networks has come out to be another viable alternative. In this thesis, we compare

all the modeling alternatives with respect to modeling clarity, support for flexible

analysis, computational efficiency and ease of drill-down analysis and visualization.

Chapter 2 goes into the details of the modeling alternatives and the rationale behind

proposing different types multilayer networks has been discussed. Moreover, in order

to properly incorporate the application requirements in an error-free and systematic

manner, algorithmic steps have been given to convert a Enhanced Entity Relationship

(EER) model into the MLN model (5).
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1.2 Analysis of Complex Data Sets

Multilayer networks have been used recently to analyze the multi-entity and

multi-feature data sets. Most of the prominent analysis techniques like the type-

independent and projection approach either collapse the entire MLN into a single

graph leading to loss of information in terms of structure and semantics. While other

techniques analyse the whole MLN as a single graph and perform random across the

layers to obtain the desired analysis results. This technique entails developing new

algorithms for different analysis objectives. In this thesis, we propose a novel divide-

and-conquer based network decoupling approach where each layer is analyzed just once

to obtain partial results that are combined using a composition function based on the

analysis objective, thus allowing support for flexible efficient analysis of MLNs. The

major challenge in this approach is to develop efficient and accurate composition func-

tion. Chapter 4 discusses the decoupling approach in detail focusing on the various

requirements, benefits and challenges. In general, the decoupling-based composition

algorithms based algorithms have been developed for community detection, centrality

measurement and substructure discovery in MLNs, detailed discussion on which in

terms of characteristics, efficiency and accuracy have been highlighted in different of

the thesis.

1.3 Drill-Down Analysis and Visualization

It becomes imperative in every socio-economic domain to analyze the final anal-

ysis results further in order to obtain actionable knowledge to fulfill the business ob-

jective. For example, if the analysis results return a group of actors most of whom

work who have co-acted in some movie (community), it must be possible to infer

from this community result the set of genres that is most prevalent or a highly rated
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actor pair who have not yet worked together. Support for such actionable knowledge

requires the preservation of structure and semantics in the final results in terms of

node and edge labels (types) and initial edge connectivity. This is one of the major

advantages of the proposed decoupling approach. In the thesis, we illustrate multiple

times how decoupling approach has allowed us to drill down and visualize the final

communities, hubs and frequent substructures to infer hidden interesting information

and predict potential interactions through real-world data sets like IMDb, Facebook,

DBLP and Accidents. Information for independent sources have been used to validate

the drill down results.

1.4 Contributions of the Thesis and Roadmap

This thesis explores the different stages involved in the analysis of complex data

sets starting the application requirements phase to the final analysis results followed

by drill-down analysis. The related work from different domains related to this thesis

has been discussed in Chapter 3. The contributions of this thesis (along with the

roadmap) have been listed below;

1. In Chapter 2 we discuss in detail the alternatives we have for modeling the

complex data sets and provide a rationale behind proposing different types

of multilayer networks.

2. Modeling directly from the application requirements to a data model is likely

to be difficult and error-prone. EER has played a central role in the modeling

of user-level requirements to relational, object oriented etc. However, currently,

there is no modeling approach when it comes to complex and diverse data sets.

In Chapter 5, we propose the algorithmic steps to convert an EER model

(built from the application requirements) to the Multilayer Network

model.
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3. In Chapter 4, we propose the generic decoupling approach framework

for efficiently analyzing MLNs. Efficient composition algorithms (Θ) for

different analysis functions (Ψ) like community and centrality detection have

been proposed as a part of this thesis.

4. In Chapter 6, we have proposed the Boolean operator based composition

functions for the community detection in Homogeneous Multilayer

Networks (HoMLN). The challenges involved in developing the composition

function, cost analysis of proposed algorithms, accuracy inferences based on

different graph characteristics and efficiency has been discussed in detail. We

have provided case studies in Chapter 7 and 8, where these proposed composi-

tion algorithms are used to perform an aggregate analysis of the Facebook and

Movie Actor data sets, respectively.

5. Efficient Boolean composition-based heuristics to detect the degree

and closeness centrality based hubs have been proposed in Chapter 9.

Similar to community detection, detailed cost analysis, graph characteristics

based accuracy inferences and efficiency discussions have been provided. These

heuristics have been used for a case study on the US Commercial Airline data

set in chapter 10, where centrality-based analysis has been performed.

6. The notion of community is well defined for single graphs. However, in case

of heterogeneous multilayer networks there is no proper definition of

a community. In chapter 11, we provide a structure and semantic pre-

serving definition of a HeMLN community and propose efficient com-

position techniques based on weighted maximum matching to detect

them.

7. In every chapter, different types of MLNs have been used from Facebook,

IMDb (Internet Movie Database), UK Accident, US Airline, DBLP
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(Database Bibliography or Computer Publications) to illustrate the pro-

posed modeling and composition algorithms.

8. Extensive experiments have been performed on real-world and synthetic data

sets in order to validate the accuracy and efficiency aspects.

9. Upon obtaining the final analysis results (community, centrality hubs), we per-

formed drill-down analysis and visualization in order to find out hid-

den interesting knowledge and made link-/node-/group-based predic-

tions, validated from independent sources wherever possible.

10. This thesis has led to various publications:

• Published: [6, 7, 8, 9, 10, 11, 12, 13, 14]

• Under Review: [15, 16]



CHAPTER 2

COMPLEX DATA SET MODELING: USE OF MULTILAYER NETWORKS

In order to discuss the different types application requirements with respect

to multi-entity, feature and relationship data set, three illustrative scenarios have

been discussed in Section 2.1 that have been used to introduce the chosen multilayer

network data model and its different categories in Section 2.3 due to the limitations

of traditional modeling techniques 2.2.

2.1 Categories of Analysis Scenarios

Scenario 1: Consider the problem of modeling and analyzing the traffic accident

problem (or data set) for a region or a country. A number of features are associated

(and collected) with each accident such as location, speed, time of the day, severity

of the accident, light, weather, and road conditions. One may want to analyze this

data set from multiple angles like

• General accident prone regions?

• Dominant feature associated with most accidents?

• Ordering features based on their effect on the severity of the accident?

• Effect of individual or combination of features on accidents in a region or across

all regions?

Scenario 2: Consider another data set where we have information about scientists

who collaborate with each other, cities that have direct flights, and conferences

that have overlapping research topics. In addition, there is information about who

7
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lives in what city and the cities in which annual conferences have been held. Given

this data set, it would be useful to understand,

• Where do the most collaborative group of scientists reside?

• Whether a large group of collaborators have attended several conferences?

• Who are the most popular collaborators for different research topics? Can we

group cities where work belonging to these research areas is going on?

Scenario 3: If the Facebook friendship information of scientists, carrier information

for the flights between cities and attendance information of conference is also available

in addition to the data described in Scenario 2, then the extended set of analysis may

involve;

• Who are the highly collaborative and socially popular (influential) scientists

who have attended conferences with large attendance?

• Which is the best city to hold a workshop on a particular topic to get maximum

number of collaborating scientists?

• For the set of cities that are serviced by maximum number of carriers, who are

the residing scientists that have maximum friends?

Note that, unlike the problem in Scenario 1, where the analysis referred to the

same entity set (accidents), in Scenario 2 different disjoint entity sets are used (sci-

entists, cities, and conferences). In Scenario 3, it is a combination of scenarios 1 and

2, where apart from multiple entities, multiple features or relationships are captured

for every entity type (e.g., twitter followers and collaboration for scientists, different

flight carriers for cities, overlapping research areas and attendance for conferences).

Therefore, there is a need for a data model that can handle these analysis that span

multiple entities and their relationships in different ways.
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2.2 Traditional Modeling Techniques

Research on graph-based modeling and analysis have been around for a long

time. In addition to analysis, search and querying of graphs are also becoming main-

stream [17, 18]. As the size of the data sets increases and their characteristics become

more complex, efficient and scalable approaches [19] are being developed to cope with

the increase in data size and complexity using partitioning and parallel processing

techniques. Partitioned approaches with loss-less computation and fast approximate

algorithms are being investigated [20].

Single Graph or Simple Graph or Monoplex: Here the data set is represented

by a single network or graph. It models entities as nodes and features as edges of the

graph. This model gives rise to graphs with single node types (entity types are not

distinguished even when multiple node types are modeled using this approach) and

single edges between nodes (either for a single feature or for a combination of features).

Relationships among the entities can either be specified by explicit interactions (like

flights, co-authors and friends) or based on a similarity metric depending on the type

of the feature like nominal, numeric, time, date, latitude-longitude values, text, audio,

video or image.

Advantages. This approach is the most popular representation as large number

of computations exist for simple graphs. There are several algorithms for analyzing

simple graphs, such as detecting cliques, communities, centrality metrics, mining

subgraphs, motifs etc.

Disadvantages. Single networks are, however, not adequate in representing

multiple features. Particularly, it is difficult to combine features of different categories

(e.g., numerical and categorical), in a meaningful way as one edge. The problem

compounds when the entities are also of different types as well. Moreover, when
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analyzing a subset of entities and/or associated feature types, separate graphs may

have to be created for each such combination and analysis.

Attribute or Knowledge Graphs: Here additional features of the data sets can

be represented by including node types in terms of labels (even multiple labels) and

multiple edges, even self-loops, corresponding to relationships for different features.

Advantages. Attribute graphs have been successfully used in subgraph min-

ing [19, 21, 22], querying [23, 24, 25] and searching [26, 27] over multi-entity types

and multi-feature datasets. They capture more semantic information than simple

graphs, and can handle both multiple types of features and entities.

Disadvantages. Algorithms for some key analysis functions, such as community

and centrality detection are not yet available for general attribute graphs. Hence,

these graphs need to be converted to a monoplex for analysis. Although different

features can be stored in the graph, for every subset of features, the analysis has to

be done separately.

Due to the modeling, analysis and computational inefficiency of traditional

approaches, we propose to use multilayer networks (multiple layers of interconnected

graphs) as an alternative model.

2.3 Modeling of Complex Data Sets using Multilayer Networks

Multilayer Networks (or MLNs) are layers of single graphs (or monoplexes) or

network of networks∗. Each layer, typically, captures the semantics of one particular

feature. As in a monoplex, the graph vertices represent the entities of the data set and

the edges represent similarity between the feature values or the dyadic relationship

∗The terminology used for variants of multilayer networks varies drastically in the literature

and is not even consistent with one another. Please refer to [28] which provides a comprehensive

comparison of terminology used in the literature, and their differences clearly.
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between the end point vertices. The vertices of two layers can also be connected.

To differentiate, we term the edges within a layer as intra-layer edges and the edges

across the layers as inter-layer edges.

Formally, a multilayer network, MLN(G,X), is defined by two sets of graphs:

i) The set G = {G1, G2, . . . , GN} contains graphs of N individual layers, where

Gi(Vi, Ei) is defined by a set of vertices, Vi and a set of edges, Ei. An edge e(v, u) ∈ Ei,

connects vertices v and u, where v, u ∈ Vi and ii) A set X = {X1,2, X1,3, . . . , XN−1,N}

consists of bipartite graphs. Each graph Xi,j(Vi, Vj, Li,j) is defined by two sets of

vertices Vi and Vj, and a set of edges (also called links or inter-layer edges) Li,j, such

that for every link l(a, b) ∈ Li,j, a ∈ Vi and b ∈ Vj, where Vi (Vj) is the vertex set of

graph Gi (Gj.)

Based on the type of relationships and entities, multilayer network are of differ-

ent types. If each layer of a MLN has the same set of entities of the same type,

it is termed a Homogeneous MLN (or HoMLN.) Thus, V1 = V2 = . . . = Vn. For a

HoMLN, intra-layer edges are shown explicitly and inter-layer edges are not shown,

as they are implicit. Scenario 1 can be modeled using HoMLN, where the accident

instances become nodes in each layer. The similarity between them with respect to

the different features like light, weather and road conditions become the basis of the

intra-layer edges in their respective layers. Figure 5.4 (a) shows the Accident HoMLN.

When the set and types of entities are different across layers, then the

MLN is termed as a heterogeneous multilayer network (HeMLN). Scenario 2

can be modeled as a heterogeneous multilayer network, shown in Figure 5.4 (b). Each

layer has a different entity type as its nodes (e.g., scientists, cities, and conferences).

The graph of a layer is defined with respect to the chosen features and entity types.

That is, scientists nodes are connected if they co-authored a paper, conference nodes
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Figure 2.1: Types of Multilayer Networks

are connected if they have similar/overlapping research domains) and city nodes are

connected if there is direct flight between them.

In this case of HeMLNs, the inter-layer links are defined explicitly based on

feature semantics that corresponds to an edge (e.g., conference-held in, scientist-

resides in and attends-conference).

In Scenario 3, the scientists, cities and conferences had multiple features associ-

ated with them like in addition to being collaborators, researchers may be Facebook

friends. Thus, to model multi-feature data that capture multiple relationships

within and across different types of entity sets, a combination of homogeneous

and heterogeneous MLNs is used, called hybrid MLN (or HyMLN), shown in

Figure 5.4 (c).

Advantages. Compared to the other options, multilayer networks are a more

natural and elegant choice for modeling data sets with multiple entities, features, and
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relationships. In MLNs each chosen feature (or combination) is modeled in a separate

layer and thus this model can support both heterogeneous and homogeneous data

sets. MLNs are also better suited from an information representation (i.e., structure

and semantics) viewpoint and its visualization. Instead of cluttering all the entities

and relationships in a single graph (or layer), they are logically separated and hence

are easy to understand. The intra- and inter-layer relationships are also separated

semantically. Each incremental change to each feature or relationship, as modeled

by addition/deletion of vertices and edges can be easily included without extensive

re-modeling of the already created MLN. Unlike most currently used approaches there

is no need to convert a MLN representation to another one (simple or attributed) for

analysis when the decoupling approach, discussed in Section 4.2, is used.

Challenges: Having argued for MLN for modeling, the primary challenge is to

preserve the MLN structure during analysis (without collapsing them as is done by

current approaches), thereby preserving both structure and semantics. If this can

be done, further drill-down of data can be easily accomplished to uncover hidden in-

teresting knowledge or make future link-based/node-based/group-based predictions.

Once the structure and semantics are preserved, visualization of the results is straight-

forward. Another important challenge is to perform analysis efficiently and keep the

MLN structure intact. Chapter 4 discusses in detail the proposed network decoupling

approach that addresses all these challenges.



CHAPTER 3

RELATED WORK

We present the recent work relevant to the areas that we have explored as a

part of this thesis - multilayer network analysis, EER modeling and community and

centrality detection in MLNs.

Recently, many analytical tasks have used multilayer networks to handle varying

interactions among the same or different sets of entities prevalent in complex data sets

like co-authorship network in different conferences [29], citation network across differ-

ent topics [30], interaction network based on calls/bluetooth scans [31] and friendship

network across different social media platforms [32]. Multilayer networks have been

used in many other diverse applications including improving drug design [5], under-

standing collaboration patterns [33], comparing the evolution of species [34], finding

vulnerabilities in power grids [35], and identifying illegal activities via social interac-

tions [36]. Review of current work on multilayer networks are given in [28, 37, 38].

Some software have been developed by groups at Europe, including Muxviz [39, 40],

MAMMULT [41, 42] and Pymnet [43]. However, they focus more on visualization and

support only a few analysis functions. It is not easy to add or compare algorithms

on these platforms nor can they leverage parallelism as we propose here.

Most of this work focuses on overall MLN diagnostics by considering the MLN

layers individually. However, in order to holistically study entities and relationships

of multilayer networks, we also have to study the combinations of different layers in

the network. Although, techniques based on information theory have been proposed

for multilayer protein-protein interactions [44], this is only for reducing the number of

14
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redundant layers through aggregation. We need a principled approach to arbitrarily

combine features without having to construct combined layers and analyze them.

ER and EER models have served as a tool for database design by incorpo-

rating the important semantic information about the real world [45]. The area of

relational database modeling especially benefited from this body of work. A good

EER diagram based on the user analysis requirements is critical for an error-free

relational database schema. Numerous tools have been developed for creating the

EER diagram and algorithmically mapping it into relations for different commercial

DBMSs.

However, with the emergence of structured data sets with inherent relationships

among entities and complex application requirements, such as shortest paths, impor-

tant neighborhoods, dominant nodes (or groups of nodes), etc, [23, 46], the relational

data model was not the best choice for modeling as well as analyzing them [47]. This

led to the evolution of NoSQL data models including the graph data model [48]. In

many cases, like friendship (Facebook), collaborations (Movies) and follower-followee

(Twitter) relationships, relationships needed to be modeled explicitly using graph

data structures. This gave rise to computations over these data models. Recently,

there has been some work in the area of graph modeling from EER diagrams, but

is limited to simple attributed graphs only [49, 45, 50, 51]. However, most of these

works either do not handle recursive relationships ([49]), and weak entities [52] or

are application-specific [53]. Moreover, to the best of our knowledge there is not any

work that establishes the set of rules for the generation of a multilayer network given

a set of analysis objectives and data set description.

Community detection on a simple graph involves identifying groups of

vertices that are more connected to each other than to other vertices in the net-

work/graph. Most of the work in the literature considers single networks or sim-
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ple graphs where this objective is translated to optimizing network parameters such

as modularity [54] or conductance [55]. As the combinatorial optimization of com-

munity detection is NP-complete [56], a large number of competitive approximation

algorithms have been developed (see reviews in [57, 58].) Algorithms for commu-

nity detection have been developed for different types of input graphs including di-

rected [59, 60] edge-weighted [61], and dynamic networks [62, 63]. Recently there

have also been algorithms for identifying overlapping communities [64, 65]. However,

to the best of our knowledge, there is no community definition and detection that

include node and edge labels, node weights as well as graphs with self-loops and mul-

tiple edges between nodes. Even the most popular community detection packages

such as Infomap [66] or Louvain [67], do not accept non-simple graphs. In contrast,

subgraph mining [21, 22, 19], querying [23, 25], and search [26, 27] have used graphs

with node and/or edge labels including multiple edges between nodes, cycles, and

self-loops.

Recently, community detection algorithms have been extended to Ho-

mogeneous MLNs (see reviews [38, 68].) Algorithms based on matrix factorization

[69], cluster expansion philosophy [70], Bayesian probabilistic models [71], regres-

sion [72] and spectral optimization of the modularity function based on the supra-

adjacency representation [73] and a significance based score that quantifies the connec-

tivity of an observed vertex-layer set through comparison with a fixed degree random

graph model [74] have been developed. However, all these approaches analyze a MLN

either by aggregating all (or a subset of) layers of a HoMLN using Boolean and other

operators or by considering the entire MLN as a whole, leading to loss of information

and computational inefficiency.

To the best of our knowledge, there is no community definition or detec-

tion algorithm for Heterogeneous MLNs. Majority of the work on analyzing
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HeMLN (reviewed in [75, 76]) focuses on developing meta-path based techniques for

determining the similarity of objects [77], classification of objects [78], predicting

the missing links [79], ranking/co-ranking [80] and recommendations [81]. The

type-independent [44] and projection-based [82] approaches used for HeMLNs neither

preserve the structure nor the semantics of the community. The type independent ap-

proach collapses all layers into a simple graph keeping all nodes and edges (including

inter-layer edges) sans their types and labels. The same is true for the projection-

based approach as well, that projects the nodes of one layer onto another layer and

uses the layer neighbor and inter-layer edges to collapse the two layers into a single

graph with a single entity type instead of two. The presence of different sets of entities

in each layer and the presence of intra-layer edges makes structure-preserving defini-

tion more challenging for HeMLNs and also warrants a novel composition technique.

A few existing works have proposed techniques for generating clusters of entities [83],

but they have only considered the inter-layer links and not the networks themselves.

Degree centrality [84] and closeness centrality [85, 86] have been used in

monoplex (single layer network) to detect high centrality nodes. There has been work

in determining centrality measures by aggregating all the layers of a multilayer net-

work [87] or performing walks across layers [88]. However, the problem of inferring

the degree centrality or closeness centrality hubs of any arbitrary conjunctively com-

bined network from hubs of individual layers, in a cost-effective manner, has not been

addressed earlier.



CHAPTER 4

NETWORK DECOUPLING-BASED FRAMEWORK FOR MLN ANALYSIS

In this chapter, we propose a novel divide and conquer based network decoupling

approach towards MLN analysis due to the undesirable drawbacks of the current

analysis approaches.

Figure 4.1: Approaches to Analyze MLNs

4.1 Current Approaches to Analyze MLNs

Current Approaches to Analyze MLNs are to map the networks to an equivalent

single graph in various ways [37, 28]. However, through this process, many of the

information in the multilayer graphs can be lost. There are mainly two approaches

18
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for converting a MLN into a single layer network. The first, used for homogenenous

MLNs, is to aggregate the edges of the multilayer network. Specifically, given two

vertices v and u, the edges between them from each layer are aggregated to form

a single aggregated edge. This process is repeated for all the vertex pairs. Some

typical aggregation functions are Boolean AND (intersection), OR (union) or linear

functions when the edges are weighted. An example, from homogeneous MLNs, would

be aggregating routes of different airplane carriers [89].

For heterogeneous MLNs, aggregation is performed in many ways. The first

is type independent [44], that is ignore the varying types of the entities, and thus

basically treat it as a homogenenous MLN with a subset of vertices in each layer.

The second method is projection-based [82]. Here, if two vertices in a layer are

connected to a common vertex in another layer, then an edge is inferred between

them. Such “projections” of one layer onto another layer produce inferred edges and

then these edges are aggregated. An example is connecting drugs that act on common

proteins [82].

Another method, used for HeMLNs, is to transform the multilayer network into

an attribute graph, where the vertices and edges are labeled based on their types.

This MLN-as-a-whole graph is analyzed to find specified subgraphs, such as patterns

of authors, papers and venues [76] or vulnerabilities in infrastructure networks [90].

Issues. Single network approach has the advantage that many analysis algo-

rithms for community and hub detection are available (e.g., Infomap [66], Louvain [67]

being prominent ones for community detection). However, the aggregation approaches

preserve neither structure nor semantics of MLNs as they aggregate layers. Impor-

tantly, aggregation approaches are likely to result in some information loss or distor-

tion of properties [28] or hide the effect of different entity types and/or different intra-

or inter-layer relationship combinations [91]. In cases, where the multilayer network is
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converted to an attribute graph, algorithms for aggregate computations (e.g., commu-

nity, hub) does not exist. Some approaches use the multilayer network as a whole [92]

and use inter-layer edges, but do not preserve the layer semantics completely. An al-

ternative is to separate desired subgraphs and use single network algorithms which

defeats the purpose of modeling as attribute graphs and is inefficient.

4.2 Decoupling Approach to Analyse MLNs

We propose Network decoupling as a method by which MLNs can be ana-

lyzed without being transformed to another form. The decoupling approach preserves

the structure and semantics of the layers in the result and at the same time can take

advantage of the existing algorithms. The network decoupling approach is the equiv-

alent of “divide and conquer” for MLNs. This is illustrated in Figure 4.1(b) and is

applied as follows, for a given analysis function Ψ and composition function, Θ:

(i) Use the analysis function Ψ to analyze each layer individually like community,

centrality metrics, frequent subgraphs, motifs, graph querying etc.

(ii) Second, for any two chosen layers, apply a composition function Θ to compose

the partial results from each layer to generate intermediate results.

(iii) Finally, apply the composition process until the expression is computed.

This is in contrast to current approaches described earlier. Figure 4.1(a) in-

dicates aggregation-based approaches where structure and semantics are lost. Fig-

ure 4.1(c) illustrates MLN approaches where only inter-layer edges are used instead

of all edges.

Advantages: The decoupling approach has advantages over the traditional meth-

ods.

• By using the aggregation approach, information pertaining to the individual

layers is lost and it is difficult to measure their relative importance to the system
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as a whole. In contrast, network decoupling retains the semantic information

of each layer and therefore their individual importance and contribution can be

measured.

• Plethora of efficient single graph analysis algorithms exist. They can be lever-

aged in order to generate the layer-wise results.

• The “divide and conquer” approach also facilitates the mix and match of the

features and relationships, thus supporting flexibility in terms of analysis.

• In the aggregation approach, each time a subset of features is selected, the

analysis has to be recomputed, even when the subsets might have overlaps. This

leads to redundant computations. Using the decoupling approach, redundant

analysis are avoided, since each layer, corresponding to a particular feature is

analyzed separately, and then combined.

• Another important advantage is that the decoupling approach is amenable opti-

mizations. That is, if the composition function is commutative and associative

then a given specification can be optimized (by re-arranging the order of layer

compositions) to obtain an alternative more efficient specification producing the

same result.

• There are ample parallelization opportunities using this approach right from

parallel generation of layer-wise results to parallel combination of independent

partial results, which was not possible in with the existing MLN analysis tech-

niques.

• Most importantly, this approach is application independent.

Challenges. The decoupling approach can be applied for both HoMLN and

HeMLN. Moreover, the success of this approach is dependent on correctly matching

the analysis function, Ψ, with composition function, Θ, that should produce accurate

results and be computationally efficient.
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In this thesis, we have developed Boolean composition algorithms for commu-

nity and centrality detection in HoMLNs and weighted maximum matching compo-

sition for community detection in HeMLNs. The decoupling approach has also been

extended for frequent substructure discovery in HoMLNs [93].

However, before discussing the various types of MLN analysis, it is important to

understand that going directly from the application requirements to the MLN model,

is bound to be error-prone and difficult. Thus, in the next chapter we first talk about

the algorithmic steps that we have proposed to convert an EER (Enhanced Entity

Relationship) model to the MLN model.



CHAPTER 5

EER→MLN: EER APPROACH FOR MODELING COMPLEX DATA USING

MULTILAYER NETWORKS

Big data analytics is predicated upon our ability to model and analyze dis-

parate, complex data sets. RDBMSs have served well for modeling and analyzing

data sets that need to be managed over a long period of time and that are suited for

relational representation. Data warehouses and OLAP came about to improve the

analysis aspect of RDBMSs using more powerful queries (to provide multi-dimensional

analysis) that could not be done earlier. This evolution has continued with NoSQL

systems providing alternate data models and analysis for data that were difficult (or

inefficient) to model using RDBMSs. We see the applicability of Multilayer Networks

(or MLNs), its modeling, and analysis as another important step in the evolution of

aggregate analysis of complex data sets.

In this chapter, our focus is on data sets with diverse types of entities that are

defined by multiple features and interact through varied and complex relationships.

Although graph modeling is used, the analysis and computations are different from

the ones addressed in either RDBMSs or recent NoSQL systems, such as Neo4J.

Instead of a database, the data is transformed into MLN data structures using EER

modeling and computations are performed on these using packages and libraries that

are available. Just to give an idea, an analysis may need community detection, degree-

centrality (or hubs) detection and combine layers using Boolean operator (AND, OR,

and NOT) or use weighted bipartite graph matching, details of which have been

discussed in subsequent chapters.

23
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Although EER modeling is widely used for relational and object-oriented data

modeling, there is no modeling approach when it comes to complex, diverse data sets.

This is likely to create problems for analysis and representation of data sets correctly

to match analysis objectives. We will exemplify this with user requirements below.

5.1 Data Set Descriptions and Analysis Objectives

We have chosen three data sets for analysis from different application domains to

illustrate the general applicability of our proposed framework. While much larger data

sets can be used, we selected these because reliable ground truth data from orthogonal

sources were available. Although we have indicated many analysis objectives to show

the scope of this approach, due to space constraints, we show only a subset of them

in the experimental analysis section. However, all of them have been computed.

1. Internet Movie Database (IMDb): This data set is publicly available and

stores information about movies, TV episodes, actor, directors, ratings and genres of

the movies, etc. [94]. Here the entities are of different types as they can be actors,

directors, movies, etc. The features/relationships can be co-actors, similar-genre-

acting, directed-a-movie, same movie ratings etc.

Analysis Objectives. Analysis requirements on this data sets can be diverse. As sam-

ple examples, one may want to analyse actor-based relationships :

(A1) Find co-actor groups that are most popular and most versatile

(A2) Cluster groups of co-actors who have worked in movies with high ratings

(A3) Predict new groups of actors who have not worked together before, but are

likely to work together in future

2. Database Bibliography (DBLP): As most researchers are familiar with, the

DBLP dataset is publicly available and stores information about computer science

publications in various conferences and journals. It captures the author names and
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institutions, years, conference/journal names and links to the papers [95]. Clearly,

there are multiple entities that can be related based of different types of relationships.

Analysis Objectives. Again, our aim is to be able to perform analysis, such as:

(A4) Find strongest co-author groups who have collaborated on at least 3 papers

(A5) For each conference, find most popular groups of co-authors who publish fre-

quently

(A6) For the most popular collaborators in each conference, find the 3-year period(s)

when they were most active

(A7) For each conference that publishes maximum papers in each period, find the

most popular paper review score.

3. Author-City Data Sets: Airline data set contains the flights between different

cities. This information can be combined with the author information from the DBLP

data set to indicate who lives in which city. It can also be used for actors and directors.

Analysis Objectives. For such a diverse data set, the analysis objectives are also quite

involved. For example,

(A8) Find strong co-author groups who are also friends (if Facebook information is

available)

(A9) Find cities where the largest concentrations of authors reside

(A10) What is a good city to hold conferences of authors to maximize attendance?

We have selected the analysis objectives to be varied for the purposes of illustrating

the need and effectiveness of the approach being proposed. They range from relatively

easy analysis of finding clusters of co-actors to more complicated predictions of future

teaming of actors and potential city for holding a conference.

Problem Statement. For a given dataset with F features and T entity types and

a set of analysis objectives (O), develop: (i) an EER diagram for modeling the data

set in conjunction with appication requirements, (ii) develop an algorithm to convert
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the EER diagram into the data model (MLNs in this case), (iii) map the analysis

objectives (O) into computable expressions on the generated data model, and finally

(iv) compute the expressions using available techniques.

Sec 5.2 shows mapping of user requirements to an EER diagram using the standard

notations. In Sec. 5.3 we discuss the mapping of the EER diagram into homogeneous,

heterogeneous, and hybrid MLNs along with an algorithm. Finally, in Sec. 5.4.1 we

demonstrate with examples how the analysis objectives are mapped to expressions on

the generated MLNs.

5.2 Application Requirements To EER Model

Any analysis objective to be computed from data involving multiple entities, fea-

tures and complex relationships has been shown to benefit from a multilayer network

model [28]. Enhanced Entity Relation diagrams ([96]) are well-established and have

been used to model and design schemas for relational databases. An EER diagram

is crucial to creating a good database design. In this section, we illustrate the first

stage from figure 1.1 where requirements from three different sets of real-world anal-

ysis objectives (Section 5.1) are mapped to EER diagrams.

5.2.1 Internet Movie Database (IMDb) Analysis

The data set consists of top 500 actors and their co-actors across different movies,

giving a total of 9000+ actors. Based on the information in the IMDb data set and

analysis objectives (A1-A3), one can build an EER diagram (shown in Figure 5.1)

as described below∗:

• Entities: Actor with the key-attribute as name and nationality as a composite

attribute comprising of the state and country.

∗Note that the relationship details can change based on analysis objectives.



27

Figure 5.1: IMDb EER Diagram

• Recursive Relationships:

– Acts-with: Two actors are related if they have worked in at least one movie

– Similar-Genre: Genre is a categorical variable, as it takes fixed, limited

number of values, such as “comedy”, “action”, etc. Also an actor acts

in multiple movies of the same genre – i.e., in 3 action movies, 1 comedy

movie, etc. For every actor we generate a vector with number of movies for

each genre. We then compute the Pearsons’ Correlation Coefficient (PCC)

between the genre vectors for each actor pair. Two actors are related if

PCC is at least 0.9†.

– similar-AverageRating : The movie ratings are given from 0 to 10. Note,

however, when we take the average of the ratings, the values become real

numbers. To evaluate the similarity we created 10 ranges - [0-1), [1-2),

..., [9-10]. Two actors are related if their average ratings fall in the same

range.

†Choice of coefficient reflects relationship quality and its value can be based on how actors are

weighted against genres. We have chosen 0.9 for relating actors in their top genres.
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• (Min, Max) Cardinality Ratios: All relationships have (0,N)..(0,N) car-

dinality as an actor can be similar to none or multiple actors.

5.2.2 Database Bibliography (DBLP) Analysis

For DBLP, we have considered all publications from VLDB, SIGMOD, ICDM, KDD,

DaWaK and DASFAA from the 2001-2018. Based on data set description and analysis

objectives (A4-A7), the EER diagram shown in Figure 5.2 has been discussed below

Figure 5.2: DBLP EER Diagram

• Entities including Weak:

– Author with attributes - name (key) and institution. Total Papers is a

derived attribute that can be calculated using writes binary relationship.

– Paper with attributes, Paper ID (key), name and keywords (multi-valued)

– Year with year ID as the key attribute
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– Review: Existence of a review is dependent on the existence of a paper,

thus it is a weak entity. It has ID (partial key) and score as the two

attributes.

• Recursive Relationships:

– Collaborates-with: Two authors are related if they have worked together

on at least 3 published papers

– Same-Conference: Two papers are related if they are published in same

conference.

– Same-Range: 3-year periods are required for analysis. Thus, the period

from 2001 to 2018 is divided into 6 disjoint 3-year periods, from [2001-

2003] to [2016-2018]. Two years are related in they are in the same 3-year

period.

– Same-Score: Typically, each review receives an overall score between 1 and

5 that can be rounded off. Thus, two reviews with the same score can be

related.

• Binary Relationships:

– Writes: A relationship to indicate if an author has written a paper.

– Active-in: A binary relationship is created between author and year entities

to denote whether an author was actively publishing in that year.

– Published-in: Similarly relationship between paper and year entities is es-

tablished to show in which year a paper was published.

– Receives : Every paper published is related to all the reviews that it re-

ceives.

• (Min, Max) Cardinality Ratios:

– Collaborates-with recursive relationship has cardinality ratio as (0,N)..(0,N)

as each author can work individually or with any number of authors. Same-
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Conference has cardinality (1,N)..(1,N) as many papers are published in

the same conference, thus a paper is related to at least one paper. Cardi-

nality of Same-Range is (2,2)..(2,2) as each year is related to the other 2

years in the 3-year period. Same-Score has (0,N)..(0,N) cardinality as a

review may not be related to any other review.

– Binary relationship Writes between author and paper entity has (1,N)..(1,N)

cardinality as an author can publish one or more papers and also paper can

have one or more authors. Similarly, Active-in has (1,N)..(1,N) cardinality

as an author is active in at least one year and in a given year many authors

can be active. The Published-in relationship has (1,1)..(1,N) cardinality as

paper is published only in one year but many papers can be published in

a year. Finally, for Receives the cardinality is (3,5)..(1,1) as every paper

receives 3 to 5 reviews, however each review is for exactly one paper.

5.2.3 Author-City Data set Analysis

For final set of analysis objectives (A8-A10) based on author-city data set, the EER

diagram shown in Figure 5.3 has been discussed below

Figure 5.3: Author-City EER Diagram
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• Entities:

– Author with attributes - name (key) and institution

– City with attributes - IATA/Airport Code (key) and name

• Recursive Relationships:

– Collaborates-with: Two authors are related if they have worked together

on at least 3 published papers.

– Friends-with: A relationship to signify if two authors are friends on Face-

book.

– Flight-connects: Two cities are related if there is a flight connecting them

with a multi-valued attribute to capture the operating carriers.

• Binary Relationships: A binary relationship, Resides-in exists between the

author and city entity depicting the residence.

• (Min, Max) Cardinality Ratios:

– Collaborates-with and Friends-with recursive relationships have (0,N)..(0,N)

cardinality, as an author may work individually and may not be friends

with anyone on Facebook, respectively.

– Binary relationship Resides-in between author and city entity has (1,1)..(0,N)

cardinality as an author can reside in only one city. However, a city may

not be any author’s residence or multiple authors can reside in it.

5.3 Generating Multilayer Networks From An EER Diagram

Here we discuss the steps involved in converting an EER model into a Multilayer

Network. in Section 5.3.1 and 5.3.2) and address the different EER models discussed

in Section 5.2.1, 5.2.2 and 5.2.3.
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5.3.1 Algorithmic Steps for Translating An EER Diagram to MLNs

Below, we present our algorithm (8 steps) for generating an MLN (can be ho-

mogeneous, heterogeneous, or hybrid) from the EER diagram developed using the

application requirements. These steps are somewhat different from the traditional

EER diagram translation to a Database model. With each step, we explain the

rationale and provide an example from the EER diagrams shown earlier.

A layer consists of nodes with a node id which is unique and a node label which

need not be unique. An edge consists of an edge label which is not unique and connects

two node ids. Typically, node ids are kept unique for the purposes of computation.

Below, we assume node ids are generated as part of the translation process. The

additional information of nodes and edges that come out of the EER diagram are

maintained as .csv files which are used for drill down analysis of results. EER model

also helps in modeling only those attributes of nodes and edges that are relevant to

the analysis objectives and drill down.

1. Each binary relationship in the EER diagram corresponds to either an in-

dividual layer or a bipartite graph (of inter-layer edges) between two layers.

Typically, entity id is used as the label of nodes in the layer. Other attributes

are not typically stored as part of MLN (to reduce storage), but are stored sep-

arately (for example, as a relation or as a .csv file) for drill-down of the results

later. The relationship name is used as intra- or inter-edge label and again,

other relationship attributes are stored separately for drill down of results. We

show some drill down results in Section 12.2.

For example, the relationship Acts-with in Fig. 5.1 is translated into a layer

Actor with name as node label and acts-with as edge label. In contrast, the

relationship writes in Fig. 5.2 becomes a bipartite graph between the layers Paper

and Author.
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2. Each binary recursive relationship translates to a separate homogeneous

layer whose intra-layer connectivity is defined by the relationship.

For example, the layer Actor(Acts-with) in Fig. 5.4 (a) is obtained by the binary

recursive relationship Acts-with in Fig. 5.1 on the Actor entity.

3. Each binary non-recursive relationship translates to a bipartite graph be-

tween the layers corresponding to entities of the relationship.This assumes that

the layers have been formed earlier by binary recursive relationships.

For example, Author-Year inter-layer edges in Fig. 5.1 (b) are formed by the

relationship active-in in Fig. 5.2 between Author and Year entities.

4. Translation of the attributes (of an entity or a relationship) other than the

key is done in the same way as we do for a relational model. Atomic, component,

and multi-valued attributes are handled in the same manner. Derived attributes

are not stored but are computed.

5. Hence, relationships have to be translated in a specific order: binary recursive

first, followed by binary non-recursive relationships.

6. Super and Sub entities can be present in the EER diagram. If an entity type

is a super class, either a layer can be created for it or layers can be created for

each of its sub-class entity types depending on characteristics such as disjoint,

overlapping, partial and total. This is quite similar to the translation to the

relational model. Relationships present on these entities dictate the translation.

Mapping of the relationships will follow the above steps.

For example, it is possible that the super class may become a separate layer for

some analysis objectives and sub classes may become separate layers for other

analysis objectives. Different MLNs can be created from the EER diagram to

meet the analysis objectives. Person as a super entity may have overlapping sub
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entities actors and directors. If there are separate recursive relationships for the

Person entity, it will become a separate layer.

7. A weak entity and its non-recursive binary relationship is translated as follows.

Unlike how it is done for the relational model, a weak entity is translated into

a separate layer (using a binary recursive relationship on that entity) and the

weak relationship is translated into a bipartite graph with edge labels indicating

the dependence (combining the primary and the partial key).

For example: The Review weak entity in Figure 5.2 becomes a separate layer in

addition to the Layer Paper (Figure 5.4 (b)). The intra-layer edges are dictated

by the Same-Score recursive relationship. This layer has a bipartite graph with

the Paper layer with the inter-layer edge labels corresponding to the Paper ID

and Review ID.

8. Currently, n-ary relationships that cannot be mapped to multiple binary

relationships are not supported. If they can be mapped to multiple binary

relationships, the above steps handle them. If not, such a relationship involves

handling a hyper-edge across multiple layers which is beyond the scope of this

thesis.

5.3.2 Summary of the Algorithm

The above algorithmic steps when applied translates an EER diagram to a MLN(s)

along with drill down information in a form that is queryable and searchable. Below

we make a few comments on the overall translation of the EER diagram.

• Each entity with multiple binary recursive relationships gives rise to a Homo-

geneous MLN.

• Multiple entites with both binary recursive (one each) and binary non-recursive

relationships give rise to a Heterogeneous MLN.
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• If the EER diagram has both kinds of entities and relationships as indicated

above (as in 5.3) and there is at least one relationship between entities that

form the homogeneous and heterogeneous layers, a Hybrid MLN is obtained.

• Strong entities as well as weak entities are translated as described above

and become separate layers.

• The min-max cardinality information will give an insight into the minimum

and maximum associations (or edges) that a node can have. This can help to

calculate the minimum, maximum and average degree of the corresponding layer

or bipartite graph.

• A partial participation of an entity translates to a node that is not con-

nected to any other node (i.e., no intra- or inter-edge). For example, the author

can work individually (Partial Collaborates-with relationship). Whereas a total

participation implies every node has at least one edge.

• The direction of the inter or intra layer edges has to be implied from the

semantics of the relationship. This can also be specified as part of the relation-

ship. For example, co-authorship will be bi-directional, whereas a relationship

like follows-on-Twitter will be a directional. This is typically specified as part

of the application requirement and can be incorporated into the EER model

relatively easily as part of the relationship using the (min, max) cardinality

information.

5.3.3 Application of the Above Algorithmmic Steps

For the 3 sets of analysis discussed in Sec. 5.2, the following MLNs, shown in Fig.

5.4, are generated by applying the above algorithmic steps. Node and edge labels

have not been shown for simplicity.
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IMDb Analysis: Based on the EER (Fig. 5.1), a Homogeneous MLN (Fig. 5.4

(a)) is obtained with 3 layers having every actor element as a separate node with

intra-layer edges dictated by Acts-with, Similar-AverageRating and Similar-Genre

recursive relationships (Using (2)). The node label is the actor name and intra-layer

edge labels are the relationship names (Using (1)). Relationship semantics do not

need a direction, thus edges are undirected.

DBLP Analysis: The EER in Figure 5.2 gets translated into a Heterogeneous

MLN (Figure 5.4 (b)) with 4 layers - Author, Paper, Year and Review with intra-

layer edges corresponding to Collaborates-with, Same-Conference Same-Range and

Same-Score recursive relationships, respectively (Using (2), (7) for Weak Review

Entity). The binary non-recursive relationships - Writes, Active-in, Published-in,

Reviews generate 4 bipartite graphs between the layer pairs - Author-Paper, Author-

Year, Paper-Year and Paper-Review, respectively (Using (3)). The node and edge

labels are the key attributes and relationship names (Using (1), (7)). The relation-

ships do not have an explicit requirement for direction, thus every intra/inter layer

edge is undirected.

Author-City Analysis: The EER model in figure 5.3 leads to the generation of a

Hybrid MLN (figure 5.4 (c)) with two Author Layers and a City Layer with intra-

layer edges based on the Collaborates-with, Friends-with and Flight-connects recursive

relationships (Using (2)). The binary non-recursive relationship Resides-in is used to

introduce the inter-layer edges between the City layer and each of the Author layers

(Using (3)). Node labels are name (Author layers) and IATA code (City layer), while

the edge labels are relationship names (Using (1)). Collaboration, Residence and

Friendship are bi-directional relationships. For the Flight-connects relationship it is

assumed that if a flight exists from city a to city b, then a reverse flight also exists.

Thus, every inter/intra layer edge is undirected in this HyMLN.
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Figure 5.4: MLN Models for Analysis Set 1, 2 and 3

5.4 Analysis Objectives To Computation Specification

For the analysis of MLNs, a number of aggregate features are used for computation

of objectives. They are: notions of community, centrality, and substructure.

5.4.1 Computation Specification Mapping

Once the EER diagram is created based on the application requirements (data set

description + analysis objectives) and translated into MLNs, the next step is to map

each objective into an expression using Θ and Ψ on the MLNs generated. This step is

relatively easier to identify once the operators to apply and the type of composition

to perform is determined, This step is similar to writing SQL queries once the specific

database schema is generated and populated.
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We show below how aggregate feature computation is specified along with com-

position to be used. The challenge in successfully applying network decoupling is to

match the analysis function, Ψ and the composition function, Θ. Table 10.1 gives the

mapping of each analysis objective A1 to A10 to their computation specification (in

left to right order), analysis function (Ψ) and composition function (Θ). We will give

a short overview of the composition process for each mapped analysis. The details of

various types of composition functions have been discussed in subsequent chapters.

Analysis Mapping
Computation Specification Ψ Θ

IMDb (HoMLN)
3 Actor Layers: Acts-with, Similar-Genre, Similar-AverageRating

A1 Acts-with Θ Similar-Genre Degree-Centrality AND[8]

A2
Acts-with Θ Similar-
AverageRating

Community AND[7]

A3
NOT(Acts-with) Θ Similar-
Genre Θ Similar-AverageRating

Community AND[7]

DBLP (HeMLN)
Author (Au), Year (Y), Paper (P), Review (R)

A4 Au Community
A5 P Θ Au Community MWM[12]
A6 P Θ Au Θ Y Community MWM[12]
A7 Y Θ P Θ R Community MWM[12]

Author-City (HyMLN)
City (C) and 2 Au Layers - Collaborates-with, Friends-with

A8 Collaborates-with Θ Friends-with Community AND[7]

A9
C Θ Collaborates-with; C Θ
Friends-with

Centrality (Degree)
HeMLN-
Centrality

A10
Collaborates-with Θ Friends-with
Θ C

Community(Au),
Degree-
Centrality(C)

MLN-
Searching

Table 5.1: MLN Expression for Each Analysis Objective
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IMDb Analysis: For A1 using network decoupling, we first find the high degree

nodes in Acts-with and Similar-Genre layers, separately to detect the popular co-

actors and versatile actors. Using the AND composition we find all those popular

co-actors who are also highly versatile (Details in Chapter 9.) For A2, the AND com-

position is applied on the communities from the Acts-with and Similar-AverageRating

layers to generate and filter out the groups of co-actors who have high ratings. In

A3 aim is to find actors who have not acted together but act in the same genre

and in movies of similar ratings – which increases their possibility of acting together

in future. We apply the NOT operation on the Acts-with layer to find the comple-

ment graph of actors who have never acted together. In the first step of network

decoupling, we take communities from each of the three layers; the Similar-Genre,

Similar-AverageRating and the complement of the Acts-with layer. We then com-

bine the resultant communities using the AND composition function to find groups

of actors who have a high chance of acting together in future (Details in Chapter 6.)

DBLP Analysis: For A4, the Author layer communities will give the desired result.

For A5, A6 and A7 the communities from Author, Paper, Year and Review layer

need to be paired up in the specified order to meet the analysis objectives. In chapter

11, the HeMLN community detection has been proposed where for any two layers a

bipartite graph is constructed using their communities. Each community is consid-

ered to be a meta-node. Two meta-nodes in two different layers are connected if there

is at least one inter-layer edge between them. The weight of these edges (meta-edges)

between the meta-nodes is given by the number of inter-layer edges between them.

These meta nodes (communities) in the bipartite graph are uniquely paired using

the composition function (Θ) Maximal Weighted Matching (MWM) that maximizes

the overall meta-edge weight and is based on traditional matching proposed by Jack

Edmonds [97]. For A5, the Author communities that get matched with Paper com-
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munities (corresponding to conferences) are the most popular. For A6, the matched

Author communities from A5 are paired with Year communities to find their most

active periods. For A7, first Paper communities are matched to Year communities

to obtain the highly publishing conferences per period. Then, the matched Paper

communities are matched to Review communities, to get the most popular review

score.

Author-City Analysis: A8 is computed by the AND composition on the communi-

ties from two Homogeneous Author layers. For A9, the cities having high inter-layer

degree with any one of the author layers are the cities with high author concentrations.

In A10, ideally a conference will get more attendance if it is organized in a city that

is a) well-connected via flights, b) where large co-author communities reside and c)

large sections of those co-author groups are friends in order to maximize the adver-

tisement of the conference. Thus, using the decoupling approach the communities

from the two author layers and high degree nodes from the City layer are composed

(and filtered) in order to obtain the desired set of probable venues for a conference.

Analysis of HyMLNs have not been handle as a part of this thesis.

5.5 Conclusions

In this chapter, we have addressed the problem of leveraging the power of the EER

modeling to generate Multilayer Networks and expressions for their analysis. Ad hoc

big data analysis without a formal approach to generating models from application

requirements is difficult, error-prone, and not amenable to revisions and future exten-

sions. This is a big concern for big data analysis today. The work from this chapter

has been accepted in the International Conference on Conceptual Modeling (ER) [14].

In the subsequent chapters, we discuss the proposed techniques to compute the

mapped analysis objectives using the decoupling approach.



CHAPTER 6

COMMUNITY DETECTION IN HOMOGENEOUS MLNs

In this chapter, we focus on the class of analysis questions that require one to

find out entity communities with respect to different combinations of features (layers)

based on the homogeneous multilayer networks.

Communities in networks are groups of tightly connected nodes. In HoMLNs, the

same set of entities are present in each layer. We have assumed each layer to un-

weighted and undirected. We have proposed the combination of layers (features)

using Boolean operations, AND, OR and NOT. For the AND (OR) operation, the

combined network will contain an edge, if there exists an edge in all (any one) of

the individual layers. For the NOT operation, the complement of the network will be

considered. An AND-Composition represents how multiple features together affect

an analysis. For example, in identifying regions that become accident prone

due to poor lighting conditions as well as bad roads. An OR-Composition

represents how any one of the features affects a property. For example, in finding

the group of people who are friends via least one of the social networking

platforms among Facebook, LinkedIn and Twitter. A NOT operation repre-

sents filtering out some layers, such as people who are friends in Facebook, but

are not connected via LinkedIn.

The primary challenge is to design appropriate aggregation functions, such that

the communities obtained using network decoupling are similar to those obtained by

41
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applying community detection on the composed network. ∗ Formally, our problem

can be stated as follows;

Problem Statement. Given a set of layers G1, G2, . . . , Gx, that are combined using

a Boolean operation
⊕

to form the composed network, and a community detection al-

gorithm COMM , that is used to find communities, develop an aggregation algorithm

Π, such that

COMM(
x⊕

i=1

(Gi)) ≈ Πx
i=1(COMM(Gi))

.

In other words, we aim to find an aggregation algorithm Θ, such that the results

of finding the communities in the individual layers and then aggregating them via Π,

should be the same as the communities obtained from the composed network where

the layers are combined using the Boolean operator
⊕

. Developing the aggregation

algorithm is challenging, since the structure of the composed network can change after

the layers are combined, and the aggregation process has to appropriately account

for that change when combining the communities.

Our Contribution. Our main contribution, therefore is to develop correct aggre-

gation functions that will allow us to apply network decoupling for efficiently finding

communities based on different Boolean compositions of networks. The principle is to

first analyze the communities in each individual layer and then aggregate the results,

using appropriate functions, to obtain the final results on the composed network (see

Figure 6.1). Thus, we only need to analyze each network once, and then combine the

results as per the aggregation method.

∗We state that the communities should be similar rather than identical, because community

detection is non-deterministic, and even slight changes in the algorithm or order in which the vertices

are processed can slightly alter the results.
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Figure 6.1: Illustration of network decoupling for community detection in Homoge-
neous Multilayer Networks

The remainder of the chapter is organized as follows. In Section 6.2, we provide

a brief description of community detection in MLNs. In Section 6.3, we present our

contribution of community detection using network decoupling using AND and OR.

In Section 6.7 we present the experimental results related to these operations. In

Section 6.9 we show how combination of boolean AND, OR and NOT expressions

can be used to answer complex queries.

6.1 Modeling the IMDb Dataset as a HoMLN based on Genres

We use the Internet Movie Database (IMDb) to illustrate how communities are

generated for different Boolean combinations of features. The IMDb is an online

database that contains information on television programs and movies including ac-

tors, directors, genre, and year of release [94].

We create a HoMLN where the entities represent actors and two actors are con-

nected to each other if they have acted in the same movie. Each layer in the HoMLN
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Table 6.1: List of notations used for defining the concepts.

NL Number of layers

I Set of entities

f Set of features/layers

G(Vk, Ek) or Gk The kth layer

uik Represntative node for ith entity

in the kth layer

Vk Set of nodes in the kth layer

(uik, u
j
k) An edge in the kth layer

Ek Set of edges in the kth layer

C(V m
k , Em

k ) or Cm
k The mth community in the kth layer

V m
k Set of nodes in Cm

k

Em
k Set of edges in Cm

k

represents a movie genre, such as comedy, drama, action, etc. The IMDbActor-Genre

HoMLN defined is shown in Figure 6.2.

In Figure 6.2 we have selected two genres, comedy (f 1) and drama (f 2) to form

the two layers, G1 and G2, respectively. This HoMLN shows the co-actor relationship

among 16 actors (denoted by nodes numbered from 1 to 16) with respect to these

genres. The same 16 actors are present in both layers. Note that each co-actor

network has a distinct structure. By taking the information from the two networks

together we can gain interesting insights to the data, as follows.

For example, actors I3 and I8 have never worked together in a drama, but have

worked together in a comedy. Thus this pair of actors may together be more likely to

be considered in a comedy, rather than a drama. Also observe that the actor I14 is the

actor with most connections in the drama genre, while in the case of comedies, actor
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Figure 6.2: Example of the IMDb HoMLN for co-actors with 16 actors and two genres:
comedy and drama.

I11 is one of the nodes with the most connections, i.e. worked with most number of

actors.

6.2 Community Detection in HoMLN

Community detection involves finding collection of items with similar properties

by identifying tightly connected groups of vertices. Each vertex is mapped to its

specific community number. We consider non-overlapping communities, that is, there

are no common vertices or edges between two communities. Figure 6.3 shows the

communities in the individual layers. For example, Actor I7, I12 and I13 for Comedy-

based co-actor group. However, with respect to Drama-based movies, these Actor I8

also joins the group to form tighly connected community.

Bridge Edges. We term the external edges that connect two communities as bridge

edges. Formally, if there exists an edge, (uik, u
j
k), such that uik ∈ Cm

k and ujk ∈ Cn
k ,

where m 6= n, then this edge is a bridge edge. Bridge edges form links between two

distinct communities. For example, Actors I13 and I14 act as the link between two

strongly connected group of Drama-based co-actors.
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Figure 6.3: Communities in each layer of the IMDbActor-Genre HoMLN

6.2.1 Communities in AND-Composed Layers.

AND composition of layers in a HoMLN allows users to find communities that are

related across multiple features. Examples of some questions that can be addressed

by the AND composition in different domains are;

Figure 6.4: Composed Layer Communities of the IMDbActor-Genre HoMLN shown
in Figure 6.2

• Groups of actors who have expertise in working together in both comedies and

dramas (IMDbActor-Genre HoMLN).
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• Author groups who publish in all of these conferences; ICDM, SIGMOD and

VLDB (DBLP HoMLN).

• Groups of people who are connected to each other through all these social

networking platforms - Facebook, LinkedIn, WhatsApp, Instagram and Twitter

(Social Network HoMLN)

• Groups of research papers that cite each other and have the keywords - big

data, graph mining, multilayer networks and community (ArXiV HoMLN).

• Groups of accidents that have similar conditions for all these features; light con-

ditions, weather conditions, road conditions, and speed limit (Accident HoMLN).

The standard practice is to combine the layers using the AND operation, i.e. only

edges that occur in all the layers are included. Then a community detection algorithm,

such as Infomap, is executed on the combined network. This single graph approach,

termed C-SG-AND, is given in Algorithm 1. Figure 6.4 (top) shows the communities

for the AND-composed layer, G1AND2, for IMDbActor-Genre HoMLN.

Algorithm 1 Algorithm for C-SG-AND

Require: Layers G1, G2, . . . Gx

Ensure: return LAND
1,2,...,x - a list of communities

1: G1AND2...ANDx ← {G1 AND G2 . . . AND Gx}

{ G1AND2...ANDx contains edges that are in all the networks G1, G2, . . . , Gj.}

2: LAND
1,2,...,x = COMM(G1AND2...ANDx)

{Find communities in G1AND2...ANDx.}

6.2.2 Communities in OR-Composed Layers

OR-composition forms a composed network that includes an edge if it appears in

any of the layers. Algorithm 2 shows the steps of this single network based community
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detection using the OR operation, termed as C-SG-OR. Figure 6.4 (bottom) shows

the communities for the OR-composed layer, G1AND2, for IMDbActor-Genre HoMLN.

Examples of queries that can be addressed by the OR composition are;

• Groups of actors who have acted together in either a comedy or drama (IMDbActor-

Genre HoMLN).

• Groups of authors who have published in at least one of these conferences,

ICDM, VLDB, SIGMOD (DBLP HoMLN).

• Groups of accidents that have at least one condition in common (Accident

HoMLN).

Algorithm 2 Algorithm for C-SG-OR

Require: Layers G1, G2, . . . Gx

Ensure: return LOR
1,2,...,x - a list of communities

1: G1OR2...ORx ← {G1 OR G2 . . . OR Gx}

{ G1OR2...ORx contains edges that are in at least one of the networks G1, G2, . . . ,

Gx.}

2: LOR
1,2,...,x = COMM(G1OR2...ORx)

{Find communities in G1OR2...ORx.}

6.3 Network Decoupling for Community Detection on HoMLNs

The Boolean composition of the layers of a HoMLN provides in-depth analysis of

the dataset. However, for any single Boolean operation, say AND, 2N − 1 different

combinations are possible. Thus the cost of finding the communities on each of

them separately is very expensive. Moreover, if the networks do not change, several

computations are rendered redundant. For example, consider finding the communities

in the composed layer G1AND2AND3 and G1AND2AND4. In this case, the composed layer



49

related to G1AND2 remains unchanged, but has to be recomputed. Moreover, common

sub-expressions have to be computed multiple times.

As a solution, we propose network decoupling for efficient community detection on

HoMLN networks. In network decoupling, the communities in each layer are identified

separately and the results are then aggregated to obtain the results with respect to

the composed network. Note that the storage required is only of the order of O(V ∗f),

where V is the number of vertices in each layer and f is the number of features/layers.

Figure 6.3 shows the communities in each of the layers of the example IMDB network.

The challenge is to develop aggregation algorithms, Θ, that can correctly ag-

gregate the communities from each of the layers to obtain the communities over the

composed network. We now present the aggregation methods for AND and OR com-

position. For ease of understanding we will discuss the algorithms with respect to two

layers. Note, however, that any binary operations can be easily extended to multiple

layers.

6.4 Vertex based Community Detection of AND Composed Layers (CV-AND)

The first approach, termed CV-AND, for obtaining communities in AND-composed

layers was published in [7].

CV-AND (see Algorithm 3) proposed that the communities of the AND-composed

graph can be obtained by taking the vertex based intersection of the communities from

the individual layers. This method heavily depends on the presence of self-preserving

communities in the individual layers and its correctness has been discussed in Lemma

6.4.1.

Correctness of CV-AND: We first introduce the concept of self preserving com-

munities. A community is self preserving if the vertices in it are so tightly connected

such that even if only a subset of connected vertices remain in a community, they



50

Algorithm 3 Algorithm for CV-AND

Require: Communities from layers Gi and Gj:

COMM(Gi) = {C1
i (V 1

i , E
1
i ), C2

i (V 2
i , E

2
i ), . . . , Cx

i (V x
i , E

x
i )},

COMM(Gj) = {C1
j (V 1

j , E
1
j ), C2

j (V 2
j , E

2
j ), ..., Cy

j (V y
j , E

y
j )}

Ensure: return LCV−AND
i,j - a list of communities

1: LCV−AND
i,j = Φ

{Initialize the set of communities to NULL.}

2: for each community pair say, Cp
i and Cq

j do

3: Cp,q
i,j =(V p

i ∩ V
q
j )

{Create new combined community by taking the common vertices of every

pair of communities.}

4: LCV−AND
i,j = LCV−AND

i,j ∪ Cp,q
i,j

{Add new community to the set of communities.}

5: end for

will form a smaller community rather than joining an existing larger community.

Formally, consider a network G, that has a community whose vertices are given by

the set Cv. Now consider the network induced by a subset of vertices CS
v ∈ Cv. If

the vertices in CS
v form a community by themselves, for any subset CS

V of Cv, where

‖CS
v ‖ ≥ 3 and the vertices in CS

v are connected, then community Cv is self preserving.

Lemma 6.4.1. If the communities in networks Gx and Gy are self-preserving, then

the AND-combination of the communities produced by each of these networks will be

the same as the communities produced by the AND-composed network created from

Gx and Gy

Proof. Consider two networks Gx and Gy that have the same set of vertices, but

different set of edges. Moreover, both networks have only self-preserving communities.
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Now consider the network GxANDy, which is the AND-composition of Gx and Gy.

Only edges that are in both Gx and Gy will be in the AND-composed network.

Therefore the communities formed in the AND-composed network will be based on

a subset of edges from Gx and Gy. Since both Gx and Gy have self preserving

communities, therefore the communities formed in GxANDy will be formed subsets of

the communities in Gx and Gy. Most importantly, due to the self preserving nature,

no new grouping of vertices will be formed in GxANDy. Therefore we can reconstruct

the communities in GxANDy by taking the intersection of the communities of Gx and

Gy.

Drawbacks. The main drawback of CV-AND is that for most networks, there is no

guarantee that the communities will be self-preserving. If this algorithm is applied

without testing for self-preserving communities, the results may not be accurate.

As an example, consider the community C5
1 in the comedy layer of the network

(Figure 6.3). This community is not self preserving, and when combined with commu-

nity C4
2 in the drama layer, which has the same vertices, it gives one large community,

{ I6, I11, I15,I16,I17,I18}. In reality, as seen in Figures 6.4, two separate communities

are formed, { I6,I17,I18} and { I11, I15,I16}.

This is a subtle but important difference because the community id determines

whether two entities are similar. If two disconnected groups of vertices are placed

in the same community (as is possible when using CV-AND), then, two dissimilar

groups are marked to be similar, which is incorrect.
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6.5 Edge-based Community Detection of AND Composed Layers (CE-AND)

We address these limitations by developing a community detection method, CE-

AND (see Algorithm 4), that is based on the intersection of edges rather than vertices

as follows.

Algorithm 4 Algorithm for CE-AND

Require: Communities from layers Gi and Gj:

COMM(Gi) = {C1
i (V 1

i , E
1
i ), C2

i (V 2
i , E

2
i ), ..., Cx

i (V x
i , E

x
i )},

COMM(Gj) = {C1
j (V 1

j , E
1
j ), C2

j (V 2
j , E

2
j ), ..., Cy

j (V y
j , E

y
j )}

Ensure: return LCE−AND
i,j - a list of communities

1: LCE−AND
i,j = Φ

{Initialize the set of communities to NULL.}

2: for each community pair say, Cp
i and Cq

j do

3: {Cp,q
i,j } = (Ep

i ∩ E
q
j )

{Create list of k new communities by taking the common edges of every pair

of communities.}

4: LCE−AND
i,j = LCE−AND

i,j ∪{Cp,q
i,j }

{Add new communities to the set of communities.}

5: end for

For every pair of communities, Cm
i (V m

i , Em
i ) from layer Gi and Cn

j (V n
j , E

n
j ) from

layer Gj, the edge-based community intersection, Em
i ∩ En

j , will produce k discon-

nected edge-sets, E1
iANDj, E

2
iANDj, ..., E

k
iANDj. These edge sets will form the AND-

composed communities, C1
iANDj, C

2
iANDj, ..., C

k
iANDj.

Figure 6.5 shows how the communities are obtained for the example network us-

ing CE-AND. Comparing this result to that in Figure 6.4, we see that most of the
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communities are obtained with the exception of the singleton node 8. The common

bride edge (1, 5) is also missing.

Figure 6.5: AND-Composition Communities of the Multiplex in Figure 6.2, using
CE-AND method

Proof of Correctness. Algorithms 3 and 4 produce a set of disjoint clusters.

Algorithm 1 produces a set of communities in the AND-composed network. We

consider these communities as the ground truth communities. We label each edge

as internal (if both end points are in the same community) and external or bridge

otherwise.

We assume that the communities in the individual layers and the composed net-

work have high clustering coefficients, i.e. we do not consider accidental communities
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Figure 6.6: Effect of Bridge Edges on AND Composition

such as an edge or a line graph, that are formed due to an artifact of the community

detection algorithm rather than the structure of the network. If such trivial commu-

nities are formed, we consider each vertex in them as a singleton community. The

clusters formed by the intersection algorithms do not have this restriction, since they

are not obtained using community detection algorithms.

We now prove the correctness of our proposed algorithms by discussing how well

the clusters obtain by our proposed network decoupling method, correspond to the

ground truth communities. Let the set of communities obtained from the composed

network be Γ. Let the set of clusters obtained using the CE-AND algorithm be Ψ.

Lemma 6.5.1. For any given cluster X ∈ Ψ, there will exist a set of communities

{CX
1 , . . . C

X
m}, where CX

i ⊆ Γ, 1 ≤ i ≤ m, such that the union of the vertices in



55

{CX
1 , . . . C

X
m} form a partition of the vertices in X, if and only if, the set of edges

common to all layers have the same label in all the layers.

Proof. We first prove the condition that if the common edges have the same label

in all the layers, then the set of the union of vertices in {CX
1 , . . . C

X
m} will form a

partition of the vertices in X ∈ Ψ.

Let the set of vertices belonging to the cluster X be UX . Let the set of vertices

belonging to community CX
i be V X

i , and ∪i=m
i=1 (V X

i ) = VX , i.e. the union of these

vertices in VX . Since the communities are disjoint to prove that VX is a partition of

UX , we have to prove that VX = UX .

It is easy to show that there exists a set of communities such that UX ⊆ VX . We

simply select the communities such that all vertices in UX are included.

To prove VX ⊆ UX by contradiction, let v be a vertex that is in set VX but not

in UX . Since CE-AND retains all the common internal edges, and v is not in UX ,

therefore v will be connected to its neighbors in VX by one or more external (or bridge)

edges. Since we assume that all common edges have the same labels, therefore in none

of the layers v is tightly connected to any subset of VX . Moreover, we assume that

the communities in the composed network have high clustering co-efficient (or are

singletons). Thus since v is not tightly connected to vertices in VX it cannot be part

of the community. Thus our assumption was wrong, and VX ⊆ UX .

Taken together, VX ⊂ UX and UX ⊂ VX ; thus UX = VX , and VX is a partition of

UX .

For the only if part we show that if the common edges do not have the same labels

in all the layers, then there may not exists set of communities that form a partition

of the vertices in a given cluster.
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We provide such an example in Figure 6.6. The left-hand panels of Figure 6.6 shows

two layers. The top right panel shows the communities obtained by the standard

single network approach (C-SG-AND). The bottom right panel shows the communities

obtained by CE-AND.

Note that the community C3
SG−AND produced by C-SG-AND contains the edges

(h, o) and (l, s) that act as bridges in both Layer L1 and L2. Thus CE-AND is not

able to detect this community, and instead produces two communities, C4
CE−AND and

C5
CE−AND, which should be merged into one by taking the bridge edges into account.

Also consider the community C2
SG−AND which consists of the edges (a, i) and (e,

m) that are bridges in Layer L1, but are part of the community C2
2 in Layer L2. As

only those edges that are within community in all layers are considered, CE-AND

produces two communities, C2
CE−AND and C3

CE−AND.

6.6 Edge based Community Detection of OR Composed Layers

We now consider how to obtain communities in composed networks formed using

the OR operation (termed as OR composed networks). The number of edges in the

OR-composed network is the union of the edges in each layer. For any two layers Gi

and Gj, the total number of edges is |Ei ∪ Ej|.

The computational complexity of community detection algorithms are at least

proportional to the size of the graph. The denser the graph, the more time will be

required to find the communities. Thus for the OR-composed case, our goal is not

only to lower the time by reducing the need to recompute different compositions of

layers, but also to reduce the size of the graph to be analyzed.

To obtain communities of OR Composed Layers, we propose the CE-OR algorithm

(given in Algorithm 5 and illustrated in Figure 6.7). The CE-OR method reduces the
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size of the graph to be analyzed by leveraging the fact that the common communities

across layers can be processed as a single node. The steps of the CE-OR algorithm

are as follows;
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Algorithm 5 Algorithm for CE-OR
Require: Communities from layers Gi(V,Ei) and Gj(V,Ej):

COMM(Gi) = {C1
i (V 1

i , E
1
i ), C2

i (V 2
i , E

2
i ), ..., Cx

i (V x
i , E

x
i )},

COMM(Gj) = {C1
j (V 1

j , E
1
j ), C2

j (V 2
j , E

2
j ), ..., Cy

j (V y
j , E

y
j )}

Ensure: return LCE−OR
i,j - a list of communities

{ Find common communities using CE-AND}

1: Apply CE-AND on COMM(Gi) and COMM(Gj) to get LCE−AND
i,j

Construct OR-MG(VOR−MG, EOR−MG)

{Assign nodes of each common community as a meta node}

2: for each community Ck(Uk, Ek) ∈ LCE−AND
i,j do

3: VOR−MG = VOR−MG ∪ Uk

4: end for

{ Assign the vertices not in any common community as a meta node}

5: for each vertex u /∈ Ck ,∀Ck ∈ LCE−AND
i,j do

6: Uk = φ {Create null set}

7: Uk = Uk ∪ u {Add u to the set}

8: VOR−MG = VOR−MG ∪ Uk

9: end for

{Add Edges in the metagraph. Two metanodes, (U, V ) are connected if there is an intra-

community edge from one constituent node of U to a constituent node of V in any one of the

layers.}

10: for all all metanode pairs (U, V ) ∈ VOR−MG do

11: if ∃ u, v, r: (u, v) ∈ Er
i or (u, v) ∈ Er

j , u ∈ U and v ∈ V then

12: EOR−MG = EOR−MG ∪ (U, V )

13: end if

14: end for

15: Insert weights on the edges of OR-MG

16: L = COMM(OR-MG)

17: Expand the community representative nodes in each community from L to get LCE−OR
i,j
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Overview of CE-OR. Find the common communities in all the network layers

(Line 1) by using CE-AND. Then construct a metagraph (OR-MG), as follows. Each

metanode represents a set of vertices. Combine each of the vertices in a common

community into a metanode (Line 2-4). All vertices that are not assigned into com-

munities are each assigned to a metanode (Line 5-9). Connect two metanodes, U and

V via a metaedge, if there exists an internal edge, in at least one of the layers between

an element (node) of U and an element (node) of V (Line 10-14). Apply appropriate

weights to these edges (Line 15). Apply community detection on the metagraph (Line

16). The communities in the OR-composed network are obtained by expanding the

metanodes in the communities obtained by the CE-OR algorithm.

Assigning Weights to Metaedges. Note that the metanodes represent vertex sets of

varying sizes, and the number of edges between them represent the degree of similarity.

Therefore although the original graph is composed of unweighted edges, the edges in

the metagraph have to be weighted to quantify the extent of this similarity. A critical

component of the CE-OR algorithm is based on correctly assigning these weights. We

connect two meta nodes only if at least one pair of vertices from each meta node are

connected by an internal edge, in at least one of the layers.

For any meta edge (A,B), let VA and VB be the set of nodes in the meta commu-

nities A and B, respectively. Further, let the set of all edges (internal with respect to

at least one layer) between VA and VB be EA,B. We use the following two strategies

to compute the weight of the metaedge;

• Aggregation: The weight wa is the number of edges between the two communi-

ties; wa(A,B) = |EA,B|

• Fractional: The weight wf is the fraction of connected nodes between the two

communities; wf (A,B) =
|EA,B |
|VA|∗|VB |

.
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Figure 6.7 illustrates how the CE-OR algorithm is applied to identify communities

in the OR-composed layers of the example IMDb graph. First the CE-AND com-

munities obtained in Figure 6.5 and the remaining vertex I8 are used to form the

metanodes (Figure 6.7 (a)). Then these nodes are connected based on the internal

edges. These edges are weighted in the metagraph using wf (Figure 6.7 (b)). A

community detection algorithm on the metagraph produces the communities of the

OR-composed layers (Figure 6.7 (c)). Comparing with the communities obtained by

the C-SG-OR method in Figure 6.4, to those obtained by expanding the communi-

ties in the metanodes (Figure 6.7 (d)), we see that all the communities have been

obtained. However, the bridge edges between the communities are missing.

Figure 6.7: Illustration of CE-OR Algorithm on the Example Graph

Proof of Correctness Similar to the CE-AND algorithm, we prove the cor-

rectness of our proposed CE-OR algorithm, by comparing the communities obtained
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by CE-OR to those obtained by executing community detection on the composed

network. We define a metanode cluster, Y , as all the metanodes in a connected

component of the metagraph. Let the communities obtained through the C-SG-OR

algorithm be Λ.

Lemma 6.6.1. For a given metanode cluster Y , there will exist a set of communities

{CY
1 , . . . C

Y
m}, where CY

i ⊆ Λ, 1 ≤ i ≤ m, such that {CY
1 , . . . C

Y
m} forms a partition of

the vertices in Y , if and only if, all the internal edges of the communities in Λ were

internal edges in at least one of the layers.

Proof. Let UK be the set of vertices belonging to the metanode cluster Y , and let VK

be the union of the vertices belonging to the communities {CY
1 , . . . C

Y
m}. Similar to

6.5.1 for the if direction of the statement it is sufficient to prove that VK = UK , or

UK ⊆ VK and VK ⊆ UK .

UK ⊆ VK , can be easily obtained by selecting the communities to form VK such

that all vertices of UK are included. To prove VK ⊆ UK by contradiction, we assume

that there exists a vertex u ∈ VK , that is not in UK , i.e. none of the metanodes, that

form the metanode cluster Y contains u. As per our construction of the metagraph,

this means that u is connected to at least one vertex in VK by bridge edges (or not

connected at all). Thus at least one of the communities has an internal edge that

was bridge edge in all the layers. This goes against our criteria that all internal edges

for communities in the composed network, should be internal in at least one of the

layers. Thus our assumption is wrong and VK ⊆ UK .

Since the communities are disjoint and UK = VK , thus the statement is proven.

To prove the only if direction, we show that if the communities in the OR-composed

layers have internal edges that were bridge edges in all the layers, then there may not
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exist a set of communities that form a partition for the vertices in a given metanode

clusters.

Figure 6.8: Effect of bridge edges on OR Composition

An example of this is given in Figure 6.8. The left-hand of panels show two layers

of the network. The top right panel shows the communities obtained by the standard

single network approach (C-SG-OR). The bottom right panel shows the communities

obtained by our proposed CE-OR method.

Consider the community C2
SG−OR generated by C-SG-OR approach that has edges

(i, l), (h, m), (j, o) and (l, t) which are not internal edges in any of the layers, and are

present as bridge edges in only one of the layers. These edges will not be part of the

metagraph and thus CE-OR does not know that they exist. CE-OR, thus, generates



63

three communities C2
CE−OR, C3

CE−OR and C4
CE−OR, instead of merging them into one

community, as per the C-SG-OR method.

However in the community C1
SG−OR generated by C-SG-OR, the edges (a, b) and

(d, f) are bridge edges in one layer but are intra-community edges in another layer.

Therefore these edges will be part of the metagraph. Thus CE-OR can use these

edges and correctly generate the community C1
CE−OR.

Implications and Limitations The implication of Lemma 6.5.1 and Lemma 6.6.1

is that the CE-AND or CE-OR operations are successful if they create clusters, such

that one or more communities in the composed networks, completely cover the cluster.

This means that we can divide the communities into groups, such that each group

can be mapped to exactly one cluster formed by the CE-AND or CE-OR operation.

Going further this means that we can partition the composed network into subgraphs,

each subgraph relating to a cluster. Hence CE-AND and CE-OR operations are suc-

cessful when each layer is formed of several loosely connected subgraphs, and bridges

connecting the subgraphs do not change too much across the layers.

The primary limitations of our CE-AND and CE-OR algorithms is due to the

non-inclusion of bridge edges. In the AND-composed network, we rationalize this

non-inclusion by positing that communities formed solely of bridge edges cannot be

dense, and hence are not strong communities. In the OR-composed network, note

that we only exclude an edge if it is a bridge edge in all the layers. This is an

infrequent case where bridge nodes from all layers come together to form communities.

Our experiments in Section 12.2, justify this policy of not including bridge edges by

demonstrating that the normalized mutual information (NMI) values between the

communities returned by CE-AND and C-SG-AND are in general high.
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6.7 Empirical Results

In this section we compare the performance and accuracy of our proposed algo-

rithms with the ground truth results obtained by the standard methods, C-SG-AND

and C-SG-OR.

6.7.1 Experimental Setup

Since the results of community detection depend heavily on the type of algorithm

used [98], to control this parameter in the experiment we use the popular community

detection algorithm Infomap [66], both to find the communities in the single network

approach and the network decoupling approach. Our algorithms were implemented

in C++ and were executed on a Linux machine with 8 GB RAM and installed with

UBUNTU 16.10.

Datasets Used. We performed our experiments on multiplexes created from three

real-world datasets and one synthetic dataset created using the RMAT [99] graph

generator. We selected the real-world datasets such that they were sufficiently large

and contained communities. To test on larger networks with more vertices, we created

the synthetic RMAT dataset. The details of the datasets are as follows (also see

Table 6.2);

• IMDb: From the IMDB dataset [94], we created the following three layers in

the multiplex, with the nodes representing the actors. In the first layer, (L1,

co-acting) two nodes are connected if they co-acted in at least one movie. In

the second layer, (L2, rating) two nodes are connected if the average ratings of

the movies where they acted were similar. In the third layer, (L3, genre) two

nodes are connected if they acted in movies of similar genres. For every actor

a vector was generated with the number of movies for each genre he/she has
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acted in. Two actors are connected if the Pearson’s Coefficient between their

corresponding genre vectors is at least 0.9†.

• DBLP: From the DBLP dataset of academic publications [95], we selected all

papers published from 2000-2018 in top three conferences VLDB (L1), SIG-

MOD(L2) and ICDM (L3). The nodes were the authors. Two authors in each

layer were connected if they had published a paper in the conference corre-

sponding to the layer.

• Accident: From the dataset of road accidents that occurred in the United

Kingdom in 2014 [100], we represented each accident as a node. Two nodes are

connected in a layer if they occurred within 10 miles of each other and have

similar Light (L1), Weather (L2) or Road Surface Conditions (L3).

• RMAT: The RMAT generator creates networks based on the Kronecker prod-

uct of a matrix. We set the number of vertices to 215 and the edges to roughly

eight times the number of vertices. We set the probabilities in each quadrant

of the matrix as a=0.65, b=c=d=0.15 to create a scale-free graph.

The first layer (L1) was the graph obtained by the generator. We applied cross

perturbation to the other layers. That is we selected two edges (a, b) and (c,

d), and replaced them with new edges (a, c) and (b, d). Thus the number of

edges remain the same, but the degree distribution and the structure of the

graph changes. In layer L2 we applied perturbation to 1% of the edges and in

layer L3 to 5% of the edges.

Ground Truth and Accuracy Metrics: Since our goal is to achieve the results ob-

tained by the standard C-SG-AND and C-SG-OR methods, we use the communities

obtained from these methods as the ground truth. We disregard communities of just

†The choice of the threshold is based on how actors are weighted against the genres. We have

To chosen 0.9 for connecting actors in their top genres.
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Name Vertices Edges Edges Edges
in L1 in L2 in L3

IMDB 9,485 45,581 13,945,912 996,527
DBLP 17,204 5,831 17,737 12,986

Accident 5000 193,860 235,175 216,397
RMAT 32,768 230,445 230,445 230,445

Table 6.2: Summary of the sizes of the multiplexes.

one vertex, since these result due to an artifact of the algorithm rather than provide

any meaningful analysis. We use two metrics to evaluate the accuracy of the com-

munities - i) Normalized Mutual Information (NMI) that measures the quality with

respect to the participating entity nodes only and ii) modified-NMI that also takes

into account the topology of the communities. For both metrics higher is better, with

maximum value of 1 and minimum of 0 (definitions in [101]).

Each multiplex has 3 layers. Thus, a total of 4 compositions are possible (3 for

2-layers and 1 3-layers). Thus we compare results for 8 (4 combinations X 2 Boolean

operations) composed networks.

6.7.2 Accuracy of the Aggregation Algorithms.

For the AND-composed networks we show in Figure 6.9, the average NMI and

m-NMI of all the four multiplexes with respect to the ground truth for the CV-AND

and CE-AND methods. The results show that the accuracy obtained with CE-AND

is higher than that from CV-AND.

For the OR-composed networks we show in Figure 6.10, the average NMI and m-

NMI of all the four multiplexes with respect to the ground truth for the two weighting

metrics; Aggregation (wa) and Fractional (wf ). The results show that the accuracy

obtained using both the metrics are similar.
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Multiplex L1, L2 L1, L3 L2, L3 L1, L2, L3
NMI m-NMI NMI m-NMI NMI m-NMI NMI m-NMI

Accuracy Values using CE-AND
IMDB .97 .93 .98 .97 .88 .86 .99 .99
DBLP .92 .84 .99 .96 .98 .96 .98 .95

Accident .96 .98 .94 .98 .91 .96 .88 .95
RMAT .92 .82 .90 .79 .90 .78 .90 .77

Accuracy Values using CE-OR using Fractional Weights
IMDB <.01 <.01 .97 .99 1 1 1 1
DBLP .83 .79 .87 .80 .75 .60 .71 .56

Accident .88 .93 .94 .98 .98 .99 .86 .93
RMAT .74 .64 .76 .59 .75 .55 .73 .54

Table 6.3: Accuracy Values using CE-AND and CE-OR on the different compositions
of the datasets.

In Table 6.3 we provide the accuracy values for all the different layer composi-

tions with respect to CE-AND for the AND composition and CE-OR with Fractional

Weights. As can be seen nearly all the values are high, ≥ 70%.

Some low values occur for the CE-OR method. An egregious example is IMDb

(L1, L2) for which the accuracy results are less than 1%! In this case the metagraph

had 193 nodes, and on running the community detection algorithm 56 communities

were obtained. However, the ground truth communities obtained by C-SG-OR had

only 2 communities. This happened because there existed many bridge edges in the

layers that were not included in the metagraph. Moreover, because the communities

represented in the metanodes were small in size, the weights were also lower and could

not combine the communities.
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Figure 6.9: Comparison of Accuracy of CE-AND and CV-AND based on NMI and
m-NMI.

6.7.3 Performance of the Aggregation Algorithms

6.7.3.1 Efficiency of the Decoupling Approach over the Single Graph Approach

We now compare the time taken to obtain the communities using the aggregation

methods (CV-AND, CE-AND and CE-OR) with respect to C-SG-AND and C-SG-

OR.

Figure 6.11 shows that the time to compute the communities over all the 4-

composed layers is significantly lower for both CV-AND and CE-AND methods than
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Figure 6.10: Accuracy of CE-OR with Different Weighting schemes based on NMI
and m-NMI.

C-SG-AND. When the layers are sparse, CE-AND will be faster than CV-AND, as

can be seen for DBLP multiplex. However if the network layers are dense, then the

edge-based intersection approach of CE-AND has a higher cost as compared to the

CV-AND.

Figure 6.12 gives the time for executing CE-OR. For CE-OR, CE-AND is used as a

subroutine. One scan of community edges is required to generate the meta graph (OR-

MG) on which we apply Infomap. If the layers are sparse and the multiplex contains
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Figure 6.11: Efficiency of CV-AND and CE-AND as compared to C-SG-AND

many bridge nodes, then cost of generating the meta graph and applying Infomap

will become an overhead as compared to simply applying Infomap on OR graph (C-

SG-OR approach). This can be seen from the DBLP multiplex where sparse layers

(density of densest layer (SIGMOD) = 0.0001!) make the CE-OR 67% less efficient

as compared to C-SG-OR. However, for multiplexes with fewer bridge edges (IMDb,

Accident), CE-OR is significantly faster.

6.7.3.2 Component Cost Analysis of the Decoupling Approaches

In general for decoupling based approaches, the cost of the decoupling approach is

broken down into a) one time cost (that is the time to find layer-wise communities)

and b) cost of combining the partial results. On one hand, the one time cost involves
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Figure 6.12: Efficiency of CE-OR as compared to C-SG-OR

the application of the existing algorithms on individual layers that detect communities

by hierarchically optimizing the tightness metric (map function in the case of Infomap)

through random walks across the networks. On the other hand, the incremental

cost of combining the partial results involves one scan of community nodes/edges

(CV-AND/CE-AND) or finding communities in the much smaller (in terms of number

of nodes and edges) OR-metagraph (CE-OR).

Figure 6.13 and 6.14 show that for both the AND composition and OR composition

approaches the maximum cost of combining the partial results is significantly
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Figure 6.13: Component Cost Analysis of CV-AND and CE-AND (Accident HoMLN)

less than the minimum cost to detect 1 layer communities. The results shown

here are for the Accident HoMLN. This empirically validates that the additional

incremental cost to combine the partial results is much smaller than the

one time cost. Thus, justifying the advantages of the decoupling approaches as

compared to the single graph approach.

6.8 Effect of Different Parameters on the Composition Function Accuracy

It has been shown that the decoupling approach for AND/OR composition is

efficient in general. However, it becomes pivotal to understand the effect of differ-

ent network characteristics of the MLN layers on the accuracy of the composition

algorithms. Depending on the accuracy estimates, one can choose whether to opt

for the single graph approach or the decoupling approach. We have considered the

modified-Normalized Mutual Information as the accuracy metric between CE-AND

and C-SG-AND communities.
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Figure 6.14: Component Cost Analysis of CE-OR (Accident HoMLN)

Synthetic Data Sets (HoMLNs): 2 sets of Synthetic HoMLN layers were gener-

ated for this purpose.

• COMM-MLN-SET1: 2 initial layers (L1, L2) were generated with 1000 ver-

tices each. In L1, there were 5 cliques of 200 nodes each and the other one

had 10 cliques of 100 nodes each. Nodes from these cliques were randomly

connected by some number of bridge edges. 5% and 10% edges were removed

from the two layers in every iteration, in order to generate 60 different pairs of

layers.

• COMM-MLN-SET2: 2 initial layers (L1, L2) were generated with 1000 ver-

tices each. In L1, there were 10 cliques of 100 nodes each and the other one

had 20 cliques of 50 nodes each. Nodes from these cliques were randomly

connected by some number of bridge edges. 5% and 10% edges were removed

from the two layers in every iteration, in order to generate 60 different pairs of

layers.
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The different network characteristics that have been explored as a part this thesis

are as follows:

• First, we aimed to understand the effect of graph characteristics of individual

layers on the accuracy. To accomplish this task, for two layers generated in any

iteration in the synthetic HoMLN, we analyzed

– Number of Communities

– The Average Community Density

– Number of Bridge Edges

– Average Clustering Coefficient

• Similarly, to understand the effect of composed layer graph characteristic, we

chose to analyze

– The average clustering coefficient of the AND/OR composed layer

– The number of bridges in the AND/OR composed layer

• Finally, it was important to understand how two similar layers in terms of

detected communities effect the overall accuracy. Few parameters considered

were:

– NMI and m-NMI between the community sets of the two layers

– Cosine Similarity, Pearson’s Correlation, Simple Matching Coefficient, Jac-

card Index and Euclidean Distance between the clustering coefficient vec-

tors for vertices from the two layers. The binary clustering coefficient

vectors were also considered where any vertex that has a clustering coeffi-

cient higher than the average has a value of 1, else it is 0. This way nodes

with high and low clustering coefficients are differentiated.

Here we discuss a few conclusive results for the AND and OR composition ap-

proaches



75

6.8.1 Variation in CE-AND Accuracy

Figure 6.15: Effect of Layer-wise Average Community Density on CE-AND Accuracy

Effect of Layer-wise Average Community Density: 6.15 (a) and (b) show

how the average community densities effect the CE-AND accuracy. The experiments

validate the fact that whenever the layers have well-formed / self-preserving /

clique communities then the CE-AND accurately detects the communities

due to the presence of common dense substructures across layers (Iteration

>= 40: Higher the Density, Higher the m-NMI). Even the contrapositive is true,

where low m-NMI values correspond to the iterations where the layers did not have

a well defined community structure (Iteration 20 to 30).

Effect of Bridge Edges in Composed layer: Figure 6.16 shows that if the

fraction of edges in the AND-composed network is high, then the accuracy

of CE-AND drops. The AND-composed network has more bridges when the layer-
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Figure 6.16: Effect of Bridge Edges in Composed Layer on CE-AND Accuracy

wise ill-formed/weak communities tend to split up and form smaller communities.

Due to the absence of dense common substructures across layers, the CE-AND will

not work effectively.

Figure 6.17: Effect of inter-layer Clustering Coefficient Similarity on CE-AND Accu-
racy
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Effect of Clustering Coefficient Similarity: The Simple Matching Coefficient

(SMC) between the binary clustering coefficient vectors finds out the fraction of nodes

that are consistent with their clustering coefficient values in both layers. In general,

if a node has a high clustering coefficient value, then it means that its neighborhood

is tightly connected. A high SMC implies that a large fraction of high CC nodes

(community core nodes) and low CC nodes (fringe nodes) are same across the layers.

Thus, CE-AND will be able to retain the most important nodes in the

correct communities, if the SMC between the binary clustering coefficient

vectors for vertices from two layers is high. This fact is validated from Figure

6.17.

6.8.2 Variation in CE-OR Accuracy

Figure 6.18: Effect of Layer-wise Average Community Density on CE-OR Accuracy
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Effect of Layer-wise Average Community Density: It can be observed from Fig-

ure 6.18 that even when both the layers have dense communities (self-preserving/cliques),

the accuracy of the CE-OR composition can be low (iteration 45 for Figure 6.18 (a)

and Iteration 40 for Figure 6.18 (b)). This is because in case of OR-composition,

multiple dense communities can get merged into a single large community due to the

presence of substantial number of common bridge edges. Thus, community struc-

ture alone cannot dictate the accuracy of the CE-OR composition and the

role of the neighborhood is elevated.

Figure 6.19: Effect of Bridge Edges on CE-OR Accuracy

Effect of Bridge Edges: The role of neighborhood that we discussed above can be

validated from Figure 6.19. Here, it can be seen that in the first case, for iteration 45

the layers had dense communities (Figure 6.18 (a)) but the number of bridges were
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also high in both the layers (Figure 6.19 (a)). Similar scenario is observed for iteration

40 in the second synthetic HoMLN layers. Thus, in the C-SG-OR approach, due to the

presence of substantial number of bridges the dense communities got merged to form

larger communities. However, the CE-OR composition approach splits these kind of

larger communities as it does not take into account the bridge edges. Therefore, it

can be concluded that when the layers have well-formed communities and the

number of bridge edges is low, the the accuracy of CE-OR is high.

Figure 6.20: Effect of inter-layer Clustering Coefficient Similarity on CE-OR Accuracy

Effect of Clustering Coefficient Similarity: We find out the cosine similarity

between the clustering coefficient vectors for vertices from the two layers to study the

similarity of community structure between the two layers considered for composition.

Higher value of cosine similarity means that the community core (high CC nodes)

is not only same in both the layers, but also have similar strength (CC values).

Moreover, even the fringe nodes (low CC nodes) are mostly same with same level

of weakness (low CC value). Thus, in such a scenario due to the presence of dense

common neighborhood, the effect of bridges is reduced in the OR composition and

thus CE-OR has a high accuracy. Even the experiments validate this as it can be

observed from Figure 6.20 that High Cosine Similarity between the clustering

coefficient vectors implies high accuracy for the CE-OR approach. Even



80

the contrapositive is true, where low accuracy values (m-NMI) are observed

for low similarity.

6.9 Boolean Expression Evaluation

In this section, we provide the definition of the NOT composition of a multiplex

layer in order to express analysis objectives using Boolean operators. Then, we discuss

the mapping of real-world analysis to Boolean expressions consisting AND, OR, and

NOT. As we have shown composition and efficiency for individual operators above,

this will allow us to show empirically the accuracy and efficiency of the decoupled

approach for an arbitrary analysis expression.

6.9.1 NOT Composition

NOT of a layer will represent the complement of the edge set of that layer, i.e. the

new layer will have all those edges that are not part of the original layer. Communities

in a NOT layer will represent the groups of nodes that are not strongly connected.

Examples of queries that can be answered using NOT are

• Groups of actors who have not acted together in a comedy (IMDb multiplex)

• Groups of authors who have never co-authored a paper in VLDB (DBLP mul-

tiplex)

• Groups of accidents that did not have same Light condition (Accident multiplex)

With respect to the single graph approach, the above types of analysis can be

handled by first generating the NOT layer and then applying community detection.

Further, AND, OR and NOT together can be applied in different combinations, ex-

panding the spectrum of analyzing a given multiplex.

As a unary operator, NOT gets composed using the previously discussed AND

and OR operators. Although it may appear that taking the complement of a layer is



81

expensive and increases the number of edges in that layer, it is important to remember

that it depends on the graph density of the layer. Also, rewrites of expressions using

the De Morgan’s law may be used to obviate this increase in the number of edges

where possible.

6.9.2 General Boolean Expression Evaluation: Accuracy, Efficiency and Drill Down

Analysis

In this section, we discuss how general Boolean expressions can be computed using

the decoupling approach. We use the DBLP multiplex with authors who publish

papers in different conferences to address interesting analysis objectives. In order to

make the analysis more interesting, we consider all papers that were published from

2003 to 2007 (5 years) in two high ranked conferences (VLDB and SIGMOD) and

two medium ranked conferences (DASFAA and DaWaK). Thus, based on whether

two authors (nodes) have co-authored a paper in a particular conference, four layers

were generated - VLDB (L1), SIGMOD (L2), DASFAA (L3) and DaWaK (L4). Table

6.4 shows the layer-wise statistics.

Layer Vertices Edges Communities
VLDB 5116 3912 327

SIGMOD 5116 3303 254
DASFAA 5116 1519 229
DaWaK 5116 679 154

Table 6.4: DBLP multiplex used for Expression evaluation

Few interesting analysis objectives that can be computed on the DBLP multiplex

using Boolean expressions are as follows:
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• Which are collaboration groups who have published in both the highly ranked

conferences, but have never published in either of the medium ranked confer-

ences?

• Which co-author groups have only been able to publish in the low to medium

rank conferences?

• Which author groups have published only in VLDB?

Based on the requirements of the analysis, it is important to figure out a) the

multiplex layers required and b) the order in which the layers have to be composed

using AND, OR, NOT. For the first analysis, “Which are collaboration groups

who have published in both the highly ranked conferences, but have never

published in either of the medium ranked conferences ?”, we will compare

the evaluation process for the traditional single graph approach and the proposed

decoupling approach.

Single Graph Approach (SG): For the SG approach, the Boolean expression

will correspond to -

SG: COMM((VLDB AND SIGMOD) AND NOT (DASFAA OR DaWaK))

This corresponds to first generating the required composed single graph and then

applying the community detection algorithm in order to find the final set of commu-

nities. This acts as the ground truth as in the earlier experiments. Here, we have

used Louvain [67] to find the communities in order to show the performance of our

composition algorithms in presence of different community detection algorithms.

Decoupling Approach: In this case, the expression will correspond to

DEC1: COMM(VLDB) CE-AND COMM(SIGMOD) CE-AND COMM (NOT (DAS-

FAA OR DaWaK))

That is, the layer-wise communities are composed in the specified order to obtain

the final set of communities.
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Alternatively, De Morgan’s Laws can be applied to obtain another expression for

the decoupling based boolean composition -

DEC2: COMM(VLDB) CE-AND COMM(SIGMOD) CE-AND COMM (NOT (DASFAA))

CE-AND COMM(NOT (DaWaK))

We will compute both DEC1 and DEC2 to compare their efficiency and compare

both with the single graph approach. Here, we will evaluate the expression, NOT

(DASFAA OR DaWaK), using the traditional OR of two layers and then take its

complement. Whereas DEC2 uses the decoupling approach using operators CE-AND,

NOT as discussed.

Note that the layers of DBLP used above are very sparse, especially DASFAA and

DaWaK. Hence, we can infer that DEC2 will not be as efficient as DEC1 since it has

to compute the complement of two layers (resulting in dense graphs) and then apply

the decoupling approach. DEC1, on the other hand, has only one complement to

compute. Both will compute the same set of results.

Accuracy Results: For accuracy, the NMI and m-NMI values for the commu-

nities obtained by DEC1 and DEC2 have been compared against the communities

obtained by SG. It can be clearly observed from Figure 6.21 that both the expressions

lead to DEC1 and DEC2 providing more than 95% accuracy.

Performance Results: Both DEC1 and DEC2 resulted in the same set of com-

munities. In DEC1, the number of CE-AND compositions are 2 whereas in DEC2

there are 3. Moreover, as the layers of the DBLP multiplex are sparse, their comple-

ment is dense. Thus, in DEC2 the Louvain is applied to two dense NOT layers. Thus,

it can be conjectured that the DEC2 will have a higher cost as compared to DEC1.

This has been empirically shown in Figure 6.22 where DEC1 is approx. 2 times faster

than DEC2. Therefore, it is very important to understand when to rewrite the ex-

pression (using De Morgans, Distribution, etc.) especially when the NOT operator
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Figure 6.21: Accuracy results for communities obtained by decoupling-based expres-
sions DEC1 and DEC2 as compared to Single Graph approach

is used on a composition of layers. Finally, it is interesting to note that even with 2

dense graphs, DEC2 comes out better than the single graph approach. This further

validates our decoupling approach even in the presence of NOT operator.

Drill-Down Analysis: 102 communities are obtained from DEC1 and DEC2

that satisfy the requirement. Figure 6.23 shows few well-known groups most of whose

members had collaborated on a paper that was published in both VLDB and SIG-

MOD, but never in DASFAA or DaWaK in the period from 2003 to 2007.

There is a high probability that the work done by these groups is not only of

greater quality but also widely accepted. Validity of this claim can be made from the

following facts,

• Figure 6.23 (a) community has researchers like Surajit Chaudhari who won

the VLDB 10-Year Best Paper Award (2007) with Vivek Narasayya

and VLDB Best Paper Award (2008) with Nicolas Bruno, apart from

winning ACM SIGMOD Contributions Award (2004).
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Figure 6.22: Efficiency results for communities obtained by decoupling-based expres-
sions DEC1 and DEC2 as compared to Single Graph approach

• Figure 6.23 (b) has researchers like Divyakant Agrawal who has 24000+

citations (Google scholar).

• Peter A. Boncz and Stefan Manegold from Figure 6.23 (c) group not only

published a highly cited paper (350+ citations for MonetDB/XQuery) in

SIGMOD 2006, but also have won the VLDB 10-year award.

6.10 Conclusions and Future Work

In this chapter, we presented algorithms for efficiently finding communities in

Boolean composed layers of homogeneous multilayer networks. The results show that

for most cases our algorithms are significantly faster than the standard methods and

produce results of similar quality. The only cases that our algorithm fails is when the

layers have significantly more bridge edges.

In future plan, some percentage of bridge edges can be included in the composition

process without increasing the computation time. It should be possible to explore

adaptive techniques that can select between the network decoupling and standard

methods as suitable.
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Figure 6.23: Drill-Down Analysis: Prominent Author Groups

The next two chapters, 7 and 8, provide case studies, where the proposed commu-

nity detection in HoMLNs has been used for the aggregate analysis of the Facebook

and Movie Actors data set.



CHAPTER 7

HOLISTIC SOCIAL NETWORK ANALYTICS: LEVERAGING CONTENT

ANALYSIS AND MULTILAYER NETWORKS

In this chapter, our goal is to adapt the MLN analysis approach to efficiently and

flexibly analyze social network data using explicit (known or given) as well as implicit

(derived or extracted) features of the datasets. It is imperative that these datasets

be analyzable in a flexible manner as different features have different impacts and

importance on the information that can be inferred. For example, for advertising in

social networks, influential communities are sought (based on age, gender, friends,

interests, political views etc.). For quick propagation of information centrality nodes

may be useful.

This work is the first one, to the best of our knowledge, to apply this approach

for the analysis of one of the largest/densest real-world social network data collection,

although it has been used in several experimental studies on smaller/sparser datasets

[89, 29].

The contributions of this chapter include: (1) using the novel, emerging MLN

approach for flexible analysis of a large complex real-world dataset, (2) integrat-

ing content analysis seamlessly with structural network analysis, and (3) extensive

analysis and result validation for the social network work datasets.

The remainder of the chapter is organized as follows. Section 11.2 states the general

problem and proposed approach. Section 7.2 elaborates modeling and computation

aspects of our approach. Section 7.3 details the use of content analysis to integrate

into multilayer network approach. Section 7.4 showcases analytical results of queries.
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Section 7.5 discusses computational advantage of the adapted approach. Section 12.5

concludes the chapter.

7.1 Dataset Overview, Analytical Queries, and Problem Statement

7.1.1 The Facebook Dataset

The Facebook (FB) data collection fulfill all the characteristics of a complex

dataset in terms of a large number of features, content that could be analyzed and

the requirement for analysis using combinations of features.

Table 7.1: Statistics of four datasets

Datasets #users

Demographic Info (D1) 2,676

User’s Political Views

(D2)
2,695

Personality (D3) 2,485

Facebook Status Updates

(D4)
1,645

This data collection from myPerson-

ality project [102] is one of the largest

and well-known real-world social net-

work research data collection, where the

volunteers took real psychometric tests

and opted in to share data from their FB

profile (period of 2007-2012). The ex-

perimental data contains four datasets:

Demographic Info (D1), User’s Political

Views (D2), Personality (D3), and FB Status Updates (D4). We have a total of

260K individuals in the datasets predominantly from USA. Of those, about 2.6K

have more common features as compared to others. Hence, as shown in Table 7.1,

we have chosen the 2.6K subset for detailed analysis. The dataset includes a number

of features, such as age, gender, location, self-assigned political views, relationship

status, personality trait, etc. along with access to individual’s status updates from

which additional features can be extracted using content-based analysis.
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We use four features from dataset D1 including age, gender, relationship status,

and locale. One self-declared political-view feature from D2. D3 provides five features

which are the five personality traits of the Five-Factor Model (FFM ) [103]. FFM is

considered the most influential and standard model for personality trait prediction

in psychology over the last 50 years. Based on D3 together with D4, one more

feature of people’s privacy-concern is inferred. For better understanding in later

sections, we especially introduce the well-known five personality traits [104], which

are defined as openness to experience, conscientiousness, extraversion, agreeableness,

and neuroticism.

1. Openness (OPN) to experience: intellectual, insightful vs. shallow

2. Conscientiousness (CON): self-disciplined, organized vs. careless

3. Extraversion (EXT): sociable, playful vs. aloof, shy

4. Agreeableness (AGR): friendly, cooperative vs. antagonistic, faultfinding

5. Neuroticism (NEU): insecure, anxious vs. calm, unemotional

Figure 7.1: Word clouds of political views where bigger cloud representing more
dominant political views in the dataset.
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7.1.2 Analytical Queries

The focus of this chapter is to demonstrate modeling, flexible and efficient analysis

of social network datasets to infer trends and establish correlations, and possible

causality. A few analytical queries that are meaningful for this dataset are shown

below.

(Q1) Dominant Political Views: How the user-declared political view (e.g., demo-

crat, doesn’t care, republican) varies across age groups in the dataset? (There

are 100 political views in Facebook dataset used in this chapter - see Figure 7.1).

(Q2) Relationship Status Correlation:

(a) With respect to age groups, how does relationship status (e.g., single, in a

relationship, and married) vary?

(b) How do the relationship statuses affect the personality traits of an individ-

ual? Does it differ based on gender?

(Q3) Personality Trait Analysis:

(a) How much of the population demonstrate contrasting personality traits

(e.g., OPN and NEU)?

(b) How do the personality traits evolve with age? For example, which age

group of people deals better with stress?

(Q4) Privacy Concern Correlation:

(a) How does the individuals’ age correlate with their comfort level of sharing

personal information on social media?

(b) Do personality traits have a bearing on the level of privacy-concern?

7.1.3 Problem Statement

Currently, the above analytical queries are done using a graph-based approach

where a single graph needs to be created for each analysis based on the involved fea-
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tures. Typically, nodes represent entities (i.e., people in our case) and edges represent

relationship between nodes based on feature values (e.g., same age group, the same

relationship status). These graphs are analyzed using graph metrics such as com-

munity, hubs or centrality nodes, and so on. This approach entails the creation of

a customized graph for each query using the features involved which can lead to an

exponential number of graphs in the worst case. For the above mentioned analytical

queries (Q1-Q4), multiple graphs, the number of which depends on the number of

features involved, need to be created, stored, and analyzed for each query.

Using the Homogeneous MLN approach (same set of entities have to be analysed),

for a given dataset with M features (whether explicit or derived), determine the layers

(nodes and intra-layer edges) based on the analyses requirements of the dataset and use

composition for analysis using Boolean or other operations. Thus, once MLN layers

are created as shown, any number of analyses can be performed without generating

additional graphs/layers. Necessitated by the queries, this chapter primarily uses

AND compositions.

7.2 Data Modeling and Layer Composition Using MLN

7.2.1 Data Modeling

It is already explained in Section 11.2 that we have four Facebook datasets (D1-

D4) and the corresponding features. UserID is common to all datasets to associate

with each other as shown in Figure 7.2. UserID is also used to make the dataset

anonymous to mask the privacy of an individual. Moreover, the social networks

analysis demands the analysis of the same set of entities (people) with respect to

different features. Thus, we will choose Homogeneous Multilayer Networks to

model the FB dataset.
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Figure 7.2: Modeling the FB Data Collection for Multilayer Network Analysis

Unlike other features from D1 and D2, the features of personality traits (OPN,

CON, EXT, AGR, NEU) and privacy-concern are not explicitly present in the given

dataset and will be derived through content analysis. The derived output for each

personality trait would be binary label “Yes” or “No”. And the derived output for

privacy-concern of each FB user in our datasets is “high”, “medium”, or “low”. This

clearly indicates the power of the approach in absorbing derived content in the same

way as an explicit feature. Different types of content extraction can be supported

readily. Our approach to content extraction is presented in Section 7.3.

Table 7.2 shows the statistics regarding the generated multiplex layers along with

the number of edges in each layer. The number of nodes in all layers is the same but

the number of edges will be different since it depends on the available information

for each feature. The 11 layers in Table 7.2 that are generated for the Facebook

multilayer network correspond to the features in Figure 7.2. The semantics of the

graphs in each layer are described as follows:

(L1) Age: Any two users are connected by an edge when they both fall into a same

age group, namely [≤ 20], [21-30], [31-40], [41-50], [51-60], and [≥ 61].
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Table 7.2: Statistics of 11 MLN layers

Layer
From
dataset

# edges

L1: Age D1 1,228,223
L2: Gender D1 1,813,638
L3: Relationship Status D1 1,119,592
L4: Political Views D2 494,974
L5: Locale D1 2,799,160
L6: OPN D3 1,020,306
L7: CON D3 840,456
L8: EXT D3 795,691
L9: AGR D3 718,201
L10: NEU D3 627,760
L11: Privacy Concern D3, D4 2,191,659

(L2) Gender: Any two users with the same gender are connected.

(L3) Relationship Status: Any two users with the same relationship status are

connected by an edge.

(L4) User-Defined Political Views: Any two users with the same political view

are connected by an edge.

(L5) Locale: Any two users with the same locale settings (e.g., en UK, en US) are

connected by an edge.

(L6-L10) FFM (i.e., OPN, CON, EXT, AGR, NEU): Each personality trait

of the FFM forms one network layer. Any two users with the same type of

personality trait are connected.

(L11) Privacy Concern: Any two users with the same privacy-concern level (i.e.,

high, medium, or low) are connected.

7.2.2 Metric Computation & Layer Composition

In the multilayer network described above, although each layer has the same nodes,

their edge connectivity will vary according to the feature value distribution. For
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example, groups of people having the same political view may not be present in the

same age group, groups of people with the same personality may have different levels

of privacy-concern and so on. For detecting the tightly connected groups of people

with respect to a particular feature, we compute communities in the corresponding

layer by applying Infomap[66]. A community in a graph translates to a group of

nodes that are more connected to each other than to other nodes/communities in the

graph.

AND

L1	(Age)	AND L11	(Privacy	Concern)

Facebook	Multiplex

.	..

Figure 7.3: An example of AND-Composition

Analytical queries listed

in Section 7.1.2, re-

quire commonality of

information in at least

two multiplex layers.

This corresponds to the

Boolean AND opera-

tion for composing lay-

ers. For example, in

Q4a (Section 7.1.2), to analyze the effect of age on level of privacy-concern, we need

to compute communities where an edge represents people who fall into the same age

group and have the same privacy-concern level. Figure 7.3 shows a simple example

with several small Facebook multiplex layers, and an AND composition of L1 (Age)

and L11 (Privacy Concern) layers. Table 7.3 shows the AND-compositions whose

communities have to be generated in order to perform the flexible analysis of the

Facebook multilayer network for our analytical queries listed in Section 7.1.2.

Community Detection for AND Compositions: The traditional way to ad-

dress any of the listed analytical queries is to first generate the required combined

graph corresponding to the AND-composition and then detect the communities. The
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Table 7.3: AND-Compositions needed for analytical queries shown in Section 7.1.2
Analysis Required AND-Compositions of Layers

Dominant Political Views
Q1 L1 (Age), L4 (Political View), L5 (Locale)

Relationship Status Correlation
Q2a L1 (Age), L3 (Relationship Status), L5 (Locale)

Q2b
Five 3-layer compositions: [L2 (Gender) AND L3 (Re-
lationship Status)] with each of L6 (OPN), L7 (CON),
L8 (EXT), L9 (AGR), L10 (NEU)

Personality Traits Analysis
Q3a L6 (OPN), L10 (NEU)

Q3b
Five 2-layer compositions: Each of L6 (OPN), L7
(CON), L8 (EXT), L9 (AGR), L10 (NEU) with L1 (Age)

Privacy Concern Correlation
Q4a L1 (Age), L11 (Privacy Concern)

Q4b
Five 3-layer compositions: [L2 (Gender) AND L11 (Pri-
vacy Concern)] with each of L6 (OPN), L7 (CON), L8
(EXT), L9 (AGR), L10 (NEU)

MLN approach pre-computes the communities of the individual layers. Based on the

composition requirements of the analytical query, partial results (i.e., pre-computed

communities) are intersected (for AND-composition) to generate the combined com-

munities. It can be shown analytically [7] that both computationally and storage-

wise, the MLN approach is more efficient. The requirement to apply composition is

that the communities of the individual layers must be self-preserving in nature.

Checking the Self-Preserving Property: By definition, “a community is self-

preserving if the nodes in it are so tightly connected such that even if only a subset of

connected nodes are chosen from that community, they will form a smaller commu-

nity [7].” For each of the 11 layers, we computed the internal clustering coefficients

of each node, which is the ratio of the number of edges among the neighbors of the

node in the same community to the total possible edges among those neighbors, and

it was one. This indicated that the communities in each layer were self-preserving.

In Section 7.4, we will discuss some of the inferences that have been drawn from
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this analysis, and in Section 7.5 we highlight the performance analysis between the

traditional and MLN approaches.

7.3 Content Analysis on User Generated Content

Content Analysis is a research method for studying documents and communica-

tion artifacts, which might be texts of various formats, pictures, audio or video [105].

One of the key advantages of using content analysis to analyze social phenomena

is its non-invasive nature, in contrast to simulating social experiences or collecting

survey answers. Here, we apply content analysis by text mining techniques to inte-

grate content features into multilayer structural analysis. Motivated by the fact that,

we have personality data in the given Facebook data collection and the previously

preliminary studies [106, 107] observed a significant correlation between personal-

ity and privacy-concern of Facebook users, we improve [107]’s deep neural network

model to detect Facebook users’ privacy-concern based on their status updates and

classify privacy-concern into three different levels (classes): high, medium, and low.

These content-derived classes are treated as content features and modeled as layers

to integrate into the multilayer structural analysis.

As briefly introduced in Section 7.2, we apply content analysis to derive the features

of five personality traits and privacy-concern to adapt into the proposed multilayer

network (MLN) approach. For detecting personality traits, [108] has identified many

linguistic features associated with each personality trait in FFM . For instance, Ex-

traversion (EXT) tends to seek stimulation in the external world, the company of

others, and to express positive emotions. Neuroticism (NEU) people use more 1st

person singular pronouns, more negative emotion words than positive emotion words.

As mentioned earlier in Section 7.2.1, five personality trait scores for each user are

given in the dataset D3. To form layer L6-L10 using these personality traits in the
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proposed multilayer network analysis, we followed the strategy from [109] by using

five mean-values {3.8, 3.5, 3.6, 3.55, 2.8} of the given personality scores to decide

“Yes” or “No” label of {OPN, CON, EXT, AGR, NEU} correspondingly. “Yes” label

is assigned if the personality trait score is higher than or equal to the corresponding

mean-value. Otherwise, “No” label is assigned. In the following of this section, we will

mainly explain how to generate privacy-concern as one layer to adapt the multilayer

network.

Previous work [107] has found that using given personality and status updates of

users, privacy-concern can be predicted accurately based on UGC data. We extended

their model by building a deep neural network model to automatically classify users’

privacy-concern to high (HiPC), medium (MePC), and low (LoPC) based on given

five personality trait scores and status updates. Motivated from previous studies [108,

107, 110], we extract the following content features from Facebook status updates,

which will be used in the following deep neural network model to predict users’

privacy-concern:

• Polarity features: Since sentiment words embody personality (e.g., “I don’t

hate you. Well, you found me · · · ”), we use the number of polarity signals appearing

in FB status updates as the polarity features. We identify positive and negative

words using the sentiment dictionaries provided by Hu and Liu [111]. Additionally,

we consider boolean features to check whether or not a negation word is in a FB

status (e.g., n’t).

• Syntactic features: We extract part-of-speech tags (POS tags) for all status

updates in the dataset. Afterwards, we use all the POS tags with their correspond-

ing term-frequency and inverse-document-frequency (tf-idf) values as our syntactic

features and feature values, respectively.
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• Semantic features: The major challenges when dealing with user generated

data are: (1) the lexicon used in a status update is informal with many out-of-

vocabulary words and (2) they are usually short text [112]. The lexical and syntactic

features seem not to capture that property very well. To handle this challenge,

we apply two approaches to compute vector representations for FB status updates.

First, we utilize Latent Dirichlet Allocation (LDA) [113] for discovering the abstract

“topics” that occur in all FB status updates. Secondly, we employ 300-dimensional

pre-trained embedding models at word level [114] and at character level [115] to

compute a representation for a FB status update as the average of the embeddings

of words and characters in the status update.

• Lexical features: include [1-5 ]-grams in both word and character levels. For

each type of n-gram, we only select the top 1,000 n-grams based on tf-idf.

Deep Neural Network Model: The recent novel model from [107] was adapted

to find users’ privacy-concern level based on their social network status updates or

personality-trait score. Their neural network model was proposed mainly for privacy-

degree prediction, instead of privacy-concern level prediction. To adapt the proposed

multilayer network, there is a need of categorized output to create a privacy-concern

network layer (L11), where users with the same privacy-concern level is supposed

to be connected. Thus, we extended their approach by developing a category-based

privacy-concern detection model as shown in Figure 7.4. This extension does not only

matter to the output (from discrete to categorization), but the feature representations

in hidden layer of deep neural network model are different.

It is a Multilayer Perceptron (MLP) model [116], the architecture of which con-

sists of an input layer, two hidden layers and a softmax output layer. Given all

Facebook status updates of a user, the input layer represents the status update by

a feature vector which concatenates lexical, syntactic, semantic and polarity feature



99

Figure 7.4: Neural network model for privacy-concern detection

representations. The two hidden layers with ReLU activation function [117] take the

input feature vector to select the most important features which are then fed into the

softmax output layer for privacy-concern level detection and classification. Regard-

ing classification performance evaluation, we split 20% of the data for a blind test.

We run 10 fold cross-validation on the rest 80% to train and select the best hyper-

parameters. After all, the model achieved an accuracy of 84.44% on the blind test set.

Furthermore, we compare the model with other popular models (i.e., support vector

machine, random forest) and the recent advanced model (i.e., C-LSTM [118]), and

none of them performs as good performance as our model does. This clearly shows

the effectiveness of the model to predict privacy-concern levels based on UGC data.

As explained above, the predicted user privacy-concern levels are used to create the

network layer L11 of the multilayer network.
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7.4 Experimental Study and Query Results Analysis

This section shows the results for each analytical queries (Q1-Q4) formulated in

Section 7.1.2. Based on the communities obtained for the required AND-Compositions

listed in Table 7.3, a detailed analysis was performed to draw some insights that are

discussed below. To the extent possible, we have related our analysis with various

published independent surveys.

Dominant Political Views (Q1): Figure 7.5 shows the distribution of the top

three political views over the US population active on Facebook for each age group.

Some observations are:

• Among the politically interested and socially active US people across age groups,

the majority supported the democrats in the period of 2007-2012. As we know, there

was a lot of support for the democratic presidential candidate who got elected in 2008,

and we believe this is reflected in the political views of that period. The period of

2007-2009 also indicated the same which makes sense as the campaign was underway

in that period. This is confirmed in [119, 120] since Barack Obama, a democrat, who

took the US presidency on January 8, 2009 was able to influence people’s political

leanings through his presidential campaign from February 10, 2007.

• Among the socially active youth (≤ 30 years old), majority of them have the

political view of “doesn’t care”. Although this includes people below the voting age,

even the published statistics [121] show that young people are least likely to vote and

may not have formed an opinion about their political leanings.

• Among politically interested youth (≤ 30 years old) who are also active on

social media, dominant support is for democrats. This may be attributed to a few of

president Obama’s youth centric movements and the significant use of social media

for the first time in a US election and also to his subsequent accomplishments [122].
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Figure 7.5: Top 3 political views by age
group

Figure 7.6: Top 3 relationship statuses
by age group

• Interestingly, among all age groups, only the ones above 61 years old favored

republicans over democrats, which is also reflected in the election reports from 2008

[123].

Relationship Status Correlation (Q2): The preference of a relationship status

based on age and the corresponding effect on personalities of different genders were

analyzed.

(Q2a) Variation with Age: Figure 7.6 shows, for each age group, the distribution

of people among the group’s top three relationship statuses. A few intuitive inferences

that can be drawn are:

• The youth (≤ 30 years old) stay single than be in a relationship or get married,

according to the given dataset.

• The percentage of married people steadily increases with age which can be at-

tributed to the popular fact that as people age, they want to be in a longer term

commitment (in a relationship or married).

• The transitions from “Single” to “In a relationship” to “Married” are clearly

seen with change in age in Figure 7.6 which matches the social trend.

• The third largest fraction of people in age group (> 61) constitutes those who

have lost their spouses (Widowed).

(Q2b) Effect on Personality and Gender: Changes in relationship status seem to

have effects on the personality. Moreover, this change seems to be correlated with the
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gender. For the given population, we present the distribution of males and females

among the top three relationship statuses - Single (S), In a relationship (R), Married

(M), who display different personality traits in Table 7.4. The ones marked in bold?

and italics† represent the category of people with highest and lowest percentages,

respectively.

Table 7.4: % of people with different personality traits

based on relationship status and gender

Trait
Males Females

S(%) R(%) M(%) S(%) R(%) M(%)

OPN 55.7? 54.8 47.3 53.0 55.6 43.0†

CON 44.2† 50.2 52.7 46.1 51.7 58.5?

EXT 45.0 54.8? 35.5† 49.1 50.8 44.6

AGR 42.9 50.2 31.8† 46.4 45.9 50.4?

NEU 36.5 26.6† 33.6 45.2 53.8? 48.1

A few observations that

can be made from the above

analysis are: a) Married

females have least open-

ness (OPN) to experience,

and highest conscientious-

ness (CON). b) Married

females have the highest

agreeableness (AGR), while

married males have the

least. These observations have been made with respect to the given population and

need to be confirmed on a bigger population.

Personality Traits Analysis (Q3): Various analyses based on the five person-

ality traits for each individual are discussed below.

(Q3a) Contrasting personality traits: Clearly, if a person feels anxious and does

not stay relaxed (NEU) then he/she will try to make his/her life comfortable by

indulging in less stressful activities making them be less open to new experiences

(OPN). Thus, the fraction of people displaying these contrasting personality traits is

supposed to be low. Our analytic results go hand in hand with this intuition as just

23.3% people belonging to this category.
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Figure 7.7: Changing personality distri-
bution with age

Figure 7.8: Distribution of HiPC and
LoPC by age group

(Q3b) Personality trait evolution with Age: Figure 7.7 shows how each person-

ality trait varies with age, based on which, few interesting observations can be made

as follows.

• Openness (OPN) reflects whether one prefers new experiences and to engage in

self-examination. This trait increases with age and peaks around the 30s (54.2% in

age group of 31-40). However, older people prefer to go with the tried-and-tested

approach (67.6% of the people above 60 years old resist new experiences).

• Conscientiousness (CON) associates with achievement and working systemati-

cally, methodically and purposefully. Analysis shows that the age group with con-

scientiousness the most is 41-50 years old. A recent survey about founders and en-

trepreneurs indicated that their average age was 45 years old [124].

• Extraversion (EXT) describes one’s sociability and enjoy to be the center of

attention. This trait seems to peak at two age groups (i.e., [31,40] and [> 61]) in the

dataset.

• Agreeableness (AGR) reflects a tendency to perceive others in a more positive

light. Parenthood and grand-parenthood may make the elder generation more empa-

thetic towards others as compared to the younger lot.
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• Neuroticism (NEU) reflects one’s ability to deal with emotion states, such as

stress and anxiety. It can be observed from Figure 7.7 that the younger lot does not

deal very well with stress. Even the studies substantiate this finding as around 80-90%

adolescent suicides are linked to common psychiatric disorders, such as depression and

anxiety [125]. This trait (NEU) seems to be most stable over age compared to other

traits. Another age group where neurotic behavior peaks is the middle age group

of 41 to 50 years old. This result also corroborates with the psychological surveys

that suggest that for most midlife crisis occurs in this age group due to reasons such

as age-related health problems, major life changes like death of an elderly parent,

menopause in women and financial issues, leading to rise in depression [126, 127].

With age and experience comes maturity and thus, people in older age bracket deal

better with stress.

Privacy Concern Correlation (Q4): Three levels of privacy concern (PC) have

been considered for this work - HiPC, MePC and LoPC. Here we have taken into

account age, gender, and personalities as three parameters for performing analysis to

understand the choice of particular level of privacy-concern.

(Q4a) Variation of privacy-concern across age groups: The concern level of shar-

ing personal information on the social media varies with age. Irrespective of the age

group, the MePC was the most dominant level of privacy. Out of the remaining indi-

viduals, Figure 7.8 shows the distribution of the people with extreme levels of privacy

- High and Low. Few observations are discussed below.

• People (≤ 40 years old) prefer the higher level of privacy. This can be attributed

to the fact that this age group is probably more aware of the cons of sharing sensitive

personal information on the web such as identity theft.

• The status updates of people (> 41 years old) contain more personal informa-

tion and this trend increases with age. This reflects a lower level of privacy-concern
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probably due to their unawareness of the potential harm from disseminating personal

information on social media.

(Q4b) Correlation of privacy-concern over personality traits: Table 7.5 shows the

two extreme personality traits and their corresponding privacy-concerns for males and

females.

Table 7.5: Dominant personality traits of male and females preferring different levels
of privacy-concern

Privacy
Extraversion(100%) Neuroticism(100%)

Males(%) Females(%) Males(%) Females(%)
HiPC 0 0 09.90 09.99
MePC 39.89 45.36 30.15 49.96
LoPC 07.45 07.30 0 0

• Females have higher privacy-concern than males on both extraversion and neu-

roticism. This observation kept consistency with the previous study in [128].

• Both males and females on extraversion display low and some medium levels of

privacy-concern. This matches the definition of extraversion from social scientists.

That is, people who enjoy being the center of attention are likely to share more

personal information on the web such as check-ins and day-to-day activity updates.

• Both males and females on neuroticism tend to have predominantly high privacy-

concern, without anyone having low level privacy-concern. This matches the social

scientists’ definition.

Analysis Q4a and Q4b are important as it validates our content extraction ap-

proach to derive accurate privacy-concern.
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7.5 Efficiency Analysis of The MLN Approach

So far, we have established the modeling and flexibility of analysis of the MLN

approach. Below, we will establish its efficiency in general and highlight it with

respect to the current dataset analysis.

Processing Layers Instead of a Single (large) Graph (SLG): Separation into

layers allows one to process each layer only once for all analysis and the composition

allows us to make use of the pre-computed partial results. Furthermore, in many

cases, the size of each layer is likely to be smaller than the size of combinations of

layers. On the other hand, a new combined graph needs to be created and processed

in the traditional approach for each unique analytical query. Storing each layer is

more compact and uses less memory than storing all the required layer combinations.

Processing Layers in Parallel: The MLN approach easily lends itself to process

all (or subsets of) layers in parallel to further improve efficiency. The total cost is the

processing cost of the most complex layer. This can only be done for a set of known

analysis queries in the traditional approach in contrast to the MLN approach where

it needs to be done only once. In the MLN approach, it is further possible to process

each layer in parallel by partitioning and leveraging existing algorithms (again one

time). Although this can be done in the traditional approach, it has to be done after

the combined graph is created which reduces its effect significantly.

Efficiency of Composition: The core of the MLN approach is its ability to

compose layers pair-wise to get complete, correct results. Each composition is likely

to be on fewer and smaller number of components (from each layer) thereby reducing

the resources needed (both storage and processing).

Combinatorial Reduction: As the complexity of dataset increases, it translates

to more layers (corresponding to more features). Based on the number of layers, in the

MLN approach, there is a significant and non-linear reduction in the processing cost
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as the number of layers increase as compared to the traditional approach. Assuming

M layers, for an exhaustive analysis, they need to be combined in 2M − 1 ways,

each representing a unique analysis of a combination of features. This translates to

creating 2M − 1 combined graphs in the traditional approach and processing them

individually. In the MLN approach, instead, M layers are processed once and 2M − 1

combining of partial results from layers are performed. As we show below, these

compositions are significantly smaller (by orders of magnitude) computationally as

compared to processing of a layer. Essentially, the exponential complexity has been

reduced to a linear one one with very little additional processing.

7.5.1 Complexity Analysis

For the complexity analysis, we assume that for a given multilayer network with

fixed number of M layers, say {G1, · · · , GM}, each of the N query analyses requiring

K related layers on average, should return a list of communities, L.

• Single (large) Graph (SLG): In this approach, for every analysis it first generates

the composed graph, GAND, obtained through (K-1) 2-layer AND-compositions, on

average. On this AND-composed layer, we apply the Infomap technique (InfoM) [66]

to generate the list of communities, L. Thus, for N analyses the complexity of this

approach will be O(N ∗ (ANDK
i=1Gi + InfoM(GAND)), where K ≤M .

• MLN: Its first step is to generate the communities for each of the M layers by

applying Infomap. While generating the communities we also obtain the internal

clustering coefficient for each node, which are used to determine if the communities

are self-preserving or not. If the property of self-preserving is satisfied, then for

each analysis, to generate the list of communities L, for the corresponding AND-

composition GAND, communities from K layers are intersected based on nodes. Thus,
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for N analyses the cost of this approach will be, O(
∑M

i=1(InfoM(Gi))+N ∗∩K−l+1
j=l Cj),

where K ≤M .

In terms of storage space, one needs to store M lists of communities for MLN,

whereas in SLG, N ∗ (ANDK
i=1Gi) graphs need to be stored. Considering both space

and time, if the number of analyses, N , and the average number of layers required for

each analysis, K, are low then the one-time cost of performing M number of Infomap

operations in MLN will dominate and make MLN more expensive as compared to

SLG. However, with the increasing values of N and K, the efficiency of MLN over

SLG improves significantly, as the cost of producing the number of AND-composed

graphs and applying Infomap that traverses through the edges of each of them, begins

dominating. In the worst-case for N = O(2M) and K = O(M), SLG will perform an

exponential number of AND-Compositions and edge traversal based Infomap opera-

tions whereas, MLN will just perform the cost-effective node intersection of layer-wise

communities.

7.5.2 Computational Results

Below, we show efficiency results of analysis on the given Facebook datasets.

Experimental Set up: We used a quad-core 8th generation Intel i7 processor Linux

machine with 8 GB memory for all of our analysis. Based on Table 7.3, we computed

communities for a total of 19 AND-compositions to answer the queries Q1 to Q4,

each requiring 3 layers on an average.

Figure 7.9 (a) shows the time taken for processing all of 11 layers with and without

parallelism. As can be seen, in the MLN approach with parallelism, it reduces the

cost of processing the most complex layer (9.847 seconds for L5: Locale, 2.8 million

edges, Density: 0.77 - most dense) – a reduction of 80.4% approximately.
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Figure 7.9: Efficiency Comparison of MLN and Traditional Approaches

The incremental computation cost for each query using the MLN approach is ex-

tremely small. This can be appreciated from the worst case scenario - comparing

minimum layer processing cost with maximum composition cost. The total compo-

sition cost to answer the most complex query (Q2b) was 0.039 seconds and the

minimum layer processing cost was 1.61 seconds (L4: Political View, 494K edges,

Density: 0.14 - least dense). The difference is more than two orders of mag-

nitude.

Figure 7.9 (b) shows the total time taken to answer the analysis queries using

the traditional and the MLN approach, respectively, without parallelism, as 78.520

seconds and 50.354 seconds (for 36% reduction). Further, if communities for each

layer are generated in parallel, total computation time for the MLN approach reduces

to 9.987 seconds (for 87% Reduction). Also, note that the analysis shown in this

chapter is less than 1% of the possible analysis.

In summary, the experiments on the Facebook Dataset validate the MLN approach

from an efficiency perspective as compared to the traditional approach.
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7.6 Conclusions

In this chapter, we have applied the emerging MLN approach model and analyze

a social network data collection in a flexible and efficient way. We have also shown

how content analysis can be readily incorporated into the proposed MLN approach.

Experimental analysis and evaluation not only demonstrate the flexibility and effi-

ciency of data analysis using the MLN approach but also validate the analysis results.

Importantly, the work in this chapter led to a conference publication [10].

For future study, we plan to (1) apply the proposed MLN approach to the bigger

full data collection and (2) apply hypothesis testing on two different data distributions

(e.g., the current one versus the full data collection) to see the statistical significant

degree of our findings.
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CHAPTER 8

FLEXIBLE ANALYSIS OF MOVIE ACTOR DATA SET

In this chapter, we use the following IMDb (Internet Movie Database) data set

to illustrate analysis-driven modeling and computation. The IMDb data set captures

movies, TV episodes, actor, directors and other related information, such as rating.

This is a large data set consisting of movie and TV episode data from their beginnings.

The available ground truth from independent sources has been for validation of the

various analysis results obtained in this chapter.

8.1 Analysis-Driven MLN Modeling

To demonstrate the effectiveness of modeling we apply MLNs to answer the fol-

lowing key questions.

(A1) Which is the largest group(s) of co-actors that lead to the most popular movie

ratings?

(A2) Which are the groups of actors who have acted in similar movie genres and are

also highly rated?

(A3) Which highly rated actors work in similar genres but have not co-acted together

in any movie?

The IMDb Actor data set analysis objectives ((A1) - (A3)) require defining ap-

propriate relationships among actors with respect to different features like co-acting,

movie genres, and ratings. As the entity set used for analysis is the same, but using

different features, these data sets should be modeled as Homogeneous MLNs.

111
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Figure 8.1: IMDb HoMLN for Actor Relationships

Typically, number of layers correspond to the number of relationships that need to

be captured (one for each layer). The semantics of the analysis objectives determines

the choice of nodes and intra-layer edges. Here, the nodes in each layer correspond to

actors. Two nodes are connected in a layer, if they have co-acted in at least one movie

(Layer Co-Acting) or belong to the same average rating range (Layer AvgRating).

The average rating of an actor has been calculated by taking into account the IMDb

ratings of the movies he/she has acted in. For this, 10 ranges are created - [0-1),

[1-2), ..., [9-10]. There are multiple ways of quantifying the similarity of actors based

on movie genres they have worked in. For every actor a vector was generated with
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the number of movies for each genre he/she has acted in. In order to consider the

similarity with respect to frequency of genres, in layer Genre, two actors are connected

if the Pearsons’ Correlation between their corresponding genre vectors is at least 0.9∗.

Figure 8.1 shows the proposed HoMLN.

8.2 Mapping Analysis Objectives to Computations

In adherence with the decoupling approach, We need to identify Ψ and Θ for each

detailed analysis objective ((A1) to (A3)) along with their application on layers in

a specified order.

We use community as analysis function. For composition of HoMLNs, we use the

proposed Boolean AND, OR, and unary NOT. Table 10.1 summarizes the mapping

of each detailed analysis (A1) to (A3) to their actual computation specification (in

left to right order), analysis function (Ψ) and composition function (Θ). This is used

for computing the results in the experimental section (Section 12.2.)

For (A1), communities from each layer are composed using the Boolean AND

operation. Objective (A3) requires all 3 layers, where co-actor groups who have not

worked together correspond to finding communities in the NOT (Layer Co-Acting).

The edges in a NOT layer are complement of the edges in the original layer.

8.3 Experimental Analysis

We compute the results for each detailed objective using the expressions shown

in Table 10.1 and compare it, where possible, with independently available ground

truth. This helps validate both the modeling and analysis aspects of the approach

∗The choice of the coefficient is not arbitrary as it reflects relationship quality. The choice of

this value can be based on how actors are weighted against the genres. We have chosen 0.9 for

connecting actors in their top genres.
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Analysis
Mapping

Computation Order Ψ Θ

IMDb (HoMLN)

(A1) Co-Acting Θ AvgRating
Community
(Louvain)

AND

(A2) AvgRating θ Genre
Community
(Louvain)

AND

(A3)
NOT(Co-Acting) Θ Genre
Θ AvgRating

Community
(Louvain)

AND

Table 8.1: MLN Expression for IMDB-Actors Analysis Objectives

proposed in this chapter. We will also present a few results to highlight the efficiency

of the decoupling approach.

Figure 8.2: Word Cloud for the Layer Co-Acting

For the top 500 actors, we extracted the movies they have worked in (7500+

movies with 4500+ directors). The actor set was repopulated with the co-actors from

these movies, giving a total of 9000+ actors. The HoMLN with 3 layers described
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in Section 5.1 was built for these set of actors (statistics shown in Table 8.2). The

Louvain method ([67]) was used to detect the layer-wise communities (partial results.)

Figure 8.2 shows the Word Cloud corresponding to the Co-Acting layer, where larger

font size depicts the community with more number of actors. The ith community id

is denoted by Ai, in the figure.

Around 44% actors (mostly world renowned) had an average rating in the range

[6-7) making it the most popular IMDb rating class, while only 1.8% actors have the

highest average rating in the range [9-10]. On the other hand, the largest co-acting

and similar genre groups had 15.6% and 15.3% actors, respectively.

Co-Acting Genre AvgRating
#Nodes 9485 9485 9485
#Edges 45,581 996,527 13,945,912

#Communities 2246 63 8
Avg. Community Size 4.2 148.5 1185.6

Table 8.2: IMDB HoMLN Statistics

For (A1), 2430 actor groups with similar average ratings were detected in which

most of the actor pairs have worked with each other. Few observations on the results:

• For the most popular average actor rating, [6-7), the largest co-actor groups

were from Hollywood (876 actors), Indian (44 actors), Hong Kong (12 actors)

and Spanish (9 actors) movies.

• Among the Hollywood movie based groups, the top group included actors like

Al Pacino, Robert De Niro, Tom Cruise and Will Smith.

• Famous Bollywood stars like Amitabh Bachchan, Shah Rukh Khan belonged to

largest top rated Indian group.

• Jackie Chan was among the prominent actors from the co-actor group from

Hong Kong.
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In case of (A2), 592 actor groups who opt for similar movie genres are detected

across different average rating ranges. As a part of this analysis, the group corre-

sponding to Action, Adventure and Sci-Fi genres and an average rating of [6-7)

had actors like Robert Downey Jr., Mark Ruffalo, Gwyneth Paltrow and

Scarlett Johansson. This is primarily because these actors/actresses have been

part of the Marvel Cinematic Universe movies over the past 10 years. Sim-

ilarly, Sean Connery, Tom Cruise, Robert De Niro and Johnny Depp have

been grouped together in an actor group whose members have primarily worked in

Drama and Action related movies and on an average receive [6-7) as their movie

ratings.

For (A3), we detected 900 groups of actors with similar genre preferences and

average rating but most of whom have not worked together. From highly rated groups

where each actor has acted in different prominent genres, Table 8.3 shows a few

recognizable actors who have not acted together. Out of these, interestingly,

in 2017, as per reports there had been talks of casting Johnny Depp and Tom

Cruise in pivotal roles in Universal Studios’ cinematic universe titled Dark

Universe [129].

Actors/Actresses Common Prominent Genres
Willem Dafoe, Russell Crowe Action, Crime
Hilary Swank, Kate Winslet Drama
Tom Hanks, Reese Witherspoon,
Cameron Diaz

Comedy, Romance

Johnny Depp, Tom Cruise Adventure, Action
Leonardo DiCaprio, Ryan Gosling Crime, Romance
Nicolas Cage, Antonio Banderas Action, Thriller
Hugh Grant, Kate Hudson, Emma Stone Comedy, Romance

Table 8.3: (A3): Never Co-Acted Highly Rated Genre Actors
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8.3.1 Efficiency Analysis of the Decoupling Approach

Experimental Set up: We used a quad-core 8th generation Intel i7 processor Linux

machine with 8 GB memory for all of our analysis. The layer-wise results (commu-

nities or hubs) are generated once and can be done in parallel. Thus, this one time

cost is bounded by the layer that takes maximum time. Moreover, the cost of com-

posing the partial results using Boolean AND (HoMLN Communities). We compare

the total computational cost of the decoupling approach and the traditional single

graph approach which includes the time to generate the combined layer followed by

generating the communities.

Figure 8.3: Efficiency of Decoupling Approach for IMDb Actors HoMLN analysis

In (A1) and (A2) 1 Boolean AND composition is required each as per Table

10.1 to generate communities. In case of (A3), 2 Boolean AND compositions are

required. Here the one time cost for finding the layer-wise communities is bound
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by the AvgRating layer (densest layer in Table 8.2). Overall, 68.9% reduction in

computation time is observed with the decoupling approach (231.676 seconds) as

compared to single graph approach (745.831 seconds) as shown in Figure 8.3 (a), thus

validating the MLN decoupling approach from an efficiency perspective.



CHAPTER 9

EFFICIENT ESTIMATION OF CENTRAL ENTITIES FOR HOMOGENEOUS

MLNs

In this chapter, we concentrate on finding high degree and closeness centrality ver-

tices, also called hubs, in AND-composed layers of homogeneous multilayer networks

using decoupling approach.

Centrality measures are used in networks to find out the most influential nodes.

Some hub-based insights that can be obtained via computations on MLN layers are

- a). High centrality vertices in the accident data set (a pair of traffic accidents may

be related if they occurred in the same location, or under the same light condition,

weather condition etc.) can help us in identifying the most dominating traffic accident

locations with respect to poor lighting conditions and bad roads and this information

can be used to devise appropriate accident prevention techniques. b). High centrality

vertices in the IMDB data set (two actors may be related if they acted in the same

genre, such as action, comedy, etc.) indicate the most popular/preferred co-actors

across all types of genres to be used by casting companies and production houses.

c). High centrality vertices can be used to include the set of people who turn out

to be most influential across different communication platforms like Facebook and

LinkedIN to be used by advertisement agencies for effective information transfer. In

the thesis, we have dealt with the centrality measurement in HoMLN (also, called

multiplexes).

However, as discussed earlier, in order to obtain a holistic view of the MLN with

n layers, we have to generate, store and analyze a total of 2n − 1 networks, leading

119
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to extremely expensive operations for multiplexes with large number of layers (for

example the network in[29] has 300 layers.)

Problem Formulation and Contributions: Given this challenge of efficiently

finding hubs in HoMLN, the main problem we aim to solve is as follows. Given a

dataset with multiple entities that are related via a number of distinct features, how

can we efficiently find the most influential entities based on any conjunctive (AND)

combination of features using the decoupling approach.

To solve this problem, we use multiplexes for representing such multi-feature

datasets and present elegant techniques for estimating the hubs for any conjunctively

composed multiplex layer, without actually constructing that composed layer.

Our main contributions are two-fold. First we show that finding high centrality

vertices in the AND composed HoMLNs, based on only analyzing the individual layers

is a non-trivial problem, and the naive approach of simply taking the intersection of

the hubs from each layer does not produce accurate results. Second, we present four

heuristics (3 for degree centrality and 1 for closeness centrality) to identify hubs in the

AND-composed using only the hubs detected in individual layers and their distance-1

neighbors. Our results show that we can identify the vertices with 70−80% accuracy

while reducing the computation time by at least 30%.

Figure 9.1 shows the MLNs that have been used in this chapter for centrality illus-

tration proposed. Figure 9.1 (a) shows an accident multiplex (or HoMLN) depicting

the similarity among 7 accident occurrences based on light (Ga1) and weather (Ga2)

conditions. Similarly, in Figure 9.1 (b), the IMDb multiplex depicts the co-actor

relationship among 6 actors based on the movie genres, comedy (Gm1) and action

(Gm2). The notations mentioned in Table 9.1 have been used to formalize the various

centrality-related concepts discussed in this chapter.



121

Table 9.1: List of notations used for defining the concepts.

I Set of entities

f Set of features/perspectives

G(Vk, Ek)/Gk The kth layer

uki Representative node for ith entity in the kth layer

NBDk(uki ) Set of nodes adjacent to the ith node in the kth layer

degki Degree of the ith node in the kth layer

avgDegk Average degree of the kth layer

cloki Closeness centrality of the ith node in the kth layer

avgClok Average closeness centrality of the kth layer

Vk Set of nodes in the kth layer

(uki , u
k
j ) An edge in the kth layer

Ek Set of edges in the kth layer

DHk Set of degree centrality based hubs in kth layer

CHk Set of closeness centrality based hubs in kth layer

Our proposed methods can be extended to any number of layers. This approach

significantly reduces the complexity of analyzing the AND-composed network and

also the storage as only n individual layers are constructed and analyzed.

The remainder of this chapter is organized as follows: In Section 9.1, we detect

high degree and closeness centrality vertices in each layer. We show how these hub

sets vary across different individual and AND-composed layers. In Section 9.2, we

present four heuristics to improve the accuracy of computing the degree or closeness

centrality based hubs of any conjunctive combination of layers by using the required

layer-wise hubs. In Section 9.3, we empirically validate the quality of the hub sets

generated by executing our algorithms on two diverse data sets: traffic accidents and

IMDb. We use the Jaccard Index to compare the set of hubs obtained through our
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Figure 9.1: Snapshots of accident and IMDb multiplexes/HoMLNs

heuristics with the actual set of hubs. We show that our approach can significantly

reduce the computational costs of finding hubs in the composed networks.

9.1 Hubs (High Centrality Vertices) across Multiplex Layers

Entities vary in their influencing capability with respect to the occurrence of events,

interaction networks and so on. For example, a particular person might be considered

highly influential if he/she is connected to a large majority of people on Facebook.

Thus, an advertisement agency will prefer this person in order to enhance their in-

formation transfer. However, he/she may not be equally influential on LinkedIN.

Thus, in case of multi-featured data, the influencing capability for a particular entity

may vary substantially with features. With respect to multiplexes, this translates to

generating the hubs across different individual or AND-composed layers.

Degree Centrality (degki ): The number of nodes adjacent to the ith vertex in

the kth multiplex layer defines a vertex’s layer specific degree. Higher the degree

of a node, greater is its influence on the immediate neighborhood. We define high

centrality nodes or hubs in the kth layer (or feature) as the ones that have a degree



123

greater than the average degree of the layer, avgDegk, which is computed by 2|Ek|
|Vk|

.

Figure 9.2 (a) encircles the accident nodes in red that have been detected as hubs

due to their greater than average degree.

Figure 9.2: Variation in the Degree and Closeness Centrality based Hubs across
Different Individual and Composed Multiplex Layers

Closeness Centrality (cloki ): The closeness centrality of a node measures how

close are the other nodes in the network from it. Therefore, closeness centrality of

the ith vertex in the kth multiplex layer is defined by the average of the summation

of reciprocal of shortest paths between the ith node and every other node in the

layer. We use the valued closeness centrality variant as proposed in [86, 85] as any

multiplex layer need not be comprised of a single connected component. Therefore,

cloki = 1
|Vk|−1

∑|Vk|
j=1,j 6=i

1
d(uk

i ,u
k
j )

, where d(uki , u
k
j ) is the shortest path between the ith and

the jth vertex in the kth layer. Higher is the closeness centrality of a node, closer it is

all other nodes in the layer and greater will be its influence on the network. Similar
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to degree we define the high centrality nodes or hubs in the kth layer (or feature) as

the ones that have their closeness centrality metric value greater than the average

closeness centrality of the layer, avgClok, which is computed by
∑|Vk|

i=1 cloki
|Vk|

. Figure

9.2 (b) encircles the actor nodes in green that have been detected as hubs based on

closeness centrality.

Characteristics of Hubs in the Composed Layers In Figure 9.2, we show

using simple examples that finding hubs of the composed layer from the individual

hubs is a non-trivial problem. In some cases, such as for actor 4 (or accident 6)

a vertex may be a hub in the composed layer even if it is not a hub in both the

layers. Further, the actor 1 and accident 7 illustrate that a node that is a hub in both

individual layers may not be a hub in the AND-composed layer. Moreover, there can

be some entities like actor 2 and accident 2 that are hubs in the AND-composed layer

in spite of not being a hub in either of the individual layers. This is due to the fact

that edge connectivity varies across individual and composed layers, thus effecting the

values of degree centrality and closeness centrality. Our goal is to develop heuristics

that can take into account these connectivity patterns and identify the hubs in the

AND-composed layer from the hubs of the individual layers.

9.2 Identifying Hubs in AND-composed Multiplexes

In this section, we introduce four heuristics to identify the degree or closeness

centrality hub sets in the AND-composed layer using information about the hubs

in the individual layers. Our techniques eliminate the need to generate, store and

compute degrees and shortest paths for the AND-composed layers, thus reducing the

computational complexity.
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For the following discussion, let us assume the two individual layers to be Gx and

Gy, with degree centrality based hub sets, DHx and DHy, respectively, and closeness

centrality based hub sets, CHx and CHy, respectively. Further, let us suppose that

DHxANDy and CHxANDy are the actual degree centrality and closeness centrality

based hub sets, respectively, for the AND-composed layer, GxANDy.

9.2.1 Estimating Hubs based on Degree Centrality

As shown in Figure 9.2 (a), a) a node that is not high degree in the individual layers

may share enough neighbors across layers to become a hub in the AND-composed

layer, whereas b) the node that is a hub across layers may lose its hub property after

AND-composition due to the absence of common neighbors. Therefore, the naive way

of taking the intersection of layer-wise hubs to find the hubs in the AND-composed

layer will generate a large number of false positives and false negatives. Here we

propose and discuss three heuristics to estimate degree centrality based hub set of

the AND-composed layer.

Heuristic DC1: To reduce the false positives, we estimate the average degree of

the AND-composed layer, avgDegxANDy
est . Note that the upper bound on the average

degree in the AND-composed networks will be the minimum average degree from

the individual layers. Therefore, avgDegxANDy ≤ min(avgDegx, avgDegx). We set

the estimated average degree of the AND-composed network to this upper bound:

avgDegxANDy
est = min(avgDegx, avgDegx).

We first obtain the vertices from the intersection of the hubs in the individual

layers, i.e. all nodes u ∈ DHx ∩ DHy. We then check whether these nodes have a

common set of one hop neighbors in their individual layers. The larger the set of

common neighbors, the greater the degree in the AND-composed network. Formally

we only retain the vertex u as a hub if |NBDx(u) ∩ NBDy(u)| > avgDegxANDy
est ,
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where NBDx(u) and NBDy(u) denote the sets of one hop neighbors of vertex u in

Gx and Gy, respectively.

Algorithm 6 Procedure for Heuristic DC1

Require: DHx, avgDegx, DHy, avgDeg
y, DH ′xANDy = ∅

1: avgDegxANDy
est = min(avgDegx, avgDegx).

2: for all u ∈ DHx do

3: NBDx(u) ← one hop neighbors of u in Gx

4: end for

5: for all u ∈ DHy do

6: NBDy(u) ← one hop neighbors of u in Gy

7: end for

8: for all u ∈ DHx ∩DHy do

9: if |NBDx(u) ∩NBDy(u)| > avgDegxANDy
est then

10: DH ′xANDy ← DH ′xANDy ∪ u

11: end if

12: end for

Heuristic DC2: In the above heuristic, if avgDegxANDy
est is much larger than

avgDegxANDy, then a common hub in spite of sharing enough neighbors across the

individual layers will not be generated as a hub in the composed layer. A better es-

timate for the AND-composed layer’s average degree is obtained by maintaining the

degree of each vertex in every individual layer. In the AND-composed layer, the num-

ber of neighbors for any vertex will be at most that vertex’s least degree among all in-

dividual layers. That is, degxANDy
i ≤ min(degxi , deg

y
i ). This implies, avgDegxANDy ≤

1
|vx|

∑Vx

i=1min(degxi , deg
y
i ). We set the estimated average degree of the AND-composed
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network to this upper bound, avgDegxANDy
est = 1

|vx|
∑Vx

i=1min(degxi , deg
y
i ). We execute

the steps in heuristic DC1 with this improved estimate. This method provides a

better accuracy as compared to DC1, but the computational cost increases.

Heuristic DC3: Heuristics DC1 and DC2 reduce false positives but cannot handle

false negatives. Specifically they miss out vertices that are hubs in the AND-composed

layer but are not hubs in any of the individual layers. For handling this case, we

maintain few low degree nodes from each individual layer that have a degree close

to the average degree. That is, if degxi > (1 − ε)avgDegx, then insert the vertex in

DHx, where 0 ≤ ε ≤ 1, and we similarly update DHy. Therefore, executing heuristic

DC2 with these updated layer-wise hub sets, will also generate those common layer-

wise non-hubs that share enough neighbors to become hubs in the AND-composed

layer. The higher the value of ε, more accurate will be the estimated hub set. This

increased accuracy comes at a cost of maintaining more overhead information. Thus,

from DC2 and DC3 it is evident that there is a trade-off between accuracy and savings

in computational costs.

Discussion: If the topology of the individual layers, Gx and Gy is similar, then

most of the layer-wise hubs will also be hubs in the AND-composed networks and

the naive approach can give a good estimation. Also note that if the average degree

estimate for the AND-composed layer is not close enough to the actual average degree

then even an ε value of 1 may not give 100% accuracy due to the exclusion of common

hubs and non-hubs that share more than actual but less than estimated average

degree number of neighbors across layers. Therefore, the effectiveness of our heuristics

depends on the fraction of AND-composition hubs that are common to the layers,

average degree estimate and the value of ε.
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Algorithm 7 Procedure for Heuristic DC3

Require: DHx, degxi ∀ uxi , avgDegx, DHy, deg
y
i ∀ u

y
i , avgDeg

x, ε, DH ′xANDy = ∅

1: for all uxi ∈ Vx do

2: if degxi > (1− ε)avgDegx then

3: DHx ← DHx ∪ uxi

4: end if

5: end for

6: for all uyi ∈ Vy do

7: if degyi > (1− ε)avgDegy then

8: DHy ← DHy ∪ uyi

9: end if

10: end for

11: execute Heuristic DC2 with updated DHx and DHy.

9.2.2 Estimating Hubs based on Closeness Centrality

Closeness centrality depends on the shortest paths between any two nodes. As

shown in Figure 9.2 (b) that even if a certain node is closest to all the remaining

nodes in the individual layers, it may not be a hub in the AND-composed layer

due to the absence of common paths between this node and every other node that

are short enough. Therefore, the naive way of intersecting the layer-wise closeness

centrality based hubs will generate false positives. We propose and analyze a heuristic

that maintains minimal neighborhood information to estimate the closeness centrality

hubs for the AND-composed layer.

Heuristic CC1: From a high closeness centrality node we can traverse the entire

network in minimum number of hops. Therefore, if high degree nodes are close to

a node, the chances of this node becoming a high closeness centrality node increase.
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Therefore, one way of eliminating the false positives is to check whether the common

closeness centrality hubs share high degree neighbors across layers.

Based on this observation, we propose the following heuristic. Initially, for every

node, u ∈ CHx (or, u ∈ CHy), we obtain the set of degree based hubs present in its one

hop neighborhood, degNBDx(u) (or degNBDy(u)). We estimate the degree based

hub set for AND-composed layer, DH ′xANDy, using one of the heuristics discussed

above. We then obtain the set of common closeness centrality hubs from CHx and

CHy. For each of these vertices, we obtain the set of those common degree based hubs

in the one hop neighborhood that are also estimated to be hubs in the AND-composed

layer. The larger the size of this set, greater are the chances of a node to remain a

high closeness centrality node even in the AND-composed layer. Formally, we only

retain a vertex u as a closeness centrality based hub if |degNBDx(u)∩degNBDy(u)∩

DH ′xANDy| ≥ 1.

Discussion: If the topology of layer Gx is similar to Gy, then the shortest paths

between most of the node pairs will be common. In such a case, the naive approach

is capable of generating good hub set estimates of the layer GxANDy. Maintaining

information about the alternate paths to every degree based hub beyond 2-3 hops

from the closeness centrality hubs and similar path information about some layer-

wise non-closeness centrality based hubs will improve the accuracy of the heuristic.

However, due to the large overhead costs the computational time will significantly

increase.

9.2.3 Estimation of Hubs in k-layer AND Compositions

The input to any of the above heuristics is two hub sets that may either be the ac-

tual hub sets of individual layers or the estimated hub sets of AND-composed layers.

For any 3 layers, Gx, Gy and Gz, the average degree estimation and neighborhood in-
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Algorithm 8 Procedure for Heuristic CC1

Require: CHx, DHx, CHy, DHy, DH
′
xANDy, CH

′
xANDy = ∅

1: for all u ∈ CHx do

2: degNBDx(u) = ∅

3: for all v ∈ NBDx(u) do

4: if v ∈ DHx then

5: degNBDx(u)← degNBDx(u) ∪ v

6: end if

7: end for

8: end for

9: for all u ∈ CHy do

10: degNBDy(u) = ∅

11: for all v ∈ NBDy(u) do

12: if v ∈ DHy then

13: degNBDy(u)← degNBDy(u) ∪ v

14: end if

15: end for

16: end for

17: for all u ∈ CHx ∩ CHy do

18: if |degNBDx(u) ∩ degNBDy(u) ∩DH ′xANDy| ≥ 1 then

19: CH ′xANDy ← CH ′xANDy ∪ u

20: end if

21: end for
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tersection are both commutative and associative. Therefore, the four proposed heuris-

tics are also commutative (DH ′xANDy = DH ′yANDx, CH ′xANDy = CH ′yANDx) and as-

sociative (DH ′(xANDy)ANDz = DH ′xAND(yANDz), CH
′
(xANDy)ANDz = CH ′xAND(yANDz)).

Therefore, to estimate the hub sets of a k-layer AND-composed network, any heuristic

is applied on the k/2 pairs of hub sets, in parallel and in order, generating k/2 AND-

composed hub sets, and so on until the final estimated set of hubs, corresponding to

the k-layer AND-composed network, is obtained. Thus, in this way for a multiplex

with n layers, the 2n − n AND-composition hub sets can be estimated by only using

n layer-wise hub sets and minimal overhead information.

9.3 Experimental Analysis

In this section we present our experimental results on the performance of the

four proposed heuristics to estimate the hub sets of the AND-composed multiplex

layers with respect to accuracy and computational costs. Specifically, we i) construct

multiplexes for datasets from diverse domains, ii) generate the AND-composed layers

and the actual sets of high centrality nodes, iii) obtain the estimated hub set based

on our heuristics and iv) compute accuracy of the estimated hubs based on the actual

hub set.

Experimental Setup and Datasets: Our codes are implemented in C++ and

executed on a Linux machine with 4 GB RAM and installed with UBUNTU 13.10.

Our experiments are performed on two different multiplexes built from real-life

datasets collected from diverse domains - UK Traffic Accidents [100], Internet Movie

Database - IMDb [94]. Detailed structure of these multiplexes is as follows:

Accident Multiplex: We use 1000 random road accidents that occurred in the

United Kingdom in the year 2014. This multiplex has 3 basic layers with respect to

Light Conditions (Domain = {daylight, darkness: lights lit, darkness: lights unlit,
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darkness: no lighting, darkness: lighting unknown}), Weather Conditions (Domain

= {fine + no high winds, raining + no high winds, snowing + no high winds, fine +

high winds, raining + high winds, snowing + high winds, fog or mist, other}) and

Road Surface Conditions (Domain = {dry, wet or damp, snow, frost or ice, flood, oil

or diesel, mud}). An edge in any layer represents that the corresponding accidents

occurred within 10 miles of each other and are similar based on light conditions (layer

Ga1), weather conditions (layer Ga2) or road surface conditions (layer Ga3).

IMDb Multiplex: This 3-layer multiplex is built with 5000 random actors. An

edge in any basic layer signifies that the corresponding actors have worked together

in at least one movie that belongs to the Comedy genre (layer Gm1), Action genre

(layer Gm2) or Drama genre (layer Gm3).

Actual Hub Sets in the Individual and AND-composed Layers: Apart

from the individual multiplex layers, four AND-composed layers each, for the accident

multiplex - Ga1ANDa2, Ga1ANDa3, Ga2ANDa3 and Ga1ANDa2ANDa3, and IMDb multiplex

- Gm1ANDm2, Gm1ANDm3, Gm2ANDm3 and Gm1ANDm2ANDm3, are generated. Every

cell in Table 9.2 lists percentage of hubs followed by the average degree or closeness

centrality for the individual and AND-composed multiplex layers. Variation in this

information across layers shows that any combination of layers (or features) presents

a unique perspective of analyzing the same set of entities.

Comparison Metrics: We compare the similarity of the estimated hub sets with

the actual hub sets using the Jaccard Index. For any two sets, X and Y, jaccard

index, JX,Y = |X∩Y |
|X∪Y | . If two sets completely overlap, then jaccard index is 1, denoting

highest accuracy of 100%. We compute overall accuracy of a heuristic as the mean

of the accuracies obtained by estimating hub sets of every AND-Composed layer.

The computational time to generate the actual hub set for any AND-composition

includes the time to generate the AND-composed layer followed by the time it takes
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AND-Composed Layer
Accident (x = a) IMDb (x = m)
|DHk| |CHk| |DHk| |CHk|
avgDeg avgClo avgDeg avgClo

Gx1
23.4% 30.6% 34.9% 29.4%
14.92 0.0324 1.4404 0.0181

Gx2
20.5% 36.3% 29.4% 19%
17.99 0.0462 0.8564 0.0071

Gx3
21.3% 28.5% 47.1% 39.4%
16.44 0.0347 1.92 0.031

Gx1ANDx2
21% 28% 9.6% 9.6%
11.2 0.0251 0.1948 0.00009

Gx1ANDx3
20.4% 25.2% 22.7% 10.5%
10.18 0.0202 0.5176 0.0016

Gx2ANDx3
18.2% 26.2% 11.8% 9.3%
14.35 0.0302 0.24 0.0002

Gx1ANDx2ANDx3
18.2% 24.1% 1.6% 1.6%
9.28 0.0186 0.0228 0.000005

Table 9.2: Varying Hub Information denoting the Diverse Perspectives obtained
through Multiplex Layers

to compute degree based hubs or shortest paths for closeness centrality based hubs.

On the other hand, the time to estimate the hub set for the same AND-composed

layer includes time it takes to apply the proposed heuristics using the layer-wise hub

sets.

The Naive or Single Graph Approach: Table 9.3 shows that the naive ap-

proach of intersecting the layer-wise degree or closeness centrality based hub sets will

not guarantee a highly accurate estimated hub set for the AND-composed layers, due

to the presence of a large number of false positives. Absence of common immediate

neighboring nodes and common shortest paths between nodes across the layers may

lead to such low accuracies with the naive approach. However, we observed that

the Accident multiplex layers have similar topology due to which the naive approach
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gives relatively better accuracies as most of the layer-wise hubs are also hubs in the

composed layers (Table 9.4).

AND-Composed Layers Degree Centrality Closeness Centrality

Gm1ANDm2 59% 43.3%

Gm1ANDm3 67.9% 55.4%

Gm2ANDm3 54.4% 48.1%

Gm1ANDm2ANDm3 14.1% 13.5%

Overall 48.9% 40.1%

Table 9.3: Low Accuracies of the Naive Approach to estimate AND-Composition Hub
Sets (IMDb multiplex)

AND-Composed Layers Degree Centrality Closeness Centrality

Ga1ANDa2 84.8% 93%

Ga1ANDa3 82.6% 82.1%

Ga2ANDa3 85.4% 93.3%

Ga1ANDa2ANDa3 79.2% 87.4%

Overall 83% 88.9%

Table 9.4: Similar Topology Across Layers leading to Good Accuracies of the Naive
Approach to estimate AND-composition Hub Sets (Accident multiplex)

Estimating Degree Centrality based Hubs: Here we empirically evaluate the

performance of the three degree-based hub estimation heuristics.

Performance of Heuristic DC1: In DC1, the average degree estimate for an AND-

composed layer is obtained by taking the minimum of the two layer-wise average

degrees. This heuristic generates only those common layer-wise hubs that share more

than this estimated number of neighbors across layers, thus striking out the possibility

of any false positive’s presence from the estimated hub sets. Table 9.5 and 9.6 show

that the overall accuracy of the estimated hub sets is 79.5% and 82.8% for the
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accident and IMDb multiplexes, respectively. Moreover, there is an overall saving of

70.8% and 41.9% in computation time for generating the hub sets of accident and

IMDb multiplexes, respectively.

AND-Composed Layer Accuracy
Hub Set Generation Time (secs)
Actual Estimated by DC1

Ga1ANDa2 78.6% 0.0523 0.0166

Ga1ANDa3 77.5% 0.0423 0.0152

Ga2ANDa3 85.7% 0.0711 0.0152

Ga1ANDa2ANDa3 76.4% 0.0458 0.0147

Overall 79.5% 0.2115 0.0618 (70.8%↓)

Table 9.5: Effective Performance of DC1: High Accuracies and Lower Hub Set Gen-
eration Times (Accident Multiplex)

AND-Composed Layer Accuracy
Hub Set Generation Time (secs)
Actual Estimated by DC1

Gm1ANDm2 88.2% 0.0597 0.0302

Gm1ANDm3 74.6% 0.0681 0.0483

Gm2ANDm3 82.4% 0.0634 0.0385

Gm1ANDm2ANDm3 85.9% 0.0492 0.0226

Overall 82.8% 0.2403 0.1396 (41.9%↓)

Table 9.6: Effective Performance of DC1: High Accuracies and Lower Hub Set Gen-
eration Times (IMDb Multiplex)

Note that for IMDB the overall accuracy improved from 48.9% in the naive scheme

to 82.8%. However, the accuracy for the Accident multiplex decreased. This is

because the estimated average degree was far larger than the actual average degree

of the AND-composed networks. To solve this issue we apply heuristic DC2. An

important point to be noted here is that the estimated average degree for Accident
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multiplex composed layers is not that good due to which few layer-wise common hubs

that are also hubs in the composed layers are eliminated leading to a lower overall

accuracy (79.5%) as compared to the naive approach (83%).

Performance of Heuristic DC2: Table 9.7 shows that the improved average degree

estimate for the AND-composed layers can also improve the accuracy. Using heuristic

DC2, increases the overall accuracy from 79.5% to 83.04% for the Accident Mul-

tiplex. Similarly, the accuracy of estimated hub set for IMDb Multiplex increases

from from 82.8% to 83.9%. The proximity of this estimate to the actual average

degree allows the generation of some common layer-wise hubs that were excluded by

DC1, however the computational costs increase. Therefore, for instance, in case of the

Accident multiplex hub set estimation process the overall savings in computational

time falls from 70.8% to 58.4%.

AND-Composed Layer Average Degree % Change
(Actual Average Degree) DC1est DC2est in Accuracy

Ga1ANDa2 14.92 12.988 5.2%↑
(11.2)

Ga1ANDa3 14.92 12.847 4.4%↑
(10.18)

Ga2ANDa3 16.44 15.257 1.6%↑
(14.35)

Ga1ANDa2ANDa3 14.92 12.045 2.7%↑
(9.28)

Overall – – 3.5%↑

Table 9.7: Improved Accuracies of DC2 over DC1 (Accident Multiplex)

Performance of Heuristic DC3: To consider the case where non-hub layer-wise

nodes become hubs in the AND-composed layer, few low degree nodes from each layer

are maintained such that their degree is at least (1 − ε) times the individual layer’s
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average degree, where 0 ≤ ε ≤ 1. Figure 9.3 (a) and (c) show that by increasing the

value of ε the overall accuracy increases as the number of false negatives are reduced.

However, higher the value of ε, more is the number of layer-wise non-hubs carried

forward to the estimation process. Therefore, this increased overhead cost increases

the time to estimate hub sets (Figure 9.3 (b) and (d)).

Figure 9.3: Performance of DC3 with respect to the parameter ε

Figure 9.3 (c) shows that the average degree estimate for the IMDb multiplex

is good enough to give a perfectly accurate estimate for an ε = 0.5. However, the



138

average degree estimate becomes a bottleneck in the case of Accident multiplex due

to which even with increasing ε, the rate of increase in the overall accuracy is low

(Figure 9.3 (a)). A better average degree estimate in these cases will prove to be

helpful.

The overall accuracy and total hub set estimation times shown in each cell for the

three proposed heuristics in the Summary Table 9.8 justify that there is an evident

trade-off between accuracy and savings in the computational costs.

DC3
DC1 DC2 ε = 0.25 ε = 0.5 ε = 0.75

Accuracy Accuracy Accuracy Accuracy Accuracy
Time (secs) Time (secs) Time (secs) Time (secs) Time (secs)

Accident Multiplex
79.5% 83.04% 88.5% 88.7% 88.7%
0.0618 0.088 0.1268 0.1499 0.1602

IMDb Multiplex
82.8% 83.9% 83.9% 100% 100%
0.1396 0.211 0.2312 0.2685 0.2716

Table 9.8: Summarizing the Performances of the Three Degree based Hub Estimation
Heuristics

Estimating Closeness Centrality based Hubs using Heuristic CC1 : In every

layer, high degree neighbors for each high closeness centrality node are maintained.

The intuition is that if a common high closeness centrality node shares high degree

neighbors across layers that are also part of the hub set estimated by heuristic DC2,

then its chances of being accessible via less number of hops from every other node in

AND-composed layer increase. Table 9.9 and 9.10 show that for both accident and

IMDb multiplexes, this heuristic estimates hub sets that have an overall accuracy of

73.8% and 66.5%, respectively. Moreover, this process leads to a saving of at least

30% in computation time.
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AND-Composed Layer Accuracy
Hub Set Generation Time (secs)
Actual Estimated by CC1

Ga1ANDa2 73.1% 0.3086 0.2028

Ga1ANDa3 68.9% 0.2834 0.2004

Ga2ANDa3 78.2% 0.345 0.2017

Ga1ANDa2ANDa3 75.1% 0.237 0.2051

Overall 73.8% 1.174 0.81 (31%↓)

Table 9.9: Effective Performance of CC1: High Accuracies and Lower Hub Set Gen-
eration Times (Accident Multiplex)

AND-Composed Layer Accuracy
Hub Set Generation Time (secs)
Actual Estimated by CC1

Gm1ANDm2 60.4% 2.0534 1.5153

Gm1ANDm3 71.3% 2.6168 1.5255

Gm2ANDm3 70.1% 2.0432 1.5159

Gm1ANDm2ANDm3 64.1% 2.029 1.5071

Overall 66.5% 8.7424 6.0637 (30.64%↓)

Table 9.10: Effective Performance of CC1: High Accuracies and Lower Hub Set
Generation Times (IMDb Multiplex)

The similar topology among the Accident Multiplex layers means that most of

the shortest paths among the node pairs across layers are common leading to the

naive approach giving a higher accuracy as compared the proposed heuristic that

excludes some common layer-wise hubs as it only considers shared one hop high

degree neighbors. Even though this heuristic gives good accuracies for the estimated

hub sets, but it can be improved by maintaining the path information to high degree

nodes beyond 2-3 hops from the high closeness centrality hubs in each layer. However,

as stated earlier, maintaining such longer path information will significantly increase

the computational costs.
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9.4 Effect of Different Parameters on the Composition Function Accuracy

Similar to the Boolean compositions for community detection, it becomes pivotal

to understand the effect of different network characteristics of the MLN layers on the

accuracy of the centrality composition algorithms. In this thesis, we have explored

the accuracy estimates of the degree centrality composition heuristics. Depending on

the accuracy estimates, one can choose whether to opt for the single graph approach

or the decoupling approach. We have considered Precision as the accuracy metric.

Synthetic Data Sets (HoMLNs): Two sets of Synthetic HoMLN layers were

generated for this purpose.

1. HubMLN-SET1: 2 initial layers (L1, L2) were generated with 1000 vertices

each. In L1, there were 25 degree hubs and L2 had 50 degree hubs. 5% and 10%

edges were removed from the two layers in every iteration, in order to generate

60 different pairs of layers.

2. HubMLN-SET2: In this case, the two initial layers (L1, L2) with 1000 vertices

and 25 degree hubs were identical networks. 5% and 10% edges were removed

from L1 and L2 in every iteration, respectively, in order to generate 60 different

pairs of layers.

For considering degree hub based similarity between two layers, we considered two

metrics here

• Jaccard Similarity between the Binary Hub Vectors: For every layer,

we constructed a vector where ith index represented whether the ith vertex is a

degree hub (1) or not (0). Two layers having a high value for this metric will

mean the higher fraction of same nodes are degree hubs in both the layers.

• Cosine Similarity between the Degree Vectors: Here for every layer we

construct a vector such that the degree information for each vertex in present.

Thus, a high value for this metric will mean that not only most of the high
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degree and low degree nodes are same, but also most of the nodes have similar

number of neighbors, i.e. most of the nodes have similar influence over the

network.

Figure 9.4: Variation in Composition Accuracy based on average layer degree

Figure 9.4 (a) and (b) show that when the average degree of the layers is low, then

the accuracy of the NAIVE approach (DC-NAIVE) falls. This is due to the fact that

in such a scenario the chances of common nodes having overlapping neighbors across

layers decreases. Thus, number of false positives increases. However, as the DC2 is

able to eliminate all the false positives, thus the precision of DC2 is high even

when the average degree of the layers is low.

It can also be seen from Figure 9.5 (a) for HubMLN-Set1 data set, that across all

iterations the number of common high degree and low degree is quite low (low Jaccard
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Figure 9.5: Variation in Composition Accuracy based on layer similarity

and Cosine similarity values), i.e. the layers are fairly dissimilar in nature. Even in

such a scenario DC2 always gives a high precision. For the NAIVE approach, this

precision falls drastically due to the presence of substantial number of false positives.

For the HubMLN-Set2 data set shown in Figure 9.5 (b) the dissimilarity among the

layers gradually increases upon removal of random edges, however this dissimilarity

does not effect the precision results of DC2.

Therefore, in general it can be concluded that as the degree estimate of the DC2 is

higher than the actual average degree, thus all false positives will be eliminated and

the precision will be high irrespective of network topology of the two layers.
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9.5 Conclusion and Future Work

Various heuristics have been presented and validated to efficiently estimate hubs

in any conjunctively composed layer of a HoMLN. We have shown that by maintain-

ing minimal neighborhood information along with the layer-wise hubs, it is possible

to estimate good quality degree or closeness centrality based hub sets of any AND-

composed layer, with an overall accuracy exceeding 80% or 70%, respectively. More-

over, we have shown through various experiments performed on real-life datasets from

diverse backgrounds that our proposed heuristics lead to a saving of at least 30% in

computation time. Further, such techniques eliminate the need to generate and store

any composed layers, thus saving storage space too. This work has been published in

2017 [8].

This hub estimation can be extended to other centrality measures like between-

ness and eigenvector and handle weighted and/or directed edges. In addition to

conjunction, this composition can be extended to disjunction and negation. Central-

ity definition and detection in HeMLN is another research area that is currently being

explored.

The next chapter discusses how the centrality measures can be used to exten-

sively and efficiently analyse the US Commercial Airlines data set modeled using the

homogeneous multilayer network.



CHAPTER 10

CENTRALITY ANALYSIS OF US AIRLINE DATA SET

In this chapter, we use the US commercial airline data set to illustrate analysis-

driven modeling and computation. It is a data set of six US-based airlines and their

flight information among US cities. This information has been collected by us from

multiple sources. Although each data set is small, the choice of this data set is for

the independent availability of ground truth for validation. Availability of ground

truth will allow us to show the efficacy of the proposed approach along with other

advantages.

10.1 Analysis-Driven MLN Modeling

To demonstrate the effectiveness of modeling we apply MLNs to answer the fol-

lowing key questions.

(A1) Identify 5 cities for each airline from which there is best coverage for travel

within the US?

(A2) Can airlines be categorized into major or minor carriers?

(A3) Identify preferred cities for an airline to expand its operations taking all its

competitors into consideration?

The analysis objectives ((A1) - (A3)) requires airline connectivity between same

set of US cities for different airline carriers. As the entity set used for analysis is the

same, but using different features, this data set should be modeled as HoMLNs.

Typically, number of layers correspond to the number of relationships that need to be

captured (one for each layer). The semantics of the analysis objectives determines the

144
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Figure 10.1: US Airline HoMLN

choice of nodes and intra-layer edges. Therefore, each node in a layer represents a

US city. Each layer corresponds to a single airline and connects node pairs (cities) in

case of a direct flight between them. For this thesis, we have chosen 6 airlines (layers)

for analysis - American, Southwest, Spirit, Delta, Allegiant and Frontier. Figure 10.1

shows three layers of the HoMLN.

10.2 Mapping Analysis Objectives to Computations

Decoupling-based approach entails identifying Ψ and Θ for each detailed analysis

objective ((A1) to (A3)) along with their application on layers in a specified order.

Table 10.1 summarizes the mapping of each detailed analysis (A1) to (A3) to their

actual computation specification (in left to right order), analysis function (Ψ) and

composition function (Θ). This is used for computing the results in the experimental

section (Section 12.2.)
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Objective (A1) requires closeness centrality (inverse of mean shortest distance)

for coverage. Categorization ((A2)) of the airlines can be done either using degree or

closeness centrality. We have chosen degree centrality to reflect connotation of airline

hubs for this. In contrast, (A3) requires choosing non closeness centrality hubs of

the airline considering expansion and AND it with the competitor hubs to eliminate

competition. The result will need additional information to rank the resulting cities.

Analysis
Mapping

Computation Order Ψ Θ

US Airline (HoMLN)
(A1) Individual layers Hub (closeness)

(A2)
p major airline layers; q minor
airline layers

Hub (degree) AND

(A3)
(Target Θ Competitor) airline
layer pair

Hub (closeness) AND

Table 10.1: MLN Expression for Each US Airline Analysis Objective

10.3 Experiments and Drill-Down Analysis with Validation

We compute the results for each detailed objective using the expressions shown

in Table 10.1 and compare it, where possible, with independently available ground

truth. This helps validate both the modeling and analysis aspects of the approach

proposed in this thesis.

The HoMLN was built for 290 US cities using flights active until February 2018,

with number of intra-layer edges being 746 (American), 717 (Southwest), 688 (Delta),

346 (Frontier), 189 (Spirit) and 379 (Allegiant). Closeness centrality handles the

coverage aspect of (A1). For each layer (airline), the cities with closeness centrality

more than the average (shown in parenthesis) were identified as closeness hubs for

coverage. 214 American (0.2622), 85 Southwest (0.04995), 213 Delta (0.2552), 77



147

Frontier (0.0384), 37 Spirit (0.009995) and 113 Allegiant (0.0701) hubs were obtained

and ranked based on closeness centrality value.

Top 5 hubs (higher rank, fewer flights required for coverage, more central city))

were identified for each airline which corresponds to (A1) answers. For all 6

airlines, the ground truth obtained from [130] matched our results. In

Table 10.2 we have listed top 5 hubs for each airline. As a byproduct, it is interesting

to see common hubs (highlighted) between airlines which is also verified by the ground

truth.

We used Gephi to obtain a visualization (for drill-down), where the node sizes

depicted the importance of a node. In figure 10.2, the larger sized nodes depict the

cities from where most of the other parts of the US can be covered in lesser number

of flights (high closeness centrality) provided American Airlines is the chosen carrier.

American

Dallas
Chicago

Charlotte
Philadelphia

Phoenix

(a)

Southwest

Chicago
Denver

Baltimore
Dallas

Las Vegas

(b)

Delta

Atlanta
Minneapolis

Detroit
Salt Lake City

New York

(c)

Frontier

Denver
Orlando

Austin
Las Vegas

Philadelphia

(d)

Spirit

Fort Lauderdale
Las Vegas

Orlando

Detroit
Chicago

(e)

Allegiant

Orlando
Tampa

Las Vegas
Phoenix

Fort Myers

(f)

Table 10.2: (A1): Cities With Maximum US Travel Coverage
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Figure 10.2: American Airlines Graph with respect to US Travel Coverage

For (A2), one of the intuitive ways of categorizing an airline into a major or

minor airline is to determine the fraction of US city pairs that it directly connects.

Clearly, more the average degree of a layer, more number of cities the corresponding

airline is operating at. Thus, ordering the airlines by the the average degree of the

corresponding MLN layer categorizes - American, Southwest and Delta as Major

Airlines; Allegiant, Frontier and Spirit as Minor Airlines. This classification va-

lidity can be easily verified using fleet size, revenue and passengers carried in
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a year from [131] which is borne out by the analysis. There is a clear divide between

the two inferred categories of airlines. Additionally, we detected the common impor-

tant operating bases using the higher than average degree criteria for both major and

minor airlines. We found that, in general most of the cities for minor airlines (Tampa,

Orlando, Fort Lauderdale, Cleveland, ...) are smaller cities in terms of population

and GDP per capita as compared to the major airline (Dallas, Chicago, Los Angeles,

New York, ...), (shown in Table 10.3), showing that these 2 categories of airlines focus

on different types of regions and demographics within the US.

City Population GDP Per Capita
New York 8.623 million 71,084 USD

Los Angeles 4 million 67,763 USD
Chicago 2.716 million 61,170 USD
Phoenix 1.626 million 44,534 USD
Dallas 1.341 million 64,824 USD

Atlanta 486,290 56,840 USD

Average 3.13 million 61,036 USD

(a) Major Airline Hubs (Larger Population, Higher Spending
Power)

City Population GDP Per Capita
Chicago 2.716 million 61,170 USD

Columbus 879,170 63,822 USD
Cleveland 385,525 30,673 USD

Tampa 385,430 41,222 USD
Orlando 280,257 45,807 USD

Fort myers 79,943 32,784 USD

Average 0.8 million 45,913 USD

(b) Minor Airline Hubs (Smaller Population, Lower Spending
Power)

Table 10.3: Analysis (A2): Degree Hubs for airline categories

For (A3), we chose Allegiant as the target minor airline which is considering

expansion. The remaining airlines are chosen as competitors. Intuitively, among
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non-hubs, those cities must be considered for expansion that a) have fair amount of

coverage (high values of closeness centrality) (to reduce cost of expansion) and b) do

not have large operations (low closeness centrality) for the competitor airlines (to

minimize competition). Thus, from the high closeness centrality cities of the target

airline, we removed the actual hubs first, followed by all those cities that are also high

closeness in each of the other competitor airlines. The pruned set was further filtered

by using additional external information like population to rank them in order to

bring in the aspect of ticket sales likelihood.

Allegiant Vs. All

Grand Rapids

Elko

Montrose

Table 10.4: (A3): Ex-

pansion Cities

Table 10.4 shows the resulting set of cities where Alle-

giant Airline can potentially expand its operations. Vali-

dation of this process was established using the fact that

Grand Rapids is one of the cities that will be con-

verted to a hub by Allegiant from July 6, 2019

[132].

This shows that MLN analysis results can be effec-

tively used (augmented with additional information, where

needed) to make real-world business decisions.

10.3.1 Efficiency Analysis of the Decoupling Approach

Experimental Set up: We used a quad-core 8th generation Intel i7 processor Linux

machine with 8 GB memory for all of our analysis. The layer-wise results (hubs) are

generated once and can be done in parallel. Thus, this one time cost is bounded by the

layer that takes maximum time. Moreover, the cost of composing the partial results

using Boolean AND (HoMLN Hubs) is significantly less. For HoMLN analysis, we

compare the total computational cost of the decoupling approach and the traditional
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single graph approach which includes the time to generate the combined layer followed

by generating the degree/closeness hubs.

Figure 10.3: Efficiency of Decoupling Approach for US Airline HoMLN Analysis

In total, 7 Boolean AND compositions are required as per Table 10.1 - 2 for

(A2) and 1 for each of the (Allegiant, Competitor) layer pairs in (A3). The total

computation cost with the single graph approach is 0.215 seconds, whereas for the

decoupling approach the total time is 0.143 seconds leading to a reduction of 33.6%

in computation time for just 11% of the total possible analysis (7 out of 26),

as shown in Figure 10.3.

In summary, the experiments on the US Airline validate the MLN decoupling

approach from an efficiency perspective.



CHAPTER 11

A COMMUNITY DEFINITION FOR HETEROGENEOUS MLNs AND A NOVEL

APPROACH FOR ITS EFFICIENT COMPUTATION

Heterogeneous MLNs currently lack a community definition and concomitant al-

gorithms. This is where the contribution of this chapter is directed in generalizing

the established community definition for HeMLNs along with an efficient computa-

tion model using a novel approach. Among the alternatives used in the literature

modularity-based community definition (which hierarchically maximizes the concen-

tration of edges within modules (or communities) compared with random distribution

of links between all nodes regardless of modules), seems to have consensus for a single

graph along with several implementations that are used widely (e.g., Louvain [67]).

Figure 11.1: Traditional Lossy Approach Vs. Structure and Semantics Preserving
Approach
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Figure 11.2: Decoupling Approach to Compute HeMLN 3-community Expressed as
((G2 Θ2,1 G1) Θ2,3 G3); ωe

∗

For a simple graph, the current community definition preserves its structure and

semantics in terms of node/edge labels and relationships. Preserving the structure of

a community of a MLN (especially HeMLN) entails preserving its multilayer network

structure as well as semantics of node/edge types, labels, and importantly inter-layer

relationships. In other words, each HeMLN community should be a MLN in its own

right. Contributions of this chapter are:

• Definition of structure and semantics preserving community for a HeMLN and

an approach for its efficient computation (Section 11.3),

• A composition function for formalizing the decoupling approach for HeMLN

community detection algorithms (Section 11.4),

∗Technically, this should be expressed as ((Ψ(G2) Θ2,1 Ψ(G1)) Θ2,3 Ψ(G3).) However, we drop Ψ

for simplicity. In fact, Θ with its subscripts is sufficient for our purpose due to pre-defined precedence

(left-to-right) of Θ. We retain G for clarity of the expression. ωe is a weight metric discussed in

Section 11.5.
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• Two new bipartite pairing algorithms for composing layers which are more ap-

propriate for HeMLN communities (Sections 11.3.2 and 11.4.2.) Also, identifi-

cation of useful weight metrics and their relevance (Section 11.5),

• Mapping analysis objectives to the proposed community definition (Section 12),

and

• Experimental analysis using the IMDb and DBLP data sets to establish the

structure and semantics preservation (drill-down capability) of the proposed

approach along with efficiency aspects (Section 12.2.)

11.1 Semantics Preservation And Efficiency

Lack of a community definition for a HeMLN has resulted in various ad hoc ap-

proaches to leverage the single graph community definition and algorithms for its

detection. As a consequence, although modeled as MLNs for semantic superiority,

they are reduced to a single graph for the purpose of community detection. There

have been some attempts to detect (rather extract) communities on the MLN. [92]

proposes multilayer extraction for Homogeneous MLNs, such as Multilayer social net-

work, transportation network, and collaboration network. They use the notion of

vertex neighborhoods with a refinement procedure, to produce a subfamily of high-

scoring vertex layer sets. [66] focuses on higher-order network flows again in Homo-

geneous MLNs. All of these approaches do not preserve the structure of the HoMLNs

in their results.

Our goal and focus in this chapter has been: i) map analysis objectives to appro-

priate graph properties and their computation and ii) drill down analysis of the results

to understand analysis results (using preserved structure and semantics of computed

results. The importance of these are discussed below.
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11.1.1 Structure and Semantics Preservation

Current approaches, such as type-independent [44] and projection-based [82, 76],

do not accomplish structure and semantics preservation as they aggregate (or col-

lapse) layers into a simple graph in different ways. More importantly, aggregation ap-

proaches are likely to result in some information loss [28], distortion of properties [28],

or hide the effect of different entity types and/or different intra- or inter-layer rela-

tionships as elaborated in [91]. Furthermore, structure and semantics preservation is

critical for understanding a HeMLN community and for drill-down analysis of results.

From an analysis perspective, lack of structure and semantics makes the drill down

extremely difficult (or even impossible) and hence the understanding and visualization

of results. Our computation results clearly show the community structure and how

easy it is to drill down to see patterns in terms of original labels and relationships.

Figure 11.1 illustrates the difference between the current approaches and our pro-

posed approach. Fig. 11.1 a) shows type-independent aggregation† of two layers into

a single graph on which extant community detection is applied. As can be seen,

both structure as well as entity and relationship labels – shown as colored

nodes and edges – are lost in the resulting communities. In contrast, the

Fig. 11.1 b) shows the same layers and community detection using the definition and

the decoupling approach proposed in this thesis. As there is no aggregation, both

structure and semantics are preserved.

11.1.2 Decoupling Approach For HeMLNs

As mentioned earlier, decoupling approach is the equivalent of “divide and con-

quer” for MLNs. Research on modeling a data set as a MLN and computing on the

whole MLN has not addressed efficiency issues [92]. Decoupling requires partitioning

†Other aggregation approaches have the same problem.
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(derived from the MLN structure) and a way to compose partial (or intermediate) re-

sults. Here, we identify a composition function (referred to as Θ, see Figure 11.2) that

is appropriate for efficient community detection (referred to as Ψ, see Figure 11.2) on

MLNs.

Figure 11.2 shows the proposed decoupling approach. Three layers and some

inter-layer connections are shown. HeMLN community computation is accomplished

by combining communities from two layers of a HeMLN using a composition function

(Θ) and is extended to k layers by composing the result with additional layers one

at a time. Figure 11.2 also shows how a 3 layer HeMLN community is expressed for

computation. This approach of partitioning and composing partial results is central

to efficiency of computation as elaborated in Section 12.2.

11.2 HeMLN Definitions

A graph G is an ordered pair (V,E), where V is a set of vertices and E is a set

of edges. An edge (u, v) is a 2-element subset of the set V . In this thesis, we only

consider graphs that are undirected.

A multilayer network, MLN(G,X), is defined by two sets of graphs: i) The set

G = {G1, G2, . . . , GN} contains graphs of N individual layers L = {L1, L2, . . . , LN}

as defined above, where Gi(Vi, Ei) is defined by a set of vertices, Vi and a set of

edges, Ei. An edge e(v, u) ∈ Ei, connects vertices v and u, where v, u ∈ Vi and

ii) A set X = {X1,2, X1,3, . . . , XN−1,N} consists of bipartite graphs. Each graph

Xi,j(Vi, Vj, Li,j) is defined by two sets of vertices Vi and Vj, and a set of edges (also

called links or inter-layer edges) Li,j, such that for every link l(a, b) ∈ Li,j, a ∈ Vi and

b ∈ Vj, where Vi (Vj) is the vertex set of graph Gi (Gj.)

For a HeMLN, X is explicitly specified. Without loss of generality, we assume

unique numbers for nodes across layers and disjoint sets of nodes across layers. We
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define a k-community to be a multilayer community where communities from k dis-

tinct connected layers of a HeMLN are combined in a specified order as shown in Fig-

ure 11.2. Our proposed algorithm using the decoupling approach for finding HeMLN

communities can be described as follows with reference to Figure 11.2:

(i) First, use the function Ψ (here community detection) to find communities in

each of the layers individually (can also be done in parallel),

(ii) For any two chosen layers, use the partial/intermediate results from these

layers and apply the composition function Θ (bipartite graph matching) using the

meta edges (whose weight is denoted by ω) between the layers to compute the result.

For HeMLN community detection, a bipartite pairing that maximizes modularity (or

total weight of the meta edges) is used for Θ.

(iii) The binary composition of step ii) is applied for determining a k-community

for a specified order of layers.

Figure 11.2 illustrates the decoupling approach for specifying and computing a

HeMLN 3-community from partial results. It illustrates how a set of distinct com-

munities from a layer is used for computing a 2-community (G2 Θ2,1 G1) for 2 layers

and further a 3-community ((G2 Θ2,1 G1) Θ2,3 G3) for 3 layers using partial results.

1-community is the set of communities generated for a layer Li using its Gi (simple

graph.) We use Li and Gi interchangeably in the rest of the chapter.

We can now define the problem addressed in this chapter. For a given HeMLN and

a set of analysis objectives, determine the appropriate triad of Ψ, Θ, and ω, and a

k-community expression for computing each objective. For this chapter, community

is used for Ψ and bipartite match algorithms for Θ for HeMLN community detection

along with defining and identifying ω.
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11.3 Community Definition for a HeMLN

The intuition behind a HeMLN community is first explained using an example. The

IMDb data set captures movies, TV episodes, actors, directors, and other related

information, such as rating, genre, etc. This is a large data set consisting of movie and

TV episode data from their beginnings. This data set can be modeled and analyzed

in multiple ways as well for different purposes. For the IMDb data set, consider the

HeMLN shown in Figure 11.2 that has the following three layers: i) Actors layer –

connects actors who act in similar genres frequently (intra-layer edges.), ii) Directors

layer – connects directors who direct similar movie genres frequently, and iii) Movies

layer – connects movies within the same rating range. The inter-layer edges depict

acts-in-a-movie, directs-a-movie and directs-an-actor.

Consider the analysis objective “Find dense groups of actors and directors that

have high/strong interaction/coupling with each other” Note that, individually, the

actor and director layers can only compute dense groups of actors or directors, who

act in or direct similar genre, respectively. The connection (or coupling) between

directors and actors only come from inter-layer edges. It is only by identifying the

proper meta edges and preserving the structure of both the communities in actor

and director layers as well as the inter-layer edges, can we compute and drill down

the answer that indicates the semantics of which actor groups are paired with which

director groups. The inter-layer edges preserve the relationships of individual actors

and directors as well. Preservation of structure (inter-layer edges) and semantics

(labels) is critical for drilling-down to understand the results.

Clearly, multiple strong interactions can exist between groups of actors and di-

rectors (in general, among communities from different layers.) A specific co-actor

group may be favorites of one or more director groups based on genre or other char-

acteristics, and vice-versa. So, any MLN community definition needs to include these
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multiple couplings (unlike traditional bipartite matching which identifies only unique

pairs) in a way similar to the coupling between nodes in a single layer community

definition. In addition, it may also be important, from an analysis perspective, and

useful to couple these groups (or communities) using different community characteris-

tics as well. An analysis objective may also want to use or specify different community

interactions as preferences to meet an analysis objective. As an example, one may be

interested in groups (or communities) where the most important actors and directors

(characterized in terms of their degree) interact rather than the actor community as

a whole. Based on this observation, we have proposed two new bipartite matching

algorithms in this chapter.

Note that the community definition and detection research in the literature for

homogeneous MLNs [6, 7] are not applicable to HeMLNs as each layer has different

sets and types of entities with inter-layer edges between them. It is important that

this formulation of communities preserves entity and feature types as compared to

other alternatives proposed in the literature.

Hence, the challenge for the definition of a HeMLN community is to not only keep it

consistent with the widely-accepted community definition, but also provide alternatives

to accommodate broader analysis objectives. This, in conjunction with structure and

semantics preservation, will enhance the utility of this modeling as well as analysis

efficiency. In the following sections, we provide such a definition, its relationship to

modularity for illustration, its efficient computation with algorithms based on the

decoupling approach, and importantly demonstrate its usage with respect to diverse

analysis objectives later in the chapter.
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11.3.1 Formal Definition of a HeMLN Community

A Community Bipartite Graph or CBGi,j(Ui, Uj, L
′
i,j) between graphs (layers)

Gi (Li) and Gj (Lj) is defined as the graph with disjoint and independent nodes Ui

(Uj) corresponding to each community from Li (Lj), respectively, represented as a

single meta node and L′i,j being the set of single meta edges between the nodes of Ui

and Uj (or bipartite graph edges.) whose weight (ω) corresponds to the number (or

strength) of the inter-layer edges between the corresponding nodes. For a layer Li,

a 1-community is the set of communities identified on the graph corresponding to

that layer using any of the community detection algorithms.

For two layers Li and Lj, and their inter-layer edgesXi,j, a HeMLN 2-community

for Gi and Gj is defined as the community bipartite graph meta node pairs that

maximize total inter-layer edge weights (along with the overall modularity) between

the two CBG meta node sets. This pairing (or coupling) can be defined in multiple

ways. We start with the coupling being defined as the traditional bipartite matchings

that maximizes total edge weight and extend it.

A HeMLN k-community is the application of the above binary definition for k

layers in a specified order of layers using the previously computed (k-1)-community..

11.3.2 Need For Alternative Bipartite Match Algorithms

Traditional bipartite graph matching with edge weights and different size node

sets compute pairings (or matchings) that produce maximum weight (termed MWM

or Maximum Weight Match [97]) or that produce maximum number of pairings with

maximum weight (MWPM or Maximum Weight Perfect Match [133]). A constraint

used in all traditional bipartite matches is that the resulting matches/pairs are unique.

However, for a HeMLN community definition that maximizes the coupling between

bipartite graphs, the above can be used directly only if one is interested in unique
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pairings from an analysis perspective. However, for many analysis using communities,

we need pairings (couplings) without the above restriction as one-to-many pairings

(from either side) makes sense from an analysis perspective. For the analysis of the

IMDb data set mentioned earlier, there is no reason to restrict an actor group to

pair with only one director group if another coupling is equally strong or an alternate

coupling produces a higher total weight. Hence, we need to: i) relax the unique

match restriction to increase total edge weight for the same number of pairings and

ii) deal with (or include) ties of edge weights incident on the same nodes of unique

pairings (instead of choosing one randomly!.) These two will maximize
∑
w(e) of

the CBG across all edges and minimize the number of such pairs. These relaxations

make sense semantically as well as a community may have a stronger coupling with

multiple communities. These are global maximums as they are derived from the

traditional pairings of MWM and MWPM. We believe that MWM (and the variants

we are proposing) comes closest to modularity semantics for HeMLN communities by

maximizing the inter-layer connectivity for the communities in contrast to inter-layer

connectivity of other communities.

Figure 11.3: Illustration of Traditional and Relaxed Pairings on a weighted bipartite
graph
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Figure 11.3 provides an example of a bipartite graph to illustrate the above dis-

cussion. MWM (Maximum Weight Matching); MWMT (MWM with Ties); MWPM

(Maximum Weight Perfect Match); MWRM (Maximum Weight with Relaxed Match-

ing). Relaxing the unique pair constraint can increase the maximum weight if alter-

native pairings exist and they are not unique. In addition, the presence of ties results

in additional pairings to maximize modularity under our relaxation. Our matchings

are termed MWMT (Maximum Weight Matching with Ties) and MWRM (Maximum

Weight with Relaxed Matching by removing the unique pairing constraint). All of the

above are commutative and non-associative. Refer to [12, 134] for other possibilities.

Although, in the above definition, we have chosen the weight of the meta edge of

the bipartite graph from a modularity perspective, this weight can reflect other par-

ticipating community characteristics to accommodate a family of HeMLN community

definitions as elaborated in Section 11.5.

Most importantly, unlike current alternatives for community of a MLN, there is

no need for aggregating or collapsing a MLN into a single graph in our definition and

computation, thereby avoiding any kind of information loss. The representation of

a HeMLN community preserves the MLN structure along with semantics (node and

edge labels, both intra and inter.)

11.3.3 HeMLN k-Community Computation

This section outlines the computation of the HeMLN community definition given

above for an arbitrary HeMLN. Although the above definition is commutative, it is

not associative. Hence, different HeMLN communities can be obtained depending on

the order used for its computation The order of community computation is derived

mainly from analysis objectives and is mapped to community composition expressions.
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A 1-community for a given layer is computed using any community detection

algorithm. The community bipartite graph CBGi,j(Ui, Uj, L
′
i,j) is computed

using Xi,j once the 1-community for layers Li and Lj are computed.

A 2-community , corresponding to layers Li and Lj, is computed on the commu-

nity bipartite graph CBGi,j(Ui, Uj, L
′
i,j). A 2-community is a set of tuples each with

a pair of elements < cmi , c
n
j >, where cmi ∈ Ui and cnj ∈ Uj, that satisfy one of the

weighted bipartite matching algorithms discussed (composition function Θ defined in

Section 11.2) for the bipartite graph of Ui and Uj, along with the set of inter-layer

edges between them (denoted xi,j.) The pairing is done using the specified pairing

alternative (one of MWM, MWPM, MWRM, or MWMT) to obtain pairs of commu-

nities and their inter-layer links for Li and Lj. It is possible for several matching

algorithms may give the same result.

A k-community for k layers of a HeMLN is computed by applying the 2-community

computation repeatedly as per the given expression that includes order. As the k-

community is defined for a connected set of layers, the number of compositions can

be more than k (corresponds to edges.)

We start with the 2-community of the first two layers in the expression – termed

a t-community. For each new binary computation step, there are two cases for the

2-community computation under consideration: i) the Ui is from a layer Gi already

in the t-community and the Uj is from a new layer Gj. This bipartite graph match

is said to extend a t-community (t < k) to a (t+1)-community, or ii) both Ui (Uj)

from layers Gi (GJ) are already in the t-community. This bipartite graph match is

said to update a t-community (t < k).

Both layers are not in the t-community corresponds to the first 2-community com-

putation. That one of them is not in the t-community after the first 2-community
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community is not possible, by definition, as the expression is computed from left to

right by adding one layer.

For both cases i) and ii) above, two outcomes are possible. Either a meta node from

Ui: a) matches one or more meta nodes in Uj resulting in one or many consistent

match, or b) does not match a meta node in Uj resulting in a no match. However,

for case ii) above, a third possibility exists which can be characterized as c) matches a

node in Uj that is not consistent with a previous match and is termed an inconsistent

match. Since both communities have already been matched, a previous consistent

match exists. If the current match is not the same, then it is an inconsistent match.

Note that each of the relaxed pairings is a separate HeMLN k-community.

Structure preservation is accomplished by retaining, for each tuple of t-community,

either a matching community id (or 0 if no match) and xi,j (or φ for empty set)

representing inter-layer edges corresponding to the meta edge between the meta nodes

(termed expanded(meta edge)). The extend and update carried out for each of

the outcomes on the representation is listed in Table 11.1. Note that due to multiple

pairing of nodes during any composition, the number of tuples (or t-communities)

may increase. Copy & update is used to deal with multiple pairings. In general, each

element of a k-community can be total or partial. A partial k-community element

has at least one φ or 0 as part of the tuple. Otherwise, it is a total k-community

element. Any k-community that is total reflects a stronger coupling as it includes

all inter-layer edges for those communities (as is the case of M-A-D-M in Figure 12.4

in Section 12.2.) A partial k-community element, on the other hand, for both acyclic

and cyclic cases indicates strong coupling only among the consistent match layers.
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(Gleft, Gright) outcome Effect on tuple t

case (i) - one processed and one new layer

a) consistent match Extend (Copy & Extend) t with paired
community id and xi,j

b) no match Extend (Copy & Extend) t with 0 and φ

case (ii) - both are processed layers

a) consistent match Update (Copy & Update) t only with x
b) no match Update (Copy & Update) t only with φ
c) inconsistent match Update (Copy & Update) t only with φ

Table 11.1: Cases and outcomes for MWxx (Extend and Update for MWPM/MWM;
copy & extend/update or update for MWRM/MWMT) used in Algorithm 10

11.3.4 Characteristics of k-community

The above definition when applied to a specification generates progressively strong

coupling of communities between layers using specified MWxx pairing. Thus, our

definition of a k-community is characterized by dense connectivity within the layer

(community definition) and semantically strong coupling across layers using one of

MWxx. Hence, we believe, that this definition of k-community matches the original

intuition of a community. By refining the pairing used and the edge weight based on

participating community characteristics, it supports a family of community definitions

that can be customized. Refer [12] for more details.

11.3.4.1 Space of Analysis Alternatives

Given a HeMLN with k layers and at least (k-1) inter-layer edges, the number

of possible k-community (or analysis space) is quite large. For a HeMLN-graph, the

number of potential k-community is a function of the number of unique connected sub-

graphs of different sizes and the number of possible orderings for each such connected

subgraph. With the inclusion of m bipartite pairing choices and n weight metrics (see

Section 11.5), it gets even larger. It is important to understand that each subgraph

of a given size (equal to the number of edges in the connected subgraph) along with
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the ordering represents a different analysis of the data set and provides a different

perspective thereby supporting a large space of analysis alternatives.

The composition function Θ defined above (one of MWM, MWPM, MWRM,

MWMT) is commutative and not associative. Hence, for each k-community, the order

in which a k-community is defined has a bearing on the result (semantics) obtained.

In fact, the ordering is important as it differentiates one analysis from the other even

for the same set of layers and inter-layer connections as elaborated in Chapter 12.

11.3.4.2 Importance of Weights

For traditional weighted bipartite matching, maximum weighted matching (MWM)

or maximum weighted perfect matching (MWPM) algorithms (e.g., [97]) are used

mainly because each node of a bipartite graph is a simple node. In contrast, each

node of our bipartite graph is a meta node and the bipartite edge is also a meta edge.

Each meta node, in our case, is a community representing a group of entities with

its own characteristics (connectivity, degree, etc.) Each meta edge needs to, at the

least, capture the number of edges in that meta edge (i.e., inter-layer edges.) The

number of edges between the meta nodes is one of the proposed edge weights (ωe)

which corresponds to the traditional intuition behind a community.

Since edge weights play a significant role in the matching and is also used as a

mechanism for determining the strength of the coupling of communities across layers,

edge weights are used as a vehicle to include participating community characteristics.

In addition to ωe, it is possible to bring in participating community characteristics

to capture additional aspects for coupling. We discuss a number of alternatives for

weights (termed weight metrics ω) in Section 11.5, derived from real-world scenarios.
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11.3.5 Evaluation of Proposed Community Definition

Ideally one would evaluate a new community definition by comparing the result

with existing definitions. Since we do not have a community definition for a HeMLN,

the closest ground truth is the type-independent aggregation of a heterogeneous

multilayer network into a single network (as shown in Figure 11.1 a). Hence, we com-

pare our results with this. Also, modularity is a widely accepted metric to measure

the strength of division of a network into communities [135]. So, we use modu-

larity for comparing our HeMLN communities (shown in Figure 11.1 b) with the

type-independent communities obtained. We have computed modularity for differ-

ent weight options as well as different matching algorithms to indicate how coupling

strength changes with weights and matching algorithms. Below, we show the pair-

ings for the default ωe weight metric. For evaluation purpose, we use the HeMLNs, as

described in Chapter 12 and whose layer details are shown in Table 12.2 and 12.1 of

section 12.2. For IMDb (DBLP), we have used, respectively, the Actor and Director

(Author and Paper) layers with their inter-layer edges.

Type-Independent MWM MWMT MWPM MWRM
0.777 0.643(83) 0.643(220) 0.698(95) 0.603(83)

Table 11.2: Modularity (# of Matches) for IMDb with A Θ D; ωe (with All Commu-
nities)

For DBLP, the modularity value for our HeMLN community (Au Θ P; ωe) obtained

with each pairing algorithm is equal to the modularity value for the type-independent

community (0.69). Good HeMLN communities are also obtained for IMDb (using,

A Θ D; ωe). However, the tuples/matched pairs (shown in parenthesis) vary slightly

with the chosen algorithm due to which the structure of the communities change

leading to slightly different modularity values. MWPM generates the best modularity
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as compared to the ground truth. It was observed that the Actor and Director

communities that were paired by MWPM had dense intra-edge connectivity and many

actor-director pairs participated in the interaction, thus resulting in high modularity.

However, in case of the type-independent communities the actor and director node

types get mixed up and smaller denser communities are produced leading to a higher

modularity as compared to the HeMLN community, where the node types are kept

separate.

11.4 HeMLN k-Community Algorithm

In this section, we first present a specification of a k-community and elaborate on

a structure preserving representation for the result. Then we present a community

detection algorithm using any of the bipartite algorithms along with the proposed

bipartite matching algorithms.

11.4.1 k-community Representation

Linearization of a HeMLN structure is done using an order of specification which

is also used for computation. Although a k-community need to be specified as an

expression involving Ψ and Θ, as indicated earlier, we drop Ψ for clarity. For the

layers shown in Figure 11.2, an example 3-community specification is ((G1 Θ1,2 G2)

Θ2,3 G3). We can drop the parentheses as the precedence of Θ is assumed. However,

we need the subscripts for Θ to disambiguate a k-community specification when a

composition is done on the layers already used. A 3-community involving a cycle

(when an expression corresponds to a HeMLN subgraph with a cycle) can be specified

as G1 Θ1,2 G2 Θ2,3 G3 Θ3,1 G1.

A k-community is represented as a set of tuples. Each tuple represents a distinct

element of a k-community and includes an ordering of k community ids as items
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(a path, if you will, connecting community ids from different layers) and at least

(k-1) expanded(meta edge) (i.e., xi,j) elements. This representation completely pre-

serves the MLN structure along with semantics (labels) to reconstruct a HeMLN for

any k-community. It is possible that there are multiple paths originating from the

communities in the first layer of the expression due to relaxed pairings. That is,

a community in a layer can participate in more than one k-community tuple. All

these paths need not remain total as the k-community computations progress, due to

no/inconsistent matches. In summary, each k-community is a tuple with 2 distinct

components. The first component is a comma-separated sequence of k community ids

(as items) from a layer. The second component is also a comma-separated sequence of

at least (k-1) xi,j (with each x having a different pair of subscripts.) Communities for

x are uniquely identifiable from the subscripts. It is exactly (k-1) if the k-community

is for an acyclic connected graph and more depending upon the number of edges in

cyclic subgraph.

11.4.2 MWRM and MWMT Algorthms

Algorithm 9 shows the computation of MWRM pairing. Line 1 gets the edge list

from MWM algorithm of [97] and sorts the edges. The while loop starting in line 2

goes through this edge list from lowest weight and replaces it with a higher value edge

if it has not been already chosen. This is done for all the edges in the MWM edge list.

The additional complexity involves sorting MWM paired edges and only inspecting

the number of edges incident on the nodes that are paired by MWM. The algorithm

for MWMT is very similar except that it adds (instead of replacing in line 6) edges

that are ties. There is no need to sort but only inspect the number of edges incident

on the nodes that are paired by MWM. Both of these are substantially less than the

number of inter-layer edges. Based on the characteristics of the matching algorithms,
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Algorithm 9 MWRM and MWMT Algorithms

Require: -

INPUT: Community bipartite graph (CBG)

OUTPUT: edge list (Oel) for MWRM or MWMT

1: Initialize: Iel ← MWM edges of CBG

Mel ← Meta edges of the input bipartite graph

Set Oel to Iel; Sort Iel on edge weights

Ie ← edge from Iel with the lowest weight

2: while Ie not NULL do

3: if MWRM then

4: for each Me ∈ Mel that is incident on Ie do

5: if weight(Me) > weight(Ie) and Me /∈ Oel then

6: replace Ie in Oel with Me

7: end if

8: end for

9: Ie ← next lowest weight edge from Iel or NULL

10: end if

11: end while

we can assert the following for the total weights, MWPM <= MWM <= MWRM

and MWM <= MWMT . Moreover, MWM will generate the minimum number of

pairs. MWM and MWRM will give same number of pairs.

11.4.3 k-community Detection Algorithm

Algorithm 10 accepts a linearized specification of a k-community expression and

computes the result as described earlier. The input is an ordering of layers, composi-



171

tion functions indicating the community bipartite graph pairing algorithms to be used

and the type of weight to be used. The output is a set whose elements are tuples

corresponding to distinct, single HeMLN k-community as described earlier. The size

(i.e., number of tuples) of this set is determined by the pairs obtained during compu-

tation. The layers for any 2-community bipartite graph composition are identifiable

from the input specification.
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Algorithm 10 HeMLN k-community Detection Algorithm

Require: -

INPUT: HeMLN, (Gn1 Θn1,n2 Gn2 ... Θni,nk Gnk), MWM/MWPM/MWMT/MWMT), a

weight metric (ω).

OUTPUT: Set of distinct HeMLN k-community tuples

1: Initialize: k=2, Ui = φ, Uj = φ, result′ = ∅

result ← MWxx(Gn1,Gn2, HeMLN, ω)

left, right ← left and right subscripts of second Θ

2: while left 6= null && right 6= null do

3: Ui ← subset of 1-community(Gleft, result)

4: Uj ← subset of 1-community(Gright, result)

5: MP ← MWxx(Ui, Uj , HeMLN, ω)

//a set of comm pairs < cxleft,c
y
right >

6: for each tuple t ∈ result do

7: kflag = false

8: if both cxleft and c
y
right are part of t and ∈ MP [case ii (already processed layers):

consistent match] then

9: Update a copy of t with (xleft, right) and append to result′

10: else if cxleft is part of t and ∈ MP and Gright layer has been processed [case ii

(processed layer): no and inconsistent match] then

11: Update a copy of t with φ and append to result′

12: else if cxleft is part of t and for each cxleft ∈ MP [case i (new layer): consistent

match] then

13: copy and Extend t with paired cyright ∈ MP and xleft, right and append to result′; kflag

= true

14: else if cxleft is part of t and /∈ MP [case i (new layer): no match] then

15: copy and Extend t with 0 (community id) and φ and append to result′; kflag = true

16: end if

17: end for

left, right = next left, right subscripts of Θ or null

if kflag k = k + 1; result = result′; result′ = ∅

18: end while
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The bipartite graph for the first 2-community and for each application of Θ is

constructed for the participating layers (either one is new or both are from the t-

community for some t) and specified MWxx algorithm is applied. The result obtained

is used to either extend or update (or copy & extend or update) the tuples of the

t-community depending on the algorithm used. All cases are described in Table 11.1.

The algorithm iterates (lines 2 to 18) until there are no more compositions to

be applied. The number of 2-community computations is equal to the number of Θ

in the input (corresponds to the number of inter-layer connections in the expression.)

For each layer, we assume that its 1-community has been computed.

Line 5 computes the kth composition. Lines 6 to 17 apply the results of the

specified MWxx algorithm (line 5) to generate tuples of the kth composition using

the Table 11.1. Care is taken in the composition to make sure either the tuple is

updated or extended by keeping a flag and checking it after line 17. The order of

checking inside the for loop (lines 6 to 17) is important to generate the correct

k-community tuples.

11.5 Customizing The Bipartite Graph

Algorithm 10 in Section 11.4 uses any of the specified bipartite graph match al-

gorithms with a given weight metric. Without including the characteristics of meta

nodes and edges for the match, we cannot argue that the pairing obtained represents

analysis based on participating community characteristics. Hence, it is important to

identify how qualitative community characteristics can be mapped quantitatively to

a weight metric (that is, weight of the meta edge in a community bipartite graph) to

influence the bipartite matching. Below, we propose three weight metrics and their

intuition. Number of inter-community edges as weight (ωe) can be used as default.



174

Number of Inter-Community Edges (ωe): This metric uses actual number of

inter-community edges of participating communities as weight for meta-edges. The

intuition behind this metric is maximum connectivity (size of the community is to

some extent factored into it) without including other community characteristics. This

weight connotes maximum interaction between two communities. This weight also

corresponds to the traditional community definition.

Hub Participation (ωh) For many analysis, we are interested in knowing whether

highly influential nodes within a community also interact across nodes in the other

community. This can be translated to the participation of influential nodes within and

across each participating community for analysis. This is modeled by using the notion

of hub participation within a community and their interaction across layers. In this

chapter, we have used degree centrality for this metric to connote higher influence.

Ratio of participating hubs from each community and the edge fraction are multiplied

to compute ωh. Formally,

For every (umi , u
n
k) ∈ L′i,k, where umi and unk are the meta nodes denoting the

communities, cmi and cnk in the community bipartite graph, respectively, the weight,

ωh(umi , unk) =
|Hm,n

i,k |
|Hm

i |
*

|xi,k|
|vcmi |∗|vc

n
k |

*
|Hn,m

k,i |
|Hn

k |
,

where xi,k =
⋃
{(a, b) : a ∈ vcmi , b ∈ vcnk and (a, b) ∈ Li,j}; Hm

i and Hn
k are set of

hubs in cmi and cnk , respectively; Hm,n
i,k is the set of hubs from cmi that are connected to

cnk ; Hn,m
k,i is the set of hubs from cnk that are connected to cmi .

Density and Edge Fraction (ωd) The intuition behind this metric is to bring

participating community density which captures internal structure of a community.

Clearly, higher the densities and larger the edge fraction, the stronger is the interaction

(or coupling) between two meta nodes (or communities.) Since each of these three

components (each being a fraction) increases the strength of the inter-layer coupling,

they are multiplied to generate the weight of the meta edge. The domain of this
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weight will be (0, 1]. The weight computation formula is similar to the previous one

and hence not shown.

11.6 k-community Computation Efficiency

1. Cost of generating 1-community: For each layer (or a subset of needed

layers) this can be done in parallel bounding this one-time cost to the largest

one.

2. Cost of computing meta edge weights: For the proposed analysis metrics,

part of them, again, are one-time costs and are calculated independently on

the 1-community results. Costs for ωd and ωh require a single pass of the com-

munities using their node/edge details generated by the community detection

algorithm.

3. The recurring cost (for each application of Θ): This includes the cost of

generating the bipartite graph, computing the weight of each meta edge of

the community bipartite graph for a given ω, and the MWxx algorithm cost.

Only the edge fraction (or the maximum number of edges) and participating

hubs need to be computed during each iteration. The cost of MWxx algorithm

is almost the same as the cost of computing MWM. The bipartite graph is

generated during the computation of weights for the meta edges. Luckily, in

our community bipartite graph, the number of meta edges is an order of

magnitude less than the number of edges between layers. Also, the number

of meta nodes is bound by the number of pairings in the previous iteration.
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11.7 Conclusions

In this chapter, we have provided a new structure and semantics preserving HeMLN

community definition, two new bipartite algorithms (MWRM and MWMT) suited for

community detection, and an efficient “decoupling-based” computation framework.

We have also demonstrated the ease with which drill-down of the results can be ac-

complished because of structure and semantics preservation. Also, with ω and MWxx

as customizable parameters, our approach supports a wide range of analysis objectives

and is extensible.



CHAPTER 12

COMMUNITY ANALYSIS OF HETEROGENEOUS DBLP AND IMDb MLNs

In this chapter we demonstrate the application of the proposed structure and

semantic-preserving k-community detection in order to fulfill a set of analysis objec-

tives involving interactions among different types of entities. The data sets used for

this purpose are from DBLP (Database Bibliography/Computer Science Publications)

and IMDb (Internet Movie Database).

12.1 Mapping of Analysis Objectives

DBLP [95] Analysis Objectives

(A1) Conference-wise which are the most cohesive group(s) of authors who publish

frequently (ties included)?

P ΘP,Au Au; ωd; Θ = MWMT (2-community)

(A2) For the most popular unique collaborators from each conference, which are the

unique most active 3-year period(s)? P ΘP,Au Au ΘAu,Y Y; ωe; Θ = MWM

Based on the DBLP analysis requirements, three layers are modeled (See ([134])

for the HeMLN Layer Au connects any two authors (nodes) who have published at

least three research papers together. Layer P connects research papers (nodes) that

appear in the same conference. Layer Y connects two year nodes if they belong to

same pre-defined period. The inter-layer edges depict wrote-paper (LAu,P ), active-

in-year (LAu,Y ) and published-in-year (LP,Y ). For this analysis, we have chosen all

papers that were published from 2001-2018 in top conferences. Six 3-year periods

177
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have been chosen: [2001-2003], [2004-2006], ..., [2016-2018].

IMDb [94] Analysis Objectives

(A3) Find the actor and director similar-genre based group pairs such that overall

actor-director collaborations are maximized? A ΘA,D D; ωe; Θ = MWRM

(A4) Based on genres, list the maximum number of unique actor and director groups

whose majority of the most versatile members interact? A ΘA,D D; ωh; Θ =

MWPM

(A5) For the most popular unique actor groups (including ties), from each movie

rating class, find the unique director groups with maximum interaction and

who also make movies with similar ratings.

Cyclic: M ΘM,A A ΘA,D D ΘD,M M; ωe; Θ = MWMT

For the IMDb analysis requirements, three layers for the IMDb data set are formed.

Layer A and Layer D connect actors and directors who act-in or direct similar genres

frequently, respectively. Layer M connects movies within the same rating range. The

inter-layer edges depict acts-in-a-movie (LA,M), directs-movie (LD,M) and directs-

actor (LA,D). There are multiple ways of quantifying the similarity of actors and

directors based on movie genres they have worked in. A vector was generated with

the number of movies for each genre he/she has acted-in/directed. In order to consider

the similarity with respect to frequency of genres, two actors/directors are connected

if the Pearsons’ Correlation between their corresponding genre vectors is at least 0.9

(Other values can also be used based on similarity strength.)

Choice of weight metric: For the objectives specified in this chapter, maximum

interaction and most popular in (A2), (A3) and (A5), are interpreted as the number

of edges between the participating communities. In contrast, interaction with cohesive
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groups as in (A1), is interpreted to include community density as well. Versatility is

mapped to participation of hub nodes in each group as in (A4).

Choice of pairing algorithm: Each pairing algorithm maximizes the overall

weight based on a constraint. For (A2), MWM is chosen due to the the unique

pairing constraint. For (A1) and (A5), the unique constraint is relaxed to only inlcude

ties, thus MWMT is selected. For (A4), the uniqueness criterion is combined with

maximizing the number of pairs, thus we chose MWPM. In (A3), the uniqueness

restriction is absent making MWRM the choice.

Identifying the k-community: (A1), (A3) and (A4) compute a 2-community.

(A2) requires a 3-community (for 3 layers) with an acyclic specification (using only

2 edges). (A5) uses the layer M twice for a 3-community and is also cyclic. Note

that the analysis objectives have been chosen carefully to cover the weights and

pairing algorithms discussed in the chapter. The limitation on the number of analysis

objectives is purely due to space constraints.

12.2 Experimental Set up

The choice of data sets and sizes used in this chapter are primarily for demon-

strating the versatility of analysis using the k-community detection and its efficiency

as well as drill-down capability based on structure and semantics preservation. We

are not trying to demonstrate scalability in this thesis. Also, instead of presenting all

communities, we have chosen to show a few important drill-down results to showcase

the structure and semantics preservation of our approach.

For DBLP HeMLN, research papers published from 2001-2018 in VLDB, SIG-

MOD, KDD, ICDM, DaWaK, and DASFAA were chosen. For IMDb HeMLN, we

extracted, for the top 500 actors, the movies they have worked in (7500+ movies

with 4500+ directors). The actor set was repopulated with the co-actors from these
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movies, giving a total of 9000+ actors. Widely used Louvain method [67] is used to

detect 1-communities. The k-community detection algorithm 10 was implemented in

Python version 3.7.3 and was executed on a quad-core 8th generation Intel i7 processor

Windows 10 machine with 8 GB RAM.

12.3 Analysis Results, Drill-down and Visualization

Individual Layer Statistics: Table 12.1 shows the layer-wise statistics for IMDb

HeMLN. 63 Actor (A) and 61 Director (D) communities based on similar genres are

generated. Out of the 10 ranges (communities) in the movie (M) layer, most of the

movies were rated in the range [6-7), while least popular rating was [1-2). No movie

had a rating in the range [0-1).

IMDb Actor Director Movie
#Nodes 9485 4510 7951
#Edges 996,527 250,845 8,777,618

#Communities (Size >1/all) 63/190 61/190 9/9
Avg. Community Size 148.5 73 883.4

Table 12.1: IMDb HeMLN Statistics

DBLP Author Paper Year
#Nodes 16,918 10,326 18
#Edges 2,483 12,044,080 18

#Communities (Size >1/all) 591/15528 6/6 6/6
Avg. Community Size 3.3 1721 3

Table 12.2: DBLP HeMLN Statistics

Similarly, DBLP HeMLN statistics are shown in Table 12.2. 591 Author (Au)

communities are generated based on co-authorship. 6 Paper (P) communities are

formed by grouping papers published in same conference. KDD (2942) and DASFAA
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(583) have highest and least published papers, respectively. Out of 6 ranges of years

(Y) selected, the maximum and minimum papers were published in 2016-2018 (1978)

and 2001-2003 (1421), respectively.

Expression MWM MWMT MWPM MWRM
P-Au,ωd

#Comm::P(6),
Au(591)

total :6,
partial :0,
Σω:0.04988

total :9,
partial:0,
Σω:0.0778

total :6,
partial:0,
Σω:0.04988

total :6,
partial:0,
Σω:0.05003

P-Au-Y,ωe

#Comm::P(6),
Au(591), Y(6)

total :6,
partial :0,
Tot.Σω:548

total :6,
partial :0,
Tot.Σω:548

total :6,
partial :0,
Tot.Σω:548

total :6,
partial :3,
Tot.Σω:986

A-D,ωe

#Comm::A(63),
D(61)

total :5,
partial :0,
Σω:9902

total :69,
partial :0,
Σω:9970

total :57,
partial :0,
Σω:5144

total :50,
partial :0,
Σω:11640

A-D,ωd

#Comm::A(63),
D(61)

total :53,
partial :0,
Σω:3.32378

total :220,
partial :0,
Σω:3.36045

total :55,
partial :0,
Σω:3.3235

total :53,
partial :0,
Σω:3.33509

A-D,ωh

#Comm::A(63),
D(61)

total :27,
partial :0,
Σω:0.62142

total :41,
partial :0,
Σω:0.62263

total :29,
partial :0,
Σω:0.62024

total :27,
partial :0,
Σω:00.62229

M-A-D-M,ωe

#Comm::A(63),
D(61), M(9)

total :2,
partial :7,
Σω:6979

total :3,
partial :12,
Σω:6984

total :0,
partial :9,
Σω:6979

total :2,
partial :11,
Σω:11557

Table 12.3: Effect of Pairing Algorithms on same specification (for Non-Singleton
Communities)

Effect of Pairing Algorithm: For an expression with a specified layer order for

evaluation and weight metric, the results will vary based on choice of algorithm for

pairing communities from the community bipartite graph. This is illustrated in Table

12.3 where we list the number of HeMLN communities (total+partial) and total meta

edge weights for the first round of matching (
∑
ω) obtained with 4 different pairing

algorithms for the same specification. It can be observed that MWM generates the

least number of pairs with maximum total weight. On the other hand, when the
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uniqueness condition is relaxed, the overall sum of weights is improved by MWMT

and MWRM.

Figure 12.1: (A1) Result: 9 Total Elements∗

(A1) Analysis: On applying MWMT on the CBG created with all Paper and

Author communities, we obtained 9 total elements that correspond to the most co-

hesive co-authors who also publish frequently in each conference (shown in Figure

12.1 with list of few prominent authors.) ICDM and DaWaK have multiple au-

thor communities that are equally important. Prominent researchers like Tim

∗Louvain numbers all communities from 1 and we only consider communities having at least

two members for this chapter. The numbering used in the chapter have layer name followed by the

Louvain-generated community ID (e.g. A91, Au8742).



183

Kraska and Daniela Florescu; Rajeev Rastogi and Minos N. Garofalakis, and; George

Karypis and Michihiro Kuramochi are members of the frequently publishing co-author

group (in the last 18 years) for SIGMOD, VLDB and ICDM, respectively. Quality

of these obtained frequently publishing collaborators can be validated from the facts

that a) Tim Kraska has been a recipient of Best of SIGMOD Award (2008,

2016), b) Rajeev Rastogi ’s published papers in VLDB (in past 18 years) have re-

ceived over 900 citations c) George Karypis has been a recipient of IEEE ICDM

10-Year Highest-Impact Paper Award (2010) and IEEE ICDM Research

Contributions Award (2017) †.

Figure 12.2: (A2) Result: 6 Total Elements
†Intra-layer edge weights are not considered in this analysis. Hence, for an author (e.g., Jiawei

Han) who has authored large number of papers, his co-authors are distributed among different co-

author communities due to lack of weight information and hence does not come out.
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(A2) Analysis: For the required acyclic 3-community results, the most popular

unique author groups for each conference are obtained by MWM (first composition).

The matched 6 author communities are carried forward to find the disjoint year

periods in which they were most active (second composition). 6 total elements are

obtained (path shown by bold blue lines in Figure 12.2.) Few prominent names have

been shown in the Figure 12.2 based on citation count (from Google Scholar profiles.)

For example, for SIGMOD, VLDB and ICDM the most popular researchers include

Srikanth Kandula (15188 citations), Divyakant Agrawal (23727 citations)

and Shuicheng Yan (52294 citations), respectively who were active in different

periods in the past 18 years.

(A3) Results: 83 A-D (Actor-Director) similar genre-based overlapping community

pairs were obtained by MWRM, that maximised the overall number of actor-director

interactions. Due to the absence of uniqueness criterion, some actor communities

were paired with multiple director communities, and vice-versa.

(A4) Results: MWPM maximizes the number of unique A-D (Actor-Director)

similar genre-based community pairs (29), where majority of most versatile members

interact. Intuitively, a group of directors that prominently makes movies in some

genre (say, Drama, Comedy, Romance, ...) must pair up with the group of actors

who primarily act in similar kind of movies. This can be validated from the few

sample similar genre-based pairings shown in Figure 12.3 (drill down) , such as a)

Comedy - Directors like Bobby Farrelly, Todd Phillips, John Landis etc. (from

D35) pair up with actors like Jim Carrey, Zach Galifianakis and Eddie Murphy

(from A1), b) Action/Drama - Directors like Clint Eastwood, Ridley Scott and

Steven Spielberg (from D102) pair up with Actors like Brad Pitt, Tom Cruise

and Will Smith (from A144) and c) Romance - Directors Woody Allen, Tim
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Figure 12.3: Sample (A4) Result for Comedy, Action/Drama, Romance Genres

Burton etc. (from D91) pair up with the actors like Diane Keaton, Emma Stone

and Hugh Grant (from A94).

(A5) Results: Here, the most popular unique actor groups for each movie rating

class are further coupled with directors. These unique director groups are coupled

again with movies to check whether the director groups also have similar ratings. In

every round for every pairing the ties are also included (MWMT). Results of each

successive pairing (there are 3) are shown in Figure 12.4 (a) using the same color

notation. Coupling of movie and actor communities (first composition) results in
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Figure 12.4: (A5) Result: 3 Total, 12 Partial Elements

14 consistent matches. In the second composition with the director layer, using all

director communities and the matched 10 actor communities, we got 10 consistent

matches. The final composition to complete the cycle uses 10 director communi-

ties and 9 movie communities as left and right sets of community bipartite graph,

respectively.

Only 3 consistent matches are obtained to generate the 3 total elements

for the cyclic 3-community (bold blue triangle.) The total element M1-A175-

D106-M1 (sample members shown in Figure 12.4 (b)) groups together popular highly
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rated (Average Rating of [7-8)) Drama genre-based actors like Leonardo Di-

Caprio, Sean Penn, Kate Winslet, Hilary Swank, Kevin Bacon, Anthony

Hopkins, Russell Crowe, Christian Bale, James Franco and Casey Af-

fleck (from A175) with popular drama directors like Danny Boyle, Sam Mendes,

Werner Herzog, Gus Van Sant, Tim Robbins, Oliver Stone, Kenneth Lon-

ergan. This actor-director group is involved in few of the iconic award wining mas-

terpieces like Revolutionary Road, 127 Hours, Rescue Dawn, Milk, Mystic

River, Nixon and Manchester By The Sea.

Most importantly, this genre-based group is also able to flesh out potential actor-

actor or actor-director collaborations. For instance, on drill-down it is observed

Leonardo DiCaprio has not only worked with Sam Mendes (inter-layer edge present)

but is also similar to Hilary Swank in terms of the type of movies worked in (intra-

layer edge present). However, DiCaprio and Swank have never worked together. Thus,

one potential collaboration that has expertise in similar genres and has highly rated

members can be DiCaprio-Swank-Mendes. On similar grounds, another potential

collaboration is Bacon-Hopkins-Stone, who have not worked together yet.

It is interesting to see 6 inconsistent matches (red broken lines) between the com-

munities which clearly indicate that all couplings are not satisfied by these pairs.

This results in 12 partial elements which represent the similar genre-based actor and

director groups but with different most popular movie rating classes.

The inconsistent matches also highlight the importance of mapping an

analysis objective to a k-community specification for computation. If a

different order had been chosen (viz. director and actor layer as the base case), the

result could have included the inconsistent matches.
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12.4 Efficiency Results of Proposed Approach

Figure 12.5: Performance Results for a 3-community using (A5)

The goal of the decoupling approach was to preserve the structure as well as im-

prove the efficiency of k-community detection using the divide and conquer approach.

We illustrate that with the largest k-community we have computed which uses 3 com-

positions. Figure 12.5 shows the execution time for the one-time and iterative costs

discussed earlier for (A5). The difference in one-time 1-community cost for the 3

layers follow their density shown in Table 12.1. We can also see how the iterative cost

is insignificant as compared to the one time cost (by an order of magnitude.) Cost

of each iteration includes creating the bipartite graph, computing ωe for meta edges,

and MWxx (in this case MWMT) cost. The cost of all iterations together (0.27

sec) is more than an order of magnitude less than the largest one-time

cost (5.43 sec for Movie layer.) We have used this case as this subsumes all

other cases. The additional incremental cost for computing a k-community

is extremely small validating the efficiency of decoupled approach.
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12.5 Conclusions

In this chapter, we used the proposed k-community detection approach for demon-

strating its analysis versatility over the IMDb and DBLP data sets.



CHAPTER 13

CONCLUSION

In this thesis, we discussed the rationale behind choosing multilayer network model

for modeling complex data sets into its Homogeneous, Heterogeneous or Hybrids

alternatives. Moreover, we provide the algorithmic steps to convert an EER model

to MLN model to make the effective incorporation of the analysis requirements error-

free.

A novel network decoupling based framework has been proposed for efficiently an-

alyzing MLNs. As a part of this framework, we have proposed Boolean composition

based Community and centrality detection in Homogeneous MLNs. Extensive exper-

iments have been performed on synthetically generated HoMLN layers in order to

infer the effect on graph characteristics on the accuracy of composition algorithms.

In case of HeMLNs, we have provided a structure-and-semantic preserving definition,

which was lacking till date. Moreover, we have used the decoupling approach in order

to propose a family of algorithms for its computation using the concept of weighted

maximum bipartite graph pairings.

Elaborate experiments have been performed on synthetically generated data sets

(using R-Mat) and real world data sets like Facebook, UK Accidents, IMDb, DBLP

and US Airlines for showcasing the modeling clarity, analysis flexibility and computa-

tional efficiency provided by MLNs. Drill-down analysis and visualizations have been

done on the final results for inferring interesting hidden knowledge, which have been

verified with independently available sources.
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Overall, we have successfully proposed a framework for effective and efficient anal-

ysis of complex multi-entity, feature and relationship data sets.

In the future, the decoupling-based framework can be extended to include com-

position algorithms for graph querying, detecting centrality for HeMLNs and so on.

Currently, only unweighted and undirected intra- and inter-layer edges have been

considered. Thus, the composition algorithms can be extended to include other types

of edges as well. Apart from this, parallelization techniques can be applied to MLN

analysis.
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