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Abstract 

Whole-head functional brain imaging of economic risk decision making and transcranial 

photobiomodulation with fNIRS and EEG 

Hashini Wanniarachchi 

The University of Texas at Arlington, 2020 

Supervising Professor: Dr. Hanli Liu 

Functional near-infrared spectroscopy (fNIRS) and electroencephalography (EEG) are two non-

invasive brain imaging or mapping modalities that allow us to measure cerebral hemodynamic and 

electrophysiological changes in the human brain, respectively. LABNIRS is a cutting-edge, whole-

head, optical brain mapping system with 40 pairs of light sources (at 780 nm830 nm) and 40 

detectors, forming up to 133 detection channels. In my study, whole-head LABNIRS and 64-

channel EEG were utilized to investigate respective alterations in response to risk decision- making 

under business context and to non-invasive photobiomodulation.   

As the first part of my study, I utilized fNIRS (i.e., LABNIRS) as a tool to measure 

hemoglobin concentration changes across the frontal regions in response to the newsvendor 

problem (NP).  NP is an essential concept in the research area of business operations. The scenario 

refers to the decision-making in an inventory management context in a highly uncertain 

environment where an individual must balance between potential loss and waste to achieve 

maximum expected profit. However, there are few studies to investigate this concept from the 

perspective of neuroimaging. Consequently, with 77-channel fNIRS measurements taken from 27 

human subjects, I reported in Chap. 2 that significant activation induced by NP was shown in both 

the dorsolateral prefrontal cortex (DLPFC) and orbitofrontal cortex (OFC) across all subjects. 
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Specifically, higher risk NP with low-profit margins (LM) activated left-DLPFC but deactivated 

right-DLPFC in 14 subjects while lower risk NP with high-profit margins (HM) stimulated both 

DLPFC and OFC in 13 subjects. Moreover, graph theory-based network analysis was performed 

and showed that global brain network properties altered when the human brain switched from rest 

to the NP-evoked phase. The clustering coefficient of the network was significantly enhanced 

under both LM and HM, while the small-worldness was boosted by higher-risk decision taking. 

Transcranial photobiomodulation (tPBM) is a light-based technique to stimulate the human 

brain non-invasively. It is proven to improve human cognition, such as memory and reaction time. 

tPBM is also shown that tPBM delivered to the healthy human forehead enhances not only 

hemodynamic and metabolic functions but also the EEG power in alpha and beta brain rhythms 

during eyes-open resting state. Nonetheless, the tPBM-induced effect under the eyes-closed resting 

state is unknown, and whether the measured changes in EEG powers could result directly from 

laser heating is also unclear. As the second part of my study, Chapter 3 explores the impact of 

tPBM on neuro-electrophysiological functions under the eyes-closed resting state and the effect of 

heat produced by the laser on the EEG power alterations. My results suggest that tPBM increased 

alpha, and beta EEG power during eyes-closed resting state relative to those under sham, consistent 

with our previous results reported under eyes-opened conditions. On the other hand, thermal 

stimulation reduced alpha and beta powers relative to sham, showing the opposite trends to those 

induced by tPBM and separating the confounding effects between tPBM and heat. 

While previous studies have reported tPBM-induced hemodynamic increases near the 

stimulation site, it is unclear if the impact is limited to only the stimulation site or across multiple 

cortical areas in the brain. To answer this question, as the third part of my study, whole-head fNIRS 

was used to detect/map tPBM-evoked hemodynamic activations and network alterations from 19 
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healthy human subjects. Chapter 4 reported that significant activation of hemodynamics near the 

right prefrontal cortex increased over the time span of the stimulation period relative to that during 

the sham condition. Some activation in the left primary somatosensory area was also seen, 

probably due to the heat sensation of the laser. Furthermore, dynamic functional connectivity 

analysis was performed and showed that the brain connectivity increased across the entire cortical 

areas during the later portion of tPBM, followed by slight decreases during the post-stimulation. 
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Chapter 1- Introduction 

1.1 Functional Near-Infrared Spectroscopy as a Tool to Measure Whole-head 

Hemodynamic Alterations 

Functional Near-Infrared spectroscopy is a non-invasive optical imaging modality that is capable 

of measuring hemodynamics in the human brain at the cortical level. Multi-channel fNIRS is a 

portable and non-invasive imaging technique that measures cortical hemodynamic activities in the 

human brain. It quantifies the cerebral concentration changes of oxygenated hemoglobin (Δ[HbO]) 

and deoxygenated hemoglobin (Δ[Hb]) with the high temporal resolution based on the alteration 

of optical absorption and scattering of near-infrared (NIR) light propagating through the human 

brain. The temporal and spatial features of Δ[HbO] and Δ[Hb] are then used as biomarkers of 

neuronal activations[1]. In the last two decades, fNIRS has gained popularity and is recognized as 

a non-invasive tool to functionally image brain activations and/or diagnose brain diseases[2]. 

Compared to fMRI, fNIRS is cost-effective, less sensitive to motion artifacts, and with a higher 

temporal resolution, all of which makes it easier to use in a task-oriented, more-naturistic 

experimental environment. An fNIRS system consists of single or multiple channels made with a 

light source and a detector. The intensity of the source and loss of the outcoming intensity of the 

signal is measured using a detector. The intensity change of light in the near-infrared region is 

converted into relative hemoglobin concentrations (i.e., [HbO] and [Hb]) using Modified Beer-

Lambert Law (MBLL). An alteration in optical density ΔOD can be described using MBLL as 

follows: 

 𝛥𝛥𝛥𝛥𝛥𝛥(𝜆𝜆) = 𝑙𝑙𝑙𝑙𝑙𝑙10[ 𝐼𝐼0(𝜆𝜆)
𝐼𝐼(𝜆𝜆)

]____________ (1-1) 
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I0 /I represent the ratio between incoming and outgoing intensity as a function of wavelength (λ). 

Corresponding to the MBLL [3, 4], ΔOD at each λ could be conveyed as a sum of optical absorbance 

accounted by HbO, and Hb elements: 

𝛥𝛥𝛥𝛥𝛥𝛥(𝜆𝜆) = {𝛥𝛥[𝐻𝐻𝐻𝐻𝐻𝐻] ∗ 𝜀𝜀𝐻𝐻𝐻𝐻𝐻𝐻(𝜆𝜆) + 𝛥𝛥[𝐻𝐻𝐻𝐻] ∗ 𝜀𝜀𝐻𝐻𝐻𝐻(𝜆𝜆) ∗ 𝐿𝐿(𝜆𝜆), _____________ (1-2) 

where ∆[HbO] is the relative change in HbO concentration, ∆[Hb] is the relative change in 

Hb concentration, εHbO(λ), and εHb(λ) is the extinction coefficients of HbO, and Hb, which is 

accessible in ref. [5], and L(λ) denotes the pathlength of the spotted photons across the tissues. 

Moreover, L(λ) can be estimated as: 

𝐿𝐿(𝜆𝜆) = 𝑟𝑟 ∗ 𝐷𝐷𝐷𝐷𝐷𝐷(𝜆𝜆),                                              (1-1) 

where 'r' is the source-detector distance, and DPF(λ) is the wavelength-dependent 

differential pathlength factor. By swapping Eq. (1-3) into Eq. (1-2) for multiple wavelengths, I can 

illustrate ∆[HbO], and ∆[Hb] in a matrix format related to two wavelengths  ∆OD (λ) over DPF(λ), 

as follows: 

�
𝛥𝛥[𝐻𝐻𝐻𝐻𝐻𝐻]
𝛥𝛥[𝐻𝐻𝐻𝐻] � =  

1
𝑟𝑟
∗  �𝜀𝜀𝐻𝐻𝐻𝐻𝐻𝐻

(𝜆𝜆1) 𝜀𝜀𝐻𝐻𝐻𝐻(𝜆𝜆1)
𝜀𝜀𝐻𝐻𝐻𝐻𝐻𝐻(𝜆𝜆2) 𝜀𝜀𝐻𝐻𝐻𝐻(𝜆𝜆2)�

−1

⎣
⎢
⎢
⎢
⎡
𝛥𝛥𝛥𝛥𝛥𝛥(𝜆𝜆1)
𝐷𝐷𝐷𝐷𝐷𝐷(𝜆𝜆1)
𝛥𝛥𝛥𝛥𝛥𝛥(𝜆𝜆2)
𝐷𝐷𝐷𝐷𝐷𝐷(𝜆𝜆2)⎦

⎥
⎥
⎥
⎤

_________________(1 − 4) 

A continuous-wave, multi-channel fNIRS system (LABNIRS, Shimadzu Corp., Kyoto, Japan) 

was utilized for the study, which consists of 40-sources and detectors creating more than 133 

channels. The system is sourced with laser diodes with 3 wavelengths (780, 805, and 830nm). The 

LABNIRS system was used for studying hemodynamic response during the newsvendor problem, 

which lacks a neuroimaging overview with a 77-channel custom layout and a comprehensive 

protocol. 
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1.2 Newsvendor Problem: An Economic Decision-Making Task in Need of Neuroimaging 

Investigation using fNIRS 

Newsvendor Problem (NP) is one of the significant concepts associated with management science 

[8]; it refers to a prevalent business decision-making scenario, where an individual has to balance 

between potential loss and waste to achieve maximum expected profit. The typical scenario is that 

of a store manager deciding the number of units of products to stock when the number of customers 

is uncertain [6]. Too little stock leads to potential lost sales; too much stock leads to potential 

waste. Risky decisions are needed to stock the inventory for profit under arbitrary requirements. 

In such a decision contained risks, the likelihood of the consequence is known. However, a safe or 

risky outcome differs in terms of the reward [7].  There are a few empirical research on the brain 

activities underlying decisions made under varying conditions of risk. Previous neuroeconomics 

literature reported that there are three processes involved in risk decision-making processes, 

namely, reward processing, cognitive control, and social cognition [8]. These processes trigger 

mainly the dorsolateral prefrontal cortex (DLPFC), orbitofrontal cortex (OFC), and angular 

cingulate cortex (ACC) along with several other regions in the brain as a network shown in the 

fMRI studies [9].  

1.3  Need for Quantifying Electrophysiological and Hemodynamic Fluctuations due to 

Transcranial Photobiomodulation(tPBM) using EEG /fNIRS During the Eyes-closed 

Resting State. 

Transcranial photobiomodulation (tPBM) is a light-based technique to stimulate the human brain 

non-invasively. Recent studies have shown that tPBM using a 1064-nm laser can be applied to 

improve cognitive functions on healthy brains. This non-invasive optical neuromodulation tool has 

been reported to enhance human cognitive performance on a variety of cognitive tasks using sham-
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controlled experiments with about 300 human subjects [10-13]. Our previous studies have 

objectively measured and observed significantly enhanced concentrations of hemoglobin 

oxygenation and oxidized cytochrome-c-oxidase (CCO) during and after tPBM on human right 

frontal-cortex with high reproducibility and robustness [14-16]. This validated the hypothesized 

theory/mechanism for tPBM to photo-oxidize CCO to boost the metabolism rate of cells/neurons 

[17]. 

Moreover, using scalp EEG, power enhancement of larger-scale alpha and beta rhythms in the 

eyes-open resting state human brain were reported during and after tPBM [18, 19]. This 

observation indicated that tPBM not only increased oxygenation and metabolism rate of neurons 

but also enhanced the firing rate of neurons and connectivity of the brain. Although with different 

experimental protocols, these findings showed great consistency with many independent studies 

on EEG responses to tPBM from other research groups [20, 21]. However, it is known that the 

eyes-open and eyes-closed EEG behave distinctively in the human brain [22]. Also, the powers of 

brain waves/EEG signals are more vulnerable to eye-blinks and drowsiness in the eyes-open 

resting state compared to the eyes-closed resting state. This emphasized the essence of measuring 

tPBM-induced power changes of brain oscillation during eyes-closed human resting states.  

Moreover, we observed that the laser beam produces a warm sensation on the subject’s forehead. 

Since the EEG signal is sensitive to sensations [21], the warmness created by tPBM can potentially 

affect the EEG signal. Thus, the improvement of behavioral performances and EEG power we 

observed in previous studies might be due to the thermal sensation rather than photobiomodulation 

(i.e., photon-tissue) interactions. Therefore, it is also essential to measure responses of EEG signals 

in response to thermal stimulation that is equivalent to the heat produced from tPBM. 
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Consequently, the tPBM-induced effect under the eyes-closed resting state is unknown, and 

whether the measured changes in EEG powers could result directly from laser heating is also 

unclear. However, studies have shown that tPBM improves not only [CCO], but also 

hemodynamics, especially Δ[HbO2] and [ΔHb] in the brain on the stimulation site. However, it is 

unclear that if the Δ[HbO2] increment is limited to the stimulation site. Thus, it is needed to 

investigate the tPBM evoked Δ[HbO2] in the whole head using the LABNIRS system. 

1.4  Specific Aims and Dissertation Outline 

The scope of my dissertation focuses on utilizing non-invasive brain imaging technologies such as 

multi-channel whole-head fNIRS and EEG (1) to image decision-making tasks based on 

Newsvendor Problem (2) to image electrophysiological and hemodynamic response to transcranial 

photobiomodulation. There are three specific aims, as follows: 

Aim 1: To investigate hemodynamic brain imaging in response to a risk decision making task in 

business content, namely, the newsvendor problem (NP) using a 77-channel fNIRS imager 

• Aim 1a: to study and map human brain activations in response to the NP using the general 

linear model;  

• Aim 1b: to explore and quantify dynamic functional connectivity using graph theory by 

identifying alterations in global and local properties of brain networks in response to the 

NP. 

Aim 2: To investigate and map tPBM and thermal effect on electrophysiological signals, which 

was administered on the right forehead during the eyes-closed resting state using a 64-channel 

electroencephalograph (EEG). 
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• Aim 2a: to quantify and map dose-dependent and frequency-dependent effects of tPBM on 

whole-head EEG powers of healthy participants during eyes-closed resting state (n=46);   

• Aim 2b: to investigate and map time-dependent and frequency-dependent effects of 

thermal stimulation on whole-head EEG powers of healthy human participants during the 

eyes-closed resting state (n=14). 

Aim 3: To investigate and map whole-head hemodynamic brain imaging in response to right-

forehead tPBM during the eyes-closed resting state using the 111-channel fNIRS imager. 

• Aim 3a: to study and map whole-head human hemodynamic activations in response to right 

frontal tPBM (N=19);  

• Aim 3b: to explore and quantify dynamic functional connectivity patterns in response to 

right frontal tPBM (N=19). 
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Chapter 2 

Neural correlates of newsvendor problem-based decision-making in the human 

brain: An exploratory study to link neuroeconomics with neuroimaging using 

wide field-of-view fNIRS 

(This chapter is a manuscript that has been submitted to Frontiers in Neuroscience) 

Hashini Wanniarachchi, Yan Lang, Xinlong Wang, Tyrell Pruitt, Shridhar Nerur, Key Yut Chen, 

Hanli Liu 

2.1 Introduction 

Neuroeconomics is an emerging field that integrates economic theories with neuroscience to 

enhance the understanding of how the human brain makes decisions under different business 

conditions [23]. The “behavioral perspective in decision-making” is common in business research. 

For example, studies in management science have found that psychological factors, particularly 

attitudes towards risks and rewards, are essential drivers of business decisions.  In general, business 

research usually assesses cognitive and psychological processes indirectly via human-subject 

experiments, surveys, and/or real-world observations. On the other hand, functional neuroimaging 

is a unique tool that allows researchers to “peek into the black box” and gather data directly from 

pertinent regions of the brain while subjects are engaged in making a decision. Advanced 

neuroimaging technologies, such as multi-channel electroencephalography (EEG) and functional 

magnetic resonance imaging (fMRI), are potentially able to provide clues to the underlying 

cognitive processes that previously were assumed to be the determinants of human decision-

making. 

Multi-channel fNIRS is a portable and non-invasive imaging technique that measures cortical 

hemodynamic activities in the human brain. It quantifies the cerebral concentration changes of 
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oxygenated hemoglobin (Δ[HbO]) and deoxygenated hemoglobin (Δ[Hb]) with the high temporal 

resolution based on the alteration of optical absorption and scattering of near-infrared (NIR) light 

propagating through the human brain. The temporal and spatial features of Δ[HbO] and Δ[Hb] are 

then used as biomarkers of neuronal activations [24, 25]. In the last two decades, fNIRS has gained 

popularity and has been  recognized as a non-invasive tool to functionally image brain activations 

and diagnose brain diseases [2, 26]. Compared to fMRI, fNIRS is cost-effective and less sensitive 

to motion artifacts, has less restriction on body movement or confinement, and has a higher 

temporal resolution. All these features make it easier to use in a task-oriented, more-naturalistic 

experimental environment. 

In this study, we utilized the newsvendor problem (NP) in our experimental design as NP has 

been widely used in management science [27]. NP refers to a prevalent business decision-making 

scenario, where an individual must balance between potential loss and waste to achieve maximum 

expected profit. The typical scenario is that of a store manager deciding the number of units of 

products to stock when the number of customers is uncertain [6]. Too little stock leads to potential 

loss of sales; too much stock leads to potential waste. Risky decisions have to be made when 

stocking the inventory for profit under arbitrary requirements. While many publications have 

reported brain activities in response to risk decision-making under varying conditions of risk [7], 

as far as we know, no inventory management scenarios, such as NP, have been investigated in 

conjunction with neuroimaging techniques. The specialty of NP is to consider whole business 

management scenarios, not just one element, for the best decision-making outcome. This study 

aims to fill this void by mapping human brain activations or deactivations and cortical network 

changes caused by NP with fNIRS. 
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Graph theory analysis (GTA) is an analysis method that has been developed to examine large-

scale complex brain networks [28-32]. It can provide an easy and yet powerful mathematical 

means to characterize the topological properties of the brain networks [33-35]. In particular, a few 

recent studies have combined GTA with channel-wise fNIRS, and have revealed the topological 

organization and architecture of large-scale, resting-state human brain cortical networks [36-38]. 

This study also applies GTA to investigate changes in brain network properties when the brain 

changes from resting state to dynamic task-based activity.  

Specifically, to examine brain activities in response to the NP tasks, we formulated two 

hypotheses: Hypothesis I was that NP stimulates both DLPFC and OFC significantly in the human 

brain, and that more challenging NP results in the deactivation of right-DLPFC in addition to 

activation of left-DLPFC. Hypothesis II was that brain network properties would change when a 

person transits from rest to the NP decision-making phase. To test these two hypotheses, we 

designed and incorporated the NP protocol using a computer-based platform with simultaneous 

77-channel fNIRS data acquisition. 

2.2  Material and Methods 

2.2.1 Participants 

A total of 27 subjects (20 males and 7 females; 23 ± 5 years of age) participated in the study. They 

were randomly assigned into two experimental groups with different risk levels. The subjects were 

included in the study if they met the following criteria: belonged to either sex, were from any 

ethnic background, and were between 18 and 40 years of age. The subjects were excluded if they 

(1) were diagnosed with a psychiatric disorder, (2) had a history of a neurological condition or 

severe brain injury or violent behavior, (3) had a history of prior institutionalization or 
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imprisonment, and (4) were currently under any medicine or drug. The study protocol complied 

with all applicable federal guidelines and was approved by the institutional review board (IRB) of 

the University of Texas at Arlington. Informed consent was obtained from every subject who 

participated in the experiment. 

2.2.2 NP Protocol Design 

The experimental protocol design was based on the Newsvendor Problem [27], where a news 

vendor must decide how many newspapers to buy each day at the wholesale price and sell at the 

retail price. This NP problem has five major characteristics: (1) the demands are uncertain but from 

a known distribution; (2) the decision must be taken for every period; (3) there is a cost for ordering 

too many items; (4) the number of items ordered at each time is called order quantity, which must 

be decided for the inventory by the subject in each trial; and (5) each trial is independent. 

According to the NP model [2, 6, 39], under the condition that the order quantity (q) is larger than 

the unknown demand (D), the final profit (π) can be calculated as a function of q and D by Eq. (2-

1) [39], as shown below: 

         π(q, D) = p min(q, D) − c q                                     (2-1) 

where c is the cost, and p is the price to sell. 

Based on the conditions listed above, the experimental protocol was designed with two 

independent treatments, namely, the high-profit margin (HM) (c << p) and low-profit margin 

(LM), (c < p). Table 1 shows the details of the design for the two different treatments used in our 

study. In the HM treatment, the price to sell, p, was designed to be $32 while the cost was only $8, 

all of which resulted in a lower risk of losing profits. On the other hand, in the low-profit margin 

(LM) treatment, while keeping p still $32, the cost was raised to $24, leading to a higher risk of 
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losing profits. The demand was kept unknown until the participant made his or her decision by 

typing the order quantity between 0 and 300 per trial. The given demand was randomly generated 

from a uniform distribution between 0 to 300 with a mean of 150. The history of demands from 

previous trials was visible to the participant after each trial, based on which the participant could 

decide for the current trial. There were 40 trials in total in each experiment. The selling price and 

cost were kept constant and known for each HM and LM treatment.   

Table 1-1 NP Protocol Summary 

 
Treatment High-profit Margin 

(HM) 

Low-profit Margin 

(LM) 

Price (p) $32 $32 

Cost (c) $8 $24 

Demand 

Distribution 

Uniform [0 300] Uniform [0 300] 

2.2.3 NP Protocol Implementation  

Subjects were randomly divided into either the HM treatment (n=13) or LM treatment (n=14) 

group before the experiment. One entire experiment consisted of a 30-s baseline and 40 blocks 

corresponding to 40 trials of NP tasks, as shown in Fig. 2-1a. The 30-s ‘baseline’ was needed to 

acquire the baseline of cerebral hemodynamic functions of each subject. Each block contained one 

NP trial, and each NP trial entailed 4 phases: decision, rest, feedback, and rest. The ‘decision’ 

phase lasted for a maximum of 20 seconds, during which each subject was asked to decide on the 

order quantity given such visible information as price, cost, and demand distribution range for 

either the HM or LM group. The subject was instructed to enter the quantity in a text box on the 

screen within the 20-s maximal period. If the subject did not enter anything within the 20 s, the 
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program automatically determined the order quantity to be ‘0’. In general, decision-making 

durations were not the same for each subject over the trials. 

After the decision phase, the screen shifted to a 5-s 'rest' phase, followed by the 10-s 'feedback' 

phase. Within this 10-s period, the subject was shown a summary table listing the price, cost, 

demand distribution, profit/loss, and the cumulative profits/losses that were made after every trial. 

Then the protocol proceeded to the next trial following another 5-s 'rest' period. All trials of either 

LM or HM session consisted of the same setting during the decision phase. All the profit/loss 

details were stored along with the corresponding time stamps.  

The NP trials were presented on a laptop computer in the form of a game. The subjects were 

directed to use both hands during the experiment, one hand to press the spacebar on the keyboard 

for making an event stamp for fNIRS, and the other to enter the order quantity for the 

corresponding trial. Before each experiment, each subject was provided information on how to 

play the NP game and given a 5-trial practice session to get familiar with the experimental protocol. 

 

 

Figure 2-1: Experimental protocol and setup. (a) The NP experimental protocol consists of a 30-s 

initial baseline and 40 trials. Each trial has 4 phases: up to 20-s NP decision task (Di), 5-s rest (R2i-

1), 10-s feedback (Fi), and 5-s rest (R2i) again before starting another block/trial for the Di+1 trial. 

       (a) 

(c) (b) 

right                                              left 
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(where i = 1, 2, 3, …, 40) Each block lasts about 30-40 seconds. (b) The front view of the channel 

layout of fNIRS optodes on a human brain template with 77 channels derived from 25 pairs of light 

sources and 23 detectors. The red squares illustrate the channel locations for 77 channels. (c) The 

experimental setup for the NP experiment. The subject wears the whole-head cap, with a 77-channel 

layout hooked up to the LABNIRS system while maintaining seated on an upright position.  

2.2.4 fNIRS Experiments 

A continuous-wave, multi-channel fNIRS system (LABNIRS, Shimadzu Corp., Kyoto, Japan) was 

employed in this study. As reported before [40], a customized, wide field-of-view, 77-channel 

layout incorporating 25 sets of laser transmitters and 23 light receivers was used to cover from the 

prefrontal cortex to the sensorimotor cortex. Fig. 2-1b shows the front view of wide field-of-view, 

77-channel locations on a human brain template, while Fig. 2-1c is a photo viewing a human 

subject wearing a whole-head helmet that facilitates all-optical optodes connected to the 

LABNIRS data collection system. The distance between the nearest source and detector fiber 

optodes was 3 cm, resulting in a sensitive detection depth of 1.5-2 cm under the scalp. All the 

source and detector fibers were firmly and steadily held by the helmet on each subject’s head; the 

data sampling frequency was 12.82 Hz. Spatial co-registration measurements were taken using a 

3D digitizer (FASTRACK, Polhemus, Colchester, VT, USA).   

2.2.5 Data Analysis 

2.2.5.1 Behavioral Analysis 

The NP protocol generated two types of behavioral scores: (1) the decision-making (reaction) time 

and (2) the profit/loss score that each subject made for each trial. These two parameters were 

averaged across 40 trials for each subject for each of HM (n=13) and LM (n=14) groups. Then, 

the grand-averaged reaction time and profit score over each group were quantified and pooled with 
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box plots to quantify their respective distributions. Statistical testing was next performed using a 

two-sample t-test for both averaged reaction time and profit score to identify a significant 

difference between the HM and LM groups. 

2.2.5.2 fNIRS Data Processing  

The raw outputs of the fNIRS system were time-dependent optical intensities at three wavelengths 

(i.e. 780 nm, 805 nm, and 830 nm), the alterations of which were affected by the changes of 

hemoglobin concentrations. A band-pass filter of 0.01 - 0.2 Hz was applied to remove artifacts 

from cardiac pulses (~0.8-1.2 Hz), respiration (~ 0.2 - 0.3 Hz) [41], muscle movements, and 

systemic drifts. Next, the modified Beer-Lambert Law was used to convert the recorded optical 

intensities at 780 nm and 830 nm into concentration changes of oxygenated hemoglobin (∆[HbO]) 

and deoxygenated hemoglobin(∆[Hb]) [24, 42]. Then, each time series of ∆[HbO] and ∆[Hb] was 

baseline calibrated by subtracting its temporal average to remove any potential drift during the 

baseline recording. Moreover, to further remove systemic, physiological variations contained in 

the scalp and skull, we subtracted the signal spatially averaged across all 77 channels to remove 

the global noise [40]. Also, the channels close to the superficial temporal artery were excluded 

from the analysis to prevent signal mixing with patterns from arteries [43-45]. Afterward, the pre-

processed data was used for further analysis. The data analysis was performed in two steps: (1) 

NP-evoked Δ[HbO] activations based on a general linear model (GLM) and (2) NP-evoked 

alterations in brain connectivity based on GTA.  

2.2.5.3 Activation Maps-Based on the General Linear Model 

GLM is a mathematical model popularly applied in fMRI [46, 47] and fNIRS [48, 49] to estimate 

amplitudes of hemodynamic activation or deactivation at different brain regions in response to a 
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variety of tasks. In our study, a preprocessed time series of ∆[HbO] per channel was used as the 

input in the GLM analysis using MATLAB. In the process, the designed temporal matrix was 

generated with a boxcar function, reflecting the NP task blocks convoluted with a canonical 

hemodynamic response function (HRF) [50]. For each NP experiment (with HM or LM treatment), 

two regressors were generated corresponding to the decision phase and feedback phase, while the 

data analysis was mainly focused on the decision phase. Eq. (2-2) demonstrates the model equation 

for the GLM model developed based on the experiment. ‘y’ is the time series; x1 and x2 represent 

the model response functions or design matrices corresponding to the decision phase and feedback 

phase; β1 and β2 are the amplitudes of ∆[HbO] corresponding to the decision and feedback phases, 

respectively; ‘e’ is the error term.                                                                   

y =  β1x1 + β2x2 + e                         (2-2) 

 

Following the model, the activation amplitudes (i.e., β1 and β2 values) for both regressors were 

calculated or fitted through a regression algorithm between the calculated ∆[HbO] time series and 

the temporal design matrix using a weighted least square method [48]. Such regression processes 

were carried out for each channel, giving rise to an array of 77 fitted beta values relative to their 

baselines for each human subject. However, only beta values corresponding to the decision phase 

were considered for further exploration in this paper. 

Next, beta values were averaged across the subjects to observe the activation as a response to 

decision-making under NP. Further, the beta values were used to perform statistical analysis 

exploiting one-sample or two-sample t-tests to test our hypothesis I. Specifically; we wanted to 

investigate (1) whether DLPFC and/or OFC were significantly evoked by NP versus baseline 

regardless of treatment (HM or LM) types, (2) whether DLPFC and/or OFC were activated by HM 

or by LM versus baseline, and (3) whether a more challenging NP created a significant difference 
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in brain activation or deactivation in DLPFC or OFC regions. For test (1), one-sample t-tests 

(against the mean of zero baselines) were performed over beta values of ∆[HbO] from all 27 

subjects for each of the 77 channels, without considering any treatment effect. This step allowed 

us to map/identify significant cerebral activation/deactivation regions (i.e., channels) while the 

subjects made risky NP decisions. For test (2), beta values of ∆[HbO] were analyzed for subjects 

separately with either LM or HM treatment, respectively. Similarly, one-sample t-tests were 

performed among 13 participants with HM treatment and separately among 14 participants with 

LM, at each channel to examine the statistical significance versus the mean of zero baselines. For 

test (3), two-sample t-tests were performed at each channel between the two groups (with HM and 

LM treatments) to determine significant differences in brain activation/deactivation. All activation 

related statistical tests were performed at a significance level of α=0.05. Accordingly, topographic 

t-value maps were generated using easytopo 2.0 [51].    

2.2.5.4 Applying GTA to Assess Network Properties in the Brain 

Graph theory is a renowned mathematical model to study characteristics of a network system [52, 

53], and it has been applied to investigate resting state functional connectivity of the human brain 

as measured with fMRI, Electroencephalography (EEG), and Magnetoencephalographic (MEG) 

[54-57], as well as fNIRS [36-38]. A recent study demonstrated that based on GTA, brain networks 

were altered when the human brain transitioned from resting state to task-evoked states [58]. In 

this study, we also applied GTA to primarily focus on how brain networks were altered from the 

resting state to the decision-making state in a dynamic context.  

Our analysis based on GTA was performed following similar steps to those in refs. [36-38, 59], 

as follows: (1) The processed ∆[HbO] time series for all channels were analyzed to create 

Pearson’s correlation coefficient (PCC) matrices in the rest and decision-making phases. Only 
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positive correlations were considered for calculations. Nodes were defined as channels, and edges 

were defined as normalized Pearson’s correlation strength. The longer the data, the less specific 

the task-based data is. (2) Rest and decision periods of three trials (See Fig. 2-1(a)) were extracted 

and concatenated into two-time series separately. (3) A three-trial moving window overlapping 

one trial was applied to create multiple concatenated time series, which resulted in multiple PCC 

matrices for both rest and decision phases, respectively. Only the first 20 trials were included for 

the connectivity calculations to avoid impacts from fatigue and stress. (4) The PCC matrices for 

all concatenated time series were converted to z-values by Fisher’s r-to-z transformation to 

improve normality, resulting in a 77 × 77 z-value functional connectivity matrix Zij for each 

subject, where i, j = 1, 2, … 77. (5) All three-trial-derived, Fisher-transformed Z matrices were 

averaged to become two respective matrices for both rest and task phases for each subject. (6) 

These two matrices were entered as inputs in GRaph thEoreTical Network Analysis (GRETNA) 

[60] to construct the functional brain network for each subject. (7) Within GRETNA, we chose the 

sparsity, S, as the threshold criterion, the number of current existing edges divided by the total 

possible number of edges in the current matrix in a network. 

We selected and quantified five global topological properties/metrics to study network patterns 

with a range of S level (S; 0.05 < S < 0.50; increment = 0.05) [61], as follows: (1) global efficiency 

(Eg) that represents global efficiency of the subgraph composed of the nearest neighbors of the 

node; (2) local efficiency (Eloc) that describes how efficient the communication is between the 

first neighbors of i when i is removed; (3) clustering coefficient (Cp) that measures network 

segregation; (4) path length (Lp) that is the average of the shortest path length between all pairs of 

nodes; (5) small worldness (σ) that reflects small-world characters and is characterized by a high 
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Cp and low Lp. Detailed definitions and explanations on these network metrics can be found in ref. 

[59].  

All seven steps were repeatedly performed on all 27 subjects, followed by statistical 

comparisons for each of the five network-metrics within 0.05 < S < 0.50 (i) between the rest versus 

decision-making regardless of LM or HM and (ii) between LM and HM.  

2.3 Results 

2.3.1 Behavioral Results 

When the subjects played NP games, their profit/loss score and the reaction time per trial were 

recorded, so were the total scores and average decision-making times overall 20 trials. The 

corresponding results for both LM and HM groups are shown in Fig. 2-2. Fig. 2-2a shows that the 

mean profit averaged over the LM group was less than zero ($-198.27), whereas the HM group 

gained a mean yield of $2,183.50 during each trial, with a significant difference in profit between 

the two groups by a two-sample t-test. Fig. 2-2b shows that the subjects under the LM protocol 

spent an average of 9.6 seconds to make the risk decision while the HM group needed an average 

of 8.25 seconds to complete the task, which was not significantly different by the two-sample t-

test. These observations were expected because risky decisions under the HM protocol were more 

straightforward and quicker to make while gaining good profit, as compared to the LM treatment. 
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Figure 2-2. Behavioral scores distribution of (a) average of profit and (b) average reaction or 

decision-making time in response to LM and HM protocols. ‘***’ indicates the statistical 

significance between LM and HM at p < 0.001 (p=1.915×10-13). The reaction time did not show a 

significant difference. Outliers are marked as ‘+’. 

2.3.2 Brain activation evoked by NP determined with GLM 

As a result of GLM analysis, the group averaged β1 values and their statistical t-values were 

generated based on the hemodynamic changes, ∆[HbO] when subjects performed the NP-based 

tasks. These statistical tests aided us in identifying significantly activated locations on the cortex 

in response to the decision-making task. Three statistical analyses were performed to test: (1) 

whether DLPFC and OFC were significantly evoked by the NP with respect to the baseline 

regardless of treatment (HM or LM) types; (2) whether DLPFC and/or OFC were activated by HM 

or LM versus baseline; and (3) whether more challenging NP tasks (i.e., LM) created a significant 

difference in brain activation or deactivation in DLPFC and/or OFC regions with respect to less 

challenging NP conditions.  
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Figure 2-3. Topographic maps in response to brain stimulations by the 40-trial NP from all subjects 

(n=27) without considering the treatment level. (a) Averaged topographic beta, β1, map (in µM) 

derived from ∆[HbO] during the decision-making phase. (b) Corresponding t-map derived from a 

one-sample t-test at a significance level of p < 0.1 for a two-tailed t-test.   

We obtained the front view of a topographic ∆[HbO]-derived beta map shown in Fig. 2-3a 

averaging over 20 decision-making trials from all 27 human subjects regardless of either HM or 

LM treatment. The topographic map illustrates activated cortical areas identified by the output of 

NIRS_SPM [62] corresponding to the co-registration readings. Fig. 2-3b presents the 

corresponding t-map to compare ∆[HbO] signals between the decision phase and baseline with a 

one-sample t-test. These observations suggest that NP tasks considerably activated left the DLPFC 

(l-DLPFC) and OFC and front polar cortex (FPC) on both hemispheres.  Also, some deactivation 

is noted in the left supplementary motor area (SMA). 

Next, Figs. 2-4(a)-4(c) show front-view t-maps of ∆[HbO] evoked by the NP tasks under three 

comparison conditions. Fig. 2-4(a) illustrates that the NP decision-making with HM treatment 

significantly activated OFC on both hemispheres and l-DLPFC. Fig. 2-4(b) demonstrates 

unambiguously that the NP decision-making with LM strongly activated the l-DLPFC and Broca’s 

area, but not OFC. Moreover, LM tasks deactivated the right DLPFC (r-DLPFC). Finally, Fig. 4(c) 

shows a topographic t-map obtained by a two-sample t-test between ∆[HbO] values under LM and 

HM treatment. It is seen that more challenging NP with LM dominated significant deactivation in 

r-DLPFC and significant activation in left Broca’s area compared to the NP tasks with HM risk-

taking. All of these observations supported our Hypothesis I that NP stimulates both DLPFC and 
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OFC significantly in the human brain, and that more challenging NP results in the deactivation of 

right-DLPFC in addition to activation of left-DLPFC.  

Figure 2-4 Front-view topographic t-maps of ∆[HbO] evoked by the NP. (a) HM treatment (n=14) 

compared to baseline; (b) LM treatment (n=13) compared to baseline. One-sample t-tests were 

performed comparing each treatment relative to the baseline. (c) shows a front-view topographic t-

map comparing activation/deactivation between LM and HM tasks based derived from the two-

sample t-test at a significance level of p < 0.1 for a two-tailed t-test. 

2.3.3 Brain network changes induced by NP analyzed by GTA 

NP-induced changes in brain network properties during the resting and decision phases were 

obtained based on GTA, yielding five global network properties: global efficiency (Eg), local 

efficiency (Eloc), clustering coefficient (Cp), path length (Lp), and small-worldness (sigma (σ)) 

for sparsity between 0.05-0.5. Consequently, Fig. 2-5 illustrates the network properties for each 

parameter averaged over all subjects (n=27) for the two phases. Fig. 2-5 shows that the NP tasks 

significantly reduced Eg, but increased Eloc, Cp, and Lp as compared to rest for almost all of the 

sparsity range (0.05-0.4 thresholds). Even though σ (Fig. 2-5(e)) does not show a significant 

difference between the phases, both of them show small-worldness maintaining σ >1 [52-54], 

holding characteristic behaviors of small-world networks 
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Figure 2-5 Comparison of averaged dynamic functional network properties derived from GTA 

during NP decision (red) and rest (blue) phases for all subjects (n=27): (a) Eg, (b) Eloc, (c) Cp, (d) 

Lp, and (e) sigma. Sparsity ranges from 0.05-0.5. Significant differences of each network property 

at respective sparsity between the NP decision and rest phases are marked by * on the top of each 

panel. The error bars represent the standard deviation. The statistical significance was set to be at p 

< 0.01. 

Furthermore, the five network properties were separately quantified for the LM group (n=14) 

and HM group (n=13), as shown in Fig. 2-6 with similar parameter settings to those in Fig. 2-5. It 

is seen that both the LM and HM groups fundamentally followed the same patterns as those in Fig. 

2-5 derived from both groups together. On closer inspection on these figures, we observed that (1) 

both groups had significant increases in Cp across all the sparsity range as compared to the rest 

phase, (2) the LM group had significant increases in Eloc with more sparsity numbers than the 

HM group, but (3) the HM group had significant decreases/increases in Eg/Lp, respectively, with 

more sparsity numbers than the LM. (4) In particular, the LM group exhibited significant increases 

in σ during the NP task phase versus the rest phase at several sparsity levels. In contrast, the HM 

group did not reveal such features. 
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Figure 2-6 Brain network properties for LM (N=14) and HM (N=13) for the rest phase (red) and 

the decision phase (blue). Network efficiency parameters for LM (top row (a-e)) and HM (bottom 

row (f-j)) such that Global efficiency (Eg), local efficiency (Eloc) indicate in (a-b) and (f-g), 

respectively. Small-world property parameters such that the Clustering coefficient (Cp), Path length 

(Lp), and small worldness (sigma) indicate in (c-e) and (h-j), respectively. Sparsity ranges from 

0.05-0.5 for every 0.05. The sparsity levels having significantly different decision versus rest 

network properties, are marked in black stars. The error bar represents the standard deviation. The 

statistical significance is calculated at p < 0.01. 

In summary, Figs. 2-5 and 2-6 illustrate that the brain network properties were altered when 

the human brain switched from rest to the NP decision-making phase, particularly during the 

higher risk levels. The clustering coefficient, Cp, was significantly enhanced under both high- and 

low- risk decision-making. At the same time, the higher risk decision-making significantly boosted 

the small-worldness, σ, of the brain. All the results shown in this subsection strongly supported 

Hypothesis II, which posited that brain network properties would be altered when a person 

transitions from rest to the NP decision-making phase.   



40 
 

2.4  Discussion 

In a complex and turbulent business environment, managers must make decisions that require 

complex trade-offs and risk considerations. Decision-making under risk is a complex cognitive 

process, requiring contribution and integration of actions from multiple regions of the human brain 

[63-65]. The scope of this study was to observe which cortical regions of the human brain are 

responsible for making risky decisions in a business context, as represented by the widely studied 

newsvendor problem (NP). The first hypothesis was that NP stimulates both DLPFC and OFC 

significantly in the human brain and that more challenging NP with LM treatment triggers more 

deactivation in DLPFC than HM treatment. The second hypothesis was that brain network 

properties show significant alterations when the human brain switched from a rest state to the NP 

decision phase. To prove these hypotheses, we conducted 77-channel, wide field-of-view fNIRS 

measurements from 27 human subjects concurrently when they performed NP decision-making 

tasks. After data analyses and reviews of results, we have learned several valuable lessons and 

gained scientific findings, as discussed as follows.   

2.4.1 Behavioral Outcomes Affected by NP Decision-Making Tasks 

The behavioral scores (Fig. 2-2) revealed how NP tasks with HM and LM affected subjects’ 

performance in average profits and average decision-making time. During the LM treatment, it 

was difficult to earn positive rewards while the LM group took about the same time as the HM 

group to make the decision. In contrast, the HM group received much better and significant profits. 

These observations may imply that the subjects facing the LM challenge were under much more 

stress than those under the HM condition since the former group had to think much harder and 

more carefully for making risky decisions to win profits with challenging circumstances and 

limited time.   



41 
 

2.4.2 Brain Activation Triggerd by NP Decision-Making Tasks 

Our results (Fig. 2-3) confirmed that both DLPFC and OFC regions, particularly l-DLPFC, played 

significant and critical roles in cognitive processing when subjects had to solve the NP regardless 

of difficulty levels. Several previous studies in the literature have reported that DLPFC is 

responsible for risky decision-making (in non-business context) and cognitive control in terms of 

planning and working memory [9, 25, 66, 67]. Our findings in this paper are consistent with those 

reported. Another significantly activated area observed in this study was the front polar area (i.e., 

BA10), which is another crucial part of the brain involving executive functions. Even though it is 

not a part of the reward pathway, there is evidence of its contribution to decision-making.   

Moreover, a slight deactivation is observed in the left anterior temporal lobe. One of the 

studies comparing brain activation on fMRI-based semantic and non-semantic tasks has shown 

deactivation in the left anterior temporal lobe in response to non-semantic tasks while semantic 

tasks triggered activation. Also, left-lateralized activation is closely related to scripted words or 

generating speech. Our study was more related to a non-semantic aspect. Therefore, the 

deactivation observed in the l-temporal lobe can be attributed to the comprehension of written 

words when reading NP questions [68, 69]. 

2.4.3 Brain Activation by Low Risk (HM) NP Tasks  

It is seen (Fig. 2-4(a)) that the HM group presented prominent and significant activation in l-

DLPFC when making low-risk NP decisions. This protocol scenario would be similar to a goal-

oriented decision-making in a less risky environment. Our observation on l-DLPFC is consistent 

with a few published reports. In an fMRI-based study where the subjects were given the task of 

"Tower of London," a popular protocol based on planning, it was observed that the left DLPFC 
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was significantly activated during the hierarchical goal state [70]. Another study reported 

significant DLPFC stimulations when the subjects decided to execute a right-hand movement to 

enter the order quantity on the computer keyboard [71]. Furthermore, we observed that OFC was 

activated during the HM NP tasks. Since OFC is suggested to be one of the significant components 

in the reward pathway [72], the activation of OFC explains the anticipation for gains during the 

trials. 

2.4.4 Brain Activation by High Risk (LM) NP Tasks 

Compared to HM stimulation, several distinct features of the brain responses to LM stimulation 

(Fig. 2-4(b)) are noted: (1) strong activation in left Broca's area, (2) significant deactivation in r-

DLPFC, and (3) no activation/deactivation in OFC. This set of tasks were more challenging than 

those in HM, so the subjects needed to pay more attention to the tasks and to control their emotions 

during the tasks. Since Broca's area has a function of modulating emotional response besides the 

language process, it is reasonable to observe strong activation in this cortical area in response to 

the LM tasks. Also, the observed r-DLPFC deactivation may be attributed to the intense stress due 

to more difficult decision-making challenges [73, 74]. OFC is expected to have a strong response 

in this case because OFC plays a key role in decision-making involving reward, but we did not 

observe such activations in OFC. A plausible reason for this finding is that, as the more challenging 

NP tasks shifted the subjects’ attention from a less-stressful reward phase to a more-stressful 

defying phase, the brain activations occurred in DLPFC rather than in OFC.   

2.4.5 Comparing High Risk (LM) Versus Low Risk (HM) Brain Activation 

Consequently, to be more rigorous in testing for significant differences between brain responses 

to LM and HM treatment, two-sample t-tests were performed. The results (Fig. 2-4(c)) confirmed 
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that LM tasks triggered (1) significant activation in Broca’s area and (2) significant deactivation 

in r-DLPFC. The reason for the former observation was mentioned above; namely, Broca’s area 

has a function of modulating emotional response. The latter observation was consistent with the 

results reported in several recent publications. For example, an fMRI study involving 27 subjects 

suggested that deactivation in r-DLPFC may occur due to acute stress, which weakens high-level 

cognitive functions such as working memory [75]. Also, a transcranial direct current stimulation 

(tDCS) based study with 120 participants showed that tDCS delivered on the r-DLPFC could 

prevent stress-induced working memory deficits [73, 74]. In our study, the NP with the LM 

protocol was somewhat risky and a bit lengthy, subjecting the participants to higher levels of stress. 

Consequently, we observed clear and significant deactivation in r-DLPEC only during LM tasks.  

2.4.6 Brain Network Alteration Caused by NP Decision-Making  

Our GTA-derived network properties (Fig. 2-5) demonstrated that regardless of difficulty levels, 

NP-evoked decision-making tasks altered global brain network properties of the human brain from 

those at rest. The observation of decreases in Eg (in sparsity range of 0.05-0.4) and increases in 

Eloc (in sparsity range of 0.05-0.5) caused by NP indicates that NP stimulated sub-region 

connections in the brain more locally, not globally. This observation also implies that more 

communications among regional segregations take place to achieve the decision-making tasks. 

Also, increases in both Cp (in sparsity range of 0.05-0.5) and Lp (in sparsity range of 0.05-0.4) by 

NP reveal that NP decision-making needs the brain to boost or enhance network segregation, which 

also leads to an increase of Lp and Eloc consistently [58]. As evidence, the activation maps of 

∆[HbO] (Fig. 2-3) illustrate that only several cortical regions (i.e., DLPFC, OFC, and FPA) were 

involved in the decision-making process, regardless of either LM or HM treatment. These results 

support indirectly the underlying reasoning of enhanced Eloc and Cp during NP tasks. 
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2.4.7 Brain Network Alteration Caused by NP Tasks with HM and LM 

The first observation from Fig. 2-6 was that the LM group had significant increases in Eloc with a 

broader sparsity range (0.05-0.5) than the HM group (at only sparsity=0.1 and 0.5). It can be 

interpreted using the argument similar to that given in Section 4.6: The brain needs sub-regions to 

work more efficiently and with better communications among themselves to complete a more 

difficult task (i.e., under LM task) than an easier one (i.e., under HM task). The second observation 

that the HM group had significant increases in Eg and Lp with more sparsity numbers (0.05-0.3) 

than the LM is consistent with the observation without separating HM and LM groups (0.05-0.4; 

shown in Fig. 2-5). The third observation that the LM group exhibited significant increases in σ 

during the task phase versus the rest phase (sparsity range=0.1-0.5) is particularly intriguing and 

can be explained as follows. It implies that more challenging NP tasks would require a more 

significant small-worldness organization of the brain networks. Such a network organization is 

more efficient in the local information processing needed for high-risk NP tasks when compared 

to more manageable or lower-risk decision-making tasks. This interpretation is supported 

indirectly by the brain activation map shown in Fig. 2-4(c), which exhibits localized cortical 

regions that were significantly stimulated by the LM (high risk) NP tasks.  

2.4.8 Limitations of the Study and Future Work 

First, even though the focused and detected areas of brain activation by NP were DLPFC, OFC, 

and FPA at the cortical level, multiple other brain regions beyond the cortex were involved in the 

complex NP decision-making processes but challenging to have access by fNIRS. Second, since 

the 27 subjects had to be split into LM and HM groups, each sample size was statistically small. 

It is appropriate in future studies to corroborate the findings of this study with larger sample size. 

Third, the brain network properties or metrics were obtained using PCC with a relatively short 
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period of time for both rest (~ 15 sec) and NP (~ maximum of 60 sec) task phases. Such a short 

period is perhaps not adequate to provide stable or physiologically meaningful results [76]. More 

rigorous and appropriate algorithms for quantifying dynamic functional connectivity of the 

human brain at both rest and task-evoked phases need to be further explored and applied for this 

study in the near future. 

2.5 Conclusion  

In conclusion, this study showed that NP-based decision-making stimulated vital brain areas, such 

as DLPFC and OFC, for high-level cognitive functions based on 77-channel, wide field-of-view, 

hemodynamic measurements with fNIRS from 27 human control subjects. The study observed that 

there were multiple regions activated and deactivated in responses to the tasks. Explicitly, DLPFC 

and OFC were significantly evoked by NP tasks versus baseline regardless of treatment types. 

Significant deactivation in r-DLPFC was observed and attributed to the challenging stress created 

by the LM with respect to HM. Furthermore, NP decision-making altered global brain network 

properties from the resting phase such that Eloc, Cp, and Lp were all increased while Eg was 

reduced. Also, high-risk LM tasks triggered more significant small-worldness organization of the 

brain networks than the low-risk tasks. All these alterations in network properties together 

enhanced better communications among sub-regions or local segmentations to achieve more 

difficult LM tasks. Overall, this study supported our hypotheses: (1) that NP stimulates both 

DLPFC and OFC significantly in the human brain, and that more challenging NP results in the 

deactivation of right-DLPFC in addition to activation of left-DLPFC, and (2) that brain network 

properties are altered when a person transits from rest to the NP decision-making phase. 

2.6 Further Discussion Remarks  
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2.6.1 Graph Theory Thresholding  

GTA is performed upon a thresholding algorithm. The thresholding is required to avoid misleading 

effects of specious interactions among regions in the connectivity matrices. Network sparsity is 

one of the methods applied in thresholding. Network sparsity is defined as the ratio between the 

number of actual edges to the maximum possible number of edges for each network. However, 

when the number of nodes is equal in several networks, the sparsity threshold confirms the equal 

number of edges for each network by using a subject-specific connectivity potency threshold. 

Thus, it permits an investigation of relative network organization. However, during a situation 

where it is difficult to define a single threshold, the researchers can define a range of thresholds to 

calculate network properties. Moreover, the sparsity can also be described as the portion of 

connections engaged from the full network; thus, setting a sparsity level of 0.3 interprets as that 

only the top 30% of links are concerned for calculations [33, 60, 77].  

2.6.2 Dynamic Functional Connectivity Aspect of GTA  

The connectivity analysis used for this study is based on a dynamic functional connectivity 

approach. The duration, which has been considered for dynamic functional connectivity, ranges 

from 30 seconds to 120 seconds for calculating each connectivity matrix [78, 79]. In my study, the 

duration of the interval of decisions was a minimum of 30 seconds. Therefore, when the 

connectivity matrices are generated, they are aimed to study using a dynamic functional 

connectivity approach.  

2.6.3 Limitations and Future Work 

There are several limitations to this work. One of the notable limitations of this study is the 

penetration depth of fNIRS. According to the literature, decision making involves several internal 
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structures in the brain, such as ACC, striatum, and medial prefrontal cortex. However, fNIRS only 

can measure up to several centimeters from the scalp. For example, using our system, the 

maximum penetration depth is approximately 1.5 cm, given that source-detector separation is 3 

cm. 

Moreover, even though the sample size for all decisions (N=27) is relatively sufficient when 

the data was analyzed under marginal conditions, the sample size is relatively small. In contrast, 

LM consisted of 14 subjects, and HM consisted of 13 subjects. One of the concerns related to 

connectivity analysis is determining nodes. Channels do not represent one point; instead, it covers 

an area of the cortex. These areas can be shared with nearby channels as well. Therefore, it can 

cause interaction effects. Thus, it is challenging to define perfect nodes for the analysis. 

  Further, among the network properties, there are many global and nodal level parameters to 

be studied. Global parameters majorly provide (a) information about functional separation and (b) 

functional incorporation of information flows within the brain network, (c) small-worldness, and 

(d) network resistance against failure, which we discussed in the analysis [80, 81]. However, the 

local parameters focus on identifying hubs in the network. Hubs are the nodes with high nodal 

centrality. It allows them to influence the network topology significantly. There are two types of 

network hubs. They are known as the connectors or provincials, created upon the high or low 

participation coefficient defined for them. Connector hubs are inclined to integrate nodes between 

different segments. The regional hubs are responsible for linking nodes in the same module. To 

assess the connectors and provincials, the degree of centrality and betweenness centrality can be 

calculated. The degree of centrality refers to the number of edges a node has. The higher the degree 

is, the more crucial the node is. This degree measurement can be a useful measure since many 

nodes with high degrees also have high centrality [82]. Further, betweenness centrality measures 
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the nodes which act as bridges between higher nodal degreed nodes. These nodes are often useful 

in identifying the most central nodes [83]. These nodal parameters are helpful in identifying short- 

and long-distance connections in the brain networks. 

 Additionally, the second primary phase of the protocol is the ‘Feedback’ phase. During the 

feedback phase, the subject is shown what he or she earned or lost during the current trial, as well 

as the previous trials. Also, this phase allows the subject to assess the decision they made in the 

last trials. However, this phase helps determine a positive gain or negative gain in the next trials. 

However, since the demand is randomly generated, the decision may also not be affected by the 

feedback phase of the previous trial. It is worth learning the hemodynamic response in this phase. 

 

 

 

 

 

 

 

 

 

 

 

 

 



49 
 

Chapter 3 

Transcranial photobiomodulation effects on large-scale brain oscillations by 

1064-nm laser and its association thermal influence 

 
(This Chapter is a manuscript that will be submitted soon) 

Hashini Wanniarachchi, Xinlong Wang, Anqi Wu, Hanli Liu 

3.1  Introduction 

Photobiomodulation (PBM), also known as low-level laser therapy (LLLT) in clinical applications, 

is a technique that utilizes red to near-infrared (NIR) light to stimulate mitochondrial respiration 

functions in a wide range of cells and nerves in the human body [17, 84, 85]. Transcranial 

photobiomodulation (tPBM) is an approach to deliver NIR laser to the human brains, which has 

shown promising outcomes in treating psychiatric and neurological brain disorders such as 

depression, anxiety [86], and traumatic brain injuries [18, 87, 88]. Furthermore, recent studies have 

shown that tPBM using a 1064-nm laser can be applied to improve cognitive functions on healthy 

brains. This noninvasive optical neuromodulation tool has been reported to enhance human 

cognitive performance on a variety of cognitive tasks using sham-controlled experiments with 

about 300 human subjects [10-13].   

Our previous studies have objectively measured and observed significantly enhanced 

concentrations of hemoglobin oxygenation (HbO) and oxidized cytochrome-c-oxidase (CCO) 

during and after tPBM on human right frontal-cortex with high reproducibility and robustness to 

understand and interpret the beneficial mechanism of tPBM to the human brain and to understand 

the physiological mechanism of tPBM in enhancing cognitive functions, [14, 15, 89]. These 

investigations validated the hypothesized-theory/mechanism that tPBM can photo-oxidize CCO, 
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the key mitochondrial enzyme for oxygen metabolism, to boost the metabolic activities of 

cells/neurons [17]. Also, we reported that thermal stimulation created hemodynamic and metabolic 

effects opposite to tPBM (i.e., laser illumination), which suggested that the increased 

hemodynamic oxygenation and metabolic activities were not due to the thermal (warm sensation) 

effects from tPBM [90]. 

Recently, tPBM was reported effective in enhancing the powers of large-scale alpha and beta 

oscillations in the human brain during eyes-opened resting state, measured by scalp EEG on the 

healthy human brain [16, 19]. This observation indicated that tPBM not only increased 

oxygenation and the metabolism rate of neurons but also enhanced the firing rate of neurons and 

connectivity of the brain. Although with different experimental protocols, these findings showed 

great consistency with many independent studies on EEG responses to tPBM from other research 

groups [20, 21, 91]. 

However, it is known that: eyes-open and eyes-closed EEG produce distinctively different 

results in the human brain [22]. Also, the powers of brain EEG signals are more vulnerable to eye-

blinks and drowsiness in the eyes-open resting state compared to the eyes-closed resting state. This 

emphasizes the essence of measuring tPBM-induced power changes of brain oscillation during the 

eyes-closed human resting state. Moreover, we observed that the 1064-nm laser beam used for 

conducting tPBM also produces a warm sensation on the subject’s forehead. Because the EEG 

signal is sensitive to thermal phenomena [92], the warmness created by the 1064-nm laser-

illumination during tPBM can potentially affect the EEG signals. Thus, the improvement of 

behavioral performances and EEG power we observed in previous studies might be due to a 

mixture of dual-modal effects from thermal sensations and photobiomodulation (i.e., photon–

tissue interactions) caused by the tPBM laser-illumination. Therefore, it is also essential to measure 
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the responses of EEG signals to thermal stimulation that is equivalent to the heat produced from 

the laser illumination during tPBM, which can help in purifying the absolute photobiomodulation 

(i.e., tissue–photon interactions) effects of tPBM on human electrophysiology. 

In this study, we non-invasively collected scalp EEG signals before, during, and after tPBM 

(i.e., 1064-nm laser illumination) under the eyes-closed human resting state using the same 

experimental protocol to our previous studies [10, 16, 85, 93]. Additionally, we 

measured/calibrated the temperature increment induced by the tPBM laser-illumination on the 

human scalp. Then, we recorded additional sets of scalp EEG signals before, during, and after the 

corresponding thermal stimulation using the same experimental protocol. Both the tPBM and 

thermal experiments followed a sham-controlled protocol. The EEG power alterations induced 

respectively by sham-controlled tPBM -laser -illumination and the sham-controlled thermal 

stimulation were computed, followed by statistical comparisons between them. The result showed 

that -  1) compared to the sham, a significant increase of EEG power in alpha and beta bands was 

induced by tPBM laser-illumination; 2) compared to the sham of the thermal experiment, thermal 

stimulation decreased alpha and beta EEG powers, which was the opposite to sham-controlled 

tPBM effects; and (3) with thermal-effects calibrated/subtracted, the absolute thermal-excluded 

neuromodulation effects of tPBM were observed as globally enhanced alpha and beta powers. 

These observations suggested that tPBM can neuromodulate and strengthen the power of brain 

oscillations in alpha and beta frequencies. Also, such neuromodulation effects cannot be attributed 

simply to heat sensations from the tPBM laser. 

3.2  Materials and Methods  
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3.2.1 Participants 

A total of 49 healthy human subjects (30 males, 19 females) 26 ± 8.8 years of age, were enrolled 

from the local community of the University of Texas at Arlington, Texas, for the sham-controlled 

tPBM experiment. However, 3 subjects were removed from the dataset due to self-

reported/observed tiredness and sleepiness during the investigation. Another total of 14 human 

subjects with 29 ± 8.8 years of age was recruited from the same community (8 males and 6females) 

for the sham-controlled thermal stimulation experiment. There was no substantial difference in age 

between gender groups (p < 0.2). Before the recruitment, screening of the human participants was 

performed according to the exclusion criteria: 1) previous diagnosis with a psychiatric disorder; 2) 

history of neurological disease; 3) history of severe brain injury; 4) history of violent behavior. All 

the participants were told to avoid any caffeine beverages 2–3 hours before each experiment. 
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2.2.2 Experimental Setup 

A Biosemi (64-electrode) 10–10 EEG system was employed for the data collection. Before each 

experiment, electrical gel was applied to improve the conductivity between the electrodes and the 

scalp. The participants were instructed to maintain their eyes closed with a minimal level of 

motions during the experiment. Subjects were also directed to indicate minor hand gestures in 

response to the investigator to verify that they were not sleeping during the experiment. At the end 

of the experiment, each participant was asked to verify that he/she was awake during the 

investigation without any drowsiness and sleepiness. 

Figure 3-1 Experimental Setup for tPBM. (a) FDA – cleared 1064-nm continuous-wave laser 

(Model CG-500), (b) Experimental setup: EEG electrodes were attached to the international 10-10 

standard EEG cap while the subject was at resting state, eyes closed wearing a safety goggle. The 

laser head was pointed at the right forehead of the subject, (c) Experimental protocol for EEG-tPBM: 
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2 – min baseline, 8 – min treatment (laser power of 3.5 W at the treatment and 0.1 W at sham 

stimulation with extra blockage for further power depreciation), and 3 – min recovery. 

Fig. 3-1 shows the experimental setup and protocol. A continuous-wave (CW) 1064-nm laser 

(Model CG-5000 Laser, Cell Gen Therapeutics LLC, Dallas, TX, USA [Fig. 3-1a]) cleared by the 

Food and Drug Administration (FDA), was utilized to conduct tPBM and the corresponding sham 

in this study. A 1064-nm laser is the same laser device used in our previous studies [12, 14, 16, 

90]. The laser is equipped with an adequately collimated beam, which permits the delivery of 

tPBM in an area of 13.6 cm2. We conducted tPBM with a total power of 3.5 W, which led to a 

power density of 0.257 W/ cm2 and a total energy dose of 1680 J over 8 min of tPBM (3.5 W × 

480 s = 1680 J) on the right prefrontal forehead, as indicated in Fig. 3-1b). For the sham 

experiment, the laser power output was set to 0.1 W during the - min stimulation time. In addition, 

a black colored cap was used to block the aperture of the laser. As a result, respective power density 

under the sham stimulation was further confirmed to be 0 W/cm2 by a sensitive power meter 

(Model 834-R, Newport Corp., Andover, MA, USA) to ensure the complete impediment of laser 

light. 

The stimulation protocol ( Fig. 3-1c) consisted of a 2-min baseline, an 8-min stimulation, and 

a 3-min recovery period. In both tPBM and sham experiments, the laser aperture was pointing at 

the right prefrontal forehead under electrodes FP2 and AF8. Participants wore protection goggles 

to protect their vision. The data were acquired at either 256 Hz or 512 Hz. However, all the 512 

Hz data were down-sampled to 256 Hz during data preprocessing. Each subject underwent both 

sham and tPBM experiments over a period of 1 week, with a 2 days separation. The order of the 

tPBM or sham investigation was randomly assigned. All subjects were inquired about their 

experience after each experiment, including the heat sensation and potential drowsiness they 
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perceived. Furthermore, a thermal stimulation experiment was designed to explore the impact of 

tPBM-associated heat sensations on human EEG signals. 

 

Figure 3-2 Experimental Setup for EEG-Thermal stimulation (a) EEG recordings were performed 

when subjects maintained an eyes-closed resting state. The thermode heat generator was 

continuously handheld on the right forehead of the subject to produce heat, (b) Heat simulator 

(Pathway model with ATS thermode), (c) The time-dependent temperature fluctuation curve: the 

stimulation temperatures were controlled at 41 °C for thermal stimulation and 33 °C for sham 

stimulation; the tPBM-induced temperature changes measured by a clinical thermometer (mean with 

standard deviation) during tPBM experiment are marked as red asteroids and blue error bars. 

The time-dependent temperature changes on the human forehead induced by active and sham 

tPBM were initially measured using an infrared clinical thermometer (Medical Head and Ear 

Thermometer, Metene, England). Then, a heat stimulator, as shown in Fig. 3-2b (Pathway model 

) 
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ATS, Pain and Sensory Evaluation system, Medoc Advanced Medical Systems, Israel), was 

employed to replicate and induce the same temperature changes on the human foreheads through 

a 16mm x 16mm ATS mode probe. The ATS thermode can deliver painful and non-painful stimuli 

at a temperature within the range of 0 °C to 55 °C with a maximum rate of 8 °C /sec. The probe 

was placed on the same place on the forehead, where the laser was pointed during tPBM (right 

forehead) to convey the non-painful heat stimuli [Fig. 3-2a]. Subjects kept their eyes closed during 

the experiment.  

Fig. 3-2c shows the schematic diagram of the experimental protocol. The experimental protocol 

of thermal stimulation was designed to include a 2-min baseline, an 8-min thermal stimulation, 

followed by a 2-min recovery period. The temperature of the skin surface remained at 33 °C during 

both the baselines of tPBM and sham-tPBM experiments for 2 min. The temperature increased 

from 33 °C to 41 °C at 8 °C /sec. Then, the temperature was maintained at 41 °C during the 

stimulation of an 8-min period. Next, we removed the thermode during post-stimulation for 2 min.  

As for the EEG recording during thermal stimulation, the sampling frequency was 512 Hz; 

however, it was also down-sampled to 256 Hz during data analysis to be consistent with the data 

analysis for tPBM. The temporal structure of the experimental design for the thermal stimulation 

experiment was invariant to the tPBM investigation, except that there were only 2 min of post-

thermal stimulation recovery period, which was 1 min less than the tPBM recovery duration. Due 

to the unequal recovery periods, further analysis was performed for only baseline and treatment 

periods, which accounts for 2 min of baseline and 8 min of stimulation. 

3.2.3 Data Analysis 

Each collected EEG dataset contained 64 channels of time series corresponding to the collected 

neural activities at different cerebral locations detected by the 64 EEG electrodes. Data from 3 
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participants were excluded due to drowsiness and fatigue from self-report and experimenter’s 

observation. Therefore, a total of 46 pairs (subjects) of tPBM-and-sham data and a total of 14 pairs 

(subjects) of thermal-and-sham data were included in the data processing. We first computed the 

sham-controlled tPBM and frequency-dependent power alterations induced by the 1064-nm laser-

illumination during the eyes-closed resting state. Then, we calculated the thermal-sham-controlled 

and frequency-dependent power alterations induced by the thermal stimulation equivalent to the 

tPBM laser-illumination during the eyes-closed resting state. Finally, we compared the difference 

in EEG power changes between sham-controlled-tPBM versus sham-controlled-thermal 

experiments. 

3.2.3.1 Preprocessing 

The data were preprocessed using MATLAB and a MATLAB based open source software, 

EEGLAB. First, the acquired 64-channel EEG raw data were bandpass filtered at 0.5 - 70 Hz. A 

notch filter was applied to eliminate line noise at 60 Hz. Re-referencing was performed by 

subtracting the average of voltage signals across all the 64 electrodes. In addition, robust principal 

component analysis and independent component analysis were performed to remove artifacts, such 

as eye movements, saccades, and jaw clenches. Next, 64-electrode artifact-free time series were 

divided into multiple time-segments, including (1) the last 60-s of the baseline before the onset of 

tPBM/sham (TbtPBM and Tbsham-light); (2) the first 4-min of the tPBM/sham stimulation (T1-4-tPBM 

and T1-4-sham-light); and (3) the last 4-min of the tPBM/sham stimulation (T5-8-tPBM and T5-8-sham-light). 

The preprocessed data were then used to perform further analysis. 

Likewise, the EEG data of thermal stimulation were preprocessed similarly, producing Tbheat, 

Tbsham-heat, T1-4-heat, T1-4-sham-heat, T5-8-heat, and T5-8-sham-heat. 
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3.2.3.2 Time-Resolved Frequency-Dependent Power Density Topography 

The 64-electrode temporal segmented time series were bandpass filtered into different frequency 

bands. Then, the power density values were calculated at each electrode for all five frequency 

bands, delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz), and gamma (30-70 Hz). 

First, 2-sample t-tests were performed to verify that there was no significant difference in EEG 

powers between the baselines of tPBM and sham experiments (i.e., TbtPBM and TbSham-light). Then, 

the EEG power densities of the baseline period from each subject, and each band were used as the 

standard to be normalized with other time segments to express the relative power alterations by 

tPBM/sham. Briefly, the power density values for each frequency band were calculated for T1-4-

tPBM, T1-4-sham-light, T5-8-tPBM, and T5-8-sham-light. Then, they were normalized by TbtPBM or Tbsham-light. 

For example, the normalized power changes for each electrode in the first 4-min of tPBM were 

calculated as T1-4-tPBM /TbtPBM, while the normalized power changes for each electrode in the first 

4-min of sham was calculated as T1-4-sham-light /Tbsham-light. This process was repeated on all 64 

electrodes, leading to mean power topographies for tPBM and sham. Finally, subtractions were 

conducted between tPBM and sham to produce the sham-controlled (i.e., sham-subtracted) effects 

on EEG power induced by tPBM laser illumination. Note that these results include both absolute 

photobiomodulation effects and thermal sensation influences.    

Similarly, the same process was applied to the EEG time series recorded for thermal 

stimulation/experiments, producing mean power topographies for thermal and sham. Finally, the 

mean power topographies were plotted and subtracted to show the thermal sensation induced 

power changes over time. 
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3.2.3.3 Statistical Analysis 

Statistical analysis was performed to compute (1) the sham-controlled tPBM laser-illumination 

effects on brain oscillations; and (2) the difference between sham-controlled laser illumination 

effects versus sham-controlled-thermal effects. First, paired t-tests were performed between tPBM 

and its sham stimulation to compute the significantly modulated EEG powers by the 1064-nm laser 

illumination in the tPBM experiment. This result includes a mixture of dual-modal effects from 

thermal sensation and pure photobiomodulation (tissue-photon interaction). The reason for using 

paired t-tests was because the same subjects participated in both the tPBM and its sham 

experiments.  

In addition, 2-sample t-tests were performed to test the difference between tPBM laser-

illumination effects versus the corresponding pure thermal effects. This result denotes the 

absolute/purified photobiomodulation effects (tissue-photon interaction) of tPBM on human brain 

oscillations with the exclusion/subtraction of thermal influences. The reason for using two-sample 

t-tests was because different subjects participated in the tPBM and thermal experiments. 

Furthermore, the false discovery rate (FDR) corrections were performed to minimize the 

possibility of compounded type I errors in repeated t-tests. All statistical tests were performed at 

α=0.05. 

Moreover, due to the unbalanced sample size between the tPBM and thermal experiments, 

effect size (d) at each electrode was calculated for the comparison between sham-subtracted tPBM 

and sham-subtracted thermal stimulation. Specifically, it was calculated by evaluating the 

difference between two group means divided by the pooled standard deviations of the 2 groups. 

The result was that 0.2 < d < 0.5 indicates a small separation between the 2 variables; 0.5 < d < 

0.8 indicates a medium separation; and d > 0.8 indicates a large separation between the 2 groups. 
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3.3  Results 

We report results based on several comparisons. First, we looked at the effects of tPBM laser-

illumination on EEG power compared to its sham experiment. Then, we investigated the impact 

of thermal stimulation on EEG power and determined the differences between the sham-controlled 

thermal effects and the sham-controlled laser illumination effects. 

3.3.1 Time-Resolved Frequency-Dependent Power Density Topography for tPBM 

Fig. 3-3 illustrates the baseline normalized frequency-dependent topographies for sham-controlled 

power alterations by tPBM laser-illumination and the corresponding statistical t-maps during the 

first half and second half of the stimulation.  

Figure 3-3 Cross-subject sham-controlled, and frequency-dependent topographies for power 

alterations induced by tPBM (N=46). The first row shows the mean power for T1-T4 and T5-T8. 

The second row indicates the corresponding statistical T-topographies for the comparison between 

tPBM versus sham, with paired t-test at α = 0.05 under FDR correction. 

For the delta band, significantly decreased power was observed at frontal and parietal regions 

during the first 4-min of tPBM. However, there was no difference in delta power induced by tPBM 

on the human scalp in the last 4-min of tPBM/sham. In other words, the decreased delta power 

went back to the baseline of the previous 4-min of tPBM. Further, significantly increased alpha 

power was observed globally on the human scalp during the last 4-min of tPBM. Mainly, a slightly 

asymmetric pattern was observed, as more power activations were observed on the contralateral 
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side (left hemisphere) of the brain. Moreover, significantly increased beta power was more 

localized at the central/medial regions of the scalp during the last 4-min of tPBM. No significant 

power difference was observed between tPBM and sham in theta and gamma bands. 

3.3.2 Time-Resolved Frequency-Dependent Power Density Topography for Thermal 

Stimulation 

Fig. 3-4 demonstrates the baseline normalized frequency-dependent temporal power fluctuations 

during thermal stimulation compared to its sham stimulation for the first and second halves of the 

stimulation period. 

 

Figure 3-4 Cross-subject sham-controlled, and frequency-dependent topographies for power 

alterations induced by thermal stimulation (N=14). The first row shows the mean power for T1-T4 

and T5-T8. The second row indicates the corresponding statistical T-topographies for the 

comparison between thermal versus sham, with paired t-test at α = 0.05 under FDR correction. 

The outcome in Fig. 3-4 illustrates that alpha and beta frequencies were significantly lowered 

in power during thermal stimulation relative to its sham. In the alpha band, a frontoparietal 

reduction can be observed. Moreover, in the beta band, power decreases globally. The delta, theta, 

and gamma bands did not show any significant changes in power. These observations show 

similarities to tPBM stimulation. 
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3.3.3 Time-Resolved Frequency-Dependent Power Density Topography comparing 

tPBM Versus Thermal Stimulation 

Fig. 3-5 illustrates the baseline-normalized and frequency-dependent topographies for the 

comparison between power changes of sham-controlled tPBM laser illumination and sham-

controlled thermal stimulation. In Fig. 3-5, the first 2 rows of topographies illustrate the cross-

subject average of baseline-normalized and sham-subtracted power alterations for tPBM laser-

illumination (mtPBM) and thermal stimulations (mThermo), respectively. The last 2 rows of 

topographies illustrate the statistical topographies for t-test (T-map) and effect sizes (ES) between 

sham-controlled 1064-nm laser-illumination effects and sham-controlled thermal effects. The t-

tests were based on 2-sample t-tests at α = 0.05 under FDR correction. 

 

Figure 3-5 Cross-subject, baseline-normalized, and sham-subtracted topographies for power 

alterations for tPBM (N=46) and Thermal (N=14), in all five frequency bands for the first 4-min 

(T1-T4) and last 4-min (T5-T8) of the stimulation period. The first row shows the mean tPBM power 

fluctuations. The second row illustrates the mean thermal power fluctuations. Statistical 

topographies for two-sample t-tests and effect size (ES) for the comparison between tPBM and 

Thermal effects are shown in rows-3 and 4, respectively. The T-topographies in row 3 were based 

on α = 0.05 under FDR corrections. 
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As shown in Fig. 3-5, thermal stimulation created the opposite effects on EEG power in alpha 

and beta bands with respect to the tPBM laser-illumination. The t-tests were based on 2-sample t-

tests at α = 0.05 under FDR correction. Specifically, the mean alpha power changes induced by 

tPBM-laser-illumination were statistically higher than those caused by thermal stimulation at 

frontoparietal regions during the last 4-min of tPBM/thermal stimulation. Similarly, the mean beta 

power changes induced by tPBM-laser-illumination were statistically higher than those generated 

by thermal stimulation at frontoparietal regions during both the first and the last 4-min of 

tPBM/thermal stimulation. In other words, having thermal effects excluded/subtracted from the 

dual-modal effects induced by the laser-illumination during tPBM, the absolute 

photobiomodulation (i.e., tissue-photon interaction) results of tPBM can be expressed as globally 

enhanced alpha and beta powers. However, no difference was observed between these two means 

of stimulations in the delta, theta, and gamma bands. 

3.4 Discussion 

In this study, we recorded in vivo scalp EEG before, during, and after tPBM/sham from 49 human 

subjects under the eyes-closed resting state. Furthermore, we generated the same temperature 

enhancement induced by tPBM laser-illumination on human foreheads using a thermal generator 

system. We recorded in vivo EEG from 14 human subjects before, during, and after thermal 

stimulation with its corresponding sham experiment. Baseline-normalized EEG power alterations 

were compared between tPBM laser-illumination and its sham experiments. Moreover, the sham-

subtracted EEG power induced by tPBM-laser-illumination was compared with the sham-

subtracted thermal-induced EEG power. We observed that the tPBM laser-illumination could 

significantly decrease the power in delta frequency and enhance power in alpha and beta 

frequencies. Also, thermal stimulation created the opposite effects of tPBM-laser-illumination 
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where alpha and beta deactivated, implying that the observed tPBM effects were not due to heat 

sensation. Finally, calibrated/compared with thermal influences, the absolute/pure tPBM results 

on EEG power were primarily expressed by the global increment of alpha and beta waves. 

3.4.1 tPBM Modulates Alpha, Beta and Delta Power 

Fig. 3-3 illustrates the sham-controlled topographic power increment induced by tPBM laser-

illumination. The globally enhanced power of alpha and beta oscillations was observed. Notably, 

a significant increment of power for alpha waves was detected in the anterior-posterior regions. In 

contrast, a considerable increment of power for beta waves was observed in the central and 

posterior regions. Significant statistical differences were observed during the last 4-min of tPBM 

showing a time-dependent manner of power activation.   

Although the power of the alpha wave is believed to be related to wakefulness [94], the power 

of the alpha wave during awake states is also commonly associated with cognition related brain 

functions such as memory encoding, attention, and brain network synchronization and interaction 

[95-97]. Moreover, studies indicate that cortical alpha waves are engendered due to the 

collaboration of thalamocortical and cortico-cortical approaches [98]. With more than 300 human 

subjects, previous studies using the same 1064-nm laser and the same experimental protocol have 

shown significant behavioral improvements in cognitive functions [10-12, 85]. As shown in Fig. 

3-5 in this study and our previous studies, alpha power was significantly photobiomodulated by 

tPBM, in both eyes-open and eyes-closed resting state. These findings serve as the 

electrophysiological evidence for the behavioral improvements.  

Also, the observations reported in this study are less biased or driven by the trend/shift of 

drowsiness/vigilance states, because, in this study, the power increment was not only baseline-

normalized, but also sham experiment-subtracted. The tPBM and sham experiments shared the 
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same experimental protocol and were not undertaken in the same visit. Also, the power increment 

was resolved by subtracting the baseline-normalized EEG powers between tPBM and sham 

experiments, which shared the same trend/shift of drowsiness and vigilance states for every subject 

along with the 13-min investigation. 

A tPBM laser-illumination induced beta power increment was also observed (Fig. 3-3). The 

literature has shown that beta activation is responsible for maintaining concentration. Also, several 

studies have shown evidence that improved beta waves are a sign of better cognition ability [99, 

100]. Hostovecky et al. demonstrated that beta waves are essential to neurofeedback activities [99]. 

Furthermore, another study showed that beta activation is an indication of cognitive processes with 

higher concentration by conducting rejection tasks or mental arithmetic tasks, both of which 

require attention and internal processing [100]. 

On the other hand, the beta wave is also a sign of somatosensory processing. Beta activation 

might be responsible for the heat sensation from the tPBM laser [101]. However, the beta response 

to heat will most probably be limited to the left central region of the brain near the somatosensory 

cortex because the right forehead was illuminated by the tPBMlaser [102]. However, the beta 

activation in this study was globally distributed, which cannot be explained as thermal sensations. 

Therefore, part of the beta power increment in this study might be produced by the optical 

responses to tPBM, which is responsible for cognition improvement. 

While the power of delta waves has been widely recognized for human sleep, the power of 

resting state delta oscillation has also been linked to cognitive functions. Bablioni et al. reported 

that better cognitive performance is associated with a decreased power of delta waves. Also, the 

volume of gray matter is negatively correlated with the power of the delta wave [103]. As shown 

in Fig. 3-3, the tPBM laser illumination induced decreased delta power in resting state human 
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brains. The decreased delta might potentially serve as an indication of increased cognitive 

functions and the volume of gray matter. 

Furthermore, according to the literature, increased delta wave has been associated with fatigue 

[104, 105], depression [106], and addiction [107, 108]. The modulatory effects of tPBM laser-

illumination on delta wave are opposite to the abnormalities found in patients with emotional and 

cognitive disorders, which suggests a promising prospect for tPBM to reverse the changes seen in 

various psychiatric and psychological conditions such as depression, fatigue, addiction, and other 

psychiatric/psychological conditions [106]. However, the timely increment in delta power can also 

be a result of thermal stimulation. 

3.4.2 Thermal Stimulation Impact on EEG 

As seen in Fig. 3-4, the thermal stimulation generated by the equivalent heat/temperature from 

laser aperture induced: (1) increased delta power at temporal regions; (2) decreased delta power at 

frontal areas; and (3) globally decreased alpha and beta powers. Even though delta is not 

significantly activated, these observations are consistent with previous EEG studies using non-

noxious stimuli and noxious stimuli [109]. However, there have been only a limited number of 

EEG studies on the effect on humans of nonpainful heat stimulus to the brain [110, 111]. 

The decreased power of the alpha wave may be due to an augmented activity of cortico-cortical 

and thalamocortical feedback loops [112]. As shown in Fig. 3-4, both alpha and beta activities 

were globally decreased during the thermal stimulation except for the left central region. Given 

that the thermal stimulation was delivered on the right side of the body/head, this observation 

indicates that while heat initiates/triggers central region activation, it can further induce a globally 

decreased power of alpha and beta waves as co-occurring effects.  
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3.4.3 Thermal Effect on tPBM 

As seen in Fig. 3-5, compared to the sham-controlled tPBM laser illumination effects in which 

increased alpha and beta powers were observed, thermal stimulation produced the opposite effects 

on EEG power to laser stimulation. Based on the statistical tests shown in Fig. 5, these 2 

stimulation methods/media (light and thermal) induced significantly distinct changes of 

electrophysiology in alpha and beta frequencies.  

Furthermore, one of our previous studies has investigated the thermal effects on tissue-vascular 

hemodynamic oxygenation and metabolic rates also indicated the similar conclusion that the 

thermal effect is independent and opposite to the tPBM impacts on human tissue [90]. The 

observations implied that the brain activation induced by tPBM-laser was not due to thermal 

sensation. Instead, it might be due to another mechanism/physiological path, which is the photon-

tissue photobiomodulation effects on the prefrontal cortex where tPBM took place. 

Additionally, it can be inferred that the results shown in Fig. 3-5 may be closer to the truthful 

and absolute photobiomodulation effects in the human brain by tPBM. The EEG power differences 

induced by sham-controlled illumination of the 1064-nm laser shown in Fig. 3-5 consists of dual-

modal effects of both tissue–light interaction/photobiomodulation and the thermal sensations from 

the 1064-nm laser. The statistical comparisons (Fig. 3-5) compared the average of EEG power 

changes caused by the laser-illumination versus the average of EEG power changes induced by 

the thermal sensation to extract the purified effects induced by tissue-light interactions. 

Significantly higher global alpha and beta powers were observed for the laser-induced dual-modal 

effects over the pure thermal impact, indicating that the significant difference between the laser-

induced dual-modal effects versus the thermal results was in alpha and beta powers. In other words, 

by removing/subtracting thermal influences from the comprehensive effects induced by the 1064-
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nm laser, the absolute/pure results of tPBM were determined as the globally increased power of 

alpha and beta waves. Therefore, the true electrophysiology induced by photobiomodulation (i.e., 

pure tissue–photon interactions) is more appropriately expressed as the globally increased EEG 

power in alpha and beta bands shown in Fig. 3-5. In addition, the laser/thermal stimulation applied 

in this study does not damage the tissue. A study conducted on a rabbit brain using CW and pulsed 

wave lasers demonstrated that the heat generated by a laser with less than 750 mW/cm2 does not 

cause tissue damage [113]. 

3.4.4 tPBM Power During Eyes-Open and the Eyes-Closed Resting States 

One of the purposes of this study was to compare the tPBM-induced effects between eyes-open 

and eyes-closed resting states because EEG signals have been shown to behave differently between 

these states [22]. In the eyes-open resting state, the brain encounters many visual stimuli and 

activates the visual information processing networks/paths. However, those processes and 

pathways are suppressed during the eyes-closed resting state due to the blockage of visual 

information input [22], indicating the distinct emphasis of brain networks and processes in these 

two states. 

Although the eyes-closed state naturally creates higher absolute powers of alpha wave 

compared to the eyes-open state on healthy humans [22], it would not affect the interpretation and 

comparison of the cerebral activations reported for the current study because all the power 

comparisons in the present research and our previous reviews were based on self-standardization 

by normalizing to each individual’s own baseline. This produces the relative increment of power 

to its baseline before tPBM or sham is conducted. Furthermore, the subtraction between tPBM and 

sham (or thermal stimulation and sham) creates the relative difference of activations in the brain 

under real and fake tPBM/thermal stimulation. All the relative measurements were performed 
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under the same/constant eyes-closed resting state. Therefore, the observation of relative EEG 

power increment in this study can be compared with the relative EEG powers calculated in the 

same fashion under the eyes-open state.   

Consistent with our previous study on the assessment of tPBM effects during eyes-open resting 

state [22], in the current research, a global power increment was observed in alpha and beta 

frequencies during the eyes-closed state. The results indicated that the activation of 

electrophysiology induced by tPBM is consistent/reproducible for human resting states. Moreover, 

the alpha/beta power increment is also compatible with several other published tPBM studies [20, 

21]. For example, using an 810 nm pulsed LED system, Zomorrodi et al. reported a shrinkage in 

the delta band and power improvements in alpha and beta bands [21]. These results emphasized 

the robustness of alpha and beta waves being neuromodulated by tPBM.  

Apart from the consistency in the global distribution of power enhancement for the alpha wave, 

there are a few slight differences between the 2 studies. This might be due to the subtle differences 

between the experimental protocols. In our previous eyes-open study, the stimulation was 11 min 

with 2.2W tPBM delivered by the same laser. However, to minimize the possibility of subjects 

being drowsy during the experiment, the current study was designed as an 8-min stimulation at 3.5 

W, using the same laser. Due to the consistent total tPBM energy delivered, human subjects in 

these 2 studies should have had a similar level of activations in alpha and beta bands at the end of 

the stimulation. However, comparing their activation topographies, the distribution of beta power 

activation in the current study was located in the central regions of the brain. In contrast, the beta 

activations in the previous study were found more in the occipital areas. Moreover, significant 

deactivation in the delta band was not observed in the last eyes-open experiment [16]. These results 

might be due to the higher laser power used in the current study compared to the previous one, 
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which might have led to more sensible heat/warmness by the participants. As shown in Fig. 3-5, 

according to the cross-subject topographies of thermal stimulation, thermal sensation tends to 

decrease the frontal delta power. This can be a potential explanation for the reduced delta power 

in the current study due to the higher heat sensation from the laser. Nevertheless, the statistical 

maps (Fig. 3-5) show that, after the consideration of thermal stimulation, decreasing delta power 

was not shown/included for the pure/real photobiomodulation effects by tPBM, which is consistent 

with the study in the eyes-open state.  

3.4.5 Limitations and Future Work 

The significant findings in this study also lead to several drawbacks as well as opportunities for 

future work. The first drawback is that the thermal stimulation was given based on contact delivery 

from the thermode probe to the human forehead. In contrast, the sensation of equivalent heat during 

the tPBM experiment was non-contact. Also, the total area of thermal stimulation was relatively 

smaller compared to the site of tPBM stimulation. Further, the sample size for the thermal 

stimulation group was relatively too small to have sufficient statistical significance in comparison 

with the tPBM group. As for future work, a non-contact heat generator is needed to replicate the 

findings in this study on a larger number of human subjects. 

3.5 Conclusion 

This study shows that conducting tPBM with a 1064-nm laser on the right forehead can modulate 

human eyes-closed resting state oscillations in the delta, alpha, and beta frequencies. The tPBM 

laser-illumination enhances the power of alpha frontally and parietally and beta rhythms frontally, 

centrally, and right parietally. Moreover, thermal stimulation, using the equivalent heat from the 

1064-nm laser, generated the opposite trend of effects in alpha and beta EEG power. With the 
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consideration of thermal effects, the pure/absolute tissue-photon photobiomodulation effects 

induced by tPBM can be more appropriately expressed as the globally increased alpha and beta 

power, which can serve as the electrophysiological parameters/evidence for behaviorally improved 

cognitive functions. Nonetheless, there are still open questions, such as how to determine optimal 

wavelengths and effective dosage to have the best impact of tPBM. Further, the underlying 

mechanism of reduced alpha and beta EEG power in response to thermal stimulation on the 

forehead needs to be further explored.  
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Chapter 4 

Transcranial photobiomodulation induced changes in human brain functional 

activation and dynamic functional connectivity mapped by whole-head functional 

near-infrared spectroscopy in vivo 

(This Chapter is a manuscript that will be submitted soon.) 
 

4.1 Introduction 

Near-Infrared (NIR) light has shown the ability to penetrate deep through the tissues to modulate 

mitochondrial respiration functions. This process is often called photobiomodulation (PBM), also 

known as low-level laser therapy (LLLT). This technique is applied in many clinical applications 

on a wide range of cells and nerves in the human body [17, 84, 85]. When the NIR light/laser is 

delivered to the human brain/head, it’s known as transcranial photobiomodulation (tPBM), which 

has shown promise consequences in treating psychiatric and neurological disorders in the brain 

such as depression, anxiety [86], and traumatic brain injuries [18, 87, 88]. Furthermore, tPBM can 

be performed with different lasers/lights with many wavelengths in the NIR region [17]. However, 

the latest investigations have shown that tPBM using a 1064-nm laser can be functional to augment 

cognitive functions on healthy brains. The non-invasive optical neuromodulation method has been 

shown to enhance human cognitive abilities on a range of cognitive-based activities using sham-

controlled tests with about 300 human subjects [10-13].   

These prior experimental studies displayed significantly boosted concentrations of hemoglobin 

oxygenation (HbO) and oxidized cytochrome-c-oxidase (CCO) during and after tPBM on human 

right frontal-cortex with high reproducibility and robustness to illustrate the constructive 

mechanism of tPBM to the human brain [14, 15, 89]. These investigations proved the 

hypothesized- mechanism that tPBM has the capability to photo-oxidize CCO, the crucial 
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mitochondrial enzyme for oxygen metabolism, to heighten the metabolic undertakings of 

cells/neurons [17] 

Near-infrared spectroscopy (NIRS) is an imaging modality that allows measuring biological 

and physiological states of living tissues non-invasively based on their absorption and scattering 

within the NIR light [4]. NIRS is widely applied to scrutinize the quantification of oxygenated and 

deoxygenated hemoglobin (i.e., [HbO] and [Hb]) concentrations in many types of tissues. For 

example, scientists utilize NIRS to image and diagnose conditions such as cancers in the human 

breast, prostate, and skin. Moreover, NIRS is commonly used to map functional brain activities in 

vivo. The NIRS systems generally have 2 or 3 wavelengths to compute Δ[HbO] and Δ[Hb] using 

the Modified Beer-Lambert Law (MBLL) [3, 4, 14].  NIRS has been used to measure hemoglobin 

concentrations in the brain under a resting state as well as under stimulus-based activities. The 

mapping of hemoglobin concentrations widely is widely used to determine localized activation in 

the brain under different conditions.  

In the past, studies based on fMRI have considered the connections between different brain 

regions that are unchanging during the resting state. However, later studies have shown that 

functional connectivity during short periods is more illustrative of the underlying properties of 

brain complexes. Dynamic changes are possibly even more conspicuous for the duration of the 

resting state [114], through which mental activity is unrestrained than in task-based studies. 

Dynamic functional connectivity (DFC) investigations commonly use the sliding window 

correlation method. However, there are critical parameters related to calculating DFC, such as 

window length and the connectivity calculating method (i.e., correlation, covariance, wavelet 

transform coherence (WTC)) [78, 79, 115].  
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In this study, we measured resting state data during tPBM and sham conditions to investigate 

the impact of tPBM relative to sham on hemodynamic fluctuations in the whole head /brain at a 

cortical level instead of measuring the stimulation at the site. First, we explored the hemoglobin 

concentration fluctuations close to the stimulation site. Second, we delved into functional brain 

activation induced by tPBM on the whole brain. Third, we investigated the dynamic functional 

connectivity studying temporal network changes across the stimulation period of tPBM relative to 

sham.  

4.2  Materials and Methods 

4.2.1 Participants 

Nineteen adults (5 females, age: 31.7 + 9.5 years) were enrolled for this study. All subjects reported 

that they were devoid of any neurological or psychiatric disorders. All experimental practices were 

approved by the Institutional Review Board of the University of Texas at Arlington (IRB# 2017-

0859). The subjects were required to sign a written consent before participation in this study. 

4.2.2 Experimental Setup 

A continuous-wave (CW) fNIRS system (OMM-3000, Shimadzu Corp., Kyoto, Japan) was 

utilized in this study to measure cerebral hemodynamic responses. The system contained NIR laser 

diode sources (780, 805, and 830 nm) and photomultiplier tube (PMT) detectors. The data were 

collected at a sampling frequency of 10.1 Hz. The optode layout contained 32-sources and 34-

detectors with a separation of 3 cm resulting in 111 source-detector channels (Fig. 4-1a). The 

localization of the optodes was marked with a 3D tracker. Statistical parametric mapping 

(NIRS_SPM) software was applied to estimate Montreal Neurological Institute (MNI) coordinates 
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for each source and detector location, which also provided the Brodmann area corresponding to 

each fNIRS channel [62]. 

 Transcranial PBM was administered using an FDA-cleared 1064-nm, CW laser (Model CG-

5000 Laser, Cell Gen Therapeutics, Dallas, TX, USA) (Fig. 4-1b). The laser’s aperture delivered 

a collimated beam with an area of 13.6 cm2 at a maximum power of 3.5 W and a laser power 

density of 0.25 W/cm2 [10, 93]. The laser aperture was covered with a filter that would filter out 

any wavelengths of less than 1000 nm to avoid interference between the laser of the stimulator and 

the fNIRS source laser diodes. tPBM was delivered to the right forehead of each subject at a frontal 

site without touching the skin. All presented in the room during the experiment wore protective 

eye goggles for safety.  

The order of the treatment or sham was randomized. If the tPBM session was first, there was a 

waiting period of at least 1 week for the sham treatment to avoid any carryover effect. During the 

stimulation period, the CW laser was administered on the right forehead with an output of 3.5 W. 

In contrast, sham had negligible laser output by turning the laser on and then off immediately 

within 3 s. During the sham session, the laser power was set to 0.1 W, yet the laser head was 

covered with a black cap, not allowing any laser energy to penetrate. Subjects were seated with 

their eyes closed for 8 min of the pre-stimulation period, 8 min during the stimulation period, and 

4-min of the post-stimulation period (Fig. 4-1c).  
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Figure 4-1 Experimental setup and protocol. a) 111-channel layout with 32 sources and 34 

detectors. The first 8-channels of the layout are indicated in red with channel numbers. The gray 

color channels are not included in the analysis, b) 1064-nm laser. c) The experimental protocol 

randomized sham and tPBM stimulation/treatment for subjects. For the bottom of the protocol, there 

was a period of at least one week between the two experiments to avoid any effects from residuals.  

4.2.3 Data Preprocessing 

fNIRS data were preprocessed using Matlab 2019b (MathWorks, Natick, MA, USA) and the open-

source package Homer 2.0 [116]. The raw intensity data were then filtered using a lowpass filter 

of 3rd order Butterworth filter at a cut-off frequency of 0.2 Hz to remove large portions of 

physiological noise, including heartbeat (1 – 1.5 Hz) and respiration (0.2 – 0.5 Hz) [117]. The 

principal component analysis was utilized to remove motion artifacts and global hemodynamic 

fluctuations that may overlap with hemodynamic response frequencies. The first 2 principal 
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components were removed from all fNIRS channel data to remove the global artifacts [116, 117]. 

Channels located near the branches from the middle cerebral artery (MCR) or the superficial 

temporal artery and temporal muscle were devoid of circumventing signal contamination [118, 

119], which are indicated in gray in Fig. 4-1a.  ΔOD data were converted into changes in 

hemoglobin concentration relative to baseline (Δ[HbO]) using the MBLL. The differential 

pathlength factor was assessed as 6.0 for each wavelength in Homer 2.0 [120]. Only Δ[HbO] 

values are presented in the Results section because Δ[Hb] concentrations were found to have 

related and opposite qualitative inclinations. In addition, Δ[Hb] was also observed to have smaller 

amplitudes and lower signal-to-noise ratios, as also found in previous neuroimaging studies [121-

123]. 

4.2.4 Data Analysis 

4.2.4.1 Oxygenated Hemoglobin Concentration (Δ[HbO]) Trend for tPBM and Sham.  

The artifact-free time series for Δ[HbO] was used for further analysis. The time series for a subject 

contained data from 111 channels over 11.5 min. The last 0.5 min of the protocol was not used to 

keep a similar time duration for all subjects because of the inconsistency of total data points. The 

data inconsistency occurred due to synchronization problems in the experimental setting. The 

baseline, the averaged Δ[HbO] over 1 min prior to stimulation, was subtracted from its respective 

time series. The baseline subtracted time series were smoothed using a moving average filter of 

30-s of data spans to plot the Δ[HbO] temporal changes for tPBM and placebo. The analysis was 

performed for all the channels used in the study. 
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4.2.3.2  Temporal Topographical Δ[HbO] Fluctuation induced by tPBM in the whole 

head 

The smoothed Δ[HbO] data was utilized to generate time-dependent topographic brain images. 

The time series was separated into approximately 4- min blocks: the first 4-min of the stimulation 

(T1 -T4), the second 4-min of the stimulation (T5 -T8), and post-stimulation (R1 -R4). Next, the 

time series blocks were averaged across subjects. The process was repeated for both tPBM and 

placebo times series blocks. Then, the averaged concentration for each temporal block for tPBM 

and placebo was compared using a statistical paired t-test (N = 19) at p < 0.05. The significantly 

activated/deactivated channels of tPBM compared to placebo were plotted on to topographical 

brain maps.  

4.2.3.3 Dynamic Functional Connectivity (DFC) Analysis 

DFC studies the brain connectivity changes during a short period. The most widely used method 

to calculate DFC is the sliding window method. Previous DFC studies have been performed using 

window lengths of 30 - 240 s. However, if the window length is less than 15 s, there is a high 

possibility of detecting false positives. On the other hand, if the window length is more than 240 

s, there is a likelihood of overlooking specific information related to dynamic hemodynamic 

connectivity changes. The Pearson correlation is commonly calculated to create a connectivity 

matrix over a sliding window [78, 79]. 

In this study, we used a 30-s window length to calculate the Pearson correlation over 

approximately 12 min of data points. The edges were recognized as correlation strength, and nodes 

are channels. The PC was calculated for each 30-s window for 111-channels, which resulted in 23 

111-by-111 correlation matrices across the whole duration. The correlation matrices were 

calculated for tPBM and sham separately. Then the matrices underwent r-to-z transform to 
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improve the normality of the matrices. Only positive correlation values were considered for further 

analysis. Next, we utilized z values to compare tPBM versus sham. Statistical paired t-tests were 

performed for each node and each 30-s window comparing the strength of each node between 

tPBM and sham at p < 0.05 across the subjects (N = 19). FDR corrected (p=0.05) significantly 

activated channels were plotted using BrainNet Viewer [124]. Moreover, the total number of 

significantly activated connections from the upper triangle was plotted on a temporal graph to 

study the fluctuation of the number of significantly activated channels due to tPBM across the 

experiment. 

4.3  Results 

The study investigating the tPBM effect on the whole head collected data from 19 subjects with a 

111 channel whole-head fNIRS system. Multiple analyses were performed on the data yielding 

information on sham-controlled tPBM induced temporal and spatial activation. Moreover, the 

dynamic functional connectivity provided information on temporal connectivity changes over 

short periods. 

4.3.1.1 Oxygenated Hemoglobin Concentration (Δ [HbO]) Fluctuation During 

Stimulation 

Fig. 4-2 shows the Δ[HbO] for tPBM and sham for approximately 11.5 min for 8-channels from 

the prefrontal cortex. The channels closest to the stimulation site are 2,3,4, and 7 (Fig. 4-1a). Each 

plot represents the Δ[HbO] trend for tPBM (red) and sham (blue) against time. 
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Figure 4-2 The Δ[HbO] trend for tPBM (solid red) and sham (dashed red) compared to the baseline 

for 8 min of stimulation and rest or post-stimulation period. The first 8-channels were chosen to plot 

to cover the Front polar cortex (FPC). The channels closest to the stimulation site are illustrated 

using the green box around corresponding plots. The blue shaded area is the 8-min of stimulation. 

Channels 1,2,5,6 and 8 are on the left side of the brain, whereas channels 3,4 and 7 are in the right 

cortex (Fig. 4-1a). 

The plots in Fig. 4-2, corresponding to channel 2,3,4, and 7, clearly show an increasing trend 

for tPBM compared to sham. Even though channel 2 is a channel from the contralateral side to the 

stimulation site, it also indicates a rising trend for tPBM relative to sham. Sham maintains a 

relatively constant movement across channels and across time. 
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4.3.1.2 Function Brain Activation Induced by tPBM Compared to Sham 

Fig. 4-3 shows topographical t-maps representing significantly activated/deactivated channels for 

tPBM relative to sham for 3 temporal blocks: T1-T4, T5-T8, and R1-R4.  

Figure 4-3 Significantly activated time dependent Δ[HbO] fluctuation in the whole cortex for tPBM 

relative to sham. The front (1st row) and top (2nd row) view of topographical t-maps for T1-T4, T5-

T8, and R1-R4 showing significantly activated/deactivated channels/areas in the brain induced by 

sham-controlled tPBM for Δ [HbO]. The red color filled circle illustrates the stimulation location 

on the right forehead. Significance is calculated using a paired t-test at p < 0.05 between tPBM and 

sham after FDR correction. PSC- primary somatosensory cortex; FPC - front polar cortex; DLPFC 

-the dorsolateral prefrontal cortex; PMSMC- Premotor and supplementary motor cortex. 

During T1-T4, the activation was observed only in the l-primary somatosensory cortex (PSC). 

During T5-T8, rDLPFC and rFPC show activation along with rBroca area. lPSC continued to be 

activated for the rest of the experiment duration. Further, during the recovery period, rDLPFC and 

rFPC demonstrated the same trend as T5-T8. As illustrated in Fig. 4-3, the activation was 
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prominent in the prefrontal area, especially rFPC and rDLPFC. The rPFC areas activated increase 

as time increases. There was a consistent activation in the left primary somatosensory area, which 

is the lobe opposite to the stimulation site. During T5-T8, there was substantial activation in the 

right FPC, DLPFC, and PSC as well.  

4.3.1.3 Dynamic Functional Connectivity Due to tPBM 

Fig. 4-4 illustrates the results for dynamic functional connectivity changes over stimulation and 

rest at every 30 s. The significant connections for tPBM were compared to sham in paired t-test at 

p < 0.05 for each window in red lines on topo plots. Fig. 4-4 shows topo plots illustrating 

significant connections for tPBM relative to sham for the stimulation and post-stimulation periods. 
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Figure 4-4 The significant connections among the different regions in the brain induced by tPBM 

compared to sham indicated in red lines at p < 0.05 (FDR Corrected). The gray dots indicate the 
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nodes of the network. Red lines are edges of the network. Topo plots of 0.5 min to 8.0 min shows 

the stimulation period. Topo plots of 8.5 min to 11.5 min shows rest/ post-stimulation periods.  

As illustrated in Fig. 4-4, there is an increasing trend of connections during tPBM over sham 

during the treatment. However, it relatively decreased during the rest period. Most dense 

connections can be noted during the 8th min. However, the density of the connections started 

reducing when stimulation/treatment stopped. In addition, after the first 4-min, the connection 

density became more intensive compared to the first 4-min. Further, the brain tended to show more 

communication with multiple regions and across hemispheres.   

Figure 4-5 The number of connections fluctuation induced by tPBM over sham. The left side of the 

dashed vertical line represents the during stimulation. The right side of the dashed vertical line 

represents the post-stimulation. 

Moreover, Fig. 4-5 further illustrates the fluctuation of the total number of significant 

connections formed chronologically during the experiment. Fig. 4-5 provides a quantitative 

representation of the number of links illustrated in Fig. 4-4. According to the graph, the 

connections gradually increased as a response to tPBM. However, the decrement is evident after 

the stimulation. 
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4.4  Discussion 

Data were collected from 19 subjects under tPBM from a 1064-nm laser and sham stimulation 

during an eyes-closed resting state. Oxygenated hemoglobin patterns were studied for both tPBM 

and sham for the experimental duration for the channels close to the stimulation site. Further, we 

observed significant Δ[HbO] activation in multiple locations in the brain induced by tPBM relative 

to sham. In addition, we noticed substantial observations in dynamic functional connectivity as 

well.  

4.4.1 Oxygenated Hemoglobin Δ[HbO] Fluctuation Induced by tPBM 

Transcranial photobiomodulation (tPBM) is a process in which a NIR light source (760 – 1064 

nm) aids in improving the metabolism and hemodynamics in the brain using the energy of the 

photons [14, 17]. The functionality of PBM depends on cytochrome c-oxidase (CCO), which is an 

enzyme in the mitochondrial respiratory chain (electron transportation chain). It plays a vital role 

in ATP production. The higher the oxidized CCO enhances, the better the mitochondrial oxidative 

phosphorylation produces better utilization of oxygen and metabolic energy [90]. CCO is the main 

component that absorbs energy/photons from the laser, which improves oxygen metabolism. There 

is a linear relationship between tPBM-induced Δ[CCO] and Δ[HbO] according to the previous 

studies that have demonstrated an interplay between the components. This relationship provides 

evidence to suggest that an oxygenated hemodynamic response increment transpires due to the 

tPBM-enhanced oxidized CCO [14, 90, 93].   

The findings shown in Fig. 4-2 illustrate that Δ[HbO] of channels near the stimulation site has 

increased relative to sham over time. Similarly, tPBM conducted with a 1064-nm laser on the right 

forehead has been shown to increase Δ[HbO] and Δ[CCO] at the site of the stimulation (right 

forehead) measured by a single channel broadband fNIRS (bb-NIRS) system. Moreover, another 
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study conducted using the same protocol and laser, but with different operators, and subjects at 

different locations and taken several years apart, demonstrated the reproducibility of the impact of 

the laser [89, 93]. The results also illustrated Δ[HbO] activation pattern over time similar to our 

current Δ[HbO] pattern. Moreover, the activation induced by tPBM showed an increasing trend 

over time in many areas in the brain following the same pattern as was observed at the site of the 

stimulation with bb-NIRS [14, 89]. Consequently, the results imply that tPBM enhancement 

relative to sham can be detected using the whole-head fNIRS system.  

4.4.2 Resting State Functional Cortical Activation Enhanced by tPBM 

Due to the limited number of channels in the bb-NIRS system, there is a reduced possibility of 

measuring multiple regions in the brain. Overcoming the difficulty of having more channels, 

LABNIRS allowed us to measure the Δ[HbO] from the whole head with multiple channels. Fig. 

4-3 illustrates significantly activated regions due to tPBM in the top and front views of the brain 

topographies in 4-min temporal segments. Consequently, this study shows Δ[HbO] changes in 

multiple areas on the cortex, including the right prefrontal cortex (rPFC), especially in the rFPC, 

and rDLPFC due to tPBM. Moreover, it shows activation in lPSC, indicating probable heat impact 

from the laser. In addition, the areas that are activated due to tPBM show improvement and 

consistency.  

During the resting state, one’s internal thinking continues. Subjects undergo constrained verbal 

feelings, creating mental metaphors, the recollection of previous experiences centered on episodic 

memory and planning. Moreover, under experimental conditions, subjects are instructed to prevent 

themselves from moving. This activates an inhibitory response for movement. All these activities 

can be identified as mechanisms of working memory and executive systems, recognized to be 

maintained by high-order connective multimodal and paralimbic areas [125-127]. PFC is known 
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to be responsible for working memory, cognitive, and executive functions [128, 129]. However, 

studies have shown that there is a relationship between resting state activation and task-oriented 

activation [130]. Among the cortical level structures, FPC and DLPFC play a crucial role. 

According to Fig 4-3, rFPC and rDLPFC illustrate significant activation by tPBM compared to 

sham. rDLPFC activation during rest shows more functionality in the region. A study conducted 

on the lateralization of DLPFC functionality reported that rDLPFC was involved in detailed 

planning and decision making at multiple levels of the planning [131]. 

Further, a study conducted to observe effects on meditation/attention focused breathing has 

shown significant activation in rDLFPC, which hints that tPBM can aid the brain in short-term 

meditative effects [132]. In addition, the studies performed to investigate the behavioral outcome 

of tPBM with approximately 300 subjects have shown that tPBM can significantly improve their 

behavioral impact in terms of reaction time and memory retrieval [10, 12, 18]. Consequently, 

tPBM-induced improvement of activation in rPFC can be directly associated with the enhanced 

working memory, cognitive, and executive functions due to tPBM. Moreover, PFC and PSC 

activation can relate to the activation of frontoparietal resting state network activation [127].  

4.4.3 Impact of Heat Produced by Laser 

The activation maps in Fig. 4-3 show significant difference in l-PSC activation. This activation 

may have occurred due to the influence of heat that the laser head generated. After the experiment, 

the subjects commented on the heat sensation they perceived during the tPBM. Therefore, the 

contralateral hemisphere activation in l-PSC to the right forehead can be attributed to heat. 

However, Wang et al. reported that when thermal stimulation replicating the same heat was 

delivered to the right forehead, deactivation of Δ[HbO] was seen at the stimulation site [90]. 
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Nonetheless, since the experiment was performed with bb-NIRS, there was no evidence to show 

that l-PSC was also activated due to heat stimulation.  

4.4.4 Dynamic Functional Connectivity (DFC) Changes Stimulated by tPBM 

Resting state connectivity causes significant awareness of spontaneous brain activity. However, 

DFC network patterns are essential for a more thorough understanding of large-scale network 

activity. Many recent findings have indicated that these phenomena may be an inherent property 

of brain function with a neural basis.  It is hypothesized that alterations in FC occur from the 

transformations in the coordination and connectivity of neocortical microcircuits themselves. For 

example, an alteration in large scale FC and a depolarization condition of a local cortical column 

may cooperate via two major complementary routes: (1) a local state change can be the source for 

long-range changes in FC, and (2) the local state shift is an indication of obscure influences and 

hence reflects the reconfiguration of a more extensive network [78, 79].  

 Fig. 4-4, and Fig. 4-5 illustrate the connectivity fluctuations in the brain due to tPBM relative 

to sham. Fig. 4-4 demonstrates how brain connectivity changes across the brain regions. In the 

initial 4-min, the connections are not highly dense. However, after 4-min, tPBM causes the brain 

to form more dense connections between frontal areas and parietal regions, which shows the 

activation of the front-parietal network. These indications show signs of enhanced cognitive 

function due to tPBM [29]. The density of connections increases with the tPBM dosage, as shown 

in Fig. 4-4, and Fig 4-5. 

Consequently, according to the hypothesis for DFC changes, we can interpret from our results 

as tPBM causes neocortical microcircuits to change their orientation, which leads to enhanced 

connectivity during tPBM. Especially during the 8th min, there seems to have a high density of 

connections in the rPFC compared to other regions, which are also very close to the tPBM site. 
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Moreover, when the tPBM dose is completed, the connectivity reduces. To sum up, DFC analysis 

shows that tPBM has a significant effect on DFC in different regions in the brain compared to 

sham. 

4.4.5 Limitations and Future Work  

The study investigated the effects of 1064-nm laser directed at the right forehead by observing 

cerebral hemodynamics measured with the whole-head fNIRS system. Since this is a proof of 

principle study, many limitations exist, including several listed below: (1) Due to limited 

wavelengths of the fNIRS system, the only parameters we could measure were [HbO] and [Hb]. 

Quantification of [CCO] needs a multi-wavelength bb-NIRS system with multiple channels to 

cover the whole-head. (2) More investigations are required to perform in order to figure out what 

is the optimal wavelength is for the laser with neurophysiological benefits. (3) We still need to 

study the post-stimulation effects of the tPBM. (4) For calculating DFC, an appropriate dynamic 

window length of time series, selection of proper edges and nodes, and interpretation of results 

remain to be further explored.  

4.5  Conclusion 

This study demonstrated that conducting tPBM with 1064-nm laser on the right forehead 

improves activation of [HbO] mainly in PFC, especially in rFPC, and in rDLPFC, which are 

responsible for various executive functions such as working memory and cognitive functions. The 

stimulation site is the right forehead. Moreover, DFC analysis shows that during the tPBM, the 

connectivity relatively increased proportionally to the dosage of the irradiation. However, during 

the post-stimulation, the connectivity density dropped. The findings indicate that the tPBM can 

evoke spontaneous changes to brain connectivity during short periods, which causes increased 
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connections between distant and closer regions. Consequently, tPBM can be applied to improve 

executive functions while improving brain connectivity to enhance brain performance.  

4.6    Further Discussion Remarks  

4.6.1 Improved Calculations for Dynamic Functional Connectivity  

Dynamic functional connectivity can be quantified using variability. Often, it is compared with 

static functional connectivity [45, 133]. As a comparison, I calculated using an overlap of 50% 

and 90%, considering 30-s intervals and 60-s intervals, to assess the DFC. Fig. 4-6 shows the DFC 

fluctuation in terms of the number of significant connections across time for 30-s intervals and 60-

s intervals with a 50 % or 90 % overlap, respectively. All four subplots in Fig. 4-6 show an overall 

increasing trend and less variability during post-stimulation.  

Figure 4-6: The number of connections fluctuation induced by tPBM over sham for different 

connectivity matrix intervals and 50% and 90% overlap when calculating the matrix. The left side 

of the dashed vertical line represents the data during stimulation. The right side of the dashed vertical 
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line represents the data post-stimulation. (a) 30-s intervals with 50 % overlap, (b) 60-s interval with 

50 % overlap, (c) 30-s interval with 90 % overlap, and (d) 60-s interval with 90 % overlap. 

4.6.2 Functional Connectivity Variability 

One of the widely used methods to quantify DFC is using functional connectivity variability 

(FCV). FCV was calculated across the experimental duration to assess the variance of the 

normalized correlation coefficients. Further, FCV for tPBM and sham were calculated separately. 

Mean FCV across subjects for tPBM and sham was illustrated in Fig. 4-7. However, there was no 

significant difference between tPBM and sham at p < 0.05 significance level.  

Figure 4-7: Mean functional connectivity variability (FCV) across subjects for tPBM and sham for 

30 seconds interval without overlapping considering the whole duration of the experiment including 

treatment and recovery period. tPBM represents in the green bar. Sham represents in the blue bar. 

The error bar symbolizes the standard deviation of FCV. 

Fig. 4-7 shows that the mean variability in tPBM is lower than in the sham. Even though tPBM 

and sham mean FCV values are not statistically significant, low variability in DFC is a sign of 

increased attention [45, 133].  
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4.6.3 Reduce Mental Stress Through Right Dorsolateral Prefrontal Activation Using 

tPBM 

In this dissertation research, deactivation and activation in rDLPFC indicated an exciting 

relationship. In a task involving mental stress, rDLPFC deactivated; however, tPBM was able to 

activate rDLPFC. Specifically, according to the observations in Chapter 2, a low margin scenario 

(Fig. 2-4) showed a significant decrement in rDLPFC, possibly due to fatigue and stress [73, 74]. 

In contrast, the tPBM study demonstrated that rDLPFC could be significantly activated using 

tPBM, as shown in Fig. 4-3. A tDCS study showed that stress and fatigue could be reduced by 

performing tDCS on the rDLPFC [73]. This evidence indicates that activating rDLPFC can help 

reduce mental fatigue or stress, an observation that leads to the possibility of using tPBM to 

improve fatigue/ stress in humans in a relatively more accessible and safer manner in future work. 
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Chapter 5 – Conclusion and Future Scope 

5.1 Conclusions 

The main objectives of my dissertation work were to (1) assess cerebral hemodynamic response 

to neuroeconomic decision-making tasks; (2) evaluate and quantify electrophysiological and 

hemodynamic response to transcranial photobiomodulation (tPBM) during the eyes-closed resting 

state. In the study, metrics such as a general linear model (GLM), graph theory analysis (GTA), 

functional activation, and dynamic functional connectivity (DFC) were applied to assess 

hemodynamic responses generated from fNIRS. Moreover, a power analysis was utilized to 

quantify and compare the effects of tPBM and tPBM-induced thermal impact measured by EEG. 

Specifically, Chapter 2 investigated hemodynamic brain imaging in multiple foreign regions in 

response to a risky decision-making task in a business domain, namely, the newsvendor problem 

(NP) using a 77-channel fNIRS imager. Chapter 3 investigated and mapped tPBM and thermal 

effect on electrophysiological signals administered on the right forehead during the eyes-closed 

resting state using a 64-channel electroencephalograph (EEG). Chapter 4 fulfilled the third aim, of 

investigating and mapping whole-head hemodynamics brain imaging in response to right-forehead 

tPBM during eyes-closed resting state using a 111- channel fNIRS imager.  

Explicitly, in the first study, as presented in Chapter 2, an fNIRS system was utilized to measure 

hemodynamic signals from 27 healthy subjects with a comprehensive NP task protocol with 

neuroimaging to investigate brain-behavior under NP. The study showed that NP evoked PFC 

activation, especially in FPC, OFC, and DLPFC. Moreover, during a higher risk NP, more 

activation tended to be in lDLPFC while deactivation was observed in rDLPFC. Further, under a 

lower risk NP, FPC, OFC, and lDLPFC were activated. The findings show that FPC, OFC, and 

DLPFC are responsible for NP decision-making at the cortical level. When there is a higher risk 
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of failing, rDLPFC deactivates, indicating the probability of fatigue and mental stress. Moreover, 

with higher-risk situations, the lDLPFC activates more prominently. However, the lower risk 

situation triggered cortical level activation in OFC, showing the impression of reward path 

activation due to positive outcomes.  

 Further, Chapter 2 discussed the brain network characteristic deviation from the resting state 

to a task-oriented state using graph theory analysis (GTA). The observations showed that the 

decision phase has lower global efficiency and higher pathlength while displaying higher local 

efficiency and clustering coefficient.  Regardless of the risk level, brain network characteristics 

exhibited the same behavior when comparing the decision phase and rest. The results indicated 

that the brain works more efficiently locally as clusters during a task while globally functions at 

its best during the resting state.  

 As presented in Chapter 3, an EEG system was used to measure electrophysiology signals 

from 49 healthy human brains under transcranial photobiomodulation (tPBM) during the eyes-

closed resting state. Moreover, the impact of the heat from the laser was tested under thermal 

stimulation replicating the temperature fluctuations during tPBM.  The power analysis shows that 

tPBM modulated and enhanced alpha and beta power. In contrast, alpha and beta showed 

deactivation due to thermal stimulation. The findings show that tPBM and thermal stimulation 

yielded relative opposite responses in brain oscillations. However, enhanced alpha and beta 

oscillations due to tPBM can be interpreted as signs of improved cognition, working memory, and 

concentration. Consequently, the tPBM can modulate alpha and beta rhythms in the brain.  

Chapter 4 consisted of a study utilizing the whole-head fNIRS system to investigate the 

hemodynamic response to tPBM in 19 healthy volunteers. Results indicated that tPBM showed 

primary activation in rPFC. It is the region closest to the stimulation site, which is the right 
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forehead. rPFC is responsible for working memory and for cognitive and executive functions. 

Moreover, DFC analysis showed that during tPBM, the connectivity increased proportionally to 

the dosage of the irradiation. However, during the post-stimulation, the connectivity density 

dropped. The findings indicate that tPBM can evoke spontaneous changes to brain connectivity 

during short periods, which causes an increase in the connections between distant and closer 

regions. Consequently, tPBM can be applied to improve executive functions while improving brain 

connectivity to enhance brain performance.  

5.2  Limitations and Future Work 

The work in this dissertation comes with several limitations. However, there are approaches to 

mitigate the challenges in future work.  

First, I focused on brain activation only during the decision-making phase due to the 

complicated nature of the protocol. However, there is still more information we can extract in the 

feedback phase. The feedback phase is also a critical phase to observe the reaction to NP. 

Therefore, there is still room to study the feedback phase. Through the spontaneous nature of the 

protocol and NP, it is possible to investigate the neural-electrophysiology behind the NP-based 

decision-making tasks utilizing EEG. 

Second, there are numerous methods to perform data analysis for EEG signals. However, I 

have considered calculating only EEG powers using the root mean square (RMS) method. 

Therefore, future work can utilize more robust data analysis methods, such as power spectrum 

density, to investigate the impact of tPBM further. Moreover, there is a possibility to study tPBM 

tPBM-induced effects on the human brain in depth by investigating functional connectivity 

changes due to tPBM. 
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Third, the tPBM studies were performed only with the use of a 1064- nm laser. However, 

lasers at other NIR wavelengths might give more optimal results, which is an issue that needs 

further investigation. Moreover, there are more key concepts to be explored, such as post-

stimulation effects, optimal stimulation dosage, and means to minimize the heat effect. Last, a 

multimodal imaging approach with fNIRS and EEG is our next approach to study neurovascular 

coupling and the impact of stimulation location by the 1064-nm laser or lasers at other 

wavelengths. 

 

 

 

 

 

 

 

 

 

 

 

 

 



97 
 

Appendix 

This section consists of the MATLAB codes that were used for processing each aim.  

A. Decision-Making GLM Analysis (Aim 1a) 
Decision 

clc; 

clear 

close all; 

sub =[1 2 3 4 5 6 12:15 17 18 20:22 24 26 27 29:31 33:36 38 39]; 

N=length(sub); 

 

block =[40 40 30 40 50 40 40 40 40 34 40 40 40 20 40 39 40 36 40 40 40 40 40 40 40 40 39]; 

col=1; 

for i=1:N 

 

    blocks = block(i); 

    disp(sub(i)); 

    %Load the timer file 

    timer_file=xlsread(['D:\Lab\labnirs_coba\original_data\coba\voltage\data\Subject' 

num2str(sub(i)) '\sub' num2str(sub(i)) '.xlsx']); 

    [onset_1,duration_1,onset_2,duration_2,modulation]=timer_function(timer_file,blocks); 

 

    %load the .mat file 

    S1=load(['D:\Lab\labnirs_coba\original_data\coba\voltage\detrend_hbo_nirs_data_sub_' 

num2str(sub(i)) '.mat']); 

    oxy1=S1.nirs_data.oxyData; 

    oxy1=oxy1(:,1:77); 

    x_oxy=mean(oxy1,2); 

 

    % Removing scalp noise 

    for i1=1:1:77 

        m_oxy(:,i1)=oxy1(:,i1)-x_oxy; 

    end 

 

 

% Preparing variables to GLM input 

    fs=12.8205; 

    b_oxy=m_oxy; 

    fs=12.8205; 

    onset{1,1}=onset_1; 

    onset{1,2}=onset_2; 

    duration{1,1}=duration_1; 

    duration{1,2}=duration_2; 

    names={'Task','Rest'}; 

    M{1}=modulation; 

    M{2}=modulation; 

% Run GLM to get beta values 
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    [beta(:,:), tvalue(:,:), pvalue(:,:), covb] = 

glm(b_oxy,{onset{1,1},onset{1,2}},{duration{1,1},duration{1,2}},{M{1},M{2}},0,0,fs); 

 

    clear S1 oxy1 dxy1 x_oxy x_dxy stats_oxy m_oxy 

    clear stats_dxy m_dxy b_oxy b_dxy 

 

% Extracting decision betas and feedback betas 

 

    betad1(:,i) = beta(:,1); 

    betaf1(:,i) = beta(:,2); 

 

    disp(i); 

end 

 

Performing t-test for decision beta 

ch = 77; 

for i = 1:ch 

    [h11(i,:),p1,c1,stats1] = ttest(betad1(i,:),0, 'alpha',0.1); 

    t_value1(i)=stats1.tstat; 

 

    if abs(t_value1(i)) < 1.703 

        t_value1(i) = 0; 

    end 

end 

 

% Calculating mean beta values 

betad = mean(betad1(:,2:end),2); 

betaf = mean(betaf1(:,2:end),2); 

Plotting 

figure 

topo_plotting(t_value1,2.5,[0 1 0]); 

Published with MATLAB® R2019b 

 

 

 

https://www.mathworks.com/products/matlab
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B. Graph Theory Analysis (Aim 1b) 
Comparing LM & HM 

close all 

clear 

clc 

Network Parameters 

load('d:\Lab\Coba_fnirs_gretna\dynamic\LM_1lap\LM_01_05_1lap\NetworkEfficiency\NetworkEfficiency.

mat',"Eg","Eloc"); 

lmDecision_eg= Eg; 

lmDecision_eloc= Eloc; 

 

load('d:\Lab\Coba_fnirs_gretna\dynamic\LM_1lap\LM_01_05_1lap_rest\NetworkEfficiency\NetworkEffici

ency.mat',"Eg","Eloc") 

lmrest_eg= Eg; 

lmrest_eloc= Eloc; 

 

load('d:\Lab\Coba_fnirs_gretna\dynamic\HM_1lap\HM_01_05_1lap\NetworkEfficiency\NetworkEfficiency.

mat',"Eg","Eloc"); 

hmDecision_eg= Eg; 

hmDecision_eloc= Eloc; 

 

load('d:\Lab\Coba_fnirs_gretna\dynamic\HM_1lap\HM_01_05_1lap_rest\NetworkEfficiency\NetworkEffici

ency.mat',"Eg","Eloc") 

hmrest_eg= Eg; 

hmrest_eloc= Eloc; 

 

load('d:\Lab\Coba_fnirs_gretna\dynamic\LM_1lap\LM_01_05_1lap\SmallWorld\SmallWorld.mat',"Cp","Lp"

,"Sigma"); 

lmDecision_cp=Cp; 

lmDecision_lp= Lp; 

lmDecision_sigma=Sigma; 

 

load('d:\Lab\Coba_fnirs_gretna\dynamic\LM_1lap\LM_01_05_1lap_rest\SmallWorld\SmallWorld.mat',"Cp"

,"Lp","Sigma"); 

lmrest_cp=Cp; 

lmrest_lp= Lp; 

lmrest_sigma=Sigma; 

 

load('d:\Lab\Coba_fnirs_gretna\dynamic\HM_1lap\HM_01_05_1lap\SmallWorld\SmallWorld.mat',"Cp","Lp"

,"Sigma"); 

hmDecision_cp=Cp; 

hmDecision_lp= Lp; 

hmDecision_sigma=Sigma; 
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load('d:\Lab\Coba_fnirs_gretna\dynamic\HM_1lap\HM_01_05_1lap_rest\SmallWorld\SmallWorld.mat',"Cp"

,"Lp","Sigma"); 

hmrest_cp=Cp; 

hmrest_lp= Lp; 

hmrest_sigma=Sigma; 

Comparing Decision vs Rest for LM and HM 

a=0.01; 

hlmeg=ttest_gretna(lmDecision_eg,lmrest_eg,a); 

hlmeloc=ttest_gretna(lmDecision_eloc,lmrest_eloc,a); 

hlmcp=ttest_gretna(lmDecision_cp,lmrest_cp,a); 

hlmlp=ttest_gretna(lmDecision_lp,lmrest_lp,a); 

hlmsigma=ttest_gretna(lmDecision_sigma,lmrest_sigma,a); 

hhmeg=ttest_gretna(hmDecision_eg,hmrest_eg,a); 

hhmeloc=ttest_gretna(hmDecision_eloc,hmrest_eloc,a); 

hhmcp=ttest_gretna(hmDecision_cp,hmrest_cp,a); 

hhmlp=ttest_gretna(hmDecision_lp,hmrest_lp,a); 

hhmsigma=ttest_gretna(hmDecision_sigma,hmrest_sigma,a); 

Plotting 10 plots for LM and HM for 5 parameters 

leg={'Decision','Rest'}; 

figure('WindowState', 'maximized') 

subplot(2,5,1) 

fntsize=16; 

plotting_gretna_with_sig(lmDecision_eg,lmrest_eg,hlmeg,leg), 

ylabel('Eg','FontSize',fntsize,"FontWeight","bold") 

subplot(2,5,2) 

plotting_gretna_with_sig(lmDecision_eloc,lmrest_eloc,hlmeloc,leg), 

ylabel('Eloc','FontSize',fntsize,'FontWeight',"bold") 

subplot(2,5,3) 

plotting_gretna_with_sig(lmDecision_cp,lmrest_cp,hlmcp,leg), 

ylabel('Cp','FontSize',fntsize,'FontWeight',"bold") 

subplot(2,5,4) 

plotting_gretna_with_sig(lmDecision_lp,lmrest_lp,hlmlp,leg), 

ylabel('Lp','FontSize',fntsize,'FontWeight',"bold") 

subplot(2,5,5) 

plotting_gretna_with_sig(lmDecision_sigma,lmrest_sigma,hlmsigma,leg), 

ylabel('Sigma','FontSize',fntsize,'FontWeight',"bold") 

subplot(2,5,6) 

plotting_gretna_with_sig(hmDecision_eg,hmrest_eg,hhmeg,leg), 

ylabel('Eg','FontSize',fntsize,'FontWeight',"bold") 

subplot(2,5,7) 

plotting_gretna_with_sig(hmDecision_eloc,hmrest_eloc,hhmeloc,leg), 

ylabel('Eloc','FontSize',fntsize,'FontWeight',"bold") 

subplot(2,5,8) 

plotting_gretna_with_sig(hmDecision_cp,hmrest_cp,hhmcp,leg),  



101 
 

ylabel('Cp','FontSize',fntsize,'FontWeight',"bold") 

subplot(2,5,9) 

plotting_gretna_with_sig(hmDecision_lp,hmrest_lp,hhmlp,leg), 

ylabel('Lp','FontSize',fntsize,"FontWeight","bold") 

subplot(2,5,10) 

plotting_gretna_with_sig(hmDecision_sigma,hmrest_sigma,hhmsigma,leg), 

ylabel('Sigma','FontSize',fntsize,'FontWeight',"bold") 

Comparing Decision vs rest for all subjects 

decision_eg=cat(1,lmDecision_eg,hmDecision_eg); 

decision_eloc=cat(1,lmDecision_eloc,hmDecision_eloc); 

decision_cp=cat(1,lmDecision_cp,hmDecision_cp); 

decision_lp=cat(1,lmDecision_lp,hmDecision_lp); 

decision_sigma=cat(1,lmDecision_sigma,hmDecision_sigma); 

 

rest_eg=cat(1,lmrest_eg,hmrest_eg); 

rest_eloc=cat(1,lmrest_eloc,hmrest_eloc); 

rest_cp=cat(1,lmrest_cp,hmrest_cp); 

rest_lp=cat(1,lmrest_lp,hmrest_lp); 

rest_sigma=cat(1,lmrest_sigma,hmrest_sigma); 

Plotting Decision vs Rest 

a=0.001; 

heg=ttest_gretna(decision_eg,rest_eg,a); 

heloc=ttest_gretna(decision_eloc,rest_eloc,a); 

hcp=ttest_gretna(decision_cp,rest_cp,a); 

hlp=ttest_gretna(decision_lp,rest_lp,a); 

hsigma=ttest_gretna(decision_sigma,rest_sigma,a); 

 

leg={'Decision','Rest'}; 

figure('WindowState', 'maximized') 

subplot(2,3,1) 

fntsize=16; 

plotting_gretna_with_sig(decision_eg,rest_eg,heg,leg), 

ylabel('Eg','FontSize',fntsize,"FontWeight","bold") 

subplot(2,3,2) 

plotting_gretna_with_sig(decision_eloc,rest_eloc,heloc,leg), 

ylabel('Eloc','FontSize',fntsize,'FontWeight',"bold") 

subplot(2,3,3) 

plotting_gretna_with_sig(decision_cp,rest_cp,hcp,leg), 

ylabel('Cp','FontSize',fntsize,'FontWeight',"bold") 

subplot(2,3,4) 

plotting_gretna_with_sig(decision_lp,rest_lp,hlp,leg), 

ylabel('Lp','FontSize',fntsize,'FontWeight',"bold") 

subplot(2,3,5) 

plotting_gretna_with_sig(decision_sigma,rest_sigma,hsigma,leg), 

ylabel('Sigma','FontSize',fntsize,'FontWeight',"bold") 
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yticks([0 1 2 3 4]); 

yticklabels({'0','1','2','3','4'}); 

Published with MATLAB® R2019b 

C. Chapter 3: Power Calculation (Aim 2a & Aim 2b) 
 

close all 

clear 

clc 

Calculating power for tpbm and pbo 

% subjects for analysis 

sub1=1:26; 

sub2= 1:23; 

fs= 256; % sampling frequency 

 

% Calculating power using v^2; tls is for tPBM pbo is for pbo 

[tls, pbo]= power_calc(sub1,sub2, fs); 

 

% Removing bad subjects data 

tls(:,:,:,[4,10,15])=[]; 

pbo(:,:,:,[4,10,15])=[]; 

diff= tls-pbo; 

mdiff=mean(diff,4); 

mean 

for jj=1:5 

    FigH = figure('Position', get(0, 'Screensize'),'Name',['Band ' num2str(jj) ]); 

    F    = getframe(FigH); 

    for kk= 1:2 

        subplot(1,2,kk) 

        EEG = pop_loadset('filename','ICA.set'); 

        topoplot(mdiff(:,jj,kk), EEG.chanlocs), title([' Minute - ' num2str(kk) ]); 

        set(gca,'Clim',[-0.1 0.1]); 

    end 

    %saveas(gcf,['4by4_Power tls ' num2str(jj) '.png']); 

end 

ttest - tls 
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for j=1:5 

    for t=1:2 

        for ch=1:64 

            data= diff(ch,j,t,:); 

            [h(ch,j,t),p(ch,j,t),~, stat1]= ttest(data,0); 

            ttempt1(ch,j,t)= stat1.tstat; 

 

            if abs(ttempt1(ch,j,t))< 1.684 

                ttemp1(ch,j,t)= 0; 

            else 

                ttemp1(ch,j,t)= ttempt1(ch,j,t); 

            end 

        end 

    end 

end 

plotting t for tls 

for j=1:5 

    figure 

    for t=1:2 

        subplot(1,2,t) 

        topoplot_dc(ttemp1(:,j,t),EEG.chanlocs); 

    end 

    saveas(gcf,['4by4_Power tls ttest_NODAL ' num2str(j) '.png']); 

end 

for jj=1:5 

    FigH = figure('Position', get(0, 'Screensize'),'Name',['Band ' num2str(jj) ]); 

    F    = getframe(FigH); 

    for kk= 1:2 

        subplot(1,2,kk) 

        EEG = pop_loadset('filename','ICA.set'); 

        topoplot(ttemp1(:,jj,kk), EEG.chanlocs), title([' Minute - ' num2str(kk) ]); 

        set(gca,'fontsize',15); 

        set(gca,'Clim',[-2.5 2.5]); 

    end 

    %   saveas(gcf,['4by4_Power tls ttest ' num2str(jj) '.png']); 

end 

Published with MATLAB® R2019b 

 

D. Chapter 4 - Trend Mapping oxy hemoglobin (Aim 3a) 
clear 

close all 

clc 
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sub=[1:14 16:18]; 

addpath(genpath('d:\fNIRS TIBS\')); 

 

% smoothing 

[OxyTibs,OxyPbo] = oxy_Data(sub); 

[DxyTibs,DxyPbo] = dxy_Data(sub); 

t-test 

for i=1:size(OxyTibs,1) 

    for ii=1:12 

        [h(i,ii),~]= ttest(OxyTibs(i,ii,:),OxyPbo(i,ii,:)); 

    end 

end 

h1= h*0.0175; 

for i=1:size(h1,1) 

    for ii=1:12 

        if h1(i,ii)==0 

            h1(i,ii)=NaN; 

        end 

    end 

 

end 

meanOTibs = mean(OxyTibs,3)*10^3; 

meanOPbo = mean(OxyPbo,3)*10^3; 

meanDTibs = mean(DxyTibs,3)*10^3; 

meanDPbo = mean(DxyPbo,3)*10^3; 

 

xl=linspace(0, 11.5, 7576)'; 

Plotting 

FigH = figure('Position', get(0, 'Screensize'),'Name','Averaged subjects' ); 

F    = getframe(FigH); 

cc=[1:8]; 

for ch= 1:length(cc) 

    subplot(2,4,ch) 

    v = [0 -8; 8 -8; 8 40; 0 40]; 

    f = [1 2 3 4]; 

    patch('Faces',f,'Vertices',v,'FaceColor',[0.0 0.3 0.8], 'EdgeColor', 'none', 'FaceAlpha',0.3, 

'HandleVisibility','off'), hold on 

    plot(xl,meanOTibs(:,cc(ch)),'r','LineWidth',2); 

    plot(xl,meanOPbo(:,cc(ch)),'--r','LineWidth',2); 

    title(['Channel ' num2str(cc(ch)) ]); 

    xlabel('Time (min)','FontSize',20,'FontWeight','bold'); 

    ylabel('\Delta [HbO](\muM)','FontSize',14,'FontWeight','bold'); 
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    box on 

 

    ax = gca; 

    set(findobj(gca,'type','line'),'linew',2) 

    set(gcf, 'renderer', 'opengl') 

    set(ax,'LineWidth',2) 

    set(gca,'Fontsize', 16); 

    xlim([0 12]); 

    ylim([-8 18]); 

    xticks([0 4 8 12]); 

    ax.FontSize = 20; 

 

    hold off 

end 

 

legend('HbO-tPBM','HbO-sham','HbR-tPBM','HbR-placebo','location','North', 

'orientation','vertical', 'Fontsize', 14); 

Published with MATLAB® R2019b 

 

 

 

 

 

 

 

E. Connectivity Analysis (Aim 3b) 
close all 

clear 

clc 

sub =[1:19]; 

for k=1:length(sub) 

    load(['TRT_sub' num2str(sub(k)) '.nirs'],'-mat'); 

    tibs1= procResult.dc(4848:12053,1,:)/10^6; 

    [x, y, z] = size(tibs1); 
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    tibs=reshape(tibs1,[x z]); 

 

    load(['PBO_sub' num2str(sub(k)) '.nirs'],'-mat'); 

    pbo1= procResult.dc(4848:12053,1,:); 

    pbo=reshape(pbo1,[x z]); 

    fs=10.10; 

    clear aux d ml procInput procResult s SD t tIncMan userdata tibs1 pbo1 x y z 

 

    j=1; 

    for ii=1:.5:11 

        tibs_chunk(:,:,j)= tibs(((ii-1)*60*fs)+1:(ii*60*fs),:); 

        pbo_chunk(:,:,j)= pbo(((ii-1)*60*fs)+1:(ii*60*fs),:); 

        j=j+1; 

    end 

 

    for kk=1:size(tibs_chunk,3) 

        tibs_corr(:,:,kk,k)= atanh(corr(tibs_chunk(:,:,kk))); 

        pbo_corr(:,:,kk,k)= atanh(corr(pbo_chunk(:,:,kk))); 

    end 

end 

 

tibs_cc= tanh(tibs_corr); 

pbo_cc= tanh(pbo_corr); 

 

 

for i=1:111 

    for iii=1:111 

        for iv= 1:size(pbo_chunk,3) 

            for v=1:19 

                if tibs_corr(i,iii,iv,v)== inf 

                    tibs_corr(i,iii,iv,v)=0; 

                end 

                if pbo_corr(i,iii,iv,v)== inf 

                    pbo_corr(i,iii,iv,v)=0; 

                end 

            end 

        end 

    end 

end 

Compare tibs vs pbo paired ttest 

for i=1:111 

    for j=1:111 

        for iv=1:size(pbo_chunk,3) 

            data=tibs_corr(i,j,iv,:)-pbo_corr(i,j,iv,:); 

            [h(i,j,iv), ~]= ttest(data,0, 'alpha',0.01,'tail','right'); 

        end 

    end 

end 
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for i=1:111 

    for iii=1:111 

        for iv= 1:size(pbo_chunk,3) 

            if isnan(h(i,iii,iv)) 

                h(i,iii,iv)=0; 

            end 

        end 

    end 

end 

Sum of connections 

sumc=reshape(sum(sum(h)),[size(pbo_chunk,3),1])/2; 

variance calculation 

var_tb= var(tibs_corr,0,3); 

var_pb= var(pbo_corr,0,3); 

for i=1:19 

    mask = tril(true(size(var_tb(:,:,1,i))),-1); 

    out_tb1=var_tb(:,:,1,i); 

    out_tb = out_tb1(mask); 

    mtb(i,:)= mean(out_tb); 

    out_pb1=var_pb(:,:,1,i); 

    out_pb= out_pb1(mask); 

    mpb(i,:)=mean(out_pb); 

end 

 

[h, c2]= ttest(mtb,mpb); 

varm= [mean(mtb) mean(mpb)]; 

stdv= [std(mtb) std(mpb)]; 

c={'tPBM','sham'}; 

c1= 1; 

Plotting 

figure 

x=1:0.5:11; 

plot(x,sumc, 'r*-', 'LineWidth',2); hold on 

line([8 8],[0 120],'LineStyle','--','Color','k','LineWidth',2); 

ax=gca; 

ax.LineWidth=4; 

xlim([0 11.5]); 

set(gca, 'fontsize',16); 

xlabel(' Time (min)'); 

ylabel('Number of Connections'); 
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str = {'Stimulation'}; 

annotation('textbox','String',str,'FitBoxToText','on','FontSize',16); 

str = {'Post-Stimulation'}; 

annotation('textbox','String',str,'FitBoxToText','on','FontSize',16); 
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