
STRUCTURED DEEP LEARNING: THEORY AND APPLICATIONS

by

FANGQI ZHU

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

AUGUST 2020

Copyright © by FANGQI ZHU 2020

All Rights Reserved

To my father Jun Zhu and my mother Zhongying Liu, who support and inspire me

from the starting point and make me who I am.

ACKNOWLEDGEMENTS

I would like to thank my supervising professor Dr. Qilian Liang for constantly

motivating and encouraging me, and also for his invaluable advice during the course of

my doctoral studies. His unique ”coaching system” helps me to manage the research

project in terms of short term goal and stretch goal, so that I am able to get more

control about the research progress and quality instead of trapping in some dilemma

and lose the directions. Without his training, I would not be able have the chances to

explore the broad scope of deep learning and signal processing. Also, I would not be

able have the chances to reach out to the research opportunities from the industry.

I wish to thank my academic advisors Dr. Jonathan Bredow, Dr. Ioannis Dimitris

Schizas, Dr. Yunze Sun, Dr. Yan Wan for their interest in my research and for taking

time to serve in my dissertation committee.

I would also like to extend my appreciation to Seagate Technology LLC for pro-

viding me the financial support (research internship program) for my doctoral studies

during the final year. I want to thank Dr. Darrell Louder and Mr. Allan Luk with

the Operations and Technology Advanced Analytics Group (OTAAG) team for hiring

me as the data science and machine learning intern. I am especially grateful to Dr.

Nicholas Propes, Dr. Addishiwot Woldesenbet, Dr. Zhiqiang Xing, Dr. Chao Feng

and Mr. Bruce King for their interest in my research and for the helpful discussions

and invaluable comments for structured deep learning and its applications in anomaly

detection for industrial manufacturing.

iv

I am grateful to all the instructors, mentors and supervisors who taught me

during the years I spent in the universities, first in China and then in Unites States.

I would like to thank my supervisor of master degree Dr. Jing Liang, who used to

be the outstanding graduate from University of Texas at Arlington, for encouraging

and inspiring me to pursue graduate studies in United States. I also would like to

express my gratitude to Dr. Ioannis Dimitris Schizas, who his broad, systematic and

rigorous guidance and in mathematics and theoretical machine learning.

Finally, I would like to express my deep gratitude to my father Jun Zhu and

mother Zhongying Liu who their long supporting over 20 years and always serve as

the diligent and perseverance role model for me. I appreciate the loyalty of my family

and without the strong family, I would not have a chance to record my footprints for

over half of the United States of America.

July 30, 2020

v

ABSTRACT

STRUCTURED DEEP LEARNING: THEORY AND APPLICATIONS

FANGQI ZHU, Ph.D.

The University of Texas at Arlington, 2020

Supervising Professor: Qilian Liang

The increasing amount of data generation has boosted the broad range of re-

search in big data and artificial intelligence. Besides the success of the deep learning

in wide range of research area, it meets its pitfalls on the following three problems:

• Data hungry : current models often require to feed GB, TB even PB level of

data, which is easily overfit.

• Hard to generalize: deep learning constructs representations that memorize

their training data rather than generalize to unseen scenarios

• Missing critical information: off-the-self deep learning framework may not fully

utilize the underlying information of the data

We investigate the above problems to find the underlying structural information

in the data and framework of the neural network and try to understand how these

two interact with each other. In this study, two typical structured learning models

are mainly investigated: time series and graph data.

The long-existing vanishing and gradient problems cause the bottleneck of con-

vergence problem, which impede the process of keeping memory in sequential mod-

els. We formulate this problem by considering the weights variation in the recurrent

vi

weight matrix and utilize the constraints of the Stiefel manifold to design decomposi-

tion methods. Two orthogonal constrained recurrent neural network (OCRNN) and

their corresponding training algorithms are proposed and demonstrated that they

outperform previous structures on the synthetic memory keeping dataset.

In order to verify the performance of the OCRNN on real problems, we investi-

gate the problem of throat polyp detection problem based on the acoustic sampling

data. By preprocessing the acoustic data using standard time-frequency expansion,

the processed features are sent to the OCRNNs. The OCRNN can save 1/10 of the to-

tal number of parameters compared to the standard RNN while achieving competitive

performance, which demonstrate its computational efficiency.

The creation of the mixed model with the one-dimesion convolutional neural

network (1dCNN) and OCRNN is deployed on the sleep stage scoring problem based

on the EEG signals. The 1dCNN is leveraged to extract fine and coarse time-frequency

feature map for the downstream OCRNN. We demonstrate that the 1dCNN-OCRNN

can save both the time complexity and spatial complexity and reach a comparatively

better performance compare to previous benchmark results.

The graph neural network based model for image anomaly detection is intro-

duced in the final part. The superpixels serve as the mapping from pixel-wise image

to graph feature and topology information. The hierarchical variational graph au-

toencoder with pooling and upsampling operations is adopted for semi-supervised

anomaly detection fashion. The feasibility of this model is demonstrated on road

surface anomaly detection, which demonstrates its competitive ability and savings of

the storage of the neural network overload.

vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iv

ABSTRACT . vi

LIST OF ILLUSTRATIONS . xi

LIST OF TABLES . xiv

Chapter Page

1. Introduction . 1

1.1 Motivation of the Structural Deep Learning 1

1.2 Essentials of Deep Learning . 2

1.2.1 Activation Function and Multi-Layer Perceptron Model 2

1.2.2 Stochastic gradient descent and optimization 3

1.3 Background of structured recurrent neural network 5

1.4 Background of Structured Graph Neural Network 8

1.4.1 Preliminaries of the GCN . 10

1.4.2 Graph Neural Network . 11

1.5 Overview of Proposal . 13

2. Structured Recurrent Neural Network with Orthogonal Constraints: Theory 15

2.1 Motivations . 15

2.2 Problem Formulation . 18

2.2.1 Stiefel Manifold and Orthographic Retraction 18

2.2.2 scoRNN and the corresponding training algorithms 21

2.2.3 orRNN and the corresponding training algorithms 22

2.2.4 pdRNN and the corresponding training algorithms 26

viii

2.2.5 Details of The Architecture 29

2.3 Baseline Experiments and Pseudo Spectrum Visualization 31

2.3.1 Synthetic Dataset: Copying 31

2.3.2 Synthetic Dataset: Adding . 32

2.3.3 Performance Analysis and Orthogonality Checking 33

2.3.4 Pseudospectrum visualization and orthogonality analysis . . . 38

2.4 Conclusions and Future Work . 41

3. Application of Structured RNN for Polyps Detection 43

3.1 Background . 43

3.2 Data and Preprocessing . 45

3.3 Experiment Setting and Results Analysis 49

4. EEG Based Sleep Stage Scoring Using 1dCNN-OCRNN Mixed Model . . . 54

4.1 Introduction . 54

4.2 Frameworks of the 1dCNN-OCRNN mixture model 57

4.3 Experiment and Performance Analysis 59

4.4 Conclusion . 63

5. Graph Neural Network Based Anomaly Detection 66

5.1 Introduction . 66

5.2 Superpixel and feature engineering 68

5.3 Generative model for anomaly detection 71

5.3.1 Variational autoencoder . 71

5.3.2 Variational graph autoencoder 73

5.4 Experiment setting and performance analysis 76

5.4.1 Dataset . 76

5.4.2 Experiment setting and performance analysis 77

6. Conclusion and Future Works . 82

ix

6.1 Summary . 82

6.2 Future Direction . 84

6.2.1 Dynamics of the Recurrent Neural Networks 84

6.2.2 Structured representation of the GNN 85

7. Publication List . 86

REFERENCES . 88

BIOGRAPHICAL STATEMENT . 100

x

LIST OF ILLUSTRATIONS

Figure Page

1.1 Schematic diagram of RNN structure 6

1.2 The simple graph with 5 nodes and 5 edges 11

2.1 Cross entropy of scoRNN, orRNN and pdRNN on the copying problem

with delay length (a) T=1000 and (b) T=2000 32

2.2 Test set mean squared error (MSE) scoRNN, orRNN and pdRNN on the

adding problem with sequence lengths of T=200(top), T=400(middle),

and T=800(bottom) . 34

2.3 Orthogonality check of scoRNN, orRNN and pdRNN on the adding

problem with sequence lengths of T=200(top), T=400(middle), and

T=800(bottom) . 37

2.4 Orthogonality check of scoRNN, orRNN and pdRNN on the copying

problem with delay length (a) T=1000 and (b) T=2000 38

2.5 pseudospectrum of the adding task with sequence length 200 of the

scoRNN, orRNN and pdRNN at iteration epochs of 500, 1000, 1500 and

2000 . 39

2.6 pseudospectrum of the copying task with sequence length 200 of the

scoRNN, orRNN and pdRNN at iteration epochs of 500, 1000, 1500 and

2000 . 40

3.1 Four cases of the running speech (“abnormal vowel /a:/”, “abnormal

vowel /i:/”, “normal vowel /a:/” and “normal vowel /i:/”) in time do-

main and frequency domain . 47

xi

3.2 MFCC features of four cases of the running speech (“abnormal vowel

/a:/”, “abnormal vowel /i:/”, “normal vowel /a:/” and “normal vowel

/i:/”) . 48

3.3 Accuracy and loss comparison of four RNNs with MFCC features of

running speech “vowel /a:/” . 50

3.4 Accuracy and loss comparison of four RNNs with MFCC features of

running speech “vowel /i:/” . 52

3.5 confusion matrix visualization of the four types of RNNs with vowel

/a:/ (a)-(d) and vowel /i:/ (e)-(h) . 53

4.1 Framework of the 1dCNN-OCRNN mixed model 58

4.2 Different recordings of the unnormalized raw EEG signal (data) and

sleep stage classes (label) that change over time 59

4.3 Comparison of the testing accuracy of the four 1dCNN-OCRNN models 61

4.4 Comparison of the testing loss of the four 1dCNN-OCRNN models . . 61

4.5 Comparison of the ROC curve and AUC score of the four 1dCNN-

OCRNN models . 62

4.6 Comparison of confusion matrix of five classes ”W1”, “N2”, ”N3”,

”N4”, ”NRM” among four different mixed models: (a) 1dCNN-LSTM

(b) 1dCNN-scoRNN (c) 1dCNN-orRNN (d) 1dCNN-pdRNN 63

5.1 The boundary plot and RAG plot of the no crack images of road

surface with SLIC algorithm imposing on 69

5.2 The boundary plot and RAG plot of the crack images of road surface

with SLIC algorithm imposing on . 72

5.3 schematic diagram of the CVAE based anomaly detection 75

5.4 schematic diagram of the VGAE based anomaly detection 76

5.5 sixteen different no crack images of the road surface 79

xii

5.6 sixteen different crack images of the road surface 80

5.7 The boundary plot and RAG plot of the crack images of road surface

with SLIC algorithm imposing on . 81

5.8 Comparison of the ROC curve and AUC score of the VAE and VGAE 81

xiii

LIST OF TABLES

Table Page

2.1 Comparison of the weight matrix dimension and number of parameters

of Adding task . 36

2.2 Comparison of the weight matrix dimension and number of parameters

of Copying task . 36

3.1 Vocal dataset summary . 46

3.2 Comparison of the test accuracy and test loss of the final iteration of

three RNNs on the MFCC vocal detection 51

4.1 Comparison of total number of parameters in four mixed model 59

4.2 Numerical comparison of testing accuracy and testing losss of four

mixed model . 64

4.3 Numerical comparison of performance metrics of four mixed model . . 64

5.1 Comparison of performance metrics for VAE and VGAE based anomaly

detection model . 78

xiv

CHAPTER 1

Introduction

1.1 Motivation of the Structural Deep Learning

With the emerging with high-performance computing platform (GPU, TPU) as

well as the ability to deploy the large-scale neural network, deep learning represents

the revival of the artificial intelligence. Deep learning demonstrates its power through

its application in areas such as social network, financial, engineering, industrial man-

ufacturing, chemical and biomedical study, physics and astronomy. Besides its great

success in delivering good results for certain tasks, we still have not a good under-

standing of how it works under the hood and treat it as the black-box to plug and play

for most of the time. We have also witnessed the situation that deep learning model

cannot reach the expected performance due to the data quality problem, improper

choice of the model and inferior design of the inter-connected module inside the deep

neural networks. In order to find the interaction among the data and framework, the

structured deep learning is proposed to shed light on this problem.

There are different ways to define the ”structured deep learning” and the defini-

tion for the thesis is focusing on the structure of the neural network and its interaction

of data, regardless the detailed data format such as texts, tables, image formats. For

example, deep neural network induced by the inherent sparsity of data [1], model com-

pression by adoption of pruning approach [2] and random regularization technique [?]

can be leveraged to reduce the increasing high demand for computing resources. Be-

yond that, the research work in this thesis focuses on the two typical structures of the

data, the time-series and graphs, The aim is to design the correlated structured deep

1

learning frameworks to better under mining the inherent information in the data as

well as design the low-cost high efficiency neural network to reach a broad deployment

of the deep learning model on applications with low computation load such as edge

computing and internet of things.

1.2 Essentials of Deep Learning

1.2.1 Activation Function and Multi-Layer Perceptron Model

In this section, some fundamental building blocks of the structured deep learn-

ing used in this study will be introduced. The deep neural network starts from imi-

tating the neuron structure in the human brain and try to create the mathematical

model to describe the chemical signal’s propagation for the interconnections within

the complex brain network. To begin with, a single artificial neuron or perceptron,

which can be represented as:

y = σ(xTw + b), (1.1)

where x is the input to the artificial neuron, w is the training weights, b is the bias

term. A nonlinear function σ activates the neuron to accomplish certain functions.

The choice of the nonlinear function is question-dependant. For example, to

model the Bernoulli distribution, the sigmoid function is adopted with the variation

between [0, 1], which is suited for binary classification problem,

σ(x) =
1

1 + exp(−x)
. (1.2)

Rectified linear unit (ReLU) function, which is the most widely used activation func-

tions in deployment of deep learning, with the range between 0 and 1,

σ(x) = max(0, x). (1.3)

2

We will adopt a modified ReLU function in the initialization of the structured recur-

rent neural network in the following chapters.

We can extend the formula 1.1 to multiple neurons, which form the basic build-

ing blocks of the deep learning – multilayer perceptron (MLP). Multilayer perceptron

is a deep feedforward network which the information flow directly from the beginning

to the end with no feedback loops (the deep neural network which contains feedback

loops is the recurrent neural network and will be covered in the next section). It

defines a mapping y = f(x;θ) such that it tries to learn the parameter vector θ with

the best approximation. The MLP can be representated as follows:

y = σn(Wnσn−1(Wn−1σn−2σ1(W1x + b1) + · · ·+ bn), (1.4)

where Wn, n = 1, . . . , N and bn, n = 1, . . . , N are the weight matrices and bias

vectors respectively. σn, n = 1, . . . , N are the activation functions. The intermediate

activation functions are most likely to be the same, but the activation function of

the latest layer will be different sometimes depend on the machine learning tasks and

the way to define to the loss functions. The MLP will be regarded as the universal

function approximator due to the theoretically it can approximate nonlinear function

of any order with given constraints.

1.2.2 Stochastic gradient descent and optimization

Large training sets are generally good for the generalization of the deep learn-

ing algorithms. It will avoid the overfitting problems and cover the sample space as

much as possible. But large training sets are also more computationally expensive,

especially when training algorithms is imposed on the whole datasets directly. Con-

3

sider the set of data pair (xi, yi), i = 1, . . . , N and the corresponding differentiable

loss function is given as:

J(θ) = Ex,y∼p̂dataL(x, y,θ) =
1

m

m∑
i=1

L(xi, yi,θ), (1.5)

where m is the number of the samples in the current minibatch. These minibatches

are drawn uniformly in the whole training datasets, using techiniques like random

shuffle. The expectation term is designed to be approximately estimated using a

small set of samples. The estimate of the gradient is:

g =
1

m
5θ

m∑
i=1

L(xi, yi,θ). (1.6)

The stochastic gradient descent algorithm is to minimize the cost along the direction

of the gradient,

θ = θ − αg (1.7)

where α is the learning rate. The optimization process may not be lead to an ex-

pected local minimum at the expected amount of time, but it mostly likely will find

a comparativey low value of the cost function quickly enough.

When applying stochastic gradient descent to non-convex loss functions of the

deep neural networks, the convergence guarantee may not hold due to the difficulty

to find the global minimum, and is sensitive to the values of the initial parameters. It

is expected to have a good optimization algorithm to tackle this situation. The idea

of introducing the momentum into the gradient descent help with the convergence.

Particularly, the Nesterov momentum reduces the convergence error from O(1/k) to

O(1/k2). The updpated rule is given by:

v ← αv − ε∇θ

[
1

m

m∑
i=1

L
(
f
(
x(i);θ + αv

)
,y(i)

)]
(1.8)

θ ← θ + v (1.9)

4

The Adam and Rmsprop optimization are the two algorithms adopted mostly in this

manuscript, driven by the momentum mechanism [3].

1.3 Background of structured recurrent neural network

Time-series related problems such as prediction, classification, correlation anal-

ysis have long been investigated for decades. Traditional methods like statistical

analysis generalized linear model, causality analysis mainly focus on the hand-crafted

features, which are able to quickly deliver results. But the precision and robustness

of these models become the bottleneck and these methods cannot behave well on

long memory, non-stationary time-series data. Recurrent neural network (RNN) is

an extensible large-scale structure that does not require hand-crafted process and

can be designed to automatically deploy for different time-series task. RNN mim-

ics the process to storage the memory and output representation of the input data

for specific deep learning tasks. It takes sequence with the same or variable length

x1,x2, . . . ,xτ , utilize the property of parameter sharing during the propagation of

the weights, to generate outputs with adjustable length. The tasks like time series

analysis, sequential modeling, time-series prediction and natural language processing

drives the development of more powerful learning frameworks and algorithms. With

the emerging of the deep learning, more and more attentions are attracted by the

RNN for its power of solving temporal dynamic problems of varying complexity.

A typical sequence-to-vector framework of the RNN is demonstrated in Fig.

1.1, which will be adopted for the classification tasks in Chapter 3 and 4. The hidden

state ht can be regarded as a dynamic parametric system which takes the output of

the last state and current input. Then it propagates the current state to the next

state and fuses the new input to generate the next hidden state. We can express the

progress in the following:

5

· · · W
ht−1

W
ht

W · · · W
hT

u

xt−1

u

xt

u

x(···)

u

xT

V

yT

Figure 1.1. Schematic diagram of RNN structure.

h(t) = f(h(t−1),xt; θ), for t = 1, . . . , τ, , (1.10)

where θ is the parameter of the current state of the RNN. For vanilla RNN, it will take

the form as h(t) = φ(WT
xxt + WT

y yt−1 + b), where b is the bias term (optional) and

φ is some chosen nonlinear activation function such as ReLU or hyperbolic tangent.

The final output yT is:

yT = φ(WT
xxT + WT

y yT−1 + b). (1.11)

The hidden state is also be regarded as the memory cell, which will cache the

information for back-propagation through time in the training phase. However, due

to the long memory requirement in general RNN tasks, the problem of vanishing

and gradient exploding problem appeals. In order to get insights of what is inside the

”black box” of the RNN, people start to focus on the nature of the back propagation of

the RNN recently and find out that the problem lies on the restriction of the spectral

norm of the recurrent matrix in order to solve the gradient explosion and vanishing

problem [4]. Essentially, one of the key ideas is to find good ways of parameterizing

the recurrent neural networks and improve the conditioning of the cost gradient [5].

6

Generally there are three types of research directions to the SRNN. The first

category is related to the the classical gate-control mechanism based RNNs, such as

the long-short term memory network (LSTM), gated recurrent unit network (GRU),

peephole-LSTM and attention mechanism based model [6, 7]. For gate-control mech-

anism based RNNs, several modules are designed to keep, drop and distill the infor-

mation by backpropagating the RNN with hyper-parameter tuning. It is the mostly

adopted first-try model for time-series related tasks. The second category is the trans-

former network [8, 9]. The transformer network is specialized for the natural language

processing scope that utilized very deep customized bi-directional encoder network

to achieve tasks like machine translation. Although it is very powerful and achieve

the state-of-the-art performance on several benchmark tests, it requires a huge com-

putation load and currently there is no low-cost distributed deployment solution to

the best of the knowledge. Therefore, transformer network is beyond the scope of

comparison of this study. The third category is the orthogonal constrained based

RNN (OCRNN) [10, 11]. Different from the previous two mechanisms, the OCRNN

address the vanishing gradients and exploding problem by directly working on the

recurrent weight matrix in the network. The orthogonal constraints and the corre-

spond decomposition methods directly control the interaction between the data and

the framework to keep a longer memory and make the RNN robust against vanishing

gradients and exploding problem. It does not necessarily resort to high-performance

platform and can be flexibly deployed on tasks with different orders of complexity.

This direction provides a more ”structured” flavor compared with the rest two and

is selected as the research direction in this study.

7

1.4 Background of Structured Graph Neural Network

We have witnessed the success of deep-learning models for regular grid data

structure like speech (1d grid time-series), image (2d grid, not include channel di-

mension, w.l.o.g), and video, in which there are an underlying Euclidean structure.

Recently there has been a growing interest in trying to extend the framework on struc-

tured data, particularly the non-Euclidean data. There are some applications that

belongs to this domain: social network with different types of connections and het-

erogeneous message pass on the network; sensor network which fuses data among dif-

ferent types of connections, chemical molecular with different atoms and compounds

demonstrate different properties and structures, to name a few. These applications

have their own objects and related relationships in varied domains, which suited for

using graph to model them.

Traditional graph-based machine learning model will mainly treat the graph-

level as the preprocessing steps and combine it with the standard machine learning

framework. In order to address the similarity among the node pairs or graph-pairs,

the kernel method is introduced to form the graph kernel to solve the similarity

related problems [12]. It can also be formulated as the feature engineering steps for

downstream tasks such as the graph clustering [13]. To classify the graphs for some

supervised task, the graph kernel is able to combine with the SVM classifier [14]. In

order to address the information of signal flow inside the graph network, the random

walk model is leveraged to characterize the message passing process [15].

The above methods heavily rely only hand-crafted domain knowledge and the

inherent irregular data structure is approached with decorate algorithms. It is able to

extend those design to large-scale setting such as knowledge graph, natural language

processing, drug discovery, image based anomaly detection, and visual understanding.

Generally, we may categorize the types of the problems as follows:

8

• Node classification: classify each of the nodes into one of C classes, i.e., to

produce a node class probability matrix Y ∈ RN×C such that Yij = P(Node i ∈

Class j)

• Graph classification: Given a set of graph G1,G2, . . . ,Gn, classify these graphs

as one of the category C classes.

• Link prediction: Given a set of graph G1,G2, . . . ,Gn, for the upcoming new

graphs, predict whether two nodes in a network are likely to have a link.

• Community Detection: Given a graph G, nodes of the graph network can be

easily grouped into (potentially overlapping) sets of nodes such that each set of

nodes is densely connected internally.

• and more ...

Graph neural networks (GNNs) are deep learning based methods that oper-

ate on graph domain. Due to its convincing performance and high interpretability,

GNN has been a widely applied graph analysis method recently. In the following

paragraphs, we will illustrate the fundamental motivations of graph neural networks.

Graph neural networks have been explored in a wide range of problem domains across

supervised, semi-supervised, unsupervised and reinforcement learning settings. In this

section, we simply divide the applications in three scenarios:

• Structural scenarios where the data has explicit relational structure, such as

physical systems, molecular structures and knowledge graphs;

• Non-structural scenarios where the relational structure is not explicit include

image, text, etc;

• Other application scenarios such as generative models and combinatorial opti-

mization problems

it is important to incorporate domain knowledge into the model when constructing a

graph or choosing architectures. For example, building a graph based on the relative

9

distance may be suitable for traffic forecasting problems, but may not work well

for a weather prediction problem where the geographical location is also important.

Second, a graph-based model can usually be built on top of other architectures rather

than as a stand-alone model. For example, the computer vision community usually

adopts CNNs for detecting objects and then uses graph-based deep learning as a

reasoning module. For NLP problems, GCNs can be adopted as syntactic constraints.

As a result, key challenge is how to integrate different models. These applications

also show that graph-based deep learning not only enables mining the rich value

underlying the existing graph data but also helps to naturally model relational data

as graphs, greatly widening the applicability of graph-based deep learning models.

In the following study, a hierarchical graph generative model with superpixel

based features is proposed to solve the image based anomaly detection problem.

Some mathematical preliminaries are provided in the following subsection for the

self-contained purpose.

1.4.1 Preliminaries of the GCN

The undirected graph, which means the connection between the nodes (vertices)

do not contain directions, is the only case considered in this work. An undirected

graph G is a pair of sets G(V , E) where V is the set of vertices and E ∈ V × V is the

set of edges of the network. A is the adjacency matrix that describes the connection

between the nodes, such that Ai,j = 1 if node i connects to node j and 0 otherwise.

For undirected graph, Ai,j = Aj,j, thus A is the symmetric matrix. The degree matrix

D is the summation of the connection of the neighborhood, such that Dii =
∑

j Ai,j.

The Laplacian can be represented as L = D−A.

L −→ LN = I + D−1/2AD−1/2 −→ D̃
−1/2

ÃD̃
−1/2

(1.12)

10

where Ã = A + I, D̃ii =
∑

j Ãij, LN is the normalized Laplacian matrix.

For instance, the following graph in Fig 1.2 is a graph with 5 nodes and 5 edges.

And we have,

1 23

4 5

Figure 1.2. The simple graph with 5 nodes and 5 edges.

A =



0 1 0 0 0

1 0 1 1 0

0 1 0 1 0

0 1 1 0 1

0 0 0 1 0


−→ L =



1 −1 0 0 0

−1 3 −1 −1 0

0 −1 2 −1 0

0 −1 −1 3 −1

0 0 0 −1 1


. (1.13)

1.4.2 Graph Neural Network

Since Laplacian matrix L is a symmetric, we can impose the eigenvalue decom-

position on L,

L = UΛUT , (1.14)

where U = [u0, . . . ,uN] ∈ RN×N is the matrix of the eigenvectors, which is also

called the graph Fourier basis. Λ is the diagonal matrix of the eigenvalues where

Λ = diag(λ0, . . . , λN) ∈ RN×N . These relations are similar to the filters in signal

processing so that we can extend the similar ideas to graph signal processing. The

graph Fourier transform of a input signal x ∈ Rn is x̂ = UTx and the graph inverse

Fourier transform can be represented as x = Ux̂.

11

The spectral graph filtering operation is kind of convolution-like operation on

graph. Denoted by ∗G, the graph convolution can be represented as:

x ∗G y = U
(
(UTx)� (UTy)

)
. (1.15)

A signal x which is filtered by g will get the output y as [16]:

y = gθ(L)x = gθ(UΛUT)(x) = UgθΛUTx. (1.16)

The computation of the matrix multiplication of the eigendecomposition will take

up to O3 complexity. In order to solve this problem, the polynomial approximator

gθ(Λ) =
∑K−1

k=0 θkΛ
k is considered. Specifically, the Chebyshev polynomial is adopted

due to the recursive relation and it forms an orthogonal basis for L2([−1, 1], dy/
√

1− y2),

gθ(Λ) =
K−1∑
k=0

θkTk(Λ̃), (1.17)

where Tk(x) = 2xTk−1(x)− Tk−2(x) with T0(x) = 1 and T1(x) = x. It can be further

simplified to the first order case such that,

gθ′ ? x ≈ θ′0x+ θ′1 (L− IN)x = θ′0x− θ′1D−
1
2 AD−

1
2x. (1.18)

We have the following relations:

gθ ? x = I + D−
1
2 AD−

1
2

I + D−
1
2 AD−

1
2 −→= D̃

− 1
2 AD̃

− 1
2

Z = D̃
− 1

2 AD̃
− 1

2 XΘ

Based on the first order approximation above, we may have the forward prop-

agation of the GNN model as [17]:

Z = f(X,A) = softmax(ÂReLU(ÂXW(0)))W(1)) (1.19)

12

with the related cross entropy loss function (use the classification as the example, can

be changed for different tasks) ,

L = −
∑
l∈YL

F∑
f=1

Ylf lnZlf (1.20)

1.5 Overview of Proposal

Chapter 2 presents the projection-like based and polar-decomposed manifold

retraction methods and designs the corresponding orthographic retraction RNN (or-

RNN) and polar based RNN (pdRNN). A new coordinate-descent like iteration al-

gorithm is proposed for updating the weight coefficients of the recurrent matrix and

it outperforms previous baseline RNN and cayley-transform based RNN on standard

copying and adding memory synthetic tests. Furthermore, a pseudo-spectrum based

visualization methods is introduced to visualize of the weights evolving and address

the relation between orthogonality and robustness of the RNN.

Chapter 3 deploy the orthogonal constrained RNN (OCRNN) on the acoustic

signal based polyp detection problem. Running vowels are recorded using acoustic

sampling apparatus and labeled as either normal or abnormal and it is formulated

as the binary classification problem. A time-frequency expansion technique is served

as the preprocessing for the downstream of the RNN processing. It is demonstrated

that the OCRNN can achieve comparatively results in terms of accuracy and loss

with much smaller total number of parameters, which saves the computation cost.

Chapter 4 investigates the problem of combining the one-dimensional convo-

lutional neural network (1dCNN) and OCRNN for sleep staging scoring based on

the signal channel EEG signals. The raw EEG signal is first preprocessed by fine

and coarse filtered 1dCNN to get the two-level time-frequency feature map. Then

the two-level feature vectors are concatenated and sent to the OCRNN to get the

13

scoring. It is shown that the 1dCNN-OCRNN can achieve comparatively better re-

sults in accuracy categorical F1-score. Moreover, the time complexity for training

(1/3 of training epochs vs. previous benchmark) and spatial complexity (1/6 of total

number of network parameters vs previous benchmark) manifests the potential of the

proposed model.

Chapter 5 proposes an end-to-end superpixel based graph anomaly detection

framework for anomaly detection in pixelwise image anomaly detection problems.

There is no available way to directly transform the image to the graph data that fits

for graph neural network. The SLIC algorithm is leveraged to extract the superpix-

els to summarize and compress the information within the specified region. These

regions are further transformed to graph with feature matrix and adjacency matrix

by a conditional random field approach. The variational graph autoencoder with

pooling and upsampling layer is utilized training on the normal samples to learn the

characteristics or the normal cases and inference is carried out on the test set to make

decisions based on distance based metrics for anomaly detection. Experiment results

demonstrate that comparative performance can be achieved with 60 times saving in

terms of network complexity.

Chapter 6 finalizes with the conclusion. The main achievements of this disser-

tation are highlighted and future research directions are listed.

14

CHAPTER 2

Structured Recurrent Neural Network with Orthogonal Constraints: Theory

2.1 Motivations

One of the difficulties that optimization algorithms of the deep neural network

must overcome arises when the computational graph becomes extremely deep. In

recurrent neural network (RNN), by repeatedly applying the same recurrent operation

unit at each time step, the very deep computational graphs is formulated as a long

temporal sequence. These compositions can result in extremely nonlinear behavior

and complex dynamics, which leads to accumulation of error and easily leads to

vanishing gradients and exploding.

The problem of vanishing and exploding in the deep learning, especially for

sequential modeling related tasks, has long played as the pivotal bottleneck during

the process of back propagation through time (BPTT) on the RNN and it is still

an open topic [3]. Some intuitive thoughts are that some of the information may

be redundant. Therefore, the forget and update mechanism are adopted to form

the gated control recurrent neural network such as long short term memory (LSTM)

network [6, 18] and gated recurrent unit (GRU) network [7]. Both of them have been

widely used in both academic and industrial level end-to-end learning framework.

But they still have limitations and they have not responded to the nature of the

bottleneck directly.

The function composition employed by RNNs somewhat resembles matrix mul-

tiplication. Consider the special case where recurrence relation as a very simple RNN

lacking a nonlinear activation function, and lacking inputs x. The recurrence relation

15

can be represented as h(t) = Wh(t−1), which removes the current input x and assumes

that we consider the ReLU function with inputs larger than or equal to 0. Taking

the whole connected recurrent units into consideration, we have:

h(t) = (Wt)Th(0) (2.1)

If we further assumes that recurrent matrix can take the eigen-decomposition (gener-

ally will be matrix that is diagonalizable or nondefective) W = QΣQT with orthog-

onal Q, formula 2.1 can be further simplified as:

h(t) = (Qt)TΣtQh(0) (2.2)

Repeated multiplication of the shared parameters across the whole cascades of RNN

leads to difficulties, especially through the process of back-propagation throught time

(BPTT). Typically, the vanishing and exploding gradient problem refers to the fact

that gradients through such a graph are also scaled according to diag(λt).Any eigen-

values λi that are not near an absolute value of 1 will either explode if they are greater

than 1 in magnitude or vanish if they are less than 1 in magnitude. Therefore, any

element of h(0) that is not aligned with the largest eigenvector will eventually be

discarded.

Let E be some differentiable loss function of current state ht to measure the

performance metrics of the RNN on some given task (e.g. classifiction or prediction),

according to the chain rule, we have:

∂E
∂ht

=
∂E
∂hT

∂hT
∂ht

=
∂E
∂hT

T−1∏
k=t

∂hk+1

∂hk
=

∂E
∂hT

T−1∏
k=t

Dk+1W
T
k (2.3)

where Dk+1 = diag (σ′ (zk+1)) is the Jacobian matrix of the pointwise nonlinearity.

When considering the setting of RNN without complex gated-control like LSTM or

GRU, by leveraging the viewpoint of dynamic systems, the above problem is formu-

lated as the stability of the recurrent weight matrix among the hidden layer. The

16

Jacobian matrix ∂hk+1

∂hk
of the consecutive states is expressed as the WTdiag(σ′(xk))

and the stability lies on the spectral norm of recurrent weight matrix (singular value)

of W, where W is the weight matrix between consecutive hidden layer [4].

As the early study pointed out [19], it is expected that the we can bypass the

problem by letting RNN staying in a region of parameter space where the gradients do

not vanish or explode. Ideally, this kind of RNN can store the cascaded memories in

a way that is robust to small perturbations. Whenever the model is able to represent

long term dependencies, the gradient of a long term interaction has exponentially

smaller magnitude than the gradient of a short term interaction, which will take

a very long time to learn long-term dependencies, because the signal about these

dependencies will tend to be hidden by the smallest fluctuations arising from short-

term dependencies [20].

The above problem has been addressed in a new formulation in recent years.

Starting from the seminal work [10], by decoupling the relation of the weight matrix,

hidden states and input signal, the decomposition of the recurrent weight matrix

such that it satisfies the region of WTW = I. It leverages the strict orthogonal and

unitary constraints on the recurrent weight matrix, and the factorization of the recur-

rent weight matrix as the multiplication of seven basic unitary basis matrices. The

capacity limit of this formulation is pointed out in [21] and a full capacity model is

proposed based on optimization on the Stiefel manifold. Some other related formula-

tions have been proposed such as leveraging Householder transform [22] and unitary

matrix decomposition [23]. However, the problem of whether it is necessary to add

strict unitary constraints on the recurrent weight matrix is questioned by [24] and

the kronecker recurrent model is proposed with soft unitary constraints. Later this

phenomenon has been verified on the complex evolution recurrent neural network[25].

17

They drop out the restrictions of unitary constraints on the diagonal matrices com-

pared to [10] and employ on the copying problem baseline task and an industrial level

automatic signal recognition database to verify that strict restrictions will degrade

the performance in some cases.

Some more concise and flexible formulation based on Cayley transform has

been proposed there in [26, 27]. The iteration of the gradient based on properties of

skew-symmetric matrices has simplified the propagation process so that computation

cost has reduced. One of the problems of this formulation is that the scaling matrix

D is required to be determined for different tasks and the number of negative ones

and the position of the 1s’ and -1s’ are hyper-parameters for tuning. Later on, the

modified version for the complex number version is provided with the name ”Scaled

Cayley Unitary RNN (scuRNN)”[28]. The difference lies upon the employment of

Wirtinger calculus to modify on the gradient descent and activation function. The

scaling matrix D lies on the unit circle and argument of angles are also updated as

well.

2.2 Problem Formulation

2.2.1 Stiefel Manifold and Orthographic Retraction

Before we go deeper into the formulation of the structured recurrent neural

network and its related algorithms, we give some corresponding descriptions and

definitions that will help to develop the constraints and formulate the problem. We

define the matrix manifold as the suitable set M that is a collection of coordinate

patches or charts [29]. The coordinate patches or charts are able to do the differential

calculus on M.

18

Consider N as another manifold and N ∈M, we say that N is the submanifold

ofM. ThenN admits at most one differentiable structure that makes it an embedded

submanifold ofM. One special case of the submanifold is the Stiefel manifold, which

is an embedded submanifold of Rn×p. Given the Stiefel manifold St(n,m) = {X ∈

Rn×m : XTX = I}, the related tangent space and normal space can be represented as

the following [30]:

tangent space : TSt(n,m)(X) = XΩ + X⊥K (2.4)

norm space : NSt(n,m)(X) = XS S ∈ S, (2.5)

where Ω is a skew-symmetric matrix and K ∈ R(n−m)×m. S stands for the set

of symmetric matrix. According to the theorem, we have the orthographic retraction

as:

R(X,XΩ + X⊥K) = X + XΩ + X⊥K + XS, (2.6)

and it satisfies R(X,XΩ + X⊥K)TR(X,XΩ + X⊥K) = I [29]. Including all the

conditions from equations (2.4]) - (2.6), we can derive the following:

S2 +
(
I + ΩT

)
S + S (I + Ω) + ΩTΩ + KTK = 0 (2.7)

One of the special case is when n = m, i.e., the orthogonal group On. Therefore

K = 0 and the corresponding Riccati equation can be simplified as (given the fact

that for skew matrix Ω, we have ΩT + Ω = 0):

S2 + 2S + ΩTΩ = 0. (2.8)

The solution to the above question is S = ±I +
√

I−ΩTΩ. Given the fact that the

eigendecomposition of the matrix ΩTΩ = QTΣQ = QTDiag(
√
λ1,
√
λ2, . . . ,

√
λn)Q,

we have:

S± = QTDiag(−1±
√

1− λ1, . . . ,−1±
√

1− λn)Q. (2.9)

19

Here we take the value with minimum norm, i.e., S+ = −I +
√

I−ΩTΩ, substitute

the S+ in the equation [2.6], we have:

R(X,XΩ + X⊥K) = X + XΩ + X⊥K + XS

= X + XΩ + XS

= X + XΩ + X
(
−I +

√
I−ΩTΩ

)
= X

(
Ω +

√
I−ΩTΩ

)
. (2.10)

The formula 2.10 is crucial starting point to introduce an efficient decomposition

of the structured asymmetric matrix and it will be utilized multiple times to develop

two decomposition framework for the following two SRNNs.

In parallel to the work on unitary decomposition of the weight matrix in RNN,

there has been an increasing interest for optimization over the orthogonal group and

the Stiefel manifold in neural networks. From some existed literature of the Stiefel

manifold and orthogonal group, the above decomposition belongs what is so called

manifold retraction [29, 30, 31]. The formulation that utilizes one of the manifold

retraction for constraints WTW = I or WHW = I. One of the possible and efficient

ways to decompose the recurrent weight matrix is to leverage the Cayley transform.

An real number based orthogonal RNN is proposed by the parameterization of the

weight matrix using a scaled version of the Cayley transform [21, 26, 27]. The iteration

of the gradient based on properties of skew-symmetric matrices has simplified the

propagation process so that computation cost has reduced.

In order to solve the above mentioned problem of constructing the structured

recurrent neural network, one of the motivations to decompose the recurrent weight

matrix is to utilize the manifold retraction accompanied with the scaling matrix.

Besides the Cayley transform, there are other types of manifold retraction methods

that are employed to achieve manifold learning. We compares the following three

20

popular types of manifold retraction mentioned in section 2.1.2 that are designed to

satisfy the orthogonal constraints: [30, 31]:

1. Cayley transform: RX(XΩ) = (I + Ω)−1(I−Ω)X

2. projection-like: RX(XΩ) = (Ω +
√

I−ΩTΩ)X

3. polar decomposition: RX(XΩ) = (I + Ω)(I−Ω2)−1/2X

= (I + Ω)(I + ΩTΩ)−1/2X

For the square root part of the polar decomposition, since Ω is the skew symmetric

matrix such that ΩT = −Ω, and then we substitute into the above formula. Notice

that both the polar decomposition and projection-like method rely has the second

order term ΩTΩ. Since it is a symmetric matrix, we adopt the eigenvalue decomposi-

tion and diagonalization ΩTΩ = QΣQT = QDiag(λ1, λ2, . . . , λn)QT . We substitute

this relation into the three expressions above and use them to replace the weight

matrix W, so that we can derive the following three related OC-based RNNs and the

related coordinate descent like training algorithms as below:

2.2.2 scoRNN and the corresponding training algorithms

Scaled cayley transform RNN (scoRNN) adopts the first cayley transform for-

mulation in the recurrent weight matrix. We restate the definition and details of the

algorithm the scoRNN as follows. For more details about the proof, we refer the

readers to [27].

Theorem 1 Given a differentiable loss function L = L(W) w.r.t the recurrent matrix

W of the structured RNN. Let W = (I + Ω)−1 (I−Ω)D, where Ω ∈ Rn×n is the

skew-symmetric matrix and D is the fixed diagonal matrix consisting of -1 and 1

entries. We further define Z = (I + Ω)−1 (I−Ω). Then the gradient of L(W) with

respect to Ω is:

∂L

∂Ω
= VT −V, (2.11)

21

where V = (I + Ω)−T ∂L
∂W

(D + WT)

2.2.3 orRNN and the corresponding training algorithms

Orthographic retraction RNN (orRNN) is proposed as part of our previous

work, which adopts the second projection-like decomposition method. We restate

the definition and the coordinate descent like algorithm to train the orRNN can be

formulated as follows. For more details about the proof, we refer the readers to [].

Theorem 2 Given a differentiable loss function L w.r.t the recurrent matrix W of

the structured RNN. Let W =
(
Ω +

√
I−ΩTΩ

)
D, where Ω ∈ Rn×n is the skew-

symmetric matrix and D is the fixed diagonal matrix. We further define Z = Ω +√
I−ΩTΩ. Since Ω is a skew-symmetric matrix, we can employ eigendecomposition

on the term ΩTΩ = QΣQT . Then we leverage a coordinate descent based back-

propagation to calculate the following gradient terms:

∂L

∂Ω
=

(
∂L

∂W
D

)
−
(
∂L

∂W
D

)T
(2.12)

∂L

∂Q
=

[(
∂L

∂W
D

)
+

(
∂L

∂W
D

)T]
QΣ̃ (2.13)

∂L

∂Σ̃
= Diag

(
QT

(
∂L

∂W
D

)
Q

)
(2.14)

22

Algorithm 2 Algorithm for orRNN
Input: Ω, D

Output: W

Initialization : Ω, D, loss function L(W)

1: eigendecomposition of Z

LOOP Process

2: for k = 1 to n (given iteration) do

3: ∂L
∂Ω

=
(
∂L
∂W

D
)
−
(
∂L
∂W

D
)T

4: ∂L
∂Q

=
[(

∂L
∂W

D
)

+
(
∂L
∂W

D
)T]

QΣ̃

5: ∂L
∂Σ

= Diag
(
QT
(
∂L
∂W

D
)
Q
)

6: Ωk+1 = Ωk − α ∂L
∂Ω

7: Qk+1 = Qk − α ∂L
∂Q

8: Σk+1 = Σk − α ∂L
∂Σ

9: Wk+1 =
(
Ωk+1 + Qk+1Σk+1Qk+1T

)
D

10: end for=0

Theorem 3 Given a differentiable loss function L w.r.t the recurrent matrix W of

the structured RNN. Let W =
(
Ω +

√
I−ΩTΩ

)
D, where Ω ∈ Rn×n is the skew-

symmetric matrix and D is the fixed diagonal matrix. We further define Z = Ω +√
I−ΩTΩ. Since Ω is a skew-symmetric matrix, we can employ eigendecomposition

on the term ΩTΩ = QΣQT . Then we leverage a coordinate descent based back-

propagation to calculate the following gradient terms:

23

∂L

∂Ω
=

(
∂L

∂W
D

)
−
(
∂L

∂W
D

)T
(2.15)

∂L

∂Q
=

[(
∂L

∂W
D

)
+

(
∂L

∂W
D

)T]
QΣ̃ (2.16)

∂L

∂Σ̃
= Diag

(
QT

(
∂L

∂W
D

)
Q

)
(2.17)

Proof : We simplify the Z as follows:

Z = Ω +
√

I−ΩTΩ

= Ω +

√
I−QΣQT

= Ω +

√
Q (I−Σ) QT

= Ω + Q (I−Σ)
1
2 QT

= Ω + QΣ̃QT

where Σ̃ = diag
(√

1− λ1,
√

1− λ2, . . . ,
√

1− λn
)

and λ1, λ2, . . . , λn are eigen-

values of Σ.

∂L(W)

∂Ωi,j

= Tr

[(
∂L

∂W
D

)T
∂Z

∂Ωij

]

= Tr

(∂L

∂W
D

)T ∂ (Ω + QΣ̃QT
)

∂Ωij


= Tr

[(
∂L

∂W
D

)T
∂Ω

∂Ωij

]

= Tr

[(
∂L

∂W
D

)T
(Ei,j − Ej,i)

]

=

((∂L

∂W
D

)T)T

i,j

−

[(
∂L

∂W
D

)T]
i,j

=

(
∂L

∂W
D

)
i,j

−
(
∂L

∂W
D

)T
i,j

.

24

For the third equality above, we use the fact that the element-wise derivative of

a skew-symmetric matrix is (Ei,j − Ej,i), where Ei,j stands for the singleentry matrix

that contains 1 at i-th row and j-th column and rest of the elements are 0. For the

fifth entry, we utilize the proof from the appendix of [27] to transform the trace to

the element-wise expression. The readers are suggested to read the reference for more

details. And therefore, we have:

∂L

∂Ω
=

(
∂L

∂W
D

)
−
(
∂L

∂W
D

)T
(2.18)

Similarity, we can derive the ∂L
∂Q

as:

∂L(W)

∂Qij

= Tr

[(
∂L

∂W
D

)T
∂Z

∂Qij

]

= Tr

(∂L

∂W
D

)T ∂ (Ω + QΣ̃QT
)

∂Qij


= Tr

(∂L

∂W
D

)T ∂ (QΣ̃QT
)

∂Qij


= Tr

[(
∂L

∂W
D

)((
QΣ̃

)
Ej,i + Ei,j

(
Σ̃QT

))]
= Tr

[(
∂L

∂W
D

)((
QΣ̃

)
Ej,i

)]
+ Tr

[(
∂L

∂W
D

)
Ei,j

(
Σ̃QT

)]
=

[(
∂L

∂W
D

)T (
QΣ̃

)]
i,j

+

[(
∂L

∂W
D

)(
QΣ̃

T
)]

i,j

.

Since Σ̃ is the diagonal matrix and Σ̃
T

= Σ̃, we have:

∂L(W)

∂Q
=

[(
∂L

∂W
D

)T
+

(
∂L

∂W
D

)]
QΣ̃ (2.19)

25

Last, for ∂L(W)

∂Σ̃
, we can derive as the following:

∂L(W)

∂Σ̃ij

= Tr

[(
∂L

∂W
D

)T
∂Z

∂Σ̃ij

]

= Tr

(∂L

∂W
D

)T ∂ (Ω + QΣ̃QT
)

∂Σ̃ij


= Tr

(∂L

∂W
D

)T ∂ (QΣ̃QT
)

∂Σ̃ij


Since

∂(QΣ̃QT)
∂Σ̃ij

= Q:,iQ
T
:,i = Qeie

T
i QT

i = QEi,iQ
T , where Q:,i stands for the matrix

contains only i-th column of Q and the rest elements are 0, ei is single-entry column

vector where only the i-th element is 1 and rest entries are 0, and Ei,i is the single-

entry matrix where only the (i, j)-th entry is 1 and rest entries are 0. Therefore, we

can simply as:

Tr

(∂L

∂W
D

)T ∂ (QΣ̃QT
)

∂Σ̃ij

 = Tr

[(
∂L

∂W
D

)T
QEi,iQ

T

]

=

[(∂L

∂W
D

)T
Q

]T [
QT
]T

i,i

=

(
QT

(
∂L

∂W
D

)
Q

)
i,i

Therefore, we have the followings:

∂L(W)

∂Σ̃
= Diag

(
QT

(
∂L

∂W
D

)
Q

)
(2.20)

2.2.4 pdRNN and the corresponding training algorithms

Similarly, for the polar decomposition RNN (pdRNN), it shares a similar for-

mulation as the orRNN with some differences in the details about the coordinate

descent algorithm. We have the following theorem and the proof the theorem is given

in the appendix.

26

Theorem 4 Given a differentiable loss function L w.r.t the recurrent matrix W

of the structured RNN. Let W = ((I + Ω)(I + ΩTΩ)−
1
2)D, where Ω ∈ Rn×n is

the skew-symmetric matrix and D is the fixed diagonal matrix. We further define

Z = (I+ Ω)(I+ ΩTΩ)
1
2 . Since Ω is a skew-symmetric matrix, we can employ eigen-

decomposition on the term ΩTΩ = QΣQT . Then we leverage a coordinate descent

based back-propagation to calculate the following gradient terms:

∂L

∂Ω
=

[(
∂L

∂W
D

)
QΣ̃QT

]
−

[
QΣ̃QT

(
∂L

∂W
D

)T]
(2.21)

∂L

∂Q
=

[(
∂L

∂W
D

)T
(I + Ω)QΣ̃

]
−
[
(I + Ω)T

(
∂L

∂W
D

)
QΣ̃

]
(2.22)

∂L

∂Σ̃
= Diag

(
QT (I + Ω)T

(
∂L

∂W
D

)
Q

)
(2.23)

Proof :

For proof of the ∂L(W)
∂Ω

, we have the following derivation:

∂L(W)

∂Ωij

= Tr

[(
∂L

∂W
D

)T
∂Z

∂Ωij

]

= Tr

(∂L

∂W
D

)T ∂ ((I + Ω)QΣ̃QT
)

∂Ωij


= Tr

[(
∂L

∂W
D

)(
(Ei,j − Ej,i) QΣ̃QT

)]
= Tr

[(
∂L

∂W
D

)T (
Ei,jQΣ̃QT

)]

+ Tr

[(
∂L

∂W
D

)T
Ej,i

(
QΣ̃QT

)]

=

[(
∂L

∂W
D

)T (
QΣ̃QT

)]
i,j

+[(
QΣ̃QT

)(∂L

∂W
D

)T]
i,j

.

27

In order to derive the partial derivative of the loss function against the orthog-

onal term Q, i.e., ∂L
∂Q

, we introduce the following corollary:

Corollary 1 : according to the [32] chapter 2.4.2, we have the following matrix

partial derivative:

∂AXBXT

∂Xi,j

= A
∂XBXT

∂Xi,j

= AXBEj,i −AEi,jBXT (2.24)

where Ei,j is the single-entry matrix that only element on ith row and jth column

will be 1 and the rest of the elements in the matrix are 0. Based on the corollary, we

can plug in the partial derivative of the loss function against the orthogonal term ∂L
∂Q

to derive the followings:

∂L(W)

∂Qij

= Tr

[(
∂L

∂W
D

)T
∂Z

∂Qij

]

= Tr

(∂L

∂W
D

)T ∂ ((I + Ω)QΣ̃QT
)

∂Qij


= Tr

[(
∂L

∂W
D

)T
(I + Ω)QΣ̃Ej,i

]

− Tr

[(
∂L

∂W
D

)T
(I + Ω) Ei,jΣ̃QT

]

=

[(
∂L

∂W
D

)T
(I + Ω)QΣ̃

]
i,j

−[
(I + Ω)T

(
∂L

∂W
D

)
QΣ̃

]
i,j

.

28

Therefore, we can extend this to the whole elements of the matrix and have proved

that ∂L
∂Q

=
[(

∂L
∂W

D
)T

(I + Ω)QΣ̃
]
i,j
−
[
(I + Ω)T

(
∂L
∂W

D
)
QΣ̃

]
And finally, we derive

the ∂L
∂Σ̃

as follows,

∂L(W)

∂Σ̃ij

= Tr

[(
∂L

∂W
D

)T
∂Z

∂Σ̃ij

]

= Tr

(∂L

∂W
D

)T ∂ ((I + Ω)QΣ̃QT
)

∂Σ̃ij


= Tr

[(
∂L

∂W
D

)T
(I + Ω) QEi,jQ

T

]

=

[
QT (I + Ω)T

(
∂L

∂W
D

)
Q

]
i,j

.

Since Σ̃ij is a diagonal matrix, we can represent the above fourth equality as[
QT (I + Ω)T

(
∂L
∂W

D
)
Q
]
i,j

=
[
QT (I + Ω)T

(
∂L
∂W

D
)
Q
]
i,i

, which is essentially the di-

agonal elements of the term in the square bracket. Hence we have proved that

∂L
∂Σ̃

= Diag
(
QT (I + Ω)T

(
∂L
∂W

D
)

Q
)

. The corresponding algorithm is given in al-

gorithm 3.

2.2.5 Details of The Architecture

For the activation function, we consider the modReLU function, which attracts

the attentions recently due to its flexibility cooperation with the bias term [27, 10].

We employ here to replace the original ReLU function in the output unit and the

modReLU function is defined as follows:

σmodReLU(z) =
z

|z|
σReLU(|z|+ b)

=


z
|z|(|z|+ b) if |z|+ b ≤ 0

0 if |z|+ b < 0.

(2.25)

29

Algorithm 3 Algorithm for pdRNN
Input: Ω, D

Output: W

Initialization : Ω, D, loss function L(W)

1: eigendecomposition of Z

LOOP Process

2: for k = 1 to n (given iteration) do

3: ∂L
∂Ω

=
[(

∂L
∂W

D
)
QΣ̃QT

]
−
[
QΣ̃QT

(
∂L
∂W

D
)T]

4: ∂L
∂Q

=
(
∂L
∂W

D
)T

(I + Ω)QΣ̃− (I + Ω)T
(
∂L
∂W

D
)
QΣ̃

5: ∂L
∂Σ̃

= Diag
(
QT (I + Ω)T

(
∂L
∂W

D
)

Q
)

6: Ωk+1 = Ωk − α ∂L
∂Ω

7: Qk+1 = Qk − α ∂L
∂Q

8: Σk+1 = Σk − α ∂L
∂Σ

9: Wk+1 = ((I + Ωk+1)(I + Ωk+1TΩk+1)−
1
2)D

10: end for=0

For the initialization of the parameter matrix Ω, we choose the same setting as

what mentioned in [27], i.e., a block diagonal form by a special orthogonal transfor-

mation as follows: 

0 λ1 0 · · · 0

−λ1 0

0 0 λ2 0

−λ2 0

...
. . .

...

0 λr

0 0 · · · −λr 0



(2.26)

30

where λj =
√

1−cos(nj)
1+cos(nj

, j = 1, . . . , r and nj is sampled from the uniform distribution

U [0, π/2].

2.3 Baseline Experiments and Pseudo Spectrum Visualization

In the following two baseline experiments (adding and copying task), we com-

pare our orRNN against the scoRNN and the vanilla LSTM. For each experiment,

we have tuned the hyperparameters for demonstration purpose. The generalization

of our structure to other similar sequential learning problems is required for tuning

to get expected performance. We first introduce the experiment setting of the two

synthetic dataset.

2.3.1 Synthetic Dataset: Copying

The copying problem is a standard synthetic problem that is adopted by some

previous research [10, 21, 23, 27]. Digits 0-9 serve as the input to the recurrent neural

network, where 0 is regarded as the blank mark and 9 is regarded as the marker.

The RNN receives an input sequence of length T + 2L, where T is the length of the

blank mark and L is the length of the copying sequence which are uniformly sampled

from classes 1-8. The number 9 is placed L time steps from the end, which serves as

the starting anchor for repeating the copying sequence. The goal for the RNN is to

output zeros until it sees a 9. Therefore, the copying sequence must propagate from

the beginning to the end of the sequence for a RNN to successfully learn this task,

making it critical to avoid vanishing/exploding gradients. A baseline strategy with

which to compare machine performance is that of outputting 0 until the machine

sees a 9, and then outputting 10 elements randomly sampled from classes 1-8. The

expected cross-entropy for such a strategy is Llog(8)
T+2L

. An input-output example with

31

(a)

(b)

Figure 2.1. Cross entropy of scoRNN, orRNN and pdRNN on the copying problem
with delay length (a) T=1000 and (b) T=2000.

sequence length of 5+10 (5 is length of the copying sequence, T = 10) is given for

illustration purpose.

Input : [5 3 1 6 2 0 0 0 0 0 0 0 0 0 9 0 0 0 0]

Output : [0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 3 1 6 2]

2.3.2 Synthetic Dataset: Adding

We adopt the same problem setting as [27] to redo the adding problem and we

briefly restate the problem here. Two sequences of length T which are concurrently

32

imported to the RNN, the first one contains numbers which are sampled uniformly

within U [0, 1), where U stands for the uniform distribution. The second one contains

two markers of “1” while the rest of the entries are zeros, where the first “1” lies

randomly within the first half of the sequence (within the interval [1, T
2
)) and the

second “1” lies randomly within the second half of the sequence (within the interval

[T
2
, T)). The label for each pair of sequences is the summation of the two entries

marked by ”1”. The goal is to detect the relevant information in the first sequence

among random noise. Due to the vanishing gradient and exploding problems, the

training becomes challenging as the increasing of the sequence length. The baseline is

provided as predicting ”1” regardless of the sequence, which gives an expected mean

squared error (MSE) of approximately 0.167. An input-output example with sequence

length of ten is given as follows (for illustrating purpose , not the exact input for the

RNN).

Input : [0.01, 0.02, 0.78, 0.05, 0.34, 0.64, 0.32, 0.89, 0.12, 0.45]

[0, 0, 1, 0, 0, 0, 0, 0, 1, 0]

Output : 0.78 + 0.12 = 0.90

2.3.3 Performance Analysis and Orthogonality Checking

We list the number of parameters in all RNN and dimension of the weight

matrix for both the adding and copying tasks in Table 2.1 and Table 2.2. For adding

task with sequence length of 200, we keep the same parameter setting as shown in

[27] for scoRNN and LSTM. For our orRNN, we only use a recurrent weight matrix

of dimension of 50. The total number of the parameters in orRNN is approximately

1/5 of the scoRNN and 1/11 of the LSTM and we can outperform both of two in

adding task. For adding task with sequence length of 400 and 800, we keep the same

33

Figure 2.2. Test set mean squared error (MSE) scoRNN, orRNN and pdRNN
on the adding problem with sequence lengths of T=200(top), T=400(middle), and
T=800(bottom).

34

parameter setting as shown in [27] for scoRNN and LSTM and for our orRNN, we use

a recurrent weight matrix of dimension of 100. The total number of the parameters in

orRNN is less than that of the scoRNN and 1/3 of the LSTM. As shown in Fig. 2.2,

for all the three adding task, the orRNN and scoRNN can outperform the LSTM. The

orRNN outperform the scoRNN in Adding 200 and have almost the same performance

as scoRNN for Adding 400 and 800 with less parameters.

For copying, we still keep the same setting as shown in [27] for scoRNN and

LSTM and for orRNN, we only use a recurrent weight matrix of dimension of 100. The

total number of the parameters in orRNN is less than scoRNN and approximately

1/4 of the LSTM and we can outperform both of two in the two copying tasks.

According to the description in section IV.A of [27], the expected baseline in the

copying task will be Llog(8)
T+20

, where the L stands for the length of the copying part,

which is set as 100 in our experiment setting. As shown in Fig. 2.1, The orRNN has

the best performance in both of the two copying tasks and reach below the theoretical

baseline while the rest of the two can only have slightly better performance than the

theoretically expected baseline.

Furthermore, we leverage Frobenious norm
∥∥WTW − I

∥∥
F

as a metric to de-

termine the orthogonality check for the recurrent weight matrix and we track the

variation of this metric during the iterations. We just use the adding task as the

reference to point out some findings. As shown in Fig. 2.3 and Fig. 2.4, the scoRNN

is better than our orRNN for keeping the orthogonality. The trend of the orRNN will

rising for some iterations and reach a kind of ”saturation” or stable status while the

scoRNN almost maintain a tiny vibration during its iterations. But as pointed out in

[25], it is not necessary to strictly constrain the orthogonality conditions, and based

on our results here, we demonstrate the similar findings as well.

35

Table 2.1. Comparison of the weight matrix dimension and number of parameters of
Adding task

Model Sequence Length # Dimension # Parameters

orRNN 200 50 10201

scoRNN 200 170 58481

LSTM 200 170 117811

orRNN 400 100 42009

scoRNN 400 170 58481

LSTM 400 170 117811

orRNN 800 50 10201

scoRNN 800 170 58481

LSTM 800 170 117811

Table 2.2. Comparison of the weight matrix dimension and number of parameters of
Copying task

Model Sequence Length # Dimension # Parameters

orRNN 1000 100 42009

scoRNN 1000 190 76009

LSTM 1000 190 154479

orRNN 2000 100 42009

scoRNN 2000 190 76009

LSTM 2000 190 154479

36

Figure 2.3. Orthogonality check of scoRNN, orRNN and pdRNN on the adding
problem with sequence lengths of T=200(top), T=400(middle), and T=800(bottom).

37

(a)

(b)

Figure 2.4. Orthogonality check of scoRNN, orRNN and pdRNN on the copying
problem with delay length (a) T=1000 and (b) T=2000.

2.3.4 Pseudospectrum visualization and orthogonality analysis

As mentioned in the previous sections, there is a large proportion of work has

concentrated upon controlling the gain of the weight matrix W. This is done by

ensuring that W is close to an orthogonal matrix. Such a factorization gives us a

convenient way to bound the spectral norm. From the Keriss matrix theorem, we

have the upper and lower bound of the norm of the power of the matrix as follows:

Theorem 5 Define the Kreiss constant of a matrix W as follows:

K(W) ≡ sup
ε>0

ρε(W)− 1

ε
= sup
|z|>1

(|z| > 1)
∥∥(z −W)−1

∥∥
38

Figure 2.5. pseudospectrum of the adding task with sequence length 200 of the
scoRNN, orRNN and pdRNN at iteration epochs of 500, 1000, 1500 and 2000.

The upper and lower bound of the
∥∥Wk

∥∥ can be given as follows:

1− kM

‖(z −W)−1‖
≤
∥∥Wk

∥∥ < e(k + 1)K(W), (2.27)

where M = sup
k≤0

∥∥Wk
∥∥.

Both the upper bound and lower bound is controlled by the the norm of the

resolvent ‖z −W‖−1 term. One way to measure and visualize the non-normality is

by leveraging the concept of pseudospectrum which is the open subset of the complex

plane bounded by the ε−1 level of the norm of the resolvent ‖z −W‖−1. We use it to

track the evolvement of the weight matrix during the iterations and give the formal

definition of the ε-pseudospectrum as follows [33, 34]:

39

Figure 2.6. pseudospectrum of the copying task with sequence length 200 of the
scoRNN, orRNN and pdRNN at iteration epochs of 500, 1000, 1500 and 2000.

Definition: Let W be an n-by-n matrix of complex numbers. For ε > 0, The

relative ε-pseudospectrum of W is defined as:

σε(W) = {z ∈ C :
∥∥z −W−1∥∥ ≤ (ε ‖A‖)−1} (2.28)

There are several open source tools like EigTool (MATLAB), pseudopy (Python) and

mpseudo (Python) and we utilize the tool pseudopy [35] to draw the ε-pseudospectrum.

We plot the pseudospectrum with different epochs to show the changes during the

iteration. The iterations of the recurrent weight matrix is essentially to increase the

number of power iterations of the weight matrix. As shown in Fig. 2.5 - Fig. 2.6, the

process does not alter the resulting contours of pseudospectrum in a substantially.

For the adding task, the scoRNN can keep the distribution of the weights uniformly

40

around the unit circle, which demonstrates that it keeps the best of the orthogonality

among all the decomposition. The distribution of the orRNN concentrates around the

range [-1, 0] and [1, 0] with a magnitude of 0.25 on the left side and 0.1 at the right

side. The distribution of the pdRNN is in the middle of the previous two without

holding the circle shape as good as the scoRNN. For the copying task, the scoRNN

still keeps the best of the orthogonality, however the orRNN seems to approximate

the circle shape more compared to the adding task case. The distribution of pdRNN

still lies around the two sides in the real-imaginary plane. The distribution of the

data and the hyperparameters of the RNN have impact on the orthogonality of the

weights during the iteration.

2.4 Conclusions and Future Work

In this chapter, we propose a new recurrent weight decomposition method for

the RNN, with the constraints that WTW = I. By leveraging the eigenvalue de-

composition of the intermediate variable, a coordinate descent like back-propagation

algorithm is designed for adjusting the weights during the training process. We have

carried out experiments on the synthetic baseline dataset; (adding and copying task)

as well as the real medical data for polyps detection. Our orRNN has better per-

formance in terms of the cross-entropy loss on both of the two copying tasks than

the scoRNN and LSTM. As for the adding tasks, our orRNN is better than scoRNN

and LSTM for Adding 200 and keep approximate the same performance as Adding

400 and Adding 800 while using less parameters. For the real dataset of the polyps

detection, both of the three RNNs can achieve very high accuracy in terms of two

MFCC of the running vowels and orRNN has a slightly better advantage over the rest

of the two with less number of parameters in the network.

41

During the experiment, we have found out that the orRNN and pdRNN cannot

keep the orthogonality constraints as low as the scoRNN, which required the tuning

of the hyperparameters for specific tasks, which may lead to large vibration at some

situations. Up to now, we have not found out the critical reason and an automated

method to control this phenomena. Furthermore, the problems related to the inherent

of the structured RNN are addressed as the future research goals, which are listed as

the followings:

• Dynamics of the RNN : model the dynamics of the RNN by introducing the

dynamic model such as the differential equation and visualize the variation of

the memory.

• Optimization method : find other available manifold retraction methods and

optimization algorithms to balance the trade off between scaling matrix D and

recurrent weight matrix

42

CHAPTER 3

Application of Structured RNN for Polyps Detection

3.1 Background

One of the challenges in modern healthcare industry is that doctors and physi-

cians embrace massive amounts of data on patients from different sources, but they

lack the enough tools and time to process the heterogeneous data. Intelligent early

diagnosis and clinical decision support is necessary to both the patients and medical

solution providers. Those data, ranging from images, time series from different sen-

sors and electronic health records, contain abundant information to be explored and

exploited.

Time-series data, as one of the long existing and important sources, plays a

crucial role for medical diagnosis. Classical model for time-series modeling is mainly

based on statistical analysis, state-space description, and dynamical causality. From

the statistical point of view, a Cox proportional hazard regression model for predicting

stroke and heart disease was proposed [36]. The milestone work of Rabiner summaries

the development of hidden Markov Model, which embedded the observation with

hidden layer and used the transformation in the hidden states for inference [37]. A

review of Wiener-Akaike-Granger-Schweder (WAGS) influence, state-space method,

and dynamic causality method for fMRI data is discussed [38]. Although all these

three kinds of methods make a huge progress on some specific tasks, they rely on lots

of hand-crafted details and assumptions, which may not always be satisfied in the

real applications.

43

In this chapter, we mainly focus on the diagnosis based on acoustic data sam-

ples. Similar to the general time-series setting, traditional approaches for symptom

detection from the acoustic samples mainly focus on physical modeling. The mecha-

nism of the voices production control is investigated by leveraging three-dimensional

continuum model of phonation and glottal pressure analysis [39]. Moreover, some

similar model for cause-effect discussion on the relation between vocal fold physiol-

ogy and voice production is provided [40]. These kind of physical models are able to

provide an interpretable model in some extent, however, the man-made model may

miss hidden details and also it is not ubiquitous for all situations, i.e., the model is

not extensible and flexible.

Therefore, the research direction is tuned to resort to model-free methods such

as machine learning methods. The polyps detection problem is formulated as a clas-

sification problem and it is solved by the fuzzy logic algorithm [41, 42], however the

method is not so accurate due to the coarse membership levels. For the real ap-

plication of machine learning in symptom identification based on speech signal, an

end-to-end machine learning framework is adopted for classification of the Parkin-

son’s disease from the acoustic samples [43]. 132 hand-crafted dysphasia features

extracted from the standard 44.1 KHz acoustic samples are employed on the support

vector machine (SVM) and random forest (RF) algorithm to test the classification

performance.

Compared to the huge amount of labor work on data wrangling and feature

engineering, a deep sequential modeling with time-frequency transformation of the

acoustic data for polyps detection is proposed [44, 45]. Besides trying only single

modality signal, a multimodal formulation by fusing the speech, gait and handwrit-

ing for Parkinson’s detection is achieved via deep learning [46]. End-to-end deep

learning model for voice conversion, speech activity detection and parameter esti-

44

mation in physics-based sound synthesis are proposed to verify the feasibility and

efficiency compared to traditional model [47, 48, 49]. Furthermore, an RNN autoen-

coder framework is designed to fuse the brain activity signal and vocal vibration to

synthesize the voice signal to help dysphasia patients [50].

The OCRNN model is deployed to tackle this problem in this chapter and

compared with the traditional RNN models. The highlights of the work are as follows:

• The real world data is preprocessed by time frequency expansion using signal

processing based ideas to get the inherent features

• Two OCRNN introduced in last chapter are adopted for training on the row-wise

of the time frequency feature map, so that the formulation can be transformed

into a binary classification problem

• Demonstration of the performance in terms of the competitive accuracy while

saving the storage of the network and computation time.

3.2 Data and Preprocessing

One of the typical symptoms among adults is the vocal cord polyps, which is the

result of an acute injury (such as yielding and shouting really loud) or several other

causes (such as cigarette smoke). The original diagnosis of this problem is from the

pathological viewpoint, and it is highly depended on the expert knowledge, which is

not suited to the urgent requirement of self-diagnosis currently. In principle, sounds

generated by human beings are filtered by the structure of the vocal tract which

comprises of parts like tongue, teeth, etc., which is nonlinear processing comprising

of both physical and aerodynamic effects. This kind of structure leads to what kind

of sound will come out. The recording of the raw voice signal for automatic diagnosis

of the problem is preprocessed by the speech analysis. We collect the data that are

about the discrete vocal samples of recording twelve respondents, in which four of

45

them have throat polyps and the rest are healthy (no throat polyps). In the study,

the vowels /a:/ and /i:/ are collected and each of them lasts for approximately 10

seconds.

The polyps identification database comprises of 12 subjects (8 healthy controls

and 4 with symptoms). All of the subjects are within the age range between 21-50.

The database includes three or four sustained vowel /a:/ and vowel /i:/ from each

speaker, recorded at a suitable frequency and amplitude. The vowels /a:/ and /i:/

are collected and each of them lasts for approximate 10 seconds. For convenience,

we define four cases: “abnormal vowel /a:/”, “abnormal vowel /i:/”, “normal vowel

/a:/” and “normal vowel /i:/”. The samples of vowels within the same scenarios are

snipped off a longer vowel sample to choose the stable and continuous part (without

long and obvious halting and long waiting at the initial state) of the whole sample

for processing. The sampling rate of the vocal data is 192000 and bits per sample is

32. The details of the vocal database are summarized in Table 3.1.

Table 3.1. Vocal dataset summary

Parameters Values

No. of patients 12(4 with polyps, 8 without polyps)

Age range 21-50

sample rate 192000

samples range 1157200 - 1344000

bits per samples 32

channels 1

normalized data FALSE

46

(a) (b)

(c) (d)

Figure 3.1. Four cases of the running speech (“abnormal vowel /a:/”, “abnormal vowel
/i:/”, “normal vowel /a:/” and “normal vowel /i:/”) in time domain and frequency
domain.

The time and frequency representation of the four cases is demonstrated in Fig.

3.1. The signal depicted in the time-domain is non-stationary with several abruptly

oscillation. While it is hard to clearly distinguish in the time domain, the distribu-

tion in the frequency domain shows some difference between normal and abnormal

cases. The abnormal running vowels’ frequency components concentrate more within

[-2000Hz, 2000Hz], while the normal’s expand further to approach 4000Hz. Therefore,

resorting to the classical time-frequency expansion, the mel-frequency cepstral coef-

ficient (MFCC) is adopted to extend the information in one-dimensional raw vocal

47

(a) (b)

(c) (d)

Figure 3.2. MFCC features of four cases of the running speech (“abnormal vowel
/a:/”, “abnormal vowel /i:/”, “normal vowel /a:/” and “normal vowel /i:/”).

signal to two-dimensional time-frequency plane. For convenience, we briefly describe

the data processing of the MFCC here for reference and the main steps are listed as

follows [51, 52]:

1. Remove the DC component and normalize the magnitude of the signal.

2. Leverage a one-lag finite impulse response filter to preemphasize the signal,

usually the function is given as: y[n] = x[n]− 0.97 ∗ x[n− 1] (optional)

3. Calculate the squared magnitude of the STFT with a given frame length and

window length (we choose the Hamming window)

48

4. Compute the inner product between the triangular basis functions and the

signal, and transform it into the Mel-scale in frequency domain according to:

f ′ = 2595log10
(
1 + f

700

)
5. Calculate the logarithm of the Mel frequency coefficients 10log10(·).

6. Take the cosine transform of the log-scale coefficients according to the following:

c[m] =
K−1∑
k=0

cos

(
πm(k − 1

2
)

K

)
s[k] k = 0, 1, . . . , K

where s[k] is the log scale coefficients.

3.3 Experiment Setting and Results Analysis

We have collected multiple running audio signal sequences for each subject and

we concatenate the same type together to build two separate running vowels /a:/ and

/i:/. We use the python librosa package [53] to generate the MFCC features for each

running vowels. We setup the sampling frequency as 192000 sample indexes per and

choose 60 MFCC components as the total number of sub-components. We convert an

amplitude spectrogram to dB-scaled spectrogram and the visualization results of the

four types of MFCC are shown in Fig. 3.2. Observing the four figures, most of the

strong components lie on the lower frequency part and it is very hard to distinguish

at first glance. The abnormal parts ((b) and (d)) of vowels /a:/ and /i:/ seem to

expand more than the normal part ((a) and (c)) along the frequency.

We extract each row of the two-dimensional time-frequency expansion, which

is represented as the one-dimensional signal of different frequency component as the

input to the RNN. We utilize the following RNN settings to compare the performance

of four RNNs. The dimension of the weight matrix orRNN and pdRNN are set as 50

while the dimension of the LSTM and scoRNN is set up as 100 and 80 for consideration

of the comparison of the total number of network parameters. The total number of

49

(a)

(b)

Figure 3.3. Accuracy and loss comparison of four RNNs with MFCC features of
running speech “vowel /a:/”.

training epochs is 30 and the batch size is setup as 40. We use the Adam optimizer for

the hidden weights training and the learning rate is set as 10−4 and the input-output

weights are trained via the RMSprop optimizer with the learning rate of 10−3. We

set the number of negative ones as n/10 for the demonstrated results here, where n

is the dimension of the recurrent weight matrix. The training-testing ratio for each

experiment is set as 4:1. We choose the binary cross-entropy as the loss function

because of the classification task setting.

50

Table 3.2. Comparison of the test accuracy and test loss of the final iteration of three
RNNs on the MFCC vocal detection

Performance Index MFCC vowel /a:/ MFCC vowel /i:/

LSTM test loss 0.02832 0.00997

scoRNN test loss 0.0385 0.00335

orRNN test loss 0.00789 0.00156

LSTM test accuracy 99.97% 99.91%

scoRNN test accuracy 98.82% 99.94%

orRNN test accuracy 99.24% 99.83%

As shown in Fig. 3.3 and 3.4, both of the four RNNs can achieve the accuracy

above 99% while keep the loss under 0.05. The three orthogonal constrained RNNs

seems to be more fluctuating than the LSTM during the iteration. The orRNN

and pdRNN can achieve slightly better performance over the LSTM and scoRNN

with less total number of parameters (total number of parameters of orRNN

and pdRNN are 10202 while LSTM and scoRNN are 41002 and 13122

respectively). The comparison demonstrates that orthogonal constrained RNNs

can achieve comparative performance against the regular LSTM while using much

less computation load, which has the potential to deploy on broader range of the

computation platforms for requirements like internet of things and edge computing.

The detailed summary of the detection accuracy and cross entropy loss last iteration

in terms of test accuracy and cross entropy loss are shown in Table 3.2. Furthermore,

we provide the results of the confusion matrix for two vowels against four RNNs are

given in fig 3.5 for the demonstration of the anomaly detection for sensitivity and

precision check.

51

(a)

(b)

Figure 3.4. Accuracy and loss comparison of four RNNs with MFCC features of
running speech “vowel /i:/”.

To summary, we utilize these OCRNN frameworks to solve the polyp detection

problem. We collect the vocal polyps running vowel data with two vowels for 12

subjects and formulate the problem as the binary classification. The MFCC sets up

as the preprocessing step to generate the time-fequency feature map for the nonlinear

time-series signal. Experiments results demonstrate that all four RNNs can achieve

comparatively promising results while the OCRNNs (pdRNN and orRNN) can still

save more network overload and computation cost.

52

(a) LSTM (b) scoRNN

(c) orRNN (d) pdRNN

(e) LSTM (f) scoRNN

(g) orRNN (h) pdRNN

Figure 3.5. confusion matrix visualization of the four types of RNNs with vowel /a:/
(a)-(d) and vowel /i:/ (e)-(h).

53

CHAPTER 4

EEG Based Sleep Stage Scoring Using 1dCNN-OCRNN Mixed Model

4.1 Introduction

Electroencephalograph (EEG) is a complex signal that contains information

from different frequency bands and different channels (multiple probes for different

brain functional areas). This multimodality signal attracts researchers to find ap-

proaches to disclose the underlying information so that we can leverage the informa-

tion to solve problems such as epilepsy, sleep disorders, brain–computer interfacing,

and cognitive monitoring [54]. The challenging task of making classification based on

EEG signals lies on the fact that EEG is a non-stationary and low signal-to-noise ra-

tio (SNR) signal, so that some single hand-crafted signal processing approach meets

the bottleneck [55]. EEG has the high temporal resolution due to the high-speed

propagation of the electric field but EEG has a low spatial resolution so that the

signals are highly correlated. This increases the difficulty to decompose and expand

the details of the signal.

Thanks to the development of the modern computing power to trigger the po-

tential of data science and artificial intelligence, researchers seek to handle these

problems with more powerful and automatic toolboxes to understand the EEG sig-

nal. For instance, the component analysis such as PCA, ICA and neighborhood

component analysis [56, 57, 58] serve as the pre-processing steps for the downstream

steps like SVM, k-means [59, 60, 61]. However, this kind of framework belongs to

the traditional hand-crafted machine learning algorithms which highly rely on the

domain knowledge and they may be subject to the limitation of the applicability and

54

flexibility. Deep learning, as one categories of the machine learning families, provide

the hierarchical representations of input data complicate non-linear activation and

flexible connections. Since the proven performance of the deep learning in areas like

images, videos, acoustic signal, natural language processing, we witness the rise of

the interest for deployment of the deep learning model in EEG understanding as well.

Among the deep learning models, recurrent neural network, as a naturally time-

series based deep learning model, mostly will serve as the first-try model for EEG

related tasks. For instance, a special kind of RNN named echo state network was uti-

lized to classify the REM Behavior Disorder (RBD) from 118 subjects (with healthy

control) based on the collected EEG signals [62]. A more complex multi-task RNN

framework was proposed for motion intention recognition based on features extracted

from segregated EEG signals [63]. An end-to-end RNN learning framework was de-

signed to learn the EEG signal after removal of the artifact for the movement related

cortical potentials (MRCP) in order to recognize lane change decision making [64].

More RNN based on system-level application demonstrate the suitability of RNN

in broader applications such as autonomous whole-arm exoskeleton control [65] and

decoding of motor imagery movements [66].

However, according to the statistics by [67], around 40% of the studies used

convolutional neural networks (CNNs), while 13% used RNNs. The previous stud-

ies trained their neural networks more on preprocessed EEG signals. The benefit

of the mixed model is that it can leverage the advantages of each submodule of

the neural network while also minimize the incompatibility. Some previous studies

have demonstrated the mixed model for raw time-series data in other applications

such as soil moisture retrieval [41, 68] and signal detection [69, 70], especially the

mixed model or different neural network, such as CNN-RNN mixed framework [71].

In terms of the EEG-related mixed model, most of the models focus on the end-to-

55

end downstream pipeline framework with hand-crafted pre-processing techniques like

short-time Fourier transform (STFT), mel-frequency cepstral coefficient (MFCC) and

low-pass filter (LPF). These models still will be constrained by physical limitations

due to the preprocessing steps so that we seek to more automatic and flexible frame-

work. A one dimensional CNN plus bidirectional long short term memory (LSTM)

model is proposed as the fully mixed deep learning framework [72], but we do not

find too much related examples like this.

In this paper, we propose 1dCNN-OCRNN model, an one dimensional CNN

followed by the orthogonal constrained RNN for the EEG signal based sleep stage

scoring task. The highlights of our work are:

• We use the 1dCNN to generate the multi channel feature maps to achieve the

similar function as the time-frequency function, but we reduced the complexity

of model by adjusting the output and eliminate repeated convolution layer with

fewer channels.

• We design our own orthogonal constraints based RNNs with its related coordinate-

descent like iteration algorithm for training. These type of RNNs can mit-

igate the long-existing vanishing and exploding problems by leveraging the

self-adjusted weights. Therefore, important information from the EEG multi-

channel feature maps are stored in the ”memory” of the RNN.

• We demonstrate the results use the real-world sleep staging classification datasets

based on EEG signals. We provide solid comparison of the performance of the

three OCRNNs and the standard LSTM. Compared to the early results pro-

vided in [72], we achieve competitive slightly better results using approximate

1/6 total number of parameters and 1/3 of training epochs. Therefore, by saving

the computation cost in both spatial and temporal, our model has the potential

to be broadly deployed in real scenario.

56

The rest of the paper is organized as follows. In section II, the preliminaries

of the OCRNNs and its iterative training algorithms are introduced. In section III,

the 1dCNN-OCRNN model is introduced and we compared different combinations of

the mixture model. In section IV, the experiment of the EEG sleep stage analysis is

introduced and the solid performance comparison is analyzed and discussed. Finally,

we conclude in section V.

4.2 Frameworks of the 1dCNN-OCRNN mixture model

Inspired by the work from [71, 73], we consider to utilize the 1dCNN to achieve

the similar function of the time-frequency expansion. Unlike traditional signal-processing

based methods such as short time frequency transform (STFT), mel-frequency cep-

stral coefficient (MFCC) and low-pass filter (LPF) to distinguish difference frequency

components, we do not need to calculate or separate specific frequency component by

hand but resort to the 1dCNN to automatically learn and iterate the multi-channel

feature maps in order to achieve the similar ”time-frequency expansion”. Specifically,

we consider the following 1dCNN-OCRNN mixture model. The model contains the

two parallel CNN modules: fine 1dCNN and coarse 1dCNN. The fine 1dCNN contains

smaller strides and filter kernel size in the first convolution layer, followed by several

convolution layers and pooling layers. The coarse 1dCNN contains bigger strides and

filter kernel in the first convolution layer, followed by several convolution layers and

pooling layers with different parameter settings compared to the fine 1dCNN. Finally

we utilize the concatenate dense layer to combine the find features and coarse features

to represent the broad range of the EEG multi-channel feature maps. The details of

the parameters are listed in in Fig. 4.1.

Unlike the work proposed in [73], for our mixed model, we do not need the staged

two layers of bi-directional LSTM modules to increase the complexity of the module.

57

Figure 4.1. Framework of the 1dCNN-OCRNN mixed model.

we simplify our 1dCNN part compared to the model in [73] to further reduce the

complexity of our mixture model. We do not need extra dropout layer and parameter

tuning to prevent the vanishing gradients and exploding problem due to the benefits

of orthogonal constraints from the OCRNN. We choose only one layer of the OCRNN

to accept the input from the above output of the previous dense layer. The OCRNN

proposed in Section can serve as the plug-and-play module to fit in output of the

1dRNN. We compare the performance of the vanilla LSTM and three other OCRNNs

in our experiment.

The total number of the parameters of the four mixed networks are demon-

strated in table 4.1. We have tried several different settings and the the weight

matrix dimensions we demonstrate here are based on consideration of the approxi-

mate the similar number of total parameters as well as the stable of the mixed of

network (no huge oscillation during the iteration). As we can see, compared with the

setting shown in [72], we only need around 1/6 of the total number of parameters in

58

mixtured model weight matrix dimension total number of parameters

1dCNN-LSTM 120 562445

1dCNN-scoRNN 100 534245

1dCNN-orRNN 80 529445

1dCNN-pdRNN 80 529445

Table 4.1. Comparison of total number of parameters in four mixed model

Figure 4.2. Different recordings of the unnormalized raw EEG signal (data) and sleep
stage classes (label) that change over time.

the mixed model, which saves the computation cost in the spatial domain. Further-

more, the weights that are required to run the back-propagation will be much less as

well, so that the time complexity will be reduced. This demonstrates the potential of

deploying our model on some edge computing based platforms as well as approximate

real-time diagnosis.

4.3 Experiment and Performance Analysis

To validate the effectiveness of the decomposition and iteration algorithm of

OCRNN, as well as the effectiveness of the mixed model, we choose the Deep-

Sleep dataset [72, 73] which is essentially the transformation of the partial of the

59

sleepEDF dataset [74, 75]. The original sleepEDF database contains 197 whole-

night polysomnographic sleep recordings with EEG, EOG, chin-EMG, and event

markers. Part of the records also include respiration and body temperature. The

DeepSleep dataset takes data of 20 subjects, where 19 of them have 2 full nights

of sleep. The dataset is transformed and compressed into the numpy .npz for-

mat, where each epoch contains the 30 seconds record of EEG with a label form

{”W, ”N2”, ”N3”, ”N4”, ”REM”}. The aim of the research study is to correctly rec-

ognize the sleep stage so that will leads to better understanding of the brain activity.

Examples of the raw EEG signals and their corresponding sleep stage class labels are

shown in fig 4.2.

We build the 1dCNN-OCRNN model to solve the problem. Typically, we

have tested the cases of 1dCNN-LSTM, 1dCNN-scoRNN, 1dCNN-orRNN, 1dCNN-

pdRNN. The detail of the network setting is demonstrated in table 4.1. The setting of

the dimension is to consider the case that the 4 mixed model can achieve competitive

results in the final epochs. For the four cases tested in our study, the total number of

parameters are less than the original study proposed in the [73], with the potential

to achieve competitive results use smaller 1dCNN and total number of parameters

with further hyper tuning. We choose the Rmsprop optimizer with learning rate of

10−3 for the 1dCNN part and Rmsprop optimizer with learning rate of 10−4 for the

OCRNN part. The number of the -1s in the initialization of the scaling matrix D is

set as the n/10, where n is the dimension of the recurrent weight matrix. The batch

size is 32 and the total number of training epochs are 50. Unlike the model proposed

in [73], we do not rely on further regularization and changing of the learning rate by

leveraging the robustness of the OCRNN due to its consideration of the orthogonal

constraints.

60

Figure 4.3. Comparison of the testing accuracy of the four 1dCNN-OCRNN models.

Figure 4.4. Comparison of the testing loss of the four 1dCNN-OCRNN models.

The results of the training and testing accuracy, training loss and testing loss

are demonstrated in table, fig. 4.3 and fig. 4.4. As we can see from the re-

sults, all the OCRNNs run comparatively accuracy and pdRNN is slightly better

than the rest of the three, while LSTM is not as efficient as the OCRNN series.

OCRNNs can converge to the minimum much faster than the LSTM (approximate

15-20 epochs) so that we do not need train so many epochs in order to guarantee the

accuracy of bottom line. Compare to the results demonstrate in [73] (please refer to

61

Figure 4.5. Comparison of the ROC curve and AUC score of the four 1dCNN-OCRNN
models.

https://www.kaggle.com/phhasian0710/deepsleepnet-201708 for more details), they

achieve the similar result with around 3 million total number of parameters and 100

epochs of training (first time reach over 80% at epoch 55) and our pdRNN is slightly

better with much less training overload. The trend comparison of the ROC-AUC

analysis of the four mixed model is demonstrated in fig. 4.5.

We provides a detailed look at the performance on each sleep stages by lever-

aging the confusion matrix visualization as well as the calculation of the per class

F1-score. As shown in fig. 4.6, we compare the f confusion matrix of five classes

”W1”, “N2”, ”N3”, ”N4”, ”NRM” among four different mixed models. The imbal-

ance precision performance shown in the second class ”N2”, while the rest achieves

the precision as high as over 90% for class ”NRM” in 1dCNN-orRNN model. This

phenomenon matches the result demonstrate in [72], which may caused by the im-

balanced data problem that requires extra pre-processing. The detailed numerical

results for all the performance analysis are given in table4.3.

62

(a) (b)

(c) (d)

Figure 4.6. Comparison of confusion matrix of five classes ”W1”, “N2”, ”N3”, ”N4”,
”NRM” among four different mixed models: (a) 1dCNN-LSTM (b) 1dCNN-scoRNN
(c) 1dCNN-orRNN (d) 1dCNN-pdRNN.

4.4 Conclusion

In this paper, we proposed a 1dCNN-OCRNN mixed framework to solve the

sleep stage scoring problem based on the EEG data. Our model leverage the bene-

fits of 1dCNN by utilizing it to expand the data-driven multi-channel feature maps.

It achieves similar function as the traditional time-frequency expansion but it does

not count on any hand-crafted feature engineering. It provides two levels of in-

formation (the fine and coarse) in the feature maps and they are merged as the

63

mixtured model testing accuracy testing loss

1dCNN-LSTM 81.5% 0.6006

1dCNN-scoRNN 80.23% 0.7039

1dCNN-orRNN 82.40% 0.6189

1dCNN-pdRNN 81.32% 0.5886

Table 4.2. Numerical comparison of testing accuracy and testing losss of four mixed
model

mixtured model ’W’ ’N2’ ’N3’ ’N4’ ’NRM’

1dCNN-LSTM 86.84% 23.79% 83.00% 81.69% 72.24%

1dCNN-scoRNN 89.17% 29.88% 86.23% 86.07% 77.60%

1dCNN-orRNN 90.09% 30.19% 85.52% 86.81% 74.24%

1dCNN-pdRNN 89.15% 34.41% 82.89% 84.72% 72.46%

Table 4.3. Numerical comparison of performance metrics of four mixed model

input to the OCRNN. As for the OCRNN, we leverage the benefits of empirically

put the orthogonal constraints on the recurrent weight matrix and adopt the man-

ifold retraction method to design the related algorithms. We design two OCRNNs

(orRNN and pdRNN) and construct three different types of the 1dCNN-OCRNN

frameworks (plus the scoRNN proposed in [27]. We demonstrate our results on the

real world deepsleep dataset and compare the performance four 1dCNN-RNN frame-

work (1dCNN-LSTM, 1dCNN-scoRNN, 1dCNN-orRNN and 1dCNN-pdRNN). The

experiment results demonstrate that by leveraging the power of the mixed model,

the 1dCNN-pdRNN achieve comparatively better results in accuracy categorical F1-

score. Moreover, the time complexity for training (1/3 of traing epochs vs. previous

64

benchmark) and spatial complexity (1/6 of total number of network parameters vs

previous benchmark) manifests the potential of the proposed model.

Future research may focus on the following two folds. Firstly, the empirical

orthogonal constraints play a crucial role in accelerating the convergence while sta-

bilize the mixed model. However, when handling the real world data like EEG, it

still meets the challenges that may caused by the abrupt high oscillation on the time

domain, which causes the vibration of the accuracy shown in fig. 4.3. A more robust

RNN model based on structured based constraints is a potential direction. Second,

we can move to complex multiple channel based EEG signal related tasks. In order

to handle the problem of the imbalanced performance (for example precision among

different stages), a better deployment of sensors with high resolution and better way

of fusing the information from multiple sensors by customizing an end-to-end mixed

model is one of the potential approaches.

65

CHAPTER 5

Graph Neural Network Based Anomaly Detection

5.1 Introduction

With the rapid growth of the big data and internet of things (IoT), more sensors

are deployed onsite for process control and monitoring the health of the industrial

pipeline. Anomaly detection plays a critical role in the prognostic health management

in industry 4.0 panorama, as it detects the failure modes or anomaly phenomena com-

ing from all the sensors in real time and raises alert for reducing cost at a scale. From

the data perspective, an anomaly can be viewed as an observation which deviates at

a distance larger than the rest normal observations under given metrics. Depends on

the availability and categories of the labeled data, the anomaly detection task can be

divided into the following three types: [76]:

• supervised anomaly detection: fully labeled training and testing data, classify

the normal and abnormal data on training data, then make inference on testing

data to detect anomaly based on classification results

• semi-supervised anomaly detection: partial labeled training data with normal

samples, training on normal data to learn the characteristics of normal char-

acteristics, predict on the test data based on the difference in distance under

given metrics

• unsupervised anomaly detection: fully unlabelled data with instance inference,

usually has the assumption that fewer anomalies than the majority of the normal

instances are comprised in the dataset.

66

In this chapter, the semi-supervised anomaly detection problem is investigated.

Some previous literature have demonstrated using the generative model to solve the

anomaly detection problem [77]. The original varitional autoencoder is proposed for

solve the intractability of the marginal likelihood problem [78], and by utilization

of the latent probability distribution, the reconstruction probability based anomaly

detection is proposed in [77]. A generative adversarial network based model is pro-

posed by combining the mutual impact of the generator and discriminator and the

second discriminator is utilized for distance based anomaly detection [79]. A symmet-

ric graph convolutional autoencoder based on Laplacian smoothing and sharpening

is proposed to design numerical stable decoder and efficient subspace clustering cost.

However, the manually setting of the linear combination of sharpening process leads

to extra operations for constraining the eigenvalue of normalized Laplacian within the

range of [0, 2] [80]. An anomaly detection and segmentation based on deep convolu-

tional autoencoder is proposed for semiconductor manufacturing [81]. The synthetic

wafer map is generated using the Poisson progress and it is utilized for neural network

training, validation and testing. The real wafer data is used for testing the model

performance on unseen data. A semi-supervised model with minimal involvement of

domain experts is proposed for the anomaly detection in concrete structures. The

convolutional autoencoder is adopted to evaluate the pixel-wise reconstruction mean

squared error of the three RGB channels [82].

Compared to deploy the off-the-self model, a growing interest is to study the

inner structure of the data so that structured information inside of the images to

assist the anomaly detection. Graph is a highly potential candidate for representation

learning of the structured information. Graph neural networks (GNNs) are structured

models for embedding the relational information as connected nodes and edges. Due

to its powerful and flexible to build, it is widely used in different areas including but

67

not limited to social network, drug discovery, traffic prediction, brain connectivity

studies, knowledge graph [83]. GNN has the potential to explore the inner structure

of the data, and this kind of representation learning can be extended to anomaly

detection .

Inspired by the vartioanl autoencoder (VAE) base anomaly detection proposed

in [77], an end-to-end framework variational graph neural network based anomaly

detection framework is provided. There is no direct mapping between pixel-wise

images to graph. The superpixel method is adopted as the bridge for the mapping to

obtain the feature matrix and graph topology. A graph convolutional neural network

with pooling layer and upsampling design is proposed to mimic the similar setting as

the encoder and decoder in the convolutional VAE. The training is only carried on

the normal samples to learn the features of the normal scenario. The difference of the

reconstructed images and original images is adopted as the criterion for the threshold

based anomaly detection.

The rest of the chapter is arranged as follow. In section 5.2, the SLIC algorithm

is introduced to generate the inputs to the variational graph anomaly detector. In

section 5.3, the variational autoencoder and variational graph autoencoder are intro-

duced. In section 5.4, the anomaly detection framework and algorithms for anomaly

detection are demonstrated. In section 5.5, we verify the framework on road surface

crack dataset and compare the VAE and VGAE based anomaly detection. Finally,

the conclusion is drawn in section 5.6.

5.2 Superpixel and feature engineering

One of the approaches to explore the inherent structure of the images is by

adopting the angles from the graph theory. To create the graph description of the

images, a bilateral filtering idea is proposed to represent weight wi,j as the edge

68

connecting the nodes (corresponding to pixels) i and j [84]. Consider the Gaussian

kernel, the weight can be represented as:

wi,j = exp

(
−
‖Ii − Ij‖22

σ2
l

)
exp

(
−
‖xi − xj‖22

σ2
x

)
(5.1)

However the pixel-level mapping will increasing the size of the graph at a scale, which

brings about computation load for images with high resolution. For instance, a 28-

by-28 pixel MNIST handwritten images will lead to a graph with 282 = 784 nodes,

and its corresponding adjacency matrix A ∈ R784×784, which is not suited graph-level

tasks due to square of the matrix size.

(a) (b)

Figure 5.1. The boundary plot and RAG plot of the no crack images of road surface
with SLIC algorithm imposing on.

Superpixel algorithms group pixels into perceptually meaningful atomic regions

which can be used to replace the rigid structure of the pixel grid. They capture

image redundancy, provide a convenient primitive from which to compute image fea-

tures, and greatly reduce the complexity of subsequent image processing tasks. A

69

superpixel-driven graph transform is proposed for image compression. The algorithm

builds a separate graph for each superpixel, so that the number of nodes and edges

are not the same for each graph. This kind of heterogeneous graphs generally not

suited for current requirements for graph classification tasks in graph neural net-

works, which requires additional operations before the inference [85]. Furthermore,

the superpixel graph based learning is proposed for graph classification. The feature

engineering followed by the manifold SLIC (MSLIC) generate the mean feature vec-

tor, weight feature vector and centroidal location for each superpixel and then fit in

the downstream SVM for classification [86].

A brief introduction to the SLIC algorithm is listed in Algorithm ??. The

boundary plotting and region adjacency graph (RAG) [87] plotting of the crack and

no crack surface after the SLIC algorithms are demonstrated in Fig. 5.2 and Fig. 5.1.

The images are processed with 256 segments and each segment is the corresponding

superpixel. For each superpixel, the statistics (mean, std, max, min, median) value

of the superpixel are extracted for each channel of the images, and the feature matrix

X ∈ RN×F is generated where N = 256 is the total number of the superpixels and F is

5×3 = 15 is the feature dimension. The corresponding adjacency matrix A ∈ RN×N is

created using the segraph library 1, which is based on the idea of conditional random

field. The feature matrix and adjacency matrix serve as the input to the VGAE

anomaly detection model, which is demonstrated in details in the next section.

1The segraph library provides modules for creating graphs from SLIC segments, the original

source link is https://github.com/alivcor/segraph

70

Algorithm 4 SLIC superpixel segmentation

/* initialization */

initialize cluster centers Ck = [lk, ak, bk, xk, yk]
T by sampling pixels at regular grid

steps S.

Move cluster centers to the lowest gradient position in a 3× 3 neighborhood.

Set label l(i) = −1 for each pixel i.

Set distance d(i) =∞ for each pixel i

repeat

/* assignment */

for each cluster center Ck do

for each pixel i in a 2S × 2S region around Ck do

Compute the distance D between Ck and i.

if D < d(i) then

set d(i) = D

set l(i) = k

end
end

end

/* Update */

Compute new cluster centers

Compute residual error E until E ≤ threshold

5.3 Generative model for anomaly detection

5.3.1 Variational autoencoder

There will be the bottleneck when performing efficient approximate inference

and learning with directed probabilistic models which have intractable posterior dis-

71

tributions that cannot be solved by traditional model-based models. Consider the

data generating process which involves unobserved latent variables z and and obser-

vation x. z is generated from some prior distribution pθ(z) and x is generated from

conditional distribution pθ(x | z). The objective of the VAE is tried to solve the

intractable marginal likelihood pθ(x) =
∫
pθ(z)pθ(x | z)dz. The posterior term is ap-

proximated by the recognition model pθ(z | x). Taking the logarithm of the marginal

likelihood logpθ(x), it can be represented as:

log pθ (x) = DKL (qφ (z | x) ‖pθ (z | x)) + L (θ,φ; x) . (5.2)

(a) (b)

Figure 5.2. The boundary plot and RAG plot of the crack images of road surface
with SLIC algorithm imposing on.

Since DKL (qφ (z | x) ‖pθ (z | x)) ≥ 0, we have the following,

log pθ (x) ≥ L (θ,φ; x) = Eqφ(z|x) [− log qφ(z | x) + log pθ(x, z)] . (5.3)

This term is also called the variational lower bound on the marginal likelihood of

data point and it is expected to differentiate and optimize over it. It is treated

72

as the optimization function and to be differentiated and optimized over generative

parameter θ and variational parameter φ.

Let’s consider the special case of where latent variables comes from a standard

Gaussian distribution pθ(z) = N (z; 0, I) and variational approximate posterior to be

a multivariate Gaussian with a diagonal covariance:

log qφ (z | x) = logN (z;µ,σI) , (5.4)

where it serves as the encoder of the VAE model. Then the latent variables is

sampled from the posterior distribution and sent to the decoder model pθ(z | x). The

reparameterization trick z = µ + σ � ε, ε ∼ N (0, I) is adopted for representation

of the latent variable. The CNN modules and convolutional transposed layers are

adopted to represent both the encoder and decoder model. The latent variables are

generated as the last output of the dense layer in the encoder model. The whole model

is demonstrated in Fig. 5.3. The Loss function contains both the reconstruction loss

and KL-distance loss [88]:

L (θ,φ; x) ' 1

2

J∑
j=1

(
1 + log

(
(σj)

2)− (µj)
2 − (σj)

2)+
1

L

L∑
l=1

log pθ (x | z) (5.5)

5.3.2 Variational graph autoencoder

Similar to the idea of the VAE, we extend the generative model based ap-

proximation of the posterior distribution idea on the graph model. Consider the

case of undirected graph G(V,E) with N =| V | nodes. Given the feature matrix

X ∈ R ∈ N × F and adjacency matrix A ∈ R ∈ N ×N , as proposed in the seminal

work of the VGAE [89], the module can be divided in the following parts:

• Inference model (encoder part): q(Z | X,A) =
∏N

i=1 q (zi | X,A), where for

each component (vector) of embedding matrix Z, it is modeled using Gaussian

distribution q (zi | X,A) = N (zi | µi, diag (σ2
i))

73

• Generative model (decoder part):p(A | Z) =
∏N

i=1

∏N
j=1 p (Aij | zi, zj), where

p (Aij = 1 | zi, zj) = σ
(
z>i zj

)
. The second term essentially is achieved by cal-

culating the matrix multiplication of the ZTZ, flatten it to a vector and impose

the sigmoid function to get the probability

• Optimization (ELBO): L = Eq(Z|X,A)[log p(A | Z)]−KL[q(Z | X,A)‖p(Z)]

The above framework is mainly for the node-level inference and lack the depth

of the neural network. Apart from the decoding part in the original VGAE, the

hierarchial model with coarsening and upsampling is introduced for the anomaly

detection framework. Different from the idea of the pooling layer in CNN, there

is no specified filter size in GNN due to the heterogeneous connection of the nodes

and edges. Therefore we need to customize the pooling layer to mimic the pooling

operation in GNN. We leverage the mincutpooling proposed in [90] to achieve this

function. As mentioned earlier in Chapter 1, the GNN can be written as follows:

X̄ = GNN(X, Ã; ΘGNN). (5.6)

The cluster assignment matrix S = MLP (X̄; ΘMLP) is designed as the sampling

module for the X̄, where MLP is the multi-layer perceptron module and s[ij] ∈ [0, 1]

due to the softmax activation function. The idea is to relax the original idea of the

min cut optimization problem as:

Lu = Lc + Lo = −
Tr
(
ST ÃS

)
Tr
(
ST D̃S

)
︸ ︷︷ ︸

Lc

+

∥∥∥∥ STS

‖STS‖F
− IK√

K

∥∥∥∥
E︸ ︷︷ ︸

Lo

, (5.7)

where minimizing the cut loss Lc will help the strongly connected nodes to be clus-

tered together. The second orthogonality loss term Lo plays reversed way such that

the cluster assignments to be orthogonal. The two adversarial terms contribute to

constrain the degeneration of each other.

74

Figure 5.3. schematic diagram of the CVAE based anomaly detection.

After solving the optimization problem, the corresponding coarsened adjacency

matrix and the pooled feature matrix can be represented as:

Apool = STAS, Xpool = STX (5.8)

And it fits in the encoder module of the VGAE anomaly detection module. For the

reverse part in the decoder module, the upsampling operation can be defined as:

Xrec = Spool, Arec = SApoolST (5.9)

The RMSE between the original and the reconstructed feature matrix ‖X−Xrec‖2

serve as the reconstruction loss and the corresponding KL divergence is similar to for-

mula 5.5. The whole module of the VGAE based anomaly detection is demonstrated

in Fig. 5.4.

75

Figure 5.4. schematic diagram of the VGAE based anomaly detection.

5.4 Experiment setting and performance analysis

5.4.1 Dataset

In order to verify the feasibility of the proposed VGAE based anomaly detection

framework, we tested on the road surface dataset and compare the performance with

the VAE based method. As one of the typical applications in prognostic and health

management, Crack detection serves a crucial role in the building inspection, finding

the cracks and determining the building health [91]. The original dataset is generated

from 458 high-resolution images (4032 pixels to 3024 pixels) taken approximately one

meter away from walls and floors of several concrete buildings in METU Campus

with the camera facing directly to the target [92]. The image data are divided into

two as negative (without crack) and positive (with crack) in separate folder for image

classification. Data augmentation in terms of random rotation or flipping or tilting

76

is not applied for the VAE setting in this study. Image samples of the dataset are

shown in Fig. 5.5 and Fig. 5.6, for no crack and crack surface separately 1.

5.4.2 Experiment setting and performance analysis

we run the experiment on the kaggle kernel 1, which provides the NVIDIA

TESLA P100 GPU, with CPU RAM up to 16GB and GPU RAM up to 16GB. Due

to limit of the 5GB disk. We randomly choose 4096 images of normal images and

2048 images of the abnormal images. To setup the semi-supervised anomaly detection

setting, at the training stage, the random choosing 2048 normal images are used

for training only and rest of the normal and abnormal images are used for testing.

During the training stages, the VAE and VGAE tries to learn the parameters related

to the generating process of the normal images and tune the parameters in order to

approximate it. During the test stage, we use the trained model for the inference of

test dataset — mixture of the normal and abnormal images. The anomaly score is

based on the pixel-wise root mean square error (PRMSE) of the three channels. If the

threshold is above the median of the PRMSE of the training dataset, it is determined

as the abnormal.

The Adam optimizer is utilized for the VAE and VGAE. The loss functions of

the VAE and VGAE are the corresponding ones defined in the previous sections. The

learning rate is 10−3 and the l2 regularization of the GCN module is 10−4. We train on

500 epochs with batch size of 32. We run the standard F1 score, confusion matrix and

AUC-ROC analysis on both the VAE and VGAE. The total number of parameters of

the VAE and VGAE are around 4.8 million and 78 thousand respectively so that

the VGAE almost save 60 times in terms of network storage cost. We run 500 epochs

1https://www.kaggle.com/arunrk7/surface-crack-detection
1https://www.kaggle.com/docs/efficient-gpu-usage

77

models total No. of network parameters F1 score AUC

VAE 4.8M 0.852 0.853

VGAE 80k 0.882 0.885

Table 5.1. Comparison of performance metrics for VAE and VGAE based anomaly
detection model

during the training stages and evaluate the performance via the standard confusion

matrix, F1-score and area under curve (AUC).

The details of the performance are also listed in table 5.1. We can see that

VGAE achieve slightly better for both of the crack and no crack cases under the F1

score and AUC. From the Fig. 5.7 and Fig. 5.8, both of the two anomaly detection

perform better on no crack cases. This may due to the training process and also

sensitive to the threshold choosing.

To summary, the problem of the graph based neural network for anomaly de-

tection is investigated. Superpixels induced by SLIC algorithms serve as the input

to the graph model. The end-to-end variational graph autoencoder is built for semi-

supervised anomaly detection. The training is only on the normal samples and achieve

the inference on all the normal and potential abnormal samples. Anomaly score is cal-

culated by the RMSE of the reconstructed samples compared to the normal samples

and compare to the threshold. Future work will focus on the geometric descriptor for

graph representation of the images for more complex anomaly settings and structured

graph neural network design, such as pooling layers and upsampling layer.

78

Figure 5.5. sixteen different no crack images of the road surface.

79

Figure 5.6. sixteen different crack images of the road surface.

80

(a) (b)

Figure 5.7. The boundary plot and RAG plot of the crack images of road surface
with SLIC algorithm imposing on.

Figure 5.8. Comparison of the ROC curve and AUC score of the VAE and VGAE.

81

CHAPTER 6

Conclusion and Future Works

This chapter concludes the whole dissertation. It begins with a summary of

the dissertation results and contributions, follows with a discussion of future research

directions in further investigation of structured deep learning.

6.1 Summary

This dissertation has focused on structured deep learning and its applications,

with particular interests on deep sequential modeling and graph neural networks. The

contributions of this dissertation are:

1. Structure recurrent neural network (SRNN) with orthogonal constraints : Mo-

tivated by solving the vanishing gradient and exploding problems inside the

recurrent neural network, the orthogonal constraints imposed on the recurrent

weight matrix is investigated. By leveraging the two decomposition methods

that lie on the Stiefel manifold, the weight matrix can be divided into several

easy to implement parts with theoretic properties to control the vibration of the

eigenvalues. The coordinate-descent like algorithms is adopted to design the cor-

responding training algorithms for the two decomposition mechanisms (orRNN

and pdRNN). With the proposed methods, it is able to verify the memory keep

abilities on synthetic datasets with the visualization of the pseudospectrum on

how well the evolvement of the orthogonality is keeping. Moreover, the faster

convergence as well as lower computation cost in terms of total number of net-

work parameters are the corresponding benefits that the methods bring about.

82

2. Application of SRNN for polys detection: Consider the real scenario of deep

sequential modeling of polyps detection based on vocal signal data. An end-to-

end framework is proposed by adoption of the SRNN. The problem is formulated

as the binary classification for anomaly detection purpose. The time-series data

is expanded to time-frequency feature map by the construction of spectrogram

with calculation of Mel frequency cepstral coefficients. This two dimensional

feature map is fed into the network model row by row (treat as the batch). With

the comparison of the four RNNs, the networks with the orthogonal constraints

can achieve comparative accuracy (better sometimes) with faster convergence

as well as lower network complexity overhead.

3. Plug and play SRNN module for EEG sleep staging analysis : Build the orthog-

onal constraints as the Tensorflow layer for plug and play purpose and apply it

on the EEG sleep staging analysis. The EEG sleep staging analysis is formu-

lated as the multiple classification problems. Compared to the physical based

model for time-frequency expansion, the one-dimensional convolutional neural

network is adopted for generating the time frequency feature maps. The coarse

and fine levels of the feature maps are generated separately and concatenated

together to feed in the plug and play layer. The orthogonal constrained recur-

rent neural network has better performances in terms of accuracy, convergence

speed as well as lower network overland. It also demonstrates its scalability to

involve with other machine learning and deep learning modules.

4. Graph neural network based anomaly detection for road surface crack detection:

Propose an end-to-end graph neural network based anomaly detection for im-

ages. The superpixels induced by the SLIC algorithms and conditional random

field based methods are introduced to generate the inputs to the variational

graph autoencoder (VGAE). The VGAE with mincutpooling and upsampling

83

layers mimic the similar operations in convolutional variational autoencoder

(CVAE) but tailored for the specific fusion of the feature matrix X and adja-

cency matrix A. The framework is verified on the road surface crack detection

datasets and compared with CVAE. The results demonstrate the efficiency of

the VGAE regarding saving the storage of the network load while achieve com-

paratively better performance on F1-score and area under curve score.

6.2 Future Direction

6.2.1 Dynamics of the Recurrent Neural Networks

It is believed that for the interpretation of the RNN models, the dynamics of

the RNN is required to disclose so that the RNN model with specified functions can

be generated. The relation between wave physics and RNN is disclosed through the

comparative study of vowel classification. The interpretation of the RNN is achieved

by measurements of the time integrated power at each probe and the automatic

differentiation is demonstrated though the iteration of the material density [93]. The

ordinary differential equation is combined with gated-control RNN (LSTM, GRU) to

identity learning vectors and the curve dynamics and it is further verified through the

human activity dataset [94]. Compared to the gated-control mechanism, the second

order term in the orthogonal constrained RNN is a more natural choice due to the

dynamic representation and it is believed that there is a connection between these

two. From the signal processing point of view, the RNN can be regarded as the

finite impulse response (FIR). Vanilla RNN and gated-control doesn’t take the long-

range dependence into consideration, which leads to short memory. By implement

a memory filter, the memory augmented RNN is helpful for the long-memory issue

84

[95]. By incorporating the impulse response and dynamics into consideration, there

will be a more robust design in structured RNN.

6.2.2 Structured representation of the GNN

There are two-folds regarding the structured representation of the GNN.

1. Feature-wise representation of the graph: Current model for the feature matrix

and adjacency matrix are based on the statistics and conditional random field

model. There are more potentials to explore the representation of the graph

information. For example, characteristic functions based methods are utilized

to form an elastic representation of multiscale representation of the feature

distribution [96, 97]. Graph kernel is also a potential candidate for specific

representation of the graph features [98]. The fusion of both the graph features

and graph topology may serve as a more synthetic way for the image based

anomaly detection setting [83]. Inspired by those methods, a automatic domain

driven end-to-end graph multiscale feature generation and fusion method is

worth for the further research purpose.

2. Layer design for the GNN : The mincutpool pooling layer is utilized in this work,

however it is pointed out that mincutpool may not optimize its own objective

function [99] and the corresponding new deep modularity network (DMN) is

proposed. Also the upsampling layer doesn’t play a consensus role like the

convolutional transpose layer in CNN and it is worthwhile to look for the new

design for transposed operation.

85

CHAPTER 7

Publication List

1. F. Zhu and Q. Liang, “Rethink of Orthographic Constraints On RNN and

its Application in Sequential Modelling”, Submitted to IEEE Transactions on

Neural Networks and Learning System

2. F. Zhu and Q. Liang, “Orthographic Retraction Based RNN With Applica-

tion to Vocal Data”, Submitted to IEEE Transactions on Neural Networks and

Learning System.

3. F. Zhu and Q. Liang, “OCRNN: An Orthogonal Constrained Recurrent Neural

Network for Sleep Analysis Based on EEG Data.” Ad Hoc Networks pp: 102178,

2020

4. F. Zhu and Q. Liang, “Sequential Modeling for Polyps Identification From

the Vocal Data”International Conference on Communications,Signal Process-

ing, and Systems (CSPS), vol. 516, pp: 762-769, 2019.

5. T. Wang, F. Zhu and J. Liang, “Soil pH Classification Based on LSTM via

UWB Radar Echoes”, International Conference on Communications,Signal Pro-

cessing, and Systems (CSPS), vol. 516, pp: 945-954, 2019.

6. F. Zhu and J. Liang. “Soil Moisture Retrieval Based on Interval Type-2 Fuzzy

Logic Systems”, IEEE Access, Vol. 6, pp: 29846 - 29857, 2018.

7. J. J. Chen, F. Zhu and Q. Liang, “ Information Theoretic Bounds for Sparse

Reconstruction in Random Noise”, IEEE Access, vol. 7, pp: 02304-102312,

2019.

86

8. K. Liao, J. Si, F. Zhu, and X. He, “Radar HRRP target recognition based

on concatenated deep neural networks.” IEEE Access, vol.6, pp: 29211-29218,

2018.

9. N. Wu, F. Zhu, and Q. Liang, “Evaluating spatial resolution and channel ca-

pacity of sparse cylindrical arrays for massive MIMO”, IEEE Access, vol.5, pp:

23994-24003, 2017.

10. F. Zhu, N. Wu, and Q. Liang. “Channel estimation for massive MIMO with

2-D nested array deployment.” Physical Communication, pp: 432-437, 2017.

87

REFERENCES

[1] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured sparsity

in deep neural networks,” in Advances in neural information processing systems,

2016, pp. 2074–2082.

[2] T.-J. Yang, Y.-H. Chen, and V. Sze, “Designing energy-efficient convolutional

neural networks using energy-aware pruning,” in Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, 2017, pp. 5687–5695.

[3] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016,

http://www.deeplearningbook.org.

[4] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training recurrent

neural networks,” in International Conference on Machine Learning, 2013, pp.

1310–1318.

[5] R. Pascanu, C. Gulcehre, K. Cho, and Y. Bengio, “How to construct deep recur-

rent neural networks,” in Proceedings of the Second International Conference on

Learning Representations (ICLR 2014), 2014.

[6] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural compu-

tation, vol. 9, no. 8, pp. 1735–1780, 1997.

[7] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of gated re-

current neural networks on sequence modeling,” arXiv preprint arXiv:1412.3555,

2014.

[8] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,

 L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in neural

information processing systems, 2017, pp. 5998–6008.

88

[9] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of

deep bidirectional transformers for language understanding,” arXiv preprint

arXiv:1810.04805, 2018.

[10] M. Arjovsky, A. Shah, and Y. Bengio, “Unitary evolution recurrent neural net-

works,” in International Conference on Machine Learning. PMLR, 2016, pp.

1120–1128.

[11] E. Vorontsov, C. Trabelsi, S. Kadoury, and C. Pal, “On orthogonality and learn-

ing recurrent networks with long term dependencies,” in Proceedings of the 34th

International Conference on Machine Learning-Volume 70, JMLR. org. PMLR,

2017, pp. 3570–3578.

[12] S. V. N. Vishwanathan, N. N. Schraudolph, R. Kondor, and K. M. Borgwardt,

“Graph kernels,” The Journal of Machine Learning Research, vol. 11, pp. 1201–

1242, 2010.

[13] S. E. Schaeffer, “Graph clustering,” Computer science review, vol. 1, no. 1, pp.

27–64, 2007.

[14] N. M. Kriege, F. D. Johansson, and C. Morris, “A survey on graph kernels,”

Applied Network Science, vol. 5, no. 1, pp. 1–42, 2020.

[15] T. Hashimoto, Y. Sun, and T. Jaakkola, “From random walks to distances on

unweighted graphs,” in Advances in neural information processing systems, 2015,

pp. 3429–3437.

[16] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural net-

works on graphs with fast localized spectral filtering,” in Advances in neural

information processing systems, 2016, pp. 3844–3852.

[17] T. N. Kipf and M. Welling, “Semi-Supervised Classification with Graph

Convolutional Networks,” in Proceedings of the 5th International Conference

89

on Learning Representations, ser. ICLR ’17, 2017. [Online]. Available:

https://openreview.net/forum?id=SJU4ayYgl

[18] K. Greff, R. K. Srivastava, J. Koutńık, B. R. Steunebrink, and J. Schmidhuber,

“Lstm: A search space odyssey,” IEEE transactions on neural networks and

learning systems, vol. 28, no. 10, pp. 2222–2232, 2017.

[19] Y. Bengio, P. Frasconi, and P. Simard, “The problem of learning long-term

dependencies in recurrent networks,” in IEEE international conference on neural

networks. IEEE, 1993, pp. 1183–1188.

[20] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with

gradient descent is difficult,” IEEE transactions on neural networks, vol. 5, no. 2,

pp. 157–166, 1994.

[21] S. Wisdom, T. Powers, J. Hershey, J. Le Roux, and L. Atlas, “Full-capacity uni-

tary recurrent neural networks,” in Advances in Neural Information Processing

Systems, 2016, pp. 4880–4888.

[22] Z. Mhammedi, A. Hellicar, A. Rahman, and J. Bailey, “Efficient

orthogonal parametrisation of recurrent neural networks using householder

reflections,” in Proceedings of the 34th International Conference on Machine

Learning, ser. Proceedings of Machine Learning Research, D. Precup and

Y. W. Teh, Eds., vol. 70. International Convention Centre, Sydney,

Australia: PMLR, 06–11 Aug 2017, pp. 2401–2409. [Online]. Available:

http://proceedings.mlr.press/v70/mhammedi17a.html

[23] L. Jing, Y. Shen, T. Dubcek, J. Peurifoy, S. Skirlo, Y. LeCun, M. Tegmark,

and M. Soljačić, “Tunable efficient unitary neural networks (EUNN) and their

application to RNNs,” in Proceedings of the 34th International Conference on

Machine Learning, ser. Proceedings of Machine Learning Research, vol. 70, 2017,

pp. 1733–1741.

90

[24] C. Jose, M. Cisse, and F. Fleuret, “Kronecker recurrent units,” arXiv preprint

arXiv:1705.10142, 2017.

[25] I. Shafran, T. Bagby, and R. J. Skerry-Ryan, “Complex evolution recurrent neu-

ral networks (cernns),” in 2018 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), April 2018, pp. 5854–5858.

[26] E. Vorontsov, C. Trabelsi, S. Kadoury, and C. Pal, “On orthogonality and

learning recurrent networks with long term dependencies,” in Proceedings of the

34th International Conference on Machine Learning, ser. Proceedings of Machine

Learning Research, D. Precup and Y. W. Teh, Eds., vol. 70. International

Convention Centre, Sydney, Australia: PMLR, 06–11 Aug 2017, pp. 3570–3578.

[Online]. Available: http://proceedings.mlr.press/v70/vorontsov17a.html

[27] K. Helfrich, D. Willmott, and Q. Ye, “Orthogonal recurrent neural networks

with scaled Cayley transform,” in Proceedings of the 35th International

Conference on Machine Learning, ser. Proceedings of Machine Learning

Research, J. Dy and A. Krause, Eds., vol. 80. Stockholmsmässan, Stockholm

Sweden: PMLR, 10–15 Jul 2018, pp. 1969–1978. [Online]. Available:

http://proceedings.mlr.press/v80/helfrich18a.html

[28] K. D. Maduranga, K. E. Helfrich, and Q. Ye, “Complex unitary recurrent neural

networks using scaled cayley transform,” arXiv preprint arXiv:1811.04142, 2018.

[29] P.-A. Absil, R. Mahony, and R. Sepulchre, Optimization algorithms on matrix

manifolds. Princeton University Press, 2009.

[30] P.-A. Absil and J. Malick, “Projection-like retractions on matrix manifolds,”

SIAM Journal on Optimization, vol. 22, no. 1, pp. 135–158, 2012.

[31] T. Kaneko, S. Fiori, and T. Tanaka, “Empirical arithmetic averaging over the

compact stiefel manifold,” IEEE Transactions on Signal Processing, vol. 61,

no. 4, pp. 883–894, 2013.

91

[32] K. B. Petersen and M. S. Pedersen, “The matrix cookbook (version: November

15, 2012),” 2012.

[33] L. N. Trefethen and M. Embree, Spectra and pseudospectra: the behavior of

nonnormal matrices and operators. Princeton University Press, 2005.

[34] B. Sengupta and K. J. Friston, “How robust are deep neural networks?” arXiv

preprint arXiv:1804.11313, 2018.

[35] G. André. Pseudopy. [Online]. Available: https://github.com/andrenarchy/

pseudopy

[36] T. J. Wang, J. M. Massaro, D. Levy, R. S. Vasan, P. A. Wolf, R. B. D’Agostino,

M. G. Larson, W. B. Kannel, and E. J. Benjamin, “A risk score for predicting

stroke or death in individuals with new-onset atrial fibrillation in the community:

the framingham heart study,” Jama, vol. 290, no. 8, pp. 1049–1056, 2003.

[37] L. R. Rabiner, “A tutorial on hidden markov models and selected applications in

speech recognition,” Proceedings of the IEEE, vol. 77, no. 2, pp. 257–286, 1989.

[38] A. Roebroeck, A. K. Seth, and P. Valdes-Sosa, “Causal time series analysis

of functional magnetic resonance imaging data.” in NIPS mini-symposium on

causality in time series, 2011, pp. 65–94.

[39] Z. Zhang, “Mechanics of human voice production and control,” The Journal of

the Acoustical Society of America, vol. 140, no. 4, pp. 2614–2635, 2016.

[40] ——, “Cause-effect relationship between vocal fold physiology and voice pro-

duction in a three-dimensional phonation model,” The Journal of the Acoustical

Society of America, vol. 139, no. 4, pp. 1493–1507, 2016.

[41] J. Liang and F. Zhu, “Soil moisture retrieval from uwb sensor data by leveraging

fuzzy logic,” IEEE Access, vol. 6, pp. 29 846–29 857, 2018.

92

[42] Z. Zhong, T. Jiang, W. Zhang, H. Yao, and S. Xiao, “Analyzing speech of pa-

tients with vocal polyps based on channel parameters and fuzzy logic systems,”

Computers & Mathematics with Applications, vol. 62, no. 7, pp. 2834–2842, 2011.

[43] A. Tsanas, M. A. Little, P. E. McSharry, J. Spielman, and L. O. Ramig, “Novel

speech signal processing algorithms for high-accuracy classification of parkinson’s

disease,” IEEE Transactions on Biomedical Engineering, vol. 59, no. 5, pp. 1264–

1271, May 2012.

[44] F. Zhu and Q. Liang, “Sequential modeling for polypus identificationfrom the

vocal data,” in International Conference in Communications, Signal Processing,

and Systems. Springer, 2019, pp. 945–954.

[45] T. Wang, F. Zhu, and J. Liang, “Soil ph classification based on lstm via uwb radar

echoes,” in International Conference in Communications, Signal Processing, and

Systems. Springer, 2019, pp. 762–769.

[46] J. C. Vasquez-Correa, T. Arias-Vergara, J. Orozco-Arroyave, B. M. Eskofier,

J. Klucken, and E. Noth, “Multimodal assessment of parkinson’s disease: a deep

learning approach,” IEEE journal of biomedical and health informatics, 2018.

[47] G. Gelly and J.-L. Gauvain, “Optimization of rnn-based speech activity detec-

tion,” IEEE/ACM Transactions on Audio, Speech, and Language Processing,

vol. 26, no. 3, pp. 646–656, 2018.

[48] L. Gabrielli, S. Tomassetti, C. Zinato, and F. Piazza, “End-to-end learning for

physics-based acoustic modeling,” IEEE Transactions on Emerging Topics in

Computational Intelligence, vol. 2, no. 2, pp. 160–170, 2018.

[49] J.-X. Zhang, Z.-H. Ling, L.-J. Liu, Y. Jiang, and L.-R. Dai, “Sequence-to-

sequence acoustic modeling for voice conversion,” IEEE/ACM Transactions on

Audio, Speech and Language Processing (TASLP), vol. 27, no. 3, pp. 631–644,

2019.

93

[50] G. K. Anumanchipalli, J. Chartier, and E. F. Chang, “Speech synthesis from

neural decoding of spoken sentences,” Nature, vol. 568, no. 7753, p. 493, 2019.

[51] A. K. Halberstadt, “Heterogeneous acoustic measurements and multiple clas-

sifiers for speech recognition,” Ph.D. dissertation, Massachusetts Institute of

Technology, 1999.

[52] S. K. Mitra and Y. Kuo, Digital signal processing: a computer-based approach.

McGraw-Hill Higher Education New York, 2006, vol. 2.

[53] B. McFee, C. Raffel, D. Liang, D. P. Ellis, M. McVicar, E. Battenberg, and

O. Nieto, “librosa: Audio and music signal analysis in python,” 2015.

[54] F. Lotte, L. Bougrain, A. Cichocki, M. Clerc, M. Congedo, A. Rakotomamonjy,

and F. Yger, “A review of classification algorithms for eeg-based brain–computer

interfaces: a 10 year update,” Journal of neural engineering, vol. 15, no. 3, p.

031005, 2018.

[55] P. L. Nunez, R. Srinivasan, et al., Electric fields of the brain: the neurophysics

of EEG. Oxford University Press, USA, 2006.

[56] A. Subasi and M. I. Gursoy, “Eeg signal classification using pca, ica, lda and

support vector machines,” Expert systems with applications, vol. 37, no. 12, pp.

8659–8666, 2010.

[57] B. Richhariya and M. Tanveer, “Eeg signal classification using universum support

vector machine,” Expert Systems with Applications, vol. 106, pp. 169–182, 2018.

[58] F. Artoni, A. Delorme, and S. Makeig, “Applying dimension reduction to eeg

data by principal component analysis reduces the quality of its subsequent inde-

pendent component decomposition,” NeuroImage, vol. 175, pp. 176–187, 2018.

[59] X. Li, X. Chen, Y. Yan, W. Wei, and Z. J. Wang, “Classification of eeg signals

using a multiple kernel learning support vector machine,” Sensors, vol. 14, no. 7,

pp. 12 784–12 802, 2014.

94

[60] S. Raghu and N. Sriraam, “Classification of focal and non-focal eeg signals us-

ing neighborhood component analysis and machine learning algorithms,” Expert

Systems with Applications, vol. 113, pp. 18–32, 2018.

[61] U. Orhan, M. Hekim, and M. Ozer, “Eeg signals classification using the k-means

clustering and a multilayer perceptron neural network model,” Expert Systems

with Applications, vol. 38, no. 10, pp. 13 475–13 481, 2011.

[62] G. Ruffini, D. Ibañez, M. Castellano, S. Dunne, and A. Soria-Frisch, “Eeg-driven

rnn classification for prognosis of neurodegeneration in at-risk patients,” in Inter-

national Conference on Artificial Neural Networks. Springer, 2016, pp. 306–313.

[63] W. Chen, S. Wang, X. Zhang, L. Yao, L. Yue, B. Qian, and X. Li, “Eeg-based

motion intention recognition via multi-task rnns,” in Proceedings of the 2018

SIAM International Conference on Data Mining. SIAM, 2018, pp. 279–287.

[64] M.-A. Moinnereau, S. Karimian-Azari, T. Sakuma, H. Boutani, L. Gheorghe, and

T. H. Falk, “Eeg artifact removal for improved automated lane change detection

while driving,” in 2018 IEEE International Conference on Systems, Man, and

Cybernetics (SMC). IEEE, 2018, pp. 1076–1080.

[65] S. Crea, M. Nann, E. Trigili, F. Cordella, A. Baldoni, F. J. Badesa, J. M. Catalán,

L. Zollo, N. Vitiello, N. G. Aracil, et al., “Feasibility and safety of shared eeg/eog

and vision-guided autonomous whole-arm exoskeleton control to perform activi-

ties of daily living,” Scientific reports, vol. 8, no. 1, p. 10823, 2018.

[66] Z. Tayeb, J. Fedjaev, N. Ghaboosi, C. Richter, L. Everding, X. Qu, Y. Wu,

G. Cheng, and J. Conradt, “Validating deep neural networks for online decoding

of motor imagery movements from eeg signals,” Sensors, vol. 19, no. 1, p. 210,

2019.

95

[67] Y. Roy, H. Banville, I. Albuquerque, A. Gramfort, T. H. Falk, and J. Faubert,

“Deep learning-based electroencephalography analysis: a systematic review,”

Journal of neural engineering, 2019.

[68] T. Wang, F. Zhu, and J. Liang, “Soil ph classification based on lstm via uwb radar

echoes,” in International Conference in Communications, Signal Processing, and

Systems. Springer, 2018, pp. 762–769.

[69] F. Zhu, Q. Liang, and Z. Zhong, “Sequential modeling for polyps identification

from the vocal data,” in International Conference in Communications, Signal

Processing, and Systems. Springer, 2018, pp. 945–954.

[70] Z. Duan and J. Liang, “Non-contact detection of vital signs using a uwb radar

sensor,” IEEE Access, vol. 7, pp. 36 888–36 895, 2018.

[71] T. Wang, J. Liang, and X. Liu, “Soil moisture retrieval algorithm based on tfa

and cnn,” IEEE Access, vol. 7, pp. 597–604, 2018.

[72] P. H. Hoang, “Deepsleepnet datasets,” 2017, a Model for Automatic Sleep

Stage Scoring based on Raw Single-Channel EEG, https://www.kaggle.com/

phhasian0710/eeg-fpz-cz.

[73] A. Supratak, H. Dong, C. Wu, and Y. Guo, “Deepsleepnet: a model for automatic

sleep stage scoring based on raw single-channel eeg,” IEEE Transactions on

Neural Systems and Rehabilitation Engineering, vol. 25, no. 11, pp. 1998–2008,

2017.

[74] B. Kemp, A. H. Zwinderman, B. Tuk, H. A. Kamphuisen, and J. J. Oberye,

“Analysis of a sleep-dependent neuronal feedback loop: the slow-wave microcon-

tinuity of the eeg,” IEEE Transactions on Biomedical Engineering, vol. 47, no. 9,

pp. 1185–1194, 2000.

[75] A. L. Goldberger, L. A. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G.

Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E. Stanley, “Physiobank,

96

physiotoolkit, and physionet: components of a new research resource for complex

physiologic signals,” circulation, vol. 101, no. 23, pp. e215–e220, 2000.

[76] R. Yao, C. Liu, L. Zhang, and P. Peng, “Unsupervised anomaly detection using

variational auto-encoder based feature extraction,” in 2019 IEEE International

Conference on Prognostics and Health Management (ICPHM). IEEE, 2019, pp.

1–7.

[77] J. An and S. Cho, “Variational autoencoder based anomaly detection using re-

construction probability,” Special Lecture on IE, vol. 2, no. 1, pp. 1–18, 2015.

[78] D. P. Kingma and M. Welling, “Auto-encoding variational bayes.” in

ICLR, Y. Bengio and Y. LeCun, Eds., 2014. [Online]. Available: http:

//dblp.uni-trier.de/db/conf/iclr/iclr2014.html#KingmaW13

[79] S. Akcay, A. Atapour-Abarghouei, and T. P. Breckon, “Ganomaly: Semi-

supervised anomaly detection via adversarial training,” in Asian conference on

computer vision. Springer, 2018, pp. 622–637.

[80] B. Knyazev, G. W. Taylor, and M. Amer, “Understanding attention and general-

ization in graph neural networks,” in Advances in Neural Information Processing

Systems, 2019, pp. 4204–4214.

[81] K.-Y. Lee and J.-Y. Sim, “Warping residual based image stitching for large

parallax,” in Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, 2020, pp. 8198–8206.

[82] P. Bergmann, M. Fauser, D. Sattlegger, and C. Steger, “Mvtec ad–a comprehen-

sive real-world dataset for unsupervised anomaly detection,” in Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp.

9592–9600.

[83] C. Deng, Z. Zhao, Y. Wang, Z. Zhang, and Z. Feng, “Graphzoom: A

multi-level spectral approach for accurate and scalable graph embedding,” in

97

International Conference on Learning Representations, 2020. [Online]. Available:

https://openreview.net/forum?id=r1lGO0EKDH

[84] G. Cheung, E. Magli, Y. Tanaka, and M. K. Ng, “Graph spectral image process-

ing,” Proceedings of the IEEE, vol. 106, no. 5, pp. 907–930, 2018.

[85] G. Fracastoro, F. Verdoja, M. Grangetto, and E. Magli, “Superpixel-driven graph

transform for image compression,” in 2015 IEEE International Conference on

Image Processing (ICIP). IEEE, 2015, pp. 2631–2635.

[86] P. Sellars, A. I. Aviles-Rivero, and C.-B. Schönlieb, “Superpixel contracted

graph-based learning for hyperspectral image classification,” IEEE Transactions

on Geoscience and Remote Sensing, vol. 58, no. 6, pp. 4180–4193, 2020.

[87] A. Trémeau and P. Colantoni, “Regions adjacency graph applied to color image

segmentation,” IEEE Transactions on image processing, vol. 9, no. 4, pp. 735–

744, 2000.

[88] D. P. Kingma and M. Welling, “An introduction to variational autoencoders,”

Foundations and Trends® in Machine Learning, vol. 12, no. 4, pp. 307–392,

2019. [Online]. Available: http://dx.doi.org/10.1561/2200000056

[89] T. N. Kipf and M. Welling, “Variational graph auto-encoders,” NIPS Workshop

on Bayesian Deep Learning, 2016.

[90] F. M. Bianchi, D. Grattarola, and C. Alippi, “Spectral clustering with graph

neural networks for graph pooling,” in Proceedings of the 37th international con-

ference on Machine learning. ACM, 2020, pp. 2729–2738.

[91] L. Zhang, F. Yang, Y. D. Zhang, and Y. J. Zhu, “Road crack detection using

deep convolutional neural network,” in 2016 IEEE international conference on

image processing (ICIP). IEEE, 2016, pp. 3708–3712.

[92] Ç. F. Özgenel and A. G. Sorguç, “Performance comparison of pretrained convolu-

tional neural networks on crack detection in buildings,” in ISARC. Proceedings

98

of the International Symposium on Automation and Robotics in Construction,

vol. 35. IAARC Publications, 2018, pp. 1–8.

[93] T. W. Hughes, I. A. Williamson, M. Minkov, and S. Fan, “Wave physics as an

analog recurrent neural network,” Science advances, vol. 5, no. 12, p. eaay6946,

2019.

[94] M. Habiba and B. A. Pearlmutter, “Neural ordinary differential equation based

recurrent neural network model,” arXiv preprint arXiv:2005.09807, 2020.

[95] J. Zhao, F. Huang, J. Lv, Y. Duan, Z. Qin, G. Li, and G. Tian, “Do rnn and

lstm have long memory?” in Proceedings of the 37th International Conference

on Machine Learning, vol. 119. PMLR, 2020.

[96] C. Donnat, M. Zitnik, D. Hallac, and J. Leskovec, “Learning structural node

embeddings via diffusion wavelets,” in Proceedings of the 24th ACM SIGKDD

International Conference on Knowledge Discovery & Data Mining, 2018, pp.

1320–1329.

[97] B. Rozemberczki and R. Sarkar, “Characteristic functions on graphs: Birds of a

feather, from statistical descriptors to parametric models,” 2020.

[98] G. Nikolentzos and M. Vazirgiannis, “Learning structural node representations

using graph kernels,” IEEE Transactions on Knowledge and Data Engineering,

2019.

[99] B. P. Anton Tsitsulin, John Palowitch and E. Müller, “Graph clustering with

graph neural networks,” 2020.

99

BIOGRAPHICAL STATEMENT

Fangqi Zhu was born in Chengdu, China in 1991. He received his B.S. and

M.Sc degree from University of Electronic Science and Technology of China, China,

in 2013 and 2016 respectively. He received his Ph.D. degree from The University

of Texas at Arlington in 2020, all in Electrical Engineering. From 2014 to 2015, he

was with the School of Communication and Information Engineering, University of

Electronic Science and Technology of China as a Research Assistant in the Radar and

Localization Lab. From July 2018 to August 2018, he was with the Lam Research as

the full-time Data Science / Machine Learning Intern. From September 2019 to July

2020, he was with the Seagate US LLC as the full-time and part-time Data Science

/ Machine Learning Intern of the (Operations and Technology Advanced Analytics

Group) OTAAG group. His current research interest is in the area of Deep Learning,

Statistical Machine Learning, Signal Processing, Prognostic and Health Management

in Semiconductor and Wireless Communication. He was the IEEE student member

and served for IEEE Chengdu Section in 2014-2016 and served for IEEE Fort Worth

Section in 2016-2018.

100

