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ABSTRACT 

SEMI-AUTOMATIC HAND POSE 

ESTIMATION USING A SINGLE 

DEPTH CAMERA  

 

GIFFY JERALD CHRIS, M.S. CSE 

 

The University of Texas at Arlington, 2020 

 

Supervising Professor: Vassilis Athitsos 

 

This paper addresses the problem of 3D hand pose annotations using a single depth camera. 

Although hand pose estimation methods rely critically on accurate 3D training data, creating such reliable 

training data is challenging and labor intensive. We propose a semi-automatic method for efficiently and 

accurately labeling the 3D hand key-points in a hand depth video. The process starts by selecting a subset 

of frames that are representative of all the frames in the dataset and the annotator only provides an estimate 

of the 2D hand key-points in these selected frames. We use this information to infer the 3D location of the 

joints for all the frames by enforcing appearance, temporal and distance constraints. Finally, we 

demonstrate that our method can generate 3D training data more accurately using less manual intervention 

and offering more flexibility in comparison to other state-of-the-art methods.  
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CHAPTER 1: 

INTRODUCTION 

Hand pose estimation is the task of finding the bone joints in the hand to infer the pose information 

from a given image or video frame. Accurate hand pose estimation is a very significant task that has many 

practical applications such as sign language recognition, human-computer interaction, and augmented 

reality applications.  

Recent works on hand pose estimation methods have relied heavily on deep neural networks which 

require huge amount of training data [1] [2]. However, creating this training data is a difficult problem. Even 

with 3D sensors that use structured light or time-of-flight sensors, the problem remains a very challenging 

one; since human hands have a high degree of freedom and exhibits self-similarity and self-occlusion in a 

monocular camera setting [3]. 

Vision based reconstruction of the 3D pose of human hands from 2D images is really difficult since 

any given 2D point in the image plane can correspond to multiple 3D points in the world space, and all of 

these possible 3D points project into the same 2D point [4]. In addition to the other challenges related to 

hand pose estimation, 3D hand pose estimation from monocular 2D images also suffer from depth and 

scale ambiguities. 

Accurate hand pose annotation has been the bottleneck for creating large-scale hand pose 

datasets. To avoid this problem Yuan et al. used six 6D magnetic sensors to create a million-scale dataset 

[5]. There are other methods such as Glauser et al. that used stretch-sensing soft hand gloves to capture 

the hand pose more accurately [6]. These methods require small wearable magnetic sensors to be placed 

at each finger joint to capture the hand pose. But the sensitivity of magnetic sensors increases with size; 

meaning small sensors lack in precision and are easier to be disturbed by external magnetic fields [7]. Also, 

magnetic sensors are not very practical to use in day-to-day operations and therefore we focus our attention 

on marker-less hand pose estimation methods. 

Some marker-less hand pose estimation methods rely on synthetic images since it allows to create 

virtually infinite training data with large variations in shapes and view-points and produce annotations that 
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are highly accurate in case of occlusions [8]. For this reason, many synthetic image datasets were 

introduced in recent years [8] [9] [10] with number of frames ranging from three hundred thousand to five 

million frames. However, synthetic hands exhibit a certain level of deviance from real images as these do 

not capture the sensor characteristics such as noise and missing data that are present in real images. 

There are also marker-less hand pose datasets of real hand images [11] [12] [13], that contain 

frames in the range of (80k-330k) but exhibit significant errors in 3D locations of the joints. We show some 

examples of annotation errors on the MSRA dataset [11] in Figure 1. Also, some real hand pose datasets 

have frames in the range of couple of thousands that are not suitable for training large neural networks. 

 
Figure 1: Annotation errors in the MSRA dataset: In the first figure the joints on the little finger and in the second 

image joints on the thumb and index finger aren’t correctly annotated. 

 
The method proposed in the paper annotates depth images by selecting a subset of the frames 

that are representative of the entire dataset, manually annotating them and passing these annotations to 

other frames. This method was inspired by Oberweger et al. [14], however, our major contribution to this 

approach was the way in which reference frames are being selected and following the same approach as 
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Oberweger’s paper to propagate the annotations from reference frames to the rest of the frames. Instead 

of the original clustering method adopted by the paper we took to sorting the frames based on cosine 

similarity and selecting reference frames based on a threshold. The threshold is a more robust way of 

selecting reference frames which are representative of the entire dataset as we can compare it to the mean 

and median distance of the dataset which is not the case in clustering algorithms. This helps us selecting 

appropriate number of reference frames to get the best annotations. 
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CHAPTER 2: 

RELATED WORK 

A large body of literature is devoted to real-time pose estimation of marker less articulatable 

objects, such as human bodies, hands, and other man-made objects. As the primary contribution of our 

work is based on human hand pose estimation, we will mainly discuss the most relevant prior work on hand 

pose estimation.  

Inferring the pose of hands is difficult problem because of self-occlusion and to mitigate this 

problem, Johnathan Thompson et al. [13] used 3 RGBD cameras at viewpoints separated by approximately 

45˚s surrounding the user from the front. They used a predefined 3D hand model that was manually 

readjusted for poses that failed to fit correctly. Also, the dataset was collected from the frontal view of the 

user, limiting the range of poses. Simon et al. [1] proposed multi-view bootstrapping based on the 

observation that even if a particular image of a hand has significant occlusion from one view, there often 

exists an un-occluded view to recover the pose. They used 31 high definition cameras to localize subsets 

of key points in good views and used 3D triangulation to filter out incorrect detections. Ballan et al. [15] 

used eight simultaneous cameras recording at 50 fps to capture hand interactions. However, these methods 

impose a lot of restrictions which limit the range of hand poses. 

Several other groups have used single camera setups for hand pose estimation. For example, Tang 

et al. [12] used a latent tree model to reflect the hierarchical topology of the hand and used it for 3D hand 

pose estimation from a single depth image. Although the method is limited to one hand and do not work for 

interaction with the other hand or objects. Sun et al. [11] used a single depth camera to fit a predefined 3D 

hand model using hand pose regression, which starts by initializing a rough estimate of the hand pose and 

then iteratively estimates the palm joints and finally figures out the finger joints keeping the palm joints fixed. 

Qian et al. [16] also proposed a sphere-based hand model and a novel cost function for real-time hand 

tracking based on a single depth camera. These tracking require manual supervision which leads to many 

errors. Also, tracking based methods are prone to errors from the previous frames as it does not reinitialize 

the estimation at each frame. 
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Annotating 3d hand joints in real depth images is a complicated and time-consuming process. 

Therefore, some researchers have focused on synthetic datasets [17] [18] [10] to generate highly accurate 

training data. Real datasets are limited in quantity and coverage due to the difficulty of annotations [5], but 

synthetic datasets do not have this problem. However, synthetic datasets exhibit a certain level of 

appearance difference with real images and tend to have hand kinematics which are impossible to generate 

using real human hands. They also lack the depth sensor noise present in real data. Although Xu and 

Cheng [19] analyzed the depth noises to minimize the negative impacts on overall performance, it is very 

difficult to model the sensor noise in a general way.  

There are also magnetic sensor-based methods for acquiring accurate 3D locations of hand key-

points. Yuan et al. [5] proposed a system with six 6D magnetic sensors and inverse kinematics to capture 

a million-scale benchmark dataset of real hand depth images [6] used a stretch-sensing soft glove to 

interactively capture hand poses in heavily occluded environments or low light conditions. However, data 

gloves are mostly custom-made and there is no industrial standard on the design and fabrication of such 

devices and are unsuitable to use in various user scenarios [7].  

Rogez et al. [20] collected and annotated a benchmark dataset of real egocentric object 

manipulation scenes. They developed a semi-automatic labelling tool which allows to annotate partially 

occluded hands and fingers in 3D. A user labels the 2D location of a few joints and these are used to select 

the closest synthetic exemplar in the training set. A full hand pose is then created by combining the manual 

labelling and selected 3D exemplar and later refined manually. This process is iterated until an acceptable 

labelling is found. Oberweger et al. [14] extended this work by optimizing the reference frame selection and 

a global optimization step to enforce some shape and appearance constraints.  

There have been other semi-automatic methods for annotating video sequences in Computer 

Vision. [21] used a semiautomatic method for resolving occlusion in augmented reality. They exploited 

object silhouettes in reference frames to predict the object silhouettes in the remaining frames. Wei and 

Chai [22] used a semi-automatic framework to model human motion with the help of physical and contact 

constraints. Compared this these works, we propose a semi-automatic approach for hand pose annotation, 

which minimizes the manual work, and produces more accurate 3D hand key point annotations.   
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CHAPTER 3: 

PROPOSED METHOD 

Given a sequence of depth frames {𝐷𝑖}𝑖=0
𝑁  capturing a hand in motion, our goal is to estimate the 

3D hand joints in the depth maps while eliminating as much manual effort as possible. Our approach is 

based on the common observation that not all the frames in a hand depth video vary significantly from each 

other. Therefore, if we annotate the hand joints in a few carefully selected frames and propagate this 

information to similar frames it should lead to better accuracy. The process starts by automatically selecting 

the frames for manual annotation. A human annotator provides the 2D hand joint locations in the reference 

frame and using these we infer the 3D position of hand key-points in the reference frames. We propagate 

this knowledge to the other frames that are similar to the corresponding reference frames and infer the 3D 

hand joints in the unannotated frames. Finally, we optimize annotations enforcing appearance, temporal 

and spatial constraints. 

 

3.1 Selection of reference frame 

Our goal here is to select a set of frames whose annotations will be propagated to the remaining 

frames in the dataset. The easiest way to achieve this would be to sample a frame after a fixed time interval; 

say every 10th frame. However, this would not yield an ideal solution as the rate at which hand poses change 

in real images may vary. If the subject is slow, we might have too many reference frames increasing 

redundant annotations or if the subject is fast, we might lose out on key frames. Selecting these frames is 

crucial to our task as we want to select the right number of frames which are representative of the entire 

dataset while reducing manual annotations. To accomplish this, we came up with a novel approach of 

selecting reference frames with the help of the dataset and a threshold. 
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Figure 2: Visualization of similarity in the video sequence. We, therefore, select some frames from these clusters as 
reference frames, annotate them and use these annotations to improve the other frames that belong to the same 

cluster 

 
Instead of temporal sampling, we approached the problem by sorting the frames with respect to 

ascending order of the distance between all frames in the dataset. The distance function can be dynamically 

selected however the one that worked best for us was cosine similarity. We start by annotating the first 

frame and pass on these annotations to every frame until the distance exceeds by a certain threshold. Once 

it does, we repeat the process by annotating the next frame. This ensures all similar frames have a 

reference frame to get their annotations from. 

We use T-SNE [23] to visualize the high dimensional images in 2D space in Figure 2 a, where 

consecutive points in the plot represents similarity. As an example, we show the T-SNE plot for Blender 

dataset [11]. From the plots we project a few frames belonging to the same cluster Figure 2 b and we can 

see that the frames are quite similar to each other. However, we cannot use the centroid of the visualized 

clusters as reference frames because sometimes T-SNE moves far away points close to each other. Also, 

(a) T-SNE plot for Blender Dataset 

(b) Visualization of frames that belong to the same T-SNE cluster 
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we cannot assume the relative size of clusters from the T-SNE plot as T-SNE tends to expand dense 

clusters and shrink sparse ones. However, T-SNE confirms our assumption that some of the frames are 

indeed like each other. 

To sort the frames in increasing order of their distance (cosine similarity) we use Equation 1. 

 

 𝐹𝑖 = ∀𝑖 𝑎𝑟𝑔𝑚𝑖𝑛 ( 𝑑(𝐷𝑖 , ∀𝑗𝐷𝑗)) 𝑠. 𝑡. 𝑖 ≠ 𝑗 

𝑑(𝐷𝑖, ∀𝑗𝐷𝑗) = cos(𝜃) =  
𝐷𝑖 . 𝐷𝑗

‖𝐷𝑖‖. ‖𝐷𝑗‖
 

Equation 1 

 
Here, 𝐹 is a set of all frames in increasing order of distance, 𝐷𝑖  and 𝐷𝑗 are two depth maps and 𝑑(𝐷𝑖 , ∀𝑗𝐷𝑗) 

returns the distance of all frames with respect to frame 𝐷𝑖. As we now have calculated the set 𝐹 we use this 

to select the reference frames. We start by first setting frame 0 as a reference frame and iterate over the 

entire set. Every time the distance of the next frame is greater than a threshold 𝜌 the next frame is 

considered as the reference frame. This is illustrated in the equation below. 

 

𝑅 = {
1, 𝑑(𝐷𝐹(𝑖−1), 𝐷𝐹(𝑖)) > 𝜌

0, 𝑑(𝐷𝐹(𝑖−1), 𝐷𝐹(𝑖)) ≤ 0
 𝑖 = 1 … 𝑛 

Equation 2 

 
Here, 𝐷𝐹(𝑖−1) is the previous reference frame and 𝐷𝐹(𝑖) is the current frame being compared from 

the sorted set of frames. Selecting the reference frames in this way has advantages over temporal sampling 

as consecutive frames could have much higher distance than a frame that occurs much later in the video 

sequence. Also, we experimentally show that we achieve better results than the greedy reference frame 

selection method of Oberweger et al. [14] as our method does not cluster the data but sorts them based on 

their similarity. Sorting the frame makes sure that the closest frames always grouped together. Moreover, 

we can change the 𝜌 threshold to change the number of reference frames. A low threshold would increase 

the number of reference frames, this would not harm the accuracy of the annotations per say but would 
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drastically increase manual annotations. On the other hand, a high threshold would pick far too less frames 

which would not be representative of the entire dataset and could yield subpar results. 

 

3.2 Initializing the 3D Joint Location in the Reference Frames 

After selecting the reference frames, we need to label them by a human annotator. We use the 

annotation tool by Oberweger et. el [14] to annotate the frames. The annotator provides the 2D hand joint 

locations for each reference frame alongside the visibility information. The visibility information basically 

points whether the joints are closer or farther from the camera than the parent joint in the hand skeleton 

tree. Using this information, we recover the 3D locations of the joints. To recover the 3D locations of the 

joints in the reference frame, we optimize the following non-linear least squares problem used by 

Oberweger et. al [14]. 

 

𝑎𝑟𝑔𝑚𝑖𝑛

{𝐿𝑟,𝑘}𝑘=1
𝐾 ∑ 𝑣𝑟,𝑘‖𝑝𝑟𝑜𝑗(𝐿𝑟,𝑘) −  𝑙𝑟,𝑘‖

2

2
𝐾

𝑘=1

 

𝑠. 𝑡.  ∀𝑘 ‖𝐿𝑟,𝑘 − 𝐿𝑟,𝑝(𝑘)‖
2

2
= 𝑑𝑘,𝑝(𝑘)

2  

∀𝑘 𝑣𝑟,𝑘 = 1 ⇒ 𝐷𝑟[𝑙𝑟,𝑘]  <  𝑧(𝐿𝑟,𝑘 < 𝐷𝑟[𝐿𝑟,𝑘])  +  𝜀 

∀𝑘 𝑣𝑟,𝑘  =  1 ⇒  (𝐿𝑟,𝑘 − 𝐿𝑟,(𝑘))
𝑇

 .  𝑐𝑟,𝑘  >  0 

∀𝑘 𝑣𝑟,𝑘 = 0 ⇒ 𝑧(𝐿𝑟,𝑘 > 𝐷𝑟[𝐿𝑟,𝑘]) 

 

Equation 3 

Where, 𝑟 is the index of the reference frame. 𝑣𝑟,𝑘 = 1 if the 𝑘𝑡ℎ joint is visible in the 𝑟𝑡ℎ  frame. 𝐿𝑟,𝑘  is the 3D 

location of the 𝑘𝑡ℎ joint in the 𝑟𝑡ℎ  frame. 𝑙𝑟,𝑘  is the 2D reprojection of the 3D joint locations. 𝑝𝑟𝑜𝑗(𝐿) returns 

the 2D reprojection of a 3D location. 𝑝(𝑟) returns the index of the parent joint of the 𝑘𝑡ℎ joint in the hand 

skeleton. 𝑑𝑘,𝑝(𝑘) is the known distance between the 𝑘𝑡ℎ joint and its parent 𝑝(𝑘). 𝐷𝑟[𝑙𝑟,𝑘] is the depth value 

in 𝐷𝑟  at location 𝑙𝑟,𝑘. 𝑧(𝐿) is the depth of 3D location L. 𝜀 is a threshold used to define the depth interval of 



10 
 

the visible joints. In practice, we use 𝜀 = 15 mm given the physical properties of the hand. 𝑐𝑟,𝑘 is equal to 

the vector [0, 0, −1]𝑇 if the 𝑘𝑡ℎ joint is closer to the camera than its parent in the frame 𝑟, and [0, 0, 1]𝑇 

otherwise. [𝐿𝑟,𝑘  −  𝐿𝑟,𝑝(𝑘)]𝑇is the vector between joint 𝑘 and its parent in the frame. 

 
Figure 3: Initialization of the 3D hand joint locations in reference frames 

The constraints in Equation 3 assure that (1) we find the 3D joints 𝐿𝑟,𝑘 such that the bone lengths i.e. the 

distance between 2D projection of 𝐿𝑟,𝑘 and 𝑙𝑟,𝑘  is maintained; (2) visible joints are within ∈ distance of 

observed depth maps; (3) the z-axis value for hidden joints is greater than visible joints, and (4) depth order 

constraints between a joint and its parent is also maintained. We assume the lengths 𝑑𝑘,𝑝(𝑘) are known. 

During implementation, we calculate this distance as the Euclidean distance between joints in the hand 

skeleton tree. We use SLSQP [24] to solve this problem and find the 3D hand key points i.e. 𝐿𝑟,𝑘 values. 

Finding the hand key points in this way maintains the constraints of the hand skeleton tree and provides a 

reasonable estimate of the 3D hand joints in the reference frames. 

 

3.3 Initializing the 3D Joint Locations in the Remaining Frames 

Now that we have the 3D annotations for the reference frames our next step is to propagate this 

information to the remaining frames. Unlike Oberweger et al. [14] method of adding newly annotated frames 

(a) A human annotator marks the 2D  
hand joint locations in the depth 

frames 

(b) Visualization of the 3D hand key-points  

based on the 2D annotations 
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to the set of reference frame we iterate through the set 𝐹. If 𝐹𝑖 is a reference frame skip else annotate the 

frame with respect to the previous frame 𝐹𝑖−1. This helps in two folds, first being the previous frame will 

always be annotated hence assuring that we always use the closest frame as reference frame. This was 

not the case in the greedy approach as the closest frame might not have been annotated yet. Secondly, 

we eliminate the process of recalculating the nearest reference frame saving on computation time. 

To align the nearest frame we follow the method suggested by Oberweger et al [14], using SIFT-

Flow [25]. Unlike Optical flow which aligns an image to its temporally adjacent frame, SIFT-Flow aligns an 

image to its nearest neighbors in a large corpus containing a variety of poses. It matches densely sampled, 

pixel-wise SIFT features between two images, while preserving spatial continuities. 

We initialize SIFT-Flow by aligning the closest reference frame 𝐹𝑖−1 to a non-reference frame 𝐹𝑖. 

This maps the 2D reprojection of joints in frame 𝐹𝑖−1 to 2D locations in frame.𝐹𝑖 We back-project each of 

these 2D joint locations on the Depth map 𝐷𝑐  to initialize 𝐿𝐹(𝑖),𝑘. We check for each 3D joint in the non-

reference frame i.e. 𝐿𝐹(𝑖),𝑘, the distance to its parent joint 𝐿𝐹(𝑖),𝑝(𝑘) and thereby enforcing the 3D distance 

between joints in the hand skeleton tree. The initialization of a non-reference frame using its closest 

reference frame is illustrated in Figure 4. 
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Figure 4: SIFTFlow optimization of the remaining frames based on the closest reference frame 

 

3.4 Global Optimization 

The previous optimization already optimizes the frames based on their closest reference frames. 

However, there might be some hand constraint violations due to estimating the hand joints in remaining 

frames using their closest reference frames. We also maintain some temporal constraints with the previous 

frame. We perform a global optimization over the 3D joint locations 𝐿𝑖,𝑘 for all the frames by minimizing the 

equation below using the method by Oberweger et al. [14]: 

 

(a) Closest Reference frame selected 

(b) Initializing the current frame with SIFT-Flow 

(c) Result after optimization 
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∑ ∑ 𝑑𝑠(𝐷𝑖 , 𝑝𝑟𝑜𝑗(𝐿𝑖,𝑘); 𝐷𝑖, 𝑙𝑖,𝑗)
2

+

𝑘𝑖 ∈ [1;𝑁]

 

 

𝜆𝑀 ∑ ∑‖𝐿𝑖,𝑘  − 𝐿𝑖+1,𝑘‖
2

2
 +

𝑘𝑖

  

 

𝜆𝑃 ∑ ∑ 𝑣𝑟,𝑘‖𝑝𝑟𝑜𝑗(𝐿𝑟,𝑘  − 𝑙𝑟,𝑘)‖
2

2

𝑘𝑟 𝜖 𝑅

 

 

𝑠. 𝑡. ∀𝑖, 𝑘 ‖𝐿𝑖,𝑘  −  𝐿𝑖,𝑝(𝑘)‖
2

2
 =  𝑑𝑘,𝑝(𝑘)

2  

 

Equation 4 

The first term (C) sums the differences of the joint locations compared to the closest reference 

frame. Given the depth map and 3D joint locations in the current frames, it calculates the dissimilarities with 

the closest reference frame. The second term (TC) is a temporal constraint that makes sure that 

consecutive joints do not have huge fluctuations between their 3D joints. Because hand pose from 

consecutive frames cannot change very rapidly, this term maintains temporal smoothness by avoiding 

consecutive joint estimations that are far away from each other. The last term(P) of the summation ensures 

consistency with the manual 2D annotations for the reference frames since the 2D reprojection of 3D hand 

joints should be similar to what the user annotated in 2D. 𝜆𝑀 and 𝜆𝑃  are weights that maintains the 

significance of each constraint. 

 As the remaining frames were optimized with the closest reference frames in the previous step, we 

allowed the joint positions to change without enforcing the shape or temporal constraints. In this step, we 

(C) 

(TC) 

(P) 
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make sure that the 3D hand joints maintain the shape and temporal constraints and therefore this global 

optimization step further refines the annotations. 
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CHAPTER 4: 

EVALUATIONS 

We apply our method on both synthetic and real hand pose datasets and compare our results with 

the results of Oberweger et al. [14]. We test our novel reference frame selection method on a synthetic 

dataset called Blender created by [14] and achieve better results. We provide quantitative comparison of 

our results in the next section. Later we show our results are also superior on a real hand pose dataset 

(MSRA [11]) and show the qualitative comparisons as well. Finally, we show that our reference frame 

selection is more flexible as users can choose either higher or lower number of reference frames for 

annotation. We also show the quantitative results for different number of reference frame selection. 

 

4.1 Evaluation on Synthetic Data 

We used the Blender dataset, which contains 3040 depth frames from a single camera setup to 

test our method. As we know the actual 3D hand joint locations for all frames in the synthetic dataset, we 

can use the annotations for the reference frame and infer the 3D hand joint locations in the remaining 

frames. Later, we can compare our inferred joints with the ground truth values to estimate the mean, median 

and max errors for our method by calculating the Euclidean distance between the two. In the following table, 

we show that our reference frame selection method based on cosine distance achieve better initialization 

results than Oberweger et al. [14] in the following Table 2: 

 

 Our Method Oberweger et al. [14] 

Mean error 8.01 10.07 

Max error 89.18 99.05 

Median error 6.21 6.93 
Table 2: Comparison of Initialization results on the Blender Dataset 
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Also, our initialization results later propagate to better overall results, which we show quantitatively 

in the following Table 3: 

 

 Our Method Oberweger et al. [14] 

Mean error 4.69 4.91 

Max error 84.33 73.65 

Median error 3.35 3.68 
Table 3: Comparison of Final Results on the Blender Dataset 

 

 
4.2 Evaluation on Real Data 

We also test our results on a real hand pose dataset. We choose MSRA which contains 76K depth 

frames from 9 different subjects and 21 hand key-points. We test our method on the first 8500 frames on 

the dataset. Based on our reference frame selection method, we select a subset of frames for human 

annotation based on the distance threshold 𝜌. Unlike selecting 10% of the frames as reference frames [14], 

we can select a higher or lower number of reference frames based on the distance threshold. After the 

human annotator provides the 2D hand joint locations on the selected reference frames, we can figure out 

the 3D hand key-points using SLSQP. Later, we align the 3D hand key-points of each of the remaining 

frames to their closest reference frame using SIFT-Flow and enforce the shape and appearance constraints 

to get the refined annotations. 

Unlike synthetic hand pose datasets, we do not know the actual position of hand joints in a real 

hand pose dataset. Therefore, we show some qualitative results on how the method performed on the 

MSRA [11] dataset in the following Figure 5. 
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Figure 5: Qualitative Results on the MSRA dataset 

 

4.3 Evaluation on Different Reference Frame Selection 

One of the main benefits of our reference frame selection is that we can choose a dynamic no of 

frames based on the cosine distance value. If we pick a higher threshold, 𝜌 we will get a lower no of 

reference frames which will save a lot of manual annotation work. Also, if we want better accuracy and have 

resources to annotate more reference frames then we can reduce the value of 𝜌 and then we will select a 

higher number of reference frames to be annotated. We can compare the results of selecting higher or 

lower number of reference frames from the following Table 4:  

 
 

 ~2% frames ~5% frames ~10% frames 

Mean error 5.79 5.5 4.69 

Max error 76.80 78.99 84.33 

Median error 4.61 4.18 3.36 
Table 4: Evaluation on the Blender Dataset for different % of reference frame selection 
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Figure 6: Graph showing errors depicted in table 4 

 

As we can see from Figure 6 and Table 4, the annotation results improved with the selection of 

more reference frames, i.e. with more human annotations we can get better results. However, we got 

comparably good results while selecting 2-5% of the frames as reference frames. This shows that with 

minimal effort we can produce better annotations in the overall dataset. 

To further solidify this claim we show the distribution of the selected reference frames in the T-SNE 

graph. This will give us a better idea of how our selection method is well distributed throughout the dataset 

and encompasses all the frames. 
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Figure 7: T-SNE distribution of reference frames with respect to non-reference frames. 
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CHAPTER 5: 

CONCLUSION 

Training data is the backbone of the deep learning methods being used for hand pose estimation. For 

datasets with real images, it is very difficult to get accurate 3D joint locations due to noise, self-occlusion 

and complexity of human hand structure. Our method provides a solution by processing frames with some 

manual supervision and propagating this information to other frames to get overall better annotations. This 

saves time required to manually annotate all the frames and provides better accuracy than inferring the 

annotations without any manual supervision. Moreover, this pipeline of annotating frames using a 

representative subset can be applied for other articulated structures such as human bodies or other relevant 

annotation tasks. 
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CHAPTER 6. 

FUTURE WORK 

There are couple of ways in which this work can be extended. First would be to create a more 

intuitive UI which would enable users to annotate directly in 3D. The major drawback with annotating in 2D 

and projecting it to 3D is having to repeat annotations multiple times to get the right annotations. This task 

is time consuming and erroneous. If annotations can be done in 3D by stitching in together multiple 2D view 

annotation. 

 Secondly, we can improve annotations in 3D by adding biological constraints. These constraints 

would make sure that the joints do not deviate from normal hand poses and can be integrated into Equation 

3. [26] state the following type 1 constraints. 

 

0° ≤ 𝜃𝑀𝐶𝑃−𝐹  ≤  90° 

0° ≤ 𝜃𝑃𝐼𝑃  ≤  110° 

0° ≤ 𝜃𝐷𝐼𝑃  ≤  90° 

−15° ≤ 𝜃𝑀𝐶𝑃−𝐴𝐴  ≤  15° 

 

Equation 5 

 

 Where 𝜃 stands for the angle between the joints and the subscripts define the name of the joint 

and motion. F stands for flexion angles and AA stands for abduction/adduction. 
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