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Abstract 

 

IN-SITU  SENSOR  CALIBRATION  

USING  NOISE  CONSISTENCY  

Shriiesh  Var  Sharma,  M.S.  

 

 

The  University  of  Texas  at  Arlington,2020 

 

Supervising  Professor:  Dr.  Manfred  Huber 

 

Robots rely on sensors to map their surroundings. As a result, the accuracy of              

the map depends heavily on the sensor noise and in particular on accurate             

knowledge of it. The common way to minimize the impact of sensor noise is to               

use  filtering  algorithms. 

Accuracy of these filtering algorithms (like the Kalman filter) relies on the            

accuracy of the user supplied measurement noise model. Inaccurate noise          

models lead to higher residual noise in state estimates and errors in the             

estimate of the precision of the state estimate. It is therefore important to have              

precise  noise  models  and  thus  accurately  calibrated  sensors.  
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Most current methods for estimating noise models require a knowledge of           

'ground truth' labels for sensor data and often require either to remove the             

sensor from the system or the presence of particular, sensor-specific calibration           

targets. This method can be expensive and require modifications to the system            

or  the  environment.  

In this research, we present a method for estimating noise models for multiple             

sensors without prior knowledge of ground truth and without the use of            

calibration targets. In contrast, this method takes advantage of identifiable targets           

in the environment to calibrate sensors against each other using a sensor noise             

consistency measure based on KL Divergence. This algorithm can be run           

periodically  to  update  model  estimates  in  unforeseen  environments. 
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Chapter  1 

 

INTRODUCTION  AND  RELATED  WORK 

 

1.1  Introduction 

Intelligent robots have gained popularity in today’s world. They are slowly           

becoming a part of our daily lives. Autonomous cars, automated manufacturing lines, or             

robotic arms for surgery are just a few examples. Efforts have been made to make               

these autonomous systems flexible so that they can operate in the real world without              

any special concessions. For example, in some cases, specialized environments are           

made for robots to carry out very specific tasks. These robot specific environments can              

escalate the cost of automation. Additionally, robots designed to work here will            

experience a drastic drop in productivity or even completely fail to operate in a new               

environment. To address this , extensive research has been proposed in the field of              

robotics  perception. 

Akin to humans, robots need to observe/perceive their environment to perform any task.             

Hence, perception is one of the most important tasks in order to achieve autonomy and               

consistent performance in changing environments. Sensors are used to observe various           

physical  variables  in  the  environment. 

Two important tasks when applying perception to navigation are Localization and Mapping.            

Localization is the task of state estimation given a map of the environment. This can               
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be achieved by using measurements from one or multiple sensors and finding the             

distance of the robot to landmarks in the environment. Mapping is the task of              

estimating  the  environment  or  map,  given  observations  and  state  estimates. 

In most real world applications, it is expected from a system to be flexible and work in                 

any new or unseen environments. In such a case, information about our location or              

the map is not always available. Here, a technique called Simultaneous Localization and             

Mapping(SLAM) is used. In a more formal description , SLAM can be defined as the               

problem of constructing and updating map of the environment while simultaneously           

keeping  track  of  the  robot's  location  within  this  map. 

On the surface, this might seem like a chicken and egg problem. But, there are several                

algorithms that can find an approximate solution within acceptable time constraints.           

Most widely used algorithms are derivations of Bayesian filters, such as Kalman Filter,             

Extended  Kalman  filter,  Particle  filter  etc.  

Sensors are noisy. There are multiple factors that contribute to noise, for example,             

improper zero reference, physical damage, random changes in environment etc. An           

important consideration here is to handle the sensor noise. States can be predicted             

based on a motion model, but sensor observations are needed to update our belief in               

this predicted state. If there existed a sensor with zero noise, one could simply use               

those sensor readings as the state estimate. But, zero noise sensors are a myth, at               

least in today’s world. Hence, the need to estimate how noisy the sensor is. The               

accuracy of this assumed noise model has a significant impact on performance of the              

filter  and  the  state  estimates.  
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The process of identifying and modelling the sensor noise is referred to as sensor              

calibration. It is important to calibrate the sensors before deploying them in any real              

world scenario. Inaccurate noise models may lead to higher residual noise in state             

estimates and errors in the belief of the precision of state estimates. Most current              

methods for calibration require a knowledge of ‘ground truth’ labels for sensor data and              

some  sensor  specific  calibration  targets.  

 

 
Figure  1  : Workings of a military sonar. Presence  of  random  objects  or  animals  may  cause 

erroneous  readings. 
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Figure  2:  Radar  Calibration Figure  3: True  Color  calibration  for  cameras  

Sphere 
The Main contribution of this research is to investigate novel techniques for sensor             

calibration. Specifically, trying to eliminate the need for sensor specific calibration targets.            

To  achieve  this,  a  sensor  noise  consistency  measure  based  on  KL  Divergence  is  used.  

 

1.2  Related  Work 

Sensors are an important part of any robot, but their applications are not limited              

to just this. Use of sensors is very widespread today. Hence, people have tried to               

solve the problem of sensor calibration with the knowledge and experience in their             

respective  fields.  

Bychkovskiy et al [10] talks about challenges faced in a large scale deployment of              

sensors over large distances. It is mentioned that calibrating each and every single             

sensor becomes intractable. Also, sensor maintenance can add another challenge if           

each time sensors need to be recalibrated. They try to solve a very similar problem of                

calibrating the sensors while they are deployed. Since physical locations of sensors are             

12 
 

 



 

 

known and fixed, they employ observation bias from sensors in the vicinity to calibrate              

any  given  sensor  in  their  network. 

In Nikolic et al [12], the proposed methodology identifies noise processes across a large              

range of strength and time-scales. For example, they consider weak gyroscope bias            

fluctuations buried in broadband noise. This is accomplished with a classical maximum            

likelihood estimator, based on the integrated process (i.e., the angle, velocity, or position),             

rather than on the angular rate or acceleration as is standard in the literature. This               

simple modification allows the authors to capture noise processes according to their            

effect on the integrated process, irrespective of their contribution to rate or acceleration             

noise.  The  cause  of  the  noise  is  not  discussed  in  this  article. 

Muhammad and Lacroix [13] talks about using ‘ground truth’ labels for sensor data.             

LIDAR  specific  targets  are  used  to  perform  calibration.  

There are many similar examples of research on sensor calibration. It appears that no              

one has attempted to calibrate sensors by employing statistical analysis or noise            

consistency  measures  based  on  KL  divergence.  
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Chapter  2 
 

TECHNICAL  BACKGROUND 

 

2.1  Simultaneous  Localization  and  Mapping  (SLAM) 

For robots to perform tasks, it is important to know where they are, i.e. their               

location  in  the  world  map. This  process  is  called  localization. 

Also, the knowledge about the world and surrounding objects is important and can be              

achieved by observing and storing their distance from the robot's current location. This             

is  called  mapping. 

The simultaneous localization and mapping (SLAM) problem asks if it is possible for a              

mobile robot to be placed at an unknown location in an unknown environment and for               

the robot to incrementally build a consistent map of this environment while            

simultaneously  determining  its  location  within  this  map.[3] 

When building a robot that can perform in different environments, it is safe to assume               

that location and map information will not be available. Hence, it is required to perform               

simultaneous localization and mapping. An estimate of the observable environment is           

created using the sensor observations, and based on this, an estimate of the robot's              

location within this map is created. Although this might seem like a chicken and egg               

problem, there are algorithms that can perform SLAM within acceptable time constraints.            

Most widely used algorithms are from a family of filters called Bayesian filters. For              

example: Kalman filter, extended Kalman filter and particle filters. The Kalman filter was             
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used in the Apollo missions for moon landing. This serves as a testament to their               

robustness  and  reliability.  

 
Figure  4:  simultaneous  estimate  of  both  robot  and  landmark  locations  is  required.  The 

true  locations  are  never  known  or  measured  directly.  Observations  are  made  between 

true  robot  and  landmark  locations.[3] 

 

 2.2  Bayesian  Filtering 

Bayesian theory[5] is a branch of mathematical probability theory that allows           

people to model the uncertainty about the world and the outcomes of interest by              

incorporating prior knowledge and observational evidence. Bayesian analysis, interpreting         

the probability as a conditional measure of uncertainty, is one of the popular methods              

to solve the inference problems. In Bayesian inference, all uncertainties (including states,            

parameters which are either time-varying or fixed but unknown, and priors) are treated             
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as random variables. The inference is performed within the Bayesian framework given            

all of the available information. The objective of Bayesian inference is to use priors and               

causal knowledge, quantitatively and qualitatively, to infer the conditional probability,          

given  finite  observations.[5] 

In robotics, Bayesian filtering is an algorithm that helps in calculating probabilities of             

multiple state beliefs, and allows the robot to infer its state. It recursively estimates the               

robot's  state  and  updates  the  belief  in  state  using  observations. 

 
 
 

 
Figure  5:  Recursive  predict  and  update  cycle  for  Bayesian  filtering 

 
 
The goal is to estimate the true state x. The state is not directly accessible, but there                 

exist sensor observations of the underlying Hidden Markov Model. This means that the             

true states are not observed but another process which is dependent on true states is               

observed. By using a motion model, control inputs, sensor observations, estimate of            
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sensor noise and process noise; a state estimate and belief in that estimate can be               

computed.  A  special  case  of  Bayes  filter  called  particle  filter  is  used  in  this  research.  

 

2.3  Sensor  Noise  Model 

Sensors are devices that observe some physical attribute in the environment and            

convert that into a reading or a digital signal that can be easily interpreted. There are                

various types of sensors that can broadly be categorized into active and passive             

sensors. Sensors that send energy out into the environment are called active, eg:             

Sonar. Sensors that only observe environmental signals, such as cameras, are called            

passive  sensors.  

Sensors are noisy. Noise is the algebraic difference between observed value and true             

value of observed variable. For a value of ground truth, the sensor may return a               

different value each time. For example, for a true distance of 5, the sensor may return                

5.05, 4.99, 5, etc. The difference between the sensor value and the true value is sensor                

error. This error can be computed for different ground truth labels and a distribution can               

be estimated from which these error values are drawn. This estimated noise distribution             

is  called  the sensor  noise  model.  

Observation  =  true  state  +  random  value  from  noise  distribution 

We  need  an  estimate  of  this  noise  distribution  to  update  our  belief  in  predicted  state. 

The process of modelling the sensor noise involves predicting the true distribution            

parameters from which the noise is generated. Most current methods for doing this             

require the knowledge of ‘ground truth’ labels for sensor data and require sensor             
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specific calibration targets. For example to calibrate a lidar, specialized spheres are            

used;  to  calibrate  cameras,  special  camera  calibration  devices  are  needed. 

The user supplied noise models directly affects the accuracy of state estimates. In this              

research, the algorithm changes the value of this user supplied noise model to compare              

noise  consistency  in  the  predicted  states.  

 
Figure  6:  Assumption of  sensor  noise  model  along  with  the  actual  observations  are  used 

to  compute  the  belief in state.  

 

2.4  KL  Divergence 

KL divergence[2] measures how different one distribution is from another. A KL             

divergence of zero implies that both the distributions are the same. Intuitively, this is a               
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measure of area under the curve of distribution 1 not covered by the curve of               

distribution  2. 

Consider two probability distributions P and Q. P represents the true distribution from             

which data is sampled. Q represents an approximation of the true distribution. KL             

divergence is then interpreted as the difference between the number of bits required to              

encode  samples  of  P  using   a  code  optimized  for  Q. 

 

 

Figure  7: KL  divergence  between  distributions  represented  as  area  under  the  curve.  Area 

in  blue  represents  the  area  difference 
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Chapter  3 
 

PROPOSED  APPROACH 
 
 

In this research, a novel method for sensor calibration is introduced, in which the need               

for sensor specific calibration targets is eliminated. By statistically analyzing sensor data            

and computing noise consistency metrics, an approximation for true noise distribution is            

achieved. For each sensor being calibrated, observations for identifiable targets in the            

environment are used to calibrate the sensors against each other. A noise consistency             

metric based on KL divergence is used. This algorithm can be run periodically to              

update  the  sensor  noise  model.  

 

 

 
Figure  8:  Proposed  architecture  overview 
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3.1  SLAM  with  Particle  Filter 

 

When operating in an unknown environment, the robot has no knowledge about            

its own location or the environment map. By using the sensor observations and by              

moving around in the world, the robot will incrementally create a map estimate and              

localize itself within that map. This task of simultaneously doing two tasks is known as               

SLAM(  simultaneous  localization  and  mapping)  

The motion of the robot can be predicted using a motion model. Motion model captures               

the motion of a robot in a mathematical equation. Given a previous location, and a               

control input to move, the motion model predicts where the robot is. Assuming the              

robot started at origin(0, 0) , and a control input to move by (1, 1) , the state is                   

predicted  as  follows:  

New_state  =  old_state  +  control_input  +  process_noise 

Process noise can be caused due to multiple reasons. Including but not limited to ,               

uneven surfaces, difference in tire size, motor power, battery level etc. Due to process              

noise, we can assume that the robot may never execute control inputs with perfection,              

hence  the  state  prediction  needs  to  take  this  process  noise  into  consideration.  

Formally,  the motion  model  of  the  robot  is  given  by:  

x(t)  =  A*x(t-1)  +  B*u  +  w.  

A  is  the  state  transition  model, B  is  the control  input  model  applied  to  control  input  u, w 

is  the  process  noise  from  a  normal  distribution  with  zero  mean  and  covariance   

21 
 

 



 

 

 
Figure  9:  What  the  trajectory  may  look  like  given  some  process  noise 

In a particle filter, at the start, when predicting the next state, multiple predictions are               

made. Each prediction assumes a slightly different value for process noise. Each            

prediction is called a particle. The number of particles is decided by the user. For               

example,  

Robot  starts  at  origin  -  (0,  0)  

Apply  control  input  of  -  (1,  1) 

Process  noise    -  mean(0,  0)  and  cov[(0.1,  0),  (0,  0.2)] 

N  state  predictions  -  A*(0,  0)  +  B(1,  1)  +  N  samples  from  process  noise. 
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Figure  10:  Robot  Spawn Figure  11:  Control  input  to  robot  
 
 

 
Figure  12:  Particle  state  and  weight  prediction  step 
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Each of the predicted states is assigned a weight. The weight represents the probability              

of that particle occurring. In the absence of any observations or information about the              

environment, each particle is assigned the same weight. These weights will be updated             

when  we  receive  a  sensor  reading  and  we  know  something  about  the  environment. 

As soon as the robot receives an observation from the sensor, the probability of              

particles will change. Depending on the reading, the robot can compute the likelihood of              

being  at  a  position  given  some  estimate  of  the  environment  and  a  sensor  reading.  

Likelihood is calculated by computing the probability of observation given a state            

estimate P(observation | particle). For a given state estimate (x, y), the observation can              

be in the range: State ± Sensor noise. Intuitively, this represents a Gaussian with state               

estimate as mean and sensor noise as variance. This process is explained in the figure               

below:  
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Figure  13:  Updating  weights  based  on  observations  

 
The robot moves in the environment based on control inputs and keeps updating the              

state estimate and the map estimate based on the observations. Note that the weights              

of particles depend heavily on the assumption of sensor noise. An assumption of noise              

lower than the true noise will result in a lower weight for particles which deserve a                

higher  weight  or  higher  weight  for  ones  that  deserve  a  lower  weight.  
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This effect can be observed in the figure below. For a gaussian with mean as the                

position estimate and assumed noise parameter as the variance vs true noise            

parameters,  the  probability  of  getting  a  sensor  reading  will  vary.  

 

Figure  14:  Probability  of  observation  varies  depending  on  assumption  of  noise  model 
 
 
After this step, the robot will have multiple state estimates for a given timestep. Each               

estimate will have an associated weight. For most practical applications, there needs to             

be one estimate for each timestep. To compute one state estimate, the weighted sum              

of  all  possible  states  is  used.  
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State  Estimate  = 

The particle filter recursively performs these steps to get a state estimate for each              

timestep.  

 

 
Figure  15:  Recursive  predictions  and  updates  to  estimate  the  trajectory 
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3.2  Compute  Sensor  Error 

Sensor error is the algebraic difference between the observation corresponding to           

the true state value and the reading returned by sensor. For this experiment, the sensor               

error is the difference between actual sensor reading and the sensor state estimate. The              

state is represented as cartesian coordinates ( x, y) whereas the sensor reading is for a                

distance sensor, such as a LIDAR sensor and thus is in terms of distance to unknown                

obstacles in the world. Hence, this difference cannot be calculated without some            

transformations representing the relation between the state and the sensor reading. For this,             

state estimates are converted into predicted sensor readings. Predicted sensor readings,           

zi, are here the distance between state estimate( x, y ) and landmark position              

estimate(x, y). Since both are now in the same state space, their difference can be               

computed.  
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Figure  16:  Computing  error  between  actual  and  predicted  observations 

 
An error value for each particle (state estimate) is computed against each sensor. This              

results in n error values and associated weights. The total error value of a timestep is                

given  by  the  weighted  sum  of  all  errors.  This  is  represented  in  the  figure  below:  

redicted  state   position(x1, 1)p =  y  

redicted  map    landmark  position(x2, 2)p =  y  

redicted  sensor  reading   distance( predicted state,  predicted  map)p =    

istance    predicted  error   true  sensor  reading   predicted  sensor  reading  d =  √((x2 1)   (y2 y1) )− x 2  ̂ +  −  2   =  −   
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Figure  17:  Recursive  prediction  and  updates  to  estimate  the  trajectory 

 

3.3  KL  Divergence 

After computing a list of discrete error values for all sensors, the robot needs to               

analyze how likely these error values are given the knowledge of assumed parameters             

for sensor noise. The list of discrete error values can be treated as a sample set                

drawn from the true noise distribution, but biased by the assumption of the noise              

distribution. Assuming that the error samples are drawn from a Gaussian distribution, its             

probability density is calculated. As depicted in Figure 14, the total distance between the              

assumed and the predicted sensor noise models is dependent on the assumed noise             

parameters. Hence by changing these values total distance can be manipulated.           
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Assuming we use two sensors and that the senor noise models are gaussian for both, the total                 

distance between assumed and predicted sensor noise models for all sensors can be computed              

using KL divergence: 

 

DF eP (assumed )i =  1
σai

√2π
− 2

1( σai
x−μ)  

DF eP (predicted )i =  1
σpi

√2π
− 2

1( σpi
x−μ)  

1 DF p2 DF (assumed )p = P (assumed )1 ,  = P 2  

1 DF q2 DF (predicted )q = P (predicted )1 ,  = P 2  
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Figure  18: Algorithm  Recap 

3.4  Hill  Climbing 

If the assumed noise model for each of the sensors is the correct noise model (i.e. if the                  

sensors are correctly calibrated), we would expect that the predicted (observed) sensor noise             

would follow the same distribution and thus that the total distance (the KL divergence between               

the assumed and predicted distributions) is small. To achieve this, we need to update the               

assumed sensor noise model such that the total distance is minimized (and thus the noise               

models are consistent).  

Hill climbing is an iterative algorithm to find a solution for an optimization problem. It               

starts with a random solution to the problem and computes the value of the function by                

making small changes to input parameters. When a parameter returns a better solution             
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to the problem the value for the best solution is updated. This process is executed               

iteratively  until  a  global/local  minima  is  found.  

In the sensor calibration problem, the assumed noise parameters serve as the input to              

the optimization problem. A change in these parameters will result in a change in total               

KL divergence. The parameters are sensor1(mean, var) , sensor2(mean, var). 4           

neighbors are computed for each parameter, hence the algorithm computes KL           

Divergence  for:  sensor1(mean+step,  var);  

sensor1(mean-step,  var); 

sensor1(mean,  var+step); 

sensor1(mean,  var-step); 

sensor2(mean+step,  var); 

sensor2(mean-step,  var); 

sensor2(mean,  var+step); 

sensor2(mean,  var-step)  
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If total distance is lower for any of the neighbors, that set of parameters will become                

the best solution and the algorithm explores the distance for its neighbors. When the              

algorithm gets stuck in a minima, it makes a random jump in an attempt to break free.                 

Higher numbers of random jumps will result in a higher probability of breaking free but               

also  increases  the  computation  time.  

If after a few random jumps, the value of best parameters does not change, that set of                 

parameters  is  accepted  as  the  solution.  

To test the validity of this method, several experiments are conducted. The results from              

these  experiments  are  discussed  in  Chapter  5. 
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3.5  Algorithm  Summary 

In this algorithm, a trajectory is generated for the robot. This trajectory is based              

on the control inputs. The true states are generated using the control inputs and a               

motion model. In the real world, there always exists some process noise in the motion               

of the robot and thus the same control inputs can result in different trajectories. The true                

trajectory states are generally not observable by the robot but will be estimated as part of the                 

Bayesian filtering process. In our experiments we are using simulation data for this             

experiment, and we thus use random noise parameters to generate true states. These             

true states are used to generate true sensor readings based on a true sensor noise               

model as part of the simulation. Using this sequence of sensor readings, the proposed              

approach uses initial assumed sensor models to estimate the distribution of trajectories using a              

particle filter, computes a predicted sensor noise distribution from this trajectory distribution and             

the sensor readings, and then updates the assumed sensor noise model using a hill climbing               

step on the total distance of the assumed and the predicted sensor noise models for all the                 

sensors. This improvement process is repeated until no further improvement can be achieve             

and thus until the most consistent sensor noise models have been found. More detailed, the               

algorithms goes through the following steps: 

Prediction Step: Based on known control inputs, an assumed process noise and a             

motion  model,   robot  states  are  predicted. 

Update Step: Based on the predicted state, an assumed noise model and sensor             

readings, the belief in that predicted state is updated. The algorithm computes how             
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likely the robot is at a predicted location given a sensor reading. The likelihood of a                

robot being in a state is dependent on the belief of how much noise exists in the                 

sensor  reading  or  in  this  case,  the  assumed  noise  model.  

Compute Expected Sensor Readings: Now, there exists a list of state estimates for             

each timestep and an estimate of the map (landmark locations). Based on these             

estimates, the algorithm computes expected sensor readings for each timestep and sate            

estimate. Note that there also exists a list of actual sensor readings. If the assumed               

sensor noise is the same as true sensor noise, then the sensor error distributions based               

on the state predictions is consistent with the original assumption and thus the assumed              

sensor noise models are consistent. In the case where assumed noise parameters are not              

the same as true noise parameters, the predicted states are not consistent with the noise               

assumptions and thus the noise assumptions should be adjusted to yield more consistent             

estimates. The predicted sensor error values can be interpreted as samples drawn from             

the true  noise  distribution  ,  but  biased  by  the  assumed  noise  distribution. 

Compute Distribution Parameters: Parameters are computed for the distribution from          

which these predicted error values are most likely to be drawn. The algorithm already              

knows  the  value  for  assumed  noise  parameters. 

Compute KL Divergence: Divergence between the assumed error distribution and the           

predicted error distribution gives us a measure of how far we are from the true noise                

distribution. The  goal  is  to  minimize  this  distance. 

Noise model optimization: The assumed noise parameters are changed recursively and           

the whole algorithm is run again. If a lower value of KL Divergence is found for some                 
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assumed noise parameters, then the values for best parameters are updated until no             

smaller  value  can  be  found. 

In the results, in each iteration, the algorithm computes 4 neighbors for both the              

assumed noise parameters. It only prints KL divergence values if a lower value is found.               

A list of KL divergence is updated every time a lower value is found. At the end of                  

program  execution,  the  KL divergence  values  are  plotted.  
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Chapter  4 
 

DRY  RUN 
 
 
In  this  section  we  will  assume  some  random  values  for  our  parameters  and  try  to  see 

how  the  algorithm  pushes  the  parameters  towards  true  noise  distribution.  Let’s  assume 

this  case  for  sensor  1:  

 
True  Noise: Mean(0,  0)  Var(0.2,  0.1) 
Iteration  1: 
Assumed  Noise:  Mean(0,  0)  Var(0.6,  0.8)  

True  State (0,  0) (1,  1)  (2,  2) 

True 
observation 

10 12 14 

Predicted 
state 

(0,  0) (1.02,  0.97)  (2.6,  1.91) 

Predicted 
observation 

9.5 11.4 14.4 

Predicted 
error 

0.5 0.6 -0.4 

 
Predicted  Noise:  Mean(0,  0)  Var(0.4,  0.6) 
KLDiv(assumed  noise,  predicted  noise)  =  4 
Assumed  parameters  are  far  away  from  true  noise  and  hence  we  see  a  large  value  for 
kl  divergence.  
------------------------------------------------------------------------------------ 
True  Noise: Mean(0,  0)  Var(0.2,  0.1) 
Iteration  2: 
Assumed  Noise:  Mean(0,  0)  Var(0.4,  0.3)  

True  State (0,  0) (1,  1)  (2,  2) 

True 
observation 

10 12 14 
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Predicted 
state 

(0,  0) (1.01,  0.99)  (1.8,  2.01) 

Predicted 
observation 

9.8 12.5 14.4 

Predicted 
error 

0.2 0.5 -0.4 

Predicted  Noise:  Mean(0,  0)  Var(0.3,  0.5) 
KLDiv(assumed  noise,  predicted  noise)  =  2 
Assumed  parameters  are  far  away  from  true  noise  but  clo were  in  the  last  iteration. 
Hence  we  see  a  smaller  value  for  kl  divergence. 
------------------------------------------------------------------------------------- 
We  observe  the  same  trend  for  sensor  2. 

  
Assume  this  case  for  sensor  2:  
True  Noise: Mean(0,  0)  Var(0.2,  0.1) 
Iteration  1: 
Assumed  Noise:  Mean(0,  0)  Var(0.4,  0.3)  

True  State (0,  0) (1,  1)  (2,  2) 

True 
observation 

10 12 14 

Predicted 
state 

(0,  0) (1.01,  0.99)  (1.8,  2.01) 

Predicted 
observation 

9.8 12.5 14.4 

Predicted 
error 

0.2 0.5 -0.4 

Predicted  Noise:  Mean(0,  0)  Var(0.3,  0.5) 
KLDiv(assumed  noise,  predicted  noise)  =  1.5 
------------------------------------------------------------------------------------ 
True  Noise: Mean(0,  0)  Var(0.2,  0.1) 
Iteration  2: 
Assumed  Noise:  Mean(0,  0)  Var(0.6,  0.8)  

True  State (0,  0) (1,  1)  (2,  2) 
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True 
observation 

10 12 14 

Predicted 
state 

(0,  0) (1.02,  0.97)  (2.6,  1.91) 

Predicted 
observation 

9.5 11.4 14.4 

Predicted 
error 

0.5 0.6 -0.4 

Predicted  Noise:  Mean(0,  0)  Var(0.4,  0.6) 
KLDiv(assumed  noise,  predicted  noise)  =  3 
True  Noise  Sensor1: Mean(0,  0)  Var(0.2,  0.1) 
Assumed  Noise  Sensor1:  Mean(0,  0)  Var(0.4,  0.3)  
Predicted  Noise  Sensor1:  Mean(0,  0)  Var(0.3,  0.5) 
KL1(assumed  noise,  predicted  noise)  =  4 
 
True  Noise  Sensor2: Mean(0,  0)  Var(0.2,  0.1) 
Assumed  Noise  Sensor2:  Mean(0,  0)  Var(0.6,  0.8)  
Predicted  Noise  Sensor2:  Mean(0,  0)  Var(0.3,  0.5) 
KL2(assumed  noise,  predicted  noise)  =  1.5 
----------------------------------------------------------------------------------- 

  
Total  KL  =  KL1  +  KL2  =  5.5 
 
 
Update  assumed  parameters  and  compute  total  KL  divergence  again 
--------------------------------------------------------------------------------- 
 
 
True  Noise  Sensor1: Mean(0,  0)  Var(0.2,  0.1) 
Assumed  Noise  Sensor1:  Mean(0,  0)  Var(0.6,  0.8) 
Predicted  Noise  Sensor1:  Mean(0,  0)  Var(0.4,  0.6) 
KLDiv(assumed  noise,  predicted  noise)  =  3 

  
True  Noise  Sensor2: Mean(0,  0)  Var(0.2,  0.1) 
Assumed  Noise  Sensor2:  Mean(0,  0)  Var(0.4,  0.3) 
Predicted  Noise  Sensor2:  Mean(0,  0)  Var(0.3,  0.5) 
KLDiv(assumed  noise,  predicted  noise)  =  2 

  
Total  KL  =  KL1  +  KL2  =  5.0 
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Lower  value  found  for  KL  Divergence.  This  implies  that  the  assumption  for  sensor  noise 
is  better  than  the  previous  one.  We  continue  these  steps  until  there  is  no  lower  value 
found  for  kl  divergence.  
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Chapter  5 
 

EXPERIMENT  AND  RESULTS  
 
 

To  validate  the  algorithm,  several  experiments  are  conducted  and  their  results 

compared  against  the  expected  output.  Different  values  for  hyperparameters   are  tested 

and  the  KL Divergence  graph  is analyzed.  

5.1 Experiment  1  Details 

In this experiment, we use a small process noise to generate a true trajectory.              

These true states are used to generate true sensor readings based on a true sensor               

noise model. Then , based on an assumed sensor noise, control inputs and an              

assumed process noise, robot states are predicted and updated. These states are then             

used to calculate predicted sensor readings. The assumed noise model will affect the             

predicted sensor readings. These predicted sensor readings are used to calculate the            

error values in true sensor readings. Parameters are computed for the distribution from             

which these predicted error values are most likely to be drawn. KL Divergence between              

the assumed error distribution and predicted error distribution gives us a measure of             

how far we are from the true noise distribution. The goal is to minimize this distance.                

The assumed noise parameters are changed and the whole algorithm is run again. If a               

lower value of KL Divergence is found for some parameters, then the values for best               

parameters  are  updated  until  no  smaller  value  can  be  found. 

In the results, in each iteration, the algorithm computes 4 neighbors for both the              

assumed noise parameters. It only prints KL divergence values if a lower value is found.               
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A list of KL divergence is updated every time a lower value is found. At the end of                  

program  execution,  the  kl divergence  values  are  plotted.  

○ Robot’s  state  space 

■ cartesian  space 

■ i  observable  landmarks  at   

position  [xi,  yi] 

■ state  -  [x,  y] 

○ Observation  space 

■ distance  in  cartesian  space 

■ dist(state,  landmark) 

○ true  process  noise 

■ mean  -  [0,  0] 

■ var  -  [0.00,  0.00] 

○ true  noise  sensor  1 

■ mean  -  [0,  0] 

■ var  -  [0.3,  0.4] 

○ true  noise  sensor  2 

■ mean  -  [0,  0] 

43 
 

 



 

 

■ var  -  [0.5,  0.6] 

● Particle  Filter  Parameters 

○ Number  of  particles  -  80 

○ assumed  process  noise 

■ mean  -  [0,  0],  var  -  [0.00,  0.00] 

○ assumed  noise  sensor  1 

■ mean  -  [0,  0],  var  -  [0.3,  0.4] 

○ assumed  noise  sensor  2 

■ mean  -  [0,  0],  var  -  [0.5,  0.6] 

● Hill  Climbing  Parameters 

○ Step  size  -  [0.01,  0.01] 

○ Compute  4  neighbours 

○ 5  random  jumps  if  stuck  in  minima 

These  parameters  result  in  the  following  result:  

True_var1 [0.3 0.4] Predicted_var1: [0.3 0.4] 

True_var2 [0.5 0.6] Predicted_var2: [0.5 0.6] 

Total dist: 1.0983091777875669 
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True_var1 [0.3 0.4] Predicted_var1: [0.31 0.4 ] 

True_var2 [0.5 0.6] Predicted_var2: [0.5 0.6] 

Total dist: 1.0533198017373118 

 

True_var1 [0.3 0.4] Predicted_var1: [0.31 0.4 ] 

True_var2 [0.5 0.6] Predicted_var2: [0.51 0.6 ] 

Total dist: 1.0066273799027172 

 

Best params after iteration: 1 

True_var1 [0.3 0.4] Predicted_var1: [0.31 0.4 ] 

True_var2 [0.5 0.6] Predicted_var2: [0.51 0.6 ] 

Total dist: 1.0066273799027172 

 

True_var1 [0.3 0.4] Predicted_var1: [0.31 0.39] 

True_var2 [0.5 0.6] Predicted_var2: [0.51 0.6 ] 

Total dist: 0.9904466820051904 

 

Best params after iteration: 2 

True_var1 [0.3 0.4] Predicted_var1: [0.31 0.39] 

True_var2 [0.5 0.6] Predicted_var2: [0.51 0.6 ] 

Total dist: 0.9904466820051904 
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True_var1 [0.3 0.4] Predicted_var1: [0.31 0.39] 

True_var2 [0.5 0.6] Predicted_var2: [0.5 0.6] 

Total dist: 0.9729403231840754 

 

Best params after iteration: 3 

True_var1 [0.3 0.4] Predicted_var1: [0.31 0.39] 

True_var2 [0.5 0.6] Predicted_var2: [0.5 0.6] 

Total dist: 0.9729403231840754 

 

Best params after iteration: 4 

True_var1 [0.3 0.4] Predicted_var1: [0.31 0.39] 

True_var2 [0.5 0.6] Predicted_var2: [0.5 0.6] 

Total dist: 0.9729403231840754 

Found local/global minima. Making a random jump 

 

Best params after iteration: 5 

True_var1 [0.3 0.4] Predicted_var1: [0.31 0.39] 

True_var2 [0.5 0.6] Predicted_var2: [0.5 0.6] 

Total dist: 0.9729403231840754 

Found local/global minima. Making a random jump 

 

Best params after iteration: 6 
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True_var1 [0.3 0.4] Predicted_var1: [0.31 0.39] 

True_var2 [0.5 0.6] Predicted_var2: [0.5 0.6] 

Total dist: 0.9729403231840754 

Found local/global minima. Making a random jump 

 

Best params after iteration: 7 

True_var1 [0.3 0.4] Predicted_var1: [0.31 0.39] 

True_var2 [0.5 0.6] Predicted_var2: [0.5 0.6] 

Total dist: 0.9729403231840754 

Found local/global minima. Making a random jump 

 

Best params after iteration: 8 

True_var1 [0.3 0.4] Predicted_var1: [0.31 0.39] 

True_var2 [0.5 0.6] Predicted_var2: [0.5 0.6] 

Total dist: 0.9729403231840754 

 

Found  local/global  minima. 

 

Process  finished.  

 

KL  Divergence  Graph: 
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With each epoch, the algorithm explores neighbors for the current parameters. The            

values of parameters are updated only when a lower KL Divergence is found. Once a               

minimum value is found, the algorithm makes 5 random jumps and exits if no lower               

value  for  total  distance  is  found.  

In  this  case,  where  

true  var1:  [0.3  0.4] 

true  var2:  [0.5  0.6], 

starting  from: 

var1:  [0.3  0.4], 

var2:  [0.5  0.6], 
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Total  dist:  1.0983091777875669 

The  algorithm  converges  to 

predicted_var1  [0.31    0.39], 

predicted_var2:  [0.5  0.6], 

Total  dist:  0.9729403231840754 

This  is  the  expected  result.  As  we  initialized  true  noise  to  be  the  same  as  assumed 

noise,  it  should  not  move. 

 

 

5.2 Experiment  2  Details  

We use zero process noise in this experiment. But, the assumed noise            

parameters are not the same as true noise. The expected result here is for the               

algorithm  to  push  these  assumed  parameter  values  towards  the  true  distribution. 

○ Robot’s  state  space 

■ cartesian  space 

■ i  observable  landmarks  at  

position  [xi,  yi] 

■ state  -  [x,  y] 

○ Observation  space 
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■ distance  in  cartesian  space 

■ dist(state,  landmark) 

○ true  process  noise 

■ mean  -  [0,  0] 

■ var  -  [0.0,  0.0] 

○ true  noise  sensor  1 

■ mean  -  [0,  0] 

■ var  -  [0.3,  0.4] 

○ true  noise  sensor  2 

■ mean  -  [0,  0] 

■ var  -  [0.5,  0.6] 

● Particle  Filter  Parameters 

○ Number  of  particles  -  80 

○ assumed  process  noise 

■ mean  -  [0,  0],  var  -  [0.0,  0.0] 

○ assumed  noise  sensor  1 

■ mean  -  [0,  0],  var  -  [0.4,  0.6] 
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○ assumed  noise  sensor  2 

■ mean  -  [0,  0],  var  -  [0.7,  0.9] 

● Hill  Climbing  Parameters 

○ Step  size  -  [0.01,  0.01] 

○ Compute  4  neighbours 

○ 5  random  jumps  if  stuck  in  minima 

These  parameters  result  in  the  following  result: 

True_var1 [0.3 0.4] Predicted_var1: [0.4 0.6] 

True_var2 [0.5 0.6] Predicted_var2: [0.7 0.9] 

Total dist: 1.0440139771656285 

 

Best params after iteration: 1 

True_var1 [0.3 0.4] Predicted_var1: [0.4 0.6] 

True_var2 [0.5 0.6] Predicted_var2: [0.7 0.9] 

Total dist: 1.0440139771656285 

Found local/global minima. Making a random jump 

 

True_var1 [0.3 0.4] Predicted_var1: [0.399 0.599] 

True_var2 [0.5 0.6] Predicted_var2: [0.6 0.8] 

Total dist: 1.0440139771656285 
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Best params after iteration: 2 

True_var1 [0.3 0.4] Predicted_var1: [0.4 0.6] 

True_var2 [0.5 0.6] Predicted_var2: [0.7 0.9] 

Total dist: 1.0440139771656285 

Found local/global minima. Making a random jump 

 

True_var1 [0.3 0.4] Predicted_var1: [0.399 0.599] 

True_var2 [0.5 0.6] Predicted_var2: [0.6 0.8] 

Total dist: 1.0440139771656285 

True_var1 [0.3 0.4] Predicted_var1: [0.29900000000000004, 0.599] 

True_var2 [0.5 0.6] Predicted_var2: [0.6 0.8] 

Total dist: 1.015869536390541 

 

True_var1 [0.3 0.4] Predicted_var1: [0.29900000000000004, 0.599] 

True_var2 [0.5 0.6] Predicted_var2: [0.6, 0.7000000000000001] 

Total dist: 1.0143010997249888 

 

Best params after iteration: 3 

True_var1 [0.3 0.4] Predicted_var1: [0.29900000000000004, 0.599] 

True_var2 [0.5 0.6] Predicted_var2: [0.6, 0.7000000000000001] 

Total dist: 1.0143010997249888 
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True_var1 [0.3 0.4] Predicted_var1: [0.19900000000000004, 0.599] 

True_var2 [0.5 0.6] Predicted_var2: [0.6, 0.7000000000000001] 

Total dist: 1.0121511319180874 

 

True_var1 [0.3 0.4] Predicted_var1: [0.29900000000000004, 0.499] 

True_var2 [0.5 0.6] Predicted_var2: [0.6, 0.7000000000000001] 

Total dist: 0.96917096948818 

 

Best params after iteration: 4 

True_var1 [0.3 0.4] Predicted_var1: [0.29900000000000004, 0.499] 

True_var2 [0.5 0.6] Predicted_var2: [0.6, 0.7000000000000001] 

Total dist: 0.96917096948818 

 

True_var1 [0.3 0.4] Predicted_var1: [0.29900000000000004, 0.399] 

True_var2 [0.5 0.6] Predicted_var2: [0.6, 0.7000000000000001] 

Total dist: 0.9256901485206264 

 

True_var1 [0.3 0.4] Predicted_var1: [0.29900000000000004, 0.399] 

True_var2 [0.5 0.6] Predicted_var2: [0.6, 0.6000000000000001] 

Total dist: 0.9044666632844132 
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Best params after iteration: 5 

True_var1 [0.3 0.4] Predicted_var1: [0.29900000000000004, 0.399] 

True_var2 [0.5 0.6] Predicted_var2: [0.6, 0.6000000000000001] 

Total dist: 0.9044666632844132 

 

Best params after iteration: 6 

True_var1 [0.3 0.4] Predicted_var1: [0.29900000000000004, 0.399] 

True_var2 [0.5 0.6] Predicted_var2: [0.6, 0.6000000000000001] 

Total dist: 0.9044666632844132 

Found local/global minima. Making a random jump 

 

True_var1 [0.3 0.4] Predicted_var1: [0.298 0.398] 

True_var2 [0.5 0.6] Predicted_var2: [0.5 0.5] 

Total dist: 0.9044666632844132 

 

True_var1 [0.3 0.4] Predicted_var1: [0.29900000000000004, 0.399] 

True_var2 [0.5 0.6] Predicted_var2: [0.6, 0.5000000000000001] 

Total dist: 0.8838221398105923 

 

True_var1 [0.3 0.4] Predicted_var1: [0.29900000000000004, 0.399] 

True_var2 [0.5 0.6] Predicted_var2: [0.5, 0.40000000000000013] 

Total dist: 0.8817247532095723 
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Best params after iteration: 7 

 

True_var1 [0.3 0.4] Predicted_var1: [0.29900000000000004, 0.399] 

True_var2 [0.5 0.6] Predicted_var2: [0.5, 0.40000000000000013] 

Total dist: 0.8817247532095723 

 

Best params after iteration: 8 

True_var1 [0.3 0.4] Predicted_var1: [0.29900000000000004, 0.399] 

True_var2 [0.5 0.6] Predicted_var2: [0.5, 0.40000000000000013] 

Total dist: 0.8817247532095723 

 

Found local/global minima. Making a random jump 

True_var1 [0.3 0.4] Predicted_var1: [0.298 0.398] 

True_var2 [0.5 0.6] Predicted_var2: [0.4 0.3] 

Total dist: 0.8817247532095723 

 

Best params after iteration: 9 

True_var1 [0.3 0.4] Predicted_var1: [0.29900000000000004, 0.399] 

True_var2 [0.5 0.6] Predicted_var2: [0.5, 0.40000000000000013] 

Total dist: 0.8817247532095723 

Found local/global minima 
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Process  finished. 

 

KL  Divergence  Graph:  

 

This experiment shows that the proposed approach correctly identifies the noise parameters as 

optimal. The small update step in the first iteration is the result of the predicted sensor noise 

model being represented on a particle set and thus corresponding to the mixture model, slightly 
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biasing it compared to the assumed model which is a single Gaussian. 

 

5.3 Experiment  3  Details  

We use non zero process noise. And assumed parameters that are far off from true               

noise  parameters.  

○ Robot’s  state  space 

■ cartesian  space 

■ i  observable  landmarks  at  

position  [xi,  yi] 

■ state  -  [x,  y] 

○ Observation  space 

■ distance  in  cartesian  space 

■ dist(state,  landmark) 

○ true  process  noise 

■ mean  -  [0,  0] 

■ var  -  [0.01,  0.002] 

○ true  noise  sensor  1 
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■ mean  -  [0,  0] 

■ var  -  [0.3,  0.4] 

○ true  noise  sensor  2 

■ mean  -  [0,  0] 

■ var  -  [0.5,  0.3] 

● Particle  Filter  Parameters 

○ Number  of  particles  -  80 

○ assumed  process  noise 

■ mean  -  [0,  0],  var  -  [0.01,  0.002] 

○ assumed  noise  sensor  1 

■ mean  -  [0,  0],  var  -  [0.4,  0.5] 

○ assumed  noise  sensor  2 

■ mean  -  [0,  0],  var  -  [0.6,  0.7] 

● Hill  Climbing  Parameters 

○ Step  size  -  [0.01,  0.01] 

○ Compute  4  neighbours 

○ 5  random  jumps  if  stuck  in  minima 
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True_var1 [0.3 0.4] Predicted_var1: [0.4 0.5] 
True_var2 [0.5 0.3] Predicted_var2: [0.6 0.7] 
Total dist: 12.485092397101111 

 
True_var1 [0.3 0.4] Predicted_var1: [0.41000000000000003, 0.5] 
True_var2 [0.5 0.3] Predicted_var2: [0.6 0.7] 
Total dist: 10.320646004520357 

 
True_var1 [0.3 0.4] Predicted_var1: [0.39, 0.5] 
True_var2 [0.5 0.3] Predicted_var2: [0.6 0.7] 
Total dist: 10.196268827266818 

 
Best params after iteration: 1 

 
True_var1 [0.3 0.4] Predicted_var1: [0.39, 0.5] 
True_var2 [0.5 0.3] Predicted_var2: [0.6 0.7] 
Total dist: 10.196268827266818 

 
True_var1 [0.3 0.4] Predicted_var1: [0.39, 0.5] 
True_var2 [0.5 0.3] Predicted_var2: [0.61, 0.7] 
Total dist: 9.273738685136298 

 
Best params after iteration: 2 
 

True_var1 [0.3 0.4] Predicted_var1: [0.39, 0.5] 
True_var2 [0.5 0.3] Predicted_var2: [0.61, 0.7] 
Total dist: 9.273738685136298 

 
Best params after iteration: 3 
 

True_var1 [0.3 0.4] Predicted_var1: [0.39, 0.5] 
True_var2 [0.5 0.3] Predicted_var2: [0.61, 0.7] 
Total dist: 9.273738685136298 

 
Found local/global minima. Making a random jump 
 

True_var1 [0.3 0.4] Predicted_var1: [0.38 0.49] 
True_var2 [0.5 0.3] Predicted_var2: [0.51 0.6 ] 
Total dist: 9.273738685136298 

 
Best params after iteration: 4 
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True_var1 [0.3 0.4] Predicted_var1: [0.39, 0.5] 
True_var2 [0.5 0.3] Predicted_var2: [0.61, 0.7] 
Total dist: 9.273738685136298 

 
Found local/global minima. Making a random jump 
 

True_var1 [0.3 0.4] Predicted_var1: [0.38 0.49] 
True_var2 [0.5 0.3] Predicted_var2: [0.51 0.6 ] 
Total dist: 9.273738685136298 

 

 
This  is not  converging  on  to  true  noise  but,  this  is  expected   as  we  do  not  know  the 
true  process  noise.  
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Chapter  6 

 
CONCLUSION  AND  FUTURE  WORK 

 
In this research, we have successfully created an algorithm that approximates sensor            

noise  models.  

This is particularly useful in cases where sensor specific calibration targets are not             

available. In such cases, often this algorithm can be used to approximate a noise              

model,  which  (in  most  cases)  will  be  better  than  making  a  random  guess. 

This algorithm also addresses the problem where sensors are deployed in large scale/             

spread over a large area and calibrating each sensor individually is intractable. In such              

cases, this also makes maintenance of such sensor networks easier as calibration is             

automated.  

In case of unforeseen environments, where the physics parameters might change, for            

example in space exploration, estimating a noise model may be cheaper than carrying             

sensor  specific  calibration  targets.  

In future, we want to implement this for all kinds of distributions and not just               

Gaussians. Also, the current implementation and mathematics only handles motion in           

2D.  This  can  be  improved  to  implement  in  higher  dimensions.  

In the current implementation, the algorithm will converge close to but not exactly on              

the true prior distribution. The reason for this is that there exists a process noise and                

we do not know the distribution of this process noise. Hence, we model a noise that                

also  incorporates  process  noise.  
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