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ABSTRACT

OPTIMAL BANDWIDTH SELECTION FOR DECONVOLUTED KERNEL

DENSITY ESTIMATION USING BOOTSTRAP METHOD

SOUAD SOSA, Ph.D.

The University of Texas at Arlington, 2020

Supervising Professor: Dr. Shan Sun-Mitchell

To estimate an unknown density when observed measurements are from the

convolution model contaminated by additive measurement errors, Stefanski and

Carroll (1990) proposed using Fourier inversion on the product of Fourier transform of

a kernel function and the characteristic function of the error variable. One important

element in constructing such a density estimator is the bandwidth. The goal of this

research is to establish an optimal bandwidth so that the mean integrated squared

error of the estimator is minimized. The bootstrap method is used to accomplish this

goal. The simulation results show that the estimated optimal bandwidths provide

adequate estimation to the unknown densities.
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CHAPTER 1

INTRODUCTION

The deconvolving kernel density estimator is a method which allows to estimate

a population density function from a contaminated sample. Let us consider the

estimation of an unknown continuous population density function from a sample

containing random errors. This is a type of deconvolution problem which has many

applications in the fields of engineering, econometrics, astronomy, public health,

and others. Kernel density estimators have been used extensively since Rosenblatt

(1956) [11]. They have proven to be useful when estimating an unknown density

population f
X

. The deconvolving kernel density estimator is a suitable estimator when

random variables contain errors as contaminated samples are common in applications.

Although many articles have described its mechanism and usage, many issues still

arise such as estimating the optimal bandwidth given a contaminated random sample.

To introduce our model, we let X, Y, and Z be random variables which satisfy

the general model

Y = X + Z,

where X is an unobservable random variable from an unknown p.d.f. (population

density function) f
X

, Y is an observable random variable with an unknown p.d.f. f
Y

,

and Z is a random variable representing the random error with the p.d.f. f
Z
. We

also assume that the random variables X and Z are independent.

Throughout this thesis, we assume f
Z

is known and we choose the Laplace

error distribution and discuss the reason for its selection in Chapter 2. Note that

contrary to f
X

and f
Y

we know the distribution for f
Z
. The assumption that we
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know the distribution for f
Z

appears restrictive. Nevertheless, in reality it is common

to obtain insufficient information regarding f
Z

, see Delaigle and Gijbels (2004) [3]. It

is possible to consider the case where the distribution of Z is known. However, that

case will not be considered in this thesis.

Our goal is to estimate the unknown density f
X

based on a given observable

random contaminated sample Y1, Y2, ..., Yn. We achieve our goal by estimating the

optimal bandwidth h for our deconvolving kernel density estimator. The bandwidth

h is a scaling factor which influences the spread of the kernel density. When h is

significantly small, it introduces too much variance, whereas when h is significantly

large it introduces too much bias. The optimal bandwidth h is the one which

establishes an equilibrium between the variance and the bias, see Wand and Jones

(1995) [15]. We estimate the unknown density f
X

via the convolution f
Y

= f
X
∗ f

Z

and

ϕ
f
X

(t) =
ϕ
f
Y

(t)

ϕ
f
Z

(t)
, (1.1)

where ϕ is the characteristic function of the corresponding density. The Fourier

inversion theorem describes f
X

(x) as

f
X

(x) =
1

2π

∫
e−itx ϕ

f
X

(t) dt

=
1

2π

∫
e−itx

(
ϕ
f
Y

(t)

ϕ
f
Z

(t)

)
dt,

and its estimator f̂
X

(x) as

f̂
X

(x) =
1

2π

∫
e−itx

(
ϕf̂

Y
(t)

ϕfZ (t)

)
dt. (1.2)

Note that in the integrals above the t-values run over the common support of the

respective characteristic functions ϕ
f
X

, ϕ
f
Y

, and ϕ
f
Z

.
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Given the observable i.i.d. sample Y1, Y2, ..., Yn, the unknown density f
Y

(x) can be

estimated by using its kernel estimator

f̂
Y

(x, h) =
1

nh

n∑
j=1

K

(
x− Yj
h

)
, (1.3)

where we use f̂
Y

(x, h) instead of f̂
Y

(x) to emphasize the dependence on the parameter

h and we use K to denote the kernel function. Note that h actually depends on

sample size n but in our notation we simply use h and suppress the dependence on n.

We recall that in general the quantity h is actually a sequence of positive parameters

called bandwidths. The kernel function K appearing in (1.3) is assumed to satisfy

the following conditions:

(i)

∫ ∞
−∞

K(x) dx = 1.

(ii)

∫ ∞
−∞

xK(x) dx = 0.

(iii)

∫ ∞
−∞

x2K(x) dx <∞.

Note that in (1.2) we have

ϕ
f̂
Y

(t) =E (e−ity)

=

∫
e−ity f̂

Y
(x, h) dt

=
1

nh

n∑
j=1

∫
e−ityK

(
x− Yj
h

)
dt.

Letting u = (x− Yj)/h, we get

x = Yj + hu, du =
dx

h
.

Consequently, we obtain

ϕ
f̂
Y

(t) =
1

nh

n∑
j=1

∫
e−it(Yj+hu)K(u)h du

3



=
1

n

n∑
j=1

∫
e−itYje−ithuK(u) du (1.4)

=
1

n

n∑
j=1

e−itYj
∫
e−ithuK(u) du

=
1

n

n∑
j=1

e−itYj ϕ
K

(th).

Using (1.4) in (1.2) we have

f̂
X

(x, h) =
1

2π

∫
e−itx

(
1
n

∑n
j=1 e

−itYjϕ
K

(th)

ϕ
f
Z

(t)

)
dt

=
1

2πn

n∑
j=1

∫
e−it(x−Yj)

(
ϕ
K

(th)

ϕ
f
Z

(t)

)
dt.

We now use a particular choice of the bandwidth h. Letting v = th we get

f̂
X

(x, h) =
1

2πn

n∑
j=1

∫
e−iv(

x−Y j
h ) ϕ

K
(v)

ϕ
f
Z

(
v
h

) dv
h

=
1

nh

n∑
j=1

1

2π

∫
e−it(

x−Y j
h ) ϕ

K
(v)

ϕ
f
Z

(
v
h

) dv (1.5)

=
1

nh

n∑
j=1

KZ

(
x− Yj
h

)
,

where the deconvoluted kernel density estimator KZ is given by

KZ(x, h) =
1

2π

∫
e−ivx

 ϕ
K

(v)

ϕ
f
Z

( vh)

 dv.

We assume that the deconvoluted kernel density estimator KZ(·, h) is a real-valued

function. For the rest of this thesis we use the following assumption regarding the

kernel density estimator K(x):

Assumption 1 on the kernel density estimator: We assume that the kernel
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density estimator K(x) satisfies the property that it is a bounded p.d.f. with a finite

fourth moment.

The triweight function is used as the kernel by Delaigle and Gijbels (2004) [3].

Here in our thesis we use the triweight function as well as two additional functions as

our choice of kernels:

(i) The de la Vallée-Poussin kernel: K(x) =
1− cosx

πx2
.

(ii) The Gaussian kernel: K(x) =
1√
2π

exp

(
−x2

2

)
.

(iii) The triweight kernel: K(x) =
48 cosx

πx4

(
1− 15

x2

)
− 144 sinx

πx5

(
2− 5

x2

)
.

Note that the de la Vallée-Poussin kernel does not meet the criteria of having a

finite second moment. However, the reason for its selection is to emphasize the kernel

involvement when constructing a pseudo density f̂
X

(·, g), which we will discuss in

Chapter 2.

Our goal is to estimate the optimal bandwidth h by choosing the bandwidth

h-value which minimizes MISE(f̂
X

(·, h)), which denotes the mean integrated squared

error for the deconvoluted kernel density estimator f̂
X

(x, h). The bootstrap method

is a reliable method to achieve the approximation of such an optimal bandwidth.

To be able to use a bootstrap procedure, we need to first establish a bootstrap

sampling from a pseudo density f̂
X

(·, g), which is itself obtained by constructing

an initial bandwidth g called the pilot bandwidth. In Chapter 2, we show how to

obtain such a pilot bandwidth g. The asymptotic representation of MISE(f̂
X

(·, h))

serves as the foundation to establish the two-step procedure, from which we will

select the initial pilot bandwidth g. Our goal is to construct a pseudo density f̂
X

(·, g).

Therefore, once g is selected, we focus our attention on the smoothness of the error

5



distribution f
Z
(z), as the choice of the type of smoothness directly impacts the rate

of convergence of the estimator. Finally, we test each of the three kernels described

earlier to observe the overall role of the kernel function within the pseudo density

f̂
X

(·, g).
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CHAPTER 2

The construction of the pilot bandwidth g

In this chapter our goal is to determine a suitable pilot bandwidth g. To reach

this goal, we must first visit the asymptotic representation of MISE(f̂
X

(·, h)), as it

serves as the foundation of a two-stage procedure. Note that we use g when referring

to an initial pilot bandwidth, whereas h is the unique optimal bandwidth we aim to

approximate.

A common way to approximate the optimal bandwidth h is to choose its

approximate in such a manner that it minimizes the distance between the population

density f
X

(x) and the deconvoluted kernel density estimator f̂
X

(x, h). This is done

by investigating the quantity

MISE
(
f̂
X

(·, h)
)

= E

∫ (
f̂
X

(x, h)− f
X

(x)
)2

dx.

In applications it remains challenging to obtain such an optimal bandwidth h, as it

acts on the kernel density in a complicated way. We start the estimation of the optimal

bandwidth h by first constructing an initial pilot bandwidth g. The construction of

such a bandwidth g relies on the asymptotic representation of MISE
(
f̂
X

(·, h)
)

as

AMISE
(
f̂
X

(·, h)
)

=
h4

4
µ2
2(K)R(f

′′

X
) +

1

2πnh

∫
|ϕ

K
(t)|2

|ϕ
f
Z

( t
h
)|2

dt, (2.1)

where we have

µ2(K) =

∫
u2K(u) du,

and where for any square integrable function f we have

R(f) =

∫
f(x)2dx.
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We remark that AMISE
(
f̂
X

(·, h)
)

denotes the asymptotic mean integrated square

error of f̂
X

(·, h). The details for (2.1) are provided in Chapter 3.

Note that in (2.1) one can observe the behavior of h discussed in the introduction.

In the first term on the right-hand side of (2.1) the bias becomes larger as h becomes

larger, whereas in the second term there the variance becomes larger as h approaches

0. This is what Wand and Jones (1995) [15] refers to as the “variance-bias trade

off.” Although (2.1) is a simpler representation of MISE, its first term contains R(f
′′

X
)

which is unknown. Note that f
′′

X
denotes the second derivative of f

X
(x) with respect

to x. The reference by Delaigle and Gijbels (2004) [3] has shown that substituting

the term R(f̂
′′

X
(·, g)) for R(f

′′

X
) can be used to estimate (2.1). The term R(f̂

′′

X
(·, g))

is then the only quantity relying on the bandwidth g, and hence g must be the

optimal bandwidth to estimate R(f
′′

X
). The reference Delaigle and Gijbels (2002)

[4] shows that such an optimal bandwidth g is obtained by minimizing the mean

square error of R(f̂
′′

X
(·, g)) denoted by MSE[R(f̂

′′

X
(·, g))]. These two authors also show

that asymptotically the optimal bandwidth g which reduces MSE[R(f̂
′′

X
(·, g))] is also

the one which reduces the asymptotic bias for R(f̂
′′

X
(·, g)). The asymptotic bias for

f̂ (r)
X

(·, gr) is given by

ABias
(
f̂ (r)
X

(·, gr)
)

= −g2rµ2(K)R(f (r+1)
X

) +
1

2πng
(2r+1)
r

∫
t2r
|ϕ

K
(t)|2

|ϕ
f
Z

( t
gr

)|2
dt. (2.2)

Note that the r-values in (2.2) are nonnegative integers. In our notation f (r)
X

(x), the

superscript in parentheses indicates the rth derivative of the density function f
X

(x)

with respect to x. It is clear that f (0)
X

(x) is the same as f
X

(x) itself. The expression

in (2.2) is the foundation of the two-stage procedure which provides an initial pilot

bandwidth g to construct pseudo density f̂
X

(·, g).
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2.1 The selection of the pilot bandwidth g

In this section we are going to pick the initial pilot bandwidth g as described

by the two-stage procedure. Once the pilot bandwidth g is constructed, the pseudo

density f̂
X

(·, g) can be derived and provide us with a preliminary account of the

underlying distribution f
X

(x) as well being the basis of our bootstrap method, which

will be discussed in Chapter 3.

Recall that in (2.1) we have used the notation R(f) =

∫
f(x)2dx and now we

use a similar notation R(f (r)
X

) in case we use the rth instead of the second derivative.

We refer to the quantity R(f (r)
X

) as the integrated square density derivative functional

and we note that

R(f (r)) =

∫
f (r) (x)2 dx.

Before visiting the two-stage procedure to obtain the optimal pilot bandwidth g, we

analyze the order k of the kernel, where k is a nonnegative integer not exceeding a

specific nonnegative integer value l. The references Wand and Jones (1995) [15] and

Marron (1994) [10] show that a kernel K(x) of order k satisfies

∫
xlK(x) dx =


1, l = 0,

0, l = 1, ..., k − 1,

C > 0, l = k,

(2.3)

where C is a positive quantity.

Obtaining the optimal pilot bandwidth g is achieved by implementing a two-

stage procedure, as the number of stages corresponds to the order of the kernel and

our kernel is a second order kernel. Our goal is to estimate R(f
′′

X
) which is related

to the second derivative. However, we will start by estimating the related quantity

involving the fourth derivative, and this will enable us to estimate the quantity related

9



to the third derivative. Finally, from the estimate for the third derivative we will

be able to estimate the quantity related to the second derivative. We first estimate

R(f (4)
X

) and obtain the integrated square density derivative with r = 4, which is

denoted by R̂(f
(4)
X ). The procedure is described as follows:

1. Step 0: The normal reference method indicates that

R̂(f
(4)
X ) =

8!S−9
X

294!
√
π
,

see Delaigle and Gijbels (2004) [5] and Jones and Wand (1995) [15], for which

we assume sample variance S2
X = S2

Y − Var(Z).

2. Step 1: Replace R(f (4)
X

) by R̂(f
(4)
X ) in the asymptotic bias expression (2.2). Then,

select a bandwidth g3 such that g3 is the optimal bandwidth to estimate R(f (3)
X

),

meaning that g3 reduces the asymptotic bias given to derive R(f̂ (3)
X

(·, g3)).

3. Step 2: R(f̂ (3)
X

(·, g3)) estimates R(f (3)
X

). Therefore, we substitute R(f̂ (3)
X

(·, g3))

for R(f (3)
X

) in (2.2). Then, we select the optimal bandwidth g2 to derive

R(f̂ (2)
X

(·, g2)) in order to estimate R(f
′′

X
), where g2 is our pilot bandwidth g.

Remark: the two-stage procedure rests on the normal scaling reference. The

normal scale requires the assumption that the density f
X

is normal in R̂(f
(4)
X ). This

method is typically used as a preliminary analysis. As discussed by Delaigle and

Gijbels (2004) [3], Delaigle and Gijbels (2004) [5], Chu, Henderson, and Parmeter

(2015) [1], and Wand and Jones (1995) (page 72) [15], even if the random variable

X does not follow a normal distribution, the use of g still provides an accurate

representation of the target density, provided this target density does not contain

a strong multimodality and/or an asymmetry. Simulation results show that for a

target density such as Exponential(1) which lacks the symmetry property, we obtain

good results only toward the tail of the distribution. Table 2.1 displays the values for

g-values for the three types of kernel densities with the two target densities N(0, 1)

10



and the bimodal Gaussian((4,1),(7,1)) density for the three sample sizes n = 200,

n = 400, and n = 500.

Table 2.1: The pilot bandwidth g estimations using the Laplace error distribution

Target Densities

Standard Normal Bimodal Gaussian((4,1),(7,1))

Kernel n = 200 n=400 n=500 n = 200 n=400 n=500
dlVP 0.1976 0.1575 0.1409 0.2058 0.1863 0.1762
Gaussian 0.4160 0.3457 0.3235 0.4339 0.4222 0.3708
Triweight 0.1808 0.1470 0.1347 0.1925 0.1863 0.1684

In spite of the choice of kernel K, we observe that as the sample sizes increase

the value for the pilot bandwidth g decreases. This is also true when the target

density is Exponential(1).

2.2 The choice of the error distribution

Having established a pilot bandwidth g using our two target densities, we are

now ready to construct the pseudo density f̂
X

(·, g). Notice that this process involves

the distribution for the error density f
Z
(z). For the estimator to be consistent, we

need to follow some assumptions regarding the error distribution. Jianqing Fan (1991)

[6] has discussed the rate of convergence for the estimator f̂
X

(x, h) and pointed out

that it heavily depends on the tail of the characteristic of the error distribution. If we

want to use any of the asymptotic properties for the estimator, then we must have

the following conditions:

(i) d0|t|−β≤ϕfZ (t)≤ d1|t|−β.

(ii) d0|t|β0e−
|t|β
γ ≤ϕfZ (t)≤ d1|t|β1e−

|t|β
γ ,

11



where (i) is ordinary smooth, (ii) is supersmooth of order β as t→∞, the quantities

d0, d1, β, and γ are positive constants and the parameters β0 and β1 are constants.

The rate of convergence for the kernel estimator is directly linked to the

smoothness of the error distribution satisfying either condition (i) or (ii). In fact,

since each condition for smoothness contains the term β, the value of β directly

impacts the rate of convergence. Examples of ordinary smooth error distributions

include the gamma distribution

f
Z
(z) =

αm

Γ(m)
zm−1 e−αz, β = m,

where m is a positive integer and the Laplace distribution

f
Z
(z) =

1

2
e|z|, β = 2.

The distributions for N(0, 1) with β = 2 and for Cauchy(0, 1) with β = 1 are some

examples of error densities satisfying super smooth conditions.

The reference Fan and Truong (1993) [7] explains how a super smooth error

distribution displays a logarithmic convergence rate. Thus, selecting this kind of

an error distribution will result in a very slow convergence while estimating f
X

(x)

by f̂
X

(x, h), whereas using an ordinary smooth error distribution allows the rate

of convergence of f̂
X

(x, h) to be fast. This specific reference describes the rate of

convergence based on a different error distribution as shown in the following tables:

12



Table 2.2: The rate of convergence using the super smooth error distribution

Error Distribution Rate of Convergence

N(0, 1)
1√

log n

Cauchy(0, 1) 1

log n

Table 2.3: The rate of convergence using the ordinary smooth error distribution

Error Distribution Rate of Convergence

Gamma(α,m)
1

n
1

(2m+3)

Laplace 1

n1/7

2.3 The kernel involvement

In Chapter 1, we defined the deconvolving kernel density estimator in (1.5).

In this chapter we are showing the role of kernel K(x) in f̂
X

(x, h). The reference

Jianqing Fan (1991) [6] shows the class of ordinary smooth error distribution will

produce a faster convergence rate of the estimate than the class of supersmooth error

distribution. Therefore, for the remainder of this thesis we select the ordinary smooth

error characteristic distribution from the Laplace distribution, given by

ϕ
f
Z

(t) =
1

1 +
1

2
σ2 t2

.

13



Our simulations use the variance σ2 = 0.05 as the contamination level is considered

to be a reasonable representation for real life contaminated data.

We show that

KZ(x, h) = K(x, h)− σ2

2h2
K
′′
(x, h), (2.4)

provided that the kernel K
′′

for the second derivative of K exists on the support of

K.

Note that we have

KZ(x, h) =
1

2π

∫
e−itx

 ϕ
K

(t)

ϕ
f
Z

( th)

 dt

=
1

2π

∫
e−itx

ϕ
K

(t)
1

1+ 1
2h2

σ2 t2

dt

=
1

2π

∫
e−itx ϕ

K
(t)

(
1 +

1

2h2
σ2t2

)
dt (2.5)

=
1

2π

∫
e−itx ϕ

K
(t) dt+

1

2π

∫
e−itx ϕ

K
(t)

σ2t2

2h2
dt

=K(x, h) +
σ2

2h2
1

2π

∫
t2 e−itx ϕ

K
(t) dt.

We obtain

K(x, h) =
1

2π

∫
e−itx ϕ

K
(t) dt

=
1

2π

∫
(cos tx− i sin tx)ϕ

K
(t) dt,

and it follows that

K ′(x, h) =
1

2π

∫
(−t sin tx− it cos tx)ϕ

K
(t) dt,

14



and

K
′′
(x, h) =

1

2π

∫
(−t2 cos tx+ it2 sin tx)ϕ

K
(t) dt

=
1

2π

∫
−t2(cos tx− i sin tx)ϕ

K
(t) dt

=
−1

2π

∫
t2 e−itx ϕ

K
(t) dt.

Hence, (2.5) yields

KZ(x, h) = K(x, h)− σ2

2h2
K
′′
(x, h).

Using an initial pilot bandwidth g we obtain

KZ(x, g) = K(x, g)− σ2

2g2
K
′′
(x, g). (2.6)

In Chapter 1 we have used three different kernel distributions in order to compare

their performances against specific target densities. In this chapter we also use the

de la Vallée-Poussin kernel, the Gaussian kernel, and the triweight kernel in (2.1),

and we use the following assumptions which will be revisited in Chapter 3.

Assumption 2: As n→∞, we assume that

(i)

(∫
|(KZ ∗KZ)(u, g)| du

)∫ |t|j |ϕK (t)|2|

|ϕf
Z

(
t
g

)
|2
dt

 = o(n2 gj+2), 0 ≤ j ≤ 8.

(ii)

∫
|(K ∗KZ)(u, g)| du = o(

√
n).

Next, we show that our pseudo density is a suitable estimator for any target

density. To be able to do so, we draw a random sample from a chosen target den-

sity and add to it the noise from the Laplace error distribution in order to obtain

Y1, Y2, ...., Yn.
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Note that the constructed g, the selected type of distribution, and the selected

type of kernel function are the three necessary elements in the foundation of the

pseudo density f̂
X

(·, g) given by

f̂
X

(·, g) =
1

nh

n∑
j=1

KZ

(
x− Yj
g

)
.

2.4 The simulation results

From Table 2.1 we obtain the pilot bandwidth g from which we construct f̂
X

(·, g).

We present our results when the underlying distribution satisfies the conditions stated

earlier, namely that the underlying distribution density does not contain a strong

multimodality and/or an asymmetry. Our simulations illustrate the pseudo densities

f̂
X

(·, g) corresponding to the target population densities of N(0,1) and the bimodal

Gaussian((4,1),(7,1)). We have selected two sample sizes with n = 200 and n = 500.

These results are the basis for our bootstrap procedure as described in Chapter 3.

As Figure 2.1 and Figure 2.2 show, the effect of kernel selection on the estimation

is insignificant for the estimation of the target density. These two figures also

demonstrate that an increase in the sample size improves the performance of the

estimation. We also demonstrate that when the underlying distribution does not

satisfy all the properties mentioned above then the estimator does not perform

well. This fact is represented in our simulations with the underlying distribution

Exponential(1).
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(a) n = 200 Gaussian (b) n = 500 Gaussian

(c) n = 200 Triweight (d) n = 500 Triweight

(e) n = 200 dlVP (f) n = 500 dlVP

Figure 2.1: The pseudo densities f̂
X

(·, g) for N(0, 1) distribution with n = 200 and
n = 500 17



(a) n = 200 Gaussian (b) n = 500 Gaussian

(c) n = 200 Triweight (d) n = 500 Triweight

(e) n = 200 dlVP (f) n = 500 dlVP

Figure 2.2: The pseudo densities f̂
X

(·, g) for the bimodal Gaussian((4,1),(7,1)) distri-
bution with n = 200 and n = 500 18



Again, when the target density is Exponential(1) it turns out that the perfor-

mance of the estimation is poor. This is a direct consequence of the lack of symmetry

for our target density, although the estimator improves toward the tail of that specific

target density.

(a) n = 200 Gaussian (b) n = 500 Gaussian

(c) n = 200 Triweight (d) n = 500 Triweight

(e) n = 200 dlVP (f) n = 500 dlVP

Figure 2.3: The pseudo densities f̂
X

(·, g) for the Exponential(1) distribution with
n = 200 and n = 500
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CHAPTER 3

The bootstrapping

In this chapter we first introduce the bootstrap procedure of Delaigle and

Gijbels (2004) [3] used to approximate the optimal bandwidth h, and we illustrate

the use of the bootstrap procedure we implement by using the pseudo density f̂
X

(·, g)

constructed in Chapter 2.

3.1 An existing bootstrap method

The bootstrap method is an appealing method where one can approximate

some relevant quantities from unknown densities. In the context of our study, the

unknown quantity is the density itself. Before describing the bootstrap method of

Delaigle and Gijbels (2004) [3], we present an analysis of MISE(f̂
X

(·, h)).

Recall that a common way to measure how close density estimator f̂
X

(x, h) is

to a population density f
X

(x) is to calculate MISE(f̂
X

(·, h)). We have

MISE
(
f̂
X

(·, h)
)

= E

∫ (
f̂
X

(x, h)− f
X

(x)
)2
dx,

which can be written as

MISE
(
f̂
X

(·, h)
)

=

∫
Var

(
f̂
X

(x, h)
)
dx+

∫ (
Bias

(
f̂
X

(x, h)
))2

dx. (3.1)

We get

Var
(
f̂
X

(x, h)
)

=Var

(
1

nh

n∑
j=1

KZ

(
x− Yj
h

))

=
1

nh2
E

[
KZ

(
x− Y1
h

)2
]
− 1

nh2

[
E

(
KZ

(
x− Y1
h

))]2
dt. (3.2)
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We first show that∫
Var

(
f̂
X

(·, h)
)
dx =

1

2πhn

∫
ϕ2
K

(t)

|ϕ
f
Z

( t
h
)|2

dt− 1

2πn

∫
ϕ2
K

(th)|ϕ
f
X

(t)|2 dt. (3.3)

We now show that the second term on the right-hand side in (3.2) is given by

1

nh2

∫ [
E

(
KZ

(
x− Y1
h

))]2
dx =

1

2πn

∫
ϕ2
K

(ht)|ϕ
f
X

(t)|2 dt. (3.4)

We will use the Plancherel theorem [16] which states that∫
|E(t)|2 dt =

∫
|Ev|2 dv,

where E(t) and Ev are the Fourier transform pair. However, we first evaluate the

left-hand side of (3.4). For notational simplicity, let us denote the left-hand side of

(3.4) by Q1, i.e. we use

Q1 =
1

nh2

∫ [
E

(
KZ

(
x− Y1
h

))]2
dx.

We get

Q1 =
1

nh2

∫ [
E

(
KZ

(
x− (X + Z)

h

))]2
dx

=
1

nh2

∫ (∫ ∫ (
KZ

(
x− (r + s)

h

))
f
X,Z

(r, s) dr ds

)2

dx

=
1

nh2

∫ (∫ ∫ (
KZ

(
x− (r + s)

h

))
f
X

(r) f
Z
(s) dr ds

)2

dx

=
1

nh2

∫ (∫ ∫
1

2π

∫
e−iv(

x−(r+s)
h ) ϕ

K
(v)

ϕ
f
Z

(
v
h

) f
X

(r) f
Z
(s) dr ds dz

)2

dx

=
1

nh2

∫ (∫ ∫
1

2π

∫
e−iv(

x−(r+s)
h ) ϕ

K
(v)

ϕ
f
Z

(
v
h

) f
X

(r) f
Z
(s) dr ds dv

)2

dx

=
1

nh2

∫ (∫
1

2π
eiv(

−x
h ) ϕ

K
(v)

ϕ
f
Z

(
v
h

) ∫ eiv(
w
h ) f

X
(r) dr

∫
eiv(

z
h) f

Z
(s) ds dv

)2

dx
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=
1

nh2

∫ (∫
1

2π
eiv(

−x
h ) ϕ

K
(v)

ϕ
f
Z

(
v
h

) ϕ
f
X

(v
h

)
ϕ
f
Z

(v
h

)
dv

)2

dx

=
1

nh2

∫ (∫
1

2π
eiv(

−x
h ) ϕ

K
(v)ϕ

f
X

(v
h

)
dv

)2

dx.

We will next apply the Plancherel theorem by letting v = th. We then get

t =
v

h
, dt =

dv

h
, m =

x

2π
, dm =

dx

2π
.

We obtain

Q1 =
1

nh2

∫ (∫
1

2π
e−2πmtiϕ

K
(th)ϕ

f
W

(t)hdt

)2

2π dm

=
2πh2

4π2nh2

∫ (∫
e−2πmti ϕ

K
(th)ϕ

f
X

(t)h dt

)2

dm

=
1

2πn

∫ (∫
1

2π
e−2πmti ϕ

K
(th)ϕ

f
X

(t) dt

)2

dm (3.5)

=
1

2πn

∫
|ϕ

K
(th)ϕ

f
X

(t)|2 dt

=
1

2πn

∫
ϕ2
K

(th)|ϕ
f
X

(t)|2 dt.

Let us now evaluate the first term on the right-hand side of (3.2) by denoting it with

the symbol Q2, namely

Q2 =
1

nh2

∫
E

[
KZ

(
x− Y1
h

)2
]
dx.

Using the Plancherel theorem in a similar way with t = x−Y1
h

, we obtain

Q2 =
1

2πhn

∫
ϕ2
K

(t)

|ϕ
f
Z

( t
h
)|2

dt. (3.6)

As we see from (3.5) and (3.6), it follows that (3.3) holds.

22



Now, we evaluate the integral of the square of the bias, which is the second

term in (3.1). Based on previous demonstrations of the first moment squared of the

left hand-side in (3.4) we see that the integral of the bias square is given by∫ (
Bias(f̂

X
(·, h))

)2
dt =

1

h2

∫ [
E

(
KZ

(
x− Y1
h

))]2
dx (3.7)

− 2

h

∫
E

(
KZ

(
x− Y1
h

))
f
X

(x) dx+R(f
X

).

We will show that∫ (
Bias(f̂

X
(·, h))

)2
dt =

1

2π

∫
ϕ2
K

(th)|ϕ
f
X

(t)|2 dt− 1

π

∫
ϕ
K

(th)|ϕ
f
X

(t)|2 dt+R(f
X

).

(3.8)

We let Q3 denote the first term of the right-hand side of (3.7), namely

Q3 =
1

h2

∫
E

[
KZ

(
x− Y1
h

)2
]
dx.

We then obtain

Q3 =
1

h2

∫ [
E

(
KZ

(
x− (X + Z)

h

))]2
dx

=
1

h2

∫ (∫ ∫ (
KZ

(
x− (r + s)

h

))
f
X,Z

(r, s) dr ds

)2

dx

=
1

h2

∫ (∫ ∫ (
KZ

(
x− (r + s)

h

))
f
X

(r) f
Z
(s) dr ds

)2

dx

=
1

h2

∫ (∫ ∫
1

2π

∫
e−iv(

x−(r+s)
h ) ϕ

K
(v)

ϕ
f
Z

(
v
h

) f
X

(r) f
Z
(s) dr ds dz

)2

dx

=
1

h2

∫ (∫ ∫
1

2π

∫
e−iv(

x−(r+s)
h ) ϕ

K
(v)

ϕ
f
Z

(
v
h

) f
X

(r) f
Z
(s) dr ds dv

)2

dx

=
1

h2

∫ (∫
1

2π
eiv(

−x
h ) ϕ

K
(v)

ϕ
f
Z

(
v
h

) ∫ eiv(
w
h ) f

X
(r) dr

∫
eiv(

z
h) f

Z
(s) ds dv

)2

dx

=
1

h2

∫ (∫
1

2π
eiv(

−x
h ) ϕ

K
(v)

ϕ
f
Z

(
v
h

) ϕ
f
X

(v
h

)
ϕ
f
Z

(v
h

)
dv

)2

dx

=
1

h2

∫ (∫
1

2π
eiv(

−x
h ) ϕ

K
(v)ϕ

f
X

(v
h

)
dv

)2

dx.
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We apply the Plancherel theorem by first letting v = th. As in the calculations for

Q1, we get

t =
v

h
, dt =

dv

h
, m =

x

2π
, dm =

dx

2π
.

We obtain

Q3 =
1

h2

∫ (∫
1

2π
e−2πmtiϕ

K
(th)ϕ

f
W

(t)h dt

)2

2π dm

=
2πh2

4π2h2

∫ (∫
e−2πmti ϕ

K
(th)ϕ

f
X

(t)h dt

)2

dm

=
1

2π

∫ (∫
1

2π
e−2πmti ϕ

K
(th)ϕ

f
X

(t) dt

)2

dm

=
1

2π

∫
|ϕ

K
(th)ϕ

f
X

(t)|2 dt

=
1

2π

∫
ϕ2
K

(th)|ϕ
f
X

(t)|2 dt,

hence,

Q3 =
1

2π

∫
ϕ2
K

(th)|ϕ
f
X

(t)|2 dt. (3.9)

Proceeding in a similar manner, we use Q4 to denote the second term of the right-hand

side on (3.7), namely

Q4 =
2

h

∫
E

(
KZ

(
x− Y1
h

))
f
X

(x) dx.

We first show that

Q4 =
2

h

∫
E

(
KZ

(
x− (X + Z)

h

))
f
X

(x) dx

=
2

h

∫ (∫ ∫ (
KZ

(
x− (r + s)

h

))
f
X,Z

(r, s) dr ds

)
f
X

(x) dx

=
2

h

∫ (∫ ∫ (
KZ

(
x− (r + s)

h

))
f
X

(r) f
Z
(s) dr ds

)
f
X

(x) dx

=
2

h

∫ (∫ ∫
1

2π

∫
e−iv(

x−(r+s)
h ) ϕ

K
(v)

ϕ
f
Z

(
v
h

) f
X

(r) f
Z
(s) dr ds dv

)
f
X

(x) dx

24



=
2

h

∫ (∫
1

2π
eiv(

−x
h ) ϕ

K
(v)

ϕ
f
Z

(
v
h

) ∫ eiv(
w
h ) f

X
(r) dr

∫
eiv(

z
h) f

Z
(s) ds dv

)
f
X

(x) dx

=
1

πh

∫ ∫
eiv(

−x
h ) ϕ

K
(v)

ϕ
f
Z

(
v
h

) ϕ
f
X

(v
h

)
ϕ
f
Z

(v
h

)
dv f

X
(x) dx

=
1

πh

∫ ∫
eiv(

−x
h ) ϕ

K
(v)ϕ

f
X

(v
h

)
dv f

X
(x) dx

=
1

πh

∫
ϕ
K

(v)ϕ
f
X

(v
h

)
dv

∫
eiv(

−x
h ) f

X
(x) dx

=
1

πh

∫
ϕ
K

(v)ϕ
f
X

(v
h

)
ϕ
f
X

(v
h

)
dv

=
1

πh

∫
ϕ
K

(v) |ϕ
f
X

(v
h

)
|2 dv,

where we recall that

t =
v

h
, dt =

dv

h
.

Thus, we have

Q4 =
1

π

∫
ϕ
K

(th) |ϕ
f
X

(t)|2 dt. (3.10)

From (3.9), (3.10), and R(f
X

), we see that (3.8) holds.

Combining (3.3) and (3.8), we obtain

MISE(f̂(·, h)) = Q2−Q1 +Q3−Q4 +R(f
X

),

where the quantities Q1, Q2, Q3, and Q4 are given in (3.5), (3.6), (3.9), and (3.10),

respectively. Therefore, we show

MISE(f̂(·, h)) =
1

2πhn

∫
ϕ2
K

(t)

|ϕ
f
Z

( t
h
)|2

dt− 1

2πn

∫
ϕ2
K

(th)|ϕ
f
X

(t)|2 dt+
1

2π

∫
ϕ2
K

(th)|ϕ
f
X

(t)|2 dt

− 1

π

∫
ϕ
K

(th)|ϕ
f
X

(t)|2 dt+R(f
X

)

=
1

2πhn

∫
ϕ2
K

(t)

|ϕ
f
Z

( t
h
)|2

dt+
1

2π

∫
ϕ2
K

(th)|ϕ
f
X

(t)|2 dt− 1

2πn

∫
ϕ2
K

(th)|ϕ
f
X

(t)|2 dt

− 1

π

∫
ϕ
K

(th)|ϕ
f
X

(t)|2 dt+R(f
X

) (3.11)
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=
1

2πhn

∫
ϕ2
K

(t)

|ϕ
f
Z

( t
h
)|2

dt+

(
1− 1

n

)(
1

2π

)∫
ϕ2
K

(th)|ϕ
f
X

(t)|2 dt+R(f
X

)

− 1

π

∫
ϕ
K

(th)|ϕ
f
X

(t)|2 dt.

Recall that in Chapter 2 we formed a pilot bandwidth g. Therefore, we were

able to construct the pseudo density f̂
X

(·, g) from the observed random contaminated

sample Y1, Y2, ...., Yn. The reference Delaigle and Gijbels (2004) [3] proposes the

following method. From the pseudo pilot density f̂
X

(·, g) we draw a bootstrap sample

X∗1 , X
∗
2 , ..., X

∗
n. Then, we add the error Z to the bootstrapped sample and obtain the

contaminated bootstrapped sample Y ∗1 , Y
∗
2 , ..., Y

∗
n . We then use the contaminated

bootstrapped sample to construct f̂ ∗
X

(·, h).

Our goal remains to obtain the optimal bandwidth h which is the minimizer of

the quantity MISE(f̂
X

(·, h)). While the pseudo density is constructed as an estimator

of f
X

(x), the bootstrap method approximates f
X

(x) via the repetition of resampling

with replacement to find an approximation of the optimal h value, see E. L. Lehmann

(1995) [9].

The reference Delaigle and Gijbels (2004) [3] shows that the bootstrap approxi-

mation of (3.11) is given by

MISE∗(1)(f̂X (·, h)) =
1

2πhn

∫
ϕ2
K

(t)

|ϕ
f
Z

( t
h
)|2

dt+

(
1− 1

n

)(
1

2π

)∫
ϕ2
K

(th)|ϕ̂
X,g

(t)|2 dt

+R(f̂ ∗
X

(·, g))− 1

π

∫
ϕ
K

(th)|ϕ̂
X,g

(t)|2dt, (3.12)

where ϕ̂
X ,g(t) is the Fourier transform of f̂

X
(·, g). The calculation of the empirical

characteristic function for ϕ̂
X ,g(t) yields

ϕ̂
X ,g(t) = ϕ̂

Y ,n(t)
ϕ
K

(gt)

ϕ
f
Z

(t)
. (3.13)

In (3.12) we want to estimate an optimal bandwidth g such that this optimal

bandwidth g minimizes any term associated with it. We are not interested in obtaining
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the optimal bandwidth g to minimize f
X

(x). If we want to minimize (3.12) depending

on the bandwidth h, then this is equivalent to minimizing the expression

MISE∗(2)(f̂X (·, h)) =
1

2πhn

∫
ϕ2
K

(t)

|ϕ
f
Z

( t
h
)|2

dt+

(
1− 1

n

)(
1

2π

)∫
ϕ2
K

(th)|ϕ̂
X ,g(t)|2dt

− 1

π

∫
ϕ
K

(th)|ϕ̂
X ,g(t)|2dt, (3.14)

where the only quantity involving the pilot bandwidth g is the empirical characteristic

function ϕ̂
X ,g(t).

A simpler approach for estimating (3.11) is to use the asymptotic representation

of MISE(f̂
X

(·, h)) introduced in Chapter 1 for which its bootstrap approximation is

given by

AMISE∗(f̂
X

(·, h)) =
h4

4
µ2
2(K)R(f̂

′′

X
(·, g)) +

1

2πnh

∫
|ϕ

K
(t)|2

|ϕ
f
Z

( t
h
)|2

dt, (3.15)

where R(f̂
′′

X
(·, g)) is an estimate of R(f

′′

X
). Note that the bootstrap method of Delaigle

and Gijbels (2004) [3] involves the minimization of the AMISE(f̂
X

(·, h)) by defining

a grid of possible values for the pilot bandwidth g candidates and by selecting the

optimal pilot bandwidth g. Therefore, this bootstrap method relies only on the initial

contaminated sample Y1, Y2, ..., Yn. We remark that C. Léger and J. P Romano (1989)

[8] and Marron (1992) [10] showed that if the observed sample is not contaminated, it

is not necessary to obtain a bootstrap sample, contrary to other bootstrap procedures.

The reference Delaigle and Gijbels (2004) [3] explains that the same is true for

contaminated data.

Although we use a bootstrapping method involving resampling with replacement,

our bootstrap method involves the bootstrap approximation of MISE(f̂
X

(·, h)) rather

than its asymptotic representation. We obtain our bootstrap samples from the pseudo

density f̂
X

(·, g) as our initial bootstrap sample. The reference Delaigle and Gijbels
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(2004) [3] has shown that the optimal bandwidth h associated with the bootstrapped

procedure in MISE∗(f̂ ∗
X

(·, h)) is a consistent estimator of the MISE(f̂
X

(·, h)).

3.2 The consistency of the bootstrap estimator

In this section, we evaluate the consistency of the bootstrap approximation. In

order to observe the consistency of the bootstrapped representation of MISE(f̂
X

(·, h))

we need to use the previous assumptions and also include a new set of assumptions

stated below.

Assumption 3: We further assume that f (j)
X

(x) satisfies

(i) sup x εR|f (j)
X

(x)| <∞, 1 ≤ j ≤ 4.

(ii)

∫
|f ′′
X

(x)| dx <∞ and

∫
|f (3)

X
(x)| dx <∞.

3.2.1 The consistency

To show the consistency we consider the case with n→∞, h→ 0, and where

K is a second order kernel. The references Wand and Jones (1995) [15] and Stefanski

and Carroll (1990) [13] describe the integrated bias squared as∫ (
Bias(f̂

X
(x, h))

)2
dx =

h4

4
µ2
2(K)R(f

′′

X
) + o(h4), (3.16)

with a finite second moment and they show that∫
Var(f̂

X
(t, h)) dt =

1

2πnh

∫
|ϕ

K
(t)|2

|ϕ
f
Z

(
t
h

)
|2
dt+O

(
1

n

)
. (3.17)

Combining (3.16) and (3.17) we have

MISE(f̂
X

(·, h)) =
h4

4
µ2
2(K)R(f

′′

X
) +

1

2πnh

∫
|ϕ

K
(t)|2

|ϕ
f
Z

(
t
h

)
|2
dt+O

(
1

n

)
+ o(h4).

Analyzing the bootstrap version of the MISE via the asymptotic order of the bias of
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the bootstrap integrated variance and the asymptotic order of the variance of the

bootstrap integrated variance, we obtain

Bias

[∫
Var∗f̂ ∗

X
(t, h) dt

]
= O

(
1

n

)
,

Var

[∫
Var∗f̂ ∗

X
(t, h) dt

]
= o

(
1

n2

)
.

The variance and the bias for the bootstrap integrated square bias are given by

Bias

∫ (
Bias∗f̂ ∗

X
(x, h)

)2
dx = o(h4),

Var

∫ (
Bias∗f̂ ∗

X
(x, h)

)2
dx = o(h8).

Compatible with our assumptions, we will now use the following theorem presented

by Delaigle and Gijbels (2004) [3]:

Theorem [3] As n→∞ and h→ 0 we have

E
(

MISE∗(f̂ ∗
X

(·, h))
)

=MISE(f̂
X

(·, h)) + o(h4) +O

(
1

n

)
=MISE(f̂

X
(·, h)) + o

(
MISE(f̂

X
(·, h))

)
,

and

Var
[
MISE∗(f̂ ∗

X
(·, h))

]
≤Var

[∫ (
Bias∗f̂ ∗

X
(x, h)

)2
dx

]
+Var

[∫
Var∗f̂ ∗

X
(t, h) dt

]
+2

√
Var

[∫ (
Bias∗f̂ ∗

X
(x, h)

)2
dx

]
+ Var

[∫
Var∗f̂ ∗

X
(t, h) dt

]
,

Var
(

MISE∗(f̂ ∗
X

(·, h))
)

= MISE(f̂
X

(·, h)) + o(h4) +O

(
1

n

)
.

Therefore, MISE∗(f̂ ∗
X

(·, h))
L2

→ MISE(f̂
X

(·, h)).
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The asymptotical equivalence between MISE(f̂
X

(·, h)) and MISE∗(f̂ ∗
X

(·, h)) un-

der our assumptions holds. The same reasoning is also valid for our bootstrap method,

as we apply a bootstrapping method on MISE(f̂
X

(·, h)) rather than AMISE(f̂
X

(·, h)).

We will discuss this point in the next chapter.
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CHAPTER 4

The proposed bootstrap method

In this chapter we will describe our proposed bootstrap method which involves

the minimization of MISE(f̂
X

(·, h)) using resampling with replacement. The foun-

dation of our bootstrap rests on the selection of the pilot bandwidth g and the

construction of pseudo density f̂
X

(·, g) as presented in Chapter 2. We also sample

X∗1 , X
∗
2 , ..., X

∗
n from the pseudo density f̂

X
(·, g) as in ‘Existing Method’ in Chapter 3

before adding the error from the Laplace distribution to obtain the initial bootstrap

sample Y ∗1 , Y
∗
2 , ..., Y

∗
n . We use the contaminated bootstrapped sample to construct

the bootstrapped density f̂ ∗
X

(·, h).

We want to approximate the exact MISE(f̂
X

(·, h)) defined by

MISE(f̂
X

(·, h)) =

∫
Var(f̂

X
(x, h)) dx+

∫ (
Bias(f̂

X
(x, h))

)2
dx,

with its bootstrap approximation MISE∗(f̂ ∗
X

(·, h)) given by

MISE∗(f̂ ∗
X

(·, h)) =

∫
Var∗(f̂ ∗

X
(x, h)) dx+

∫ (
Bias∗(f̂ ∗

X
(x, h))

)2
dx

≈
∑

MSE∗(f̂ ∗
X

(x, h)) ∆(x),

and hence

MSE∗(f̂ ∗
X

(x, h)) ≈ 1

B − 1

B∑
i=1

(
¯̂
f
∗

X
(x, h)− f̂ ∗i

X
(x, h)

)2
+
(

¯̂
f
∗

X
(x, h)− f̂

X
(x, g)

)2
,

(4.1)

where

¯̂
f
∗

X
(x, h) =

1

B

B∑
i=1

f̂ ∗i
X

(x, h),
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with
¯̂
f
∗

X
(x, h) being calculated from the ith resampling with replacement for i = 1, 2, ...., B.

For (4.1) see Sun, Sun, and Diao (2007) [14]. We select the optimal bandwidth h

associated with the bootstrap procedure as the one which minimizes MSE∗(f̂ ∗
X

(x, h)).

4.1 The kernel selection

As previously discussed in Chapter 1 and Chapter 2, we use three different kernel

density functions for K(x). In other words, we have selected the de la Vallée-Poussin

kernel, the Gaussian kernel, and the triweight kernel. For the de la Vallée-Poussin

kernel and the triweight kernel the argument is never 0, i.e. we never have x = Yj.

Each bootstrapped sample Y ∗1 , Y
∗
2 , ..., Y

∗
n becomes an input for f̂ ∗

X
(x, h) constructed

with each of the aforementioned three kernels. Moreover, the selection for the sequence

of the bandwidths h associated with the bootstrap procedure consists of 20 values for

which each one is used to construct f̂ ∗
X

(x, h). Recall that the selection of the Laplace

error distribution is also used to construct f̂ ∗
X

(x, h). In order to construct f̂ ∗
X

(x, h)

the only remaining parameter needed is the number of resampling with replacement

within the bootstrap.

4.2 The B Selection

In this section we discuss the importance of the number of resampling with

replacement within the bootstrap. We use B to denote that relevant number. Since

the optimal bandwidth h is unknown and we want to estimate it via the selection

of bandwidth-values around the pilot bandwidth g. We must determine an optimal

value for B such that B allows sufficient resampling to approximate the optimal

bandwidth h. The reference B. W. Silverman (1998) [12] argues that it is reasonable to
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simulate 1000 samples to find the optimal bandwidth h associated with our bootstrap

method such that it estimates the optimal bandwidth h accurately. It is customary

to regard B = 1000 as a reasonable lower bound, as the bootstrapping process is a

time consuming technique which can also be numerically expensive. This drawback

is balanced by the advantages offered by the bootstrapping method, which under

certain conditions offers a consistent estimate when B > 1000. This value for B is

commonly accepted to ensure a meaningful statistics. Whenever samples are drawn

from the original sample with replacement, almost every sample contains repeated

values. Of course, if n is large enough then most samples will contain repeated values

several times. Therefore, we selected B = 1000 for each kernel we used. The next

criteria we consider is the selection of the bandwidths h associated with the bootstrap

procedure.

4.3 The selection of the bandwidths h associated with the bootstrap procedure

In this section, we discuss how to select the range of candidates for the optimal

bandwidth h. The range of values for the bandwidths h used during the bootstrapping

process must contain candidates which approximate the optimal bandwidth h. The

optimal bandwidth h associated with the bootstrap process is the one which minimizes

MISE∗(f̂ ∗
X

(·, h)). We select them around the pilot bandwidth g obtained in Chapter 2

by using increments of ±0.01. This increment level produces values which do not

violate the fact that a bandwidth h must be a positive value. This yields a total of

20 bandwidths and it provides a sufficiently fine grid of candidates. One of those h

candidates approximates the optimal bandwidth h. We are, in essence, selecting the

approximate of the optimal bandwidth h from a sample of bandwidths which contains

a set of good performing bandwidths. As our sample size increases, our results show
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that the range of the selected bandwidths h decreases. Selecting the range of values

for these bandwidths is the last step to follow prior to initiating the bootstrapping.

4.4 The bootstrapping results

The bootstrapping results in Table 4.1 show that regardless of the choice of our

target densities and regardless of the choice of our kernel densities, as the sample size

increases, both MISE∗(f̂ ∗
X

(·, h)) and the optimal selected bandwidth h decrease. Note

the MISE∗(f̂ ∗
X

(·, h)) results are to be considered ×10−3.

Table 4.1: The optimal selected bandwidth h and the corresponding MISE∗ ×10−3

Target Densities

Standard Normal Bimodal Gaussian((4,1),(7,1))

Kernel n = 200 n=400 n=500 n = 200 n=400 n=500
dlVP 0.1678 0.1475 0.1309 0.1958 0.1763 0.1562

(12.91) (9.59) (8.27) (17.57) (14.47) (12.17)

Gaussian 0.4060 0.3257 0.3035 0.4339 0.4022 0.3508
(41.42) (35.44) (33.17) (45.05) (37.49) (31.22)

Triweight 0.1608 0.1270 0.1130 0.1825 0.1763 0.1584
(4.82) (3.47) (2.98) (4.97) (4.02) (3.86)

The following plots show the visual representation of the estimator using the

optimal selected bandwidth h when the sample size is n = 500:
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(a) Gaussian (b) Triweight (c) dlVP

Figure 4.1: The bootstrapped density f̂ ∗
X

(x, h) estimating the target density N(0,1)
with n = 500

(a) Gaussian (b) Triweight (c) dlVP

Figure 4.2: The bootstrapped density f̂ ∗
X

(x, h) estimating the target density bimodal
Gaussian((4,1)(7,1)) with n = 500

The results show that regardless of the kernel selection, the optimal selected

bandwidth h has improved the estimation of the target densities. This is attributed

in part to the sample size. Nevertheless, the role of such an optimal bandwidth h

leads to a performing estimator as shown throughout Figure 4.1 and Figure 4.2.

(a) Gaussian (b) Triweight (c) dlVP

Figure 4.3: The bootstrapped density f̂ ∗
X

(x, h) estimating the target density Expo-
nential(1) with n = 500
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As in the cases of theN(0, 1) target density and the bimodal Gaussian((4,1),(7,1))

target density, the kernel selection remains inconsequential to the performance of the

estimator. When the target density is Exponential(1), Figure 4.3 displays how the

lack of symmetry of this specific target density directly impacts the poor quality of

estimation.
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