
IN-SITU SENSOR CALIBRATION USING NOISE CONSISTENCY

by

SHRIIESH VAR SHARMA

THESIS

Submitted in partial fulfillment of the requirements

for the degree of Master of Science in Computer Science at

The University of Texas at Arlington

August 2020

Arlington, Texas

Supervising Committee:

Manfred Huber, Supervising Professor

David Levine

Vamsikrishna Gopikrishna

1

2

Copyright © by Shriiesh Var Sharma 2020

All Rights Reserved

3

To Mom and Dad for their constant support.

Without them I would not exist!

4

Acknowledgements

 I thank my advisor Dr. Manfred Huber, for accepting me as his mentee and

guiding me in this research. He always pointed me in the right direction while

still leaving enough space for exploring various related topics. I thank him for

being patient with me and for ensuring that I understand the art of research.

I thank my committee members David Levine and Dr. Vamsikrishna Gopikrishna for

taking the time to serve on my committee.

I thank my friends Sandeep, Kalyan, Megha, Tejas and Safwan for their support.

You have been a part of my journey at UTA and have become like a family

away from home.

September 3, 2020

5

Abstract

IN-SITU SENSOR CALIBRATION

USING NOISE CONSISTENCY

Shriiesh Var Sharma, M.S.

The University of Texas at Arlington,2020

Supervising Professor: Dr. Manfred Huber

Robots rely on sensors to map their surroundings. As a result, the accuracy of

the map depends heavily on the sensor noise and in particular on accurate

knowledge of it. The common way to minimize the impact of sensor noise is to

use filtering algorithms.

Accuracy of these filtering algorithms (like the Kalman filter) relies on the

accuracy of the user supplied measurement noise model. Inaccurate noise

models lead to higher residual noise in state estimates and errors in the

estimate of the precision of the state estimate. It is therefore important to have

precise noise models and thus accurately calibrated sensors.

6

Most current methods for estimating noise models require a knowledge of

'ground truth' labels for sensor data and often require either to remove the

sensor from the system or the presence of particular, sensor-specific calibration

targets. This method can be expensive and require modifications to the system

or the environment.

In this research, we present a method for estimating noise models for multiple

sensors without prior knowledge of ground truth and without the use of

calibration targets. In contrast, this method takes advantage of identifiable targets

in the environment to calibrate sensors against each other using a sensor noise

consistency measure based on KL Divergence. This algorithm can be run

periodically to update model estimates in unforeseen environments.

7

Table Of Contents

Chapter 1

INTRODUCTION AND RELATED WORK 2

1.1 Introduction 2

1.2 Related Work 5

Chapter 2

TECHNICAL BACKGROUND 7

2.1 Simultaneous Localization and Mapping (SLAM) 7

2.2 Bayesian Filtering 8

2.3 Sensor Noise Model 10

2.4 KL Divergence 11

Chapter 3

PROPOSED APPROACH 13

3.1 SLAM with Particle Filter 14

3.2 Compute Sensor Error 21

3.3 KL Divergence 23

3.4 Hill Climbing 25

3.5 Algorithm Summary 28

Chapter 4

DRY RUN 31

Chapter 5

EXPERIMENT AND RESULTS 34

5.1 Experiment 1 Details 34

5.2 Experiment 2 Details 40

5.3 Experiment 3 Details 46

Chapter 6

CONCLUSION AND FUTURE WORK 53

BIBLIOGRAPHY 54

8

Chapter 1

INTRODUCTION AND RELATED WORK

1.1 Introduction

Intelligent robots have gained popularity in today’s world. They are slowly

becoming a part of our daily lives. Autonomous cars, automated manufacturing lines, or

robotic arms for surgery are just a few examples. Efforts have been made to make

these autonomous systems flexible so that they can operate in the real world without

any special concessions. For example, in some cases, specialized environments are

made for robots to carry out very specific tasks. These robot specific environments can

escalate the cost of automation. Additionally, robots designed to work here will

experience a drastic drop in productivity or even completely fail to operate in a new

environment. To address this , extensive research has been proposed in the field of

robotics perception.

Akin to humans, robots need to observe/perceive their environment to perform any task.

Hence, perception is one of the most important tasks in order to achieve autonomy and

consistent performance in changing environments. Sensors are used to observe various

physical variables in the environment.

Two important tasks when applying perception to navigation are Localization and Mapping.

Localization is the task of state estimation given a map of the environment. This can

9

be achieved by using measurements from one or multiple sensors and finding the

distance of the robot to landmarks in the environment. Mapping is the task of

estimating the environment or map, given observations and state estimates.

In most real world applications, it is expected from a system to be flexible and work in

any new or unseen environments. In such a case, information about our location or

the map is not always available. Here, a technique called Simultaneous Localization and

Mapping(SLAM) is used. In a more formal description , SLAM can be defined as the

problem of constructing and updating map of the environment while simultaneously

keeping track of the robot's location within this map.

On the surface, this might seem like a chicken and egg problem. But, there are several

algorithms that can find an approximate solution within acceptable time constraints.

Most widely used algorithms are derivations of Bayesian filters, such as Kalman Filter,

Extended Kalman filter, Particle filter etc.

Sensors are noisy. There are multiple factors that contribute to noise, for example,

improper zero reference, physical damage, random changes in environment etc. An

important consideration here is to handle the sensor noise. States can be predicted

based on a motion model, but sensor observations are needed to update our belief in

this predicted state. If there existed a sensor with zero noise, one could simply use

those sensor readings as the state estimate. But, zero noise sensors are a myth, at

least in today’s world. Hence, the need to estimate how noisy the sensor is. The

accuracy of this assumed noise model has a significant impact on performance of the

filter and the state estimates.

10

The process of identifying and modelling the sensor noise is referred to as sensor

calibration. It is important to calibrate the sensors before deploying them in any real

world scenario. Inaccurate noise models may lead to higher residual noise in state

estimates and errors in the belief of the precision of state estimates. Most current

methods for calibration require a knowledge of ‘ground truth’ labels for sensor data and

some sensor specific calibration targets.

Figure 1 : Workings of a military sonar. Presence of random objects or animals may cause

erroneous readings.

11

Figure 2: Radar Calibration Figure 3: True Color calibration for cameras

Sphere
The Main contribution of this research is to investigate novel techniques for sensor

calibration. Specifically, trying to eliminate the need for sensor specific calibration targets.

To achieve this, a sensor noise consistency measure based on KL Divergence is used.

1.2 Related Work

Sensors are an important part of any robot, but their applications are not limited

to just this. Use of sensors is very widespread today. Hence, people have tried to

solve the problem of sensor calibration with the knowledge and experience in their

respective fields.

Bychkovskiy et al [10] talks about challenges faced in a large scale deployment of

sensors over large distances. It is mentioned that calibrating each and every single

sensor becomes intractable. Also, sensor maintenance can add another challenge if

each time sensors need to be recalibrated. They try to solve a very similar problem of

calibrating the sensors while they are deployed. Since physical locations of sensors are

12

known and fixed, they employ observation bias from sensors in the vicinity to calibrate

any given sensor in their network.

In Nikolic et al [12], the proposed methodology identifies noise processes across a large

range of strength and time-scales. For example, they consider weak gyroscope bias

fluctuations buried in broadband noise. This is accomplished with a classical maximum

likelihood estimator, based on the integrated process (i.e., the angle, velocity, or position),

rather than on the angular rate or acceleration as is standard in the literature. This

simple modification allows the authors to capture noise processes according to their

effect on the integrated process, irrespective of their contribution to rate or acceleration

noise. The cause of the noise is not discussed in this article.

Muhammad and Lacroix [13] talks about using ‘ground truth’ labels for sensor data.

LIDAR specific targets are used to perform calibration.

There are many similar examples of research on sensor calibration. It appears that no

one has attempted to calibrate sensors by employing statistical analysis or noise

consistency measures based on KL divergence.

13

Chapter 2

TECHNICAL BACKGROUND

2.1 Simultaneous Localization and Mapping (SLAM)

For robots to perform tasks, it is important to know where they are, i.e. their

location in the world map. This process is called localization.

Also, the knowledge about the world and surrounding objects is important and can be

achieved by observing and storing their distance from the robot's current location. This

is called mapping.

The simultaneous localization and mapping (SLAM) problem asks if it is possible for a

mobile robot to be placed at an unknown location in an unknown environment and for

the robot to incrementally build a consistent map of this environment while

simultaneously determining its location within this map.[3]

When building a robot that can perform in different environments, it is safe to assume

that location and map information will not be available. Hence, it is required to perform

simultaneous localization and mapping. An estimate of the observable environment is

created using the sensor observations, and based on this, an estimate of the robot's

location within this map is created. Although this might seem like a chicken and egg

problem, there are algorithms that can perform SLAM within acceptable time constraints.

Most widely used algorithms are from a family of filters called Bayesian filters. For

example: Kalman filter, extended Kalman filter and particle filters. The Kalman filter was

14

used in the Apollo missions for moon landing. This serves as a testament to their

robustness and reliability.

Figure 4: simultaneous estimate of both robot and landmark locations is required. The

true locations are never known or measured directly. Observations are made between

true robot and landmark locations.[3]

 2.2 Bayesian Filtering

Bayesian theory[5] is a branch of mathematical probability theory that allows

people to model the uncertainty about the world and the outcomes of interest by

incorporating prior knowledge and observational evidence. Bayesian analysis, interpreting

the probability as a conditional measure of uncertainty, is one of the popular methods

to solve the inference problems. In Bayesian inference, all uncertainties (including states,

parameters which are either time-varying or fixed but unknown, and priors) are treated

15

as random variables. The inference is performed within the Bayesian framework given

all of the available information. The objective of Bayesian inference is to use priors and

causal knowledge, quantitatively and qualitatively, to infer the conditional probability,

given finite observations.[5]

In robotics, Bayesian filtering is an algorithm that helps in calculating probabilities of

multiple state beliefs, and allows the robot to infer its state. It recursively estimates the

robot's state and updates the belief in state using observations.

Figure 5: Recursive predict and update cycle for Bayesian filtering

The goal is to estimate the true state x. The state is not directly accessible, but there

exist sensor observations of the underlying Hidden Markov Model. This means that the

true states are not observed but another process which is dependent on true states is

observed. By using a motion model, control inputs, sensor observations, estimate of

16

sensor noise and process noise; a state estimate and belief in that estimate can be

computed. A special case of Bayes filter called particle filter is used in this research.

2.3 Sensor Noise Model

Sensors are devices that observe some physical attribute in the environment and

convert that into a reading or a digital signal that can be easily interpreted. There are

various types of sensors that can broadly be categorized into active and passive

sensors. Sensors that send energy out into the environment are called active, eg:

Sonar. Sensors that only observe environmental signals, such as cameras, are called

passive sensors.

Sensors are noisy. Noise is the algebraic difference between observed value and true

value of observed variable. For a value of ground truth, the sensor may return a

different value each time. For example, for a true distance of 5, the sensor may return

5.05, 4.99, 5, etc. The difference between the sensor value and the true value is sensor

error. This error can be computed for different ground truth labels and a distribution can

be estimated from which these error values are drawn. This estimated noise distribution

is called the sensor noise model.

Observation = true state + random value from noise distribution

We need an estimate of this noise distribution to update our belief in predicted state.

The process of modelling the sensor noise involves predicting the true distribution

parameters from which the noise is generated. Most current methods for doing this

require the knowledge of ‘ground truth’ labels for sensor data and require sensor

17

specific calibration targets. For example to calibrate a lidar, specialized spheres are

used; to calibrate cameras, special camera calibration devices are needed.

The user supplied noise models directly affects the accuracy of state estimates. In this

research, the algorithm changes the value of this user supplied noise model to compare

noise consistency in the predicted states.

Figure 6: Assumption of sensor noise model along with the actual observations are used

to compute the belief in state.

2.4 KL Divergence

KL divergence[2] measures how different one distribution is from another. A KL

divergence of zero implies that both the distributions are the same. Intuitively, this is a

18

measure of area under the curve of distribution 1 not covered by the curve of

distribution 2.

Consider two probability distributions P and Q. P represents the true distribution from

which data is sampled. Q represents an approximation of the true distribution. KL

divergence is then interpreted as the difference between the number of bits required to

encode samples of P using a code optimized for Q.

Figure 7: KL divergence between distributions represented as area under the curve. Area

in blue represents the area difference

19

Chapter 3

PROPOSED APPROACH

In this research, a novel method for sensor calibration is introduced, in which the need

for sensor specific calibration targets is eliminated. By statistically analyzing sensor data

and computing noise consistency metrics, an approximation for true noise distribution is

achieved. For each sensor being calibrated, observations for identifiable targets in the

environment are used to calibrate the sensors against each other. A noise consistency

metric based on KL divergence is used. This algorithm can be run periodically to

update the sensor noise model.

Figure 8: Proposed architecture overview

20

3.1 SLAM with Particle Filter

When operating in an unknown environment, the robot has no knowledge about

its own location or the environment map. By using the sensor observations and by

moving around in the world, the robot will incrementally create a map estimate and

localize itself within that map. This task of simultaneously doing two tasks is known as

SLAM(simultaneous localization and mapping)

The motion of the robot can be predicted using a motion model. Motion model captures

the motion of a robot in a mathematical equation. Given a previous location, and a

control input to move, the motion model predicts where the robot is. Assuming the

robot started at origin(0, 0) , and a control input to move by (1, 1) , the state is

predicted as follows:

New_state = old_state + control_input + process_noise

Process noise can be caused due to multiple reasons. Including but not limited to ,

uneven surfaces, difference in tire size, motor power, battery level etc. Due to process

noise, we can assume that the robot may never execute control inputs with perfection,

hence the state prediction needs to take this process noise into consideration.

Formally, the motion model of the robot is given by:

x(t) = A*x(t-1) + B*u + w.

A is the state transition model, B is the control input model applied to control input u, w

is the process noise from a normal distribution with zero mean and covariance

21

Figure 9: What the trajectory may look like given some process noise

In a particle filter, at the start, when predicting the next state, multiple predictions are

made. Each prediction assumes a slightly different value for process noise. Each

prediction is called a particle. The number of particles is decided by the user. For

example,

Robot starts at origin - (0, 0)

Apply control input of - (1, 1)

Process noise - mean(0, 0) and cov[(0.1, 0), (0, 0.2)]

N state predictions - A*(0, 0) + B(1, 1) + N samples from process noise.

22

Figure 10: Robot Spawn Figure 11: Control input to robot

Figure 12: Particle state and weight prediction step

23

Each of the predicted states is assigned a weight. The weight represents the probability

of that particle occurring. In the absence of any observations or information about the

environment, each particle is assigned the same weight. These weights will be updated

when we receive a sensor reading and we know something about the environment.

As soon as the robot receives an observation from the sensor, the probability of

particles will change. Depending on the reading, the robot can compute the likelihood of

being at a position given some estimate of the environment and a sensor reading.

Likelihood is calculated by computing the probability of observation given a state

estimate P(observation | particle). For a given state estimate (x, y), the observation can

be in the range: State ± Sensor noise. Intuitively, this represents a Gaussian with state

estimate as mean and sensor noise as variance. This process is explained in the figure

below:

24

Figure 13: Updating weights based on observations

The robot moves in the environment based on control inputs and keeps updating the

state estimate and the map estimate based on the observations. Note that the weights

of particles depend heavily on the assumption of sensor noise. An assumption of noise

lower than the true noise will result in a lower weight for particles which deserve a

higher weight or higher weight for ones that deserve a lower weight.

25

This effect can be observed in the figure below. For a gaussian with mean as the

position estimate and assumed noise parameter as the variance vs true noise

parameters, the probability of getting a sensor reading will vary.

Figure 14: Probability of observation varies depending on assumption of noise model

After this step, the robot will have multiple state estimates for a given timestep. Each

estimate will have an associated weight. For most practical applications, there needs to

be one estimate for each timestep. To compute one state estimate, the weighted sum

of all possible states is used.

26

State Estimate =

The particle filter recursively performs these steps to get a state estimate for each

timestep.

Figure 15: Recursive predictions and updates to estimate the trajectory

27

3.2 Compute Sensor Error

Sensor error is the algebraic difference between the observation corresponding to

the true state value and the reading returned by sensor. For this experiment, the sensor

error is the difference between actual sensor reading and the sensor state estimate. The

state is represented as cartesian coordinates (x, y) whereas the sensor reading is for a

distance sensor, such as a LIDAR sensor and thus is in terms of distance to unknown

obstacles in the world. Hence, this difference cannot be calculated without some

transformations representing the relation between the state and the sensor reading. For this,

state estimates are converted into predicted sensor readings. Predicted sensor readings,

zi, are here the distance between state estimate(x, y) and landmark position

estimate(x, y). Since both are now in the same state space, their difference can be

computed.

28

Figure 16: Computing error between actual and predicted observations

An error value for each particle (state estimate) is computed against each sensor. This

results in n error values and associated weights. The total error value of a timestep is

given by the weighted sum of all errors. This is represented in the figure below:

redicted state position(x1, 1)p = y

redicted map landmark position(x2, 2)p = y

redicted sensor reading distance(predicted state, predicted map)p =

istance predicted error true sensor reading predicted sensor reading d = √((x2 1) (y2 y1))− x 2 ̂ + − 2 = −

29

Figure 17: Recursive prediction and updates to estimate the trajectory

3.3 KL Divergence

After computing a list of discrete error values for all sensors, the robot needs to

analyze how likely these error values are given the knowledge of assumed parameters

for sensor noise. The list of discrete error values can be treated as a sample set

drawn from the true noise distribution, but biased by the assumption of the noise

distribution. Assuming that the error samples are drawn from a Gaussian distribution, its

probability density is calculated. As depicted in Figure 14, the total distance between the

assumed and the predicted sensor noise models is dependent on the assumed noise

parameters. Hence by changing these values total distance can be manipulated.

30

Assuming we use two sensors and that the senor noise models are gaussian for both, the total

distance between assumed and predicted sensor noise models for all sensors can be computed

using KL divergence:

DF eP (assumed)i = 1
σai

√2π
− 2

1(σai
x−μ)

DF eP (predicted)i = 1
σpi

√2π
− 2

1(σpi
x−μ)

1 DF p2 DF (assumed)p = P (assumed)1 , = P 2

1 DF q2 DF (predicted)q = P (predicted)1 , = P 2

31

Figure 18: Algorithm Recap

3.4 Hill Climbing

If the assumed noise model for each of the sensors is the correct noise model (i.e. if the

sensors are correctly calibrated), we would expect that the predicted (observed) sensor noise

would follow the same distribution and thus that the total distance (the KL divergence between

the assumed and predicted distributions) is small. To achieve this, we need to update the

assumed sensor noise model such that the total distance is minimized (and thus the noise

models are consistent).

Hill climbing is an iterative algorithm to find a solution for an optimization problem. It

starts with a random solution to the problem and computes the value of the function by

making small changes to input parameters. When a parameter returns a better solution

32

to the problem the value for the best solution is updated. This process is executed

iteratively until a global/local minima is found.

In the sensor calibration problem, the assumed noise parameters serve as the input to

the optimization problem. A change in these parameters will result in a change in total

KL divergence. The parameters are sensor1(mean, var) , sensor2(mean, var). 4

neighbors are computed for each parameter, hence the algorithm computes KL

Divergence for: sensor1(mean+step, var);

sensor1(mean-step, var);

sensor1(mean, var+step);

sensor1(mean, var-step);

sensor2(mean+step, var);

sensor2(mean-step, var);

sensor2(mean, var+step);

sensor2(mean, var-step)

33

If total distance is lower for any of the neighbors, that set of parameters will become

the best solution and the algorithm explores the distance for its neighbors. When the

algorithm gets stuck in a minima, it makes a random jump in an attempt to break free.

Higher numbers of random jumps will result in a higher probability of breaking free but

also increases the computation time.

If after a few random jumps, the value of best parameters does not change, that set of

parameters is accepted as the solution.

To test the validity of this method, several experiments are conducted. The results from

these experiments are discussed in Chapter 5.

34

3.5 Algorithm Summary

In this algorithm, a trajectory is generated for the robot. This trajectory is based

on the control inputs. The true states are generated using the control inputs and a

motion model. In the real world, there always exists some process noise in the motion

of the robot and thus the same control inputs can result in different trajectories. The true

trajectory states are generally not observable by the robot but will be estimated as part of the

Bayesian filtering process. In our experiments we are using simulation data for this

experiment, and we thus use random noise parameters to generate true states. These

true states are used to generate true sensor readings based on a true sensor noise

model as part of the simulation. Using this sequence of sensor readings, the proposed

approach uses initial assumed sensor models to estimate the distribution of trajectories using a

particle filter, computes a predicted sensor noise distribution from this trajectory distribution and

the sensor readings, and then updates the assumed sensor noise model using a hill climbing

step on the total distance of the assumed and the predicted sensor noise models for all the

sensors. This improvement process is repeated until no further improvement can be achieve

and thus until the most consistent sensor noise models have been found. More detailed, the

algorithms goes through the following steps:

Prediction Step: Based on known control inputs, an assumed process noise and a

motion model, robot states are predicted.

Update Step: Based on the predicted state, an assumed noise model and sensor

readings, the belief in that predicted state is updated. The algorithm computes how

35

likely the robot is at a predicted location given a sensor reading. The likelihood of a

robot being in a state is dependent on the belief of how much noise exists in the

sensor reading or in this case, the assumed noise model.

Compute Expected Sensor Readings: Now, there exists a list of state estimates for

each timestep and an estimate of the map (landmark locations). Based on these

estimates, the algorithm computes expected sensor readings for each timestep and sate

estimate. Note that there also exists a list of actual sensor readings. If the assumed

sensor noise is the same as true sensor noise, then the sensor error distributions based

on the state predictions is consistent with the original assumption and thus the assumed

sensor noise models are consistent. In the case where assumed noise parameters are not

the same as true noise parameters, the predicted states are not consistent with the noise

assumptions and thus the noise assumptions should be adjusted to yield more consistent

estimates. The predicted sensor error values can be interpreted as samples drawn from

the true noise distribution , but biased by the assumed noise distribution.

Compute Distribution Parameters: Parameters are computed for the distribution from

which these predicted error values are most likely to be drawn. The algorithm already

knows the value for assumed noise parameters.

Compute KL Divergence: Divergence between the assumed error distribution and the

predicted error distribution gives us a measure of how far we are from the true noise

distribution. The goal is to minimize this distance.

Noise model optimization: The assumed noise parameters are changed recursively and

the whole algorithm is run again. If a lower value of KL Divergence is found for some

36

assumed noise parameters, then the values for best parameters are updated until no

smaller value can be found.

In the results, in each iteration, the algorithm computes 4 neighbors for both the

assumed noise parameters. It only prints KL divergence values if a lower value is found.

A list of KL divergence is updated every time a lower value is found. At the end of

program execution, the KL divergence values are plotted.

37

Chapter 4

DRY RUN

In this section we will assume some random values for our parameters and try to see

how the algorithm pushes the parameters towards true noise distribution. Let’s assume

this case for sensor 1:

True Noise: Mean(0, 0) Var(0.2, 0.1)
Iteration 1:
Assumed Noise: Mean(0, 0) Var(0.6, 0.8)

True State (0, 0) (1, 1) (2, 2)

True
observation

10 12 14

Predicted
state

(0, 0) (1.02, 0.97) (2.6, 1.91)

Predicted
observation

9.5 11.4 14.4

Predicted
error

0.5 0.6 -0.4

Predicted Noise: Mean(0, 0) Var(0.4, 0.6)
KLDiv(assumed noise, predicted noise) = 4
Assumed parameters are far away from true noise and hence we see a large value for
kl divergence.
--
True Noise: Mean(0, 0) Var(0.2, 0.1)
Iteration 2:
Assumed Noise: Mean(0, 0) Var(0.4, 0.3)

True State (0, 0) (1, 1) (2, 2)

True
observation

10 12 14

38

Predicted
state

(0, 0) (1.01, 0.99) (1.8, 2.01)

Predicted
observation

9.8 12.5 14.4

Predicted
error

0.2 0.5 -0.4

Predicted Noise: Mean(0, 0) Var(0.3, 0.5)
KLDiv(assumed noise, predicted noise) = 2
Assumed parameters are far away from true noise but clo were in the last iteration.
Hence we see a smaller value for kl divergence.

We observe the same trend for sensor 2.

Assume this case for sensor 2:
True Noise: Mean(0, 0) Var(0.2, 0.1)
Iteration 1:
Assumed Noise: Mean(0, 0) Var(0.4, 0.3)

True State (0, 0) (1, 1) (2, 2)

True
observation

10 12 14

Predicted
state

(0, 0) (1.01, 0.99) (1.8, 2.01)

Predicted
observation

9.8 12.5 14.4

Predicted
error

0.2 0.5 -0.4

Predicted Noise: Mean(0, 0) Var(0.3, 0.5)
KLDiv(assumed noise, predicted noise) = 1.5
--
True Noise: Mean(0, 0) Var(0.2, 0.1)
Iteration 2:
Assumed Noise: Mean(0, 0) Var(0.6, 0.8)

True State (0, 0) (1, 1) (2, 2)

39

True
observation

10 12 14

Predicted
state

(0, 0) (1.02, 0.97) (2.6, 1.91)

Predicted
observation

9.5 11.4 14.4

Predicted
error

0.5 0.6 -0.4

Predicted Noise: Mean(0, 0) Var(0.4, 0.6)
KLDiv(assumed noise, predicted noise) = 3
True Noise Sensor1: Mean(0, 0) Var(0.2, 0.1)
Assumed Noise Sensor1: Mean(0, 0) Var(0.4, 0.3)
Predicted Noise Sensor1: Mean(0, 0) Var(0.3, 0.5)
KL1(assumed noise, predicted noise) = 4

True Noise Sensor2: Mean(0, 0) Var(0.2, 0.1)
Assumed Noise Sensor2: Mean(0, 0) Var(0.6, 0.8)
Predicted Noise Sensor2: Mean(0, 0) Var(0.3, 0.5)
KL2(assumed noise, predicted noise) = 1.5

Total KL = KL1 + KL2 = 5.5

Update assumed parameters and compute total KL divergence again

True Noise Sensor1: Mean(0, 0) Var(0.2, 0.1)
Assumed Noise Sensor1: Mean(0, 0) Var(0.6, 0.8)
Predicted Noise Sensor1: Mean(0, 0) Var(0.4, 0.6)
KLDiv(assumed noise, predicted noise) = 3

True Noise Sensor2: Mean(0, 0) Var(0.2, 0.1)
Assumed Noise Sensor2: Mean(0, 0) Var(0.4, 0.3)
Predicted Noise Sensor2: Mean(0, 0) Var(0.3, 0.5)
KLDiv(assumed noise, predicted noise) = 2

Total KL = KL1 + KL2 = 5.0

40

Lower value found for KL Divergence. This implies that the assumption for sensor noise
is better than the previous one. We continue these steps until there is no lower value
found for kl divergence.

41

Chapter 5

EXPERIMENT AND RESULTS

To validate the algorithm, several experiments are conducted and their results

compared against the expected output. Different values for hyperparameters are tested

and the KL Divergence graph is analyzed.

5.1 Experiment 1 Details

In this experiment, we use a small process noise to generate a true trajectory.

These true states are used to generate true sensor readings based on a true sensor

noise model. Then , based on an assumed sensor noise, control inputs and an

assumed process noise, robot states are predicted and updated. These states are then

used to calculate predicted sensor readings. The assumed noise model will affect the

predicted sensor readings. These predicted sensor readings are used to calculate the

error values in true sensor readings. Parameters are computed for the distribution from

which these predicted error values are most likely to be drawn. KL Divergence between

the assumed error distribution and predicted error distribution gives us a measure of

how far we are from the true noise distribution. The goal is to minimize this distance.

The assumed noise parameters are changed and the whole algorithm is run again. If a

lower value of KL Divergence is found for some parameters, then the values for best

parameters are updated until no smaller value can be found.

In the results, in each iteration, the algorithm computes 4 neighbors for both the

assumed noise parameters. It only prints KL divergence values if a lower value is found.

42

A list of KL divergence is updated every time a lower value is found. At the end of

program execution, the kl divergence values are plotted.

○ Robot’s state space

■ cartesian space

■ i observable landmarks at

position [xi, yi]

■ state - [x, y]

○ Observation space

■ distance in cartesian space

■ dist(state, landmark)

○ true process noise

■ mean - [0, 0]

■ var - [0.00, 0.00]

○ true noise sensor 1

■ mean - [0, 0]

■ var - [0.3, 0.4]

○ true noise sensor 2

■ mean - [0, 0]

43

■ var - [0.5, 0.6]

● Particle Filter Parameters

○ Number of particles - 80

○ assumed process noise

■ mean - [0, 0], var - [0.00, 0.00]

○ assumed noise sensor 1

■ mean - [0, 0], var - [0.3, 0.4]

○ assumed noise sensor 2

■ mean - [0, 0], var - [0.5, 0.6]

● Hill Climbing Parameters

○ Step size - [0.01, 0.01]

○ Compute 4 neighbours

○ 5 random jumps if stuck in minima

These parameters result in the following result:

True_var1 [0.3 0.4] Predicted_var1: [0.3 0.4]

True_var2 [0.5 0.6] Predicted_var2: [0.5 0.6]

Total dist: 1.0983091777875669

44

True_var1 [0.3 0.4] Predicted_var1: [0.31 0.4]

True_var2 [0.5 0.6] Predicted_var2: [0.5 0.6]

Total dist: 1.0533198017373118

True_var1 [0.3 0.4] Predicted_var1: [0.31 0.4]

True_var2 [0.5 0.6] Predicted_var2: [0.51 0.6]

Total dist: 1.0066273799027172

Best params after iteration: 1

True_var1 [0.3 0.4] Predicted_var1: [0.31 0.4]

True_var2 [0.5 0.6] Predicted_var2: [0.51 0.6]

Total dist: 1.0066273799027172

True_var1 [0.3 0.4] Predicted_var1: [0.31 0.39]

True_var2 [0.5 0.6] Predicted_var2: [0.51 0.6]

Total dist: 0.9904466820051904

Best params after iteration: 2

True_var1 [0.3 0.4] Predicted_var1: [0.31 0.39]

True_var2 [0.5 0.6] Predicted_var2: [0.51 0.6]

Total dist: 0.9904466820051904

45

True_var1 [0.3 0.4] Predicted_var1: [0.31 0.39]

True_var2 [0.5 0.6] Predicted_var2: [0.5 0.6]

Total dist: 0.9729403231840754

Best params after iteration: 3

True_var1 [0.3 0.4] Predicted_var1: [0.31 0.39]

True_var2 [0.5 0.6] Predicted_var2: [0.5 0.6]

Total dist: 0.9729403231840754

Best params after iteration: 4

True_var1 [0.3 0.4] Predicted_var1: [0.31 0.39]

True_var2 [0.5 0.6] Predicted_var2: [0.5 0.6]

Total dist: 0.9729403231840754

Found local/global minima. Making a random jump

Best params after iteration: 5

True_var1 [0.3 0.4] Predicted_var1: [0.31 0.39]

True_var2 [0.5 0.6] Predicted_var2: [0.5 0.6]

Total dist: 0.9729403231840754

Found local/global minima. Making a random jump

Best params after iteration: 6

46

True_var1 [0.3 0.4] Predicted_var1: [0.31 0.39]

True_var2 [0.5 0.6] Predicted_var2: [0.5 0.6]

Total dist: 0.9729403231840754

Found local/global minima. Making a random jump

Best params after iteration: 7

True_var1 [0.3 0.4] Predicted_var1: [0.31 0.39]

True_var2 [0.5 0.6] Predicted_var2: [0.5 0.6]

Total dist: 0.9729403231840754

Found local/global minima. Making a random jump

Best params after iteration: 8

True_var1 [0.3 0.4] Predicted_var1: [0.31 0.39]

True_var2 [0.5 0.6] Predicted_var2: [0.5 0.6]

Total dist: 0.9729403231840754

Found local/global minima.

Process finished.

KL Divergence Graph:

47

With each epoch, the algorithm explores neighbors for the current parameters. The

values of parameters are updated only when a lower KL Divergence is found. Once a

minimum value is found, the algorithm makes 5 random jumps and exits if no lower

value for total distance is found.

In this case, where

true var1: [0.3 0.4]

true var2: [0.5 0.6],

starting from:

var1: [0.3 0.4],

var2: [0.5 0.6],

48

Total dist: 1.0983091777875669

The algorithm converges to

predicted_var1 [0.31 0.39],

predicted_var2: [0.5 0.6],

Total dist: 0.9729403231840754

This is the expected result. As we initialized true noise to be the same as assumed

noise, it should not move.

5.2 Experiment 2 Details

We use zero process noise in this experiment. But, the assumed noise

parameters are not the same as true noise. The expected result here is for the

algorithm to push these assumed parameter values towards the true distribution.

○ Robot’s state space

■ cartesian space

■ i observable landmarks at

position [xi, yi]

■ state - [x, y]

○ Observation space

49

■ distance in cartesian space

■ dist(state, landmark)

○ true process noise

■ mean - [0, 0]

■ var - [0.0, 0.0]

○ true noise sensor 1

■ mean - [0, 0]

■ var - [0.3, 0.4]

○ true noise sensor 2

■ mean - [0, 0]

■ var - [0.5, 0.6]

● Particle Filter Parameters

○ Number of particles - 80

○ assumed process noise

■ mean - [0, 0], var - [0.0, 0.0]

○ assumed noise sensor 1

■ mean - [0, 0], var - [0.4, 0.6]

50

○ assumed noise sensor 2

■ mean - [0, 0], var - [0.7, 0.9]

● Hill Climbing Parameters

○ Step size - [0.01, 0.01]

○ Compute 4 neighbours

○ 5 random jumps if stuck in minima

These parameters result in the following result:

True_var1 [0.3 0.4] Predicted_var1: [0.4 0.6]

True_var2 [0.5 0.6] Predicted_var2: [0.7 0.9]

Total dist: 1.0440139771656285

Best params after iteration: 1

True_var1 [0.3 0.4] Predicted_var1: [0.4 0.6]

True_var2 [0.5 0.6] Predicted_var2: [0.7 0.9]

Total dist: 1.0440139771656285

Found local/global minima. Making a random jump

True_var1 [0.3 0.4] Predicted_var1: [0.399 0.599]

True_var2 [0.5 0.6] Predicted_var2: [0.6 0.8]

Total dist: 1.0440139771656285

51

Best params after iteration: 2

True_var1 [0.3 0.4] Predicted_var1: [0.4 0.6]

True_var2 [0.5 0.6] Predicted_var2: [0.7 0.9]

Total dist: 1.0440139771656285

Found local/global minima. Making a random jump

True_var1 [0.3 0.4] Predicted_var1: [0.399 0.599]

True_var2 [0.5 0.6] Predicted_var2: [0.6 0.8]

Total dist: 1.0440139771656285

True_var1 [0.3 0.4] Predicted_var1: [0.29900000000000004, 0.599]

True_var2 [0.5 0.6] Predicted_var2: [0.6 0.8]

Total dist: 1.015869536390541

True_var1 [0.3 0.4] Predicted_var1: [0.29900000000000004, 0.599]

True_var2 [0.5 0.6] Predicted_var2: [0.6, 0.7000000000000001]

Total dist: 1.0143010997249888

Best params after iteration: 3

True_var1 [0.3 0.4] Predicted_var1: [0.29900000000000004, 0.599]

True_var2 [0.5 0.6] Predicted_var2: [0.6, 0.7000000000000001]

Total dist: 1.0143010997249888

52

True_var1 [0.3 0.4] Predicted_var1: [0.19900000000000004, 0.599]

True_var2 [0.5 0.6] Predicted_var2: [0.6, 0.7000000000000001]

Total dist: 1.0121511319180874

True_var1 [0.3 0.4] Predicted_var1: [0.29900000000000004, 0.499]

True_var2 [0.5 0.6] Predicted_var2: [0.6, 0.7000000000000001]

Total dist: 0.96917096948818

Best params after iteration: 4

True_var1 [0.3 0.4] Predicted_var1: [0.29900000000000004, 0.499]

True_var2 [0.5 0.6] Predicted_var2: [0.6, 0.7000000000000001]

Total dist: 0.96917096948818

True_var1 [0.3 0.4] Predicted_var1: [0.29900000000000004, 0.399]

True_var2 [0.5 0.6] Predicted_var2: [0.6, 0.7000000000000001]

Total dist: 0.9256901485206264

True_var1 [0.3 0.4] Predicted_var1: [0.29900000000000004, 0.399]

True_var2 [0.5 0.6] Predicted_var2: [0.6, 0.6000000000000001]

Total dist: 0.9044666632844132

53

Best params after iteration: 5

True_var1 [0.3 0.4] Predicted_var1: [0.29900000000000004, 0.399]

True_var2 [0.5 0.6] Predicted_var2: [0.6, 0.6000000000000001]

Total dist: 0.9044666632844132

Best params after iteration: 6

True_var1 [0.3 0.4] Predicted_var1: [0.29900000000000004, 0.399]

True_var2 [0.5 0.6] Predicted_var2: [0.6, 0.6000000000000001]

Total dist: 0.9044666632844132

Found local/global minima. Making a random jump

True_var1 [0.3 0.4] Predicted_var1: [0.298 0.398]

True_var2 [0.5 0.6] Predicted_var2: [0.5 0.5]

Total dist: 0.9044666632844132

True_var1 [0.3 0.4] Predicted_var1: [0.29900000000000004, 0.399]

True_var2 [0.5 0.6] Predicted_var2: [0.6, 0.5000000000000001]

Total dist: 0.8838221398105923

True_var1 [0.3 0.4] Predicted_var1: [0.29900000000000004, 0.399]

True_var2 [0.5 0.6] Predicted_var2: [0.5, 0.40000000000000013]

Total dist: 0.8817247532095723

54

Best params after iteration: 7

True_var1 [0.3 0.4] Predicted_var1: [0.29900000000000004, 0.399]

True_var2 [0.5 0.6] Predicted_var2: [0.5, 0.40000000000000013]

Total dist: 0.8817247532095723

Best params after iteration: 8

True_var1 [0.3 0.4] Predicted_var1: [0.29900000000000004, 0.399]

True_var2 [0.5 0.6] Predicted_var2: [0.5, 0.40000000000000013]

Total dist: 0.8817247532095723

Found local/global minima. Making a random jump

True_var1 [0.3 0.4] Predicted_var1: [0.298 0.398]

True_var2 [0.5 0.6] Predicted_var2: [0.4 0.3]

Total dist: 0.8817247532095723

Best params after iteration: 9

True_var1 [0.3 0.4] Predicted_var1: [0.29900000000000004, 0.399]

True_var2 [0.5 0.6] Predicted_var2: [0.5, 0.40000000000000013]

Total dist: 0.8817247532095723

Found local/global minima

55

Process finished.

KL Divergence Graph:

This experiment shows that the proposed approach correctly identifies the noise parameters as

optimal. The small update step in the first iteration is the result of the predicted sensor noise

model being represented on a particle set and thus corresponding to the mixture model, slightly

56

biasing it compared to the assumed model which is a single Gaussian.

5.3 Experiment 3 Details

We use non zero process noise. And assumed parameters that are far off from true

noise parameters.

○ Robot’s state space

■ cartesian space

■ i observable landmarks at

position [xi, yi]

■ state - [x, y]

○ Observation space

■ distance in cartesian space

■ dist(state, landmark)

○ true process noise

■ mean - [0, 0]

■ var - [0.01, 0.002]

○ true noise sensor 1

57

■ mean - [0, 0]

■ var - [0.3, 0.4]

○ true noise sensor 2

■ mean - [0, 0]

■ var - [0.5, 0.3]

● Particle Filter Parameters

○ Number of particles - 80

○ assumed process noise

■ mean - [0, 0], var - [0.01, 0.002]

○ assumed noise sensor 1

■ mean - [0, 0], var - [0.4, 0.5]

○ assumed noise sensor 2

■ mean - [0, 0], var - [0.6, 0.7]

● Hill Climbing Parameters

○ Step size - [0.01, 0.01]

○ Compute 4 neighbours

○ 5 random jumps if stuck in minima

58

True_var1 [0.3 0.4] Predicted_var1: [0.4 0.5]
True_var2 [0.5 0.3] Predicted_var2: [0.6 0.7]
Total dist: 12.485092397101111

True_var1 [0.3 0.4] Predicted_var1: [0.41000000000000003, 0.5]
True_var2 [0.5 0.3] Predicted_var2: [0.6 0.7]
Total dist: 10.320646004520357

True_var1 [0.3 0.4] Predicted_var1: [0.39, 0.5]
True_var2 [0.5 0.3] Predicted_var2: [0.6 0.7]
Total dist: 10.196268827266818

Best params after iteration: 1

True_var1 [0.3 0.4] Predicted_var1: [0.39, 0.5]
True_var2 [0.5 0.3] Predicted_var2: [0.6 0.7]
Total dist: 10.196268827266818

True_var1 [0.3 0.4] Predicted_var1: [0.39, 0.5]
True_var2 [0.5 0.3] Predicted_var2: [0.61, 0.7]
Total dist: 9.273738685136298

Best params after iteration: 2

True_var1 [0.3 0.4] Predicted_var1: [0.39, 0.5]
True_var2 [0.5 0.3] Predicted_var2: [0.61, 0.7]
Total dist: 9.273738685136298

Best params after iteration: 3

True_var1 [0.3 0.4] Predicted_var1: [0.39, 0.5]
True_var2 [0.5 0.3] Predicted_var2: [0.61, 0.7]
Total dist: 9.273738685136298

Found local/global minima. Making a random jump

True_var1 [0.3 0.4] Predicted_var1: [0.38 0.49]
True_var2 [0.5 0.3] Predicted_var2: [0.51 0.6]
Total dist: 9.273738685136298

Best params after iteration: 4

59

True_var1 [0.3 0.4] Predicted_var1: [0.39, 0.5]
True_var2 [0.5 0.3] Predicted_var2: [0.61, 0.7]
Total dist: 9.273738685136298

Found local/global minima. Making a random jump

True_var1 [0.3 0.4] Predicted_var1: [0.38 0.49]
True_var2 [0.5 0.3] Predicted_var2: [0.51 0.6]
Total dist: 9.273738685136298

This is not converging on to true noise but, this is expected as we do not know the
true process noise.

60

Chapter 6

CONCLUSION AND FUTURE WORK

In this research, we have successfully created an algorithm that approximates sensor

noise models.

This is particularly useful in cases where sensor specific calibration targets are not

available. In such cases, often this algorithm can be used to approximate a noise

model, which (in most cases) will be better than making a random guess.

This algorithm also addresses the problem where sensors are deployed in large scale/

spread over a large area and calibrating each sensor individually is intractable. In such

cases, this also makes maintenance of such sensor networks easier as calibration is

automated.

In case of unforeseen environments, where the physics parameters might change, for

example in space exploration, estimating a noise model may be cheaper than carrying

sensor specific calibration targets.

In future, we want to implement this for all kinds of distributions and not just

Gaussians. Also, the current implementation and mathematics only handles motion in

2D. This can be improved to implement in higher dimensions.

In the current implementation, the algorithm will converge close to but not exactly on

the true prior distribution. The reason for this is that there exists a process noise and

we do not know the distribution of this process noise. Hence, we model a noise that

also incorporates process noise.

61

BIBLIOGRAPHY

[1] http://hdl.handle.net/10068/56439 Non-linear filtering : Monte Carlo particle resolution

[2] Kullback, S.; Leibler, R. A. On Information and Sufficiency. Ann. Math. Statist. 22

(1951), no. 1, 79--86. doi:10.1214/aoms/1177729694.
https://projecteuclid.org/euclid.aoms/1177729694

[3] H. Durrant-Whyte and T. Bailey, "Simultaneous localization and mapping: part I," in

IEEE Robotics & Automation Magazine, vol. 13, no. 2, pp. 99-110, June 2006, doi:
10.1109/MRA.2006.1638022.

[4] Whitehouse, K., Culler, D.: Calibration as parameter estimation in sensor

networks. In: 2002 ACM International Workshop on Wireless Sensor Networks
and Applications (WSNA’02), Atlanta, Georgia (2002) 67

[5] Z. Chen, Bayesian Filtering: From Kalman filters to particle filters and beyond.

[6] Cevher, V., McClellan, J.: Sensor array calibration via tracking with the
extended kalman filter. In: 2001 IEEE International Conference on Acoustics,
Speech, and Signal Processing. Volume 5. (2001) 2817–2820

[7] S. Thrun. Is robotics going statistics? The field of probabilistic robotics.

Communications of the ACM, 2001

[8] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM: A factored
solution to the simultaneous localization and mapping problem. In AAAI-02.

[9] S. Majumder, H. Durrant-Whyte, S. Thrun, and M. de Battista. An approximate

Bayesian method for simultaneous localisation and mapping. Submitted for
publication, 2002.

[10] Bychkovskiy V., Megerian S., Estrin D., Potkonjak M. (2003) A Collaborative
Approach to In-Place Sensor Calibration. In: Zhao F., Guibas L. (eds)
Information Processing in Sensor Networks.

62

http://hdl.handle.net/10068/56439
https://projecteuclid.org/euclid.aoms/1177729694

[11] H. Attias, “Inferring parameters and structure of latent variable models by
variational Bayes,” in Proc. 15th Conf. UAI, UAI’99, 1999.

[12] J. Nikolic, P. Furgale, A. Melzer and R. Siegwart, "Maximum Likelihood

Identification of Inertial Sensor Noise Model Parameters," in IEEE Sensors
Journal , vol. 16, no. 1, pp. 163-176, Jan.1, 2016, doi:
10.1109/JSEN.2015.2476668.

[13] N. Muhammad and S. Lacroix, "Calibration of a rotating multi-beam lidar," 2010
IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei,
2010, pp. 5648-5653, doi: 10.1109/IROS.2010.5651382.

63

