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ABSTRACT

Generalized Algorithmic Frameworks for Optimizing Distance Calls in Generalized

Metric Space Proximity Problems and Methods for Realizing Efficient Signal

Reconstruction

Jees Augustine, Ph.D.

The University of Texas at Arlington, 2020

Supervising Professor: Dr. Gautam Das

The exponential rise in data, along with its heterogeneity and complexity,

helped individuals, businesses, hospitals, enterprises and even governments to thrive

on data-driven decision making. However, as the size and complexity of the data

surged, challenges in searching for similar objects within databases (proximity search)

compounded.

As is well known, proximity search is the key and successful method used in

Information Retrieval (IR) in vast databases including, Genomics Databases, Image

Databases, Video Databases, Text databases, etc. The objective is to retrieve contents

from the database, similar to a given object in the database.

This dissertation revisits a suite of popular and fundamental proximity problems

(such as, KNN, clustering, minimum spanning tree) that repeatedly perform distance

computations (sometimes by making calls to a third party distance oracle, such as

Google Maps or Bing Maps) to compare the distance between a pair of objects during

their execution. The chief effort here is to design principled solutions to minimize

viii



distance computations for such problems in general metric spaces, especially for the

scenarios where calling an expensive oracle to resolve unknown distances are the

dominant cost of the algorithms for these problems.

The fundamental understanding of the structure of the proximity problem so-

lutions reveals the underlying dependency on repetitive conditional statements pred-

icated on the distance between pairs of objects. Thus, Direct Feasibility Test

is designed to study how distance comparisons between two different pairs of objects

could be modelled as a system of linear inequalities that assists in saving distance

computations. Direct Feasibility Test offers the maximal savings for proximity

problem solutions and to the best of the knowledge is the first attempt to provide a

theoretical understanding of the problem.

Furthermore, the study also offers an alternative formalism with the goal of

computing distance bounds. This work also develops a suite of graph-based algorithms

that trade-off between running time and tightness of the produced bounds, whilst

producing identical and exact solutions to these problems. A comparison of these

designed solutions conceptually and empirically concerning a broad range of existing

works is also presented in this work.

The work also presents a comprehensive set of experimental results using mul-

tiple large scale real-world datasets and a suite of popular proximity algorithms to

demonstrate the effectiveness of the proposed approach. To the best of the knowl-

edge, the work is one of the first that takes a systematic stride to minimize repeated

distance computation costs inside proximity problems.

Finally, a deep understanding of the challenges in large scale signal reconstruc-

tion is also addressed in this dissertation as a practical solution to large scale signal

reconstruction problem.
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CHAPTER 1

Introduction

1.1 The Proximity Problem

The Proximity Problems are a class of Computational Geometry problems,

which involves the notion of distance between objects. Some of the classical problems

that fall under this category include k -Nearest Neighbors, Minimum Spanning Tree,

Clustering, Closest pair of points problem, diameter of a point set, etc. In all of these

aforementioned problems, the distance between objects abstracts the (dis)similarity

between a pair of objects.

For a given universe of n objects, computing all pair distances is quadratic in

the number of objects,
(
n
2

)
and, thus, is often computationally challenging. Besides,

when soliciting the distance information for a specific object pair of objects, addi-

tional challenges arise from (i) involvement of computationally expensive algorithms

for distance computation or (ii) involvement of expensive third-party APIs which pro-

vide distances on demand. Examples of the former include execution of complicated

computer vision algorithms, which often requires human intervention in determining

the actual distances[1, 2, 3, 4]. Alternatively, an example of the later include com-

putation of proximity between a pair of Point-of-Interests (POIs), for which we often

resort to Google or Bing Maps1. For brevity, in this dissertation, such expensive

distance estimators are designated as Oracles.

1Both of these services offer the best estimate of distances and travel time based on numerous

attributes, including GPS coordinate of POIs, traffic conditions, speed restrictions, historic traffic

data, etc.
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Consequently, the computation of all pair distances is neither efficient nor prac-

tical. Thus, as a good fit, reducing the number(overall) of distance calls becomes the

natural choice for solving the proximity problems. In this model of solving proximity

problems, instead of resolving a specific pair of objects, the model relies on the infor-

mation about the range of values the distance can assume to make decisions. These

range of values an actual distance can assume, referred to as bounds, helps to reduce

the number of distance calls to Oracles.

Thus the theme of this dissertation is to focus on algorithmic schemes which

provide the tightest bounds, with, however, minimal oracle calls. In the proposed

model, for the tight estimation of bounds, we only assume the distances to obey

metric property, in particular, the Triangle Inequality property, and thus a generalized

solution framework. This assumption is quite realistic and is justified in a wide variety

of real-world applications.

The immediate problem follows from re-authoring the proximity problem solu-

tion to take advantage of the bounds without losing the integrity of the solution. The

re-authoring thus should be both general, and minimally invasive to the proximity

solution. Therefore, we scrutinize the proximity algorithm to identify salient steps in

the algorithm, which are both repetitive and involve multiple Oracle calls.

The techniques developed works for general metric space, and thus may apply

to any proximity problems and is not restricted to a handful of applications discussed

under the purview of this dissertation. Therefore, we expect similar results for any so-

lution to proximity problems on metric space. Through our solution framework, even

with lesser overall distance computation, we do not alter the outputs of the proximity

algorithm, thus supporting the algorithmic integrity of the proximity solutions.

2



1.2 A Graph Based Approach as a General Plug-in for Optimizing Distance Calls

for Metric Space Proximity Problems

In this research, our goal is to minimize the number of calls to an expensive

distance oracle. This work views a set of objects as nodes and corresponding distances

between objects as edges in a graph. We offer an upper and lower bound plug-in

service for the proximity problems, which is sensitive to the sparsity of the graph.

The proximity problem solutions, despite the introduction of the plug-in, reproduce

the original answer without the plug-in.

This work, we make fundamental theoretical and practical advancements in

two critical aspects. First, we provide a scheme, SSLB, which provides a tight lower

bounds. Specifically, we design SSLB-Tree to provide lower bounds on any given

tree. Departing from the traditional view of the problem, which never accounts for

the sparsity of the graph, through SSLB-Tree , we account for it while computing the

bounds. The proof of correctness of SSLB-Tree and an in-depth theoretical analysis

are provided as a part of the manuscript.

However, SSLB-Tree only works when the given set of known edges forms a

tree. Often, this is not a realistic assumption. To account for the graphs, which

are common in real-life scenarios, we propose two distinct tree building approaches,

with a goal is to extend SSLB-Tree to general-purpose graphs. The two approaches,

Bottom-Up Tree and Top-Down Tree provides a loose lower bounds on the unknown

edge distances, yet provide guarantees on running time, leaving the overall complexity

of the scheme SSLB quadratic.

For a practitioner, the work also illustrates the necessary code changes to induce

the plug-in service as part of any proximity problem solution. A comprehensive set

of experiments are carried out with both real and synthetic datasets to demonstrate

3



the efficacy of the methods proposed in the light of three different class of proximity

algorithms.

1.3 A Generalized Approach for Reducing Expensive Distance Calls for A Broad

Class of Proximity Problems

Proximity search algorithms repeatedly invoke the expensive Oracles for their

progress forms the impetus for this work. On scrutiny of the proximity problem solu-

tions, we recognize conditional statements within the solution framework, which are

characteristic in these algorithms. All of such proximity problem solutions (specifi-

cally that we considered in this dissertation and, in general for proximity problems)

makes use of a distance comparison between two different pairs of objects for decid-

ing its further course. For example, in Prim’s [5] algorithm for Minimum Spanning

Tree(MST) on a weighted undirected graph, the decision to add next edge to the MST

is predicated on choosing the shortest edge that is reachable from the partial tree con-

structed. This choice thus requires distance computation for unknown edges(for each

of the outgoing edges from the latest node added to the partial tree) through Oracle

calls. Once computed, these edge lengths are compared with others already resolved

and not yet added to the tree. The lowest among these edges is selected and added

to the MST.

Thus distance computation and comparison form the basic building block of

these algorithms. Since we focus on minimizing the distance computations without

impacting the results of comparisons, we identified and replaced the distance compu-

tation with the bounds obviating the need for actual Oracle calls.

The fundamental and the most challenging question is, can we make use of the

local computation to reduce the overall expensive distance Oracles calls. In response

to this question, and for fundamental understanding, we formulate the problem of

4



finding the exact bounds(lower and upper) for each unknown distance as a linear

inequality, all of which together forms a system of linear inequalities.

These linear inequalities, formed in the light of Triangle Inequalities, can be

solved by any linear system solvers to obtain the theoretically possible lower and upper

bounds possible for each unknown distance. While this formulation yields the tightest

bounds on the unknown distance, because of the computational expense of linear

program solvers, the solution is not scalable and therefore limiting its application to

only a setting where there are only few hundred objects or less.

We thus focus our attention to a scalable and yet efficient solution to the prob-

lem of minimizing the number of Oracle calls in proximity problems. Here we seek

to pursue an alternate Graph-Theoretic approach for the problem of reducing the

number of distance calls. To model the graph, we consider the objects as nodes and

their corresponding distances, the edges.

Once modelled as a graph, we briefly introduce the notion of the upper and

lower bounds for unknown edges. The work by Wang and Shasha [6], notes that

the upper bounds are the length of the shortest path between the ends points of the

unknown edges. Computation of lower bounds, as established in this work, is not

straightforward and requires enumeration of all paths between a pair of nodes whose

edge value is unknown. This work employs a cubic, dynamic programming algorithm,

ADM , to compute the bounds for all the unknown edge in the graph.

Through formulation as a graph, we provide a geometric interpretation of the

lower bounds. Since the estimation of tightest bounds yields the highest distance

saves, we propose a Dijkstra’s [7] shortest path-based algorithm, SPLUB , for compu-

tation of both upper and lower bounds. We also prove that the bound computed by

our algorithm produces exact tightest lower bounds for any given unknown edge. In

addition to computing the exact bounds, the proposed solution is significantly faster.
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The overall running time of our algorithm is in the order of the number of missing

edges. In a sparse graph, this is in the order of second power of the number of objects.

This guided approach improved the scope of the proximity solutions to graphs

with few million edges. However, for large scale algorithms, often with a few hundreds

of million edges, finding shortest paths inefficient and computationally expensive.

As the last part of the algorithmic contribution, we focus on large scale al-

gorithms, which can work with approximate bounds. It is worthwhile to note here

that, we relax the tightness of bounds, and the proximity algorithm, yet produces

the identical solution as the one without the bounds. We propose a novel bounding

algorithmic scheme, Tri Scheme , which is inspired by the lower bound estimation

algorithm, by shortening the length of paths explored. Tri Scheme yields looser

bounds, however, in practice, as evident from the experiments, shows only a marginal

increase in the number of distance calls. We also provide rigorous theoretical analysis

for the Expected running time for Tri Scheme to lookup an edge.

Extensive experiments, in light of three different class of proximity algorithms,

evaluating five different algorithms with a variety of real-world datasets demonstrate

the effectiveness of proposed algorithmic schemes, SPLUB and Tri Scheme .

1.4 Orca-SR: A Real-Time Traffic Engineering Framework leveraging Similarity

Joins

This work investigates the far-reaching effects of database techniques developed

for specific database query optimization, extending beyond the real of database ap-

plications. Here, in this work, we consider the challenging Signal Reconstruction

Problem (SRP) with the varied application. The primary objective of SRP is to re-

construct a high dimensional signal from its low dimensional observations. Earlier

works by Abol et.al. [8, 9, 10], lays the foundations of using database techniques such
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as similarity joins and selectivity estimation for set similarity queries in solving the

SRP. In these works, first, the SRP problem is posed as a solution to a system of

linear equations and is later reformulated to a Lagrangian Formulation of SRP.

Even though the solutions proposed in these work are scalable, to make it

practical and realistic, there are multitudes of challenges to overcome. To simulate

the SRP over billion size datasets, the complete simulation of the network is necessary.

This work discusses the practical challenges in simulating the network and along

with it a routing scheme akin to hierarchical routing, which improves the intractability

of the solution significantly. We introduce a real-time system for Signal Reconstruc-

tion, with multi-user interaction, scalability and billion size network generation[11].

1.5 Dissertation Organization

In Chapter 2, we consider a novel problem of minimizing the distance Oracle

calls through upper and lower bound computation.

Here, our principal contribution is an sparsity sensitive algorithmic scheme,

offered as a plug-in, which minimizes the over distance computations for proximity

problem solution algorithms. We also add a practitioners guide on to fit our plug-in

inside various proximity problem with minimal code changes. We provide compre-

hensive theoretical analysis for our schemes, as well provide extensive experimental

results on many real and synthetic datasets.

In Chapter 3, we address the scalability challenges involved in graph-based

methods developed in chapter 2[12]. For the first time in literature, we provide a

theoretical formulation of the problem in the form of linear inequalities and offer a

solution for the tightest bounds. Later, we propose a graph-theoretic approach for

bound computation. We introduce the shortest path based exact solution scheme for

bounds and provide the theoretical analysis. For large settings, we propose a Triangle-
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based approach which works well in practice and data structure optimizations for

bound estimation and updates. We also present results from comprehensive set of

experiments with real-life datasets.

Finally, in Chapter 4, we introduce the challenges in large scale signal recon-

struction. Our technical contribution includes the design a real-time signal recon-

struction system Orca-SR which in multi-user interactive. Orca-SR offers a

window to various database optimization applied in producing the reconstruction.

Our system can scale to large network setting of billion sizes. We simulate these

billion sized networks and present the interactive system as a web-application.

In addition to these works, the author was also a co-author of papers, “Deep

Learning Models for Selectivity Estimation of Multi-Attribute Queries” [13], and

“Multi-attribute selectivity estimation using deep learning” [14], which is not a part

of this thesis.
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CHAPTER 2

A Graph Based Approach as a General Plug-in for Optimizing Distance Calls for

Metric Space Proximity Problems

2.1 Introduction

Given a set of n objects with distances defined between each pair of objects,

various classical proximity problems have been investigated over the decades in data

management research, such as k-nearest neighbor, clustering, shortest path, minimum

spanning tree, and several others. In this paper we consider the setting where the

objects are in a general metric space and distance computations are the dominant

cost of algorithms for these problems. For example, computing the distance between

a pair of objects may involve running expensive computer vision algorithms, involving

actual human experts (inferring dissimilarity between two CAT-SCAN images may

be hard to capture using a distance function and may require human involvement), or

may even require calling third party applications (e.g., map APIs) which may impose

monetary costs per number of queries or put constraints on query rate, e.g., limit the

number of queries a user can make in a given time period.

In an abstract sense, we assume access to a distance oracle which is an expen-

sive function that takes as input any pair of objects and outputs the distance between

them. Our objective is to consider existing algorithms for various classical proxim-

ity problems, and redesign these algorithms such that they are refocused towards

minimizing number of distance calls rather than overall computation cost.

At the heart of our techniques is the observation that when distances satisfy

the triangle inequality, upper and lower bounds can be calculated for some of the
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distances that may not yet be precisely known. For example, given a set of three

objects satisfying triangle inequality, if the distances between two pairs of objects are

4 and 10, then the third distance pair has to be between 6 and 14.

Prior work [6, 15] has shown that given n objects in a general metric space, if

only a subset of the
(
n
2

)
distances are known, then upper and lower bounds can be

computed for each of the remaining unknown distances. Our first contribution is to

provide a general recipe for how the bounding algorithm [6, 15] can be incorporated

inside any classical proximity algorithm as a convenient “plug-in”, which refocuses

the proximity algorithm towards reducing distance oracle calls. Essentially, during the

process of computation, this plug-in estimates lower and upper bound of distances

between pairs of objects, and these bounds are often adequate to make subsequent

decisions. For example, in an algorithm for computing the nearest neighbor of an

object u, consider two candidates v and u such that d(u, v) and d(u,w) have not been

precisely computed yet. However, if the current best lower bound for d(u, v) turns out

to be larger than the current best upper bound for d(u,w), then v can be eliminated

from further consideration.

Our second contribution is algorithmic. The best known algorithm for upper

and lower bounds estimations of unknown distances are proposed by Wang and Shasha

[6, 15]. Although designed more than two decades ago, to the best of our knowledge,

these algorithms are the state-of-the-art solutions to compute tightest lower and upper

bounds in general metric space. The main limitation of their proposed framework

ADM, which computes lower and upper distance bounds of all unknown edges at the

same time, is its high computational complexity (cubic in number of nodes). In

fact, unlike classical shortest path algorithms (e.g., Dijkstra’s [7] Algorithm) 1 whose

asymptotic running times depend both on the number of nodes and on the number

1Bound estimation problems are directly related to the Shortest Path problems.
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of known edges, the running time of these algorithms only depends on the number

of nodes. Therefore, when the underlying graph is sparse (which is the case for

most metric space proximity problems), that is, it has small number of known edges,

this prior work [6] incurs high computational cost for bounds estimation. As one of

our algorithmic contributions, we present a new lower bound estimation algorithm,

referred to as Sparsity Sensitive Lower Bound Estimation (SSLB in short) that is an

improvement over this state-of-the-art prior work [6] in asymptotic running time (see

Section 2.3.2). In the case the underlying graph of known edges form a tree, we prove

that SSLB is guaranteed to produce the tightest lower bound. Following this, we show

how to extend SSLB to graphs of any arbitrary topology. We also present upper bound

estimation algorithm that produce tightest bound and beats the cubic complexity of

ADM. Nevertheless, both the prior work and SSLB search the entire graph to estimate

the distance bounds. To avoid a search of the entire graph, in Section 2.3.3 we present

parameterized “lightweight” bound estimation algorithms, that are highly scalable,

but constrained to search inside a local neighborhood of the graph (parameterized

as part of inputs). These latter algorithms compromise the tightness of estimated

bounds to enable higher computational efficiency. To summarize, we present a suite

of algorithms that make a trade-off between “tightness” of estimated bounds and

computational efficiency.

Our third contribution is to provide insights for practitioners to understand

how existing algorithms for proximity problems can make use of this plug-in in an

on-demand fashion. We consider 3 different proximity problems and 6 different algo-

rithms using 6 different large scale datasets. Our experimental results indicate that

our plug-in is equally capable of saving distance calls for all proximity algorithms,

producing lower and upper bounds that are highly comparable to that of the state-of-

the-art [6, 15], and is significantly faster in running time. We show when proximity
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algorithms use our proposed distance estimation algorithms as plug-in, it shows on

an average 5× and as much as 20× improvement in saving up distance calls, while

increasing only a few seconds of overall CPU time.

2.2 Datamodel and Formalism

We first present our data model and formalize the problems and present running

examples.

2.2.1 Data Model

Objects and Object Graph. We are given with a set O consisting of n ob-

jects. The dissimilarity (distance) between any pair of objects induces an underlying

complete undirected weighted graph G(O, E) whose nodes O are the objects and the

edges E are all pairwise distances between the nodes. This graph satisfies the metric

property, in particular, triangular inequality.

Triangle Inequality Property For every three objects (oi, oj, ok) that com-

prise a triangle 4oi,oj ,ok , d(oi, oj) ≤ d(oi, ok) + d(ok, oj) and d(oi, oj) ≥ |d(oi, ok) −

d(ok, oj)|.

Distance Oracle: The complete edge set E is not given ahead of time. Instead,

we assume there exists a distance oracle which, given two objects oi and oj, returns

the true distance d(oi, oj). The actual implementation of the oracle is application

dependent and orthogonal to our framework. We only assume that calls to the oracle

are expensive.

Since we focus on applications where calls to the oracle are expensive, our goal

is to minimize the number of calls to the oracle. Intuitively, in our framework, instead

of querying the distance oracle to precisely resolve a particular edge, the proximity

algorithm first tries to compute upper and lower bounds of the edge, by leveraging
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Figure 2.1: 7 objects and their corresponding known and unknown distances.

the fact that all distances have to satisfy metric space properties, in particular the

triangle inequality. If the bounds information is useful to the algorithm, it avoids

making the oracle call. If the bounds information is not useful, then it makes the

oracle call. This way, the overall number of calls are reduced.

Example 1 Consider a set of 7 objects with distances between 0 and 1. Assume

these distances satisfy the metric property, i.e., triangle inequality of distances. The

distances between the object pairs fall into one of two kinds: (a) it is known/resolved

(b) it is unknown.

Using Example 1, only 8 out of 21 edges are known (the solid lines), while the

remaining 13 edges are unknown (the dashed lines). If the distance d(1, 3) = 0.8 and

d(3, 4) = 0.1 then the the bounds for distance d(1, 4) may be computed as follows:

|d(o1, o3)− d(o3, o4)| ≤ d(o1, o4) ≤ d(o1, o3) + d(o4, o3)

i.e.,

0.7 ≤ d(o1, o4) ≤ 0.9
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2.2.2 Formalism

Problem 1 Compute upper bound of the distance between (oi, oj) (or UBd(oi,oj)),

which is the largest possible distance that an unknown edge can get without violating

the triangle inequality, considering all other known distances in G.

It is easy to see that the tightest upper bound of distance between oi and oj

is the length of the shortest-path (sp) distance between those objects [6] that will go

through additional intermediate objects.

UBd(oi,oj) ≤ sp(oi, oj) (2.1)

Using Figure 3.1, when the distance between (o3, o6) is unknown, the upper

bound for could be estimated by considering a path o3 → o4 → o2 → o5 → o6, or

o3 → o2 → o5 → o6, or o3 → o1 → o6, and taking the one that is smallest (i.e.,

o3 → o2 → o5 → o6). Thus UBd(o3,o6) = 0.8 is the length of the shortest path.

Problem 2 Compute lower bound of the distance between (oi, oj) (or LBd(oi,oj)),

which is the smallest possible distance that an unknown edge can get without violating

the triangle inequality, considering all known and unknown distances in G.

Unlike the upper bound, computing the lower bound is more complicated. The

tightest lower bound LBd(oi,oj) involves computing LB between oi and oj considering

every path and taking the maximum. For each path, the LB could be computed

using the generalized metric property proposed in [15] - which involves subtracting

the weight of the rest of the path (computed by taking the sum of known distances)

from the highest weight edge (let that be d(ok, ol) between ok, ol) in p.

LBd(oi,oj) ≥Maximum∀p{d(ok, ol)− path(oi, ok)− path(ol, oj)} (2.2)

Using Example 1, the lower bound of the distance LBd(o3,o6) needs to consider:

(1) o3 → o4 → o2 → o5 → o6, (2) o3 → o2 → o5 → o6, and (3) o3 → o1 → o6. For the
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first path, the lower bound can be calculated to be 0.5 − (0.1 + 0.2 + 0.2) = 0. The

second path results in a lower bound of 0.5 − (0.1 + 0.2) = 0.2 and lastly, from the

third path we get 0.8− (0.2 + 0.2) = 0.4. The LBd(o3,o6) = max{0, 0.2, 0.4} = 0.4.

2.2.3 Different Proximity Problems

Proximity Problem 1: k-Nearest Neighbor Graphs: Given a set of ob-

jects O and an integer value k, with distances between each pairs of objects in O,

compute the top-k nearest neighbor graph (k-NNG), which is a graph in which each

object has k directed edges to its k nearest neighbors.

Proximity Problem 2 : l-Medoid Clustering: The medoid of a collection

of n points Ci = {o1, o2, . . . , on}, is defined as a point om(1≤ m ≤ n), which is a

representative center of the elements of Ci that minimizes its distance with all other

points of Ci.

om = argmino∈Ci

n∑
i=1

d(o, oi)

The objective of l-Mediod Clustering is to find a partition for a given set of objects

around l medoids which minimizes the sum of distances between each point and its

corresponding medoid. More formally, given a set of objects O with similarities/dis-

tances between each pairs of objects, and an integer l, partition O into l clusters

C1, . . . , Cl with each cluster Ci having object oi as its medoid, such that the following

function is minimized:

Cost(C1, ..., C l) =
l∑

j=1

∑
i∈Cj

d(oi, Cj)

where oi is the medoid of cluster Ci.

Problem 3 : Minimum Spanning Tree: Given a set of objects O with

similarities/distances between each pairs of objects, compute the minimum weight
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spanning tree MST (G), i.e., a connected weighted subgraph of n − 1 edges that

connects all n nodes together, such that the total weight of the edges in the tree is

minimized.

2.3 Distance Estimation Algorithms

This section is organized as follows. We begin in Section 2.3.1 by describing a

prior work ADM [6], which we refer to as the Baseline Algorithm. Although ADM

is more than two decades old, to the best of our knowledge, it is the state-of-the-art

solution to compute the tightest lower and upper bounds in general metric space. The

main limitation of ADM though is its high computational complexity, especially for

lower bound estimation (cubic in number of nodes). In fact, unlike classical shortest

path algorithms (e.g., Dijkstra’s [7] Algorithm) 2 whose asymptotic running times

depend both on the number of nodes and on the number of known edges, the running

time of ADM only depends on the number of nodes. Therefore, when the underlying

graph of known edges is sparse (which is usually the case in proximity problems), that

is, it has small number of known edges, this prior work [6] incurs high computational

cost for upper and lower bound estimation.

We next present in Section 2.3.2 one of our main algorithmic contributions, a

new lower bound estimation algorithm that we refer to as the Sparsity Sensitive Lower

Bound Estimation algorithm (SSLB), which is an improvement over ADM. We prove

that SSLB is guaranteed to produce the tightest lower bound when the underlying

graph of known edges form a tree. Following this, we describe how to extend SSLB to

graphs of any arbitrary topology.

2Bound estimation problems are directly related to the Shortest Path problems.
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One disadvantage of both ADM and SSLB is that they need to traverse the entire

graph to estimate the distance bounds. In Section 2.3.3, we present a parameterized

“lightweight” solution of these bound estimation problems, that is highly scalable by

constraining the traversal inside a local neighborhood of the graph (parameterized as

part of inputs).

To summarize, our goal in this section is to present a suite of algorithms that

make a trade-off between tightness of estimated bounds and computational efficiency.

Nevertheless, when used as a plug-in inside a proximity problems, they always produce

the exact answer - i.e., the outputs of the proximity algorithm is the same irrespective

of whether the plug-in is used or not.

2.3.1 ADM - Baseline Algorithm by Wang and Shasha

Wang and Shasha [6] propose a dynamic programming based framework ADM

that can estimate upper and lower bound of all the unknown distances, based on the

set of known distances, using the generalized triangle inequality property presented

in Definitions 1 and 2.

ADM keeps track of two matrices, LB and UB for lower and upper bounds,

respectively. Each entry of LBi,j (UBi,j) contains either the known distance between

oi and oj or the latest lower bound (upper bound) of distance between oi and oj,

namely, LBd(oi,oj) (UBd(oi,oj)).

It runs in n iterations and gradually builds the two aforementioned matrices. At

the i-th iteration, this estimation takes place by considering i intermediate objects,

i.e., (i + 1) length paths from oi to oj. While updating a single entry (i, j) in those

matrix during the i + 1-th iteration, it checks (in constant time) if it is worth to

consider this new object to update the bounds, or the bounds obtained in i-th iteration

is best so far. The algorithm also assigns unique indexes to the objects to ensure that
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they are not considered redundantly during the run. The pseudo-code is described in

Algorithm 1.

Limitations: While ADM indeed produces the tightest bounds, the main chal-

lenge is that its computational complexity is cubic in the number of nodes, and ais

not sensitive to the number of edges. If the underlying graph is a large sparse graph

(that is, with a relatively small number of known edges), invoking this algorithm

many times as a plug-in is computationally expensive.

Algorithm 1 Algorithm ADM : Algorithm for Computing Tightest Bounds

inputs: graph G, a set of pre-computed distances

output: LB and UB

Initialize LB and UB, set them to true distances; otherwise LBi,j = 0 and UBi,j =

∞

n = |O|

for k = 1 to n do

for i = 1 to n do

for j = 1 to n do

LBi,j ← max{LBi,j, LBi,k − UBk,j, LBj,k − UBk,i}

UBi,j ← min{UBi,j, UBi,k + UBk,j}

end for

end for

end for
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2.3.2 Sparsity Sensitive Bound Estimation

In this section, we present significantly more efficient bound estimation algo-

rithms, both for upper and lower bounds. Our new lower bound estimation algorithm,

referred to as Sparsity Sensitive Lower Bound Estimation (SSLB in short) is an im-

provement over the state-of-the-art ADM in computational time. The upper bound

estimation, on the other hand, is simpler and involves multiple shortest path compu-

tation. We conclude this section (Section 2.3.2.3) by discussing this latter algorithm.

First, we discuss SSLB considering the underlying graph with known edges forms a

tree (as SSLB guarantees the tightest lower bound on trees), and then describe how to

extend it to graphs of arbitrary topology.

2.3.2.1 SSLB On Tree

Here the given graph with known edges forms a tree T with n objects and (n−1)

edges, similar to one shown in Figure 2.2. The algorithm SSLB-Tree comprises of

the following steps: it first chooses a object arbitrarily from T and assigns it as the

root. It then starts exploration of the tree from the selected root object, oroot. The

UpdDist sub-routine then updates the distances from the root to every object in the

tree. SSLBuses the paths that go through the root, to compute the Lower Bound

Matrix referred to as LB. Finally, SSLBis recursively invoked on each of the sub-trees

of the root. Algorithm 2 contains the pseudocode.

To illustrate the algorithm further, we refer to Figure 2.2 and use the sample

tree as a running example through out the section. As seen from the example tree,

root node o1 has three children (o0, o5 and o3). Each of them, in turn, are roots of

their sub-trees below them. We denote these sub-trees as (U1, U2 and U3) (generalized

to ol sub-trees with respect to the number of children of the parent object.). One of

such sub-trees U2 is shown within the box in the figure.
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Figure 2.2: Sample Tree

Any unknown edge, can be categorized into three types as follows:

Cross edges: Edges between pairs of objects, across the sub-trees. As in the exam-

ple tree edges of type, (o2 ∈ U2, o6 ∈ U1).

Descendant edges: Edges between root of the tree, and all its descendants, similar

to the ones shown by the edge (o2, o6) in the example tree.

Internal edges: Edges between all pairs within a sub-tree. An example is the edge

(o2, o4) in U2.

A naive algorithm to estimate tightest lower bound of all unknown edges will

work as follows: there areO(n2) pairs of unknown edges. To compute the lower bound

for each of such edge, we need to find a path between all such pairs. Since finding

the path between a pair of objects in a tree takes linear time, this path computation

takesO(n3) time. For each path, the lower bound can be computed by subtracting the

weight of the rest of the path from the highest weight edge, as defined in equation 3.5.

So the naive algorithm is no better than ADM.

20



SSLB-Tree described in Algorithm 2, however, does not follow this naive ap-

proach. SSLBstores auxiliary information at every object to compute the lower bound

for any unknown edge in constant time. For every object ni, our algorithm maintains

two auxiliary values, namely (i) The sum of the edge weights along the path between

the root and ni denoted as len pathoi (ii) the maximum of the edge weight among

the edges along the path between the root and ni denoted by maxoi . From the stored

len path and max, SSLB directly finds the path-length and the largest edge along the

path between pairs of objects. The lower bound of any unknown edge could thus be

computed as a difference between the maximum edge and the reminder of the path

length. SSLB maintains the LB, and updates the lower bound LBi,j corresponding

to any unknown edge (oi, oj) in the graph.

Calculating Lower Bound Distances: A close analysis of the tree reveals

that the lower bounds on any cross edge, (ox, oy) can be computed by utilizing the

stored values in the objects. Let the root of our SSLBbe represented by oroot. Let

maxoi represents the edge weight with the maximum weight along the path between

oi and oroot, and len pathoi , represents the total path weights from object oi to oroot.

Thus from our running example, if we consider the object o4 ∈ U2, maxoi = 0.8

and len pathoi = 0.8 + 0.1 = 0.9, on a tree rooted at 1. For every cross edge (ox ∈

Ui, oy ∈ Uj) between Ui and Uj, (i 6= j; 1 ≤ i, j ≤ l), the lower bound is computed as

follows,

LBx,y ← 2 ∗max(maxox ,maxoy)− len pathox − len pathoy (2.3)

In our running example, the lower bound for one such cross edge (o2, o6), could

be calculated as, LBo2,o6 = 2 ∗ max(0.8, 0.2) − 0.9 − 0.4 = 0.3. Note that the sum

of the edge weights between (ox, oy), (len pathox + len pathoy) already accounts for
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the maximum edge and henceforth we added a correcting factor of 2 to the maximum

edge.

Since len pathoroot and maxoroot are both 0, the lower bound calculation for any

descendant edge, (ox, oroot), from Equation 2.3 simplifies as follows:

LBroot,x ← 2 ∗maxox − len pathox

Using our example, LBo1,o4 = 2 ∗ 0.8− 0.9 = 0.7.

The root, oroot partitions the tree into l sub-trees, U1, . . . , Ul. Recursively,

SSLB computes the lower bound values for each internal edge, (ox, oy) ∈ Ui updating

the LB for all such edges. As from our running example, when SSLB recursively

runs on sub-tree U2 with root 3, len patho4 and max4 are updated for object o4 as

0.1 and 0.1 respectively. The lower bound of the internal edge could be computed as

LBo2,o4 = 2∗max(0.1, 0.1)−0.1−0.1 = 0, and thus did not improve the lower bound

and is also the tightest lower bound from the tree.

Lemma 1 SSLB-Tree always produces the tightest lower bound for any unknown

edge of any given tree.

Proof 1 (Sketch) Tightest lower bound is the smallest feasible value that an unknown

edge of a graph can have without violating the metric property. For any given path

between a given pair of objects, equation 2.3 can be used to obtain a lower bound

between the objects. Each path between a pair of objects thus provides a lower bound

on the edge value. The tightest lower bound is thus the largest among all these lower

bounds.

In a tree there exists only one unique path between every pair of objects. Tight-

est lower bound, as described earlier, is therefore the largest among such lower bounds,

which SSLB captures. Hence the proof.

Lemma 2 Computing lower bounds of all unknown edges take O(n2) time in SSLB-Tree .
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Proof 2 The lower bound matrix, LB has exactly n2 entries. Our SSLBalgorithm,

computes n(n − 1)/2 lower bound entries. Given a oroot, the calculation of maxox

and len pathox for all the objects in the tree takes O(n) time. As our algorithm is

recursive, and since there are n objects in the tree, SSLBcompletes in O(n2) time.

Algorithm 2 SSLB-Tree : Algorithm for Computing Lower Bounds Distances on

Trees

Input: Tree(T )

Output: lower bound matrix(LB)

for child in T.children do

SSLB-Tree (child)

end for

UpdDist(T, 0, 0)

for { ∀ (c1, c2) ∈ T.children | c1 6= c2 } do

Compute lower bound for all cross edges between objects in c1, c2

end for

for child in T.children do

Compute lower bound for all edges between root, child

end for

2.3.2.2 SSLB On Graphs

In this section, our goal is to extend SSLB to general purpose graphs - meaning

that the graph of known edges is not necessarily a tree. Our proposed Algorithm

SSLB-Graph on a given graph works by generating two classes of trees, namely bottom-

up and top-down trees. SSLB-Tree Algorithm acts on these generated trees to
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Algorithm 3 UpdDist : Subroutine for Updating max and path Distances Between

a Given Root & All its Children

Input: object(o), max path, distance

Output: None

o.path = distance

o.max = max path

for c in o.children do

UpdDist(c, o.path+ distance,max(o.max,max path))

end for
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Figure 2.3: First Step of Bottom-Up Tree
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Figure 2.4: Bottom-Up Tree
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update the lower bound matrix. As there are a large number of spanning trees

and exploring all spanning trees to obtain the tightest lower bound is not feasible,

SSLB-Graph remains to be a heuristic on general graphs. Algorithm 4 contains the

pseudo-code.

Illustrating further, the intuition of how to build effective trees in SSLB-Graph

comes directly from Equation 2.3. To get “tight” lower bounds, the idea is to increase

the weight of the largest edge while keeping the rest of the path as small as possible.

Both tree building algorithms use this intuition. Bottom-Up Tree follows a bottom-

up approach for the construction of the tree. Bottom-Up Tree initializes the tree as a

forest of objects, with no edges in it.It then merges pairs of trees, through addition of

edges based on the edge weight connecting them. Through repeated addition of edges

and merger it maintains a relatively balanced set of trees at each level. The second

type of tree builder, Top-Down Tree, initializes the tree construction by choosing

the largest edge to be a part of the tree. From either ends of the chosen edge, two

shortest path trees are generated. A single tree is then formed my merging the two

trees thus formed based on a proximity measure. By continuing the same principle

of edge selection and merger, Top-Down Tree construction completes, growing the

tree downwards. Finally the two disjoint trees are merged to form a single tree

at the highest level. SSLB-Graph then invokes SSLB-Tree on Bottom-Up Tree and

Top-Down Tree independently to obtain lower bounds.

Next we describe Bottom-Up Tree and Top-Down Tree in detail.

Bottom-Up Tree Construction: Next we describe the bottom up tree con-

struction. The pseudo-code is presented in Algorithm 5. We first present Lemma 3

that forms the basis for designing Bottom-Up Tree.
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Algorithm 4 SSLB-Graph : Algorithm for calculating lower bounds in a graph

Input: Graph(O, E), depth(d)

Output: Lower Bound Matrix (LB)

BottomUpTree ← Bottom-Up Tree(O, E)

LB ← max(LB, SSLB(BottomUpTree))

for Tree in Top-Down Tree(O, E , d) do

LB ← max(LB, SSLB(Tree))

end for

return LB
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Figure 2.5: Top-Down Tree

Lemma 3 Given a rooted tree, the total number of lower bound entries updated

through cross and descendant edge exploration is bounded by the cardinality, C.

C =
∑

1≤i,j≤l
i 6=j

|Ui| × |Uj|+
∑

1≤i≤l

|Ui|

where |Ui| is the number of objects in the sub-tree Ui.

Proof 3 Let us consider oroot as the root of the tree with sub-trees U1, . . . Ul. To

account for the total number of cross edges, let us first consider the unknown edges

between the two sub-trees Ui and Uj. The edge between any object ox ∈ Ui and oy ∈ Ui

is unknown. Note that if there were to be such an edge, then, the path ox to oroot, oroot
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to oy and finally the edge (ox, oy) would form a loop, which is a contradiction. Thus,

the contribution of cross edges between Ui and Uj to the the number of lower bound

updates is |Ui| × |Uj|. The above property holds true for all pairs of sub-trees, thus

bringing the total contribution from cross edges to
∑

1≤i,j≤l
i 6=j
|Ui|×|Uj|. The descendant

edges from the sub-tree Ui are of the form (oroot, ox), where ox ∈ Ui, which account

to a total |Ui|. Hence, the total number of unknown descendant edges is
∑

1≤i≤l |Ui|.

Summing the totals up we get C =
∑

1≤i,j≤l
i 6=j
|Ui| × |Uj|+

∑
1≤i≤l |Ui|. Hence, proved.

An observation that we make on the tree is that, irrespective of the distribution

of objects in the tree,
∑

1≤i≤l |Ui| = n − 1. Hence, we conclude that Cardinality C,

could only be maximized, through maximizing the number of cross edges, which is

achieved by a balanced tree. We then start with all the objects of the graph as a set

of single object trees. Note that the initial set of trees are balanced. After that, we

merge pairs of trees thus keeping the set of trees balanced. For merger of the trees,

we choose the shortest edges creating stubs which are in-turn balanced. However,

absence of some edges between pairs of objects leaves some of the trees unconnected

rendering the tree unbalanced. To ensure relative balance of the tree, we assign the

un-merged trees to one of the existing trees. Figure 2.3 presents the first step of the

merge process, on a sample graph given in Figure 3.1.

Thus at each level of the tree, we combine two trees from the level below to form

a single tree, propagating all the way to single merger which connects all trees to form

a single tree, akin to a fully balanced binary tree. However, referring to Equation 2.3,

one would prefer to have larger edges in the tree to maximize the number of lower

bound updates through cross edge updates. Thus, during the final merger, we choose

the largest edge to merge the two sub-trees.

In order to obtain edges with lower weights for the merger, we sort the edges

by their weight in ascending order. Afterwards, we select the shortest edge from the
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sorted list of edges. We merge the two trees that is connected by this edge, only

if neither of the two trees were merged in this iteration. Continue merging pairs of

trees, until the edge list is exhausted. As there might be trees that were not merged

in this iteration, we go over the sorted edge list to merge these trees where ever

possible. However, when there are a very few trees to merge meaning at the top

levels, instead of merging based on small edges, we use the larger edges for the tree

merger completing our Bottom-Up Tree algorithm.

Algorithm 5 (Sketch)Bottom-Up Tree : Algorithm for construction of Bottom-Up

Tree

Input: Graph(O, E)

Output: Tree

Edges ← Sort(E , key:edge weight, descending=True)

Forest ← Set(Tree(i))∀i < |O|

while (—Forest— ¿ 1) do

for (i, j) in Edges do

if i and j were un-merged, merge treei, treej

end for

If any treei was un-merged merge with closest treej

if (—Forest— ≤ 3) then

Edges ← Reverse(Edges)

end if

end while

return Merged Tree
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Top-Down Tree Construction: As one observers from Equation 2.3, a good

lower bound is obtained by maximizing the largest edge max(maxox ,maxoy) while

minimizing the len pathox + len pathoy . In order to maximize the first quantity,

we must choose a large edge to be added to the tree. Following that, to achieve a

minimization of len pathox and len pathoy , the distance from the root to each of the

objects must be minimized.

Top-Down Treeworks as follows (Algorithm 6 contains the pseudo-code). First,

we consider all the known edges from the graph and add the largest edge, (op, oq) to

the tree. This maximized the first quantity of Equation 2.3. We choose either op or

oq as the root of our tree. In the reminder of the section we consider op for explaining

the algorithm. Consider edge (o1, o3) to be the firs edge to be added in the Top-Down

Tree from Figure 3.1 and pick o1 as the root of the tree, as one can see in Figure 2.5,

which is a fully constructed Top-Down Tree on the sample graph. To minimize the

distance from Top-Down Tree root to all other objects in the tree, we run Dijkstra’s

shortest path algorithm from op as well as from oq. The next step is to merge the two

trees from Dijkstra’s algorithm, based on the proximity to op or oq. For every object

ox, among the two shortest paths, SP (ox, op) and SP (ox, oq), we retain only the path

whose length is smaller.

Figure 2.6 and 2.7 represent the shortest path trees from o1 and o3 respectively.

In Figure 2.5, let the shortest path sub-trees that are connected to op be

Up1 , . . . Upl and the shortest path sub-trees that are connected to oq be Uq1 , . . . Uql .

Every lower bound calculation on the cross edges (ox ∈ Upi , oy ∈ Uqj) involves a

path through the edge (op, oq). As edge (op, oq) is a large edge, we therefore obtain

a “good” lower bound for all the cross edges. The tree generated from Top-Down

Tree is optimized for cross edges and hence internal edges of the generated tree may

be ineffective in providing a good lower bound. To overcome this, we partition the
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Figure 2.6: Shortest path tree root at object 1

objects into two groups, around the largest edge (op, oq) and recursively performs

Top-Down Tree on each of the partition separately. Moreover, as the effectiveness

of the algorithm reduces as the levels of recursion increases, we limit the levels of

recursion using a parameter d. The algorithm for the generation of Top-Down Tree

is given in Algorithm 6.

Algorithm 6 Top-Down Tree : Algorithm for construction of Top-Down Tree

Input: Graph(O, E), depth (d)

Output: Top-Down Tree

ei,j ← Max(E , key:edge weight)

spi = Dijkstra(oi)

spj = Dijkstra(oj)

Tree ← merge spi, spj

(Gi, Ei), (Gj, Ej) = partition Graph around the edge ei,j

Parent Pointer(i) ← Top-Down Tree ((Gi, Ei), d− 1)

Parent Pointer(j) ← Top-Down Tree ((Gj, Ej), d− 1)

return Parent Pointer

30



3

1

0

4
2

5

6

0.8

0.1

0.1

0.1

0.5

0.2

Figure 2.7: Shortest path tree root at object 3

Lemma 4 SSLB-Graphtakes O(n2) to compute lower bounds of all unknown edges

take time on sparse Graphs.

Proof 4 SSLB-Graph has three main computational costs, (i)SSLB-Tree , (ii) Top-Down

Tree (iii) Bottom-Up Tree. The first component, SSLB-Tree takes O(n2) time to

complete as described in Section 2.3.2.1. Top-Down Tree, a recursive tree generation

algorithm, works by ensuring that all the cross edges in the generated tree to contain

a predetermined large edge. The recursive nature of the Top-Down Tree algorithm

consumes O(|E|+ n log(n)) time at each level. As depth of recursion is controlled by

the parameter d, Top-Down Tree algorithm is performed 2d − 1 times. As the recur-

sive depth increases the advantage in lower bound estimation reduces dramatically,

while increasing the computation costs exponentially. To circumvent this, we limit

the value of d to a small number like 2. Hence, the overall complexity of Top-Down

Tree algorithm remains O(|E|+n log(n)). Bottom-Up Tree works by aggregating the

trees at a lower level as unified tree by connecting the shortest edge thus far available

for exploration. As the algorithm works on ascending edge weights, we perform a sort
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on the edge weights which is in the order of O|E| log |E|. The overall complexity of

merger operation, is in order of O(|E|) as demonstrated by the two for loops. How-

ever, number of times the merger operation takes place in O(log(n)). Which brings

the overall complexity to O|E| log(n). Thus the overall complexity of our SSLB Algo-

rithm on graphs is O(|E|+ n log(n) + |E| log(n) + n2). Since the graph is sparse, the

running time is dominated by the term O(n2)), which is better than O(n3)) running

time of ADM.

2.3.2.3 Upper Bound Estimation

We note that ADM computes upper and lower bounds of all the unknown edges

at the same time, primarily because one bound is required to update the other. In our

case, that is not necessary. As described in Section 3.3.2, the tightest upper bound

of distance between oi and oj is the length of the shortest path distance between

those objects as given in equation 2.1. Therefore, one can use classical Shortest Path

algorithms, such as, Dijkstra’s [7] algorithm to calculate the shortest path from a

given source to all objects of the graph which is in the order of O(|E| + n log(n)).

To compute the tightest upper bound between oi and oj, we run Dijkstra’s algorithm

either from oi or oj, as the source. The complexity of this is O(|E|+ n log(n)), since

the graph is sparse, the second term dominates leading the complexity to O(n log(n)).

This is obviously better than theO(n3) running time of ADM. If the goal is to compute

tightest upper bound for every unknown edge, then we run all pair shortest path,

which will have the running time of O(n2 log(n)), and outperforms the running time

of ADM.
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2.3.3 Parameterized Neighborhood Search

In this section, we present a different type of algorithm ( LocalSPSearch) that

constrains the search space within a specified (by the parameter) neighborhood to

obtain the lower and upper bounds of distance. Specifically, to estimate the lower and

upper bound of distances between oi, oj, this algorithm takes an additional parameter

t as input that specifies the maximum path length of the local neighborhood between

oi, oj and confines its search inside this neighborhood for bounds estimation. Unlike

the algorithms presented before, LocalSPSearch can trade-off between computation

time and “tightness” of estimated bounds in a flexible manner, based on the value t.

LocalSPSearch performs a depth first search (DFS) [16] (DFS) from oi to oj

of at most length t and then compute bounds. It’s easy to see that by increasing the

length of the path t, the running time of LocalSPSearch increases, while the produced

bounds are likely to become “tighter”. Also, when t = n−1, LocalSPSearch produces

tightest bounds, identical to that of ADM [6].

Algorithm 7 Algorithm TriSearch : Finding upper and lower bounds considering

Triangles

inputs: unknown distance pair oi, oj, graph G, t

for k = 1, 2, . . . n− 2 do

Compute UBd(oi,oj)|ok = d(oi, ok) + d(ok, oj)

Compute LBd(oi,oj)|ok = |d(oi, ok)− d(ok, oj)|

end for

UBd(oi,oj) = min∀k UB
d(oi,oj)|ok

LBd(oi,oj) = max∀kLB
d(oi,oj)|ok
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Running time of LocalSPSearch: Worst case running time of LocalSPSearch

is O(|O| + |E|). However, based on the value of t, the DFS will touch only a subset

of nodes and edges - and hence is much faster in practice.

2.3.3.1 A special Case

It is obvious that the running time of this parameterized solution increases with

increasing t. In our experimental analysis, we observe that, when t = 2, i.e., if we

constrain the search to “triangles”, only, i.e., looking for every possible triangles that

involve oi, oj, and produce bounds based on that, even though the estimated bounds

are not as tight’ as ADM [6] or SSLB, but in practice, they are equally effective in saving

distance calls. The advantage is that this triangle algorithm, we refer to as TriSearch

is significantly lightweight in computational time and space and is well-suited to be

invoked repeatedly.

Basically, TriSearch looks at every triangle between oi and oj and computes

lower and upper bounds as described in the last two lines of Algorithm 7.

Algorithm TriSearch is extremely “lightweight” computationally and can pro-

duce tightest bounds in certain conditions (refer to the two lemmas below). Therefore,

our experimental analysis only presents TriSearch results from the parameterized

neighborhood based algorithms.

Lemma 5 TriSearch runs in linear time on the number of objects.

Proof 5 We note that for an unresolved edge between oi and oj, the number of such

triangles is at most n− 2, i.e., it is linear in the number of objects (recall |O| = n).

Since processing each triangle takes a constant amount of time, therefore TriSearch

takes O(n) times.
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2.4 Distance Estimation Algorithms inside Proximity Problems

In this section, we describe how different distance estimation algorithms (from

Section 2.3) can be adapted to be used as a plug-in inside different proximity prob-

lems.

Orthogonality with proximity problems: The proposed distance estimation al-

gorithms are applicable to save distance calls inside any algorithm for proximity prob-

lems designed on general metric space, as long as they compare a set of distances

with each other. Thus our effort in designing these distance estimation algorithms

and use that as a plug-in, in principle, is orthogonal to the specifics of any particular

algorithm for proximity problems, as its general utility could be applied in saving the

distance calls. To showcase the versatility of the plug-in, we consider three classes

of proximity problems, namely, k-Nearest Neighbor Graphs, l-Medoid Clustering and

Minimum Spanning Tree. We study the proposed plug-in in conjunction with different

algorithms for these three problems, from classical to recent ones.

Principle of using bound estimation algorithms: The fundamental prin-

ciple in using our bound estimation algorithms is to invoke these algorithms to

compare two different unknown distances, such as, LBd(oi,oj) and UBd(ok,ol). Al-

gorithms for the proximity problems then check, if LBd(oi,oj) > UBd(ok,ol). If the

condition comes true, then d(oi, oj) > d(ok, ol) and the actual distance calls d(oi, oj)

and d(ok, ol) can be saved. In fact, some proximity algorithms perform more com-

plex distance comparisons than just comparing two distances. Generally speaking,

given an arbitrary set of objects, they could be specified in the following form: IF

d(oi, oj) +d(oj, ok) +d(ok, ol)..+ . . . > d(op, oq) +d(oq, or) +d(or, os) + . . ., then take

some actions. As a concrete example, a partition-based clustering algorithm such

as PAM, has to repeatedly decide whether a current medoid object is to be swapped

with a non-medoid object, by comparing the sum of several distances before and after
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the swap. This decision making process does not necessarily require actual distance

computations. In fact, if PAM can figure out that the lower bound of the sum of

distances after the swap is greater than the upper bound of the sum of distances before

the swap, then this swap must not be made.

Even though we consider 3 different proximity problems (Refer to Section 2.2.3)

and 5 classical algorithms, for brevity, we limit our detailed discussion to only one

of these five algorithms, namely KNNRp algorithm [17], designed for the k-Nearest

Neighbor Graph (k-NNG) Computation . Other 5 algorithms are briefly described in

Section 2.5, before they are experimentally evaluated.

Algorithm 8 KNNRp algorithm [17],

Require: KNN (Integer k, ObjectSet U)
Stage 1: Initialize NHA and construct the index
I
for each u ∈ U do

NHAu ← {(⊥,∞), . . . , (⊥,∞)}k
end for
Create I, all computed distances populate sym-
metrically NHA
Stage 2: Complete the NNk(u) for all u ∈ U
COH ← {(u, curCRu), u ∈ U}
for each (u, curCRu) ∈ COH, in increasing
(u, curCRu) order do

Create the candidate set C according to I //
exclude NHAu

while I 6= ∅ do
c← extract a candidate from C
if ( thenU is fixed does not apply for u &

c)
du,c ← d(u, c), try insert c into NHAu

try to insert u into NHAc, update c in
COH(symmetry)

use NHAu as a graph and I to discard
objects from C

end if
end while

end for
return NHA as a graph

Algorithm 9 KNNRp + Plug-in algo-
rithm
Require: KNN (Integer k, ObjectSet U)

Stage 1: Initialize NHA and construct the index I
for each u ∈ U do

NHAu ← {(⊥,∞), . . . , (⊥,∞)}k
end for
Create I, all computed distances populate symmetri-
cally NHA
Stage 2: Complete the NNk(u) for all u ∈ U
COH ← {(u, curCRu), u ∈ U}
for each (u, curCRu) ∈ COH, in increasing
(u, curCRu) order do

Create the candidate set C according to I // exclude
NHAu

while I 6= ∅ do
c← extract a candidate from C
if LB[u][c] > curCRu + cpr then continue
if ( thenU is fixed does not apply for u & c )

if ( then LB[u][c] < curCRu)
du,c ← d(u, c), try insert c in NHAu

try to insert u into NHAc, update c in
COH(symmetry)

end if
use NHAu as a graph and I to discard ob-

jects from C
end if
if UB[u][c] > curCRu+cpr or du,c > curCRu+

cpr then
Discard descendants of c from C

end if
end while

end for
return NHA as a graph
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2.4.1 Plug-in Inside KNNrp

[17] KNNrp, a popular k-NNG proposed in [17] computes the k-NNG graph in

two steps. At first, it builds a binary tree like index structure by keeping objects

that are close as part of the same sub-tree. Then, it explores the index to compute

the exact k-NNG. Algorithm 8 presents the verbatim pseudo-code of this prior work

and Algorithm 9 shows its adaptation considering our proposed plug-in. The main

distance calls save up takes place place in the exploration step, which we describe in

detail.

During the index exploration phase, KNNrp maintains three key information

about each object u, (i) curCR - distance of kth object from u (ii) NHA - the top-

k nearest objects that node has seen so far (iii) upr - the distance of a node to its

known farthest descendent object. As the exploration phase proceeds we explore the

object u with the smallest curCR, which are maintained in a heap COH and find a

candidate set to compare u. The algorithm prunes the candidate set using the index

to save computation cost.

Using our solution as a plug-in, KNNRp + Plug-in judiciously deciding which

of the unknown distances that span across sub-trees, must be queried to compute the

k-NN of an object and which distances could be estimated. KNNRp + Plug-in makes

the following comparison invoking our distance estimation algorithms: (i) by checking

if the LB value of an unknown edge is larger than the curCRu + upr, meaning, if the

LB value of an unknown edge from u is bigger than first NHA node and other end of

the edge’s pr, we can safely prune the node and its children from further exploration,

similarly, (ii) we discard all descendants of a node from exploration, if we find, the

upper bound of the distance is larger than the curCRu and upr or if the actual distance

of the edge is more.
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2.5 Experimental Analysis

Our experimental analysis are run on a machine with Intel Core i7 4GHz CPU

and 64GB of memory with Linux operating system and Python 3.6.8 used for algo-

rithmic development. All numbers are presented as the average of ten runs.

2.5.1 Datasets and Experimental Setup

We first present the used datasets, experimental setting, and evaluation mea-

sures. Datasets: We use 6 different datasets by varying properties that are ap-

propriate for the various proximity problems under investigation and summarized in

Table 2.1. For each dataset, the actual pairwise distances (i.e., ground truth) are

known. For generating the topology of synthetic networks we used the network gen-

erator package, igraph3. We sample 4 kinds of graphs namely Barabasi, Renyi Erdos,

Geometric as well as Forrest Firing.

Dataset Algorithm Num. Objects Num. of Edges Dimension Distance Function
Maps Dataset k-NNG, Clustering, MST 10k 49995000 2 Google Maps API
20 Newsgroups Dataset k-NNG, Clustering 18846 177576435 128 Eucledian
Flicker1M k-NNG 10k 49995000 256 Eucledian
Synthetic Uniform kNNG, Clustering, MST 10k 49995000 4 LP-norm
Synthetic Gaussian kNNG, Clustering, MST 10k 49995000 4 LP-norm
Synthetic Zipfian kNNG, Clustering, MST 10k 49995000 4 LP-norm

Table 2.1: Dataset description

Goals: The goal of our experimental analysis is to provide insights to the fol-

lowing questions:

(Subsection 2.5.3.) Sensitivity analysis of our proposed distance estimation al-

3https://igraph.org/python/
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gorithms and their comparison with the state-of-the-art ADM. We compare them in

produced distance bounds and running time.

(Subsection 2.5.4.) Application of our proposed bound estimation algorithms as a

plug-in inside 5 different proximity algorithms (Described in Subsection 2.5.2). We

measure two things in this context - %distance call save up and the corresponding

running time. For brevity, we only present a subset of results that are representative.

2.5.2 Implemented Proximity Algorithms

We evaluate 5 different algorithms from three classes of proximity problems,

namely - (a) k-NNG Computation: KNNRp [17] (which is described in depth in Sec-

tion 2.4 ) (b) Minimum spanning tree algorithms (MST) : (ii) Prim’ [5], (iii)Kruskal’ss [18]

, and (c) Clustering Algorithms: (iv) PAM [19] and (v) CLARANS [20].

In addition to KNNRp, described in detail in section 2.4, here we briefly describe

how other classical algorithms adapt our solutions as plug-in.

MST: Prim’s algorithm generates a MST when provided with a graph and a

starting index. It maintains a sketch from which it chooses the next edge to add the

graph, our distance estimation algorithms are plugged in to decide how to extend

the graph. Whereas, MST by Kruskal’s algorithm is generated by adding the least

weighted edge to the graph that does not form a loop. Our algorithms are used to

compare the top edge contenders (based on LB) and determine whether to add the

edge or explore further.

Clustering: Inside l-medoid clustering algorithms, PAM and CLARANS are algo-

rithms are using to decide whether the current centroid is to be swapped or not.
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2.5.3 Sensitivity Analysis of the Distance Estimation Algorithms

Our main investigation here is to compare SSLB-Graph (abbreviated in the Fig-

ures as SSLB), TriSearch(abbreviated in the Figures as TS) with ADM in produced

distance bounds and running time.

Our experimental results indicate that SSLB-Graphis significantly faster than

ADM, while producing comparable distance bounds. These results corroborate our the-

oretical claims - that is SSLB-Graphis quadratic on sparse graphs, whereas, ADM is

cubic. TriSearch, on the other hand, being a heuristic, produces much looser bounds

comparing to the other two algorithms, while being the fastest. Again this observation

is in conformance with our theoretical claims.

2.5.3.1 Tightness of bounds and running time

Since ADM is not scalable owing to its cubic nature, we consider at most n = 1024,

and vary % of known edge (from 0.01%) to 0.52%). We compare the algorithms in

difference in distance bounds (both upper and lower), and running time. For brevity,

we only present the graphs on lower bounds, as SSLB-Graph is designed for lower

bound. We note that the upper bound calculation follows identical trends.

Figures 2.8 & 2.9 present both LB and running time of these algorithms. First

and foremost, we observe that as objects in the dataset increases, there is virtu-

ally no distinguishable difference between the bounds of SSLB-Graphand ADM, while

TriSearchis significantly inferior in producing bounds. Another important observa-

tion is in the running time of these algorithms. Figure 2.8 presents the average running

time in generating the bounds for an unknown edge. As seen from the bottom figure

in Figures 2.8 & 2.9(in orange line), one can easily understand the cubic nature of

ADM and also ability of our solutions in providing a relatively tight lower bound while
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being computationally much faster. SSLB-Graphtakes more than 34 hours to com-

plete when there are 4k objects. Due to this cubic nature of ADM , comparison with

with larger set of objects is not possible.

In figure 2.10 the average lower bound for these three algorithms are presented

by varying the percentage of known edge. As it could be seen, ADM exhibits very

high running time, as the graph becomes more dense. It also presents the running

time corresponding to different sizes of graphs. As expected, TriSearch performs the

worst in producing bounds but comes out to be the fastest choice in running time.
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2.5.4 Distance Estimation Algorithms As Plug-in

Our main investigation here is how our distance estimation algorithms perform

as plug-in inside various proximity algorithms in saving distance calls and running

time. We present distance calls as well as CPU time in seconds. In addition to the

three algorithm, only for the comparison of running time, we implement the original

versions of the algorithms without the plug-in, that we refer to as ORC.

These experiments confirm that proximity algorithms augmented with our bound

estimation algorithms as plug-in shows on average 5× and as much as 18× improve-
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ment in total number of distance calls, while incurring minimal to no additional CPU

time.

Parameters: We intend to vary k and n for the k-NNG, n and l (the number

of medoids) for the clustering problems, and only n for the MSTs. The default values

of n = 128, k = 5. Running times are measured in seconds unless explicitly stated.

2.5.4.1 Evaluation of k-NNG

The objective of these set of experiments is to compare KNNrp and KNNrp+Plug-in

in saving distance calls and CPU time varying different parameters. The former mea-

sure is presented as the proportion of the number of calls the algorithms make using

the plug-in vs the original quadratic number of distance calls.

Varying n: We vary the number of objects to study the effect of number of

distance comparisons and the time taken for completing the algorithms. As seen in

Figure 2.11, one can clearly see the effect of varying n and its impact total distance

computation. Both SSLB-Graphand ADM save about 70% distance calls, whereas,

TriSearchperforms quite poorly.

Varying k: Figure 2.12 also shows the effect of parameter k on the number

of distance calculations and running times. As [17] corraborates, the parameter k

does not have an effect on the number of distance calculations. Again ADM and

SSLB-Graphperform equally well varying k, but ADM is significantly slower in running

time.

2.5.4.2 Evaluation of Clustering

The objective of these set of experiments is to compare the two l-medoid algo-

rithms PAM and CLARANS with their augmented versions with our proposed algorithms

and ADM. Our measures of interests are same as before.
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Figure 2.14: CLARANS
Varying n : running time

2 5 10 20
k

0

2

4

6

8

10

12

14

T
im

e

Sasha Wang
SSLB
TriSearch
Actual algorithm

Figure 2.15: CLARANS
Varying k : running time

2 5 10 20
Number of medoids

0

2

4

6

8

10

12

T
im

e(
se

c)

ADM
SSLB
TS
ORC

Figure 2.16: PAM Varying
Medoids : running time

2 5 10 20
Number of medoids

0

2

4

6

8

10

12

14

T
im

e(
se

c)

ADM
SSLB
TS
ORC

Figure 2.17: PAM Varying
Medoids : running time

0

0.5

1

%
 s

av
e 

u
p

64 128 256
Number of objects

0

10

20

T
im

e(
se

c) ADM
SSLB
TS
ORC

Figure 2.18: Prim’s Vary-
ing n : Distance save ups
and running time

0

0.5

%
 s

av
e 

u
p

64 128 256
Number of objects

0

500

T
im

e

ADM
SSLB
TS
ORC

Figure 2.19: Kruskal’s
Varying n : Distance save
ups and running timel

Varying n: Figures 2.13 present the effect of number of objects on the two

algorithm PAM and CLARANS with their augmented versions. Overall, algorithms aug-

mented with our plugin use on average one third the number of distance calculations..

For both algorithms, as the number of objects grows, the number of distance calcula-

tions also increases. Figures 2.16 present the running times of the algorithms. Notice
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Figure 2.20: CLARANS Varying n : Distance save ups

that the augmented algorithms perform very similar to the original algorithms and

on average it save of about 10× time saving for the SSLB-Graphplugin on the original

algorithms.

Varying l: In Figure 2.13 2.20 show the effect of parameter l on the number

of distance calculations and running times. For the PAM algorithm, as the number

of clusters increase, the number of distance calculations decreases until l = 25. As

the number of objects is fixed, increasing the number of clusters will results in more

local minima for the PAM algorithm which in turn makes the algorithm converge faster

since it cannot find new candidates for changing the centers. CLARANS on the other

hand does not suffer from this phenomena and as the number of clusters increases
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the number of distance calls also increases. Overall the two augmented algorithms

perform better by a factor of 2.3 without incurring more than 1 seconds of CPU time.

2.5.4.3 Evaluation of MST Algorithms

In this section we compare Kruskal’s and Prim’s algorithms for the MST

problem. Figure 2.19 2.18 presents these results. As expected, the original algorithms

need to exhaustively calculate all the distances required to build the graph in order

to finish the minimum spanning tree. Augmented algorithms on the other hand only

need a small portion of the distance (most of the time less than 10%). This gives

the augmented algorithm a huge advantage in terms of number of distance calls. As

presented in Figure 2.18, the running time of Prim’s algorithm is not affected by the

plug-in (increase of at most 1.2 times the original algorithm). This does not hold for

Kruskal’s algorithm and the running time increases by a factor of 1.7.

2.6 Related Work

Exact solutions for the proximity problems in metric space can be divided into

two broad categories according to a popular survey paper [21].

I. Transforming Metric Space into Vector Space: The first kind trans-

forms the metric space into a vector space by transforming each object to a finite-

dimensional vector. The distance function is then defined based on the distance

between these vectors. Some of the most useful distance functions are Euclidean

distance, Manhattan distance, or L∞. Popular solutions in this space include kd-

tree [22],R-tree [23], or more recent X-tree [24]. These approaches usually use the

coordinate information of the objects. We do not investigate this genre of work, as

they do not directly optimize distance calls.
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II. Dealing with Metric Space Directly: The second kind deals with metric

space directly and can further be divided into different sub-categories depending on

their algorithmic offering. Many of these are limited to Euclidean space only and do

not extend to general metric space.

II.a. Pivot based solutions: The first kind selects a set of pivots in order to divide

the space into smaller sub-spaces, essentially grouping similar objects together. In

pivot based approaches, like BKT [25],FQT and FHQT [26, 27],VPT [28],GNAT [29]

FQA [30], Bisector Tree [31],M-Tree [32], Voronoi Tree [33], the objective is to find

a subset of points acting as pivot and dividing the space into sub-regions of objects

that are closer to each pivot. As an example, VPT or vantage point tree recursively

chooses the pivots based on the median distances. In M-Tree, all the objects are

stored in leaf nodes and for each subtree, an object is chosen as the representative.

There are two fundamental assumptions about these solutions that makes them

incompatible to our work. The first one is the assumption that the object set is differ-

ent from the query set, and secondly these approaches choose the pivot points based

on the query object.

II.b. Matrix based solutions: The second set of algorithms for metric space are

algorithms that use a matrix to keep track of the edges between the objects. The

representative algorithms in this sub-class are AESA and LAESA [34, 35] which take

the idea of pivot based methods to the extreme. It calculates all pairwise distances

between objects and store them in a matrix. This matrix is then used during query

time to expedite processing time. These works are not designed to minimize distance

calls. In fact it has been shown empirically that the number of calculated distances

for AESA is constant.

II.c. Solutions to minimize distance calls: [6] assumes that the prominent

cost of solving proximity problem lies in making distance calls, thus propose ADM to
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estimate tightest upper and lower bounds of distances that are then demonstrated to

save up different querying cost. Thus, we compare TriSearch with ADM to demonstrate

their difference in saving distance calls and computational overhead.

2.7 Conclusion

In this paper, we propose a general purpose plug-in for estimating distance

bounds in proximity problems in general metric spaces. We present a suite of algo-

rithms for estimating these bounds that are computationally “light weight”, starting

from algorithms that constraint the search space to local neighborhood of an unknown

edge to the ones that do not. One important technical result of our work includes a

new lower bound estimation algorithm that produces the tightest bound (when the

underlying weighted graph of known edge weights form a tree) and improves the pre-

viously known best algorithm for lower bound estimation in asymptotic running time.

After that, we show how classical algorithms for proximity problems can non-trivially

adapt the proposed plug-in and save distance calls. We experimentally analyze the

proposed plug-in in 3 different proximity problems (k-NNG construction, clustering,

minimum spanning tree construction), considering 5 classical algorithms, using 6 dif-

ferent datasets. Our experiment results demonstrate an order of magnitude reduction

in the number of calls to the distance oracle (average 5× , maximum 20×), at the

expense of comparatively small increase in the rest of the computation costs.
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CHAPTER 3

A Generalized Approach for Reducing Expensive Distance Calls for A Broad Class

of Proximity Problems

3.1 Introduction

Given a set of n objects with distances defined between each pair of objects,

various classical proximity problems have been investigated over the decades in data

management research, such as k-nearest neighbor, clustering, shortest path, minimum

spanning tree, and several others. In this paper we consider the setting where the

objects are in a general metric space and distance computations are the dominant

cost of algorithms for these problems. For example, computing the distance between

a pair of objects may involve running expensive computer vision algorithms, involving

actual human experts (inferring dissimilarity between two CAT-SCAN images may

be hard to capture using a distance function and may require human involvement),

or may even require calls to third party applications (e.g., map APIs) which may

impose monetary costs per number of queries or put constraints on query rate, e.g.,

limit the number of queries a user can make in a given time period.

In an abstract sense, we assume access to a distance oracle which is an ex-

pensive function that takes as input any pair of objects and outputs the distance

between them. Our objective is to consider existing algorithms for various classical

proximity problems, and propose minor redesign of these algorithms such that they

are refocused towards minimizing number of distance calls at the expense of local

CPU computations.
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One of the significant highlights of our approach is, rather than redesigning

all prior existing algorithms for the myriad proximity problems on a case-by-case

basis, we provide a unified framework in the form of a general solution scheme. We

show how such a framework can be easily added to prior algorithms, resulting in

significant reduction in the number of calls to the distance oracle, at the expense of

comparatively small increase in the rest of the computation costs. Our framework is

very general, and the only assumption we make about the unknown distance function

is that it should be a metric, i.e., it satisfies the triangle inequality or relaxed triangle

inequality property - these assumptions are intuitive and justified in a wide variety of

real-world applications [36, 37, 38, 39, 40]. Moreover, we emphasize that our solution

framework does not change the outputs of the original algorithm. The same outputs

are produced, but with fewer distance calls.

The heart of of our techniques is based upon the following observations. During

the process of computation, most proximity algorithms repeatedly need to compare

distances between various pairs of objects, or compare various distance aggregates

such as sums of distances. For example, while computing the k-nearest neighbor of

a query object u, existing algorithms iteratively check if there is any other object

v whose distance from u is smaller than the object’s distance from its current k-th

nearest neighbor w (i.e., whether dist(u, v) < dist(u,w)). If this answer turns out

to be true, then the current k-th nearest neighbor is updated. However, for this

algorithm to run correctly, it is not necessary to always know the precise distances

dist(u, v) and dist(u,w). It is just sufficient to know whether the linear inequality

dist(u, v) − dist(u,w) < 0 is true. If this is determined to be true without having

to invoke the distance oracle, then v can be safely discarded, thus saving on distance

calls.
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The design of efficient algorithms for various classical proximity problems have

been investigated for decades (an elaborate discussion on the related body of work

is deferred to Section 3.6). However, the characteristics of most of these algorithms

are limited to being specific to the proximity problem being considered, and do not

easily generalize across different proximity problems. Secondly, the algorithmic opti-

mizations are blended and do not separate the expensive distance calls minimization

from local computations.

3.1.1 Technical Contributions

Contribution 1: Linear Program Modeling (Section 3.2.2): Our first contri-

bution is in identifying IF statements in proximity algorithms that compare linear

distance expressions, and showing how they can be more efficiently redesigned with-

out having to invoke expensive distance oracle calls by modeling them as a system

of linear inequalities. We identify that such IF statements form the heart of the

proximity algorithms and are the key steps where distance computations appear. For

such IF statements , we provide guidelines for re-authoring them such that expensive

distance oracle calls are replaced by linear constraints. We present a model that in-

volves expressing the problem as a system of linear inequalities which can be solved

by only using local CPU resources (Section 3.2). To the best of our knowledge, no

prior work has presented this formalism before.

Contribution 2: Graph-Theoretic Modeling and Efficient Algorithms (Sec-

tions 3.3 and 3.4): For scenarios where solving linear programs place unacceptable

demands on local computation resources, we propose a simpler yet novel redesign of

IF statements by mapping them to lower and upper bound distance computation

problems. As an illustrative example, if the upper bound of dist(u, v) can be shown
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to be smaller than the lower bound of dist(u,w) without invoking any distance calls,

then this implies that dist(u, v) < dist(u,w). We show that such upper and lower

bound problems can be mapped to interesting computation problems over sparse

weighted graphs, which although suboptimal compared to the LP formulation (the

former approach saves more distance calls), they allow for more efficient algorithms

that make far less demands on local CPU resources.

We make several algorithmic contributions, among them a new lower bound

estimation algorithm, referred to as Shortest Path Based Solution Scheme (SPLUB in

short) which considers the sparsity of the graph while computing the lower bound

improving the computational efficiently of the lower bound algorithm.

As a second algorithm contribution, we present an optimized “lightweight”

bound estimation algorithm. The “lightweight” solution framework is highly scal-

able, by constraining to search to a local neighborhood of the graph, limiting the

search to paths of length 2. We refer to this algorithmic scheme as the Triangle

Based Solution Scheme ( Tri Scheme in short ). In addition to defining a lightweight

scheme, we also present an expected case analysis for Tri Scheme in section 3.4.2.2

These latter algorithms compromise the tightness of estimated bounds (and

are thus suboptimal compared to the LP approach for saving on distance calls), but

enable higher computational efficiency which can make them practical for certain

application scenarios. To summarize, we present a suite of algorithms that make a

trade-off between savings on distance calls and computational efficiency.

Contribution 3: Extensive Experimentation (Section 3.5): Our final con-

tribution lies in performing extensive experiments and outperforming the appropri-

ately adapted current-state-of-the-art proximity solutions with the help of real world

datasets. Besides demonstrating algorithmic efficiency, our experiments also high-
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lighted the ease with which our proposed re-authoring methods can be adapted for a

wide class of proximity algorithms.

3.2 Distance Cost Minimization in Proximity Algorithms

In this section, we study how existing proximity algorithms incur distance cost

inside computational loop and propose a general purpose model Direct Feasibility

Test to minimize that cost.

3.2.1 General Working Principles of Proximity Algorithms

Proximity problems rely on establishing proximity relationship among differ-

ent objects in order to decide the best set of outputs, and play fundamental roles in

database research. Examples of such problems include the k-NN, computing Mini-

mum Spanning Tree (MST), clustering problems, etc.

1 IF statements involving distance calls - At the heart of the proximity

problems, there exist repeated distance comparisons. Typically, one or more calls

to the distance oracle are associated with every invocation of such comparison. As

an example, consider any clustering algorithm with the overarching goal of putting

similar objects together in the same group, and keeping dissimilar objects in different

groups. These algorithms repeatedly compare distances between a set of objects to

make such decision.

if dist(oi , oj ) ≥ dist(ok , ol){

do something

}

else{

do something_else
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}

2 Saving distance calls in IF statements - When the distances are from

a general metric space, there exists relationship between the distances - our goal is

to exploit that in saving distance calls.

Consider a set, O = {oi, o2, . . . , on} of n objects. We assume no two objects

in O are the same. The underlying dissimilarity between each pair is the distance

between them, represented by dist(oi, oj).

Metric Spaces and Triangle Inequality: A Metric Space is an ordered pair

(M, d) where M is a collection of objects and dist is a distance metric on M. In

addition, for any triplets (mi,mj,mk) ∈M,

dist(mi,mj) = 0 =⇒ (mi = mj)

dist(mi,mj) = dist(mj,mi)

dist(mi,mj) ≤ dist(mi,mk) + dist(mk,mj) (4 inequality)

Informally, the triangle inequality implied that the distance between any pair of

objects is less than or equal to the distance of a path between the same pair of

objects that goes through any other object(s).

Our goal, through this work, is to develop general computational techniques

that leverage the triangle inequality and save actual distance calls to the expensive

oracle inside different proximity problems.

Example 2 ( Running Example ) : Consider a set of 7 objects { 0, 1, 2, 3, 4, 5, 6 }.

Let us also assume that the distance between every pair of objects is between 0 and

1. Assume these distances satisfy the metric property, i.e., triangle inequality of

distances.
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Figure 3.1: 7 objects and their corresponding known and unknown distances.

The running example is shown in Figure 3.1. As shown in the figure, we also

assume that 8 pairwise distances are known (i.e., the distance oracle has been called

for each of these pairs). The solid lines between the objects represent the distance

that are known.

3.2.2 Direct Feasibility Test

The triangle inequality relationship among the objects could be represented

using a set of inequalities - in fact, involving all triangles induced by the objects in

O.

Using the example in Figure 3.1, let us create
(
n
2

)
variables of the form xij,

where each variable represents the distance between the respective pair of objects.

Next, we create linear inequalities that constrain the values these variables can have.

For example, for the pair of objects (o1, o3) whose distance is known, we add two

inequalities of the form (x13− 0.8 ≤ 0) and (- x13 + 0.8 ≤ 0) (i.e., together equivalent

to the equation x13 = 0.8). Similarly, for each pair of objects whose distance is

unknown, for example, (o1, o3), we add constraints of the form (x12 − 1 ≤ 0) and
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(- x12 ≤ 0). Thus far, the system will have (2 ×
(
n
2

)
→ 42) inequalities, with two

inequalities corresponding to each xij.

Next, corresponding to each triangle, x12, x23, x13 we will have additional in-

equalities of the form, (x12 − x23 − x13 ≤ 0), (−x12 − x23 + x13 ≤ 0) and, (−x12 +

x23 − x13 ≤ 0). There are
(
n
3

)
(
(

7
3

)
in the example) number of triangles in a set of n

objects. Each triangle gives rise to a set of 3 linear inequalities. Thus for our running

example, the consideration of all triangles adds (3 ×
(
n
3

)
→ 105) number of linear

inequalities to the linear system.

For an IF statement such as if dist(o2, o6) < dist(o3, o5), we formulate a corre-

sponding additional constraint, (x26 − x35) < 0. However, we should be checking for

the absence of any feasible region for the reversed constraint, expressed as follows,

(−x26+x35) ≤ 0. This reversed constraint is added to the system of linear constraints.

Thus, in order to save distance calls in the IF statement, our approach is to solve

the following decision problem: Does there exist no feasible solution to the system of

inequalities? if the answer to that question is YES, the if condition is satisfied. If the

answer is NO, then the proximity algorithm may call the distance oracle to obtain

the exact distances and repeat the computation. This, in a nutshell, is the core idea

of our proposed approach.

Solving the system of linear inequalities: Formally, the system of linear inequal-

ities can be written as follows:

AX ≤ b (3.1)

where A forms the coefficient matrix, X is a vector of unknown distances, b is a vector

of known coefficients.

Determining whether this system of linear inequalities has a feasible region or

not could be solved using existing off-the-shelf linear programming tools. For example,
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SIMPLEX [41] could be used to solve this problem. However, the number of iterations

for SIMPLEX in the worst case is exponential in number of objects [42]. A more

practical approach to linear programming through the ellipsoid algorithm [43] also

could be used. However, solving linear inequalities through this method is in O(n6).

These algorithms thus are not practical even for small number of objects.

3.3 Graph Theoretic Approach to Distance Cost Minimization

Contrary to employing expensive linear programming to resolve the IF state-

ments statement exactly - an alternative less expensive approach is to redo the IF

statements statement as follows:

if LBdist(oi , oj ) ≥ UBdist(ok , ol){

do something

}

else{

do something_else

}

This above formulation is designed to compute the lower bound(LB) of distance

between oi, oj and compare that with the upper bound(UB) of distance between ok, ol.

We emphasize that such a reformulation of the IF condition is not the same as the

original IF condition; If the reformulated condition is true, the original condition is

true, but not vice versa. In the vice versa case, the distance oracle has to be invoked

to accurately resolve the IF statement.

The advantage of the reformulated condition is that it allows us to use much

more efficient and scalable graph theoretic approaches for resolving the condition as

compared to the linear programming approaches described earlier, thus resulting in
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dramatic savings in local CPU computations, at the cost of small increase in number

of calls to the distance oracle.

Thus our next set of investigation hinges on finding lower and upper bounds

of distances using a suite of computational techniques that considers the underlying

abstraction to be a complete graph on general metric spaces. Specifically, if indeed

LBdist(oi , oj ) ≥ UBdist(ok , ol), then two distance calls to the oracle dist(oi, oj) and

dist(ok, ol) could be saved.

3.3.1 Data Model

Abstractly, the distance relationship over the given set of objects is abstracted

as a weighted complete graph, G. The nodes are defined over the set of objects ( O ),

and every pair of nodes in the object set, (oi, oj) forms the edges in graph whose edge

weights are induced by the distance function, dist(oi, oj). As before, the distance

between the objects satisfy metric property, i.e., the triangle inequality.

Definition 1 The Tightest Upper Bound of the distance between (oi, oj) (or TUBdist(oi,oj)),

is the largest possible distance that an unknown edge can assume without violating the

triangle inequality, considering all other known distances in G.

It is easy to see that the tightest upper bound of distance between oi and oj is the

length of the shortest-path (sp) distance between those objects [6] that will go through

additional intermediate objects. Note that, there might be other paths between (oi, oj)

which also provide an upper bound on dist(oi, oj) but which are not as tight as

TUBdist(oi,oj)). In the rest of the paper we refer to them as UBdist(oi,oj).

TUBd(oi,oj) = sp(oi, oj) (3.2)

UBd(oi,oj) ≥ sp(oi, oj) (3.3)
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Figure 3.2: Geometric Interpretation of LB. [Top] Shortest Paths through Known
Edge. [Bottom] Wrapping SP onto Known Edge.

Definition 2 The Tightest Lower Bound of the distance between (oi, oj) (or TLBdist(oi,oj)),

is the lowest possible distance that an unknown edge can assume without violating the

triangle inequality, considering all other known distances in G.

The tightest lower bound TLBdist(oi,oj) involves computing LB between oi and

oj considering every path and taking the maximum. For each path, the TLB could

be computed using the generalized metric property proposed in [15] - which involves

subtracting the weight of the rest of the path (computed by taking the sum of known

distances) from the highest weight edge (let that be dist(ok, ol) between ok, ol) in p.

Similar to upper bounds, any other path could lead to a lower bound which might

not be tightest as TLBdist(oi,oj), and, we refer to them as LBdist(oi,oj).

TLBdist(oi,oj) = Maximum∀p{dist(ok, ol)− path(oi, ok)− path(ol, oj)} (3.4)

LBdist(oi,oj) ≤ ∀p{dist(ok, ol)− path(oi, ok)− path(ol, oj)} (3.5)

To explain further, we refer to Figure 3.2 to find out TLBdist(X,Y ). Let SPX,oi

be the shortest path between X and oi (curved lines in blue). Similarly, SPY,oi be

the shortest path between Y and oj. Thus, we can visualize the equation 3.5 in

the light of the figure as shown by wrapping of shortest paths from X and Y on to

the known edge (oi, oj). The lower bound, LBdist(X,Y ), obtained from this path [X-

SPX,oi-(oi, oj)-SPoj ,Y -Y ], is the residue on edge length (dist(oi, oj) - SPX,oi - SPoj ,Y )

from the wrap over ( highlighted interval in yellow ). By definition 2, TLBdist(X,Y ),
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is the maximum of all such lower bounds over all paths available between X and Y .

Recall Figure 3.1 again and note that an alternative representation of the figure is

a weighted complete graph on metric space, for which some of the edges are known

and the rest are unknown. Using Example 2, only 8 out of 21
(

7
2

)
edges are known

(the solid lines), while the remaining 13 edges are unknown. As given in figure, if

the distance dist(1, 3) = 0.8 and dist(3, 4) = 0.1 then the the tightest bounds for

distance d(1, 4) may be computed as follows:

|dist(o1, o3)− dist(o3, o4)| ≤ dist(o1, o4) ≤ dist(o1, o3) + dist(o4, o3)

i.e.,

0.7 ≤ dist(o1, o4) ≤ 0.9

3.3.2 Problem Definitions

In this section, we formally define the studied problems considering the under-

lying abstraction to be a complete graph:

Problem 3 ( Bounds Problem ) : Given a partial graph, G(O, E), and

an unknown edge (oi, oj) in graph, find the tightest (i) lower bound of dis-

tances (or TLBdist(oi,oj)), and (ii) find the tightest upper bound of distances (or

TUBdist(oi,oj)), without violating the triangle inequality, considering all other

known distances in G but avoiding any calls to the expensive distance oracle,

O.

For instance, from the discussion following Example 2, the query problem on

the partial graph for the edge dist(o1, o3), would yield, the tightest lower bound as

0.7 and tightest upper bound as 0.9.
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A proximity algorithm may have to make two calls to the distance oracle if

the produced bounds are not effective to follow either of the branches of the IF

statements statement. Following each call to the distance oracle on an unknown

edge and its subsequent resolution, the partial graph evolves by adding an additional

known edge to the graph. The graph will be represented as an adjacency matrix or

adjacency list representation. Consequently, upon a new distance resolution, we have

to update respective edge information to the graph data structures. Correspondingly,

after an edge resolution, data structures keeping track of upper and lower bounds

also may have to be updated. Here, we define the update problem as follows,

Problem 4 ( Update Problem ) : Given a partial graph, G(O, E), the

actual distance (from oracle call) of a newly known edge (oi, oj), update the

data structures that keep track of the lower and upper bounds of the remaining

unknown edges.

In the next section, we present multiple solutions that trade-off between tight-

ness of produced bounds and running time to solve the 3 and 4 problems.

3.4 Bound Computation Algorithms

Solutions to every proximity problems involve two fundamental steps which

often works in tandem, contributing towards the progress of the algorithm, (i) a

distance resolution procedure for estimating the unknown distance and, (ii) an update

operation which adds the resolved edge to the graph and associated data structures.

Our proposed two solution schemes that trade-off between time and tightness

of the produced bounds during update. Nevertheless, when used in conjunction with

any proximity algorithm, they both produce exact and identical solution as that of

the original algorithm.
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Discussion - Running Example - Let us take the example of same two unknown

edges (o2, o6) and (o3, o5). Let us also assume an IF statements in proximity problems

needs to evaluate is of the form IF (o2, o6) > (o3, o5). Considering graph theoretic

approaches, we restate this IF statements as, IF(LBdist(o2,o6) ≥ UBdist(o3,o5)). From

the definitions of upper and lower bounds earlier in this section, it could be shown

that LBdist(o2,o6) = 0.3 and UBdist(o3,o5) = 0.6. Since 0.3 < 0.6, it is evident from this

example that a distance save up, which previously facilitated by Direct Feasibility

Test , cannot be obtained here thus necessitating two oracle calls for dist(o2, o6) and

dist(o3, o5).

3.4.1 Exact Algorithms

WE describe exact Algorithm SPLUB (Shortest Path Based Lower and Upper

Bound algorithm) for bounds computation and the update problem. SPLUB is sparsity

sensitive - hence its running time depends on the number of known edges when it is

invoked.

3.4.1.1 Algorithm Development:

Recall from Definition 1 that, in any given graph, the tightest upper bound of distance

between objects oi and oj is the length of the shortest-path (sp) distance between those

objects that will go through additional intermediate objects.

Similarly, by Definition 2, the tightest lower bound LBd(oi,oj) involves computing

LB between oi and oj considering every path and taking the maximum.

Aforementioned definitions, their application in examples 2 and understanding

the sparsity of the graph formally sets the foundation for the SPLUB algorithm.
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Exact Upper Bound Algorithm - Our upper bound computation is inspired

from Dijkstra’s Algorithm [7].

To find out the TUB between an unknown pair of edge (oi, oj), we start a

shortest path algorithm from one end point lets say from oi to find the shortest path

the to the other end point oj. This in turn solves the problem of upper bound using

the Equation 3.3.

Developing Exact Lower Bound Algorithm -

Essentially, for each of the unknown edge in the graph, the lower bound can

be estimated with the help of known edges. As established earlier, we complete two

parallel shortest path algorithms from each end point of the unknown edge for which

we need to compute the lower bound. Thus, for each known edge in the graph, we

compute the shortest path from both the end points of the unknown edge to both

the end points of the known edge. Since the tightest lower-bound is largest of the all

available lower-bound distances, we only keep track the current largest value at each

iteration.

Lemma 6 The bound computed by the Lower Bound Algorithm in SPLUB , produces

exact tightest lower bounds for the unknown edge.

Proof 6 Assume that we do no produce the tightest lower bound on given unknown

edge (oi, oj) in the graph. This also means that we have not investigated all the

shortest paths from all the known edges in the graph to the nodes oi and oj. However,

from each edge of the unknown edge, from oi and from oj, we find the all pairs shortest

paths. In subsequent steps, algorithm goes over each of the known edges in sequence

assuming that edge it longest in its shortest path and subtracting the shortest path

from it length. From Equation 3.5 for lower bounds, and by going over the shortest

paths through known edges, we have investigated all the shortest paths through all

available known edges implicitly. This is contradicts our assumption that we did not

62



investigate all the known edges in the graph, thus proving the tightness of the lower

bound produced.

For efficiency, we can package both the upper and lower bound algorithms as a

single algorithm.

The details of the algorithm are given in Algorithm 10 as SPLUB .

Algorithm 10 SPLUB

Input : graph G = (O,E), unknown edge (oi, oj), Dijkstra’s sp algo SPDijk()

Output : LBd(oi,oj), UBd(oi,oj)

1: lb← 0;ub← 1

2: spoi ← SPDijk(oi)

3: spoj ← SPDijk(oj)

4: for edge(k, l) in E do

5:

lb = max(lb, dist(ok,ol) − (spoi [ok] + spoj [ol]),

dist(ok,ol) − (spoi [ok] + spoj [ol]))

6: end for

7: ub = min(ub, spoi [oj])

8: LBd(oi,oj) = lb

9: UBd(oi,oj) = ub

10: return LBd(oi,oj), UBd(oi,oj)

Running Time Analysis for SPLUB

We shall show here, that the running time of SPLUB depends on the sparsity of

the underlying graph G.
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Upon examination, it is clear that the step 2 and step 3 are the time consuming

steps which are the execution of shortest path algorithms from both end points of

the unknown edge. The Dijkstra’s Algorithm [7] with its standard implementation

taken O(m+ n log n) time to run. Thus we estimate the overall running time of the

combined steps 2 and 3 as O(m+ n log n).

The remainder of the steps, step 6 and step 7, are executed only as the number

of known edges in the graph, m. Thus the total time of SPLUB is estimated as

O(m + n log n) + O(m). The leading term is the first term and thus we claim the

overall running time of the algorithm to be O(m+ n log n).

Update Algorithm - Given the simplicity of the algorithm and absence of any

intermediate data structures, updates are rather straight forward in SPLUB Scheme.

Once a previously unknown edge is resolved, the only data-structure that needs an

update is the underlying graph structure. The update to the graph data-structure,

in any representational format ( adjacency list or adjacency matrix ), is a constant

order operation, thus, obtaining the overall complexity of update operation as O(1).

3.4.2 Approximate Algorithms

In this section we strive to answer the following questions: Can one design

solutions that produce not the tightest bounds, yet are highly scalable and faithfully

produce the exact solutions to the proximity problems? Given a newly resolved edge,

can we design efficient and effective data structure update schemes supporting the

approximate bounds?

Let us assume that instead of going through all the known edges in the graph and

their shortest paths, we only restrict ourselves to a subset of the known edges.From

Equation 3.5, it is evident that the bound obtained will not be tight. As an example,

if we consider only the path [o1 → o3 → o2 → o4] to compute the lower bound on the
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unknown edge (o1, o4), the lower bound will be 0.5. For all the unknown edges whose

upper bounds are lesser than 0.5 can still be eliminated by this bound.

It is important point here to note that, to develop practically viable algorithms,

the developed solution must avoid the following two bottlenecks (i) the Shortest Path

computations, (ii) exploration of all the known edges in the graph. In the spirit of

the above discussions, we propose a highly scalable yet effective heuristic Tri Scheme

is designed with these two arguments in mind.

3.4.2.1 Triangle Induced Solution Scheme

The overall idea of Tri Scheme is to restrict ourselves to small neighborhoods

(in particular triangles) and use the relationship imposed by the triangles in producing

bounds.

Upper and Lower Bounds: Basically, Tri Scheme looks at every triangle

between oi and oj and computes lower and upper bounds. However finding every

triangles which are incident on the unknown edge (oi, oj) and whose other two sides

are known is also computationally challenging. To further explain, we wanted to find

out all 4oi,oj ,ol , where (oi, ol) and (oj, ol) are known, solving the bounds problem

efficiently.

Updates: As seen above, in Tri Scheme , for answering queries, we need to

access the triangles, whose two sides (edges) are known and the edge being queried is

the only missing edge. We use an adjacency list representation of the graph to speed

up the search for such triangles. We take the lists corresponding to two end points

of the unknown edge oi and oj, and find their intersection to find such triangles.

Finding intersections of two lists by direct comparisons are in the O(size of the list).

In adjacency list corresponding to each node in the graph, we use a balanced binary

search tree[16] to make comparisons faster. However this scheme has increased the
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new edge insertions to be in O(log(n)), which updates two binary search trees one

corresponding to each end points of the resolved edge in the adjacency list with the

edge value.

The pseudo-code of Tri Scheme is presented in Algorithm 11. As one can

see that the computational bottle neck from SPLUB are entirely avoided to generate

a simpler and practical algorithm. We present some theoretical properties of Tri

Scheme next.

3.4.2.2 Expected Case Analysis for Tri Scheme

Comment 1 Theorem 1 Average-Cases Time Complexity of Tri Scheme is O(m/n)

Proof 7 The average-case complexity is the amount of computational time used by

the algorithm, averaged over all possible inputs. The graph contains of m edges with

known values which represent the distance between the two connecting objects and

the values for the rest n2 − m edges are not known. The numerator of the average

case analysis consists of the number of edges accessed overall possible graphs. The

optimization problem that represents the numerator is,

maximize
n∑

i=1

di(n− di)

s.t.
n∑

i=1

di = 2m

The optimization term maximizes when the negative term is minimum. Hence, the

numerator’s optimization term can be written as,

maximize

n∑
i=1

ndi − d2
i = n

n∑
i=1

di −
n∑

i=1

d2
i
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As, d2
i has to minimized, value of di = (2m/n) can be used.

max n

n∑
i=n

di −
n∑

i=n

d2
i ≤ 2nm−

n∑
i=1

(
2m

n
)2 = 2nm− 4m2

n2

n∑
i=1

1

≤ 2nm− 4m2

n
=

4m

n
(
n2

2
−m)

≤ 4m

n
(n2 −m)

The denominator consists of the number of edges that are not known in the graph(n2−

m), each of which is a potential input. Hence, the average case analysis is,

4m
n

(n2 −m)

n2 −m
=

4m

n
∈ O(

m

n
)

Hence, proved.

Theorem 2 Expected running time for Tri Scheme to lookup an edge is O(m/n)

Proof 8 By design, the algorithm Tri Scheme is proximity algorithm agnostic. Thus,

it works for any general metric space proximity problems. The proximity algorithm

can choose any edge and query for the upper and lower bounds. The expected time to

lookup an edge can be written as,

E[time] =
∑

(u,v)∈E′

P [sample (u, v)] ∗ lookup(u, v)

where the probability is for the event of sampling the unknown edge (u, v) and lookup

represents the amount of time taken by Tri Scheme for looking up the bounds for

edge (u, v).

Under the assumption that any one of the unknown edge could be queried next

with equal probability (uninformed prior) by the proximity algorithm there is uniform

probability of sampling any of the unknown edges. Hence, the probability of looking up

any of the unknown edge is 1/(n2 −m). Tri Scheme uses a balanced BST in order

to perform set intersection and needs to go over all the edges incident on both u and
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v to obtain the bounds on edge (u, v). Hence the time taken for resolving the bounds

for the edge (u, v) is du + dv where du stands for the degree of edge u.

By making use of the above formulation in the expectation formula,

E[time] =
∑

(u,v)∈E′

1

n2 −m
(du + dv)

For every missing edge that is incident on u, du is added to the expected time. There

a n−du number of unknown edges incident on u. Hence, the expectation amounts to,

E[time] =
n∑

i=1

1

n2 −m
di(n− di) =

n∑
i=1

ndi − d2
i

n2 −m

In order to create an adversarial case, we would like to maximize the above formula

to obtain a upper bound on the expected time. Also, we know that there are a total of

m known edges and hence the total sum of degrees should amount to 2m. Hence, the

constraint
n∑

i=1

di = 2m, needs to be satisfied.

maximize
n∑

i=1

ndi − d2
i

n2 −m

s.t. 2m =
n∑

i=1

di

The expected time is maximized when the negative term, d2
i is minimized. As the

constraint 2m =
n∑

i=1

di exists, the term d2
i is minimized when di = 2m/n. Hence,

E[time] =
n∑

i=1

ndi − d2
i

n2 −m
≤

2nm−
n∑

i=1

(2m/n)2

n2 −m
=

2nm− 4m2/n2
n∑

i=1

1

n2 −m

E[time] ≤ 2nm− 4m2/n

n2 −m
=

4m

n

n2/2−m
n2 −m

Replacing n2/2 with n2, we get,

E[time] ≤ 4m

n

n2/2−m
n2 −m

≤ 4m

n

n2 −m
n2 −m

=
4m

n
∈ O(

m

n
)

Thus, proved.
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Bootstrapping Tri Scheme through Landmarks: In section 3.4.2, we have

developed Tri Scheme , a scalable algorithm. Our goal here is to study how Tri

Scheme could be designed in conjunction with landmark based solutions, such as,

LAESA [35] to bootstrap Tri Scheme . Landmark based solutions, as described in

Related Works is a pivot based solutions that use a specified number of nodes and

resolve the distances between them to obtain a tighter bounds on the rest. Recall

our problem setting described in section 3.3.1 that assumes m edges are resolved at

the beginning of the algorithm. We basically use an initialization of the graph G by

priming it with LAESA inside every proximity algorithm, for different values of m.

Later in experiment section 3.5 we shall show the effectiveness of our schemes due to

this initialization.

3.5 Experimental Evaluation

Algorithms are developed in Python 3.6 and the experiments are conducted on a

Intel(R) Core(TM) i7-6850K CPU @ 3.60GHz running a Linux distribution, Ubuntu

18.04.5 LTS using 64 GB.

3.5.1 Experimental Setup

In this section, we describe used datasets, implemented baselines, studied prox-

imity problems, and our performance measures.

3.5.1.1 Datasets

We use 3 real datasets and vary different parameters considering various prox-

imity problems and summarized in Table 3.1. For each dataset, the actual pairwise

distances (i.e., ground truth) are known.
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Dataset Algorithms # Objs # Edges Dim Distance Function
SF POI k-NNG,

Clustering,
MST

21, 048 221, 498, 628 2 Google Maps API

Flicker1M k-NNG 10k 49995000 256 Eucledian
UrbanGB k-NNG,

Clustering,
MST

360, 177 64, 863, 555, 576 2 Google Maps API

Table 3.1: Dataset Description

Comment 2 (I) California Road Network and Points of Interest [44]: The dataset

contains the longitude and latitudes of 21048 POIs in California. The data is collected

and curated by the University of Utah and is available for public access [45]. Each

of the POI has the following attributes in the database, Node ID, Longitude and

Latitude.

(II) The UrbanGB Dataset [46]: The dataset contains the longitudes and lat-

itudes of the road accidents within Great Britain urban areas. The data is obtained

from UCI Machine Learning repository and is accessible for public download [47].

The dataset has the longitudes and latitudes of 360,177 accidents. Each record in the

database has two attributes Longitude and Latitude.

(III) Flicker 1M Dataset [48]: This repository is a collection of thumbnail im-

ages downloaded from the MIRFLICKR database. The repository [49] has a collec-

tion of 1M thumbnail images which were used in establishing the effectiveness of our

methods. Each of the object is an image represented, in .jpg image compression

representation.
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3.5.1.2 Implemented Baselines

(1) We implement ADM [15] algorithm which provides exact upper, lower bounds and

updates induced as a solution scheme. Throughout the experiment section, we refer

to the baseline algorithm as, ADM .

Even though not a direct competitor, we also implement landmark based algorithm

LAESA [35].

As described in Section 3.6, to the best of our knowledge, these are the only

existing solutions that could be adapted to solve our problem.

These baselines are compared with (i) SPLUB in section 3.3 and, (ii) Tri Scheme

in section 3.4.2. In cases where we use landmarks towards the graph initialization,

we use k = log(n) landmarks unless otherwise mentioned.

3.5.1.3 Proximity Algorithms

We consider 3 classes of metric space proximity problems i kNNG construction,

ii Minimum Spanning Tree Construction ( MST ) and, iii Clustering and evaluate

how they could benefit from our proposed approach in saving distance computation

and overall cost wrt multiple competitors.

i k Nearest Neighbor Graph (k-NNG) Construction: We implement

KNNrp, a popular and recent k-NNG proposed in [17] that computes the k-NNG of a

given set of objects.

ii MST: We implement the popular Prim’s [7] and Kruskal’s [18] algorithm

for evaluation.

iii Clustering: We implement two popular centroid based swapping algo-

rithms, PAM [50] and CLARANS [20].
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3.5.1.4 Experimentation Goals

The goal of our experimental analysis is to provide insights to the following

questions:

(Subsection 3.5.2) Comparison between proposed graph theoretic techniques (

SPLUB and Tri Scheme ), and compare with ADM and LAESA , on the following pa-

rameters. (i) Quality of bounds and, (ii) In computation time.

(Subsection 3.5.3) Comparison between Tri Scheme and LAESA , in saving distance

calls for various proximity algorithms.

(Subsection 3.5.4) Comparison between Tri Scheme , LAESA , and the original

algorithm in overall running time by varying the cost of distance oracle.

(Subsection 3.5.5) Varying proximity algorithms parameters l and k and its effect

on CPU overhead and Distance Calls.

3.5.1.5 Evaluation Measures

Our main investigation here is to study how Exact SP and Tri Scheme compare

with ADM and LAESA in producing distance bounds, as well as their effectiveness in

saving distance calls and overall running time inside different proximity algorithms.

1 Relative Error & CPU Overhead We present relative error of the produced bounds

of different algorithms wrt ADM . CPU overhead is captured as the difference between

the total time and the total distance oracle time. 2 Percentage Save-ups We compute

the percentage of the distance calls save-up of our algorithm algorithms achieve wrt

the baselines.

3 Proximity Algorithm Completion Time We capture the overall running time

of the proximity algorithms after they are augmented with SPLUB , Tri Scheme ,

LAESA .
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Additionally, we present some deeper analysis that compares Tri Scheme with

LAESA and ADM qualitatively and running time-wise.

Please note here that, for brevity, we only present a subset of results that are

representative.

Summary of results: Our experiment results indicate that SPLUB produces

tightest and exact bounds as ADM, yet significantly faster than ADM. While ADM is only

useful in smaller graphs, SPLUB is useful for moderate sized graphs. Tri Scheme is

significantly faster in running time compared to SPLUB with comparable quality of

bounds and is practical. Compared to LAESA , we see that Tri Scheme produces

tighter bounds at the expense of marginal increase in CPU time. Our results indicate

that Tri Scheme is indeed a realistic approach to be used inside proximity algorithms

to reduce the distance calls without incurring much overhead.
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3.5.2 Tightness of Bounds and Running Time

Figure 3.3a demonstrates Exact SP produces exact same bounds ( upper and

lower ) as ADM and the error bar is virtually collapsed. Bounds produced by Tri

Scheme (Figure 3.3b) are looser than ADM , however, however much tighter compared

to LAESA . From these figures it is evident that Tri Scheme is a practical yet viable

solution for our studied problems. Figure 3.3c and Figure 3.4a provide additional

insights: First and foremost, ADM , even though produces the best bounds, is not

scalable due to its cubic running time. In fact, neither Exact SP nor ADM is suitable

for larger graphs in terms of CPU overhead. Figure 3.4a shows even though LAESA is

the fastest among all the algorithms, the relative error is much higher.
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Figure 3.4: Examination of limitations of LAESA

3.5.2.1 Limitation of LAESA

We discuss the limitations of LAESA in section 3.4.2 for choosing the right value

of the number of landmarks and its overall effect on the number of distance calls. This

74



argument has been experimentally corroborated in figure 3.4b. We experimentally

observe that the optimal value of number of landmarks for the chosen dataset is

4× log(n). But this varies largely across datasets and proximity algorithms and there

is no obvious ways to determine this parameter.

3.5.3 Tri Scheme for Distance Counts

In earlier section we have established impracticality of ADM and Exact SP for

large graphs. Thus we turn our attention to the practical approach, Tri Scheme and

study how it saves distance calls inside various proximity algorithms wrt LAESA .

These experiments confirm our previous findings. Proximity algorithms aug-

mented with Tri Scheme shows significant improvement in saving the distance calls

when compared with LAESA . We also note that as the size of the dataset grows the gap

between the number of calls made widens in the context of all proximity algorithms.

We compare our results against the empirically found the best ( lowest ) count

for distance calls in LAESA .

UrbanGB Dataset [ Oracle Call Count ]
Prims Algorithm [ k = log2(n)]

#
of
Edges

LandMK
Tri

Scheme

Without
Plug

Prime
Calls

Tri

Scheme

LAESA Savings
(%)

Best
k
(LAESA)

Best
k
LAESA

2016 6 2016 363 999 1097 8.93 log(n) 6
8128 7 8128 868 2980 3343 10.86 log(n) 7
32640 8 32640 2012 10017 13011 23.01 2×log(n) 16
130816 9 130816 4563 30045 43259 30.55 3×log(n) 27
499500 10 499500 9945 82630 142572 42.04 3×log(n) 30
1999000 11 1999000 21934 260191 529904 50.90 2×log(n) 22
7998000 12 7998000 47922 774466 2096444 63.06 2×log(n) 24

Table 3.2: # of expensive Oracle Calls comparison by Prim’s Algorithm with Tri

Scheme and LAESA along with parameters
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UrbanGB Dataset [ Oracle Call Count ]
Prims Algorithm [ k = log2(n)]

#
of
Edges

LandMK
Tri

Scheme

Without
Plug

Prime
Calls

Tri

Scheme

LAESA Savings
(%)

Best
k
(LAESA)

Best
k
LAESA

2016 6 2016 363 1230 1254 1.91 log(n) 6
8128 7 8128 868 3670 3813 3.75 log(n) 7
32640 8 32640 2012 12081 13212 8.56 log(n) 8
130816 9 130816 4563 40547 48317 16.08 2×log(n) 18
499500 10 499500 9945 138184 178852 22.74 4×log(n) 40
1999000 11 1999000 21934 369324 523728 29.48 3×log(n) 33
7998000 12 7998000 47922 1312757 2123068 38.17 4×log(n) 48
31996000 13 31996000 103909 4213538 7334143 42.55 4×log(n) 48

Table 3.3: # of expensive Oracle Calls comparison by Prim’s Algorithm with Tri

Scheme and LAESA along with parameters

3.5.3.1 Evaluation of MST Algorithms

We compare the classical Prim’s and Kruskal’s algorithms for the MST prob-

lem with their augmented versions through Tri Scheme varying number of objects.

We present the save-ups.

Table 3.2 and Table 3.3 presents comprehensive results that demonstrate that

the original algorithms need to exhaustively calculate all the distances to build the

graph in order to finish the minimum spanning tree. Save-ups is increased with

increasing size of the datasets, shown in bold as percentage of distance calls saved in

Tri Scheme compared to LAESA , demonstrating the efficacy of Tri Scheme .

Figures 3.5a and Figure 3.5b represent the distance save up. It is interesting

to note that, proximity algorithms, in general, are sensitive to the total number of

pairwise distances. The efficacy of Tri Scheme in saving the distance calls is evident

in both the figures.
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Figure 3.5: Number of Expensive Oracle Calls for completion of Algorithms
Kruskal’s algorithm and KNNrp

3.5.3.2 Evaluation of Clustering

We compare the two l-medoid (l = 10) algorithms PAM and CLARANS with their

augmented versions with Tri Scheme . Overall, algorithms augmented with Tri

Scheme use on average one third the number of distance calculations. Here we vary

the size of the graph while conducting the experiments.

Figure 3.6a, Figure 3.6b, Figure 3.6c, Figure 3.7a and, Figure 3.7b clearly show

the results. For both algorithms, as the number of objects grows, the number of

distance calculations also increases. We observe the maximum saving up to 36% for

SF and a save up of 44% for the UrbanGB datasets. We also note that the perceived

large running time of PAM is due to its inherent nature, and not due to Tri Scheme .

3.5.3.3 Evaluation of k-NNG

The objective of these set of experiments is to compare the vanilla KNNrp [27]

(k = 5) with the KNNrp augmented by the algorithmic scheme, Tri Scheme developed
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Figure 3.6: Number of Expensive Oracle Calls For Algorithms PAM and CLARANS

in this work in saving distance calls. Figure 3.5c describes the number of distance

calls made by the algorithm. The findings are similar to other proximity algorihtms.

3.5.4 Tri Scheme for Running Time

We present the the end-to-end completion of the proximity algorithms, when

augmented by Tri Scheme and LAESA by varying the cost of distance computation.

We observe that the overhead induced by our algorithms, are nominal when compared

with the results from LAESA . However, when induced with an expensive oracle calls,

owing to a large number of distance calls, the time spent in completion is significantly

higher than the algorithm augmented by LAESA .

3.5.4.1 Evaluation of MST Algorithms - Time

Here we present the timing details for the Prim’s algorithm, for Tri Scheme

and LAESA for completing the algorithms. Figure 3.7c give an idea about the overall

time taken for the proximity algorithm to complete when different distance oracle time

is considered. We vary the time taken for a distance call to be as 0.15s, 0.2s, 0.5s, 0.9sand1.2s

78



13
52

36
57 96

20

25
50

7

61
06

6

12
85

10

13
62

38
99 10

42
6

29
43

6

83
44

8

21
48

73

2K 8K 32
K

13
0K

49
9K

1.9
M

0

0.5

1

1.5

2

2.5

N
u

m
b

er
 o

f 
O

ra
cl

e 
C

al
ls

10 5

Tri
LAESA

(a) Flicker1M: PAM Algo-
rithm Varying Size. 40%
save up in largest setting.

2K 8k 32
K

13
0K

49
9K

1.9
M

7.9
M

0

2

4

6

8

10

12

14

N
u

m
b

er
 o

f 
O

ra
cl

e 
C

al
ls

10 5

Tri
LAESA

(b) UrbanGB: CLARANS Al-
gorithm Varying Size

t=
0.1

5
t=

0.2
t=

0.5
t=

0.9
t=

1.2

Varied Oracle Time

0

1

2

3

4

5

6

7

P
ro

x 
A

lg
o

 C
o

m
p

le
ti

o
n

 T
im

e 
(s

)

10 5

Tri
LAESA

(c) [SF 1.99M ][Prox Com-
pletion Time] 30% save for
1.2s oracle on completion of
Prim’s

Figure 3.7: (a, b) Number of Expensive Oracle Calls For Algorithms PAM and CLARANS

) (c) Time for completion of Proximity algorithms for PAM

t=
0.3

t=
0.4

5

t=
0.7

5
t=

1.5
t=

2.5

Varied Oracle Time

0

1

2

3

4

5

6

P
ro

x 
A

lg
o

 C
o

m
p

le
ti

o
n

 T
im

e 
(s

)

10 5

Tri
LAESA

(a) [Flicker1M 1.99M ][Prox
Time] 37% save for 0.3s or-
acle on completion of PAM

t=
0.3

t=
0.4

5

t=
0.7

5
t=

1.5
t=

2.5

Varied Oracle Time

0

2

4

6

8

10

12

P
ro

x 
A

lg
o

 C
o

m
p

le
ti

o
n

 T
im

e 
(s

)

10 5

Tri
LAESA

(b) [UrbanGB 1.99M ][Prox
Time] 40% save for 1.2s
oracle on completion of
CLARANS

t=
0.3

t=
0.4

5

t=
0.7

5
t=

1.5
t=

2.5

Varied Oracle Time

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

P
ro

x 
A

lg
o

 C
o

m
p

le
ti

o
n

 T
im

e 
(s

)

10 5

Tri
LAESA

(c) [Urban 1.99M ][Prox
Time] 10% save for 2.5s
oracle on completion of
KNNrp

Figure 3.8: Actual Proximity Algorithm Completion Time for different Proximity
Algorithms in the light of varying cost of distance oracles

As one can notice that the time for completing the proximity algorithm for LAESA in

every case is higher than Tri Scheme . The difference is in the order of 30% even if

the distance computations on an average consume 1.2s.

3.5.4.2 Evaluation of Clustering - Time

We study PAM and CLARANS (l = 10) the overall completion times in conjunction

with Tri Scheme and LAESA .
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Figures 3.8a and 3.8b show the results by varying oracle cost as 0.3, 0.45, 0.75,

1.5, and 2.5 seconds. The overall time saveup is 37% when Tri Scheme is used for

augmentation and outperforms LAESA significantly.

3.5.4.3 Evaluation of k-NNG - Time

Finally, we take the k-NNG (k = 5) problem using Urban dataset with 1.99M

settings.

These results indicate that by leveraging triangle inequality Tri Scheme out-

performs LAESA .

3.5.5 Varying Proximity Parameters

Proximity algorithms are sensitive to its parameters of choice. Clustering algo-

rithms like PAM and CLARANS are required to accept the number clusters (l) as a part

of their inputs. Similarly, kNNG needs k, the number of neighbours k.
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3.5.5.1 Clustering ( varying l ) - Count, CPU overhead

Here we vary l and compare the number of distance calls of Tri Scheme against

LAESA . Figure 3.9a presents the results from the PAM algorithm. As the number of

objects is fixed, increasing the number of clusters will results in more local minima

for the PAM algorithm which in turn makes the algorithm converge faster. Figure 3.9b

presents the results from the CLARANS algorithm. As l increases, CLARANS on the

other hand, does not exhibit this phenomena and as the number of clusters increases

the number of distance calls also increases.

Figure 3.10a and Figure 3.10b show that the CPU overhead for PAM and CLARANS

algorithms respectively. As expected, when l increases, we see increase in the CPU

overhead in response to the number of additional upper and lower bound comparisons.

3.5.5.2 k-NNG ( varying k )- Count and CPU overhead

We present the results by varying k for KNNrp algorithm here. Figure 3.9c shows

that the number of distance estimations increases with increasing k, as the algorithm
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needs to resolve more candidates to determine the nearest neighbours. Figure 3.10c

shows the same effect in CPU overhead, as described in section 3.5.5.1.

3.6 Related Work

Existing works could broadly be divided in two ways - ones that deal with metric

space directly and those that transform metric space into vector space [22], [23], [24].

These latter techniques do not produce exact answers while used inside proximity

problems and is not our focus here.

3.6.1 Pivot based indexes

Pivot based indexed data structures select a set of nodes (pivots) in order to

divide the space into smaller sub-spaces, essentially grouping similar objects together.

They are described in depth next.

Tree based pivots. BKT [25], a pivot based data structure designed for

similarity search which recursively builds a tree based on the distance to other objects.

FQT, FHQT [26], and Fixed Queries Array (FQA)[30] are follow up works that offer

improvement to this. Any object stores a sorted list of (integer) distances from the

object to the k pivots in an array. Yianilos [51] proposed Vantage Point Tree( VPT

) index structure to solve the problem of nearest neighbor queries in general metric

spaces.

However, these works are designed for specifically for discrete-valued distance

functions and/or do not generalize to provide effective bounds, such as ours.

Landmark based pivots. A different trend of algorithms based on pivots,

stores partial information of nodes in an array form to answer nearest neighbour

queries in metric space. The representative algorithms in this type are AESA and

LAESA [34, 35] which take the idea of pivot based methods to the extreme. In AESA,
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all pairwise distance are precomputed and stored in matrix. During query, a random

object from the database is selected to find the distance between the query object

and the selected object to establish the boundary of the search space eliminating a

large part of the search space. In LAESA, an extension to AESA, a set of objects

known as Base Prototype/Landmark/Pivot are chosen and all the pairwise distances

between those are stored. This matrix is later used during the query time.

There are two main issues with the landmark based solutions. First, these works

are not suitable for our update operations. Second, heuristics adopted for finding the

landmarks requires to know the number of landmarks, which often is dependent of the

underlying data distribution and thus is hard to generalize.

3.6.2 Voronoi-like indexes

Voronoi diagrams, commonly used in proximity queries in vector spaces, have in-

spired data structures in metric spaces, namely GNAT [29] and M-tree [32]. GNAT [29]

introduces an indexing structure for nearest neighbour queries in large metric spaces.

The tree construction starts with a selection of k objects in random from the dataset

and associate remaining objects ( partition ) to the k objects selected based each

objects proximity to one of them. M-Tree [32] is a balanced tree indexing structure

for metric space similarity search and k-NN problems. M-Tree, which works by parti-

tioning the space, is built in a bottom up manner, and has fixed number of objects in

each node. When each level is filled, the tree expands upwards, relaying the partition

information upwards and also maintaining a balanced structure. These body of works

have a fundamental limitation that make them inapplicable to our problem: These are

specific to nearest neighbor search and does not generalize to proximity problems in

metric space.
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3.6.3 Matrix Based Indexes

We are aware of the work by Sasha and Wang [6] that proposes ADM to estimate

tightest upper and lower bounds of distances that are then demonstrated to save

up different querying cost. The bounds are stored in a quadratic data structure

O(n2) and could be used for proximity calculations. Even though they produce exact

bounds on missing edge values, the computational cost in bounding the distances for

ADM is in the O(n3), and thus is not practical to be used inside proximity algorithms.

Additionally, this method does not take advantage of the sparsity of the underlying

graph.

Comment 3 3.6.4 Transforming Metric Space into Vector Space:

The second kind transforms the metric space into a vector space by transforming

each object to a finite-dimensional vector. The distance function is then defined based

on the distance between these vectors. Some of the most useful distance functions

are Euclidean distance, Manhattan distance, or L∞. Popular solutions in this space

include kd-tree [22],R-tree [23], or more recent X-tree [24]. These approaches usually

use the coordinate information of the objects. However, there are two fundamental

issues to use these algorithms for solving general metric space problems. First, these

class of solutions, when applied in proximity problems, do not produce identical

results, with the original algorithm. Second, we do not investigate this genre of work,

as they do not directly optimize distance calls.

3.7 Conclusion

In this paper, we revisit a suite of popular proximity problems that repeatedly

perform distance computations by making calls to a third party distance oracle (such

as, google maps) to compare a pair of distances during their execution. We present
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Direct Feasibility Test that studies how distance comparisons between two dif-

ferent pairs of objects could be modeled as a system of linear inequalities that assists

in saving distance computations. We furthermore present an alternative formalism

with the goal of computing distance bounds and present a suite of graph based algo-

rithms that are computationally “light weight”. We compare our designed solutions

conceptually and empirically wrt a broad range of existing works through compre-

hensive experimentation. As an immediate extension, we are exploring whether it is

beneficial to update the unknown distance bounds after every update in the under-

lying graph or better to defer it and process a set of updates as a batch. If the latter

is more appropriate, we shall investigate how to determine batch size inside different

proximity algorithms that suitably trade-off between running time and tightness of

produced bounds.

Reconstructing a high dimensional unknown signal, using lower dimensional

observations is a challenging problem, known as signal reconstruction problem (SRP),

with diverse applications including network traffic engineering, medical image re-

construction, and astronomy. Recently the database community has shown signifi-

cant advancements in solving the SRP problem efficiently, effectively, and in scale by

leveraging database techniques such as similarity joins. In this demo, we demonstrate

Orca-SRthat highlights the benefits of signal reconstruction in scale by demonstrat-

ing real-time network traffic flow analysis on large networks that were not possible

before. Orca-SRis a web application that enables a user to generate network flow

and load the network for interactive analysis of the impact of different traffic patterns

on signal reconstruction.
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Algorithm 11 Tri Scheme

Input : graph G = (O,E), unknown edge (oi, oj)

Output : LBd(oi,oj), UBd(oi,oj)

1: adji = AdjacencyList(oi)

2: adjj = AdjacencyList(oj)

3: lb = 0

4: ub = 1

5: while i ≤ len(adji)andj ≤ len(adjj) do

6: if adji[i] == adjj[j] then

7: lb = max(lb, |E[oi, adji[i]]− E[oj, adjj[j]]|)

8: ub = min(lb, E[oi, adji[i]] + E[oj, adjj[j]])

9: else

10: if adji[i] > adjj[j] then

11: j = j + 1

12: else

13: i = i+ 1

14: end if

15: end if

16: end while

17: LBd(oi,oj) = lb

18: UBd(oi,oj) = ub

19: return LBd(oi,oj), UBd(oi,oj)
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CHAPTER 4

Orca-SR: A Real-Time Traffic Engineering Framework leveraging Similarity Joins

4.1 Introduction

Developing scalable algorithms for processing and analyzing massive data sys-

tems have been the mainstays of database research for many decades. Database

optimization techniques, in particular, have been applied beyond the realm of the

database community to yield scalable algorithms for solving problems in the areas of

astronomy, computer networks, machine learning, etc.

Signal Reconstruction Problem (SRP) is a challenging problem with diverse applica-

tions where the objective is to reconstruct a high dimensional unknown signal using

lower dimensional observations. Prominent database techniques such as similarity

joins and selectivity estimation for set similarity queries, can yield significant per-

formance improvements on SRP by optimizing for the computational bottlenecks.

Several algorithms were proposed in [8] and its extended version [9] for a scalable so-

lution for SRP problem. One popular application of SRP is in Computer Networks,

where the observation of a system is limited1 to the edge level traffic due to infras-

tructural limitations. We demonstrate Orca-SR, a system for traffic flow estimation,

which can estimate source-destination traffic flows in real-time.

Signal Reconstruction Problem (SRP): The aim of SRP is to solve a linear

system of the form AX = b, where X ∈ Rm is a high-dimensional unknown signal,

b ∈ Rn (n� m) is a low-dimensional projection of X that can be observed in practice

1SRP has numerous applications in diverse domains that are elaborated in [52], the report for

the SIGMOD Research Highlight 2019.
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and A is a n×m matrix that captures the linear relationship between X and b.

Traffic Matrix Computation as SRP: Consider an IP network with r ingress/egress

points where network traffic may enter or leave with any of the m = r2 source-

destination flows (SD flow). Knowing the traffic flow between any source-destination

pair is crucial in traffic engineering. Considering the infrastructural limitations, one

usually cannot directly measure SD flows. Protocols such as SNMP, collect the link-

level flow information, however, falls short in estimating the end-to-end traffic flow.

Hence, SRP seeks to estimate the flow between every SD pairs from link-level flow in-

formation and routing policy available through routing protocols like BGP. With the

growing network size (a few billion SD pairs), prior solutions [53, 54] for SRP simply

do not scale. Hence, we proposed methods that support large scale signal reconstruc-

tion [8, 9]. Orca-SRleverages these methods and demonstrates a real-time system

for interactive network traffic analysis for helping the network analysts to visualize a

selected network along with the reconstructed traffic flows.

Problem Formulation: Computer networks are often represented as graph where

nodes corresponds to endpoints while the edges correspond to network links. The

interconnection between different SD pairs is defined by a routing policy and is com-

monly represented as a routing matrix, A. It is a binary matrix with edges as rows

and SD pairs as columns where for the edges involved in the route between SD pairs

is set to 1. The observable properties of the network include the flow at an edge,

known as edge traffic vector, b and A. The traffic reconstruction problem is defined

as resolving individual SD traffic, X - represented as a vector, when routing matrix A

and edge traffic vector b are available. This linear system of equations is represented

as,

A · X = b
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where A ∈ Zn×m
2 is a sparse binary matrix, where n is number of edges in the network

and m the number of SD pairs(n� m).

SRP could not be solved using system of linear equation techniques as the

number of variables m is larger than the number of equations, n, rendering the system

underdetermined with no unique solution. Hence, an additional criterion is needed to

choose a distinct X from the infinitely many possible solutions. A common secondary

criterion used in signal reconstruction is the use of a prior point, X ′, provided by

experts [54]. The final traffic flow values are obtained by taking the point in the

solution space that is closest to the given prior. In [8], we provide a closed form

formula

X = X ′ −AT (AAT )−1(AX ′ − b) (4.1)

As evident from Equation 4.1, AAT , is the computational bottleneck for the

algorithm which runs in O(n2m). It turns out that each diagonal element (AAT )[i][i]

is the upper bound for values in its ith row and ith column of AAT . Using techniques

from set similarity joins [55] and selectivity estimation for similarity queries [56], we

can improve the performance of the algorithm. We now briefly describe the three key

ideas. Please refer to [8, 9] for comprehensive details.

• Thresholding : We use the diagonal values as the threshold for the values on the

same row/column and prune the ones that are below a threshold τ .

• Conversion to Set Operations : We transform the problem of computing the inner

product between the rows A[i] and A[j] (for computing AAT [i, j] ) into a set

similarity instance.

• Similarity Joins : We design a hybrid algorithm combining the threshold-based and

sketch-based similarity estimation to reduce the complexity of computing a cell in

AAT from O(m) to O(logm).
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Figure 4.1: Architecture of Orca-SR

The exact version of Direct algorithm based on Eqn 4.1 is referred to as Direct-e

and the approximate version leveraging database optimizations proposed above forms

Direct-a.

4.2 Orca-SR

In this section we describe Orca-SR, its architecture and implementation de-

tails. We describe various technical challenges and user interaction with Orca-SR.

Comment 4 Both the computational efficiency and effects of approximation by choos-

ing a user specified threshold is presented to a user through the AAT matrix over

which a user can get direct feedback on the choice of threshold over the network in-

frastructure. Often with large networks, complete information will burden a network

engineer and subsetting the flows will be essential. Thus to simplify, Orca-SR, pro-

vides an interactive sort and filter feature where a user can focus on parts of the

network to analyze the details of the flows.

4.2.1 Architecture

Orca-SRis a web application where users submit a query for generating the

network, along with the parameters for generating the traffic and analyzing it. Ar-

chitecture of Orca-SRis shown in Figure 4.1. Users submit their requests through

a web browser, to Orca-SRWeb Server. These include network type, edge level
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traffic distribution, a prior probability distribution for traffic and, a threshold. The

Orca-SRweb Server generates the routing matrix and traffic vector and subsequently

applies the SRP algorithm (described in [8]), either Direct-e or Direct-a based on

users requirement to generate exact or approximate answers. Once the algorithm

finds SD pair traffic flows, the server sends the results back to the client’s visual com-

ponent which processes and renders the flows. Local storage at client browser caches

the SD pairs flow information to answer interactive queries by users. With Orca-SR,

a user can learn more about the applied optimizations by choosing a small subset of

the network and subsequently focusing on the sub-network and, changing its input

parameters. One can also fine-tune the parameters interactively through our visual

interface.

Our application uses the exact algorithm Direct-e and the approximated one

Direct-a for scalability, both implemented in C++ . For orchestrating the Web App,

we use Shiny from R2. For visual rendering at client browser we use Plotly3 which

internally uses the visualization library D3.js.

4.2.2 Technical challenges

In this subsection, we discuss major challenges encountered, their resolutions,

and the reasoning for their choices.

Scalability through Parallelization: The first challenge entails from the large

scale of the network that we simulate. A general assumption in [8, 9] is the availabil-

ity of A, a matrix at the scale of up to hundreds of millions SD pairs. Materializing A

at this point is beyond the capabilities of a Web application. Even the sparse repre-

sentation of A is in the order of a few 100 GBs. Hence, we designed optimized binary

2https://www.rstudio.com/products/shiny/shiny-server/
3https://plot.ly/
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matrix multiplication libraries that operate on the sparse matrix for the implementa-

tion of Direct-e in C++, which utilizes the underlying processor parallelism. These

modules take advantage of the underlying parallelism in processors. And, each of the

multiplication will have a depth of the length of path for each source destination pair

in AAT multiplication. If the mean length of the path in an un-directed path will be

l = 1
n×(n−1)

∑
i 6=j dij where n is the number of distance nodes in the network and this

approach provides for a space and performance advantages to algorithms proposed

in [8, 9].

During the simulation process, a sequential path generator is the bottleneck

for the application. Hence, we designed a parallelized version of the route generator

considering the performance issues. Our code can be found at https://github.com/

jeesaugustine/orca_demo.

Comment 5 Scalability : The first challenge entails from the large scale of the

network that we simulate. A general assumption in [8, 9] is the availability of A,

a matrix at the scale of up to hundreds of millions SD pairs. However, the routing

matrix, A in practice could range in the order of a few hundred million rows and

columns, proportionally, in the order of a few billion. Materializing A at this point is

beyond the capabilities of a Web application. Even the sparse representation of A is in

the order of a few 100 GBs. Hence, we designed optimized binary matrix multiplication

libraries that operate on sparse matrix for the implementation of Direct-e in C++.

These modules take advantage of the underlying parallelism in processors. If the mean

length of the path in an un-directed path will be l = 1
n×(n−1)

∑
i 6=j dij where n is the

number of distance nodes in the network and This approach provides for a space and

performance advantages to algorithms proposed in [8, 9].

Routing: Another major challenge is obtaining the routing matrix A for large net-

works. Algorithms proposed in [8, 9] require a user to furnish A, b and X ′ for com-

92

https://github.com/jeesaugustine/orca_demo
https://github.com/jeesaugustine/orca_demo
https://github.com/jeesaugustine/orca_demo
https://github.com/jeesaugustine/orca_demo


puting Direct-e and Direct-a. Even with parallelization, assigning the shortest

path to billions of SD pairs is computationally expensive. We use a clustering-based

approach in addition to the shortest paths to generate and thus A. This is analogous

to a hierarchical routing approach [57] practiced in the networking community. Please

refer to [8] for further details.

Multi-User Interaction: Algorithms described in [8] were designed for solving a

single instance of SRP. To facilitate multiple users interacting with the system seam-

lessly, we added a string of optimizations such as caching that avoids redundant com-

putation of expensive results and sandboxing that separates the requests of different

users.

4.2.3 User interfaces

Figure 4.2: Orca-SR Interactive Network Simulation and Visualization interface

Orca-SRhas extensive functionalities and has multiple interfaces. Due to the

space limitations, we limit ourselves to the key functionalities of Orca-SRin the

write up.

Network Graph Simulation - Figure 4.2 shows the primary input interface. We

provide support for various forms of input graphs (i) real networks (from SNAP
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Figure 4.3: Interactive selection of top-k SD Flows

Figure 4.4: Visualizing AAT without and with thresholding

repository) (ii) a random graph generator by Erdős–Rényi random graph generation4

(based on user given parameters) and, (iii) a user provided network. Users may

choose different approaches for modeling prior probability distribution for traffic and

various traffic generation methods according to the choice and fitting to the appli-

cation domain requirements. A user will also get a choice of different thresholds for

the Direct-a algorithm as fractions of the number of SD pairs in the network. On

selecting a node, Orca-SRwill process the request and display the traffic flowing

from the selected node to all other nodes in the network. A user may download all

the artifacts of the network and flow (as .csv files) for further investigation.

SD Flow Analysis - The chosen parameter values are used to calculate the SD

traffic for each SD pair. A user can interact with the flow values to selectively view

4https://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93R%C3%A9nyi_model
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parts of the output, focusing on flows the user is most interested in analyzing. The

interface offers subsetting capabilities, which allows a user to dynamically choose a

traffic volume and sort the flows (ascending or descending) to obtain top-k (one can

also vary k) flows in an order preferential to the user using sliders. Users can search

for a particular SD pairs or a traffic volume to locate the flow. In Figure 4.3, one can

observe the top-5 SD flows filtered by the flow volumes (306-5725) and SD Pair ids

(1298-3501) sorted in ascending order.

Source Destination Subsetting - We allow a user to closely analyze network flow

over a small subset of the generated network. The flow values that we obtain from the

algorithm are represented as a scatter plot for analysis. Once selected, a subgraph (of

selected flows) is obtained, and users can interactively visualize the effect of a change

in parameters (prior, path, change in route etc.) on flow values.

Visualizing AAT - Database optimization for SRP is based on the observation that,

bulk of the values of AAT is concentrated in a small number of values(along the major

diagonal). We allow the user to interactively view the effect of using a threshold on

A and AAT for its processing. The heat map on the left panel of Figure 4.4 shows

the sparseness of the AAT matrix as well as the domination of the diagonal values

over the corresponding row and column. Far fewer non zero values on right panel

shows effect of thresholding in computation of AAT . We highlighted the same cell

(row-4, column-37) in both panels to show the optimization through thresholding (left

calculated as 137 and right was never calculated, as 137 is lesser than the threshold,

455). One can clearly notice the pixel density(as a gradient of value associated with

it) of the cell to turning from a light shade(on left) of white to complete dark (on

right).
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4.3 Demonstration plan

This section details the implementation details of Orca-SR, it’s demonstration

plan and comparison portfolios.

4.3.1 Demonstration scenarios

Datasets. We experimented Orca-SRwith all datasets mentioned in the works

by Asudeh et al. [9] and reproduced the results. For this demonstration, we high-

light three different datasets – synthetic Erdős-Rényi graph N1 and two real network

datasets p2p1 and p2p2 from SNAP5 repository.

Comment 6 Synthetic Erdős-Rényi graphs: The synthetic dataset N1, of 274

Nodes with 281 Edges and 827 SD Pairs. Real Dataset 1: p2p1 dataset is a

subnetwork of snapshot of Gnutella Peer-to-Peer network(August 2002) with 10876

Nodes and 39994 Edges published in the SNAP dataset(https://snap.stanford.edu/).

p2p1 has 369 Nodes with 4549 Edges and 136K SD Pairs. Real Dataset 2: p2p2

dataset is also derived from the Gnutella dataset. p2p2 is a medium sized network

with 612 Nodes with 3486 Edges and 373K SD Pairs.

User Interaction Model. On load, the web app introduces a user to network,

traffic and threshold selection page. A user can choose a dataset (one of N1, p2p1 and

p2p2), traffic generation model (Pareto [58], normal, exponential), choice of traffic

prior (preferred: gravity [54], normal, random). The prior is a critical measure as our

final solution is a point in the solution space that is closer to the chosen prior. As

the final input, a user may provide the choice of the threshold(preferred: fractions of

10 on # of Nodes) value, the one which determines the accuracy of the results and

computational time for the results. Besides, users can provide a new dataset to the

system as .csv file.

5https://snap.stanford.edu/
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Comment 7 Once inputs are chosen, Orca-SRsimulates the network and, SD traf-

fic is generated. Interactive visualization of the network is presented to the user,

where one can review the topology of the network. Users can sort and filter the traffic

based on the flow identifier or the traffic volume. Descriptions and details of various

demonstration use cases are as follows.

Active Real-Time SRP. While prior state-of-the-art methods computed the traffic

matrix in a couple of hours, Orca-SRcompletes the SD pairs traffic estimation in a

few minutes, demonstrating orders of magnitude improvement. We demonstrate the

performance improvements based on large real-world networks. Traffic volume gener-

ated by SD pairs change instantaneously and previously, network administrator had

to wait for a couple of hours for re-estimation with changes in b. With Orca-SRand

its optimizations, we demonstrate to track these changes and reflect the changes in

SD pairs traffic over the network in real-time. Users can select the frequency of

change in traffic from the drop-down menu in the visualization tab and the system

automatically updates the traffic instantaneously.

Dynamic Network Adaptation. Real networks evolve dynamically and a network

administrator would need to get a macroscopic view of the network adapting to these

changes for planning resources. Often changes in the network requires a complete re-

computation in previous solution frameworks and were impractical for real-time sys-

tem monitoring. Orca-SRcan dynamically capture these network changes and adapt

without recomputing the solution through selective reuse of signature matrix [9].

Users can choose to update the network from the SD Flows tab with frequency of ad-

dition(deletion) or the number of new(deleted) nodes. Orca-SRdynamically adapts

and adjusts to these network changes in real-time.

97



Top-k Flows Detection and Real-Time Network Sub-setting: Network ad-

ministers are also interested in microscopic view of the network for resource alloca-

tion including the top-k flows. Orca-SRenables an administrator to identify the top

flows [9] and further facilitates a user to focus on a subset of the network with top-k

flows for analysis. In this demonstration, once a sub-network is chosen the system

automatically adapts to the sub-network, allowing a user to update traffic flows in

the sub-network.
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