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Abstract 

Development of Deterioration Models for Street Pavement 

in the Dallas-Fort Worth Metroplex 

Mladjan John Grujicic, PhD, PE 

 

The University of Texas at Arlington, 2020 

Supervising professor: Dr. Stefan Romanoschi 

 

Accurate prediction of pavement deterioration is vital for an efficient and cost-effective 

allocation of available budgets for keeping an agency’s road networks operating at a desirable 

level.  

Currently, most cities in the Dallas-Fort Worth Metroplex area are using the software PAVERTM 

and the associated performance models to predict future conditions as they do not have available 

reliable prediction models. However, the problem with this type of modeling is that the models are 

not calibrated to local conditions.  

The Pavement Deterioration Prediction models that have been developed in this research 

will help any pavement management agencies within DFW Metroplex area to identify and predict 

the future pavement performance for any planning period.  The models were developed based on 

the available data collected by the city's pavement management department for the DFW 

Metroplex area.  

In this research, a family modeling approach has been used as this method reduces the 

number of independent variables in performance modeling to a single variable (age in this 

research) by enabling the development of models in each pavement family. Separate models are 
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also developed for areas with expansive and non-expansive subgrade soil.  A total of eleven models 

are developed for the areas non-expansive subgrade soil area and nine models for the areas with 

expansive subgrade soil.  

Deterministic models that are developed are applicable to cities with available historical data on 

PCI or IRI. The developed probabilistic models are applicable to cities with a current pavement 

condition data, but no less than the last two consecutive years.                                                                   
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1. Chapter 1.  Introduction, Research Rationale and Objective 

1.1 Introduction 

 A road pavement continuously deteriorates under the combined actions of traffic loading and 

the environment. AASHTO (1993) defines the pavement performance as the ability of a pavement 

to satisfactorily serve traffic over time (AASHTO, 1993). The change in the value of these 

performance indicators over time is referred to as pavement deterioration. Pavement performance 

models, or deterioration models, refer to mathematical expressions used for predicting the future 

condition(s) of pavement from their present condition.  Also, the models may aid in discerning 

some of the factors that are likely to contribute to changes in the conditions of pavement. 

Therefore, reliable models are very valuable to pavement managers and engineers. 

 Accurate prediction of pavement deterioration is vital for an efficient and cost-effective 

allocation of available budget for keeping an agency’s road network operating at a desirable level. 

Many scholarly investigations affirm that a profound understanding of the pattern of pavement 

deterioration in urban regions has yet to be achieved.  According to Abaza (2016), this lack of 

understanding arises from traffic pattern complexity and from a variety of pavement structures that 

are developed in urban roads. Anastasopoulos, McCullouch and Gkritza et al. (2010), further stated 

that “when a suitable deterioration model is not developed, especially in the case of urban 

pavements, the possibility of achieving a scientific model for cost-effectiveness and repairs is 

limited”.  As stated by Arambula, et al. (2011), “the understanding of the condition of pavements 

is the best way for deriving effective predictive models for pavement conditions”.   

 While being an essential component under pavement management systems, prediction models 

have been documented to play crucial roles in estimating the time and type of rehabilitation or 

maintenance to support decisions in multi-year improvement programs, predicting the duration 

until the lowest limits of acceptable pavement conditions might be reached (or determining the 
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remaining service life of a pavement), and ensuring that the combination of timing and treatment 

is optimized in a manner that leads to the accomplishment of an agency’s goals.   

The common method to measure pavement deterioration relies on the collection of type, 

severity, and extent of common pavement distresses. For example, three major flexible pavement 

distresses are rutting, fatigue cracking, longitudinal & transverse cracking. Major distresses for 

rigid pavement are cracking, corner breaks, shrinkage cracking, and punchouts. They constitute 

the main factors that reflect the performance and ride quality of pavements. 

A very important factor that affects pavement deterioration is the presence of expansive 

subgrade soil.  According to Consoli, et al. (2011), expansive subgrade soils refer to soils with 

high contents of expansive minerals that are modified by the formation of deep cracks during drier 

seasons. Indeed, expansive subgrade soils can be concluded to be typical clays demonstrating 

extensive strength and volume changes with the amount of moisture content. The latter trend is 

linked to the chemical composition of the soils.  Through time, the changes in the volume of the 

clays lead to significant foundation damages, with pavements undergoing extensive deterioration 

(Dang, et al. 2016). 

Pavement Condition Indices 

A great effort has been put into developing a pavement condition index as an indicator to 

overall pavement health and to ease the characterization of the pavement condition. The condition 

index combines all measures of pavement distress into a single number. This number can be used 

at the network-level to define the condition state of each road segment, to identify when treatments 

are needed, to rank or prioritize, and to forecast pavement condition (FHWA, 2003). Several types 

of pavement condition indicators have been used by road and street network agencies. 
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Present Serviceability Index (PSI) 

The Present Serviceability Index (PSI) was developed in the early 1960s and is the first 

comprehensive effort to establish performance standards while considering riding quality (Carey 

and Irick, 1960). The PSI was based on the values of pavement smoothness, rutting, cracking, and 

patching. A panel of highway users from different backgrounds evaluated several flexible 

pavement sections and rated them on a five-point discrete scale (0 for poor, 5 for excellent). An 

average value of these provided by the raters is computed. The PSI has been related later to the 

extent of cracking and roughness using regressing models (Yogesh U. Shah, et, all 2011). 

Pavement Condition Index (PCI) 

The PCI survey methodology was developed by the U.S. Army Corps of Engineers, it uses 

a very comprehensive condition index (Shahin and Kohn, 1979).  The PCI method is based on a 

visual examination of the pavement distress type, extent, and severity (ASTM, 2007).  The PCI 

provides a measure of the current condition of the pavement based on the distress observed on the 

surface of the pavement. It may also indicate the surface operational condition (roughness and 

safety). The PCI scale, shown in Figure 1.1 is 0 – 100. Sections with 100 represent the best possible 

condition, and 0 represents the worst possible condition.  One PCI survey procedure and 

calculation method were standardized by ASTM for roads and parking lots pavements (ASTM, 

2007).  The pavement condition rating consisted of the following steps: 

1.  Divide pavement section in manageable sizes 

2.  Identify pavement distress, severity and extend guidelines that have been developed on how 

to carry out pavement distress evaluation 

3.  Deduction values were assigned for each distress type, severity, and extent level 

4.  Add the total number of deducting values 
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5.  Corrected deduction value is determined based on the number of observed distresses 

6.  Determine the pavement condition rating on a scale from 0-100 by subtracting the deducted 

value from 100 

The PCI has been widely used in the network-level pavement management and has been adapted 

for the pavement management system PAVER TM software (Shahin and Walter, 1990). 

 

Figure 1.1 Standard PCI Rating Scale by ASTM (Source: ASTM, 2007) 

 

International Roughness Index (IRI) 

Another measure of the quality of a road section is the roughness of the longitudinal profile 

since it significantly affects the comfort of the user and user costs. The IRI is the roughness index 

obtained from measuring longitudinal road profiles by road meters installed on vehicles or trailers. 

The IRI was originally developed by the World Bank to be used in the Highway Development 

Model. The IRI roughness is usually reported in inches per mile (in/mi) or meter per kilometer 

(m/km) (1 m/km = 63.36 in/mi) on an increasing boundless scale. Figure 1.2 shows the typical 
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ranges for the IRI. A perfectly smooth pavement (not possible even right after construction) would 

have an IRI of 0. FHWA specifies an IRI value of 95-170 in/mi as the boundary between acceptable 

and unacceptable interstate pavement.  For the roads with a lower operating speed such as arterial, 

collector, and residential streets, higher IRI values typically would be allowed before the road 

section is selected for rehabilitation.   

Due to the importance of the roughness of the longitudinal profile, evaluation models have 

been developed from the IRI. The accurate prediction of the evaluation of IRI allows the estimation 

of future vehicle operating costs which are important components of the life-cycle cost analysis.  

 

Figure 1.2  IRI Range by Roadway Type (Adapted from Sayers and Karamihas 1998) 
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Pavement Performance Models 

Pavement performance models are the main element in any Pavement Maintenance 

Management System (PMMS). Pavement performance models can be divided into two major 

groups: deterministic and probabilistic models. 

o Deterministic models - These models are developed from a regression analysis in which a 

statistical relationship between two or more variables is established. The statistical 

relationships in these models are not exact and include prediction errors. The magnitude of the 

errors depends on factors such as the quality of the data, the appropriateness of the selected 

independent variables to predict the dependent variables, and the range of data in the data set. 

Because the correlation between the independent and dependent variables is not exact, an 

approach for determining the best statistical fit of the data must be used. A common approach 

is to use the least squares regression technique, which minimizes the sum of the squared 

differences between the predicted and the measured points. Deterministic models may take 

many forms (e.g., shapes) depending on the type of equation used (e.g., linear, quadratic, or 

sigmoid). For the sake of simplicity and due to the lack of complete datasets to develop more 

complex models, it is common in pavement management to use a single independent variable 

to predict the dependent variable (e.g., pavement condition). Pavement age is the most 

commonly used independent variable and refers either to the number of years since 

construction or the last major rehabilitation. A typical example of a deterministic model in 

pavement deterioration would be the sigmoidal model, i.e. a model given by:  𝑦 = 𝑎 ∗ [
𝑡𝑏

𝑐+𝑡𝑏
]  

where 𝑎, 𝑏, and 𝑐 are constant numbers and t represents the time elapsed since the last major 

rehabilitation. 
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o Probabilistic models – Probabilistic models differ from deterministic models in that instead of 

predicting a single value for pavement condition, they predict the likelihood of a pavement 

changing into one of several condition states, or categories, when the current condition state is 

known. They are typically used more for other asset management systems such as bridge or 

pipeline management systems. The Markov probabilistic approach assumes that the probability 

of changing from one condition state to another is independent of the past condition. The Semi-

Markov approach is designed to overcome the independence of time assumption used when 

changing from one pavement condition state to another.  Semi-Markov models allow transition 

probability matrices to be created and used together to provide piecewise increments of time.  

Since Markov models depend only on the current condition state, there is no opportunity to 

include other variables such as traffic loading or environmental factors. Since traffic and 

environmental factors contribute to performance and they are changing over time, the families 

are created and separate transition matrices are developed for each family. According to Shahin 

(2005), probabilistic modeling is particularly useful for predicting individual distresses. As an 

example, Wang et al. (1994) developed the Markov transition-probability matrices for the 

Arizona DOT by using a comprehensive set of observed pavement performance historical data 

with several initial pavement condition states. The pavement probabilistic behavior is as 

follows (Wang et al. 1994): 

 

where 𝑃𝑖𝑗(𝑛) is the n-step transition probability from condition state 𝑖 to 𝑗 for the entire design 

period (𝑁), 𝑀+1 is the total number of pavement condition states, 𝜈 is the period when the 
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rehabilitation is applied; 𝑃𝑖𝑘(𝜈) is the 𝜈-step transition probability from condition state 𝑖 to 𝑘 

under the routine maintenance; 𝑃𝑘𝑙(1)𝑎 is the one-step transition probability from condition 𝑘 

to 𝑙 at period 𝜈; and 𝑃𝑙𝑗(𝑛−𝜈−1) is the (n-v-1) step transition probability from condition 𝑙 to 𝑗 

under the routine maintenance (Wang et al. 1994). 

 

Pavement Prediction Models for Dallas-Fort Worth  

 Dallas-Fort Worth Metroplex is located in northern Texas, in Zone 1, as shown in Figure 

1.3.  It covers wet-cold climate, poor, and very poor or mixed subgrade.  Most of the Metroplex 

area has Expansive subgrade soil.  

The Dallas-Fort Worth Metroplex is made up of one city with over one million inhabitants 

(Dallas (1,286,380)), another  city with 500,000-1,000,000 inhabitants (Fort Worth (829,560)), 

four other cities between 200,000 – 500,000 inhabitants (Arlington (383,950), Plano (281,390), 

Irving (237,490), Garland (236,030)), eight  cities between 100,000-200,000 inhabitants (Grand 

Prairie (189,430) McKinney (179,970), Frisco (172,940), Mesquite (143,350), Carrollton 

(132,330), Denton (130,990), Richardson (110,140) Lewisville (104,780)) and fifty-six cities 

between 10,000 - 100,000 inhabitants (per North Central Texas Council of Governments (as of 

January 1, 2018)). In the Dallas-Fort Worth Metroplex, the road network operation and 

maintenance falls under the jurisdiction of each individual city. The size of the street network in 

each major city in Dallas-Fort Worth Metroplex is given in Table 1.1:  
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Figure 1.3  Climate and Subgrade Zones for Deterioration Models (TxDOT, Analysis Report 

2018) 

 

 

City Lane Miles 

Dallas 11,775 

Fort Worth 7,518 

Arlington 3,000 

Plano 2,294 

Garland 2,361 

Irving 1,400 

 

Table 1.1 Major cities in DFW’s area – Road Lane Miles 

 

Currently, most cities in the Dallas-Fort Worth Metroplex are using the software PAVERTM 

and the associated performance models to predict future conditions. However, the models are not 
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calibrated to local conditions. Only the city of Dallas has attempted to develop specific models 

from its street network.  

PCI and IRI Data collection practice 

Most cities in the Dallas Fort Worth Metroplex rely on specialized contractors to survey 

the condition of their street network.  Automated survey vehicles are the most used today. As an 

example, for PCI data collection of each roadway section in the cities of Arlington and Plano, a 

Mobile Asset Collection (MAC) vehicle is used to gather street-level right of way photos and 

downward pavement photos (Figure 1.4). Similar equipment is used by other cities. 

The automated distress data collection is performed in general accordance with ASTM 

D6433 (Standard Practice for Roads and Parking Lots Pavement Condition Index Surveys) and 

ASTM Standard E1656 (Standard Guide for Classification of Automated Pavement Condition 

Survey Equipment), utilizing a Class 1 device as defined by the specifications. MAC vehicles 

combine multiple engineered technologies to collect real-time pavement data, right-of-way data, 

and images at posted speed limits.  This effectively eliminates the need to place pavement 

inspection technicians in the field and in close proximity to vehicle traffic, ensuring human health 

and safety.  Some components of the MAC vehicle are (City of Arlington, TX, 2018):  

• Navigation System. Inertial Measurement Unit generates a true representation of vehicle 

motion in all three axes; producing continuous, accurate position and orientation 

information. A POS Computer System enables raw GPS data from as few as one satellite 

to be processed directly into the system, to compute accurate positional information in 

areas of intermittent, or no GPS reception. Embedded GPS receivers provide heading 

which aides to supplement the inertial data. Two GPS antennas generate raw observables 



11 
 

data. The system is rated to get 0.3 m accuracy in the X, Y position and 0.5 m in the Z 

position. 

• Distance Measuring Indicator (DMI) allows for the collection of high-resolution imagery 

at posted speeds. The Distance Measurement Indicator computes wheel rotation 

information to aid vehicle positioning. 

• High-definition cameras with precision lenses allow for accurate asset extraction and video 

log recording at a frame rate of 15 images per second, with 1936 x 1456 color resolution. 

• A Pavement Imaging System consists of two line-scan cameras and lasers configured to 

image 4m transverse road sections with 1 mm resolution (4000 pixel) at speeds that can 

reach 100 km/h. It allows fully illuminated pavement image collection even in heavy 

shadow/canopy areas. 

 

Figure 1.4 MAC Vehicle (2018 Pvmt Management Services Executive Summary, city of 

Arlington, TX 

 

In small cities, PCI information is gathered manually per standard practice for roads and parking 

lots pavement condition index surveys guidelines (ASTM D6433). However, many cities are 

transitioning to automated distress survey due to their better accuracy, speed, cost, and safety to 

personnel. 
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1.2 Research Rationale 

 The goal of this research is to develop deterioration models that are applicable to the street 

network conditions in the DFW Metroplex because currently, some cities in the Metroplex are 

using deterioration performance models which are not calibrated to local conditions. Furthermore, 

most of the smaller cites do not have prepared deterioration models due to the absence of historical 

data.  

  Through establishment of a pavement deterioration prediction model, it will provide 

models for engineers to predict the timing of pavement treatments and the type of treatment needed 

by individual streets in the Dallas-Fort Worth Metroplex area.  The newly developed models will 

contribute to a cost reduction in future street maintenance and rehabilitation. The models will also 

consider the different soil types (Expansive/non-Expansive) which have a major impact on 

pavement deterioration rates. 

 In addition, the quality of pavement deterioration prediction models is very much affected by 

the available data.  In the Dallas-Fort Worth Metroplex only major cities have historical data. 

Many large cities and most small cities do not have enough records to build their own models.  For 

most of the Metroplex, data collection has just recently begun.  The deterioration models that will 

be developed will not only benefit pavement managers and engineers in larger cities, but also those 

in smaller cities as well.  The cities that do not have enough historical records of Pavement 

Condition Index (PCI) and the International Roughness Index (IRI) will be able to use these models 

since the soil, environment, materials, traffic, and age are very similar across the Metroplex. 

The development of the model will consider the main variables that could affect the behavior 

of pavements in the Dallas-Fort Worth Metroplex and might shape the models.  As such, the 

prediction models will be developed by ensuring that pavements are grouped into “families”. The 
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selected families are expected to constitute groups of street sections with common features, such 

as surface layer type, functional class, soil type, etc. 

 

1.3 Research Objective  

The accurate prediction of pavement network conditions and performance is significant for an 

effective and well-organized management of the road-street network. The objective of this research 

is to develop network level deterministic and probabilistic deterioration models that will predict 

the changes in overall PCI or IRI for streets in the DFW Metroplex.  

In this research, deterioration models will be developed for a new flexible (asphalt) and rigid 

(concrete) pavement structures in the Dallas-Fort Worth Metroplex area using the historical 

records of the PCI and the IRI. 

The question of if different deterioration models are needed for streets built on Expansive and 

non-Expansive subgrade soil will be investigated.  

1.4 Research Approach  

 In order to achieve the research objectives, this dissertation is organized into six chapters. 

Chapter 1 covers the introduction, rationale and objective of research. Chapter 2 includes a 

literature review that outlines the previous work done to develop the pavement deterioration 

model. The main emphasis was on research modeling techniques that were useful for pavement 

data in the DFW Metroplex region. More precisely, the literature review was used to identify the 

best deterministic and probabilistic models for pavement deterioration. 

A literature review was conducted to gather information from previous studies that 

developed pavement deterioration prediction models in regions with structural pavement types 

similar to those used in the Dallas-Fort Worth Metroplex area. Chapter 3, Data Collection and 

Management describes how historical data and shape files have been collected from pavement 
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asset management services in the DFW Metroplex area. This chapter also outlines the 

requirements for organizing, removing, and filtering data.  In addition, this chapter clarifies the 

family approach to creating reliable deterministic and probabilistic models. 

Chapter 4, Development of deterministic models, provides a detailed explanation for the 

development of deterministic models using a regression approach for eleven pavement families in 

the DFW Metroplex area with non-expansive subgrade soil and nine models in the area with 

expansive subgrade soil.  

Chapter 5, explains the development of probabilistic models using Markovian chain approach for 

eleven pavement families in the DFW Metroplex area with non-expansive subgrade soil and nine 

models in the expansive subgrade soil area.  

Finally, Chapter 6 presents the summary, conclusions, and recommendations that arise from this 

research. Figure 1.5 illustrates the flow chart of the thesis. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5 Thesis Organization 

 

Introduction 

Literature Review 

Data Collection and Management 

Development of Deterministic Models 
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2. Chapter 2: Comprehensive Literature Review 

 Accurate predictions of pavement deterioration are very important for the efficient and 

cost-effective allocation of the available budget to keep an agency's street network operating at a 

desirable level.  While being an essential component under pavement management systems, 

prediction models have been documented to play very important  roles in estimating the time and 

type of rehabilitation or maintenance to support decisions in multi-year improvement programs, 

predicting the duration until the lowest limits of acceptable pavement conditions might be reached 

(or determining the remaining service life of a pavement), and ensuring that the combination of 

timing and  treatment is optimized in a manner that leads to the accomplishment of agency’s goals.   

Pavement prediction models are the main element in any Pavement Maintenance Management 

System (PMMS). The prediction models can be divided into two major groups: deterministic and 

probabilistic models. 

De la Garza et al. (2010) developed a regression prediction model by calculating pavement 

deterioration rates based on historical data; however, the pavement deterioration rates are often 

“uncertain” (Butt et al. 1994). Therefore, the probabilistic model based on the Markov chain is the 

most often in use (Bako et al. 1995; Chen et al. 1996; Golabi et al. 1982; Abaza 2007). Pavement 

prediction influences the quality of other components of pavement management such as 

rehabilitation years, types of treatment, and selecting cost-effective maintenance alternatives (Li 

et al., 1996). Figure 2.1 shows that the decline of the pavement condition can be measured by 

distress parameters such as Present Serviceability Index (PSI). Over time, the pavement will 

deteriorate due to many factors including traffic load, weather condition, quality of construction, 

lack of regular maintenance, and aging (Gini Arimbi 2015).  
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At this stage, the best form of pavement treatment can be determined to improve the condition of 

the pavement and to extend its life. 

 

Figure 2.1  The deterioration process of pavement (Haas & Hudson, 2015) 

 

2.1 Method of Prediction Models  

A prediction model can be developed by one of the following methods (FHWA 1990): 

• Empirical Method 

• Mechanistic Method 

• Mechanistic-Empirical Method 

• Probabilistic Method 

• Bayesian Method 

 Empirical Method 

The empirical approach is based on mathematical models. Empirical models rely on the statistical 

analysis of locally observed deterioration patterns. This model could not be transferred to other 

pavements with different pavement conditions. The empirical approach was used for this research 

as a large amount of data was obtained from cities in the DFW Metroplex region. 
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 Mechanistic Method 

  
The mechanistic models use engineering theories for pavement behavior to predict deterioration 

models that could be used for the different pavement conditions. Mechanistic method in pavement 

analysis includes layered elastic and finite element methods (Mubaraki, M, 2010). These types of 

methods require extensive structural information that restricts the precise calculation of stresses, 

strains, and deflections to sections for which detailed data is available. Mechanistic approaches are 

based on mechanical theory.  

 Mechanistic – Empirical Method  

Mechanistic-empirical models are the combination of both mechanistic and empirical models. 

They can produce models with moderate data requirements and can be applicable to other 

pavements with different conditions and changed calibration parameters (Harvey, 2012). The 

analytical – empirical or mechanistic approach has been widely used in the design of flexible 

pavements. This approach involves two segments: the estimation of the response of the pavement 

materials to the load applied and the prediction of the output of the pavement from these responses.  

 Probabilistic Method  

 
Probabilistic models distinguish from deterministic models in that, instead of predicting a single 

value for the condition of the pavement, the probability of a pavement being in one of many 

condition states (or categories) is predicted. Probabilistic models are not widely used as 

deterministic models in pavement management, possibly because most pavement management 

software programs are not designed to input these types of models without converting them to one 

of the deterministic model forms. 
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 Bayesian Method 

 

  
This method allows the integration of current information into the forecast so that past experience 

can be used instead of ignored. (Zellner, 1971). While this approach commonly uses both objective 

and subjective data to forecast results, models can only be built using subjective data. The 

regression analysis methods are used to construct the models but the random and related 

probability distribution is assumed in each of the variables (AASHTO, 2012). Because subjective 

data can be used to supplement objective data, Bayesian regression can be useful for agencies that 

have recently began the implementation of pavement management, that have changed their 

pavement condition rating procedures (e.g., no historical data are available), or that have 

introduced new designs or materials into their network. It also offers a way to override the 

influence of data of poor quality, or to supplement field data with expert models as they become 

available. The Bayesian approach relies on the use of Bayesian regression techniques to combine 

observed data and expert experience, mainly based on a popular paper published by the Rev. 

Thomas Bayes (1702-1761).  The theorem of Bayes can be mathematically described as (Thomas 

1993): 

𝑃(𝑝|: 𝑥) =
𝑃(𝑥|𝑝). 𝑥 𝑃(𝑝)

[𝑃(𝑥|𝑝). 𝑥 𝑃(𝑝)]
 

 

 

where,  

P(x) = distribution of variants over all possible fraction variants  

P(p) = prior distribution  

P(x|p) = sampling distribution  

P(p|x) = posterior distribution 
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2.2 Types of Prediction Models  

In general, there are three main models in the pavement management system that have been 

developed: Deterministic models, Probabilistic models and Bayesian models.  According to 

García, Costello, Snaith, 2006, a deterministic model is a model for which the condition is 

projected as a precise value based on the mathematical functions of the deterioration observed. 

Probabilistic models predict the pavement condition as the probability of occurrence over a range 

of possible outcomes (Ortiz-García et al., 2006). Pavement management at a network-level uses 

probabilistic models since network-level analysis involves a high number of variables and 

variations. Classification of prediction models has been suggested by Mahoney (1990).  Table 2.1 

shows that deterministic model could be used for the structural distress as specified by PCI for the 

state / provincial network level as well as for project level but not for national network, while the 

probabilistic models could be used for any level. 

 

 

Table 2.1 Classification of Prediction Models (Mahoney 1990, Haas, 1994) 
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2.1.1 Deterministic Models 

 

Deterministic models are classified into four types (Lytton, 1987 & Arnibi 2015): 

(i) Primary response models - Predicts primary response of pavement to imposed loads 

and climatic conditions such as deflection, stress, strain, thermal stress, temperature 

(ii) Structural performance models - Predicts pavement distress and composite measures of 

pavement condition such as the pavement condition index 

(iii) Functional performance models - Predicts the present serviceability index, pavement 

surface friction, and wet-weather safety index 

(iv) Damage model - Predicts the load equivalence and marginal load equivalence and is 

obtained from either functional or structural performance models 

 

Equations for Models based on Regression Analysis 

Based on their basic behavior, nonlinear regression models can be categorized into families such 

as exponential models, power models, sigmoid models, etc. (Ratkowsky and Giles, 1989). At 

present, most of the current deterioration models use the types of regression models described 

below in their general form. 

Exponential Growth 

The exponential growth model is used when the growth rate of the mathematical equation is equal 

to the current value of the function (Ercisli, 2015). This model is commonly applied in many fields 

such as biology, physics, engineering, and economics. The common form of the exponential 

growth curve is the following: 

𝑦 = 𝑎 − (𝑎−𝑑) ∗ 𝑒−𝑠𝑡                                                                                               

Where 

 a = Upper asymptote 

d = Lower asymptote 

t = Time 

m = Time of maximum growth 

s = Growth rate 

Sigmoidal 
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This model has been used on a regular basis in the development of pavement deterioration 

models since it can adjust to boundary conditions and provide various parameters.  Various 

experiments in many applications have resulted in the discovery and adaptation of nonlinear 

S-shaped curves.  This form includes the Logistic curve, Verhulst-Pearl equation, Pearl curve, 

Richard’s curve (Generalized Logistic), Growth curve, Gompertz curve, S-curve, S-shaped 

pattern, Saturation curve, Sigmoid curve, Weibull curve, Foster’s curve, Bass model, and 

many others (Rowe et al., 2009). 

Below is a simple S-curve equation: 

 

𝑦 = 𝑎 ∗ [
𝑡𝑏

𝑐 + 𝑡𝑏
] 

 

Where a, b and c are the regression coefficients. 

Weibull 

Weibull (1951) defined the non-symmetric sigmoidal model as a continuous statistical probability 

distribution that is commonly used in the modeling of survival rates. The cumulative distribution 

function for Weibull to be used for modeling can be defined as follows: 

𝑦=𝑎−(𝑎−𝑑)∗𝑒(−(𝑠𝑡)𝑚)                                                                                                                  

Where  

a = Upper asymptote 

d = Lower asymptote 

t = Time 

m = Parameter that controls the x-ordinate for the point of inflection 

s = Growth rate 

It should be noted that, when the parameter “m” equals 1.0, the Weibull equation is basically an 

exponential growth curve. 

 

Logistic 

Logistic function is one of the most common modeling equations and is used in many different 

fields. The drawback of the model is that it can calculate "t" over a small range of real numbers. 

The simple logistic function can be defined as the following equation:          
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𝑦 =
1

1 + 𝑒− 𝑡
 

   

The cumulative distribution function of continuous logistic probability distribution is the logistic 

function as follows: 

𝑦 =
𝑎

1 + 𝑒− 
𝑡−𝑚

𝑑

+ 𝑑 

 

Where 

a = Upper asymptote 

d = Lower asymptote 

t = Time 

m = Time of maximum growth 

s = Growth rate 

 

Gompertz 

Gompertz (1825) suggested a sigmoid function as a type of mathematical model for time series, 

where growth is slowest at the beginning and end of the time span. The equation is commonly used 

in biology and medicine to identify aging or spread of cancer cells, or in demographics to describe 

population in confined spaces, birth rates, etc. (Rowe et al., 2008). The basic equation of a 

Gompertz curve is as seen below: 

 

y = a𝑒−𝑏𝑒−𝑐𝑡
+ 𝑑 

 

Where  

a = Upper asymptote 

d = Lower asymptote 

t = Time 

b, c = Positive coefficients (c sets the growth rate) 
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Richards 

A flexible sigmoid function was developed by Richards (1959), which is also referred to as the 

generalized logistic curve. It is widely used for modeling growth and easily matches different S-

shaped curves (Mubareki and Sallam, 2014). The general representation of a Richards’ curve is: 

 

𝑦 =
𝑎 − 𝑑

(1 + 𝜆𝑒− 𝑠𝑡)1/𝑚
+ 𝑑 

 

Where 

a = Upper asymptote 

d = Lower asymptote 

t = Time 

m = Sets asymptote near which maximum growth 

s = Growth rate 

𝜆 = Related to initial y value 

Polynomial 

The Polynomial model is given by 

y = an𝑡
𝑛 + 𝑎𝑛−1𝑡

𝑛−1 + ⋯+ 𝑎1𝑡 + 𝑎0 

where 𝑡 is the time and an, 𝑎𝑛−1, … , 𝑎1, 𝑎0 are constant numbers that need to be estimated. The 

Polynomial model can be used for modeling pavement deterioration (Mubaraki 2010), but the 

choice of how many coefficients to estimate depends on the significance of adding an extra 

variable. In this model, the Polynomial model of best fit is of third degree, as given by: 

y = a3𝑡
3 + 𝑎2𝑡

2 + 𝑎1𝑡 + 𝑎0 

where a3, 𝑎2, 𝑎1, and a0 need to be estimated from the regression. 
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Negative Binomial 

Negative binomial is an extension of the Poisson sequence that causes the predicted result to be 

different from the mean μ of the Poisson distribution parameter. Thus, this generalization of 

Poisson allows the mean and variance to be different (over-dispersion) by adding a disturbance or 

error term. (Byers et al., 2003). It is commonly used in cases of over-dispersion and frequent-zero 

counts where linear models lack the distributional properties to properly represent the data and 

Poisson distribution cannot account for over-dispersion. (Poch and Mannering, 1996). The range 

of its applications includes driving accidents, neurologic lesions, leukocytes, healthcare utilization, 

and counts of rare animals (Byers et al., 2003). The negative binomial distribution probability mass 

function is as follows:𝑓 (𝑘, 𝑟, 𝑝) ≡ Pr  (𝑋 = 𝑘) =  (𝑘+𝑟−1
𝑘

)𝑝𝑘 (1 − 𝑝)𝑟        for k = 

0,1,2,…. 

2.1.2 Probabilistic Models 

 

The probabilistic models for pavement prediction that are currently in use are survivor curves, 

Markov chains, and semi-Markov. 

2.1.2.1 Survivor Curve 

Survivor Curve represent a graph for probability and the time that is used to determine a pavement 

prediction model, Figure 2.2. Developing survivor curves requires an observational time series of 

data consisting of construction, maintenance, and rehabilitation histories recorded by the road 

agencies (Austroads, 2012; Lytton, 1987). A probability distribution function (PDF) is usually 

defined by a Weibull distribution especially when the pavement conditions are approaching failure. 

The probability density curve for survival may be constructed from historical data by determining 
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the percentage of pavements that must be maintained or rehabilitated each year after its most 

current major rehabilitation or new construction (Lytton, 1987). The PDFs can be used as input 

for other probabilistic approaches in performance prediction modelling (Austroads, 2012). 

 

 

 

Figure 2.2 Survivor Curve (Lytton, 1987) 

 

 2.1.2.2 Markov Chains 

Markovian Chain is the probabilistic model that has been very often used to build pavement 

deterioration models. The Markov process describes a probable “before” and “after” condition of 

the pavement. The probabilities are shifted downward to lower condition states that are described 

by ranges of a serviceability index (Arimbi, 2015). Figure 2.3, shows that the probability of 

pavement sections in state 4 in the “before” condition equals to 0.1. In the “after” condition, the 

number is reduced to 0 and probability in new states appear. Therefore, it creates a shift in the 

PDF. A Markov TPM expresses the probability that a group of pavements of similar age or traffic 

level will transition from one state of distress to another within a specified time period (Lytton, 
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1987). The most important aspect is to determine the probability of changing from one condition 

state to another.  Theoretically, TPM is used to predict future performance without any explanatory 

power and thus contain inherent inaccuracy (Austroads, 2012). 

In Markov chains, the condition of a pavement is based on its existing condition. The Markov 

approach assumes that the probability of changing from one state to another is independent of an 

item’s earlier condition history (Austroads, 2012; Black, Brint, & Brailsford, 2005). In addition, 

performance prediction models from Markov chains are also able to integrate both deterioration 

rates and improvement rates (Abaza, Ashur, & Al-Khatib, 2004). Markov transition matrices can 

be constructed for any process of pavement and, especially if the assumptions that are made for 

the Markov processes are valid, can be used reliably to simulate the overall performance of a 

network of pavements of similar types with similar weather and traffic patterns (Lytton, 1987). 

However, in some cases, the assumption of time independence on Markov chains creates a 

disadvantage since it ignores non-load or environmental effects. In this case, a semi-Markov 

approach is used. As this model is practical and reliable to simulate the overall performance of a 

network of pavements of similar types with similar weather and traffic conditions, it is practical 

use in family pavement modeling.  
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Figure 2.3 Markov Process (Lytton, 1987) 

 

2.1.2.3 Semi-Markov 

Semi-Markov is a modification to the Markov approach to overcome the independence of time 

assumption used when changing from one pavement condition state to another (Lytton, 1987). It 

recognizes that changing conditions (weather, traffic) creates a variation in the transition process. 

Semi- Markov allows a state’s transition probability to depend on the time spent in that state (Black 

et al., 2005). In the prediction of pavement performance, the transition process in TPMs is typically 

implemented at one-year time intervals to compensate for time-related and other unforeseen 

impacts on pavement performance. This model is more feasible to simulate the performance of the 

pavement section at the project level, as it may include factors that affect the condition of the 

pavement, such as the weather and traffic conditions of particular streets, as a family modeling 
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approach grouping similar pavement sections, taking into account a number of factors that affect 

the performance of the pavement. 

 

2.1.3 Prediction Models Developed in Texas 

 

The modeling system accounts for a broad network spanning various environments in Texas that 

enables separate models to be used under different circumstances. The prediction models 

developed by TXDOT are divided into categories based on the following factors (Feng Hong, 

2017): 

 Climate subgrade zones: Zone 1, Zone 2, Zone 3, and Zone 4 across the state of Texas. 

Zone 1 covers wet-cold climate and poor, very poor, or mixed subgrade. Zone 2 covers 

wet-warm climate and poor, very poor, or mixed subgrade. Zone 3 covers dry-cold 

climate and good, very good, or mixed subgrade. Zone 4 covers dry-warm climate and 

good, very good, or mixed subgrade. 

 Pavement families: asphalt pavement, Continuous Reinforced Concrete Pavement 

(CRCP), Jointed Concrete Pavement (JCP). The asphalt pavement is further divided into 

subgroups of A, B, and C mainly based on the structural capacity. 

 Treatment types: Preventive Maintenance (PM), Light Rehabilitation (LR), Medium 

Rehabilitation (MR), and Heavy Rehabilitation (HR). 

 Traffic loading levels: low, medium, and heavy traffic based on the 1 predicted 20 years 

of Equivalent Single Axle Loads (ESALs). 
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Within each of the families identified by the criteria above, a sigmoidal curve is used to 

project the conditions of the pavement. The specification of the model adopted for each 

model category is as follows: 

 

 

𝐿𝑖 =  𝛼𝑒^ − ( 
𝜌

𝑡
)𝛽 

 

Where, 

Li is the dependent variable, which refers to the level of distress or ride quality loss for all 

pavement types including alligator cracking, transverse cracking, longitudinal cracking, and 

rutting for asphalt pavement, spalled cracking, and punchout for CRCP, finally slabs with 

longitudinal cracking and failed slabs for JCP.  

t is the age of pavement since last treatment; and  𝛼, 𝛽 and 𝜌 are the model coefficients. These 

parameters were recently calibrated for each model group respectively. 

The Texas Transport Institute in cooperation with the Texas State Department of Highways and 

Public Transportation also investigated appropriate curve fitting of actual pavement performance 

data, for use in serviceability prediction (Garcia-Diaz 1985). The proposed model represents an 

improvement over the form of the original AASHO Road Test performance equation in that it 

predicts more realistic long-term behavior. This is achieved using a sigmoid or S-shaped curve 

that recognizes the ability of a pavement to reduce its rate of deterioration as the traffic level 

approaches the service life of the pavement. The shape that a functional performance curve should 

take can be deduced from the boundary conditions placed on the serviceability index scale as well 

as the long term. The following equation with subsequent parameters has been developed by Texas 
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Department of Transportation (Robinson et al. 1996, and Dossey and Hudson 1994). The Stannard 

and Shute equations (Zwietering et al. 1990) are sigmoid functions that measure the growth rate. 

They have a complex structure and more than 3 parameters and are written respectively as follows: 

y(t) = 𝑎{1 + exp [− 
𝑙 + 𝑘𝑡1𝑏

  𝑝
]}−𝑝 

 

𝑦 (𝑡) = {𝑦1𝑏 + (𝑦22 − 𝑦1𝑏)
1 − exp [−𝑎(𝑡 − 𝜆)]

  1 − exp [−𝑎(𝜆𝑏 − 𝜆1)]
}1/𝑏 

 

The Morgan-Mercer-Flodin model has the following formula (Rowe et al. 2008) 

𝑦 = 𝑎 −
𝑎 − 𝛽

1 + 𝜆𝑡𝑡
 

 

The (a) parameter controls the upper asymptote  

The (β) parameter at t=0,  

The (𝜆) parameter controls the growth rate  

The (𝑎) parameter controls the point of inflection α 

 

Another study was carried out by Christopher (Robinson et al. 1996). The main objective of the 

study was to establish models for rigid pavement distress levels versus pavement age. For the 

Pavement Management Information System (PMIS) for the Texas Department of Transportation, 

a distress prediction model for Portland cement concrete pavements in Texas has been developed. 

The research quantitatively predicts the level of distress versus the age of pavement on the basis 

of data on pavement condition maintained by the Center for Transportation Research (CTR) at the 

University of Texas at Austin. The following models are available in Continuously Reinforced 
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Concrete Pavement (CRCP) for the following types of distress: Portland concrete patches, asphalt 

patches, loss of serviceability as calculated by loss of ride score, transverse crack spacing, and 

crack spelling. Preliminary models are available for the following distresses in the Jointed 

Concrete Pavement (JCP) and Jointed Reinforced Concrete Pavement (JRCP): patches, corner 

breaks, broken joints and cracks, transverse crack spacing, and longitudinal crack slabs. A sigmoid 

regression equation has been used for all forms of distress. These models are applicable only to 

Portland cement concrete pavements that are not overlaid and are based on a fifteen-year upper 

limit for CRCP and sixteen years for JCP. Using the sigmoid equation with the available data, the 

models represent the most accurate regression possible. In both rigid and flexible pavements, the 

Texas PMIS utilizes the sigmoid equation to predict all forms of distress. Most of the JCP distress 

models showed considerable dispersion, suggesting that pavement age is not the only significant 

factor in predicting distress, and perhaps not the most critical one. However, as a function of age, 

all the models represent rational patterns of growing distress. They stressed the need for frequent 

data collection in order to better track pavement behavior over time. Some models for urban roads 

were developed in a study performed by Shiyab (2007) for the use of PMS. The study showed that 

the exponential function and polynomial function were found to fit well with general data trends 

with enough accuracy to satisfy the general boundary conditions that were specified in the 

methodology chapter for the deterioration of the pavement system. Some of the developed model 

is as follows: 

 

Local Residential:  

𝑃𝑄𝐼 = 100𝑒−0.011 𝐴𝑔𝑒 

 

𝑃𝑄𝐼 = 100 − 0.276 𝐴𝑔𝑒 − 0.030 𝐴𝑔𝑒2 
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Where PQI = pavement quality Index 

 

 

Local Commercial: 

𝑃𝑄𝐼 = 100𝑒−0.015 𝐴𝑔𝑒 

 

𝑃𝑄𝐼 = 100 − 0.408 𝐴𝑔𝑒 − 0.035 𝐴𝑔𝑒2 

Where PQI = pavement quality Index 

Another study that used sigmoid and power functions for modelling overlaid sections was carried 

out by Adel et al (1996), as follows. 

The power form is:  

  

𝐷𝑀𝑅 = 100−5.17 (𝐴𝑔𝑒) 0.58 

Where DMR = Distress Maintenance Rating 

The sigmoid Form is:   

 

𝐷𝑀𝑅 = 100 − 43.96 𝑒
(

−2.49
𝐴𝑔𝑒^−0.56

)
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3. Chapter 3:   Data Collection and Management 

The objective of this chapter was to collect historical data to develop reliable models that take into 

consideration the local conditions in the Dallas-Fort Worth Metroplex. The historical pavement 

condition data and shape files have been obtained from the pavement asset management services 

of five cities in the Dallas-Fort Worth Metroplex area as follows:  Dallas, Fort Worth, Arlington, 

Burleson, and Garland. Other cities that responded positively to the request for data did not have 

any historical records or had pavement condition data only for a period of one year. Figure 3.1 

shows the road network in the DFW area for major cities that provided PCI and IRI data for this 

research. Raw data received from the cities was organized and summarized by asset ID, street 

name, install / reconstruction year, speed limit, traffic count, pavement type, functional class, PCI, 

and IRI per year. Samples of the dataset are given in Tables 3.1, 3.2, and 3.3. The data was 

summarized by using a pivot table as shown in Tables 3.4, 3.5, and 3.6. 

Information regarding the location of Expansive subgrade soil for the Dallas-Fort Worth 

Metroplex was obtained from the Web Soil Survey site. The data was obtained as a geodatabase 

file.  Using Arch Map GIS software, the data was imported and analyzed.  It had a soil boundary 

that shows the frequency of the presence of expansive subgrade soil as high, medium, low, and 

extremely limited levels of expansive subgrade soil as shown in Figure 3.2. After the raw data was 

received from the cities, they were organized by pavement section identification number, age, and 

PCI or IRI as shown in Tables 3.1, 3.2, & 3.3. Since raw data may have some errors, it is necessary 

to clean the data and remove bad data points in order to perform the statistical analysis. 
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Figure 3.1  Roads network in DFW’s area (GIS) 

 

 

Table 3.1 Sample for PCI data for the streets built on Expansive subgrade soil 
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Table 3.2 Sample of PCI data for the streets built on non-Expansive subgrade soil 

 

 

Table 3.3  Sample of IRI data for the streets built on Expansive subgrade soil 
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Table 3.4 Sample for Creating Pivot Table 

 

 

 

 

Table 3.5 Summary of information for streets built on Expansive subgrade soil 

 

 

 

Table 3.6 Summary of information for streets built on non-Expansive subgrade soil 

 

Count of Asset id Column Labels

Row Labels Arterial Collector Local Residential Rural Road Grand Total

Brick 67 25 92

Composite 808 67 531 1,406

Hot Mix 776 1,039 11,311 302 13,428

Rigid - PCC 1,663 465 10,205 10 12,343

Surface Treated 85 101 2,932 80 3,198

Unknown/Undefined 28 3 31

Grand Total 3,399 1,672 25,032 395 30,498
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Figure 3.2 Frequency of Expansive subgrade soil 

 

The criteria for removing and filtering data were as follows:  

1. Only the age of the pavement section and the measured PCI/IRI values were extracted 

from the raw dataset for the development of performance models. 

2. Each pavement section has PCI recorded each year. If the PCI makes a sudden jump, 

and immediately falls to the previous trend, then the PCI record of that year was 

removed. Similarly, for the IRI, this approach was adopted and values were removed 

when sudden drops occurred. 

3. If the year of construction or last major rehabilitation of the pavement section occurred 

before the first recorded year in the data, and the pavement section saw an increase in 

PCI, then only data recorded after this increased point was retained. This approach was 

used for IRI data also where only data after decreased IRI values were retained.   

4. Further examination of the data for statistical removal of extreme points was performed 

by the outlier analysis.  The data was sorted to highlight unusual values. After it was 

sorted, data with unusually high or low values were removed.  



38 
 

5. Furthermore, the data was analyzed to eliminate the street sections that were older than 

10 years for AC and COM pavement families, and 15 years for the PCC pavement 

family from the first recorded PCI record in the 2007 research for Expansive subgrade 

soil, and 2014 for non-expansive subgrade soil. The reason why 10 and 15 years were 

chosen is because the life expectancy for the pavements is roughly as follows: AC 

flexible pavement 20-25 years, and for PCC rigid pavement 30-35 years. It is assumed 

that for AC and PCC pavements, they reach half of their service life after 10 and 15 

years respectively. 

 

The final dataset that results from the data cleaning were used to construct the deterioration 

models. The dependent variables were PCI and IRI. It is typical to use deterministic models when 

given the full historical data; however, the Markovian probabilistic prediction model can be 

constructed from either the historical data or even limited data, but on at least two consecutive 

years.  Table 5.2  shows the states which were used for the Markovian prediction model. 

The development of accurate performance models requires all significant variables to be 

included in the model’s development. Since the type, functional class of the pavement, and the 

type of subgrade soil that the pavement was built on are categorical in nature, these factors are 

difficult to include in the deterioration models themselves. Therefore, the family modeling 

approach was used. To reflect the effect of traffic volume on the condition deterioration each of 

the asphalt/concrete/composite-surfaced families were further separated into families for arterial, 

collector, residential/local roads and rural roads. This subsequent separation provides a way to take 

differences of traffic into account without requiring the accurate traffic counts in the database. This 

method reduces the number of independent variables in the performance model to a single 
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independent variable (age in this study) by allowing the development of models in each 

family. The pavement performance model developed for the family will be used in the cities 

pavement management system to represent the rate of deterioration for all the pavement sections 

that meet the family definition. It is expected that the definition of pavement families is 

comprehensive enough that each pavement section in the pavement management database falls 

into one, and only one pavement family. 

 From Tables 3.1, 3.2 and 3.3, pavement families were defined as a category of pavement 

sections with the families defined based on pavement type [asphalt concrete (AC) , Portland 

cement concrete (PCC), and composite (COM)], functional class [arterial (ART), collector (COL), 

residential/local (LR) and rural (RU)], and soil type (Expansive and non-Expansive) as shown in 

the Figure 3.3.  A total of twenty-four different families result from the family definition. Since 

the data obtained from the pavement asset management departments of the cities had no record for 

rural roads (RU) in the area with expansive subgrade soil, these models could not be developed. 

Furthermore, the deterioration model for the COM-RU pavement family could not be developed 

for the non-expansive subgrade soil area as data was not available. As a result, a total of eleven 

deterioration models were developed for streets with non-expansive sub-grade soil as well as nine 

street deterioration models with expansive sub-grade soil. For each of these twenty pavement 

families, the deterioration models were developed using the SAS statistical software. The 

deterministic models which were used will predict a single dependent value PCI/IRI from the age 

as an independent variable. Probabilistic models were also developed from the twenty families 

using consecutive years of PCI data from the Markovian Chain approach. 

The model development procedure had the following steps:  

 Data recovery and sorting by pavement family 
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 Data error filtering  

 Outlier identification  

 Development of Deterministic model 

 Development of Markov model 

 

 

Figure 3.3  Pavement Family Definition 

  

4. Chapter 4:  Development of Deterministic Street Deterioration Models 

Model Variables 

 For the development of pavement performance prediction models, the dependent and 

independent variables should be chosen carefully. The dependent variable should be an index that 
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reflects the pavement condition at a given time. As mentioned in data collection, the dependent 

variables are Pavement Condition Index (PCI) and International Roughness Index (IRI). Since the 

family modeling approach is used, the independent variable will be age, defined as the time in 

years since the construction or last major rehabilitation.  

 

Model Development 

Multiple model formulations were explored to find the best deterioration model for the 

streets in the Dallas-Fort Worth Metroplex area. Seven functional forms for the deterioration 

model were studied: Cubic Polynomial, Gompertz model, Logistic model, Stantec (also known as 

Adjusted Stantec) model, Exponential Curve model, Second Polynomial model, and Sigmoidal 

model (Table 4.1). All these models were fitted to the data using nonlinear regression by 

minimizing the sum of squares, i.e. minimizing 𝑆𝑆𝑒𝑟𝑟 with respect to the given functional form. 

The models will be fit to each of the families shown in Figure 3.3, so a performance model will 

be developed for each of the twenty families. The statistics reported in the following models 

include coefficient estimates for each functional form, their 95 percent confidence intervals, the 

𝑆𝑆𝑒𝑟𝑟 (reported as 𝑆𝑆𝐸), the coefficient of determination (𝑅2), and the root mean squared error 

(𝑅𝑀𝑆𝐸 = √(
𝑆𝑆𝑒𝑟𝑟

𝑛−𝑝
)  where n is the number of observations and p is the number of estimated 

coefficients in the functional form. A low 𝑆𝑆𝑒𝑟𝑟, a high 𝑅2 and a low 𝑅𝑀𝑆𝐸 are desired when 

evaluating the models.  

After fitting all the models, a procedure using the goodness of fit measures such as the R2 

and RMSE will be used to find the best model. The model that has the highest R2 and lowest RMSE 

will be chosen as the final selected model. This procedure was repeated for each family member 

shown in Figure 3.3. The model fitting procedure will be used for both PCI and IRI data.  
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The summarized models that will be used for the development of deterministic deterioration 

models for PCI and IRI is shown in Table 4.1.  

 Model Equation (PCI/IRI = y) Coeff. Start value 
(@ t=0)   V 

1 Cubic Polynomial 

Safak Ercisli (2015) 
y = 𝑑𝑡3 + 𝑐𝑡2 + 𝑏𝑡 + 𝑎 a, b, c, d a 

a=V 

2 Gompertz 

Safak Ercisli (2015) 
y = a𝑒−𝑏𝑒−𝑐𝑡

 a, b, c ae-b   

a=V/e-b 
3 Logistic 

Kaur, D., and Pulugurta, H. (2008)  
𝑦 =

𝑎

1 + 𝑒−
𝑡
𝑐

+ 𝑏 a, b, c 
 

a/2 + b 
a = 2*(V- b) 

4 Adjusted Stantec –  

Stantec (2007),  
y = 100 − 𝑒𝑎(1−𝑏𝑡) a, b 99 

5 Exponential 

Safak Ercisli (2015) 
y = b − (b − a) ∗ 𝑒−𝑐𝑡 a, b a 

a=V 
6 Second Polynomial 

Safak Ercisli (2015) 
y = 𝑐𝑡2 + 𝑏𝑡 + 𝑎 a, b, c a 

a=V 
7 Sigmoidal 

Han Jun; Moraga (1995), 𝑦 = 𝑎 ∗ [
𝑡𝑏

𝑐 + 𝑡𝑏
] 

a, b, c a/(c+1) for t=1 
 
a=V*(c+1) for t=1 

 

Table 4.1  Summarized deterministic models 

 

After the data was sorted and cleaned as described in Chapter 3, the data was analyzed to 

eliminate the street sections for which the first measured PCI was recorded more than 10 years 

prior for AC and COM pavement families, and 15 years for PCC pavement family after the 

construction or latest major rehabilitation. 

Table 4.2, shows a summary of all the data with the percent of good data for modeling after 

elimination of the data that are not reliable for development of prediction models. Good data is 

data which has been cleaned and organized as described in Chapter 3. 

Table 4.3 shows a sample of PCI data obtained by the city asset management departments 

between 2007 and 2018 for streets constructed on expansive subgrade soil. Table 4.18 displays the 
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sample data for the PCI historical record from 2014 to 2019 for streets built on non-expansive 

subgrade soil.   

 

Table 4.2  PCI Data for Expansive and Non-Expansive subgrade soil 

* - Data for Non-Expansive subgrade soil 

  

4.1 Development of Deterministic PCI Deterioration Models for Streets with 

Expansive Subgrade Soil  

All seven models shown in Table 4.1 have been used to select the best deterministic deterioration 

model for streets in the DFW Metroplex area with expansive subgrade soil.  Every model had to 

comply with the following requirements: 

 The slope of the deterioration curve must always be negative 

 The initial PCI values were set to 99 right after construction or major rehabilitation 

 The PCI value cannot be less than zero.                                          

Family

Pvmt 

Type

Func. 

Class

Expsnsiv

e Soil 

Total 

No.

Last Rehab 

before 

1997/2004* 

(AC - 10 Yrs.) 

Last Rehab 

before 

1997/2004* 

(COM -10 Yrs.) 

Last Rehab 

before 

1992/1999* 

(PCC - 15 Yrs.) 

Good Data 

for 

Modeling

% of Good 

Data

1 AC ART YES 1,421                        98  N/A  N/A 1,323        93%

2 AC COL YES 608                         101  N/A  N/A 507           83%

3 AC LR YES 7,043                   1,237  N/A  N/A 5,806        82%

4 PCC ART YES 3,139     N/A  N/A                     134 3,005        96%

5 PCC COL YES 1,329     N/A  N/A                       84 1,245        94%

6 PCC LR YES 6,547     N/A  N/A                  1,015 5,532        84%

7 COM ART YES 1,414     N/A                    475  N/A 939           66%

8 COM COL YES 401        N/A                    174  N/A 227           57%

9 COM LR YES 2,037     N/A                 1,299  N/A 738           36%

10 AC ART NO 776                         216  N/A  N/A 560           72%

11 AC COL NO 1,039                      338  N/A  N/A 701           67%

12 AC LR NO 11,316                 6,856  N/A  N/A 4,460        39%

13 AC RU NO 302                         126  N/A  N/A 176           58%

14 PCC ART NO 1,663     N/A  N/A                     192 1,471        88%

15 PCC COL NO 465        N/A  N/A                       80 385           83%

16 PCC LR NO 10,205   N/A  N/A                     780 9,425        92%

17 PCC RU NO 10          N/A  N/A                       -   10             100%

18 COM ART NO 808        N/A                    111  N/A 697           86%

19 COM COL NO 67          N/A                        7  N/A 60             90%

20 COM LR NO 531        N/A                    160  N/A 371           70%

PCI - Data Total: 51,121                 8,972                 2,226                  2,285 37,638      
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Table 4.3  PCI Sample Data for Expansive subgrade soil 

 

Since the data obtained from cities with expansive subgrade soil was unbalanced (did not have the 

same number of  PCI for each street section, Figure 4.2) an Excel macro script was used to 

calculate the street regression coefficient for each of the models shown in Table 4.1. For PCI 

models, it was a necessity to implement interactive non-linear least squares fitting method. To find 

the suitable PCI prediction model (best fit), initial regression coefficient values were assumed. 

Then using these initial values and proposed models’ equations from Table 4.1, the square of 

Asset ID Street Name
Pavement 

Type
Functional Class

Expansive 

Soil

Latest 

Rehab/Reconst 

Year

PCI 2007 PCI 2008 PCI 2009 PCI 2010 PCI 2011 PCI 2012 PCI 2013 PCI 2014 PCI 2015 PCI 2016 PCI 2017 PCI 2018

49246 FORT WORTH AVE AC ART Yes 2002 72          66          61          58          

50002 W DAVIS ST AC ART Yes 2002 70          59          

53079 S BECKLEY AVE AC ART Yes 2002 75          67          44          

54756 S LEDBETTER DR AC ART Yes 2002 72          68          64          55          

54844 W LEDBETTER DR AC ART Yes 2002 71          63          52          32          

59180 CANADA DR AC ART Yes 2002 74          72          68          63          60          

60653 OAK LAWN AVE AC ART Yes 2002 71          60          47          

61405 W JEFFERSON BLVD AC ART Yes 2002 73          66          49          49          

61824 OAK LAWN AVE AC ART Yes 2002 73          57          54          

61918 W RED BIRD LN AC ART Yes 2002 74          70          68          68          59          

62243 S MARSALIS AVE AC ART Yes 2002 72          43          

68551 E ILLINOIS AVE AC ART Yes 2002 72          70          58          48          45          39          

68659 W ILLINOIS AVE AC ART Yes 2002 72          60          59          50          40          

82996 MILITARY PKWY AC ART Yes 2002 74          70          62          59          47          

83519 MCKINNEY AVE AC ART Yes 2002 73          69          66          51          

85855 S LAMAR ST AC ART Yes 2002 60          47          

86260 S LAMAR ST AC ART Yes 2002 73          71          53          

86790 W RED BIRD LN AC ART Yes 2002 74          68          67          62          59          

86791 W RED BIRD LN AC ART Yes 2002 70          70          68          68          60          

86792 W RED BIRD LN AC ART Yes 2002 70          68          68          63          56          

86796 W RED BIRD LN AC ART Yes 2002 73          71          68          67          63          

88562 S FITZHUGH AVE AC ART Yes 2002 73          71          66          66          60          

88564 S FITZHUGH AVE AC ART Yes 2002 72          64          55          50          38          

89659 MARSH LN AC ART Yes 2002 74          72          72          59          54          

89662 MARSH LN AC ART Yes 2002 74          65          65          48          

89663 MARSH LN AC ART Yes 2002 71          54          53          48          46          

89673 MARSH LN AC ART Yes 2002 74          74          74          73          67          

89677 MARSH LN AC ART Yes 2002 71          69          60          57          38          

89678 MARSH LN AC ART Yes 2002 75          69          65          57          

89679 MARSH LN AC ART Yes 2002 71          62          57          46          

89681 MARSH LN AC ART Yes 2002 72          64          58          57          51          

89686 MARSH LN AC ART Yes 2002 72          69          65          57          

89687 MARSH LN AC ART Yes 2002 71          71          58          57          46          

89688 MARSH LN AC ART Yes 2002 72          69          62          57          51          

89912 MILITARY SERV N AC ART Yes 2002 71          67          59          47          44          

89913 MILITARY SERV N AC ART Yes 2002 70          69          65          61          56          

89957 N FITZHUGH AVE AC ART Yes 2002 71          65          63          63          56          

89958 N FITZHUGH AVE AC ART Yes 2002 71          61          55          49          31          

89959 N FITZHUGH AVE AC ART Yes 2002 73          71          64          52          47          

90094 S LAMAR ST AC ART Yes 2002 73          71          63          

90104 S POLK ST AC ART Yes 2002 67          55          

90110 S POLK ST AC ART Yes 2002 65          33          

90390 W ILLINOIS AVE AC ART Yes 2002 73          57          50          40          

90415 W JEFFERSON BLVD AC ART Yes 2002 73          66          48          43          

90979 S BECKLEY AVE AC ART Yes 2002 75          69          36          

91297 ABRAMS RD AC ART Yes 2002 73          64          62          58          12          

91298 ABRAMS RD AC ART Yes 2002 74          70          57          52          15          

91302 ABRAMS RD AC ART Yes 2002 70          65          51          46          22          

91306 ABRAMS RD AC ART Yes 2002 71          66          64          57          51          46          

91307 ABRAMS RD AC ART Yes 2002 71          66          64          55          51          46          

91917 GREENVILLE AVE AC ART Yes 2002 72          59          56          52          29          

92073 S LAMAR ST AC ART Yes 2002 73          63          40          

92904 ABRAMS RD AC ART Yes 2002 70          69          68          63          45          

92905 ABRAMS RD AC ART Yes 2002 70          68          60          54          33          

95172 S ZANG BLVD AC ART Yes 2002 73          65          58          

101113 W RED BIRD LN AC ART Yes 2002 70          68          67          64          47          

103647 S BECKLEY AVE AC ART Yes 2002 74          72          63          63          59          
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difference between calculated values by the model and recorded PCI’s square errors were 

calculated. The next step in finding the appropriate model was to minimize the value of the Sum 

of Square Error (SSE) defined in the following equation: 

𝑆𝑆E = Σ (𝑦-𝑦fit)
 2 

Where y represents data point, and yfit, is the value of the curve at point y.  Further, the Excel 

Solver is used to minimize the final SSE by changing the initial regression values (a, b, c and d). 

Then, the Total Sum of Square and (TSS) is calculated to find R2. The following formula was used 

to calculate TSS: 

𝑇SS = Σ(𝑦-𝑦mean)
2  

Where ymean is the average value of data points. The TSS depends on the numbers of measured 

data points. After SSE and TSS were calculated, a R2 was calculated using following formula:  

𝑅2 = 1− 
𝑆𝑆𝐸

 𝑇𝑆𝑆
 

At the end, the Solver determined regression coefficients (a, b, c and d) and R2  for all street 

sections of all models.  Table 4.5 shows an example of the model output. The Excel macro script  

used is given in Appendix A. 
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Figure 4.1  Excel Calculation using Macro script for all models – PCI - Expansive subgrade soil 

 

Table 4.4 shows an example of an Excel macro where the initial value of 99 is set. This value was 

assumed to be the PCI after construction or major rehabilitation. 

 

 

Table 4.4 PCI Sample Data for Macro (Expansive subgrade soil) 
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Figure 4.2 Unbalanced PCI data - Expansive subgrade soil 

 

 

 

Figure 4.3 Balanced PCI data - Expansive subgrade soil 
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The regression coefficients obtained by the Excel macros were used to predict the PCI values for 

the same number of years of all streets sections so that the data set for the model development 

would be balanced, Figure 4.3. Table 4.5 gives an example of the calculated output for the 

regression parameters a, b and c, and R2 for Model 2 as well as the predicted  PCI values for 5, 

10, 15, and 20 years. This process was performend for all seven models  in Table 4.1.    

 

 

 

Table 4.5  Example of PCI Data predicted with parameters calculated by the Excel Macro  

 

After calculating the prediction model values for 5, 10, 15, and 20 years, these PCI values were 

analyzed and if the predicted PCI value were not continuously decreasing, the model would be  

considered unreasonable. By applying the criteria described above, models 2, 3, 5 and 7 are the 

best models within these seven models. Models 1, 4 and 6 have been excluded from further 

consideration in the development of deterioration models since the predicted PCI values did not 

decrease over time. Table 4.6 shows summarized information for R2 and the numbers of the data 

used for model development for each of the pavement families. It should be noted that data for all 

5 10 15 20

ID NAME TYPE CLASS Exp_Soil
Latest_

Rehab
a2 b2 c2 R-Squared 2 Predicted PCI model 2

61567 HARRY HINES BLVD AC ART Yes 2004 1E+306 699.9965 -4.5E-05 0.50001377 85 72 62 53

61731 S MARSALIS AVE AC ART Yes 2003 5.94E+16 34.02807 -0.00118 0.50002337 81 66 54 44

64281 PRESIDIO AVE COM LR Yes 1999 1.1E+141 320.145 -0.00013 0.50005231 80 65 53 43

88817 VILBIG RD COM COL Yes 1993 3.97E+35 77.37501 -0.00029 0.50028321 88 79 70 63

101621 BONNIE VIEW RD PCC ART Yes 1989 2.9E-238 -551.547 6.53E-05 0.50028921 83 69 58 48

87795 JASON DR AC LR Yes 2003 1.2E+256 585.0177 -7.4E-05 0.50038613 80 64 52 42

32472 POWER DR COM LR Yes 1993 1.8E+74 166.3841 -0.00021 0.50044459 83 70 59 50

98539 S WESTMORELAND RD PCC ART Yes 1987 1.06E-75 -177.229 0.000156 0.50054396 86 75 65 57

59958 INGERSOLL ST PCC LR Yes 1981 2.8E+242 553.6758 -6.7E-05 0.50069993 82 68 57 47

58871 N WESTMORELAND RD COM ART Yes 1991 1.7E+297 679.7973 -3.7E-05 0.50084377 87 77 68 60

90395 W ILLINOIS AVE AC ART Yes 2004 1E+306 700 -5.4E-05 0.50108034 82 68 56 47

98856 THACKERY ST COM LR Yes 1985 3.97E-36 -86.1086 0.000353 0.50138123 85 73 63 54

97225 FERNALD AVE PCC LR Yes 1997 9.8E-303 -700 5.77E-05 0.5015632 81 66 54 44

104323 MCNEIL ST COM LR Yes 1995 4.3E-204 -472.865 5.84E-05 0.50183328 86 75 65 57

87805 ASH LN AC LR Yes 2000 7.1E+264 605.2474 -6.7E-05 0.50191815 81 66 54 44

91118 WILBARGER DR PCC LR Yes 1993 2.5E+297 680.2007 -5.3E-05 0.502084 83 69 58 48

88285 MICHAEL LN COM LR Yes 1985 3E+74 166.8962 -0.00017 0.50221583 86 74 64 56

62352 E LOUISIANA AVE AC LR Yes 2004 5.12E+44 98.35126 -0.00048 0.50231115 78 61 48 38

98618 SHADOW WAY COM LR Yes 1993 2.9E-193 -447.94 7.83E-05 0.50284615 83 70 59 49

87668 WYOMING ST AC LR Yes 2000 1.26E+57 126.8869 -0.00034 0.50287146 80 65 52 42

100967 STRAIT LN PCC LR Yes 1996 44.75768 -0.79386 0.0426 0.50301982 85 75 68 63

100966 STRAIT LN PCC LR Yes 1996 44.75768 -0.79386 0.0426 0.50301982 85 75 68 63
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streets with R2 < 0.5 and data that did not decrease over time were removed in order to create better 

and more reliable prediction models. 

 

 

Table 4.6   Model 1 (Cubic Polynomial) – Summarized Results (PCI data used) 

Tables for other models with summarized results are shown in Tables B1 to B6 in Appendix B.  

 

Table 4.7  PCI – Starting parameters for SAS 

After selecting  four of these  seven models, the next step was to prepare the data set to be used by 

the SAS program to develop the PCI prediction models. As shown in Table 4.8, the data had to be 

reorganized for use in the SAS program. The following data has been extracted from Table 4.3: 

Asset ID, Surface type, Class, Age, and PCI.  In order to achieve the best results, the SAS program 

was run separately for each of the pavement families shown in Figure 3.3. Appendix I gives an 

example of the SAS program. The SAS statistical program has used the starting parameters shown 

in Table 4.7 to calculate the best fit parameters: X2, X3, R
2 and Standard Error (SE).  

The following equation was used by the SAS software to calculate a standard error (SE) which 

represent the accuracy of the prediction model: 

   SE = √
(𝑦−𝑦𝑓𝑖𝑡)2

𝑑𝑓
  

Family

Pvmt 

Type

Func. 

Class

Expansiv

e Soil 

Total 

Data

Criteria     

R
2
 < 0.5

Good 

Data     

R
2
 > 0.5

Good 

Data     

(%)             

R
2
 > 0.5

Criteria       

R
2
 < 0.7

Good Data  

R
2
 > 0.7

Good 

Data     

(%)           

R
2
 > 0.7

Criteria      

R
2
 <  0.9

Good 

Data      

R
2
 > 0.9

Good Data     

(%)           

R
2
 > 0.9

Prediction 

Model 

works

Expansive 

Soil

1 AC ART Yes 1,398    1             1,397      100% 2              1,396          100% 142             1,256      90% No Yes

2 AC COL Yes 601       -          601         100% -          601             100% 75               526         88% No Yes

3 AC LR Yes 6,993    3             6,990      100% 25            6,968          100% 816             6,177      88% No Yes

4 PCC ART Yes 3,125    1             3,124      100% 30            3,095          99% 604             2,521      81% No Yes

5 PCC COL Yes 3,126    -          3,126      100% 14            3,112          100% 265             2,861      92% No Yes

6 PCC LR Yes 6,535    4             6,531      100% 33            6,502          99% 958             5,577      85% No Yes

7 COM ART Yes 1,408    1             1,407      100% 24            1,384          98% 301             1,107      79% No Yes

8 COM COL Yes 398       -          398         100% 3              395             99% 55               343         86% No Yes

9 COM LR Yes 2,028    -          2,028      100% 13            2,015          99% 274             1,754      86% No Yes

PCI - EXPANSIVE 

SOIL a b c

2 100.6190759 0.016222011 -0.2559421748

3 1878876.822 -939339.411 -127777.0337709460

5 99 -42691.72207 0.0000827639

7 99 -2 0.0050000000
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Where df is the degree of freedom, y is the data point and, yfit is the value of the curve at point y. 

The number of data points minus the number of parameters in the function is known as the degrees 

of freedom, df.   Models with a highest R2 and lowest Standard Error (SE) were selected as the 

best models.  

 

 

 

 

 

 

Table 4.8  PCI – Sample data organized for SAS 

 

Tables 4.9, 4.10, 4.11 and 4.12 show the parameters calculated by the SAS program.  All tables 

with the final outputs have been evaluated to verify that the models meet the minimum criteria 

which are high  R2 and low SE.  
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Table 4.9  SAS results for Model 2 (Gompertz) – Expansive subgrade soil 

 

 

Table 4.10  SAS results for Model 3 (Logistic) – Expansive subgrade soil 

 

 

Table 4.11  SAS results for Model 5 (Exponential) – Expansive subgrade soil 

Model 2 - PCI -  Expansive Soil

Surface Class

Degree of 

Freedom      

(DF)

Sum of Square 

(SS)

Error Sum of 

Square (SSE) X2 X3 R^2

Stand. 

Error 

(SE)

AC ART 3,480          10,942,899      365,696                33.0712 -0.00156 0.9677    10.25

AC COL 1,456          4,348,353        122,194                2.7020 -0.01810 0.9727    9.16

AC LR 20,144        60,322,681      2,415,134             8.5326 -0.00617 0.9615    10.95

COM ART 3,688          19,171,042      304,103                1.2803 -0.01860 0.9844    9.08

COM COL 980             5,191,885        98,875                  0.7953 -0.02720 0.9813    10.04

COM LR 4,708          23,695,564      590,172                0.7429 -0.03100 0.9757    11.20

PCC ART 8,480          43,973,998      865,251                1.4632 -0.01660 0.9807    10.10

PCC COL 3,496          18,331,255      341,949                3.1706 -0.00799 0.9817    9.89

PCC LR 19,316        101,590,000    1,966,411             0.7513 -0.02890 0.9810    10.09

Model 3 - PCI -  Expansive  Soil

Surface Class

Degree of 

Freedom      

(DF) Sum of Square (SS)

Error Sum of 

Square (SSE) X2 X3 R^2

Stand. 

Error 

(SE)

AC ART 3,196          9,440,739             239,440                -881.1 -124.1 0.9753    8.66

AC COL 1,516          4,383,872             84,604                  -14430.3 -1811.8 0.9811 7.47

AC LR 14,840        43,562,988           959,480                -1128.2 -154.7 0.9784    8.04

COM ART 3,576          17,968,879           259,994                -1206.3 -278.0 0.9857    8.53

COM COL 1,000          5,307,839             52,525                  -6979.6 -1628.6 0.9902    7.25

COM LR 3,176          15,757,872           267,140                -1081.9 -247.3 0.9833    9.17

PCC ART 10,672        54,621,433           693,791                -1748.1 -403.4 0.9875    8.06

PCC COL 4,388          22,812,574           214,404                -7206.3 -1631.1 0.9907    6.99

PCC LR 19,812        103,000,000         1,189,218             -951.4 -234.5 0.9886    7.75

Model 5 - PCI -  Expansive Soil

Surface Class

Degree of 

Freedom      

(DF) Sum of Square (SS)

Error Sum of 

Square (SSE) X2 X3 R^2

Stand. 

Error 

(SE)

AC ART 3,472          10,952,371           423,518                -111.6 0.0202 0.9628    11.04

AC COL 1,548          4,676,938             147,948                -243.9 0.0122 0.9693    9.78

AC LR 15,704        47,383,071           1,484,689             -221.2 0.0131 0.9696    9.72

COM ART 3,372          17,339,594           270,354                -138.5 0.0103 0.9846    8.95

COM COL 828             4,426,194             68,042                  -3841.4 0.0006 0.9849    9.07

COM LR 828             4,438,098             56,138                  -209.1 0.0073 0.9875    8.23

PCC ART 9,120          47,875,482           735,046                -206.3 0.0076 0.9849    8.98

PCC COL 3,704          19,695,434           242,360                -161.1 0.0089 0.9878    8.09

PCC LR 17,452        92,107,370           1,179,127             -297.1 0.0058 0.9874    8.22
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Table 4.12  SAS results for Model 7 (Exponential) – Expansive subgrade soil 

 

All the models shown in Tables 4.9 to 4.12   have low SE and high R2, therefore they were further 

retained for the model selection process. After all the models were analyzed, the next step was to 

create a chart for each pavement family to display the predicted curves for the selected four models.  

As can be seen in Figure 4.4 and Table 4.13, all models for the AC-ART pavement family are 

grouped together and evaluated. The predicted PCI values calculated by the excel macro were used 

to draw all predicted models as shown in Figure 4.4 for AC-ART pavement family and Figures 

D1 to D6 in Appendix D for the rest of the AC pavement families. By drawing all the models in 

one graph, it was much easier to compare the behavior of each model, and this also helps with the 

selection of the best models. The same technique has been extended to all pavement families.  

 

 

 

 

 

 

Model 7 - PCI -  Expansive Soil

Surface Class

Degree of 

Freedom      

(DF) Sum of Square (SS)

Error Sum of 

Square (SSE) X2 X3 R^2

Stand. 

Error 

(SE)

AC ART 3,856          13,727,600           546,881                -1.2505 0.0337 0.9617    11.91

AC COL 1,260          4,184,070             167,036                -1.3368 0.0303 0.9616    11.51

AC LR 13,796        45,960,688           1,845,471             -1.3009 0.0330 0.9614    11.57

COM ART 3,924          20,391,602           531,471                -1.2499 0.0173 0.9746    11.64

COM COL 948             5,181,605             90,895                  -1.4022 0.0104 0.9828    9.79

COM LR 3,296          17,092,771           384,277                -1.3618 0.0130 0.9780    10.80

PCC ART 9,528          51,410,171           1,044,261             -1.2735 0.0150 0.9801    10.47

PCC COL 3,928          21,373,978           365,678                -1.2515 0.0156 0.9832    9.65

PCC LR 16,104        88,542,003           1,480,032             -1.3246 0.0126 0.9836    9.59
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4.1.1 Deterministic Prediction model for AC  Pavement Family  (Exp. Soil) – PCI 

 

 

Figure 4.4 Chart for Models 2, 3, 5 & 7 – AC-ART Pvmt Family (Exp. subgrade soil) 

 

 

Table 4.13 Summarized SAS results for AC-ART, AC-COL & AC-LR pavement family 

 

For AC-ART, AC-COL and AC-LR street pavement families, Model 2 is recommended despite 

Model 3 having the lowest SE and highest R2, see Table 4.13, since the curves for Model 3 are 

approaching zero (0) at twenty five years for all AC pavement families, (Figure 4.4, D1 and D2). 
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Surface Class

Degree of 

Freedom      

(DF) Sum of Square (SS)

Error Sum of 

Square (SSE) X2 X3 R^2

Stand. 

Error 

(SE) Model 

AC ART 3,480          10,942,899           365,696                33.0712 -0.00156 0.96766  10.25 2

AC ART 3,196          9,440,739             239,440                -881.1000 -124.10000 0.97526  8.66 3

AC ART 3,472          10,952,371           423,518                -111.6000 0.02020 0.96277  11.04 5

AC ART 3,856          13,727,600           546,881                -1.2505 0.03370 0.96169  11.91 7

AC COL 1,456          4,348,353             122,194                2.7020 -0.01810 0.97267  9.16 2

AC COL 1,516          4,383,872             84,604                  -14430.3000 -1811.80000 0.98107  7.47 3

AC COL 1,548          4,676,938             147,948                -243.9000 0.01220 0.96934  9.78 5

AC COL 1,260          4,184,070             167,036                -1.3368 0.03030 0.96161  11.51 7

AC LR 20,144        60,322,681           2,415,134             8.5326 -0.00617 0.9615    10.95 2

AC LR 14,840        43,562,988           959,480                -1128.2000 -154.70000 0.9784    8.04 3

AC LR 15,704        47,383,071           1,484,689             -221.2000 0.01310 0.9696    9.72 5

AC LR 13,796        45,960,688           1,845,471             -1.3009 0.03300 0.9614    11.57 7
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The prediction curves for Model 2 are reasonable for all pavement families as they are in the center 

of the measured PCI-data points. 

4.1.2 Deterministic Prediction model for COM Pavement Family (Exp. Soil) – PCI 

 

 

Figure 4.5 Chart for Models 2, 3, 5 & 7 – COM-ART Pvmt Family (Exp. subgrade soil) 

 

 

Table 4.14 Summarized SAS results for COM-ART, COL & LR pvmt family (Exp. subgrade soil) 

 

Model 3 is recommended for the COM-ART and COM-COL street pavement families and 

Model 5 is recommend for the COM-LR street pavement family as these modes have the lowest 
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Surface Class

Degree of 

Freedom      

(DF) Sum of Square (SS)

Error Sum of 

Square (SSE) X2 X3 R^2

Stand. 

Error 

(SE) Model 

COM ART 3,688          19,171,042           304,103                1.2803 -0.0186 0.9844    9.08 2

COM ART 3,576          17,968,879           259,994                -1206.3000 -278.0000 0.9857    8.53 3

COM ART 3,372          17,339,594           270,354                -138.5000 0.0103 0.9846    8.95 5

COM ART 3,924          20,391,602           531,471                -1.2499 0.0173 0.9746    11.64 7

COM COL 980             5,191,885             98,875                  0.7953 -0.0272 0.9813    10.04 2

COM COL 1,000          5,307,839             52,525                  -6979.6000 -1628.6000 0.9902    7.25 3

COM COL 828             4,426,194             68,042                  -3841.4000 0.0006 0.9849    9.07 5

COM COL 948             5,181,605             90,895                  -1.4022 0.0104 0.9828    9.79 7

COM LR 4,708          23,695,564           590,172                0.7429 -0.0310 0.9757    11.20 2

COM LR 3,176          15,757,872           267,140                -1081.9000 -247.3000 0.9833    9.17 3

COM LR 828             4,438,098             56,138                  -209.1000 0.0073 0.9875    8.23 5

COM LR 3,296          17,092,771           384,277                -1.3618 0.0130 0.9780    10.80 7
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SE and the highest R2, (Table 4.14). The prediction curve for the recommended model shown in 

Figure 4.5 have reasonable trends for the COM-ART pavement family. For pavement families 

COM-COL and COM-LR shown in Figure D3 & D4, the recommended models show good 

prediction curves. The curve for Model 3 is positioned in the  middle of the measured PCI data 

points. 

 

4.1.3 Deterministic Prediction models for PCC Pvmt Family  (Exp. Subgrade Soil) – PCI 

 

 

Figure 4.6 Chart for Models 2,3,5 & 7 – PCC-ART Pvmt. Family (Exp. subgrade soil) 
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Table 4.15 Summarized SAS results for PCC-ART, PC-COL & PCC-LR pvmt. family (Exp. 

subgrade soil) 

For the PCC-ART, PCC-COL and PCC-LR pavement families, Model 3 is recommended, 

as this model has the lowest SE and highest R2, see Table 4.15.  The prediction curve for the 

selected model shown in Figures 4.6 for the PCC-ART pavement family has a good trend. 

Figures D5 & D6 for PCC-COL and PCC-LR pavement families show that the recommended 

models have a good trend as well, as they are positioned toward the middle of the PCI data points. 

 

4.1.4 Summarized Best Deterministic PCI Deterioration Models for Street with Exp. 

subgrade Soil  

 

 

Table 4.16  Summarized best Models for all pavement families (PCI) – Exp. Soil 

 

Surface Class

Degree of 

Freedom      

(DF) Sum of Square (SS)

Error Sum of 

Square (SSE) X2 X3 R^2

Stand. 

Error 

(SE) Model 

PCC ART 8,480          43,973,998           865,251                1.4632 -0.0166 0.9807    10.10 2

PCC ART 10,672        54,621,433           693,791                -1748.1000 -403.4000 0.9875    8.06 3

PCC ART 9,120          47,875,482           735,046                -206.3000 0.0076 0.9849    8.98 5

PCC ART 9,528          51,410,171           1,044,261             -1.2735 0.0150 0.9801    10.47 7

PCC COL 3,496          18,331,255           341,949                3.1706 -0.0080 0.9817    9.89 2

PCC COL 4,388          22,812,574           214,404                -7206.3000 -1631.1000 0.9907    6.99 3

PCC COL 3,704          19,695,434           242,360                -161.1000 0.0089 0.9878    8.09 5

PCC COL 3,928          21,373,978           365,678                -1.2515 0.0156 0.9832    9.65 7

PCC LR 19,316        101,590,000         1,966,411             0.7513 -0.0289 0.9810    10.09 2

PCC LR 19,812        103,000,000         1,189,218             -951.4000 -234.5000 0.9886    7.75 3

PCC LR 17,452        92,107,370           1,179,127             -297.1000 0.0058 0.9874    8.22 5

PCC LR 16,104        88,542,003           1,480,032             -1.3246 0.0126 0.9836    9.59 7

Surface Class

Degree of 

Freedom      

(DF)

Sum of Square 

(SS)

Error Sum of 

Square (SSE) X1 X2 X3 R^2

Stand. 

Error (SE) Model 

AC ART 3,480            10,942,899      365,696      2.28E+16 33.07 -0.002 0.96766  10.25 2

AC COL 1,456            4,348,353        122,194      1,476.0                             2.70 -0.018 0.97267  9.16 2

AC LR 20,144          60,322,681      2,415,134   502,685.4                         8.53 -0.006 0.9615    10.95 2

COM ART 3,576            17,968,879      259,994      2,610.6                             -1206.3 -278.000 0.986      8.53       3

COM COL 1,000            5,307,839        52,525        14,157.2                           -6979.6 -1628.600 0.990      7.25       3

COM LR 828               4,438,098        56,138        99.0                                  -209.1 0.007 0.988      8.23       5

PCC ART 10,672          54,621,433      693,791      3,694.2                             -1748.1 -403.400 0.987      8.06       3

PCC COL 4,388            22,812,574      214,404      14,610.6                           -7206.3 -1631.100 0.991      6.99       3

PCC LR 19,812          103,000,000    1,189,218   2,100.8                             -951.4 -234.500 0.9886    7.75       3
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Models Pavement Family    Equation (PCI/IRI = y) 

2 AC-ART y = 2.28179E + 16𝑒−33.0712∗𝑒−(−0.00156𝑡)
 

2 AC-COL y = 1476.042576𝑒−2.702𝑒−(−0.0181𝑡)
 

2 AC-LR y = 502685.4221𝑒−8.5326 𝑒−(−0.0062𝑡)
 

             

3 

                    

COM-ART 
𝑦 =

2610.6

1 + 𝑒− 
𝑡

278

− 1206.3 

 
 

3 

                    

COM-COL 𝑦 =
14157.2

1 + 𝑒− 
𝑡

1628.6

− 6979.6 

 
5 COM-LR                      y = −209.1 − (−209.1 − 99) ∗ 𝑒−0.007𝑡   

            

3 

                      

PCC-ART 
𝑦 =

3694.2

1 + 𝑒− 
𝑡

−403.4

− 1748.1 

 
            

3 

                    

PCC-COL 
𝑦 =

14610.6

1 + 𝑒− 
𝑡

−1631.1

− 7206.3 

 
             

3 

                    

PCC-LR 
𝑦 =

2100.8

1 + 𝑒− 
𝑡

−234.5

− 951.4 

 
 

Table 4.17  Summarized Eq. for Best Models for  all pavement  families (PCI) 

 

The parameters estimated by the non-linear regression analysis performed using SAS program are 

summarized in Table 4.16. They are also shown in the formulas for the selected models in Table 

4.17. 

The residuals for models 2, 3, 5 & 7 for all pavement families built on expansive subgrade soil 

are shown in Appendix L. 
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4.1.4 Comparison of Deterioration curves PCC vs AC Pvmt Family  (Exp.  Soil) – PCI 

 

The two deterioration curves fitted to both PCC and AC data are presented together in Figure 

4.7. In this graph, local residential streets with concrete (PCC) surface layer deteriorate slower 

than the streets with asphalt (AC) curve surface layer. 

 

Figure 4.7 Comparison of Deterioration curve PCC-LR vs AC – LR family (Exp.  subgrade soil) 

 

4.2 Development of Deterministic PCI Deterioration Models for Street with Non-Exp. Sub. 

Soil 

The seven models given in Table 4.1 were also used to select the best deterministic 

deterioration model for the DFW Metroplex area with non-expansive subgrade soil. These models 

had to also comply with the following conditions: 

• The PCI must decrease with time 

• The PCI value immediately after construction or major rehabilitation was set to 99 

• The PCI value must always be positive                                        
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Table 4.18 shows the sample of PCI data for non-expansive subgrade soil collected for the 

period from 2014 to 2019.  The data were sorted and cleaned as described in Chapter 3. 

 

Table 4.18 PCI Sample Data for Non-Expansive subgrade soil 

 

For the streets built on non-expansive subgrade soil, the PCI values were available for 

every year from 2014 to 2019 for all streets. Therefore the PCI data set is balanced and  SAS 

statistical software could be used to perform the non-linear regression analysis without the need 

of the Excel macro. The data shown in Table 4.18 was formatted as shown in Table 4.19 so that 

it could be used by the SAS statistical software.  As shown in Table 4.19, the following data was 

extracted from Table 4.18: Asset ID, Surface type, Class, Age, and PCI.  The age was 

Asset id STREET NAME PAVEMENT TYPE FUNCTIONAL CLASS
Expansive 

Soil

Latest 

Rehab/Reconstruction 

Year

PCI 2014 PCI 2015 PCI 2016 PCI 2017 PCI 2018 PCI 2019

PST0000004 TAXCO RD AC LR No 1999 52 50 48 45 42 41

PST0000007 BROADMOOR DR AC LR No 2006 67 64 63 61 58 56

PST0000008 EASTVIEW ST AC LR No 2014 98 94 89 87 84 76

PST0000009 ALBERMARLE DR AC LR No 2003 60 59 56 54 51 49

PST0000010 WINDY HILL LN AC LR No 2015 59 100 94 88 87 83

PST0000011 WIND CHIME DR AC LR No 2004 62 61 58 57 54 51

PST0000012 STAFFORD DR AC LR No 2012 88 87 80 79 71 69

PST0000013 PINEY POINT ST AC LR No 2002 59 57 54 52 50 46

PST0000014 WESTMERE LN AC LR No 2015 53 95 94 88 85 81

PST0000015 COLDSTREAM DR AC LR No 2014 97 93 88 85 80 78

PST0000016 DIRKS RD AC LR No 2012 89 86 83 76 74 69

PST0000017 DIRKS RD AC LR No 2012 89 87 83 78 72 69

PST0000018 JENNIE DR AC LR No 2012 89 86 83 77 74 69

PST0000019 WHITEWOOD DR AC LR No 2015 55 100 92 89 87 82

PST0000070 CAMPBELL ST AC LR No 2012 88 85 82 77 74 68

PST0000202 OCEAN CT AC LR No 2014 100 92 88 87 82 75

PST0000203 KESWICK DR AC LR No 2013 91 89 87 82 76 73

PST0000217 GRAND AVE AC LR No 2001 57 55 52 50 46 45

PST0000226 RANCHO VERDE PKWY AC LR No 2015 60 95 94 89 86 82

PST0000227 GLASGOW RD AC LR No 2009 75 74 69 67 65 62

PST0000228 BILGLADE RD AC LR No 2002 58 56 54 52 49 46

PST0000229 5TH ST, NE AC LR No 2015 63 98 92 89 87 80

PST0000238 WILTON DR AC LR No 2012 89 85 83 77 71 68

PST0000289 HORIZON PL AC LR No 2014 99 91 89 85 80 76

PST0000291 DUBLIN DR AC LR No 2013 92 89 86 83 77 74

PST0000300 RANCHO DIEGO LN, W AC LR No 2012 88 87 82 75 74 69

PST0000301 VEGA DR AC LR No 2003 60 58 57 55 52 49

PST0000302 WINESANKER WAY AC LR No 2001 56 55 53 49 46 45

PST0000303 PERSHING AVE AC LR No 1999 53 49 48 44 42 40

PST0000304 MADRID DR AC LR No 2001 56 55 52 49 48 44

PST0000329 CANTEY ST, W AC LR No 2013 91 89 86 80 78 74

PST0000330 WINDWILLOW DR AC LR No 2002 59 57 54 52 49 46

PST0000336 EDGEHILL RD AC LR No 2003 61 58 56 54 53 49

PST0000340 SOUTH DR, W  (COURT)AC LR No 2014 100 92 88 86 83 78

PST0000346 LIMERICK DR AC LR No 2003 60 59 56 54 51 50

PST0000347 THE LANDING ALLEY #8AC LR No 2003 61 59 57 55 53 50

PST0000348 WINDING PASSAGE WAYAC LR No 2004 62 60 58 56 54 52

PST0000361 RANCHO VERDE PKWY AC LR No 2014 96 92 88 87 80 77

PST0000368 SPRINGER AVE AC LR No 2001 56 54 53 49 47 45

PST0000369 WOOTEN DR AC LR No 2003 61 58 57 55 53 49

PST0000371 ODELL DR AC LR No 2003 60 59 56 54 53 50

PST0000372 RAND ST AC LR No 2015 63 95 91 88 85 81

PST0000388 CREEKWOOD LN AC LR No 2015 51 95 90 88 85 83

PST0000389 RENDON RD AC LR No 2015 57 98 94 89 87 80

PST0000390 CREEKWOOD LN AC LR No 2016 61 59 96 94 89 85

PST0000401 CHALK KNOLL RD AC LR No 2001 56 54 52 50 48 45

PST0000402 CREEKWOOD LN AC LR No 2013 92 89 87 84 75 74

PST0000403 REVERE DR AC LR No 2009 78 74 68 67 65 63

PST0000407 ARBOR GATE AC LR No 2003 61 58 57 54 52 49

PST0000409 WEDGWORTH RD S AC LR No 2003 61 59 56 54 53 50
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determined by subtracting the year of construction or major rehabilitation from the year of the 

PCI record. 

 

Table 4.19  PCI – Sample data organized for SAS 

 

The SAS statistical program was used to calculate the best fit regression parameters: X2, X3, R
2 

and Standard Error (SE).  Models with highest R2 and lowest standard Error (SE), as stated earlier 

are considered the best models. All data in the tables was evaluated to verify that the models meet 

the minimum requirements mentioned above. All of these models shown in Tables 4.20 to 4.23 

have low SE and high R2 . The best four models selected for expansive subgrade soil (Models 2, 

3, 5 &7) were also used for non-expansive subgrade soil since models 1, 4 and 6 did not have 

reasonable prediction curves.  
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Table 4.20  SAS results for Model 2 (Gompertz) – Non-Expansive subgrade soil 

 

 

Table 4.21 SAS results for Model 3 (Logistic) – Non-Expansive subgrade soil 

 

Model 2 - PCI -  Non-Expansive Soil

SURFACE CLASS

Degree of 

Freedom      

(DF)

Sum of Square 

(SS)

Error Sum of 

Square (SSE) X2 X3 R^2

Stand. 

Error 

(SE)

AC ART 4,656     25,253,633        38,379                  155.3000 -0.00028 0.9985  2.87

AC COL 6,234     31,928,782        42,144                  134.7000 -0.00033 0.9987  2.60

AC LR 67,758   306,660,000      374,621                104.3000 -0.00042 0.9988  2.35

AC RU 1,746     8,074,249          11,106                  102.7000 -0.00043 0.9986  2.52

COM ART 4,848     33,955,950        40,464                  252.4000 -0.00011 0.9988  2.89

COM COL 402        2,820,522          4,402                    260.0000 -0.00010 0.9984  3.31

COM LR 3,184     20,081,934        25,939                  144.0000 -0.00019 0.9987  2.85

PCC ART 9,978     57,470,198        45,961                  43.4795 -0.00062 0.9992  2.15

PCC COL 2,778     14,664,017        12,715                  1.8982 -0.01310 0.9991  2.14

PCC LR 61,230   333,060,000      194,544                18.5737 -0.00144 0.9994  1.78

PCC RU 60          363,655             275                       90.8567 -0.00031 0.9992  2.14

Model 3 - PCI - Non- Expansive Soil 

SURFACE CLASS

Degree of 

Freedom      

(DF)

Sum of Square 

(SS)

Error Sum of 

Square (SSE) X2 X3 R^2

Stand. 

Error 

(SE)

AC ART 4,656     25,186,103        105,909.0             -694.4 -127 0.9958  4.77

AC COL 6,234     31,836,903        134,023.0             -696.7 -127 0.9958  4.64

AC LR 67,758   305,680,000      1,359,333.0          -688.2 -127 0.9956  4.48

AC RU 1,746     8,050,029          35,325.7               -678.8 -127 0.9956  4.50

COM ART 4,848     33,910,650        85,764.4               -425.0 -127 0.9975  4.21

COM COL 402        2,816,684          8,240.3                 -389.9 -127 0.9971  4.53

COM LR 3,184     20,057,125        50,747.8               -432.3 -127 0.9975  3.99

PCC ART 9,978     57,427,642        88,517.2               -447.8 -127 0.9985  2.98

PCC COL 2,778     14,659,432        17,300.5               -448.6 -127 0.9988  2.50

PCC LR 61,230   332,910,000      347,335.0             -452.6 -127 0.9990  2.38

PCC RU 60 363,297             633.2                    -482.5 -127 0.9983  3.25
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Table 4.22  SAS results for Model 5 (Exponential) – Non-Expansive subgrade soil 

 

 

Table 4.23  SAS results for Model 7 (Exponential) – Non-Expansive subgrade soil 

 

After evaluating all models, the next step was to develop a chart for each pavement family 

to display  the predicted curves for the selected four models.  

 

 

Model 5 - PCI -  Non-Expansive Soil

SURFACE CLASS

Degree of 

Freedom      

(DF)

Sum of Square 

(SS)

Error Sum of 

Square (SSE) X2 X3 R^2

Stand. 

Error 

(SE)

AC ART 4,656     25,263,572        28,440.4               26.16            0.0694        0.9989  2.47

AC COL 6,234     31,937,988        32,938.1               21.88            0.0643        0.9990  2.30

AC LR 67,758   306,720,000      322,958.0             15.79            0.0575        0.9989  2.18

AC RU 1,746     8,075,568          9,787.2                 15.70            0.0574        0.9988  2.37

COM ART 4,848     33,977,463        18,950.7               46.23            0.0657        0.9994  1.98

COM COL 402        2,822,858          2,065.8                 47.81            0.0686        0.9993  2.27

COM LR 3,184     20,090,440        17,432.9               41.19            0.0571        0.9991  2.34

PCC ART 9,978     57,470,625        45,534.3               6.30              0.0296        0.9992  2.14

PCC COL 2,778     14,573,790        102,942.0             55.51            0.1060        0.9930  6.09

PCC LR 61,230   333,060,000      193,741.0             -6.79 0.0249        0.9994  1.78

PCC RU 60 363,705             225.4                    30.84            0.0452        0.9994  1.94

Model 7- PCI -  Non-Expansive Soil

SURFACE CLASS

Degree of 

Freedom      

(DF)

Sum of Square 

(SS)

Error Sum of 

Square (SSE) X2 X3 R^2

Stand. 

Error 

(SE)

AC ART 4,656     25,260,163        31,848.8               -1.0451 0.0547 0.9987  2.62

AC COL 6,234     31,933,221        37,705.0               -1.0733 0.0518 0.9988  2.46

AC LR 67,758   306,660,000      382,817.0             -1.1123 0.0473 0.9988  2.38

AC RU 1,746     8,073,772          11,583.4               -1.1154 0.0471 0.9986  2.58

COM ART 4,848     33,977,819        18,595.0               -0.8782 0.0469 0.9995  1.96

COM COL 402        2,822,928          1,995.5                 -0.8539 0.0495 0.9993  2.23

COM LR 3,184     20,090,642        17,231.3               -0.922 0.042 0.9991  2.33

PCC ART 9,978     57,462,075        54,083.9               -1.1085 0.0253 0.9991  2.33

PCC COL 2,778     14,655,963        20,769.1               -1.2955 0.0153 0.9986  2.73

PCC LR 61,230   333,010,000      246,106.0             -1.1479 0.0222 0.9993  2.00

PCC RU 60 363,705             224.5                    -0.9669 0.0372 0.9994  1.93
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As can be seen in Figure 4.8 and Table 4.24, the predicted PCI values calculated by Excel were 

used to draw all predicted models as shown in Figure 4.8 for AC-ART and Figures E1 to E6, for 

the rest of the pavement families in Appendix E. By drawing all the models in one graph, it was 

much easier to compare the behavior of each model, and it also helps with the selection of the best 

models. The same technique has been extended to all pavement families.  

 

4.2.1 Deterministic Prediction model for AC Pvmt Family (Non-Exp. Soil) – (PCI) 

 

 

 

Figure 4.8  Chart for Models 2, 3, 5 & 7 – AC-ART Pavement Family (Non-Exp. subgrade soil) 
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Table 4.24 Summarized SAS results for AC-ART, COL, LR & RU pvmt family (Non-Expansive) 

 

Models 5 are recommended for the AC-ART, AC-COL and AC-LR pavement families as 

they have the lowest SE and highest R2, (Table 4.24). 

The predicted curves for the AC-ART pavement family are shown in Figure 4.8. Figures 

E1, E2, and E3 for AC-COL, AC-LR and AC-RU in Appendix E indicate the predicted curves for 

the remaining AC pavement families. As they are located in the middle of the measured PCI, data 

points, all recommended models are reasonable for all pavement families. It should also be noticed 

that Model 7 could be used as well as that it has similar prediction curve as Model 5 shown on the 

charts. 

 

 

 

 

 

 

Surface Class

Degree of 

Freedom      

(DF)

Sum of Square 

(SS)

Error Sum of 

Square (SSE) X2 X3 R^2

Stand. 

Error 

(SE) Model

AC ART 4,656     25,253,633        38,378.7               155.3000 -0.0003 0.9985  2.87 2

AC ART 4,656     25,186,103        105,909.0             -694.4000 -127.0000 0.9958  4.77 3

AC ART 4,656     25,263,572        28,440.4               26.1553 0.0694 0.9989  2.47 5

AC ART 4,656     25,260,163        31,848.8               -1.0451 0.0547 0.9987  2.62 7

AC COL 6,234     31,928,782        42,143.6               134.7000 -0.0003 0.9987  2.60 2

AC COL 6,234     31,836,903        134,023.0             -696.7000 -127.0000 0.9958  4.64 3

AC COL 6,234     31,937,988        32,938.1               21.8810 0.0643 0.9990  2.30 5

AC COL 6,234     31,933,221        37,705.0               -1.0733 0.0518 0.9988  2.46 7

AC LR 67,758   306,660,000      374,621.0             104.3000 -0.0004 0.9988  2.35 2

AC LR 67,758   305,680,000      1,359,333.0          -688.2000 -127.0000 0.9956  4.48 3

AC LR 67,758   306,720,000      322,958.0             15.7866 0.0575 0.9989  2.18 5

AC LR 67,758   306,660,000      382,817.0             -1.1123 0.0473 0.9988  2.38 7

AC RU 1,746     8,074,249          11,105.7               102.7000 -0.0004 0.9986  2.52 2

AC RU 1,746     8,050,029          35,325.7               -678.8000 -127.0000 0.9956  4.50 3

AC RU 1,746     8,075,568          9,787.2                 15.6969 0.0574 0.9988  2.37 5

AC RU 1,746     8,073,772          11,583.4               -1.1154 0.0471 0.9986  2.58 7
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4.2.2 Deterministic Prediction model for COM Pvmt Family (Non-Exp. Sub. Soil) – (PCI) 

 

 

 

Figure 4.9  Chart for Models 2, 3, 5 & 7 – COM - ART Pvmt Family (Non-Exp. subgrade soil) 

 

 

Table 4.25 Summarized SAS results for COM-ART, COL, LR & RU pvmt family (Non-Exp.) 
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Surface CLASS

Degree of 

Freedom      

(DF)

Sum of Square 

(SS)

Error Sum of 

Square (SSE) X2 X3 R^2

Stand. 

Error 

(SE) Model

COM ART 4,848     33,955,950        40,463.6               252.4000 -0.0001 0.9988  2.89 2

COM ART 4,848     33,910,650        85,764.4               -425.0000 -127.0000 0.9975  4.21 3

COM ART 4,848     33,977,463        18,950.7               46.2305 0.0657 0.9994  1.98 5

COM ART 4,848     33,977,819        18,595.0               -0.8782 0.0469 0.9995  1.96 7

COM COL 402        2,820,522          4,401.8                 260.0000 -0.0001 0.9984  3.31 2

COM COL 402        2,816,684          8,240.3                 -389.9000 -127.0000 0.9971  4.53 3

COM COL 402        2,822,858          2,065.8                 47.8146 0.0686 0.9993  2.27 5

COM COL 402        2,822,928          1,995.5                 -0.8539 0.0495 0.9993  2.23 7

COM LR 3,184     20,081,934        25,938.7               144.0000 -0.0002 0.9987  2.85 2

COM LR 3,184     20,057,125        50,747.8               -432.3000 -127.0000 0.9975  3.99 3

COM LR 3,184     20,090,440        17,432.9               41.1905 0.0571 0.9991  2.34 5

COM LR 3,184     20,090,642        17,231.3               -0.9218 0.0423 0.9991  2.33 7
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Models 7 are recommended for COM-ART, COL and LR pavement families because they 

have the lowest SE and highest R2, (Table 4.25).  

In Figure 4.9, the predicted curves for the AC-ART pavement family are shown. Figures 

E4, and E5 for COM-COL, and COM-LR in Appendix E shows the predicted curves for the 

remaining COM pavement families.  

As they are in the middle of the measured PCI data points, all recommended models have 

a reasonable trend. Also, it needs to be noted that Model 5 could be use as well as it has almost an 

identical prediction curve. 

4.2.3 Deterministic Prediction model for PCC Pvmt Family (Non-Exp. Soil) – (PCI) 

 

 

Figure 4.10 Chart for Models 2, 3, 5 & 7 – PCC-ART pvmt Family (Non-Exp. subgrade soil) 
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Table 4.26  Summarized SAS results for PCC-ART, COL, LR & RU pavement family 

 

For the PCC-ART and PCC-LR pavement families, Models 5 and 2 are recommended as 

they have the lowest SE and the highest R2,. It should be noted that R2 and SE are almost identical 

for these two models, as shown in Table 4.26. 

For the PCC-COL pavement family, Model 2 is recommended because it has the lowest 

SE and the highest R2, (Table 4.26).  

Models 7 and 5 are recommended for the PCC-RU pavement family as they have the lowest 

SE and the highest R2.  

The predicted curve for the PCC-ART pavement family is shown in Figure 4.10. Figures 

E6 and E7 for PCC-COL and PCC-LR in Appendix E shows the predicted curves for the remaining 

PCC pavement families.  Since they are in the middle of the measured PCI data points, all 

recommended models have reasonable trend. 

Surface Class

Degree of 

Freedom      

(DF)

Sum of Square 

(SS)

Error Sum of 

Square (SSE) X2 X3 R^2

Stand. 

Error 

(SE) Model

PCC ART 9,978     57,470,198        45,961.4               43.4795 -0.00062 0.9992  2.15 2

PCC ART 9,978     57,427,642        88,517.2               -447.80 -127.00 0.9985  2.98 3

PCC ART 9,978     57,470,625        45,534.3               6.30              0.0296        0.9992  2.14 5

PCC ART 9,978     57,462,075        54,083.9               -1.1085 0.0253 0.9991  2.33 7

PCC COL 2,778     14,664,017        12,715.2               1.8982 -0.01310 0.9991  2.14 2

PCC COL 2,778     14,659,432        17,300.5               -448.60 -127.00 0.9988  2.50 3

PCC COL 2,778     14,573,790        102,942.0             55.51            0.1060        0.9930  6.09 5

PCC COL 2,778     14,655,963        20,769.1               -1.2955 0.0153 0.9986  2.73 7

PCC LR 61,230   333,060,000      194,544.0             18.5737 -0.00144 0.9994  1.78 2

PCC LR 61,230   332,910,000      347,335.0             -452.60 -127.00 0.9990  2.38 3

PCC LR 61,230   333,060,000      193,741.0             -6.79 0.0249        0.9994  1.78 5

PCC LR 61,230   333,010,000      246,106.0             -1.1479 0.0222 0.9993  2.00 7

PCC RU 60 363,655             274.6                    90.8567 -0.00031 0.9992  2.14 2

PCC RU 60 363,297             633.2                    -482.50 -127.00 0.9983  3.25 3

PCC RU 60 363,705             225.4                    30.84            0.0452        0.9994  1.94 5

PCC RU 60 363,705             224.5                    -0.9669 0.0372 0.9994  1.93 7
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4.2.4 Summarized Best Deterministic  PCI Deterioration Models for Street with Non-

Exp. sub. Soil  

 

 

Table 4.27 Summarized Best Models for Non-Exp. subgrade soil pvmt families 

The parameters estimated by the non-linear regression analysis performed using the SAS program 

are summarized in Table 4.27. They are also shown in the formulas for selected models in Table 

4.28.  

Selected 
Models 

Pavement Family    Equation (PCI = y) 

5 AC-ART y = 26.1553 − (26.1553 − 99) ∗ 𝑒−0.0694𝑡 

5 AC-COL y = 21.881 − (21.881 − 99) ∗ 𝑒− 0.0643 𝑡 

5 AC-LR y = 15.7866 − (15.7866 − 99) ∗ 𝑒−0.0575𝑡 

5 AC-RU y = 15.6969 − (15.6969 − 99) ∗ 𝑒−0.0574𝑡 

 

7 

                    

COM-ART 𝑦 = 99 ∗ [
𝑡−0.8782

0.0469 + 𝑡−0.8782
] 

7 COM-COL 
𝑦 = 99 ∗ [

𝑡𝑏−0.8539

0.0495 + 𝑡−0.8539
] 

            

7 

                      

COM-LR 𝑦 = 99 ∗ [
𝑡−0.9218

0.0423 + 𝑡−0.9218
] 

 
            

5 

                     

PCC-ART 
y = 6.2994 − (6.2994 − 99) ∗ 𝑒− 0.0296 𝑡 

              

2 

                     

PCC-COL 
y = 660.713195 ∗ 𝑒−1.8982∗𝑒−(−0.0131𝑡)

 

                

2 

                     

PCC-LR 
y = 11536939445 ∗ 𝑒−18.5737∗𝑒−(−0.00144𝑡)

 

Surface Class

Degree of 

Freedom      

(DF)

Sum of Square 

(SS)

Error Sum of 

Square (SSE) X1 X2 X3 R^2

Stand. 

Error 

(SE) Model

AC ART 4,656      25,263,572          28,440.4         99.0                          26.1553 0.0694 0.9989    2.47 5

AC COL 6,234      31,937,988          32,938.1         99.0                          21.8810 0.0643 0.9990    2.30 5

AC LR 67,758    306,720,000        322,958.0       99.0                          15.7866 0.0575 0.9989    2.18 5

AC RU 1,746      8,075,568            9,787.2           99.0                          15.6969 0.0574 0.9988    2.37 5

COM ART 4,848      33,977,819          18,595.0         99.0                          -0.8782 0.0469 0.9995    1.96 7

COM COL 402         2,822,928            1,995.5           99.0                          -0.8539 0.0495 0.9993    2.23 7

COM LR 3,184      20,090,642          17,231.3         99.0                          -0.9218 0.0423 0.9991    2.33 7

PCC ART 9,978      57,470,625          45,534.3         99.0                          6.2994 0.0296 0.9992    2.14 5

PCC COL 2,778      14,664,017          12,715.2         660.7                        1.8982 -0.0131 0.9991    2.14 2

PCC LR 61,230    333,060,000        194,544.0       1.15E+10 18.5737 -0.0014 0.9994    1.78 2

PCC RU 60 363,705               224.5              99.0                          -0.9669 0.0372 0.9994    1.93 7
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7 

                     

PCC-RU 𝑦 = 99 ∗ [
𝑡−0.9669

0.0372 + 𝑡−0.9669
] 

 

Table 4.28   Summarized Eq. for Best Models for non-exp. soil all pvmt.  families (PCI)  

 

The residuals for models 2, 3, 5 & 7 for all pavement families built on non-expansive subgrade 

soil are shown in Appendix M. 

 

4.2.5 Comparison of Deterioration curves for Exp. vs Non-Exp. Subgrade Soil and AC vs 

PCC 

  

The primary classification of the pavement is flexible and rigid. The phrase "flexible and rigid" 

describes how the surface of the pavement reacts to loads and to the environment. The flexible 

pavement has the capability to withstand applied stress without cracking. Flexible pavement is a 

pavement made of asphalt. It is a thin asphalt surface, which is constructed over a gravel base 

and a sub-base. These layers are rest on the subgrade, which are normally the native soil and is 

usually compacted to nine-five percent. On the other hand, the rigid pavement is made of 

Portland cement concrete that rests on the base of the compacted subgrade. The rigid pavement, 

due to the hardness and stiffness of the concrete, tends to spread the load over a relatively broad 

subgrade area. Figure 4.11 illustrates a typical load transfer for asphalt and concrete pavements. 

 

Figure 4.11  Typical Load Transfer PCC (Concrete Pavement) &AC (Asphalt) Pavement 

(ACPA) 
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The concrete slab itself gives a significant part of the structural capacity of the rigid pavement. 

Flexible pavement, made of a weaker and less rigid material, does not distribute loads as well as 

concrete. Flexible pavements therefore usually need more layers and more thickness for efficient 

load transfer to the subgrade. Based on the environment, traffic, and maintenance, the life 

expectancy of asphalt and concrete pavements varies. The life expectancy of the flexible 

pavement is 20-25 years, while the rigid pavement could last 30 to 35 years (ACPA), but this 

depends on how strong the base is, the types of soil underneath, how well these soils drain and 

how paved the street is. 

According to Figure 3.2 in this research, most of the streets in the DFW metropolitan area are built 

on expansive subgrade soil. Expansive subgrade soil is one of the most common causes of 

pavement degradation in the streets. Depending on the moisture content, expansive subgrade soils 

will undergo changes in volume due to seasonal variations in moisture. For the streets that are 

constructed on expansive subgrade soil, sub - grade preparation is carried out in order to prevent 

early degradation. The most common treatments for expansive subgrade soil for paved roads are 

over-excavation, cement treated foundation, lime, and fly ash treatment. Charts 4.12, 4.13 and 4.14 

were constructed in order to compare the rate of deterioration of the PCC and AC pavement 

families and the rate of deterioration of the streets built on expansive and non-expansive sub-grade 

soil. 
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Figure 4.12 Comparison of Deterioration curve PCC vs AC – LR family (Non-Exp. subgrade 

soil) 

 

The two deterioration curves fitted to both PCC and AC data are shown together in the chart 

above, Figure 4.12. In this graph, it can be seen that local residential streets with concrete (PCC) 

surface layer deteriorate slower than the streets with asphalt (AC) curve surface layer. Four 

deterioration curves for both PCC and AC data are presented together for expansive vs. non-

expansive subgrade soil in the charts below, Figures 4.13 and 4.14. The blue line defines the 

deterioration curve of the expansive subgrade soil dataset, while the red curve reflects the 

deterioration curve of the non-expansive subgrade soil dataset for the AC-LR pavement family 

(Figure 4.13). The green line illustrates the deterioration curve of the expansive subgrade soil 

dataset, while the orange curve shows the deterioration curve of the non-expansive subgrade soil 

dataset for the PCC-LR pavement family (Figure 4.13). These charts show that the pavement 

resting on non-expansive subgrade soil deteriorates slower than the pavement resting on 
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expansive subgrade soil. This outcome is expected when considering the behavior of the 

expansive subgrade soil.  The charts shown in Figure 4.14 are constructed to verify whether 

there is a difference in the rate of degradation of PCC-ART and AC-ART pavement families vs. 

PCC-LR and AC-LR pavement families built on expansive subgrade soil. As can be seen in the 

graph AC-ART pavement families have almost the same behavior as AC-LR families, while 

PCC-ART pavement families have the same rate of degradation for the first 15 years regardless 

of whether or not the streets are built on expansive subgrade soil. This could be explained by the 

concrete behavior and preparation of subgrade soil during the construction within the area with 

expansive subgrade soil as mentioned above. 

 

 

Figure 4.13 Comparison of Deterioration curve - Exp. vs Non-Exp. Soil AC & PCC-LR pvmt 

family 
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Figure 4.14 Comparison of Deterioration curve - Exp. vs Non-Exp. Soil AC & PCC-ART pvmt 

family 

 

 

4.3 Development of Deterministic IRI Deterioration Models for Streets with Exp. Sub. Soil   

 

The development of deterministic deterioration models for IRI followed the same process used for 

PCI models. The seven models shown in Table 4.1 were also used to select the best deterministic 

street deterioration model in the DFW Metroplex area with expansive subgrade soil using IRI data. 

Table 4.30 displays the sample data for the historical record of IRI collected by the city's asset 

management departments for the years 2007 to 2018 on expansive subgrade soil. After the data 

was sorted and cleaned as described in Chapter 3, the data was removed for streets which had the 

first IRI measured value recorded more than 10 years for AC and COM pavement families and 

more than 15 years for the PCC pavement family. 
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Table 4.29, provides a summary of all data with the percent of good data for modeling after 

elimination of the data that is not reliable for development of prediction models. Good data is data 

which has been cleaned and organized as described in Chapter 3. 

 

 

Table 4.29 Summarized IRI Data for Expansive subgrade soil 

 

These models should also comply with the following conditions:  

• The initial IRI values right after a construction or major rehabilitation was considered as 160 for 

Arterial and Collector and 180 for Local Roads  

• The IRI must increase with time 



75 
 

 

Table 4.30 IRI Sample Data for Expansive subgrade soil 

 

 

Table 4.31  DDOT’s IRI Thresholds for New Pvmt and Rah. Pvmt (Stephen A. Arhin, 2015) 

 

Since the data obtained from cities with expansive subgrade soil was unbalanced (did not have 

equal number of a IRI data for each street section) in order to develop deterministic models for all 

families shown in Figure 3.3, the macro script was used to determine the regression coefficients 

for each of the seven models shown in Table 4.1, as it was done for the development of  PCI 
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models. The Excel macro incorporated the Solver process to find model parameters such that the 

value of the Sum of the Square Error (SSE) is minimized. Then, TSS is calculated to find R2. 

At the end, the Solver determined the best regression coefficients (a, b, c and d) and R2 for all 

street sections of all models.  See Table 4.33 for an example of the model output.  

 

 

Figure 4.15 Macro with all models – IRI (Expansive subgrade soil) 

 

The initial IRI values of 160 and 180 values were set, as shown in Table 4.32. Table 4.33 shows 

an example of the macro calculation output for Model 2 (Gompertz), the calculated parameters a, 

b, and c, as well as R2 are given for each street section. These parameters were used to predict the 

IRI values at 5, 10, 15, and 20 years for Model 2 formula  (y = a𝑒−𝑏𝑒−𝑐𝑡
 ).   After calculating 

predicted values for the same number of years of all streeet sections, the data set for models 

develompent was balanced. 



77 
 

 

Table 4.32 IRI Sample Data for Macro (Expansive subgrade soil) 

 

 

Table 4.33 IRI Sample Data with parameters calculated by Macro (Expansive subgrade soil) 

 

Dialog Box Value after last major rehab for LR 180

Value after last major rehab for ART 160

COL 160

ID NAME TYPE CLASS
Exp_So

il
Latest_Rehab 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

270 OLD MILL RD AC LR Yes 1988 383        399        424        

288 OLD MILL RD AC LR Yes 1991 120        132        148        

289 OLD MILL RD AC LR Yes 1996 201        213        229        

290 OLD MILL RD AC LR Yes 1984 241        255        268        

315 OLD MILL RD PCC LR Yes 1988 385        395        409        

316 OLD MILL RD PCC LR Yes 1993 407        420        431        

346 OLD MILL RD AC LR Yes 1984 265        281        297        

347 OLD MILL RD AC LR Yes 2003 243        255        271        

348 OLD MILL RD AC LR Yes 2003 236        252        266        

397 OLD MILL RD PCC LR Yes 1981 264        275        285        

2231 BELT LINE RD PCC ART Yes 1995 249        274        312          

2317 BELT LINE RD PCC COL Yes 1995 236        262        293          

3365 WALNUT ST PCC COL Yes 1995 232        241        252        

3663 FOREST LN PCC COL Yes 1995 198        209        218        

3716 FOREST LN PCC COL Yes 1995 188        202        215        

6073 PLANO PKWY AC LR Yes 2005 297        310        341        

7167 WILLARD DR COM LR Yes 1988 220        229        251        

7395 BOEDEKER ST AC LR Yes 2004 256        273        300        

15241 COOLWATER CV PCC LR Yes 2003 279        301        321          

15789 BELT LINE RD PCC ART Yes 1997 166        192        227          

15790 BELT LINE RD PCC ART Yes 1997 185        209        247          

15791 BELT LINE RD PCC ART Yes 1995 185        210        239          

15795 BELT LINE RD PCC ART Yes 1995 160        184        215          

15814 BELT LINE RD PCC ART Yes 1995 160        178        210          

15872 BELT LINE RD PCC ART Yes 2002 188        209        248          

15874 BELT LINE RD PCC ART Yes 1995 185        206        237          

15877 BELT LINE RD PCC ART Yes 2002 166        188        220          

15880 BELT LINE RD PCC ART Yes 1995 179        200        230          

15886 BELT LINE RD PCC ART Yes 1997 176        196        232          

15888 BELT LINE RD PCC ART Yes 2002 139        159        192          

15891 BELT LINE RD PCC ART Yes 2002 170        189        221          

17588 PRESTON RD COM ART Yes 1995 183        221        230        

17785 PRESTON RD AC ART Yes 2003 202        217        260        

17825 PRESTON RD AC ART Yes 2004 168        184        227        

18437 PRESTON RD AC ART Yes 2004 159        174        217        

18438 PRESTON RD AC ART Yes 2004 193        206        252        

18488 DARIA DR PCC LR Yes 1993 182        191        227        

18512 PRESTON RD AC ART Yes 2008 159        172        216        

18579 PRESTON RD AC ART Yes 2003 238        253        298        

18607 PRESTON RD AC ART Yes 2008 158        174        218        

18620 DARIA DR PCC LR Yes 1995 182        191        226        

18889 AVERILL WAY PCC LR Yes 1981 384        408        436        

19295 PRESTON RD AC ART Yes 2003 187        200        242        

19322 PRESTON RD AC ART Yes 1998 254        270        314        

19572 PRESTON RD AC ART Yes 2004 167        181        226        

Run Macro

5 10 15 20

ID NAME TYPE CLASS Exp_Soil
Latest_

Rehab
a2 b2 c2 R-Squared 2

Predicted IRI model 2

102491 S BELT LINE RD PCC ART Yes 1993 4661.192 3.371853 0.005302 0.50006441 175 190 207 225

95538 N HAMPTON RD COM ART Yes 1998 1508412 9.151394 0.002039 0.50030488 176 192 211 231

85813 GOOCH ST AC COL Yes 2003 2292763 9.570094 0.002426 0.50032281 180 201 225 252

108736 S MARSALIS AVE COM ART Yes 1993 3701 3.141185 0.005479 0.50048082 174 189 205 222

96695 BUNCHE DR COM LR Yes 1995 848.7028 1.550752 0.01106 0.50050462 196 212 228 245

90767 GAYLORD DR PCC LR Yes 1997 2348.482 2.568568 0.006863 0.50052922 196 213 231 250

96734 CAPELLA PARK AVE S PCC LR Yes 1997 16733.92 4.532236 0.003582 0.50078941 195 211 228 246

92316 LAKELAND DR AC LR Yes 1991 3337.973 2.920162 0.006305 0.50081673 197 215 234 254

62277 S MARSALIS AVE COM ART Yes 1993 86224.06 6.289531 0.002794 0.5009092 175 190 207 225

66557 SONATA LN AC LR Yes 2003 2036968 9.334016 0.002458 0.50092995 202 226 252 282

52993 S MARSALIS AVE AC ART Yes 2003 1.07E+08 13.41418 0.001743 0.50111289 180 202 226 253

96922 COOLMEADOW LN COM LR Yes 1995 780.0729 1.466431 0.013061 0.50123921 197 215 234 252

107104 FRANKFORD RD PCC ART Yes 1995 3611.726 3.116767 0.006563 0.50190509 177 195 214 235

91096 W CLARENDON DR COM COL Yes 1995 1566.378 2.281347 0.007297 0.50252347 174 188 203 218

61426 S CORINTH ST RD PCC ART Yes 1997 13018.9 4.398984 0.004221 0.50259735 175 192 210 228

96265 WRIGHT ST AC COL Yes 1988 1011.569 1.844084 0.012152 0.50278474 178 198 218 238

59815 S MARSALIS AVE COM ART Yes 1995 22670.94 4.953666 0.00356 0.50280075 175 190 207 225

105752 S BELT LINE RD PCC ART Yes 1993 1633.877 2.323537 0.007637 0.50317196 175 190 206 222

26011 DIXON BRANCH DR PCC LR Yes 1995 786.4647 1.474591 0.013 0.50327712 198 215 234 252

61580 S EWING AVE AC LR Yes 1996 19329.28 4.676419 0.004125 0.50341959 198 217 238 261

35788 BODINE LN PCC LR Yes 1997 5463.227 3.412838 0.005007 0.50342993 196 213 230 249

82899 BICKERS ST PCC COL Yes 1993 1231.574 2.040874 0.010043 0.50346752 177 194 213 232

90435 W KIEST BLVD PCC ART Yes 1983 1282.636 2.081499 0.009466 0.50364352 176 193 211 229

93944 PLEASANT DR PCC LR Yes 1995 5532.992 3.425527 0.004959 0.5036566 196 212 230 249

66128 HIGHCREST DR PCC LR Yes 1997 2501.33 2.631621 0.006163 0.50441916 195 211 227 244

96332 ALADDIN DR COM LR Yes 1997 82.56878 -0.77933 -0.01427 0.50458091 191 203 217 233
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The predicted of IRI at 5, 10, 15, and 20 years, was done to inspect if the IRI values are always 

increasing with time. The data for which the R2 < 0.5 were removed. The results are summarized 

in Tables C1 to C6 in Appendix C. By applying the criteria described above, models 2, 3, 5 and 6 

are the best models within these seven models. Models 1, 4 and 7 have been excluded from further 

consideration in the development of deterioration models since the predicted IRI values did not 

increase over time. Table 4.34 shows summarized information for R2 and the numbers of the data 

used for model development for each of the pavement families.  

 

 

Table 4.34  IRI - Model 1 (Cubic Polynomial) – Summarized Results 

 

SAS statistical program has used the parameters shown in Table 4.35 to calculate the best fit 

parameters: X2, X3, R2 and Standard Error (SE). As shown in Table 4.36, the data had to be 

reorganized for use by the SAS program. The SAS statistical program was run separately for each 

pavement family.   

 

Family

Pvmt 

Type

Func. 

Class

Expansive 

Soil 

Total 

Data

Criteria     

R
2
 < 0.5

Good 

Data       

R
2
 > 0.5

Good Data     

(%)             

R
2
 > 0.5

Criteria       

R
2
 < 0.7

Good 

Data    

R
2
 > 0.7

Good 

Data     

(%)           

R
2
 > 0.7

Criteria      

R
2
 <  0.9

Good 

Data       

R
2
 > 0.9

Good 

Data     

(%)           

R
2
 > 0.9

Prediction 

Model 

works

1 AC ART Yes 1,421     -        1,421     100% -         1,421     100% -        1,421     100% Yes

2 AC COL Yes 608        1           607        100% 2             606        100% 2            606        100% Yes

3 AC LR Yes 6,728     5           6,723     100% 10           6,718     100% 38          6,690     99% Yes

4 PCC ART Yes 3,139     -        3,139     100% -         3,139     100% 1            3,138     100% Yes

5 PCC COL Yes 1,329     1           1,328     100% 2             1,327     100% 2            1,327     100% Yes

6 PCC LR Yes 6,516     2           6,514     100% 7             6,509     100% 11          6,505     100% Yes

7 COM ART Yes 1,414     -        1,414     100% 2             1,412     100% 2            1,412     100% Yes

8 COM COL Yes 401        -        401        100% -         401        100% 1            400        100% Yes

9 COM LR Yes 2,011     2           2,009     100% 2             2,009     100% 2            2,009     100% Yes
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Table 4.35  Starting parameters for SAS - IRI Models (Expansive subgrade soil) 

 

Models with a high R2 values and low Standard Error (SE) are the best fit. Tables 4.37 to 4.40 list 

the parameters determined by the SAS program. All models shown have low SE and high R2, so 

the models were retained for further selection. All tables with the final outputs have been evaluated 

to verify that the models meet the minimum criteria set out above. 

 

 

Table 4.36 IRI – Sample data organized for SAS statistical software 

 

IRI  EXPANSIVE 

SOIL a b c

2 1330.030098 2 0.05000000

4 -331295233.2 0.99

5 180.00000000 -119635.2312 -0.00004826

6 418.36392794 1.768392874 0.181357506

ID SUFT CLASS AGE IRI

19322 AC ART 5 212

58026 AC ART 5 209

89693 AC ART 5 213

109816 AC ART 5 250

88328 AC ART 5 211

19322 AC ART 10 263

58026 AC ART 10 259

89693 AC ART 10 265

109816 AC ART 10 339

88328 AC ART 10 262

19322 AC ART 15 315

58026 AC ART 15 308

89693 AC ART 15 318

109816 AC ART 15 429

88328 AC ART 15 313

19322 AC ART 20 367

58026 AC ART 20 357

89693 AC ART 20 370

109816 AC ART 20 518

88328 AC ART 20 363
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Table 4.37 SAS results for Model 2-IRI (Gompertz) – Expansive subgrade soil 

 

Table 4.38  SAS results for Model 3-IRI (Logistic) – Expansive subgrade soil 

 

Table 4.39  SAS results for Model 5- IRI (Exponential) – Expansive subgrade soil 

Model 2 - IRI -  Expansive Soil

Surface Class

Degree of 

Freedom      

(DF)

Sum of Square 

(SS)

Error Sum of 

Square (SSE) X2 X3 R^2

Stand. 

Error 

(SE)

AC ART 3,892      438,770,000        12,040,731           1.3325 0.0638 0.9733  55.62

AC COL 1,564      185,090,000        5,230,851             1.2076 0.0809 0.9725  57.83

AC LR 17,380    2,455,900,000     85,623,777           0.9754 0.1212 0.9663  70.19

COM ART 2,428      221,510,000        6,106,518             1.1957 0.0599 0.9732  50.15

COM COL 464         39,939,222          960,456                1.1008 0.0638 0.9765  45.50

COM LR 1,640      182,150,000        8,167,259             0.8867 0.1000 0.9571  70.57

PCC ART 10,908    919,610,000        25,597,080           1.1646 0.0566 0.9729  48.44

PCC COL 4,484      382,610,000        11,381,329           1.1405 0.0595 0.9711  50.38

PCC LR 19,972    2,112,000,000     80,223,397           1.0442 0.0672 0.9634  63.38

Model 3 - IRI -  Expansive Soil

Surface Class

Degree of 

Freedom      

(DF)

Sum of Square 

(SS)

Error Sum of 

Square (SSE) X2 X3 R^2

Stand. 

Error 

(SE)

AC ART 3,620      399,670,000        10,624,242           -41451.1 1585.1 0.9741  54.17

AC COL 1,416      167,810,000        4,155,658             -43556.9 1559.3 0.9758  54.17

AC LR 14,224    1,990,000,000     52,000,957           -46766.2 1587.7 0.9745  60.46

COM ART 2,312      205,790,000        3,739,448             -35728.7 1694.0 0.9822  40.22

COM COL 436         37,685,413          889,741                -29559.9 1447.3 0.9769  45.17

COM LR 1,340      132,680,000        3,050,934             -31586.6 1535.3 0.9775  47.72

PCC ART 10,160    850,870,000        19,401,205           -28988.0 1468.8 0.9777  43.70

PCC COL 4,180      351,320,000        7,989,005             -29052.2 1466.3 0.9778  43.72

PCC LR 17,852    1,798,600,000     42,982,926           -31838.0 1517.3 0.9767  49.07

Model 5 - IRI -  Expansive Soil

Surface Class

Degree of 

Freedom      

(DF)

Sum of Square 

(SS)

Error Sum of 

Square (SSE) X2 X3 R^2

Stand. 

Error 

(SE)

AC ART 3,480      416,340,000        11,760,564           19702.4 0.00073 0.9725  58.13

AC COL 1,384      176,390,000        4,156,349             21317.4 0.00071 0.9770  54.80

AC LR 13,388    2,042,500,000     328,150,000         46702.5 0.00035 0.8616  156.56

COM ART 2,312      216,250,000        4,120,459             37554.4 0.00030 0.9813  42.22

COM COL 444         42,104,558          3,798,784             72904.2 0.00016 0.9172  92.50

COM LR 1,644      185,020,000        12,408,781           839.1 0.02110 0.9371  86.88

PCC ART 9,920      879,170,000        21,874,667           25176.8 0.00042 0.9757  46.96

PCC COL 3,992      358,660,000        7,972,311             26498.0 0.00041 0.9783  44.69

PCC LR 19,012    1,971,600,000     59,166,026           1563.2 0.00840 0.9709  55.79
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Table 4.40 SAS results for Model 6-IRI 2-nd Polynomial) – Expansive subgrade soil 

 

After all models were analyzed, the next step was to construct a chart for each model. Figure 4.16 

for AC-ART and Figures F1 to F6 for the rest of the pavement families. By drawing all the models 

in one graph, the behavior of and model was much easier to compare. The same was done for all 

pavement families, the charts are shown in Appendix F.  All models are grouped together as shown 

in Figure 4.16 and Table 4.41. 

 

 

 

 

 

 

 

 

 

Model 6 - IRI -  Expansive Soil

Surface Class

Degree of 

Freedom      

(DF)

Sum of Square 

(SS)

Error Sum of 

Square (SSE) X2 X3 R^2

Stand. 

Error 

(SE)

AC ART 3,944      624,960,000        25,843,362           11.212 0.4193 0.9603  80.95

AC COL 1,592      244,090,000        8,041,550             14.0092 0.2171 0.9681  71.07

AC LR 18,820    3,289,400,000     118,460,000         18.4627 -0.0281 0.9652  79.34

COM ART 2,500      268,120,000        8,641,476             9.3692 0.2116 0.9688  58.79

COM COL 544         56,229,556          2,004,764             6.9880 0.3319 0.9656  60.71

COM LR 1,848      239,890,000        15,943,189           12.289 0.0901 0.9377  92.88

PCC ART 11,264    1,054,600,000     46,773,765           8.7469 0.1506 0.9575  64.44

PCC COL 4,628      444,610,000        21,420,141           9.3502 0.1311 0.9540  68.03

PCC LR 21,012    2,416,300,000     150,930,000         11.2955 0.0529 0.9412  84.75
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4.3.1 Deterministic Prediction model for AC Pvmt Family  (Exp. Soil) – IRI 

 

 

Figure 4.16 Chart for Models 2,3,5 & 6 – AC-ART Pavement Family (Exp. subgrade soil) 

 

 

Table 4.41 Summarized SAS results for AC-ART, COL & LR pavement family 

Models 3 are recommended for AC-ART, AC-COL and AC-LR pavement families 

because they have the lowest SE, as can be seen in Table 4.41. 

The predicted curve for the AC-ART pavement family is shown on the graph in Figure 

4.16. Figures F1 and F2 for AC-COL and AC-LR in Appendix F shows the predicted curves for 
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Surface Class

Degree of 

Freedom      

(DF)

Sum of Square 

(SS)

Error Sum of 

Square (SSE) X2 X3 R^2

Stand. 

Error 

(SE) Model 

AC ART 3,892      438,770,000        12,040,731           1.3325 0.0638 0.9733  55.62 2

AC ART 3,620      399,670,000        10,624,242           -41451.1000 1585.10 0.9741  54.17 3

AC ART 3,480      416,340,000        11,760,564           19702.4000 0.00073 0.9725  58.13 5

AC ART 3,944      624,960,000        25,843,362           11.2120 0.4193 0.9603  80.95 6

AC COL 1,564      185,090,000        5,230,851             1.2076 0.0809 0.9725  57.83 2

AC COL 1,416      167,810,000        4,155,658             -43556.9000 1559.30 0.9758  54.17 3

AC COL 1,384      176,390,000        4,156,349             21317.4000 0.00071 0.9770  54.80 5

AC COL 1,592      244,090,000        8,041,550             14.0092 0.2171 0.9681  71.07 6

AC LR 17,380    2,455,900,000     85,623,777           0.9754 0.1212 0.9663  70.19 2

AC LR 14,224    1,990,000,000     52,000,957           -46766.2000 1587.70 0.9745  60.46 3

AC LR 13,388    2,042,500,000     328,150,000         46702.5000 0.00035 0.8616  156.56 5

AC LR 18,820    3,289,400,000     118,460,000         18.4627 -0.0281 0.9652  79.34 6
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the remaining AC pavement families.  As they are in the middle of the PCI, data points, all 

recommended models are reasonable. 

 

4.3.2 Deterministic Prediction model for COM Pavement Family  (Exp. Soil) – IRI 

 

 

Figure 4.17 Chart for Models 2, 3, 5 & 6 – COM-ART Pavement Family (Expansive subgrade 

soil) 

 
Table 4.42 Summarized SAS results for COM-ART, COM & LR pavement family 
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Surface Class

Degree of 

Freedom      

(DF)

Sum of Square 

(SS)

Error Sum of 

Square (SSE) X2 X3 R^2

Stand. 

Error 

(SE) Model 

COM ART 2,428      221,510,000        6,106,518             1.1957 0.0599 0.9732  50.15 2

COM ART 2,312      205,790,000        3,739,448             -35728.70 1694.00 0.9822  40.22 3

COM ART 2,312      216,250,000        4,120,459             37554.40 0.00030 0.9813  42.22 5

COM ART 2,500      268,120,000        8,641,476             9.3692 0.2116 0.9688  58.79 6

COM COL 464         39,939,222          960,456                1.1008 0.0638 0.9765  45.50 2

COM COL 436         37,685,413          889,741                -29559.90 1447.30 0.9769  45.17 3

COM COL 444         42,104,558          3,798,784             72904.20 0.00016 0.9172  92.50 5

COM COL 544         56,229,556          2,004,764             6.9880 0.3319 0.9656  60.71 6

COM LR 1,640      182,150,000        8,167,259             0.8867 0.1000 0.9571  70.57 2

COM LR 1,340      132,680,000        3,050,934             -31586.60 1535.30 0.9775  47.72 3

COM LR 1,644      185,020,000        12,408,781           839.10 0.02110 0.9371  86.88 5

COM LR 1,848      239,890,000        15,943,189           12.289 0.0901 0.9377  92.88 6
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Models 3 are recommended for COM-ART,  COM-COL and COM-LR pavement families 

as they have the lowest SE and the highest R2 (Table 4.42). 

The predicted curve for the COM-ART pavement family is shown in Figure 4.17. Figures 

F3 and F4 for COM-COL and COM-LR in Appendix F give the model curves for the remaining 

COM pavement families. Since  the curves are located in the middle of the PCI, data points, all 

recommended models are reasonable. 

 

4.3.3 Deterministic Prediction model for PCC Pavement Family  (Exp. Soil) – IRI 

 

 

Figure 4.18 Chart for Models 2,3,5 & 6 – PCC-ART Pavement Family (Expansive subgrade soil) 
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Table 4.43  Summarized SAS results for PCC-ART, COL & LR pavement family 

Models 3 are recommended for PCC-ART, COL and LR pavement families, as they have the 

lowest SE, (Table 4.43). The predicted curve for the PCC-ART pavement family is shown in 

Figure 4.18. Figures F5 and F6 for PCC-COL and PCC-LR in Appendix E depict the predicted 

curves for the remaining PCC pavement families. As  the curves are located in the middle of the 

PCI  data points, all recommended models are reasonable. 

4.2.4 Summarized Best Deterministic IRI Deterioration Models for Streets with Expansive 

Subgrade Soil  

 

Table 4.44  Summarized best Models for Expansive subgrade soil pavement families (IRI) 

 

Surface Class

Degree of 

Freedom      

(DF)

Sum of Square 

(SS)

Error Sum of 

Square (SSE) X2 X3 R^2

Stand. 

Error 

(SE) Model 

PCC ART 10,908    919,610,000        25,597,080           1.1646 0.0566 0.9729  48.44 2

PCC ART 10,160    850,870,000        19,401,205           -28988.00 1468.80 0.9777  43.70 3

PCC ART 9,920      879,170,000        21,874,667           25176.80 0.00042 0.9757  46.96 5

PCC ART 11,264    1,054,600,000     46,773,765           8.7469 0.1506 0.9575  64.44 6

PCC COL 4,484      382,610,000        11,381,329           1.1405 0.0595 0.9711  50.38 2

PCC COL 4,180      351,320,000        7,989,005             -29052.20 1466.30 0.9778  43.72 3

PCC COL 3,992      358,660,000        7,972,311             26498.00 0.00041 0.9783  44.69 5

PCC COL 4,628      444,610,000        21,420,141           9.3502 0.1311 0.9540  68.03 6

PCC LR 19,972    2,112,000,000     80,223,397           1.0442 0.0672 0.9634  63.38 2

PCC LR 17,852    1,798,600,000     42,982,926           -31838.00 1517.30 0.9767  49.07 3

PCC LR 19,012    1,971,600,000     59,166,026           1563.20 0.00840 0.9709  55.79 5

PCC LR 21,012    2,416,300,000     150,930,000         11.2955 0.0529 0.9412  84.75 6

Surface Class

Degree 

of 

Freedom      

(DF) Sum of Square (SS)

Error Sum of 

Square (SSE) X1 X2 X3 R^2

Stand. 

Error 

(SE) Model 

AC ART 3,620    399,670,000          10,624,242      83,222.2        -41451.1 1585.1 0.9741  54.17 3

AC COL 1,416    167,810,000          4,155,658        87,433.8        -43556.9 1559.3 0.9758  54.17 3

AC LR 14,224  1,990,000,000       52,000,957      93,892.4        -46766.2 1587.7 0.9745  60.46 3

COM ART 2,312    205,790,000          3,739,448        71,777.4        -35728.7 1694.0 0.9822  40.22 3

COM COL 436       37,685,413            889,741           59,439.8        -29559.9 1447.3 0.9769  45.17 3

COM LR 1,340    132,680,000          3,050,934        63,533.2        -31586.6 1535.3 0.9775  47.72 3

PCC ART 10,160  850,870,000          19,401,205      58,296.0        -28988.0 1468.8 0.9777  43.70 3

PCC COL 4,180    351,320,000          7,989,005        58,424.4        -29052.2 1466.3 0.9778  43.72 3

PCC LR 17,852  1,798,600,000       42,982,926      64,036.0        -31838.0 1517.3 0.9767  49.07 3
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The parameters obtained in the non-linear regression analysis using the SAS program are 

summarized in Table 4.44 and models are given in Table 4.45.  

 

Models Pavement Family    Equation (IRI = y) 

3 AC-ART 
𝑦 =

83222.2

1 + 𝑒− 
𝑡

1585.1

− 41451.1 

 
3 AC-COL 

𝑦 =
87433.8

1 + 𝑒− 
𝑡

1559.3

− 43556.9 

 
3 AC-LR 

𝑦 =
93892.4

1 + 𝑒− 
𝑡

1587.7

− 46766.2 

 
             

3 

                    

COM-ART 
𝑦 =

71777.4

1 + 𝑒− 
𝑡

1694

− 35728.7 

 
 

3 

                    

COM-COL 
𝑦 =

59439.8

1 + 𝑒− 
𝑡

1447.3

− 29559.9 

 
3 COM-LR 

𝑦 =
63533.2

1 + 𝑒− 
𝑡

1535.3

− 31586.6 

 

            

3 

                      

PCC-ART 𝑦 =
58296

1 + 𝑒− 
𝑡

1468.8

− 28988 

 
            

3 

                    

PCC-COL 
𝑦 =

58424.4

1 + 𝑒− 
𝑡

1466.3

− 29052.2 

 
             

3 

                    

PCC-LR 
𝑦 =

64036

1 + 𝑒− 
𝑡

1517.3

− 31838 

 
 

Table 4.45  Summarized Eq. for Best Models for Exp. soil all pvmt.  families (IRI) 

 

The residuals for models 2, 3, 5 & 6 for all pavement families built on expansive subgrade soil 

are shown in Appendix N. 
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4.2.5 Comparison of Deterioration curves for PCC vs AC Pvmt Family  (Exp.  Soil) – IRI 

 

 

 

Figure 4.19  Comparison of Deterioration curve PCC vs AC  family (IRI Exp. subgrade soil) 

 

The six deterioration curves fitted to both PCC and AC data are shown together in the chart 

above, Figure 4.19.  In this graph, streets with a concrete (PCC) surface layer deteriorate slower 

than the streets with asphalt (AC) curve surface layer, which is expected. It should be noted that 

PCC-ART and PCC-COL pavement families have almost identical deterioration curves, the 

explanation for this outcome may be the strength of the concrete pavement structure. 
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5. Chapter 5:  Development of Probabilistic Deterioration Models  

The probability – based Markov model was first developed for the Arizona Pavement 

Management System to describe pavement condition changes (Polhemus, N.W. 1980).    

Markovian models are the most common stochastic techniques used extensively in modeling the 

deterioration of infrastructure facilities (Butt et al 1987; Jiang et al. 1988).   

 The Markovian technique is a probabilistic model that accounts for the uncertainty 

associated with the future pavement condition. These models use the Markov Decision Process 

(MDP) that predicts the deterioration of a component by defining discrete condition states and 

using the probability of transition from one condition state to another over multiple discrete time 

intervals (Lounis et al. 1998). 

The idea of a Markov prediction model centers on a mathematical structure known as a 

Markov Chain. This is used to model the condition of the road with a discrete number of states, 

say 1, 2, … n. In the case presented in this research, condition states are divided into bins 

determined by the PCI (Pavement Condition Index) values, as shown in Table 5.2. The first 

assumption for this model is that time is considered discrete, i.e. t = 0, 1, 2, … Secondly, it is 

assumed that pavement deterioration follows the Markov property, i.e. pavement condition in the 

next year only depends on the current state. Given a starting vector 𝑎0 = (𝛼1, 𝛼2, … , 𝛼𝑛) , which 

represents the initial state of the process, the goal of the Markov prediction model is to find the 

transition probability matrix (TPM), 𝑀 which will model all of the probabilities of moving from 

state i to state j, for example. 
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𝑀 =

[
 
 
 
 
𝑝11 𝑝12 𝑝13 … 𝑝1𝑛

𝑝21 𝑝22 𝑝23 … 𝑝2𝑛

𝑝31 𝑝32 𝑝33 … 𝑝3𝑛

⋮ ⋮ ⋮ ⋱ ⋮
𝑝𝑛1 𝑝𝑛2 𝑝𝑛3 … 𝑝𝑛𝑛]

 
 
 
 

 

Assuming that this Markov Chain is time-homogeneous, or that the transition probability 

matrix is constant at every time t, then the Markov prediction model will be able to determine the 

distribution of the states 𝑎𝑡 at each time t in the following way: 

𝑎1 = 𝑎0𝑀 

𝑎2 = 𝑎0𝑀
2 

⋮ 

𝑎𝑡 = 𝑎0𝑀
𝑡 

where 𝑎0 is the initial distribution of states at time t = 0 and 𝑀𝑡 represents the transition probability 

matrix raised to the power of t.  

 The form of 𝑀 can be adjusted by making several observations. Firstly, it is assumed that 

i > j has 0.0 probability because pavement conditions cannot improve without 

reconstruction/rehabilitation. Hence, 𝑝𝑖𝑗 = 0 for 1 ≤ 𝑖 < 𝑗 ≤ 𝑛. Secondly, once the poorest state 

is reached (when the state is n), then it must stay in that state indefinitely until rehabilitation. This 

means that 𝑝𝑛𝑛 = 1. The TPM is now given by: 

𝑀 =

[
 
 
 
 
𝑝11 𝑝12 𝑝13 … 𝑝1𝑛

0 𝑝22 𝑝23 … 𝑝2𝑛

0 0 𝑝33 … 𝑝3𝑛

⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 … 1 ]
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 Furthermore, it is assumed that any state cannot jump more than one state, e.g. there can 

be no jumps directly from “good” to “poor” without transitioning first from “good” to 

“satisfactory”, etc. This leads to the final form of the TPM: 

𝑀 =

[
 
 
 
 
𝑝11 𝑝12 0 … 0
0 𝑝22 𝑝23 … 0
0 0 𝑝33 … 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 … 1]

 
 
 
 

 

 From here, it is important to be able to estimate the transition probabilities 𝑝𝑖𝑗 from the 

data. These can only be estimated provided that consecutive years of PCI are reported, i.e. 

historical data is available. The minimal sufficient quantity of data needed for estimation is only 

two years. The transition probabilities are typically estimated using the Maximum Likelihood 

Estimator (Jiang et al. (1988); Morcous et al. (2002); Garcia et al. (2006)):  

𝑝𝑖𝑗 =
𝑁𝑖𝑗

𝑁𝑖
 

Where 𝑁𝑖 represents the number of roads that start at condition 𝑖 and 𝑁𝑖𝑗 represents the number of 

transitions out of condition 𝑖 to condition 𝑗 in 1 year. 

There were certain assumptions made in generating a transition probability matrix for the 

pavements, which are as follows (Kamalesh 2009): 

• Pavement conditions are expressed in a finite number of states. 

• The transition probabilities depend only on the present condition state. 

• The transition process is stationary, that is, the probability of transition from one condition 

state to another does not change with time. 
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• Condition ratings will always remain constant or decrease with time. Increase in condition 

rating is not considered for pavement that is left to deteriorate on its own.  

 

5.1 Development of Probabilistic Deterioration Models for street pavements built 

on Non-Exp. subgrade soil (PCI) 

 

For this research, historical records of PCI data collected in the DFW Metroplex area for 

non-expansive subgrade soil was used to develop a probabilistic model for all pavement families 

specified in Figure 3.3.  At this time, no systematic research has been conducted to develop 

probabilistic models for the street network in the DFW Metroplex area. 

Table 5.1, shows sample data for the historical record of PCI collected by the city’s asset 

management departments from 2014 to 2019.  After the data was sorted and cleaned as previously 

described in Chapter 3, the data then was categorized in order to develop the Markovian 

probabilistic models. The data was categorized per Table 5.2, using the excel “IF” function.  

 

Table 5.1   Sample data for probabilistic modeling 
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After the data was sorted according to the family definition and categorized per Tables 5.2, the 

Transition State to State Count table was created in order to count each state. Table 5.3 shows an 

example for the AC-ART streets. The Appendix G contains the transition state to state tables for 

all other pavement families.  

 

Table 5.2 Standard PCI rating 

 

 
Table 5.3  Transition State to State Transition Matrix (2014 – 2019) 

 

Proposed Rating PCI values State

Very Good (VG) 85-100 1

Good (G) 71-85 2

Satisfactory (S) 56-70 3

Poor (P) 41-55 4

Very Poor (VP) 0-40 5

AC-ART

Transition State Count

1-1 (VG-VG) 1,063    

1-2  (VG-G) 428       

1-3  (G-S) -       

1-4  (VG-P) -       

1-5 (VG-VP) -       

2-1 (G-VG) -       

2-2 (G-G) 498       

2-3 (G-S) 103       

2-4 (G-P) -       

2-5 (G-VP) -       

3-1 (S-VG) 161       

3-2 (S-G) -       

3-3 (S-S) 479       

3-4 (S-P) 164       

3-5 (S-VP) -       

4-1 (P-VG) 82         

4-2 (P-G) -       

4-3 (P-S) -       

4-4 (P-P) 802       

4-5 (P-VP) 54         

5-1 (VP-VG) -       

5-2 (VP-G) -       

5-3 (VP-S) -       

5-4 (VP-P) -       

5-5 (VP-VP) 46         

SUM 3,880    
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In this research, it is assumed that the pavement condition will not be decreased by more 

than one state in one year, so that the pavement will remain in its current state or transit to the 

next lower state. All other transitions are not included in the final transition matrix. 

Tables 5.3 indicate that between 2014-2019 there were 428 pavement sections which transitioned 

from Very Good (1) to a Good state (2). In addition, 103 pavement sections went from a Good (2) 

to a satisfactory state (3).  

Furthermore, 164 pavement sections transitioned form Satisfactory to Poor state (4), and 

54 pavement sections transitioned from Poor (4) to Very Poor State (5). After counting pavement 

sections that transitioned from one to another state the next step was to create a Transition 

Matrixes. Transition Matrix for AC-ART pavement family is shown in Table 5.4.  These tables 

were created for each pavement family following the same procedure. After the Transition Matrix 

table was created, a Transition Probability Matrix (TPM) was created for each pavement family. 

The TPM for AC–ART pavement family is shown in Table 5.5.  

The numbers in the TPM matrix were calculated by taking the number of observations 

transitioning from a particular state to the current state, the value was then divided by the total 

number of observations in the previous state (i.e.: The count in a cell divided by the total count in 

a row). For example, to calculate the probability of a transiting from Very Good to a Good state, 

the number of transitions from Very Good  transitioning to Good were divided by the total number 

in the row, i.e. 
1063

1063+428
= 0.7129 , (Table 5.5). All transition probabilities were estimated in this 

manner. 
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5.1.1 Probabilistic Street Deterioration Model for AC-ART Pvmt Family - PCI (Non-Exp. 

subgrade soil) 

 

The total number of street sections for AC-ART pavement family was 3,637, which were used to 

create a TPM. These sections were the final set of data after being cleaned and filtered as discussed 

in Chapter 3.  Table 5.4 displays the transition matrix for the AC-ART pavement family . 

 

 

Table 5.4 Transition Matrix for AC-ART pavement family (non-expansive subgrade soil) 

 

 

Table 5.5 shows the final transition probability matrix representing the road conditions of the AC-

ART pavement family within five years between 2014 and 2019. 

 

Table 5.5 Transition Probability Matrix for AC-ART (non-expansive subgrade soil) 

 

 

The transition matrix (TM) and transition probability matrix (TPM) for the rest of the pavement 

families are given in Appendix J. 

 TM for AC-ART (2014-2019) 

Rating Value Very Good (1) Good (2) Satisfactory (3) Poor (4) Very Poor (5)

Very Good (1) 1,063              428 0 0 0

Good (2) 0 498 103 0 0

Satisfactory (3) 0 0 479 164 0

Poor (4) 0 0 0 802 54

Very Poor (5) 0 0 0 0 46

TPM  for AC-ART  (2014-2019)

Rating Value Very Good (1) Good (2) Satisfactory (3) Poor (4) Very Poor (5)

Very Good (1) 0.7129 0.2871 0 0 0

Good (2) 0 0.8286 0.1714 0 0

Satisfactory (3) 0 0 0.7449 0.2551 0

Poor (4) 0 0 0 0.9369 0.0631

Very Poor (5) 0 0 0 0 1
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5.1.2 Predicted Street Deterioration for all pavement families in 15 years - PCI (Non-Exp. 

subgrade soil) 

 

A utilization of probability transfer matrices is used to estimate what would be the state 

of a newly constructed or rehabilitated street section 15 years after this action. Fifteen years is a 

typical design life for a street section. If the initial state of a Very Good pavement section is 

given by     𝑎0 = (1, 0, 0, 0, 0),  

the forecasted probability distribution of states after 15 years are given in Table 5.6 for all 

pavement families.   

The numbers in each row come from the matrix multiplication 𝑎1 = 𝑎0 ∗ 𝑀 for the current 

state and 𝑎15 = 𝑎0 ∗ 𝑀15 respectively for deterioration after fifteen years.  

According to Table 5.6, fifteen years after construction or major rehabilitation, the percent 

of streets that may stay in Very Good condition varies from 0.34 percent for the AC-LR to 30.82 

percent for the COM-COL pavement family.  

 

Table 5.6 Predicted Street’s Condition after 15 years after construction or major rehabilitation 

 

In addition, Table 5.6 shows that 15 years after the construction of major rehabilitation, the 

percentage of streets that may deteriorate in Very Poor condition varies from 0 percent for the 

Pavement Family Very Good (1) Good (2) Satisfactory (3)Poor (4) Very Poor (5)

AC - ART 0.62% 13.24% 16.42% 50.06% 19.66%

AC - COL 0.43% 15.12% 17.26% 44.36% 22.84%

AC - LR 0.34% 9.55% 15.43% 42.17% 32.52%

AC - RU 0.54% 12.78% 24.31% 34.06% 28.31%

COM - ART 8.82% 28.74% 46.69% 15.75% 0%

COM - COL 30.82% 22.97% 38.29% 7.92% 0%

COM - LR 10.05% 15.96% 45.76% 28.24% 0%

PCC - ART 3.43% 24.32% 45.70% 22.41% 4.14%

PCC - COL 2.43% 18.63% 48.88% 21.55% 8.50%

PCC -  LR 2.20% 16.51% 62.88% 15.15% 3.26%

PCC - RU 3.52% 50.13% 46.35% 0% 0%
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COM-ART, COM-COL, COM-LR and PCC-RU pavement families to 32.52 percent for the AC-

LR pavement family. It should be noted that Table 5.6 shows that fifteen years after the 

construction or significant rehabilitation of the COM-ART, COM-COL, COM-LR and PCC-RU 

pavement families will not have a street in Very Poor condition, while the rest of the pavement 

families will have street sections in that condition. After fifteen years, the COM-COL pavement 

family could have 30.82 percent of the streets in Very Good condition.  

The PCC-RU pavement family fifteen years later may have 50.13 percent of the streets in 

Good condition and 46.35 percent of the streets in Satisfactory condition, the reason for this 

outcome could be the strength of the concrete pavement structures and low traffic load at the rural 

streets. This table has confirmed that the deterioration rate of the AC pavement families is higher 

than the estimated deterioration rate of the PCC pavement family, which is expected. After 15 

years , the percentage of streets in Very Poor condition for AC pavement families ranges from 

19.66 percent for AC - ART pavement family to 32.52 percent for AC - LR pavement family, 

while the percentage of streets in Very Poor condition for PCC pavement families varies from 0 

percent for PCC-RU pavement family to 8.50 percent for PCC-COL pavement family. 

As this table shows, AC pavement families may have a high percentage of streets in Poor 

and Very Poor condition, AC-ART pavement family may have 69.71 percent, AC-COL 

pavement family may have 67.19 percent and AC-LR pavement family may have 74.69 percent.  

This shows that the life of AC pavement families are approaching the minimum acceptable 

rating, and will require a major rehabilitation after fifteen years.  
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5.2 Development of Probability PCI Deterioration Models for street with exp. subgrade soil  

 

  The procedure described for the development of probability deterioration models for street 

pavements built on non-expansive subgrade soil is the same as the procedure for the development 

of probability models for the street pavements built-on expansive subgrade soil. Developed 

probabilistic models are provided in  Appendix H and K.  

 

5.2.2 Predicted Street Deterioration for all pavement families in 15 years - PCI (Exp. 

subgrade soil) 

 

Table 5.7 shows the probability distribution for all pavement families fifteen years after 

construction or major rehabilitation. It is also assumed that the pavement section is in Very Good 

condition after construction or major rehabilitation. 

According to Table 5.7, fifteen years later the percent of the streets that may be in Very Good 

condition ranges from 0.25 percent for the AC-COL  to 4.47 percent for the PCC–COL pavement 

family.  

 

Table 5.7  Predicted Street’s Condition 15 years after construction or major rehabilitation 

Pavement Family Very Good (1) Good (2) Satisfactory (3) Poor (4) Very Poor (5)

AC - ART 0.79% 6.17% 25.45% 19.08% 48.51%

AC - COL 0.25% 1.63% 32.80% 17.57% 47.75%

AC - LR 0.83% 1.78% 25.31% 15.49% 56.59%

COM - ART 2.79% 28.90% 20.75% 17.43% 30.13%

COM - COL 0.80% 25.11% 14.56% 59.53% 0.00%

COM - LR 3.57% 11.11% 22.68% 12.55% 50.09%

PCC - ART 2.18% 27.34% 13.60% 17.75% 39.13%

PCC - COL 4.47% 26.20% 13.09% 38.32% 17.93%

PCC - LR 2.10% 22.01% 19.76% 16.26% 39.87%
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According to  this table, after 15 years, the highest percent of streets in Very Good condition should 

have PCC - COL pavement family, 4.47 percent and the lowest percent should have AC - COL 

pavement family, 0.25 percent, at the same time  PCC - COL pavement family should have 17.93 

percent of the streets in Very Poor condition and AC - COL  could have 47.75 percent in the same 

state. This table also confirms that the deterioration rate of the AC pavement families is much 

higher than the estimated deterioration rate of the PCC pavement family, what is anticipated. After 

15 years , the percentage of streets in Very Poor condition for AC pavement families ranges from 

47.75 percent for AC – COL pavement family to 56.59 percent for AC-LR pavement family, while 

the percentage of streets in Very Poor condition for PCC pavement families varies from 17.93 

percent for PCC-COL pavement family to 39.87 percent  for PCC-LR pavement family. As these 

tables show, AC pavement families have high percent of streets in Poor and Very Poor condition, 

AC-ART pavement family has 67.59 percent, the AC-COL pavement family has 65.32 percent 

and AC-LR pavement family has 72.07 percent.  This shows that AC pavement life for AC families 

are approaching the minimum acceptable rating, and will require a major rehabilitation after fifteen 

years. 

 

5.2.3 Comparison of probabilistic models for Expansive versus Non-Exp. subgrade soil  

Table 5.8 was created in order to compare the rate of deterioration of the streets built on 

expansive versus non-expansive subgrade soil based on the fifteen-year probability distribution 

defined above.  As shown in this table, pavement families built on expansive and non-expansive 

subgrade soils are grouped together to make comparison easier. It should be noted that the 

difference in percentage between streets that may be in Very Good condition built on expansive 

and non-expansive subgrade soil, fifteen years later, is not significant for this pavement family, 
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whereas differences in percentage of streets that will be in Very Poor condition is much higher. 

The streets constructed on expansive subgrade soils deteriorate much faster. This is true for all 

pavement families. Table 5.8 confirms that expansive subgrade soils reduce pavement efficiency 

for all surface types and street categories. Also, concrete pavements typically perform much better 

than asphalt pavements for all categories and all soil types. 

 

 

Table 5.8  Comparison of Predicted Street’s Cond. after 15 years for Exp. vs Non-Exp Sub. Soil 

 

Pavement Family Very Good (1) Good (2) Satisfactory (3) Poor (4) Very Poor (5) Expansive Soil

AC - ART 0.79% 6.17% 25.45% 19.08% 48.51% Yes

AC - ART 0.62% 13.24% 16.42% 50.06% 19.66% No

AC - COL 0.25% 1.63% 32.80% 17.57% 47.75% Yes

AC - COL 0.43% 15.12% 17.26% 44.36% 22.84% No

AC - LR 0.83% 1.78% 25.31% 15.49% 56.59% Yes

AC - LR 0.34% 9.55% 15.43% 42.17% 32.52% No

COM - ART 2.79% 28.90% 20.75% 17.43% 30.13% Yes

COM - ART 8.82% 28.74% 46.69% 15.75% 0% No

COM - COL 0.80% 25.11% 14.56% 59.53% 0% Yes

COM - COL 30.82% 22.97% 38.29% 7.92% 0% No

COM - LR 3.57% 11.11% 22.68% 12.55% 50.09% Yes

COM - LR 10.05% 15.96% 45.76% 28.24% 0% No

PCC - ART 2.18% 27.34% 13.60% 17.75% 39.13% Yes

PCC - ART 3.43% 24.32% 45.70% 22.41% 4.14% No

PCC - COL 4.47% 26.20% 13.09% 38.32% 17.93% Yes

PCC - COL 2.43% 18.63% 48.88% 21.55% 8.50% No

PCC - LR 2.10% 22.01% 19.76% 16.26% 39.87% Yes

PCC -  LR 2.20% 16.51% 62.88% 15.15% 3.26% No
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6. Chapter 6:  Summary, Conclusions and Recommendations 

 

The main objective of this research was to develop PCI and IRI deterioration models for 

streets pavements in the Dallas Forth Worth Metroplex area. Historical records of pavement 

conditions were used to develop deterministic and probabilistic deterioration models. A total of 

eleven deterministic and probabilistic deterioration models were developed for streets built on non-

expansive subgrade soil and nine deterministic and probabilistic models for streets built on 

expansive subgrade soil. These models can be used by any city’s pavement managements 

department or engineers in the DFW Metroplex area. In order to determine which model will be 

used, it is important to use the first soil map given in Figure 3.2.  It shows the borderline map for 

the frequency of the expansive subgrade soil for all cities in DFW area. The Pavement 

Deterioration Prediction models developed in this research will enable all pavement management 

agencies to identify and predict future pavement performance for any planning period.  

 

6.1 Conclusions 

 

 The development of performance models requires all significant variables to be included in the 

development of the model. Since the type, functional class of the pavement and the type of 

subgrade soil on which the pavement was constructed are categorical in nature, it is difficult to 

include these variables in the deterioration models themselves. The family modeling approach was 

therefore used. 

 Eleven deterministic street pavement deterioration models have been developed for the DFW 

Metroplex area with non-expansive subgrade soil as well as nine deterministic street deterioration 

models for the area with expansive subgrade soil using the PCI historical record. 
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Nine deterministic IRI models have been developed for DFW Metroplex area with expansive 

subgrade soil only, since no historical IRI data was found for streets built on non-expansive soils. 

Eleven probabilistic models were also developed for streets built on non-expansive subgrade soil, 

as well as nine probabilistic models for streets built on expansive subgrade soil. Both deterministic 

and probabilistic models confirmed that the streets constructed on expansive subgrade soils 

deteriorate much faster than the streets built on non-expansive subgrade soils, no matter the type 

of pavement structure. In addition, the research confirmed that concrete pavements typically 

perform much better than asphalt pavements for all categories and all soil types. 

 

6.2 Recommendations 

 

The following recommendations were drawn from the work conducted in this research: 

• The dataset used for the model development in this research should be updated periodically and 

it should include data for other cities as well, so that these models can be reviewed and updated 

periodically. 

• All cities across DFW area should start collecting data of pavement condition on regular basis. 

It is desirable if the data is assembled in a uniform format, to ease further development of PCI and 

IRI models. 
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8. Abbreviation  

AC - Asphalt Concrete 

AASHTO - American Association of State Highway and Transportation Officials 

ACPA – American Concrete Association 

ASTM - American Society for Testing and Materials 

ART – Arterial 

COM – Composite  

COL- Collector 

DMI – Distance Measuring Indicator 

GPS - Global Positioning System 

EXP – Expansive 

FHWA - Federal Highway Administration 

IRI – International Roughness Index 

LR – Local Residential 

MAC – Mobile Asset Collection 

RU - Rural 

PCC - Portland Cement Concrete 

PCI Pavement Condition Index 

PMS Pavement Management System 

PSI – Pavement Serviceability Index 

PSR Present Serviceability Rating 
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9. APPENDIX A: Excel Macro Script 

Sub Macro() 

' Macro 

' Keyboard Shortcut: Ctrl+Shift+M 

i = 1 

Do While Cells(7, 1) <> "" 

    Sheets("Data").Select 

    Range("A7:Q7").Select 

    Selection.Copy 

    Sheets("Calculations").Select 

    Range("A6").Select 

    ActiveSheet.Paste 

    ' Solve Model #1 

    SolverReset 

    SolverOptions Assumenonneg:=False 

    SolverOk SetCell:="$R$20", MaxMinVal:=2, ValueOf:=0, ByChange:="$C$20:$E$20", _ 

        Engine:=1, EngineDesc:="GRG Nonlinear" 

    SolverSolve True 

    Range("A6:F6").Select 

    Selection.Copy 

    Sheets("Output").Select 

    Range("A2").Select 

    Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ 

        :=False, Transpose:=False 

    Sheets("Calculations").Select 

    Range("R6:AK6").Select 

    Selection.Copy 

    Sheets("Output").Select 

    Range("G2").Select 

    Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ 

        :=False, Transpose:=False 

    Rows("2:2").Select 

    Application.CutCopyMode = False 

    Selection.Insert Shift:=xlDown, CopyOrigin:=xlFormatFromLeftOrAbove 

    Sheets("Data").Select 

    Rows("7:7").Select 

    Selection.Delete Shift:=xlUp 

    i = i + 1 

    Loop 

End Sub 
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10. APPENDIX B: Summarized Results for Models 2 to 7 (Exp. subgrade soil) – 

PCI 

 

 

Table B1: PCI - Model 2 (Gompertz) – Summarized Results 

 

 

Table B2: PCI - Model 3 (Logistic) – Summarized Results 

 

 

Table B3: PCI - Model 4 (Stantec) – Summarized Results 

 

 

Family

Pvmt 

Type

Func. 

Class

Expansiv

e Soil 

Total 

Data

Criteria     

R
2
 < 0.5

Good 

Data     

R
2
 > 0.5

Good 

Data     

(%)             

R
2
 > 0.5

Criteria       

R
2
 < 0.7

Good Data  

R
2
 > 0.7

Good 

Data     

(%)           

R
2
 > 0.7

Criteria      

R
2
 <  0.9

Good 

Data      

R
2
 > 0.9

Good Data     

(%)           

R
2
 > 0.9

Prediction 

Model 

works

Expansive 

Soil

1 AC ART Yes 1,186    249 937         79% 357          829             70% 649             537         45% Yes Yes

2 AC COL Yes 465       62 403         87% 92            373             80% 242             223         48% Yes Yes

3 AC LR Yes 4,886    819 4,067      83% 1,275       3,611          74% 2,671          2,215      45% Yes Yes

4 PCC ART Yes 2,400    193 2,207      92% 579          1,821          76% 1,500          900         38% Yes Yes

5 PCC COL Yes 992       62 930         94% 217          775             78% 601             391         39% Yes Yes

6 PCC LR Yes 3,263    144 3,119      96% 442          2,821          86% 1,742          1,521      47% Yes Yes

7 COM ART Yes 1,149    135 1,014      88% 314          835             73% 734             415         36% Yes Yes

8 COM COL Yes 302       29 273         90% 63            239             79% 187             115         38% Yes Yes

9 COM LR Yes 730       87 643         88% 172          558             76% 435             295         40% Yes Yes

Family

Pvmt 

Type

Func. 

Class

Expansiv

e Soil 

Total 

Data

Criteria     

R
2
 < 0.5

Good 

Data     

R
2
 > 0.5

Good 

Data     

(%)             

R
2
 > 0.5

Criteria       

R
2
 < 0.7

Good Data  

R
2
 > 0.7

Good 

Data     

(%)           

R
2
 > 0.7

Criteria      

R
2
 <  0.9

Good 

Data      

R
2
 > 0.9

Good Data     

(%)           

R
2
 > 0.9

Prediction 

Model 

works

Expansive 

Soil

1 AC ART Yes 1,399    422         977         70% 579          820             59% 960             439         31% Yes Yes

2 AC COL Yes 602       119         483         80% 174          428             71% 413             189         31% Yes Yes

3 AC LR Yes 7,004    1,787      5,217      74% 2,615       4,389          63% 5,061          1,943      28% Yes Yes

4 PCC ART Yes 3,125    309         2,816      90% 853          2,272          73% 2,390          735         24% Yes Yes

5 PCC COL Yes 1,326    133         1,193      90% 356          970             73% 1,010          316         24% Yes Yes

6 PCC LR Yes 6,541    623         5,918      90% 2,044       4,497          69% 5,192          1,349      21% Yes Yes

7 COM ART Yes 1,408    239         1,169      83% 454          954             68% 1,040          368         26% Yes Yes

8 COM COL Yes 396       45           351         89% 126          270             68% 306             90           23% Yes Yes

9 COM LR Yes 2,029    276         1,753      86% 751          1,278          63% 1,713          316         16% Yes Yes

Family

Pvmt 

Type

Func. 

Class

Expansiv

e Soil 

Total 

Data

Criteria     

R
2
 < 0.5

Good 

Data     

R
2
 > 0.5

Good 

Data     

(%)             

R
2
 > 0.5

Criteria       

R
2
 < 0.7

Good Data  

R
2
 > 0.7

Good 

Data     

(%)           

R
2
 > 0.7

Criteria      

R
2
 <  0.9

Good 

Data      

R
2
 > 0.9

Good Data     

(%)           

R
2
 > 0.9

Prediction 

Model 

works

Expansive 

Soil

1 AC ART Yes 1,387    35 1,352      97% 130          1,257          91% 530             857 62% Yes Yes

2 AC COL Yes 599       7 592         99% 37            562             94% 230             369 62% Yes Yes

3 AC LR Yes 6,879    80 6,799      99% 436          6,443          94% 2,616          4263 62% Yes Yes

4 PCC ART Yes 3,082    44 3,038      99% 273          2,809          91% 1,333          1749 57% Yes Yes

5 PCC COL Yes 1,307    10 1,297      99% 110          1,197          92% 544             763 58% Yes Yes

6 PCC LR Yes 6,311    35 6,276      99% 337          5,974          95% 2,625          3686 58% Yes Yes

7 COM ART Yes 1,374    26 1,348      98% 170          1,204          88% 635             739 54% Yes Yes

8 COM COL Yes 387       5 382         99% 23            364             94% 153             234 60% Yes Yes

9 COM LR Yes 1,337    8 1,329      99% 125          1,212          91% 878             459 34% Yes Yes
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Table B4: PCI - Model 5 (Exponential) – Summarized Results 

 

 

 

Table B5: PCI - Model 6 (2-nd Polynomial) – Summarized Results 

 

 

 

Table B6: PCI - Model 7 (Sigmoidal) – Summarized Results 

 

 

 

 

 

Family

Pvmt 

Type

Func. 

Class

Expansiv

e Soil 

Total 

Data

Criteria     

R
2
 < 0.5

Good 

Data     

R
2
 > 0.5

Good 

Data     

(%)             

R
2
 > 0.5

Criteria       

R
2
 < 0.7

Good Data  

R
2
 > 0.7

Good 

Data     

(%)           

R
2
 > 0.7

Criteria      

R
2
 <  0.9

Good 

Data      

R
2
 > 0.9

Good Data     

(%)           

R
2
 > 0.9

Prediction 

Model 

works

Expansive 

Soil

1 AC ART Yes 1,398    392         1,006      72% 557          841             60% 915             483         35% Yes Yes

2 AC COL Yes 602       126         476         79% 191          411             68% 418             184         31% Yes Yes

3 AC LR Yes 7,004    1,829      5,175      74% 2,671       4,333          62% 5,013          1,991      28% Yes Yes

4 PCC ART Yes 3,125    720         2,405      77% 1,299       1,826          58% 2,491          634         20% Yes Yes

5 PCC COL Yes 1,326    317         1,009      76% 545          781             59% 1,060          266         20% Yes Yes

6 PCC LR Yes 6,541    1,376      5,165      79% 2,789       3,752          57% 5,413          1,128      17% Yes Yes

7 COM ART Yes 1,408    364         1,044      74% 604          804             57% 1,087          321         23% Yes Yes

8 COM COL Yes 396       108         288         73% 179          217             55% 323             73           18% Yes Yes

9 COM LR Yes 2,029    510         1,519      75% 979          1,050          52% 1,765          264         13% Yes Yes

Family

Pvmt 

Type

Func. 

Class

Expansiv

e Soil 

Total 

Data

Criteria     

R
2
 < 0.5

Good 

Data     

R
2
 > 0.5

Good 

Data     

(%)             

R
2
 > 0.5

Criteria       

R
2
 < 0.7

Good Data  

R
2
 > 0.7

Good 

Data     

(%)           

R
2
 > 0.7

Criteria      

R
2
 <  0.9

Good 

Data      

R
2
 > 0.9

Good Data     

(%)           

R
2
 > 0.9

Prediction 

Model 

works

Expansive 

Soil

1 AC ART Yes 1,398    12           1,386      99% 72            1,326          95% 385             1,013      72% Yes Yes

2 AC COL Yes 602       2             600         100% 17            585             97% 182             420         70% Yes Yes

3 AC LR Yes 7,004    32           6,972      100% 410          6,594          94% 2,383          4,621      66% Yes Yes

4 PCC ART Yes 3,124    17           3,107      99% 177          2,947          94% 900             2,224      71% Yes Yes

5 PCC COL Yes 1,326    11           1,315      99% 86            1,240          94% 427             899         68% Yes Yes

6 PCC LR Yes 6,540    53           6,487      99% 430          6,110          93% 2,325          4,215      64% Yes Yes

7 COM ART Yes 1,408    13           1,395      99% 110          1,298          92% 478             930         66% Yes Yes

8 COM COL Yes 396       1             395         100% 22            374             94% 133             263         66% Yes Yes

9 COM LR Yes 2,029    18           2,011      99% 182          1,847          91% 848             1,181      58% Yes Yes

Family

Pvmt 

Type

Func. 

Class

Expansiv

e Soil 

Total 

Data

Criteria     

R
2
 < 0.5

Good 

Data     

R
2
 > 0.5

Good 

Data     

(%)             

R
2
 > 0.5

Criteria       

R
2
 < 0.7

Good Data  

R
2
 > 0.7

Good 

Data     

(%)           

R
2
 > 0.7

Criteria      

R
2
 <  0.9

Good 

Data      

R
2
 > 0.9

Good Data     

(%)           

R
2
 > 0.9

Prediction 

Model 

works

Expansive 

Soil

1 AC ART Yes 1,398    3             1,395      100% 36            1,362          97% 292             1,106      79% Yes Yes

2 AC COL Yes 602       1             601         100% 10            592             98% 133             469         78% Yes Yes

3 AC LR Yes 7,004    10           6,994      100% 110          6,894          98% 1,476          5,528      79% Yes Yes

4 PCC ART Yes 3,125    12           3,113      100% 112          3,013          96% 801             2,324      74% Yes Yes

5 PCC COL Yes 1,326    3             1,323      100% 61            1,265          95% 349             977         74% Yes Yes

6 PCC LR Yes 6,541    19           6,522      100% 200          6,341          97% 1,994          4,547      70% Yes Yes

7 COM ART Yes 1,408    12           1,396      99% 90            1,318          94% 480             928         66% Yes Yes

8 COM COL Yes 396       1             395         100% 12            384             97% 115             281         71% Yes Yes

9 COM LR Yes 2,029    5             2,024      100% 87            1,942          96% 732             1,297      64% Yes Yes
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11. APPENDIX C: Summarized Results for Models 2 to 7 (Non-Exp. Soil) - IRI 

 

 

Table C1: IRI - Model 2 (Gompertz) – Summarized Results 

 

 

 

Table C2: IRI - Model 3 (Logistic) – Summarized Results 

 

 

Table C3: IRI - Model 4 (Stantec) – Summarized Results 

IRI - MODEL 2 - Gompertz

Family

Pvmt 

Type

Func. 

Class

Expansive 

Soil 

Total 

Data

Criteria     

R
2
 < 0.5

Good 

Data     

R
2
 > 0.5

Good Data     

(%)             

R
2
 > 0.5

Criteria       

R
2
 < 0.7

Good 

Data     

R
2
 > 0.7

Good 

Data     

(%)           

R
2
 > 0.7

Criteria      

R
2
 <  0.9

Good 

Data      

R
2
 > 0.9

Good 

Data     

(%)           

R
2
 > 0.9

Prediction 

Model 

works

1 AC ART Yes 1,421     95         1,326     93% 224         1,197     84% 394        1,027     72% Yes

2 AC COL Yes 608        51         557        92% 91           517        85% 159        449        74% Yes

3 AC LR Yes 6,728     298       6,430     96% 521         6,207     92% 1,301     5,427     81% Yes

4 PCC ART Yes 3,139     176       2,963     94% 359         2,780     89% 803        2,336     74% Yes

5 PCC COL Yes 1,329     74         1,255     94% 158         1,171     88% 328        1,001     75% Yes

6 PCC LR Yes 6,516     456       6,060     93% 785         5,731     88% 1,565     4,951     76% Yes

7 COM ART Yes 1,414     222       1,192     84% 525         889        63% 626        788        56% Yes

8 COM COL Yes 401        95         306        76% 380         21          5% 218        183        46% Yes

9 COM LR Yes 2,011     245       1,766     88% 145         1,866     93% 872        1,139     57% Yes

IRI - MODEL 3 - Logistic

Family

Pvmt 

Type

Func. 

Class

Expansive 

Soil 

Total 

Data

Criteria     

R
2
 < 0.5

Good 

Data     

R
2
 > 0.5

Good Data     

(%)             

R
2
 > 0.5

Criteria       

R
2
 < 0.7

Good 

Data     

R
2
 > 0.7

Good 

Data     

(%)           

R
2
 > 0.7

Criteria      

R
2
 <  0.9

Good 

Data      

R
2
 > 0.9

Good 

Data     

(%)           

R
2
 > 0.9

Prediction 

Model 

works

1 AC ART Yes 1,421     221       1,200     84% 400         1,021     72% 628        793        56% Yes

2 AC COL Yes 608        113       495        81% 175         433        71% 274        334        55% Yes

3 AC LR Yes 6,728     1,516    5,212     77% 2,103      4,625     69% 3,448     3,280     49% Yes

4 PCC ART Yes 3,139     426       2,713     86% 762         2,377     76% 1,379     1,760     56% Yes

5 PCC COL Yes 1,329     175       1,154     87% 308         1,021     77% 553        776        58% Yes

6 PCC LR Yes 6,516     1,054    5,462     84% 1,647      4,869     75% 3,063     3,453     53% Yes

7 COM ART Yes 1,414     330       1,084     77% 559         855        60% 823        591        42% Yes

8 COM COL Yes 401        128       273        68% 205         196        49% 275        126        31% Yes

9 COM LR Yes 2,011     417       1,594     79% 727         1,284     64% 1,242     769        38% Yes

IRI - MODEL 4  - Stantec

Family

Pvmt 

Type

Func. 

Class

Expansive 

Soil 

Total 

Data

Criteria     

R
2
 < 0.5

Good 

Data     

R
2
 > 0.5

Good Data     

(%)             

R
2
 > 0.5

Criteria       

R
2
 < 0.7

Good 

Data     

R
2
 > 0.7

Good 

Data     

(%)           

R
2
 > 0.7

Criteria      

R
2
 <  0.9

Good 

Data      

R
2
 > 0.9

Good 

Data     

(%)           

R
2
 > 0.9

Prediction 

Model 

works

1 AC ART Yes 1,421     70         1,351     99% 99           1,322     93% 197        1,224     86% Yes

2 AC COL Yes 608        31         577        95% 45           563        93% 91          517        85% Yes

3 AC LR Yes 6,728     203       6,525     97% 344         6,384     95% 1,047     5,681     84% Yes

4 PCC ART Yes 3,139     62         3,077     98% 99           3,040     97% 274        2,865     91% Yes

5 PCC COL Yes 1,329     48         1,281     96% 65           1,264     95% 119        1,210     91% Yes

6 PCC LR Yes 6,516     232       6,284     96% 316         6,200     95% 526        5,990     92% Yes

7 COM ART Yes 1,414     96         1,318     93% 146         1,268     90% 231        1,183     84% Yes

8 COM COL Yes 401        48         353        88% 63           338        84% 94          307        77% Yes

9 COM LR Yes 2,011     102       1,909     95% 139         1,872     93% 236        1,775     88% Yes
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Table C4: IRI - Model 5 (Exponential) – Summarized Results 

 

 

Table C5: IRI - Model 6 (2-nd Polynomial) – Summarized Results 

 

 

Table C6: IRI - Model 7 (Sigmoidal) – Summarized Results 

 

 

 

IRI - MODEL 5 - Exponential

Family

Pvmt 

Type

Func. 

Class

Expansive 

Soil 

Total 

Data

Criteria     

R
2
 < 0.5

Good 

Data     

R
2
 > 0.5

Good Data     

(%)             

R
2
 > 0.5

Criteria       

R
2
 < 0.7

Good 

Data     

R
2
 > 0.7

Good 

Data     

(%)           

R
2
 > 0.7

Criteria      

R
2
 <  0.9

Good 

Data      

R
2
 > 0.9

Good 

Data     

(%)           

R
2
 > 0.9

Prediction 

Model 

works

1 AC ART Yes 1,421     216       1,205     85% 340         1,081     76% 518        903        64% Yes

2 AC COL Yes 608        95         513        84% 144         464        76% 223        385        63% Yes

3 AC LR Yes 6,728     1,360    5,368     80% 1,850      4,878     73% 3,010     3,718     55% Yes

4 PCC ART Yes 3,139     337       2,802     89% 630         2,509     80% 1,107     2,032     65% Yes

5 PCC COL Yes 1,329     166       1,163     88% 268         1,061     80% 465        864        65% Yes

6 PCC LR Yes 6,516     973       5,543     85% 1,450      5,066     78% 2,641     3,875     59% Yes

7 COM ART Yes 1,414     275       1,139     81% 438         976        69% 650        764        54% Yes

8 COM COL Yes 401        118       283        71% 183         218        54% 255        146        36% Yes

9 COM LR Yes 2,011     376       1,635     81% 625         1,386     69% 1,071     940        47% Yes

IRI - MODEL 6 - 2nd Polynomial

Family

Pvmt 

Type

Func. 

Class

Expansive 

Soil 

Total 

Data

Criteria     

R
2
 < 0.5

Good 

Data       

R
2
 > 0.5

Good Data     

(%)             

R
2
 > 0.5

Criteria       

R
2
 < 0.7

Good 

Data       

R
2
 > 0.7

Good 

Data     

(%)           

R
2
 > 0.7

Criteria      

R
2
 <  0.9

Good 

Data       

R
2
 > 0.9

Good 

Data     

(%)           

R
2
 > 0.9

Prediction 

Model 

works

1 AC ART Yes 1,421     4           1,417     100% 6             1,415     100% 14          1,407     99% Yes

2 AC COL Yes 608        -        608        100% -         608        100% 1            607        100% Yes

3 AC LR Yes 6,728     5           6,723     100% 12           6,716     100% 47          6,681     99% Yes

4 PCC ART Yes 3,139     1           3,138     100% 3             3,136     100% 5            3,134     100% Yes

5 PCC COL Yes 1,329     2           1,327     100% 4             1,325     100% 5            1,324     100% Yes

6 PCC LR Yes 6,516     6           6,510     100% 10           6,506     100% 27          6,489     100% Yes

7 COM ART Yes 1,414     2           1,412     100% 4             1,410     100% 11          1,403     99% Yes

8 COM COL Yes 401        2           399        100% 4             397        99% 8            393        98% Yes

9 COM LR Yes 2,011     2           2,009     100% 12           1,999     99% 29          1,982     99% Yes

IRI - MODEL 7 - Sigmoidal

Family

Pavem

ent 

Type

Func. 

Class

Expansive 

Soil 

Total 

Data

Criteria     

R
2
 < 0.5

Good 

Data     

R
2
 > 0.5

Good Data     

(%)             

R
2
 > 0.5

Criteria       

R
2
 < 0.7

Good 

Data  R
2 

> 0.7

Good 

Data     

(%)           

R
2
 > 0.7

Criteria      

R
2
 <  0.9

Good 

Data      

R
2
 > 0.9

Good 

Data     

(%)           

R
2
 > 0.9

Prediction 

Model 

works

1 AC ART Yes 1,421     -        1,421     100% -         1,421     100% -        1,421     100% Yes

2 AC COL Yes 608        -        608        100% -         608        100% 3            605        100% Yes

3 AC LR Yes 6,728     2           6,726     100% 8             6,720     100% 33          6,695     100% Yes

4 PCC ART Yes 3,139     1           3,138     100% 1             3,138     100% 7            3,132     100% Yes

5 PCC COL Yes 1,329     -        1,329     100% 1             1,328     100% 7            1,322     99% Yes

6 PCC LR Yes 6,516     1           6,515     100% 3             6,513     100% 21          6,495     100% Yes

7 COM ART Yes 1,414     1           1,413     100% 1             1,413     100% 8            1,406     99% Yes

8 COM COL Yes 401        1           400        100% 2             399        100% 5            396        99% Yes

9 COM LR Yes 2,011     -        2,011     100% 3             2,008     100% 19          1,992     99% Yes
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12. APPENDIX D: Charts for expansive subgrade soil – Models 2, 3, 5 & 7 (PCI) 

 

 

Figure D1. Chart for Models 2,3,5 & 7 – AC-COL Pavement Family (Expansive subgrade soil) 

 

 

Figure D2. Chart for Models 2,3,5 & 7 – AC-LR Pavement Family (Expansive subgrade soil) 
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 Figure D3. Chart for Models 2,3,5 & 7 – COM-COL Pavement Family (Expansive subgrade soil) 

 

 

Figure D4.  Chart for Models 2,3,5 & 7 – COM-LR Pavement Family (Expansive subgrade soil) 
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Figure D5. Chart for Models 2,3,5 & 7 – PCC-COL Pavement Family (Expansive subgrade soil) 

 

 

Figure D6.  Chart for Models 2,3,5 & 7 – PCC-LR Pavement Family (Expansive subgrade soil) 
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13. APPENDIX E: Charts for Non–Exp. subgrade soil – Models 2, 3, 5 & 7 (PCI) 

 

 

Figure E1. Chart for Models 2,3,5 & 7 – AC-COL Pavement Family (Non-Exp. subgrade soil) 

 

 

Figure E2. Chart for Models 2,3,5 & 7 – AC-LR Pavement Family (Non-Expansive subgrade soil) 
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Figure E3. Chart for Models 2,3,5 & 7 – AC-RU Pavement Family (Non-Expansive subgrade soil) 

 

 

 

Figure E4. Chart for Models 2,3,5 & 7 – COM-COL Pavement Family (Non-Exp.  subgrade soil) 
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Figure E5. Chart for Models 2,3,5 & 7 – COM-LR Pavement Family (Non-Exp. subgrade soil) 

 

 

Figure E6. Chart for Models 2,3,5 & 7 – PCC - COL Pavement Family (Non-Exp. subgrade soil) 
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Figure E7. Chart for Models 2,3,5 & 7 – PCC - LR Pavement Family (Non-Exp. subgrade soil) 

 

Figure E8. Chart for Models 2,3,5 & 7 – PCC-RU Pavement Family (Non-Exp. subgrade soil) 
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14. APPENDIX F: Charts for Expansive subgrade soil – Models 2, 3, 5 & 6 (IRI) 

 

 

Figure F1. Chart for Models 2,3,5 & 6 – AC-COL Pavement Family (Expansive subgrade soil) 

 

Figure F2. Chart for Models 2,3,5 & 6 – AC-LR Pavement Family (Expansive subgrade soil) 
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Figure F3. Chart for Models 2,3,5 & 6 – COM-COL Pavement Family (Expansive subgrade soil) 

 

 

Figure F4. Chart for Models 2,3,5 & 6 – COM-LR Pavement Family (Expansive subgrade soil) 
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Figure F5. Chart for Models 2,3,5 & 6 – PCC-COL Pavement Family (Expansive subgrade soil) 

 

 

Figure F6. Chart for Models 2,3,5 & 6 – PCC-LR Pavement Family (Expansive subgrade soil) 
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15. APPENDIX G: Transition State to State Count Tables – Non-Exp. subgrade Soil 

(2014-2019) 

 

 

Table G.1 Transition State to State Transition Matrix– for AC-COL. AC–LR & AC-RU  

 

 

AC-COL AC-LR AC-RU

Transition 

State Count

Transition 

State Count

Transition 

State Count

1-1 1,205        1-1 9,858          1-1 305           

1-2 529           1-2 4,553          1-2 127           

1-3 -            1-3 2                 1-3 -            

1-4 -            1-4 -              1-4 -            

1-5 -            1-5 3                 1-5 7               

2-1 -            2-1 -              2-1 4               

2-2 701           2-2 6,399          2-2 134           

2-3 130           2-3 1,521          2-3 28             

2-4 -            2-4 1                 2-4 -            

2-5 -            2-5 2                 2-5 -            

3-1 147           3-1 1,138          3-1 49             

3-2 -            3-2 -              3-2 -            

3-3 729           3-3 8,451          3-3 187           

3-4 237           3-4 2,876          3-4 42             

3-5 -            3-5 9                 3-5 4               

4-1 87             4-1 665             4-1 25             

4-2 -            4-2 -              4-2 -            

4-3 -            4-3 -              4-3 3               

4-4 1,215        4-4 16,339        4-4 440           

4-5 107           4-5 1,957          4-5 64             

5-1 -            5-1 -              5-1 -            

5-2 -            5-2 -              5-2 -            

5-3 -            5-3 -              5-3 -            

5-4 -            5-4 -              5-4 -            

5-5 108           5-5 2,801          5-5 91             

SUM 5,195        SUM 56,575        SUM 1,510        
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Table G.2 Transition State to State Transition Matrix– for COM-ART, COM–LR & COM-LR 

 

 

 

 

COM-ART COM-COL COM-LR

Transition 

State Count

Transition 

State Count

Transitio

n State Count

1-1 2,163        1-1 196        1-1 1,051        

1-2 380           1-2 16          1-2 174           

1-3 -            1-3 -         1-3 -            

1-4 -            1-4 -         1-4 1               

1-5 -            1-5 -         1-5 -            

2-1 -            2-1 -         2-1 -            

2-2 627           2-2 41          2-2 435           

2-3 89             2-3 7            2-3 109           

2-4 -            2-4 -         2-4 3               

2-5 -            2-5 -         2-5 2               

3-1 164           3-1 29          3-1 92             

3-2 -            3-2 -         3-2 -            

3-3 473           3-3 29          3-3 633           

3-4 24             3-4 1            3-4 51             

3-5 -            3-5 -         3-5 -            

4-1 94             4-1 11          4-1 49             

4-2 -            4-2 -         4-2 4               

4-3 -            4-3 -         4-3 -            

4-4 26             4-4 5            4-4 51             

4-5 -            4-5 -         4-5 -            

5-1 -            5-1 -         5-1 -            

5-2 -            5-2 -         5-2 -            

5-3 -            5-3 -         5-3 -            

5-4 -            5-4 -         5-4 -            

5-5 -            5-5 -         5-5 -            

SUM 4,040        SUM 335        SUM 2,655        
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Table G.3 Transition State to State Transition Matrix– for PCC-ART, PCC–LR & PCC-LR 

 

 

 

PCC-ART PCC-COL PCC-LR PCC-LR

Transition 

State Count

Transition 

State Count

Transition 

State Count

Transition 

State Count

1-1 1,745        1-1 327           1-1 6,172    1-1 8           

1-2 440           1-2 92             1-2 1,788    1-2 2           

1-3 -            1-3 -            1-3 -       1-3 -        

1-4 -            1-4 -            1-4 -       1-4 -        

1-5 -            1-5 -            1-5 -       1-5 -        

2-1 -            2-1 -            2-1 -       2-1 -        

2-2 2,866        2-2 797           2-2 19,335  2-2 30         

2-3 443           2-3 148           2-3 3,886    2-3 2           

2-4 -            2-4 -            2-4 -       2-4 -        

2-5 -            2-5 -            2-5 -       2-5 -        

3-1 124           3-1 21             3-1 425       3-1 -        

3-2 -            3-2 -            3-2 -       3-2 -        

3-3 1,967        3-3 640           3-3 16,843  3-3 7           

3-4 152           3-4 49             3-4 641       3-4 -        

3-5 -            3-5 -            3-5 -       3-5 -        

4-1 95             4-1 15             4-1 250       4-1 1           

4-2 -            4-2 -            4-2 -       4-2 -        

4-3 -            4-3 -            4-3 -       4-3 -        

4-4 435           4-4 146           4-4 1,441    4-4 -        

4-5 19             4-5 13             4-5 73         4-5 -        

5-1 -            5-1 -            5-1 -       5-1 -        

5-2 -            5-2 -            5-2 -       5-2 -        

5-3 -            5-3 -            5-3 -       5-3 -        

5-4 -            5-4 -            5-4 -       5-4 -        

5-5 29             5-5 67             5-5 171       5-5 -        

SUM 8,315        SUM 2,315        SUM 51,025  SUM 50         
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16. APPENDIX H: Transition State to State Count Tables – Exp. subgrade soil 

(2007-2018) 

 

 

Table H.1 Transition State to State Transition Matrix– for AC-ART, AC-COL. & AC–LR  

 

AC-ART AC-COL AC-LR

Transition 

State Count

Transition 

State Count

Transition 

State Count

1-1 415 1-1 118       1-1 1,213      

1-2 158 1-2 58         1-2 457         

1-3 2 1-3 1           1-3 20           

1-4 0 1-4 -        1-4 -          

1-5 0 1-5 -        1-5 1             

2-1 31 2-1 13         2-1 117         

2-2 973 2-2 232       2-2 2,080      

2-3 315 2-3 120       2-3 1,338      

2-4 27 2-4 9           2-4 23           

2-5 2 2-5 1           2-5 2             

3-1 30 3-1 17         3-1 -          

3-2 6 3-2 -        3-2 -          

3-3 423 3-3 207       3-3 2,067      

3-4 86 3-4 28         3-4 367         

3-5 5 3-5 5           3-5 9             

4-1 48 4-1 24         4-1 -          

4-2 14 4-2 -        4-2 -          

4-3 1 4-3 2           4-3 -          

4-4 55 4-4 15         4-4 246         

4-5 22 4-5 6           4-5 124         

5-1 11 5-1 5           5-1 -          

5-2 11 5-2 7           5-2 -          

5-3 7 5-3 3           5-3 -          

5-4 2 5-4 1           5-4 -          

5-5 12 5-5 4           5-5 111         

SUM 2656 SUM 876       SUM 8,175      
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Table H.2 Transition State to State Transition Matrix– for COM-ART, COM–LR & COM-LR 

 

COM-ART COM-COL COM-LR

Transition 

State Count

Transition 

State Count

Transition 

State Count

1-1 486         1-1 71         1-1 221         

1-2 131         1-2 27         1-2 55           

1-3 1             1-3 1           1-3 -          

1-4 -          1-4 -        1-4 -          

1-5 -          1-5 -        1-5 -          

2-1 45           2-1 3           2-1 11           

2-2 594         2-2 231       2-2 442         

2-3 77           2-3 31         2-3 125         

2-4 10           2-4 1           2-4 11           

2-5 1             2-5 -        2-5 4             

3-1 48           3-1 7           3-1 28           

3-2 4             3-2 -        3-2 2             

3-3 78           3-3 22         3-3 119         

3-4 21           3-4 9           3-4 30           

3-5 3             3-5 -        3-5 2             

4-1 7             4-1 -        4-1 10           

4-2 8             4-2 -        4-2 5             

4-3 2             4-3 -        4-3 1             

4-4 32           4-4 2           4-4 20           

4-5 11           4-5 -        4-5 15           

5-1 1             5-1 1           5-1 8             

5-2 -          5-2 -        5-2 -          

5-3 5             5-3 -        5-3 3             

5-4 -          5-4 -        5-4 -          

5-5 3             5-5 -        5-5 6             

SUM 1,568      SUM 406       SUM 1,118      
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Table H.3 Transition State to State Transition Matrix– for PCC-ART, PCC–LR & PCC-LR 

 

PCC-ART PCC-COL PCC-LR

Transition 

State Count

Transition 

State Count

Transition 

State Count

1-1 1,553      1-1 643         1-1 1,637      

1-2 451         1-2 148         1-2 481         

1-3 39           1-3 1             1-3 -          

1-4 7             1-4 -          1-4 -          

1-5 -          1-5 -          1-5 -          

2-1 -          2-1 4             2-1 -          

2-2 1,769      2-2 703         2-2 2,426      

2-3 237         2-3 104         2-3 390         

2-4 24           2-4 5             2-4 14           

2-5 1             2-5 -          2-5 -          

3-1 4             3-1 47           3-1 -          

3-2 -          3-2 -          3-2 -          

3-3 117         3-3 46           3-3 306         

3-4 54           3-4 23           3-4 91           

3-5 6             3-5 3             3-5 4             

4-1 -          4-1 8             4-1 -          

4-2 -          4-2 6             4-2 -          

4-3 -          4-3 2             4-3 -          

4-4 34           4-4 23           4-4 44           

4-5 13           4-5 2             4-5 20           

5-1 -          5-1 7             5-1 -          

5-2 -          5-2 -          5-2 -          

5-3 -          5-3 4             5-3 -          

5-4 -          5-4 1             5-4 -          

5-5 5             5-5 1             5-5 13           

SUM 4,314      SUM 1,781      SUM 5,426      
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17. APPENDIX I: Example for SAS results 
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18. APPENDIX J: TM & TPM – Non-Expansive Subgrade Soils 

 

 

Table J1  Transition Matrix for AC-COL pavement family (non-expansive subgrade soil) 

 

 

 

Table J2  Transition Probability Matrix for AC-COL (non-expansive subgrade soil) 

 

 

Table J3  Transition Matrix for AC-LR pavement family (non-expansive subgrade soil) 

 

 TM for AC-COL (2014-2019) 

Rating Value Very Good (1) Good (2) Satisfactory (3) Poor (4) Very Poor (5)

Very Good (1) 1,205              529 0 0 0

Good (2) 0 701 130 0 0

Satisfactory (3) 0 0 729 237 0

Poor (4) 0 0 0 1,215        107

Very Poor (5) 0 0 0 0 108

TPM  for AC-COL  (2014-2019)

Rating Value Very Good (1) Good (2) Satisfactory (3) Poor (4) Very Poor (5)

Very Good (1) 0.6949 0.3051 0 0 0

Good (2) 0 0.8436 0.1564 0 0

Satisfactory (3) 0 0 0.7547 0.2453 0

Poor (4) 0 0 0 0.9191 0.0809

Very Poor (5) 0 0 0 0 1

 TM for AC-LR (2014-2019) 

Rating Value Very Good (1) Good (2) Satisfactory (3) Poor (4) Very Poor (5)

Very Good (1) 9,858              4,553            0 0 0

Good (2) 0 6,399            1,521               0 0

Satisfactory (3) 0 0 8,451               2,876            0

Poor (4) 0 0 0 16,339          1,957            

Very Poor (5) 0 0 0 0 2,801            



145 
 

 

Table J4 Transition Probability Matrix for AC-LR (non-expansive subgrade soil) 
 

 

 

Table J5  Transition Matrix for AC- RU pavement family (non-expansive subgrade soil) 
 

 

Table J6 Transition Probability Matrix for AC-RU (non-expansive subgrade soil) 

 

 

 

Table J7 Transition Matrix for COM-ART pavement family (non-expansive subgrade soil) 

 

TPM  for AC-LR  (2014-2019)

Rating Value Very Good (1) Good (2) Satisfactory (3) Poor (4) Very Poor (5)

Very Good (1) 0.6841 0.3159 0 0 0

Good (2) 0 0.8080 0.1920 0 0

Satisfactory (3) 0 0 0.7461 0.2539 0

Poor (4) 0 0 0 0.8930 0.1070

Very Poor (5) 0 0 0 0 1

 TM for AC-RU (2014-2019) 

Rating Value Very Good (1) Good (2) Satisfactory (3) Poor (4) Very Poor (5)

Very Good (1) 305 127 0 0 0

Good (2) 0 134 28 0 0

Satisfactory (3) 0 0 187 42 0

Poor (4) 0 0 0 440 64

Very Poor (5) 0 0 0 0 91

TPM  for AC-RU  (2014-2019)

Rating Value Very Good (1) Good (2) Satisfactory (3) Poor (4) Very Poor (5)

Very Good (1) 0.7060 0.2940 0 0 0

Good (2) 0 0.8272 0.1728 0 0

Satisfactory (3) 0 0 0.8166 0.1834 0

Poor (4) 0 0 0 0.8730 0.1270

Very Poor (5) 0 0 0 0 1

 TM for COM-ART (2014-2019) 

Rating Value Very Good (1) Good (2) Satisfactory (3) Poor (4) Very Poor (5)

Very Good (1) 2,163              380 0 0 0

Good (2) 0 627 89 0 0

Satisfactory (3) 0 0 473 24 0

Poor (4) 0 0 0 26 0

Very Poor (5) 0 0 0 0 0
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Table J8  Transition Probability Matrix for COM-ART (non-expansive subgrade soil) 

 

 

 

Table J9  Transition Matrix for COM-COL pavement family (non-expansive subgrade soil) 
 

 

Table J10 Transition Probability Matrix for COM-COL (non-expansive subgrade soil) 

 

 

 

Table J11 Transition Matrix for COM-LR pavement family (non-expansive subgrade soil) 

 

TPM  for COM-ART  (2014-2019)

Rating Value Very Good (1) Good (2) Satisfactory (3) Poor (4) Very Poor (5)

Very Good (1) 0.8506 0.1494 0 0 0

Good (2) 0 0.8757 0.1243 0 0

Satisfactory (3) 0 0 0.9517 0.0483 0

Poor (4) 0 0 0 1 0

Very Poor (5) 0 0 0 0 0

 TM for COM-COL (2014-2019) 

Rating Value Very Good (1) Good (2) Satisfactory (3) Poor (4) Very Poor (5)

Very Good (1) 196 16 0 0 0

Good (2) 0 41 7 0 0

Satisfactory (3) 0 0 26 1 0

Poor (4) 0 0 0 5 0

Very Poor (5) 0 0 0 0 0

TPM  for COM-COL  (2014-2019)

Rating Value Very Good (1) Good (2) Satisfactory (3) Poor (4) Very Poor (5)

Very Good (1) 0.9245 0.0755 0 0 0

Good (2) 0 0.8542 0.1458 0 0

Satisfactory (3) 0 0 0.9630 0.0370 0

Poor (4) 0 0 0 1 0

Very Poor (5) 0 0 0 0 0

 TM for COM-LR (2014-2019) 

Rating Value Very Good (1) Good (2) Satisfactory (3) Poor (4) Very Poor (5)

Very Good (1) 1,051              174 0 0 0

Good (2) 0 435 109 0 0

Satisfactory (3) 0 0 633 51 0

Poor (4) 0 0 0 51 0

Very Poor (5) 0 0 0 0 0
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Table J12 Transition Probability Matrix for COM-LR (non-expansive subgrade soil) 

 

 

 

Table J13 Transition Matrix for PCC-ART pavement family (non-expansive subgrade soil) 

 

 

Table J14 Transition Probability Matrix for PCC-ART (non-expansive subgrade soil) 
 

 

Table J15  Transition Matrix for PCC-COL pavement family (non-expansive subgrade soil) 

TPM  for COM-LR  (2014-2019)

Rating Value Very Good (1) Good (2) Satisfactory (3) Poor (4) Very Poor (5)

Very Good (1) 0.8580 0.1420 0 0 0

Good (2) 0 0.7996 0.2004 0 0

Satisfactory (3) 0 0 0.9254 0.0746 0

Poor (4) 0 0 0 1 0

Very Poor (5) 0 0 0 1 0

 TM for PCC-ART (2014-2019) 

Rating Value Very Good (1) Good (2) Satisfactory (3) Poor (4) Very Poor (5)

Very Good (1) 1,745              440 0 0 0

Good (2) 0 2,866            443 0 0

Satisfactory (3) 0 0 1,967               152 0

Poor (4) 0 0 0 435 19

Very Poor (5) 0 0 0 0 29

TPM  for PCC-ART  (2014-2019)

Rating Value Very Good (1) Good (2) Satisfactory (3) Poor (4) Very Poor (5)

Very Good (1) 0.7986 0.2014 0 0 0

Good (2) 0 0.8661 0.1339 0 0

Satisfactory (3) 0 0 0.9283 0.0717 0

Poor (4) 0 0 0 0.9581 0.0419

Very Poor (5) 0 0 0 0 1

 TM for PCC-COL (2014-2019) 

Rating Value Very Good (1) Good (2) Satisfactory (3) Poor (4) Very Poor (5)

Very Good (1) 327 92 0 0 0

Good (2) 0 797 148 0 0

Satisfactory (3) 0 0 640 49 0

Poor (4) 0 0 0 146 13

Very Poor (5) 0 0 0 0 67
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Table J16 Transition Probability Matrix for PCC-COL (non-expansive subgrade soil) 
 

Table J17 Transition Matrix for PCC-LR pavement family (non-expansive subgrade soil) 

 

 

Table J18 Transition Probability Matrix for PCC-LR (non-expansive subgrade soil) 
 

 

Table J19 Transition Matrix for PCC-RU pavement family (non-expansive subgrade soil) 

 

TPM  for PCC-COL  (2014-2019)

Rating Value Very Good (1) Good (2) Satisfactory (3) Poor (4) Very Poor (5)

Very Good (1) 0.7804 0.2196 0 0 0

Good (2) 0 0.8434 0.1566 0 0

Satisfactory (3) 0 0 0.9289 0.0711 0

Poor (4) 0 0 0 0.9182 0.0818

Very Poor (5) 0 0 0 0 1

 TM for PCC-LR (2014-2019) 

Rating Value Very Good (1) Good (2) Satisfactory (3) Poor (4) Very Poor (5)

Very Good (1) 6,172               1,788             0 0 0

Good (2) 0 19,335           3,886                 0 0

Satisfactory (3) 0 0 16,843               641 0

Poor (4) 0 0 0 1,441             73

Very Poor (5) 0 0 0 0 171

TPM  for PCC-LR  (2014-2019)

Rating Value Very Good (1) Good (2) Satisfactory (3) Poor (4) Very Poor (5)

Very Good (1) 0.7754 0.2246 0 0 0

Good (2) 0 0.8327 0.1673 0 0

Satisfactory (3) 0 0 0.9633 0.0367 0

Poor (4) 0 0 0 0.9518 0.0482

Very Poor (5) 0 0 0 0 1

 TM for PCC-RU (2014-2019) 

Rating Value Very Good (1) Good (2) Satisfactory (3) Poor (4) Very Poor (5)

Very Good (1) 8 2 0 0 0

Good (2) 0 30 2 0 0

Satisfactory (3) 0 0 7 0 0

Poor (4) 0 0 0 0 0

Very Poor (5) 0 0 0 0 0
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Table J20  Transition Probability Matrix for PCC-RU (non-expansive subgrade soil) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

TPM  for PCC-RU  (2014-2019)

Rating Value Very Good (1) Good (2) Satisfactory (3) Poor (4) Very Poor (5)

Very Good (1) 0.8 0.2 0 0 0

Good (2) 0 0.9375 0.0625 0 0

Satisfactory (3) 0 0 1 0 0

Poor (4) 0 0 0 0 0

Very Poor (5) 0 0 0 0 0
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19. APPENDIX K: TM & TPM– Expansive Subgrade Soils 

 

Table K1 Transition Matrix for AC-COL pavement family (expansive subgrade soil) 

 

 

Table K2  Transition Probability Matrix for AC-COL (expansive subgrade soil) 

 

 

Table K3 Transition Matrix for AC-LR pavement family (expansive subgrade soil) 

 

 

 

Table K4 Transition Probability Matrix for AC-LR (expansive subgrade soil) 

 TM for AC--COL (2007-2018) 

Rating Value Very Good (1) Good (2) Satisfactory (3) Poor (4) Very Poor (5)

Very Good (1) 118 58 0 0 0

Good (2) 0 232 120 0 0

Satisfactory (3) 0 0 207 28 0

Poor (4) 0 0 0 15 6

Very Poor (5) 0 0 0 0 4

TPM  for AC-COL  (2007-2018)

Rating Value Very Good (1) Good (2) Satisfactory (3) Poor (4) Very Poor (5)

Very Good (1) 0.6705 0.3295 0 0 0

Good (2) 0 0.6591 0.3409 0 0

Satisfactory (3) 0 0 0.8809 0.1191 0

Poor (4) 0 0 0 0.7143 0.2857

Very Poor (5) 0 0 0 0 1

 TM for AC-LR (2007-2018) 

Rating Value Very Good (1) Good (2) Satisfactory (3) Poor (4) Very Poor (5)

Very Good (1) 1,213              457 0 0 0

Good (2) 0 2,080         1,338                0 0

Satisfactory (3) 0 0 2,067                367 0

Poor (4) 0 0 0 246 124

Very Poor (5) 0 0 0 0 111

TPM  for AC-LR  (2007-2018)

Rating Value Very Good (1) Good (2) Satisfactory (3) Poor (4) Very Poor (5)

Very Good (1) 0.7263 0.2737 0 0 0

Good (2) 0 0.6085 0.3915 0 0

Satisfactory (3) 0 0 0.8492 0.1508 0

Poor (4) 0 0 0 0.6649 0.3351

Very Poor (5) 0 0 0 0 1
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Table K5  Transition Matrix for COM-ART pavement family (expansive subgrade soil) 

 

 

Table K6  Transition Probability Matrix for COM-ART (expansive subgrade soil) 

 

 

 

Table K7 Transition Matrix for COM-COL pavement family 

 

Table K8  Transition Probability Matrix for COM-COL (expansive subgrade soil) 

 

 TM for COM-ART (2007-2018) 

Rating Value Very Good (1) Good (2) Satisfactory (3) Poor (4) Very Poor (5)

Very Good (1) 486 131 0 0 0

Good (2) 0 594 77 0 0

Satisfactory (3) 0 0 78 21 0

Poor (4) 0 0 0 32 11

Very Poor (5) 0 0 0 0 3

TPM  for COM-ART  (2007-2018)

Rating Value Very Good (1) Good (2) Satisfactory (3) Poor (4) Very Poor (5)

Very Good (1) 0.7877 0.2123 0 0 0

Good (2) 0 0.8852 0.1148 0 0

Satisfactory (3) 0 0 0.7879 0.2121 0

Poor (4) 0 0 0 0.7442 0.2558

Very Poor (5) 0 0 0 0 1

 TM for COM-COL (2007-2018) 

Rating Value Very Good (1) Good (2) Satisfactory (3) Poor (4) Very Poor (5)

Very Good (1) 71 27 0 0 0

Good (2) 0 231 31 0 0

Satisfactory (3) 0 0 22 9 0

Poor (4) 0 0 0 2 0

Very Poor (5) 0 0 0 0 0

 TPM for COM-COL (2007-2018) 

Rating Value Very Good (1) Good (2) Satisfactory (3) Poor (4) Very Poor (5)

Very Good (1) 0.7245 0.2755 0 0 0

Good (2) 0 0.8817 0.1183 0 0

Satisfactory (3) 0 0 0.7097 0.2903 0

Poor (4) 0 0 0 1 0

Very Poor (5) 0 0 0 0 0
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Table K9  Transition Matrix for COM-LR pavement family (expansive subgrade soil) 

 

 

Table K10  Transition Probability Matrix for COM-LR (expansive subgrade soil) 

 

 

 

Table K11 Count Table for expansive PCC-ART pavement family 

 

Table K12  Transition Probability Matrix for PCC-ART (expansive subgrade soil) 

 TM for COM-LR (2007-2018) 

Rating Value Very Good (1) Good (2) Satisfactory (3) Poor (4) Very Poor (5)

Very Good (1) 221 55 0 0 0

Good (2) 0 442 125 0 0

Satisfactory (3) 0 0 119 30 0

Poor (4) 0 0 0 20 15

Very Poor (5) 0 0 0 0 6

 TPM for COM-LR (2007-2018) 

Rating Value Very Good (1) Good (2) Satisfactory (3) Poor (4) Very Poor (5)

Very Good (1) 0.8007 0.1993 0 0 0

Good (2) 0 0.7795 0.2205 0 0

Satisfactory (3) 0 0 0.7987 0.2013 0

Poor (4) 0 0 0 0.5714 0.4286

Very Poor (5) 0 0 0 0 1

 TM for PCC-ART (2007-2018) 

Rating Value Very Good (1) Good (2) Satisfactory (3) Poor (4) Very Poor (5)

Very Good (1) 1,553              451 0 0 0

Good (2) 0 1,769        237 0 0

Satisfactory (3) 0 0 117 54 0

Poor (4) 0 0 0 34 13

Very Poor (5) 0 0 0 0 5

TPM  for PCC-ART  (2007-2018)

Rating Value Very Good (1) Good (2) Satisfactory (3) Poor (4) Very Poor (5)

Very Good (1) 0.7750 0.2250 0 0 0

Good (2) 0 0.8819 0.1181 0 0

Satisfactory (3) 0 0 0.6842 0.3158 0

Poor (4) 0 0 0 0.7234 0.2766

Very Poor (5) 0 0 0 0 1
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Table K13  Transition Matrix for PCC-COL pavement family (expansive subgrade soil) 

 

 

Table K14  Transition Probability Matrix – PCC-COL (expansive subgrade soil) 

 

 

 

Table K15  Transition Matrix for PCC-LR pavement family (expansive subgrade soil) 

 

 

Table K16  Transition Probability Matrix for PCC-LR (expansive subgrade soil) 

 

 TM for PCC-COL (2007-2018) 

Rating Value Very Good (1) Good (2) Satisfactory (3) Poor (4) Very Poor (5)

Very Good (1) 643 148 0 0 0

Good (2) 0 703 104 0 0

Satisfactory (3) 0 0 46 23 0

Poor (4) 0 0 0 23 2

Very Poor (5) 0 0 0 0 1

 TPM for PCC-COL (2007-2018) 

Rating Value Very Good (1) Good (2) Satisfactory (3) Poor (4) Very Poor (5)

Very Good (1) 0.8129 0.1871 0 0 0

Good (2) 0 0.8711 0.1289 0 0

Satisfactory (3) 0 0 0.6667 0.3333 0

Poor (4) 0 0 0 0.9200 0.0800

Very Poor (5) 0 0 0 0 1

 TM for PCC-LR (2007-2018) 

Rating Value Very Good (1) Good (2) Satisfactory (3) Poor (4) Very Poor (5)

Very Good (1) 1,637              481 0 0 0

Good (2) 0 2,426        390 0 0

Satisfactory (3) 0 0 306 91 0

Poor (4) 0 0 0 44 20

Very Poor (5) 0 0 0 0 13

 TPM for PCC-LR (2007-2018) 

Rating Value Very Good (1) Good (2) Satisfactory (3) Poor (4) Very Poor (5)

Very Good (1) 0.7729 0.2271 0 0 0

Good (2) 0 0.8615 0.1385 0 0

Satisfactory (3) 0 0 0.7708 0.2292 0

Poor (4) 0 0 0 0.6875 0.3125

Very Poor (5) 0 0 0 0 1
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20. APPENDIX L: Residuals – Expansive Soil (PCI) 

 

 

 
Figure L1 Residuals AC-ART – Model 2 (Selected) 

 

 

 
 

Figure L2 Residuals AC-ART – Model 3 
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Table L3 Residuals AC-ART – Model 5 

 

 
 

Figure L4 Residuals AC-ART – Model 7  
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Figure L5 Residuals AC-COL – Model 2 (Selected) 

 

 
Figure L6 Residuals AC-COL – Model 3  
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Figure L7 Residuals AC-COL – Model 5 

  

 
 

Figure L8 Residuals AC-COL – Model 7 
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Figure L9 Residuals AC-LR – Model 2 (Selected) 

 

 
Figure L10 Residuals AC-LR – Model 3 
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Figure L11 Residuals AC-LR – Model 5 

 

 
Figure L12 Residuals AC-LR – Model 7 
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Figure L13 Residuals COM-LR – Model 2 

 

 

 
Figure L14 Residuals COM-LR – Model 3 (Selected) 
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Figure L15 Residuals COM-LR – Model 5 

 

 
Figure L16 Residuals COM-LR – Model 7 
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Figure L17 Residuals COM-COL – Model 2 

 

 
 

Figure L18 Residuals COM-COL – Model 3 (Selected) 
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Figure L19 Residuals COM-COL – Model 5 

 

 
Figure L20 Residuals COM-COL – Model 7 
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Figure L21 Residuals COM-LR – Model 2 

 

 
 

Figure L22 Residuals COM-LR – Model 3 
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Figure L23 Residuals COM-LR – Model 5 (Selected) 

 

 
Figure L24 Residuals COM-LR – Model 7 
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Figure L25 Residuals PCC-ART – Model 2 

 

 
 

Figure L26 Residuals PCC-ART – Model 3 (Selected) 
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Figure L27 Residuals PCC-ART – Model 5 

 

 
 

Figure L28 Residuals PCC-ART – Model 7 
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Figure L29 Residuals PCC-COL – Model 2 

 

 
 

Figure L30 Residuals PCC-COL – Model 3 (Selected) 
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Figure L31 Residuals PCC-COL – Model 5 

 

 

 
 

Figure L32 Residuals PCC-COL – Model 7 
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Figure L33 Residuals PCC-LR – Model 2 

 

 
Figure L34 Residuals PCC-LR – Model 3 (Selected) 
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Figure L35 Residuals PCC-LR – Model 5 

 

 
Figure L36 Residuals PCC-LR – Model 7 
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21. APPENDIX M: Residuals – Non-Expansive Soil (PCI) 

 

 
 

Figure M1 Residuals AC-ART – Model 2 

 

 
Figure M2 Residuals AC-ART – Model 3 
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Figure M3 Residuals AC-ART – Model 5 (Selected) 

 

 
Figure M4 Residuals AC-ART – Model 7 
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Figure M5 Residuals AC-COL – Model 2 

 

 
Figure M6 Residuals AC-COL – Model 3 
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Figure M7 Residuals AC-COL – Model 5 (Selected) 

 

 
 

Figure M8 Residuals AC-COL – Model 7 
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Figure M9 Residuals AC-LR – Model 2 

 

 
Figure M10 Residuals AC-LR – Model 3 
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Figure M11 Residuals AC-LR – Model 5 (Selected) 

 

 
Figure M12 Residuals AC-LR – Model 7 
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Figure M13 Residuals AC-RU – Model 2 

 

 
 

Figure M14 Residuals AC-RU – Model 3 
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Figure M15 Residuals AC-RU – Model 5(Selected) 

 

 
 

Figure M16 Residuals AC-RU – Model 7 
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Figure M17 Residuals COM-ART – Model 2 

 

 
Figure M18 Residuals COM-ART – Model 3 
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Figure M19 Residuals COM-ART – Model 5 

 

 

 
 

Figure M20 Residuals COM-ART – Model 7 (Selected) 
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Figure M21 Residuals COM-COL – Model 2 

 

 

 
Figure M22 Residuals COM-COL – Model 3 

 

 

-25

-20

-15

-10

-5

0

5

10

15

20

25

30

0 5 10 15 20 25 30

Residuals - COM-COL - Non Expansive Soil  - Model 2

Res

-30

-20

-10

0

10

20

30

0 5 10 15 20 25 30

Residuals - COM-COL - Non Expansive Soil - Model 3

Res



183 
 

 
 

Figure M23 Residuals COM-COL – Model 5 

 

 
 

 

Figure M24 Residuals COM-COL – Model 7 (Selected) 
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Figure M25 Residuals COM-LR – Model 2 

 

 
Figure M26 Residuals COM-LR – Model 3  

 

-30

-20

-10

0

10

20

30

40

0 5 10 15 20 25 30

Residuals - COM-LR - Non Expansive Soil - Model 2

Res

-30

-20

-10

0

10

20

30

40

50

0 5 10 15 20 25 30

Residuals - COM-LR - Non Expansive Soil - Model 3

Res



185 
 

 
Figure M27 Residuals COM-LR – Model 5  

 

 

 

 
Figure M28 Residuals COM-LR – Model 7 (Selected) 
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Figure M29 Residuals PCC-ART – Model 2  

 

 

 
Figure M30 Residuals PCC-ART – Model 3  
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Figure M31 Residuals PCC-ART – Model 5 (Selected) 

 

 

 
Figure M32 Residuals PCC-ART – Model 7  
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Figure M33 Residuals PCC-COL – Model 2 (Selected) 

 

 

 
Figure M34 Residuals PCC-COL – Model 3  
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Figure M35 Residuals PCC-COL – Model 5  

 

 

 
 

Figure M36 Residuals PCC-COL – Model 7  
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Figure M37 Residuals PCC-LR – Model 2 (Selected) 

 

 

 
 

Figure M38 Residuals PCC-LR – Model 3  
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Figure M39 Residuals PCC-LR – Model 5  

 

 

 
 

Figure M40 Residuals PCC-LR – Model 7 
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Figure M41 Residuals PCC-RU – Model 2  

 

 
 

Figure M42 Residuals PCC-RU – Model 3  
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Figure M43 Residuals PCC-RU – Model 5  

 

 

 

 

Figure M44 Residuals PCC-RU – Model 7 (Selected) 
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22. APPENDIX N: Residuals – Expansive Soil (IRI) 

 

 

Figure N1 Residuals AC-ART – Model 2  

 

Figure N2 Residuals AC-ART – Model 3 (Selected) 
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Figure N3 Residuals AC-ART – Model 5 

 

Figure N4 Residuals AC-ART – Model 6 
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Figure N5 Residuals AC-COL – Model 2 

 

Figure N6 Residuals AC-COL – Model 3 (Selected) 
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Figure N7 Residuals AC-COL – Model 5 

 

Figure N8 Residuals AC-COL – Model 6 
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Figure N9 Residuals AC-LR – Model 2 

 

Figure N10 Residuals AC-LR – Model 3 (Selected) 
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Figure N11 Residuals AC-LR – Model 5 

 

Figure N12 Residuals AC-LR – Model 6 
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Figure N13 Residuals COM-ART – Model 2 

 

Figure N14 Residuals COM-ART – Model 3 (Selected) 
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Figure N15 Residuals COM-ART – Model 5 

 

 

Figure N16 Residuals COM-ART – Model 6 
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Figure N17 Residuals COM-COL – Model 2 

 

Figure N18 Residuals COM-COL – Model 3 (Selected) 
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Figure N19 Residuals COM-COL – Model 5 

 

Figure N20 Residuals COM-COL – Model 6 
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Figure N21 Residuals COM-LR – Model 2 

 

Figure N22 Residuals COM-LR – Model 3 (Selected) 
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Figure N23 Residuals COM-LR – Model 5 

 

Figure N24 Residuals COM-LR – Model 6 
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Figure N25 Residuals PCC-ART – Model 2 

 

Figure N26 Residuals PCC-ART – Model 3 (Selected) 
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Figure N27 Residuals PCC-ART – Model 5 

 

Figure N28 Residuals PCC-ART – Model 6 
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Figure N29 Residuals PCC-COL – Model 2 

 

Figure N30 Residuals PCC-COL – Model 3 (Selected) 
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Figure N31 Residuals PCC-COL – Model 5 

 

Figure N32 Residuals PCC-COL – Model 6 
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Figure N33 Residuals PCC-LR – Model 2 

 

Figure N34 Residuals PCC-LR – Model 3 (Selected) 
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Figure N35 Residuals PCC-LR – Model 5 

 

Figure N36 Residuals PCC-LR – Model 6 
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