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ABSTRACT

Adaptive Graph Convolutional Neural Network and its Biomedical Applications

RUOYU LI, M.S.

The University of Texas at Arlington, 2020

Supervising Professor: Dr. Junzhou Huang

As the rise of graph neural networks, many deep learning frameworks have

been extended to graph-structured data. The research in many diverse regimes have

been tremendously reshaped, especially in areas like medical image understanding.

When input data reach the scale of whole slides images (WSIs), the modeling be-

comes more challenging and we have to balance the trade-off between performance

and efficiency. Furthermore, the theory of existing graph convolution has its own

constraints which prevent learning robust graph representation on data that has di-

verse topological structure and are infeasible for graph sampling or coarsening. To

tackle the problems we introduced a series of novel graph neural networks and tech-

niques. For example, Adaptive Graph Convolutional Network (AGCN) [1] combined

the graph representation learning with graph learning and empower the network to

learn features from hidden substructures on graph. Attentional-AGCN [2] provided

a node-to-graph attention scheme which does not only improve graph representation

trained over large-scale images like WSIs, but also facilitate an intuitive explanation

of the effectiveness of Attentional-AGCN. Besides, we introduced an end-to-end sur-

vival prediction framework based on WSI input directly, which delivered significant
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improvement on accuracy of survival analysis. Lastly, to mitigate the randomness

introduced by patch sampling, a fast region-of-interest (RoI) search and detection

approach is also introduced to images at WSI scale. MROID [3] combined classifica-

tion with detection into a unified framework to quickly narrow down candidates RoI

proposals and gave a coarse-to-fine boundary refinement for generated RoIs. As sum-

mary, in this thesis, we reviewed and introduced our contributions to graph neural

networks and the applications of our methods on large-scale biomedical data under-

standing tasks.

vi



TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF ILLUSTRATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Chapter Page

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. Adaptive Graph Convolutional Neural Network . . . . . . . . . . . . . . . 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Spatial-based Graph Convolutional Networks . . . . . . . . . . 14

2.2.2 Spectral-based Graph Convolutional Networks . . . . . . . . . 16

2.2.3 Graph Neural Network for Biomedical Problems . . . . . . . . 19

2.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.1 Spectral Graph Convolution on Learned Laplacian . . . . . . . 20

2.3.2 Learning Graph via Metric Learning . . . . . . . . . . . . . . 23

2.3.3 Residual Graph and Original Graph . . . . . . . . . . . . . . . 25

2.3.4 Re-parameterization on Feature Output . . . . . . . . . . . . 26

2.4 AGCN Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.1 GCN Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.2 Network Configuration . . . . . . . . . . . . . . . . . . . . . . 29

2.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5.1 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

vii



2.5.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5.2.1 Molecular Graph . . . . . . . . . . . . . . . . . . . . 32

2.5.2.2 Point Cloud . . . . . . . . . . . . . . . . . . . . . . . 33

2.5.3 Experimental Result . . . . . . . . . . . . . . . . . . . . . . . 34

2.5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3. Attentional Adaptive Graph Convolutional Network . . . . . . . . . . . . . 39

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.1 Attention on Graph . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.2 Deep Learning for Survival Prediction . . . . . . . . . . . . . . 43

3.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.1 Attentional AGCN . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.2 End-to-end Survival Framework: DeepGraphSurv . . . . . . . 46

3.4 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4.2 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4.3 Result and Discussion . . . . . . . . . . . . . . . . . . . . . . 52

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4. Fast Regions-of-Interest Detection in Whole Slide Histopathology Images . 57

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.1 Superpixel Clustering . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.2 ROI and Superpixel . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2.3 DNNs on Superpixel . . . . . . . . . . . . . . . . . . . . . . . 65

4.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3.1 Superpixel Clustering and Detection . . . . . . . . . . . . . . 67

viii



4.3.1.1 Energy Function . . . . . . . . . . . . . . . . . . . . 67

4.3.1.2 Boundary-Only Update . . . . . . . . . . . . . . . . 68

4.3.1.3 Coarse-to-Fine Detection . . . . . . . . . . . . . . . 70

4.3.2 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . 72

4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4.1 ROIs in Lung Cancer Histopathology WSI . . . . . . . . . . . 73

4.4.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 75

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5. CONCLUSION AND FUTURE WORK . . . . . . . . . . . . . . . . . . . 78

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

BIOGRAPHICAL STATEMENT . . . . . . . . . . . . . . . . . . . . . . . . . 92

ix



LIST OF ILLUSTRATIONS

Figure Page

1.1 A classic Convolutional Neural Network with 2-D image as input. . . . 1

2.1 Example of Molecular Graph. . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Comparison of Spectral Graph Convolutional Kernels. . . . . . . . . . 16

2.3 Illustration of execution of two consecutive SGC-LL layers. . . . . . . . 22

2.4 AGCN example: graph-wise classification. . . . . . . . . . . . . . . . . 29

2.5 Example of PointCloud data from Sydney urban dataset. . . . . . . . . 33

3.1 Attentional- Adaptive Graph Convolutional Network. . . . . . . . . . . 45

3.2 DeepGraphSurv: End-to-end Graph Neural Networks (GNNs) based

Survival Prediction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 Visualization of node-to-graph attention on WSI. . . . . . . . . . . . . 53

4.1 Example of superpixel clustering on image with three classic solutions:

LSC, SEEDS and SLIC. . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 Example of pathological whole slide image with ROI annotations and

the superpixels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3 An example of the coarse-to-fine/boundary-only update based super-

pixel segmentation algorithm first presented in [4]. . . . . . . . . . . . 67

4.4 An illustration of multi-resolution process of ROI detection on WSI. . 70

4.5 A coarse-to-fine superpixel clustering on a lung cancer WSI from NLST. 73

4.6 The comparison of several superpixel clustering on lung cancer H&E

stained WSI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

x



LIST OF TABLES

Table Page

2.1 Class-average ROC-AUC on Four Molecular Graph Datasets. . . . . . 35

2.2 Average ROC-AUC on Sydney Urban PointCloud Datasets. . . . . . . 37

3.1 The Statistics of Whole Slides Pathological Image (WSI) Datasets. . . 51

3.2 Concordance Index (C-index) of DeepGraphSurv and the State-of-the-

art Survival Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1 Precision and recall of RoI detection from the MROID, SLIC and tetragonum

(non-superpixel). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

xi



CHAPTER 1

Introduction

As we all know that the Convolutional Neural Networks (CNNs) have been

proven tremendously successful on a wide range of machine learning problems. The

success of convolutional neural networks is rooted on its biotic simulation of how

human eye and brain process optical information. As early as [5], researchers have

been attempting to link the convolutional neural network model with the nature

of how retina and brain respond to natural optical stimulations. Light comes into

eyeball, stimulates optic fiber and generates electrical signals, then the nerve cells

aggregates the signal from its connected neurons and pass it to the linked cells of

later layer. We have many different kinds of nerve cells to execute different type

of signal processing. Further human brain makes sophisticated decision based on

aggregated information from bottom neurons (i.e. retina fiber cells).

If we use a neural network to model the entire response of optical signal inside

human retina and use forward-pass in neural network to model the electrical signal

passing between nerve cells, then, for a classic CNNs shown in Figure 1.1, the in-

put image, decomposed as RGB (red, green, blue) 3 channels, would be the original

Figure 1.1: A classic Convolutional Neural Network with 2-D image as input.
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electrical stimulation given by retina optical fiber. Then, the signals are going to be

aggregated by convolution operator defined by filter with fixed shape, 3× 3 in exam-

ple of Figure 1.1. At the end of convolutional layer, each output channel turns out

to be the summation of channels of input signals. This setup is to allow convolution

operator in CNNs to not only aggregate neighborhood pixels, but also learn depen-

dency from other channels. Back to retina cell layers, there exist similar layer-wise

connection between nerve cells at different layers. A nerve cell is to read multiple

signals from others before generating its own signal that is going to pass on. If we see

CNN as a simulation of this process, then we might also see pixels from feature map

as neurons and the convolutional filters as a definition of signal processing pattern

among a sort of nerve cells. In real-world neuroscience, the nerve connection and

signal processing are sophisticated, while in the configuration of convolutional layers

in CNNs, the combination of different aggregation patterns (i.e. convolutional filters)

is a simple summation.

There have been a huge amount of publications that elaborate the representa-

tion power that CNN has in terms of better performance in downstream use cases,

e.g. classification, detection, tracking. We discussed the constraints of existing CNNs

in this section.

Figure 1.1 showed an example of convolution on grid and its 3×3 convolutional

filter. The training job of network is to learn 3× 3 parameter matrices for the kernel

and when summing up neighbor features using this kernel, the parameters would be

multiplied to corresponding neighbors first. While the training cannot modify the

network architecture and configurations. If the initial status of kernel is as large as

3 × 3, it would stay that shape and size during the entire training time. And this

setup would be applied to all feature mapping between channels of input and output.

It means, for all the convolutional kernel in a certain layer of CNN, the kernel size is

2



identical. For example, if the input channel cardinality is ci and output channel count

is ci+1, and we define the kernel in this layer is of size 3× 3, then the total parameter

count of this layer is ci × ci+1 × 3 × 3. While, clearly, it does bring extra limitation

on how we design networks, but it also releases concern of computational cost by

large-scale training data and large batch size. Given fixed, identical kernel size, the

back-propagation makes full use of tensor multiplication to accomplish gradient calcu-

lation and parameter update within minimal overhead. However, from neuroscience

study, the human retina cells have a more complicated and flexible cell connectiv-

ity and signal aggregation patterns beside simple summation. Current CNNs are an

oversimplified version of retina cell layers, then we argue if this setup lead to efficient

learning of information from input. And stacking layers makes network capable of

fitting better representation, while this comes at the price of tremendously increasing

computational cost and difficulty of training. Apparently, human eyes do not need

to stack hundreds of layer of nerve cells just to recognize a flying bird. There must

be some better representation could be constructed from flexible kernel and channel

connections, while CNNs are unable to model it.

Another constraint comes to the inputs of convolutional layer. The classical

CNNs have requirement of regularly shaped tensors as input [5]. For instance, images

[6] and videos [7] are respectively modeled as 2-D and 3-D tensors when being fed to a

traditional convolutional neural network. As opposite to this stereotype, in many real-

world applications, it is more likely to encounter the data deployed on an irregular grid

for instead and more generally in non-Euclidean space. Instead of regularly shaped

tensors, those data are intuitively more appropriate to be seen as graph-structured,

which make it convenient to handle the varying neighborhood vertex connectivity

as well as the non-Euclidean metrics. Under these circumstances, the stationarity

and the compositionality, which empower convolutional operator to work on multi-
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dimensional grid, does no longer exist on graph-structured data. Consequently, it is

necessary to reformulate convolutional operator to make it compatible with graphs.

As summary, existing CNNs have following technical constraints which block

them from working with graph-structured data:

1. Kernel size and shape are fixed and identical within layers across all channel

maps.

2. Input data have to be of identical dimensionality.

3. Data have been deployed on regularly shaped, equally-spaced grid.

Based on above observations, it is necessary to redesign convolutional operator on

graph to make convolutional neural networks trained on graph-structured data. Afore-

mentioned constraints of existing CNNs would become the three problems that the

proposed new convolutional layer is going to fix:

1. How to design sharable kernel/convolutional filter by all data across channel

maps ?

2. How to make network accept input graph data of varying size and shape ?

3. How to control the training complexity (i.e. scale of trainable parameters) of

the network ?

Spectral CNN [8] implemented a linear spectral graph kernel together with the eigen-

vectors after eigen-decomposition of graph Laplacian L = UΛUT . While, the eigen-

decomposition takes O(N3) time complexity, even though the training complexity

(i.e. scale of parameter number) is linear w.r.t. graph size N . As the first successful

trial of spectral-based graph convolution kernel, gθ ∗ x = Udiag(UT θ)UTx, while it

comes with three major drawbacks:

1. Graph is fixed. While any change on graph L would make eigenvector U changes

accordingly. Consequently, any change on graph will makes the parameters θ

useless for a new graph or an unseen graph.

4



2. If you train the network on a graph structure L, then test data must be deployed

on same graph topology. Otherwise it may not work. Which makes the model

hard to be generalizable. When you meet a new graph structure after training,

spectral CNN cannot work on it. For example, your training data are all graphs

of less than 100 nodes, what if when inference, there is a graph has 101 nodes.

3. Parameter complexity, for each graph, we need to learn a new set of parameters,

what if we have lots of different graph structures, making training complexity

high. Time complexity: the eigen-decomposition is highly expensive. It has

cubed N complexity. Makes it not feasible for large graphs. Like social graph.

Following the appearance of Spectral CNN [9], ChevNet [10] and GCN [11] approx-

imated the kernel function as Chebyshev polynomials of diagonal eigenvalue matrix

Λ, and trainable parameter θ is assigned to each polynomial item Ti(L̂). From the

formulations in [10], the eigendecomposition is avoided by converting Ti(Λ̂) to Ti(L̂),

based on L = UΛUT . If we assume graph is sparse, then the multiplication of L

with node vectors X has less complexity than O(N2). It is obvious that ChevNet

[10] and its variants have solved problem 2&3, while it does not solve the problem of

”fixed graph”, which prevent the network to learn from the hidden substructures and

cannot deal with the scenarios where graph initialization is poor.

Even though the data has intrinsic graph and it is static, would it be better to

make it dynamic or even adaptive with respective to predictive tasks ? And more

importantly, the new model has to control the scale of training complexity as training

graph is non-trivial with limited number of parameters, free of graph scale. Besides,

Spectral CNN[9] indeed has one unique merit that constructs and learns independent

filters θi,j for each channel pair between input and output. Therefore, it means

that each feature channel of output tensor is summed from all input feature channels.

Intuitively, spectral CNN and classic CNNs do not only aggregate the features of same
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channel on neighbor nodes, but also further aggregate other channels, to build cross-

channel dependency. However, ChevNet and its variants forget about the advantage

of classic CNNs. At ChevNet, each output channel was learned independently from

other channels.

For most real-world graph data, their structures vary in terms of both scale and

topology. A generalizable convolutional operator on graph is supposed to be compati-

ble with different graph topology. In the article, authors introduced a generalized and

flexible GCN framework along with a new spectral graph convolutional layer (SGC-

LL) parameterizing distance metric and feature transform. Besides original graph

structure, a residual graph is constructed and learned throughout training, There-

fore, the introduced Adaptive Graph Convolutional Network (AGCN) is adaptive to

graphs of arbitrary topological structure and scale and is also adaptive to various

learning tasks easily. Extensive experiments of AGCN and state-of-the-arts on drug

property benchmark datasets have demonstrated the superior performance improve-

ment on both convergence speed and predictive accuracy for multi-tasks classification

of graph, which becomes mathematical modeling of drug or any chemical compounds.

With the success of graph attention network (GAT), we enabled AGCN to learn

graph representation from a bag of patches randomly sampled from large medical

images such as Whole-slide-images (WSIs) for sophisticated image understanding

tasks, e.g. survival prediction. However, to learn the graph representation that better

emphasizes on the patches from lesion and its surroundings instead of the ones from

irrelevant regions of WSIs. Because the expensive labeling work by professionals, in

many applications, no patch level labels could be provided along the training data,

which requires the model itself to be able to learn the weight assigned to each patch

during the training towards prediction task, for example the survival risk regression

in the thesis.
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The DeepGraphSurv is an end-to-end framework that directly predict survival

probability from patients’ WSI on tissues. Empowered by graph attention, an intu-

itive annotation of tumor cells is also learned and generated by the model. Extensive

experiments of AGCN and state-of-the-arts on drug property benchmark datasets

have demonstrated the superior performance improvement on both convergence speed

and predictive accuracy for multi-tasks classification of graph (drug). We also exe-

cuted survival time prediction experiment over the two large WSI datasets of lung

cancer patient, i.e. NLST and TCGA, from which DeepGraphSurv indicated signifi-

cant accuracy lift brought by graph representation learning over patches.

During the study, we realized the importance of patch sampling in final pre-

diction results. Low quality of patches largely affect eventual model accuracy. In

other words, the model is not robust enough to challenging practical scenarios where

data quality is relatively compromised by either sample contamination or scanning

problems. Detecting and localizing pathological region of interest (ROI) over whole

slide pathological image (WSI) may mitigate this problem. To reduce computational

complexity, we introduced a two-stage superpixel-based ROI detection approach. To

efficiently construct superpixels with fine details preserved, we utilized a novel su-

perpixel clustering algorithm which cluster blocks of pixel in a hierarchical fashion.

The major reduction of complexity is attributed to the combination of boundary up-

date and coarse-to-fine refinement in superpixel clustering. The former maintains

the accuracy of segmentation, meanwhile, avoids most of unnecessary revisit to the

‘non-boundary’ pixels. The latter reduces the complexity by faster localizing those

boundary blocks. Detector of RoI was trained using handcrafted features extracted

from super-pixels of labeled WSIs. Extensive experiments indicated that the intro-

duced superpixel clustering algorithm showed lifted accuracy on lung cancer WSI de-

tection at much less cost, compared to other classic superpixel clustering approaches.
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Moreover, the clustered superpixels do not only facilitate a fast detection, also deliver

a boundary-preserving segmentation of ROI in whole slide images.

As summary, in this thesis we introduced several novel methods in terms of im-

proving the deep graph learning techniques and application of graph neural networks

with adaptive kernels on large-scale graph structured data. We have extensively ex-

perimented the proposed methods on predictive tasks like drug property prediction,

point-cloud classification and survival prediction on WSIs.
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CHAPTER 2

Adaptive Graph Convolutional Neural Network

2.1 Introduction

Extending convolutional operator from regularly shaped grids to irregular graphs

is not trivial. For the simplicity of constructing convolutional kernel, most early graph

neural networks (GNNs) assumed that input data are still low-dimensional, analog to

those data that CNNs deal with. Because, in their convolutional layer, the convolver

handled a subset of nodes grouped by node degree respectively and independently

[8, 9]. More importantly, their convolutional kernel is over-localized and infeasible

to learn hierarchical representations from complex graphs with unpredictable and

flexible node connectivity, e.g. chemical molecules and social networks [12]. In some

applications, e.g. classification of point cloud [13], the topological structure of graph is

more informative than the node features or the edge attributes alone. Unfortunately,

the existing graph convolution networks [14] cannot thoroughly exploit the geomet-

ric property of graph due to the difficulties of implementing a parameterized spatial

Figure 2.1: Example of Molecular Graph.
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kernel compatible with different scenario of node neighborhood. Similar difficulty is

also interfering the extension of graph convolutional networks to new applications,

e.g. human activity recognition [15] and co-citation networks [16]. Besides, given the

flexibility of topology structure of graph and the O(N2) scale of parameters to define

node-pair connectivity, learning a topology-preserving spatial convolutional kernel for

every unique graph data sample is impractical for real-world applications.

Inherited from classical CNNs, a shared convolutional kernel among training

samples is one of common assumptions. Consequently, to guarantee a unified di-

mensionality of input/output for all samples at consecutive layers, the input graph

data have to be pruned, which is also a constraint of utilizing traditional networks

on graph structured data directly. However, this kind of preprocessing on graph-

structured data is going to harm the completeness of graph-oriented information,

especially the features derived from its topology. For instance, the coarsening of

molecule is hard to be justified chemically, and it is likely that the coarsened graph

has lost the key sub-structures that differentiate the molecule from others. In Fig-

ure 2.1, it shows the molecular graph of chemical compound Nicotine (C10H14N2,

SMILES: CN1CCC[C@H]1c2cccnc2) and its graph structure (omit hydrogen atoms).

From the example in Figure 2.1, we can tell that the removal of any Carbon atom

from the graph would break the Benzene ring. It would be much better if the graph

CNNs could accept and preserve the original graph structures of data. Beyond the

spatial graph convolution applied to quasi-grid graphs, spectral-based graph convolu-

tional neural networks, derived from the graph Fourier transform [17], are promising

to offer an more flexible convolutional kernel for sophisticated graph-structured data.

Lastly, in this chapter, the graph-structured data used in experiments either

have an intrinsic graph structure (e.g. chemical molecules) or have one reconstructed

through clustering of vertices (e.g. point-cloud). In existing graph networks [8, 9, 15],
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the initial graph structures are enforced to remain stable during the training time.

While, on the other hand, it is doubtful that the graph topology derived in unsuper-

vised fashion, happen to be optimal for each particular learning task. Although there

were pioneering works who included supervised graph reconstructions with fully con-

nected networks [9], the computational complexity from the large number of trainable

weights constrains the initialization of graph only feasible to small graph. Further-

more, the graph topology that fits one pre-trained network may not work well with

another graph neural network [18], which obviously constrain the generalization of

learned graph neural network (GNN) layers.

In this chapter, we are going to introduce a novel spectral-based graph convo-

lution neural network, compatible with graph data of diverse topological structures,

e.g. the organic molecules that consist of a different number of atoms. To deal with

the fixed graph that may be stale, we choose to grant the network the capability

of learning the supplement to graph topological structure. Therefore, different from

a parametric kernel formed by a fixed graph Laplacian matrices L [9, 12, 15] , we

parametrize the graph Laplacian itself. While, given the goal of preserving topology

on each individual graph, we cannot learn the L as trainable parameters directly,

let alone the unacceptable computational cost. For instead, we parameterize the

distance metric between pairs of node feature vectors as an indirect learning of the

self-organized structure of each graph sample. A reasonable assumption is that the

distance metric parameters are shared by all samples that belong to the same type, e.g.

molecular graphs. Consequently, each individual sample is able to train the network

on a unique and adaptive graph Laplacian that preserves its uniqueness and infers

any undiscovered task-related substructures. A customized graph Laplacian L will

lead to a customized kernel that combines features on neighbor nodes within a flexible

coverage. It is interesting to question what exact graph that optimally empower a

11



particular task. For instance, the chemical bonds, found via chemical experiments,

naturally build a graph for any compound. However, it is never guaranteed that

the convolver that works on intrinsic graph has extracted every meaningful feature.

We introduced a so-called residual graph to unveil the substructures which intrinsic

graph does not present. Furthermore, in order to guarantee residual graphs to be the

optimal supplement to intrinsic graph for the particular task, we learn the residual

graph topology along with the rest of network, under the supervision of task-specific

annotations.

To implement the learning of adaptive residual graphs, we are faced two major

problems:

1. how to efficiently construct residual graph during training;

2. how to preserve unique graph topology in the batch-wise training.

A direct learning of L is of exponential complexity and with O(N2) parameters for

a RN×d graph sample. Allowing the topological structures preserved in M training

samples means complexity of O(MN2), which is unscalable for large graphs. While,

an indirect learning of graph structure based on the Mahalanobis distance metric

[19] and transformation in feature manifold is able to reduce the complexity scale

to O(d2), or even O(d), assuming the metric parameters are shared by all graphs.

More importantly, after this, the learning complexity becomes independent of graph

size N. When execute the convolutional operator, both intrinsic graph and learned

residual graph will be used in the kernel: L̂ = L+L′. Due to that the proposed layer

is another spectral-based graph convolution (SGC) layer but on a learned Laplacian,

we name the new layer as spectral-based graph convolution on learned Laplacian, or

SGC-LL.

In classical CNNs, back-propagation generally updates kernel weights to adjust

the relationship between neighboring nodes at each feature dimension individually.
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Then it sums up signals from all filters to construct hidden-layer activations. To grant

the graph convolutional network a similar capability, we applied a re-parameterization

on the output feature using a linear transform weight and bias. Finally, the O(d2)

training parameters in the proposed graph convolution layer consist of two segments:

the Mahalanobis distance metric parameters and the feature transform weight and

bias. To facilitate the diverse input graph of varying number of nodes, we need to

pad zeros to both feature and adjacency tensor. Therefore, we also modify existing

graph pooling and gather layer to recover the original data from padded tensors before

layer execution. Because the introduced graph network is capable of being adapted

with respect to graph topology, and more importantly the graph being used is also

adaptive towards learning task, we name the network as Adaptive Graph Convolu-

tional Network (AGCN) to highlight these valuable features. As first introduced in

paper [1], AGCN model was introduced as a new spectral graph convolutional net-

work capable of learning topology-preserving graph representation from graph data

of diverse structure and size. Later, the effectiveness of AGCN received confirmation

from its application on multiple graph-structured data and prediction tasks ranging

from chemical molecules and 3D point cloud generated by LIDAR [14]. AGCN had

demonstrated overwhelmingly better accuracy on both graph classification and graph

attributes regression.

Some technical advantages of the AGCN architecture are summarized as below:

1. Construct and learn unique graph Laplacian for each individual training graph

sample, preserving the completeness of original information, especially in terms

of spatial topology.

2. Low computational expense in scale of O(d2), independent of graph vertex num-

ber N , making the network lightweighted and attractive in prediction tasks on

large-scale graphs, such as social graph.
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3. Explainable model. Graph neural networks have an intrinsic advantage on in-

terpretability. Discovering the hidden substructures on graph and the represen-

tations learned upon those substructure validated the effectiveness of learned

residual graphs generated by AGCN.

4. Residual graph is compatible with both spatial and spectral graph convolutional

network. We chose SGC [10] as baseline model and build our SGC-LL on top

of it, while the idea of residual graph and the learning of graph Laplacian via

deep metric learning is trivial to be extended onto other graph neural networks,

e.g. GAT [20] and Differentiable Graph Module [21].

2.2 Related Work

Given the fact that graph is a more common and generic topology of data in

real-world scenarios, there is an increasing interest of generalizing CNNs to graph

data since the significant success on computer vision starting in 2011. The majority

of advances in this subarea of GNNs could be well categorized as spatial-based graph

convolutional networks (Spatial GCN) and spectral-based graph convolutional net-

works (Spectral GCN), according to the domain in which the convolution operator

executes. Figure 2.2 showed a comparison of different convolutional kernels (filters)

on graph. Before the proposal of adaptive graph convolutional network (AGCN), the

major topic of developing convolutional operators on graph is to empower a more

flexible coverage of neighborhood vertices, while maintaining reasonable parametric

complexity.

2.2.1 Spatial-based Graph Convolutional Networks

The first trial of formulating an analogy of CNN on graph was accomplished

by [8]. Particularly, the authors proposed a sparse kernel that aggregated the vertex
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features element-wisely from its neighbors. The finite-size kernel is nonparametric

though, and the graph was self-constructed and constricted by data. [22] extended

spatial kernel [8] to molecular graph and used dedicated weight matrices for the cluster

of nodes of same degree. The drawback of [22] is that the node degree scenario should

pre-defined and fixed, otherwise the network cannot be designed and initialized. And

the spatial kernel [22, 8] is also over-localized since the adjacency matrix form an

undirected graph is merely able to represent the 1-hop connections, therefore, the

kernel cannot assign weights to those peripheral nodes not directly linked to the

central node. To relieve the constrain, the diffusion-convolutional network (DCNN)

[23] builds K transform matrices to handle at most K-hops diffusion of node features

on graph, allowing output x′ ∈ RN×K×d . To tackle the over-localized kernel, DGCN

[24] executed two parallel convolution networks on two views of graph data balancing

local and global consistency towards a semi-supervised problem.

Previous networks [22, 23, 24] more or less handled the challenge of diverse node

degree, while none of them formulated a CNN-alike convolution on graph, and their

convolutional layers were without loss of generality able to be approximated as the

assembly of a series of fully connected layers. PTCHY-SAN [24] ignored the graph

scale and only selected a fixed number of nodes with a fixed receptive filed, follow-

ing one of graph labeling procedures. The receptive field were picked from its direct

neighborhood. And lastly the normalized neighborhood from the receptive field serve

the final aggregation operation. [23] proposed LGCL, transforming graph data back

to grid-like structure, selects a fixed number of neighbor nodes for each feature dimen-

sion, and then then applies a 1D-CNN on top. [25] further discussed the theoretical

generalization of CNN from grid to manifold and finally graphs. GraphSAGE [26]

argued that above transductive algorithms required the presence of nodes in training

and cannot deal with graphs consist of unseen nodes. However, [24, 26] did not utilize
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Figure 2.2: Comparison of Spectral Graph Convolutional Kernels.

the entire set of nodes, while, for some scenarios such as drug attribute prediction

[27], a selective aggregation of nodes means a damage to local substructures, which

have to stay intact in order to learn meaningful hidden representations.

2.2.2 Spectral-based Graph Convolutional Networks

Another category of graph convolutional operator is defined and executed in

Fourier domain. [8] first proposed to compute the graph convolution based on the

convolution theorem and the eigen-decomposition of normalized Laplacian matrix

L = UΛUT . Then, the convolution is rewritten as:

gθ ∗ x = Ugθ(Λ)UTx (2.1)

, where U is the eigenvectors of the normalized graph Laplacian L: L = I−D− 1
2AD−

1
2 .

D is the degree matrix and A is the adjacency matrix. While, this trivial solution

comes with massive computational cost from the eigen-decomposition. More im-

portantly, the spectrum filtering may result in non-locality on spatial domain after

applying inverse graph Fourier transform U. [9] attempted to tackle the spatial non-

locality after filtering by the nonparametric spectral kernel [8] by parametrizing gθ(Λ)
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in terms of diag(W ), whose parameters areW ∈ RN . Furthermore, another non-linear

approximation of kernel gθ(Λ) was proposed as:

gθ(Λ) =
K−1∑
k=0

θkΛ
k. (2.2)

The kernel Eq 2.2 mitigated the spatial non-locality by smoothing the spectrum

filtering, while the computational cost is still high. [32] introduced a truncated

Chebyshev expansion of kernel that comprises K items as Tk(Λ). A recurring eval-

uation of Tk(Λ), with initial states T0(x) = 1 and T1(x) = x, is formulated as :

Tk(x) = 2Tk−1(x) − Tk−2(x). When convolving with feature x, the O(N2) complex

multiplication with dense Fourier basis U is replaced with the multiplication with the

sparse L̂, and it also saves the eigen-decomposition of L̂. Consequently, the overall

complexity is reduced as O(K‖ε‖)� O(N2). ‖ε‖ is the count of non-zeros in L̂ and

the number of graph edges. Both [32] and [33] relied on the approximation of spectral

convolutional operator finalized as:

gθ(Λ) ∗ x =
K−1∑
k=0

θkTk(L̂)x (2.3)

, L̂ is re-normalized graph Laplacian defined as:

L̂ =
2

λmax
L− IN , (2.4)

where λmax is the maximum eigenvalue of L. While [11] further simplified the eval-

uation of Eq 2.3 by setting K = 1 and λmax ' 2 to alleviate the overfitting to

local structures. Because local neighborhood might deliver a biased representation

of graphs especially when the node degree distribution is skewed. Authors argued

that a stack of multiple linearly approximated convolutions, i.e. K = 1, is also able

to recover a similar multi-hop knowledge aggregation as K > 1. Given K = 1 and
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λmax = 2 , and the recurring evaluation equations, the Eq 2.3 was further simplified

in [33] as:

gθ ∗ x ' θ0 − θ1D−
1
2AD−

1
2x, (2.5)

with layer-wide shared parameters {θ0, θ1}. An additional assumption θ = θ0 =

−θ1 resulted in the linear approximation of single-layer spectral-based convolution as

shown in Eq 2.3 as:

gθ ∗ x ' θ
(
IN +D−

1
2AD−

1
2

)
x. (2.6)

However, as expected, a repeated application of Eq 2.6 leads to gradient explod-

ing/vanishing. So, within such layer, a re-normalization of adjacency A is executed

by Â = A + IN to control the eigenvalues of L̂ fall into range [0, 2]. The baseline of

spectral GCN in the chapter is ChevNet [10] with the K-rank Chebyshev polynomials

as an approximation of spectral kernel after eigen-decomposition. The introduced

AGCN is also founded on a similar formulation. The Figure 2.2 demonstrated the

difference of convolutional filters on several popular GCNs. Note that the red spot is

the central node of convolution, the orange nodes represent receptive field. The figure

included three common spectral GCNs: (1) Spectral CNN [8]; (2) ChevNet [10]; (3)

AGCN [1]. While, Spectral CNN [8] is only able to aggregate first-order neighbor

vertices and ChevNet is able to include at most K-hop neighbors within the kernel.

The convolutional filter of AGCN is based on both the original graph (solid line)

and the learned residual graph (dash lines), that the network inferred from training

data. This means that AGCN can learn aggregated features from a kernel that covers

K-hop neighbor nodes, but also learn from those nodes that were not even neighbors

to center node at original graph.
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2.2.3 Graph Neural Network for Biomedical Problems

Biological and chemical research is one of the fields where GCNs have made sig-

nificant progress in recent years. Given the nature of organic compounds as molecular

graph, it is straightforward to formulate chemical compounds as graphs and to per-

form graph neural network (GNN) on top for representation learning and prediction

tasks. Within those, the GCNs, with localized kernels and deep network architecture,

have successfully driven big progress on problems, e.g. drug property prediction [28],

drug discovery [29, 30], reaction prediction [31, ?]. The early success of GNN on

molecular graph was the NeuralFP proposed in [22]. While, [22] had a strong as-

sumption on node degree distribution, making the spatial neighborhood aggregation

difficult to be generalized to graph of skewed degree distribution. And if designing a

different kernel for different feature channel, the massive matrices multiplications are

unscalable for large graphs. Consider the real-world scenarios, we have to balance

the representational capability and the computational cost. While, [22] groups nodes

across graphs in batch according to node degree and lets nodes of same degree share

transform parameters, on the direction against over-locality overfitting. But it failed

to perform a parametric elastic kernel to aggregate K-hop receptive field as what a

CNN does.

Spectral GCNs balance the trade-off between the representational power and

the computational cost by reducing the number of parameters and making the kernels

shared by entire nodes. In [1], we introduced GCNs to molecular graph classification

and drug property prediction tasks. Not doing any node truncation or edge pruning,

we devised a novel spectral convolutional layer deployed on full graphs preserving

original topology. Besides, we argued that the intrinsic graphs are not optimal for

particular tasks. Beyond a kernel designed with fixed structure, the SGC-LL layer

makes graph structure trainable along with the rest of network. As opposite to the
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node ‘Selection, Assembly, Normalization’ procedure by [26] that prunes the graph

to fit a pre-defined kernel, we let the kernel be adaptive to different graphs.

2.3 Methodology

In the session, we introduce the spectral convolutional network built on adap-

tive residual graph, i.e. Adaptive Graph Convolutional Network (AGCN). We first

elaborate the construction of residual graphs based on original input graph and node

feature vectors. As follows, we introduce the reparameterization operation we applied

onto node feature vectors after convolution, in order to reconstruct the channel-wise

dependency and correlation that classic CNNs always have in their convolution layers.

At last, we illustrated the architecture of AGCN for graph-wise prediction task.

2.3.1 Spectral Graph Convolution on Learned Laplacian

As elaborated in last session, the existing GCNs are tackling two major chal-

lenges:

1. how to utilize the complete set of graph nodes and edges without making the

model difficult to train;

2. how to balance the localized kernel and the global structures that generalize the

network for high-level prediction tasks.

In order to have a kernel that combines both local and non-label features on graph,

we insist to borrow the kernel defined on spectrum domain as [10] together with the

K -rank Chebyshev expansion as approximation. Through tuning K, the layer has

a configurable receptive field as classical CNNs. In practice, we set K = 2 in most

cases. And we found it was also worth tuning K for best performance.

The root cause why previous GCNs cannot train over entire graphs is that

the diversity of graph structures and the skewed node degree distribution makes it
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so infeasible to directly parameterize node neighborhood in any trivial formulation.

Given the O(2N
2
) possible node connectivity scenarios on a graph of N nodes, is

it technically impractical to search the optimal node connectivity that best serve

the training of network. And different from [24] To make graph trainable, we grant

data the capability of self-construction of graph structure by training parameterized

distance metric of nodes, so that the graph Laplacian itself becomes trainable and

adaptive along with data. Given the learned distance metric weights M , we construct

the residual graph, as supplement to the original graph, using node features X for

each graph sample. Since the new spectral graph convolutional layer was executed

on learned graph Laplacian matrice, we name the new layer as Spectral-based Graph

Convolution on Learned Laplacian ( a.k.a. SGC-LL layer). And the convolutional

operator of SGC-LL layer is written as below :

gθ(Λ) ∗X =
K−1∑
k=0

θkTk((1− α)ζ(X,Γ) + αL)X, (2.7)

, where the function ζ(X,Γ) is to generate the new learned graph, in terms of graph

Laplacian L′. The model is going to learn L′ from the input node features X with the

training parameter Γ. And Γ denotes any parameters to form the new graph based on

input node features X. α, with range [0, 1], is the trade-off coefficient that balance the

influence of original graph Laplacian L and the new graph Laplacian from ζ(X,Γ).

When α = 1, the graph Laplacian and entire convolutional function is regressed to

ChevNet [21] as shown in Eq 2.3.

Because the convolution filter with K-hop neighbor coverage is still localized, at

least not covering entire graph, and it has to aggregate neighbors attributes following

the path defined by edge, either from original graph or the residual graph the network

inferred. Therefore, to obtain the high-level representation of graph, we still need to
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Figure 2.3: Illustration of execution of two consecutive SGC-LL layers.

stack consecutive convolutional layers to enable messages pass along connected edges

during the training.

From Figure 2.3, we observed that at the output of first layer, the features

would be passed to next layer, but the residual graph stay. And at following layer,

the residual graph L′, denoted as red lines, would be constructed again with the input

features (i.e. the output of last layer). Because we argue that each layer is to only

produce representation at certain level of granularity, the residual graph is supposed

to discover the hidden structures that only affect learning of graph representations

at the same level. They may not work at other layers or may even mislead network

fitting. And more importantly, we try to avoid propagating some mistaken edges
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given by residual graph at earlier layers to later layer, by giving network a chance to

fix unsuitable residual graph. Actually, I attempt to use similar architecture proposed

in ResNet [32] to bridge previous residual graph to those in later SGC-LL layers, but

it turns out not helping anything but worsen the performance.

2.3.2 Learning Graph via Metric Learning

As discussed in section 2.3.1, the early baseline Spectral CNN was trained over

fixed graph and parameters are graph-related. Therefore, for each individual graph

structure, we need a set of parameters trained for it. This results in unacceptable

training complexity for graph data, e.g. organic compounds, whose molecular graph

are of diverse substructures and no graph sampling or coarsening is suitable. To

modeling the graph structure with a reasonably small group of parameters is our

objective. Therefore, we propose the use distance metric as trainable parameters

and use metrics and node-wise feature vectors to reconstruct graph when necessary

during training. This is to avoid building parameter tensor of graph size. In this

setup, the learning complexity is only linear to node feature dimensionality. Of couse,

it definitely increases computational complexity, since a graph construction step is

inserted before executing graph convolution operator. Inspired by how we construct

initial graphs for data without intrinsic graph given, we use node-wise distance as

indicator function of appearance of edge, to reconstruct graph based on node features

and distance metric.

For graph structured data, the Euclidean distance is not necessarily the optimal

metric to measure node-wise similarity [26]. In recent articles of metrics learning, the

algorithms were divided into supervised and unsupervised learning. The optimal

metric obtained in unsupervised fashion is to minimize the intra-cluster distance and

also simultaneously maximize the inter-cluster distances. For labeled datasets, the
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optimal metric is the one that minimizes the learning loss [33]. The generalized

Mahalanobis distance between two nodes (xi, xj) is formulated as:

Di,j

√
(xi − xj)TM(xi − xj). (2.8)

where M is the symmetric positive semi-definite matrix, therefore, it could be decom-

posed as M = WdW
T
d . And the dense transform matrices Wd ∈ Rd×d∗ , converting

input features X to the manifold in which the Euclidean distance still serve. And

trainable matrices Wd are the only parameters to learn at SGC-LL layers. if M = I,

Eq 2.8 reduces to the Euclidean distance (i.e. L-2) distance. Then, we normalize the

distances given in Eq 2.8 via Gaussian kernel:

GD
i,j = (

1

2πvar(D)
)exp(−

D2
i,j

2var(D)
). (2.9)

To make computations efficient, a sparse graph is required. Therefore, threshold-

ing on GD is to only keep the significant connections in constructed residual graph

with adjacency matrix: Ar = thred(GD(Wd)). Therefore, Ar(W
d) is a differentiable

function of distance metrics parameter W d. In training process, the gradients back-

propagated from training loss update the distance metrics W d, and then, in next

forward-pass, the residual graphs in batch will be reconstructed using the updated

W d. By doing metric learning before building residual graph, we are supposed to

obtain the optimized metric parameters Ŵd, applying which onto the node features is

able to form the substructures that better serve the fitting of graph node embedding.

Finally, the objective of searching optimal graph structure is transfered to a new

problem of searching the optimal distance metric where l2 similarity of node pairs

are measured.
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2.3.3 Residual Graph and Original Graph

In real applications, some graph data come with their intrinsic graph topological

structures, such as organic molecules. Molecule, when modeled as molecular graph,

has its atoms as graph nodes and the chemical bonds as graph edges. If chemical

formula indicates an edge connecting two atoms {i, j}, then on adjacency matric of

corresponding graph there would be value 1 at coordinates {i, j} indicating the edge.

For molecular graphs, all the chemical bonds are justified by chemical experiments or

observations, therefore there is no doubt on the value of those structure on learnning

graph representation from molecular graph. However, for some other data, on which

GCNs is about to perform, there is no intrinsic graph structure derived, e.g. 3D

point-cloud data. Under these circumstances, we will need to construct initial graph

before feeding the data to any GCNs. Besides above extreme cases, it is mostly

likely that the original graphs, either derived from domain knowledge or obtained via

graph initialization, may fail to effectively unveil the hidden substructures among the

remote nodes on original graphs. The finite, fixed receptive field and the potentially

high computational cost prevent one GCN layer from aggregating nodes attributes

from entire graph or a flexible neighborhood.

Use chemical compounds and property prediction as example, the initial graph

given by SMILES sequence of compound does not disclose anything on toxicity di-

rectly. The effective representations of toxicity on the compound are supposed to

be composed of those atoms, while not necessarily supported by the bonds from the

original graph. If learning on original graphs, it may be difficult to learn the opti-

mal representations. Therefore, we introduce a so-called residual graph, defined as a

supplemental graph, patching the substructure missing on original graph that may

assists the learning. The residual graphs have the identical node number as original
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graph. To get rid of the curse of varying graph size, in SGC-LL layer, the distance

metrics are the only parameters to learn.

2.3.4 Re-parameterization on Feature Output

At a classical convolution layer, given the input feature as H i×W i×di and the

dimensionality of output feature as H i+1W i+1di+1, each dimension of output features

is the sum of all feature maps of last layer i, each of which is convolved by a kernel

independently. Therefore, each layer has di × di+1 kernels to learn. It means that

the resulted features are not only built upon the neighbor vertices, but also depend

on the rest of intra-vertex features from input. However, on graph convolution, it is

not theoretically explainable to construct and learn a separate topological structure

(graph) for each feature dimension. In order to construct the mapping of both intra-

and inter-vertex features, at SGC-LL layer, we introduce a linear feature transform

matrix and bias vector applied on the output features. The re-parameterization on

output feature is formulated as:

y = gθ(Λ) ∗ x '
(
W (

K−1∑
k=0

θkTk(ζ(X,Γ) + αL)X) + b

)
(2.10)

, in which the linear transformation matrix W ∈ Rdi×di+1
and the bias vector b ∈ Rdi+1

are trained together with the distance metrics Wd. In total, at each SGC-LL layer,

we have parameters up to the scale of O(d), where d = max di, di+1, dim and dim is the

feature dimension of manifold in which Euclidean distance measured for each node

pair. As we note that those feature dimensionalities are all independent of graph

node count and node degree. At (i + 1)th SGC-LL layer, the spectral filters will be

built in another feature manifold with different metrics.

Algorithm 6, represented as Eq 2.10, elaborated the major composition of SGC-

LL layer. Using iteration is based on ease of narrative. Besides the Eq 2.8 and Eq
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input : Graph Data: input node feature vectors X = Xi, graph

Laplacians L = Li; Parameters: Wd,W, b, α

output: Output node features Y = yi

1 for {xi, Li} ∈ {X,L} do

2 Air ← Eq 2.8, Eq 2.9;

3 Lir = IN −D
− 1

2
r AirD

− 1
2

r ;

4 L′ = (1− α)L+ αLir;

5 yi ← Eq 2.3;

6 end

2.9) were not explicitly expressed in batch-mode, while it is trivial to make data

processed in terms of batch of graph. When comes to the implementation, the for-

loop in Algorithm 6, with no loss of generality, could be replaced using the batch-wise

tensor multiplication operators given by mainstream deep learning framework API,

e.g. PyTorch and Tensorflow.

2.4 AGCN Architecture

The new graph convolutional network introduced in [1] is named as Adaptive

Graph Convolution Network (AGCN), because SGC-LL layers are designed to effi-

ciently learn hidden topological structure, i.e residual graphs, which is adaptive to

both data and context of learning task. Besides SGC-LL layer, AGCN also com-

prises graph pooling layer, to squeeze receptive field, and graph gather layer [34], to

aggregating all nodes into single vector as graph representation. In this section, we

introduce other layers and motivation of utilizing those graph network layers in the

proposed graph-wise classification network (Figure 2.4).
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2.4.1 GCN Layers

Besides graph convolutional layers, to build a network that learn graph repre-

sentation effectively, other sort of layers are also needed for graph data. For classic

CNNs, there are pooling layers, fully connected layer, etc. [22, 34, 26, 35] proposed

many GNN layers, e.g. graph pooling, graph coarsening, graph gather layers, and

proved their effectiveness on learning robust graph representations.

Graph Pooling. The graph pooling operation is conducted feature-wisely. For

node feature vector xi, at the i-th vertex of graph, the pooling operator replaces the

j-th feature value, xi(j), with the maximum at the j-th feature among i-th vertex and

its neighbors vertices, xi(j) = maxn∈Ni
xn(j), if the layer is a max-pooling layer. If the

layer is for avg-pooling, xi(j) = meann∈Ni
xn(j). In AGCN, due to graph structure is

adaptive and being updated along training progress, the neighborhood of i-th vertex

is as well changing w.r.t the update of graph adjacency Ar.

Graph Gather The graph gather layer sums up all the vertex features along the

feature dimension as the final representation of graph data. The output tensor at

gather layer for a batch of B graphs is of shape (B× d), where d is the feature cardi-

nality of vertex representations. It will be used as input for a graph-level classification

or regression. Without a graph gather layer, the AGCN is also able to be trained

and used for vertex-wise inference tasks. Training is executed with given labels on

vertices or in a weakly-supervised fashion by replying on graph-level label alone. The

vertex-wise predictions include graph completion and many predictive tasks on social

networks.

Bilateral Filter The purpose of using a bilateral filter layer [35] in AGCN is

to proactively prevent over-fitting, consider the data scales of graph data are not

comparable to other machine learning problems, e.g. ImageNet. Residual graphs

definitely push the model to a better fitting to training tasks, while, at the risk of
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Figure 2.4: AGCN example: graph-wise classification.

over-fitting. To mitigate overfitting, we introduced a revised bilateral filtering layer

to regularize the activation from SGC-LL layer by augmenting the spatial locality of

updated graph Laplacian L′. We also introduced batch normalization layers to avoid

gradient explosion or vanishing.

2.4.2 Network Configuration

The AGCN consists of multiple consecutive layer combos, the core layer of which

is the SGC-LL layer. See Figure 2.4 as an example of AGCN for graph-wise classifi-

cation. Besides graph-wise classification, other classification tasks include edge (con-

nection) prediction and graph-node classification. The former is to give a predicted

label on each edge of graph, and a good application for such network is prediction of

protein interface based on GCNs [36]. The latter is to execute classification for each

node on graph, and this is very useful for graph clustering or segmentation [37, 38].

Since a residual graph Laplacian is learned at SGC-LL layer. At the graph pooling

layer that follows, the updated graph Laplacian L̂i, of sample i, will replace Li when

finding neighborhood Ni until next SGC-LL layer. As last convolutional layer trans-

formed features, at next SGC-LL layer, the residual graphs have to be reconstructed

from the scratch. While, the learned L̂i will become the ‘original’ graph Laplacian L

at following layers.

Padding Because for data like organic compounds, local sub-structures are de-

cisive on chemical properties, e.g. toxicity. For instance, aromatic hydrocarbon is
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usually strongly toxic. However, if the hydrogen (H) atom was replaced by methyl

group (-CH3), the toxicity of compound would be significantly reduced. Therefore,

graph coarsening or feature dropping/averaging will damage the completeness of infor-

mative local substructures, resulting in wrong predictions. Therefore, when preparing

data, we pad X and graph Laplacian L tensors to as large as that of the maximum

node per graph in the dataset. Then, when used at layers, we remove the zeros padded

to X,L and execute the calculations, e.g. Algorithm 1, on graphs of original size. By

doing this, we maintain a unified batch shape required by deep learning frameworks,

e.g. PyTorch, without pruning any decisive local structures on graphs. While, data

padding and recovery lead to extra computational cost, which is linear to graph size

N .

To make predictions toward particular tasks, a classifier or a regressor need to be

added on top of output graph embeddings. We can either simply do logistic regression

or insert a fully connected layer before classifier. In experiments, we add one linear

layer between last graph layer and the softmax. Besides, adding a linear layer make

AGCN adaptable to a multi-task scenario, making the AGCN to deliver multiple

predictions for different tasks in one-shot. We will present several experiments about

using AGCN in multi-task learning.

2.5 Experiments

2.5.1 Baselines

In experiment session, we compared the introduced AGCN with the state-of-

the-art GNNs. [8] that constructs a spectral graph kernel by linear B-spline interpola-

tion, is referred as Spectral CNN. Neural fingerprint [22], known as NeuralFP (neural

fingerprint), is the spatial-based graph convolutional neural network particularly de-
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signed for molecular graphs. It uses kernel constructed in spatial domain for each

node cluster grouped by the same node degree. We refer to the spectral graph convo-

lution equipped with a K-localized spectral filter as GCN [10], in which a Chebyshev

approximation is applied for a fast evaluation of consecutive tensor multiplications.

Therefore the network proposeed in [10] is also known as ChevNet. Using ChevNet

as one of baseline is to demonstrate the additional knowledge learned by the residual

graph. Graph attentional network (GAT) [20] is also feasible for learning embeddings

on molecular graphs, due to its definition that has no prerequisites on graph topol-

ogy. As opposite, to enable the use of [8, 10] for molecular graphs of different scales

and structures, a graph pruning is inevitable, sacrificing performance. Besides, graph

isomorphism network (GIN) [39] is introduced as a GNN that learns node embedding

via MLP and the aggregated node and edge feature vectors. The graph-level repre-

sentation of GIN is given by averaging the node embeddings. Those baseline models

included for the experiment of molecular graph classification are more or less feasible

with diverse graph inputs of varying node count and topological structure. Because

the methods, e.g. NeuralFP, GIN and GAT execute the feature aggregation within

the first-order neighbors, and parameterized transforms were built and initialized ei-

ther for entire nodes or for node clusters [22]. Their over-localized, non-parametric

kernels excluded most topological structure of molecular graphs from modeling. And

that is the reason that AGCN outperformed the baselines on the drug classification

benchmarks.
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2.5.2 Dataset

2.5.2.1 Molecular Graph

The datasets used in this experiment are all about drug property prediction.

Given labels obtained from the extensive lab or clinical experiment over a long list of

organic compounds, it is possible to learn some patterns from the compounds related

to certain predefined biochemical properties, such as toxicity and solubility. With the

open-sourced cheminformatics software RDKit [40], it is straightforward to convert

any compound to its corresponding graph representation, molecular graph, which

consists of node list, edge list, node features and edge features. The node feature

extracted from molecular atoms: atomic number, atom degree, formal charge, chiral

tag, number of Hs, hybridization, the Boolean indicator on aromatic and the scaled

atom mass. And the edge features include a 4-digit one-hot vector to represent bond

type, the indicator on bond aromatic, as well as two Boolean features that determine

if bond is conjugated or in-ring.

Downstream task datasets we utilized in experiment are 4 multi-task, binary

drug classification dataset from MoleculeNet [41]. They are:

1. Tox21. Toxicity clinical data with labels on 12 tasks corresponding to different

biological syndrome. Each label represents an observation toward one property

of the compound.

2. oxcast. Another toxicology measurement of drugs collected from the same ini-

tiative as Tox21, providing toxicology experimental results for a large library of

compounds based on in vitro high-throughput screening. It offers 617 experi-

ments on over 8K compounds.

3. SIDER. A dataset that contains marketed drugs and adverse drug reaction

(ADR) with 27 group of organ classes [42].
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(a) bike

(b) pedestrian

(c) tree

(d) truck

Figure 2.5: Example of PointCloud data from Sydney urban dataset.

4. ClinTox. Collected data on drugs approved by the FDA and the drugs that

failed clinical trials for toxicity reasons. The dataset has two binary labels: 1)

clinical trial toxicity pass or fail; 2) FDA approval or not [43].

2.5.2.2 Point Cloud

Point cloud is another important 3D geometric data format widely used in

computer graphcis and autopilot system with LiDAR. Since point cloud or mesh are

usually not deployed in regular format, previous works simply transform them back
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to regularly shaped voxel grids [44]. Some of them even sample images as views

to represent the 3D mesh. While, the data transformation and sampling definitely

introduce extra noise to data itself and render voluminous data, which both harm

downtream training tasks. In this experiment, we demonstrated how AGCN works

with point cloud as input. And the comparison showed that our method is able to

execeed other GCNs on classifying objects represented as point cloud.

The Sydney urban point cloud dataset contains street objects scanned with a

Velodyne HDL-64E LIDAR, collected in the CBD of Sydney, Australia. There are 631

individual scans of objects across 26 classes. Due to the actual size and shape of object

highly differ, the numbers of received point for different objects also vary (see Figure.

2.5 for illustration). Before feed point sets to previous CNNs, we need to unify the

size by downsampling. Coarsened samples must lose part of structural information.

While, the AGCN overcomes such drawback by accepting raw point sets of different

size. Previous graph convolution share an identical kernel, but, the shared one may

mix up features on points regardless of the actual distance. While, the AGCN is able

to do convolution exactly according to the spatial relations. The initial graphs of

point cloud were constructed by agglomerative clustering. The cutting-edge method

on point set recognition, PointNet [44], cannot handle varying sized point cloud data.

2.5.3 Experimental Result

The baseline models and AGCN were trained with the identical training dataset

and tested over the same dataset. To measure the classification accuracy, RoC-AUC

was chosen as the metric for comparison. Because for the datasets such as Tox21,

there are 12 individual classification tasks, the numbers presented are averaged RoC-

AUC of each task. To remove randomness, we also applied 4-fold cross-validation

and averaged the numbers. From numerical results listed in Table 2.1, it is obvious
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Tox21 Toxcast ClinTox SIDER
No. graph 7831 8575 1478 1427
No. task 12 617 2 27
NeuralFP [22] 0.7341 0.6384 0.7469 0.5525
GraphSage [27] 0.7470 0.6335 0.5924 0.6040
ChevNet [10] 0.7481 0.6739 0.7573 0.5914
GAT [20] 0.7540 0.6460 0.5886 0.6090
GIN [39] 0.7480 0.6340 0.5804 0.5730
AGCN [1] 0.8016 0.7033 0.7688 0.5921

Table 2.1: Class-average ROC-AUC on Four Molecular Graph Datasets.

that the AGCN outperformed other four baselines on 3 of 4 datasets. While, at

SIDER dataset, GAT gave the best classification accuracy. Considering that GAT

is constructed using complete original graph, therefore, there is chance that GAT

outperformed AGCN on some tasks. Given that AGCN has more parameters to train,

it is likely to have under-fitting issue on a small dataset like SIDER [42]. Recently,

researchers also found that GNNs could benefit from a self-supervised pre-training

before fine-tuning towards classification tasks [45]. Table 1 also includes RoC-AUC

of GAT and GIN tested over the aforementioned 4 molecular graph datasets reported

in [45]. It showed that, even with well-designed pretrain task, their performances

were still worse than AGCN, who did not experience pretrains, on 3 of 4 tasks. And

because of more parameters introduced, AGCN had more significant advantage on

relatively larger datasets which the model was able to fit better.

As to the multi-task classification results from Table. 2.1, we notice that the

AGCN significantly boosted the accuracy on both small and large datasets, compared

other GCNs [22, 10]. For the massive 617 tasks from Toxcast data, the performance

still got lifted by around 3% on average. Molecular graph, directly given by chemical

formula, is the intrinsic graph for compound data. They come with high variety in

both topological structure and graph size. The spectral kernel in Spectral CNN [8]

35



can only connect 1-hop neighbor (nearby vertex directly connected by edge), so it

is over-localized. This becomes an issue when dealing with molecules, because some

important sub-structures of molecular graph are impossible to be covered by over-

localized kernels. For example, centered at any carbon atom of Benzene ring (C6H6),

the kernel at least needs to cover the vertices of distance dG <=3, if you want to

learn representation from the ring as a whole. The K-localized kernel in GCN [10]

is no longer too local, but the kernel is still assumed to be shared among data. It is

fine if the molecules in training set share many common sub-structures such as OH

(carbonyl group) and C6H6 (Benzene). However, if the molecules are from different

classes of compound, GCN may not work well especially when data from some type

are short. This is probably why the GCN has similar performance as AGCN on

large datasets such as the Sider, but it dramatically worsened on small datasets, e.g

Delaney and Clintox.

The AGCN is able to handle molecular data in a better way. The adaptive graph

allows input samples to have unique graph Laplacian, so each compound indeed has

its unique convolution filter customized according to its unique topological structure.

Because of this capability, we can feed the network on the original data (atom/edge

features and molecular graph) without any loss of information. Furthermore, our

SGC-LL layers train the distance metric minimizing predictive losses of specific tasks

together with other transform parameters. Therefore, when it converged, at each

SGC-LL, we would find the optimal feature space and distance metric to construct

the graph that best serve the task, e.g. toxicity and solubility prediction. This learned

graph may contain new edges that did not exist in original molecular graph.

PointNet [44] has overwhelmingly better performance in general on pointcloud

classification, while it has a much deeper network architecture of longer training time.

In this experiment, the original node feature are coordinates {x, y, z} of each point
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All Classes Building Traffic Light
Spectral CNN [8] 0.6523 0.6754 0.5197
NeuralFP [22] 0.6350 0.8037 0.5344
ChevNet [10] 0.6657 0.8427 0.7417
AGCN [1] 0.6942 0.9906 0.8556

Table 2.2: Average ROC-AUC on Sydney Urban PointCloud Datasets.

at LiDAR receiver. For baselines, we compared AGCN with other GCNs [8, 22, 10]

which are widely used for graph classification tasks. In general, spectral-based GCN

outperformed spatial GCN on pointcloud data. This was mainly because the graph

was initialized via k-mean clustering is not good enough to represent the intrinsic sub-

structures from pointcloud. Due to the viewpoint of LiDAR with respect to detecting

object, some topological close points were somehow separated remotely in original

pointcloud data. [22] is only able to aggregate first-order neighbors, therefore, its

performance get worsened by the poor graph initialization. Spectral-based methods

is able to draw kernel with entire graph included, therefore it is more robust when

local substructures get messed up by graph initialization, however, they are unable

to correct those mistaken edges, because their graphs are fixed during training. Only

AGCN [1] is able to work on learned residual graph which may fix the wrong initial

graph. From Table 2.2, AGCN has 3% lift on average ROC-AUC over 26 classes. Es-

pecially on class of building and Traffic light, it showed 15% and 11% gain, compared

to the best of other GCN competitors.

2.5.4 Conclusion

We proposed a novel spectral graph convolver (SGC-LL) that work with adap-

tive graphs. SGC-LL learns the residual graph Laplacian via learning the optimal

metric and feature transform. As far as we know, the AGCN is the first graph CNN

that accepts data of arbitrary graph structure and size. The supervised training of
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residual Laplacian drives the model to better fit the prediction task. The extensive

multi-task learning experiments on various graph-structured data indicated that the

AGCN outperformed the state-of-the-art graph CNN models on various prediction

tasks.
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CHAPTER 3

Attentional Adaptive Graph Convolutional Network

3.1 Introduction

After transformer and multi-head attention scheme proposed in [46], researcher

have achieved some successful trials of introducing attention to graph neural net-

works (GNNs). GAT [20] is one of them that built graph convolutional kernel based

on attention value pairs. GAT is treated as a variant of spatial-based convolutional

layer, while it only preseve the first-order neighborhood information on graph. More

importantly, the attention head is learned for each neighbor pairs with direction from

each neighborhood node to center node. And the attention values is generated after

passing a single Fully Connected (FC) Layer with transform weight a and LeakyReLU

as activation function. After stacking several GAT layers, the network is capable of

learning high-level graph repesentation. However, this attention scheme is still con-

structed to model the so-called node-to-node relationship within on over-localized

receptive field. It cannot easily elaborate the node-to-graph attentions, which is cru-

cial when aggregating node features to graph level at places like Graph Gather layer

before softmax. At graph gather layer of AGCN [1], the gathering operation simply

sum up the features from entire graph without considering the ordering or the weight

allocated on each node. In the chapter, we attempted to propose a node-to-graph

attention scheme that calculate the task-specific attention value of each node toward

the graph. And we named the new model as Attentional AGCN, because it reused

the backbone network from AGCN and the attention net, that generate node-wise at-

tetion values, consists of SGC-LL layers [1]. To verify the effectiveness of Attentional
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AGCN, we applied it to sophisticated image understanding problem, i.e. whole slides

image (WSI) based survival analysis that require the model to be able to extract

patch-level local features and also to efficiently rollup them to image level with topo-

logical information preserved. From what we know, this is the first trial to predict

survival risk based on raw WSIs, and in the experiment section of the chapter we

demonstrated the additional performance gain delivered by topological structures of

patches alone.

Survival analysis is generally a set of statistical models where the output is the

elapsed time until a certain event occurs. The event can range from vehicle part failure

to adverse drug reaction. Clinical trials are aimed to assess different treatment regimes

with the biological death as primary event of interest to observe. An accurate estimate

of survival probability provides invaluable information for clinical interventions. The

Cox proportional hazards model [47] is most popular in survival analysis. However,

the classical Cox model and its early followers overly simplified the patient’s survival

probability as linear mapping from covariates. Recently, Katzman designed a fully

connected network, DeepSurv [48], to learn the nonlinear survival functions. Although

it was showed that neural networks outperformed the linear Cox model [49], it cannot

directly learn from pathological images. Along with the success of convolutional

neural networks (CNNs) on generic images, pathological image, as well as CT and

MRI [50], have become ideal data sources for training DL-based survival models.

Among them, whole slides image (WSI) [51] is one of the most valuable data formats

due to the massive multi-level pathological information on nidus and its surrounding

tissues.

WSISA [52] was the first attempt to predict survival risk of cancer patients

purely based on whole slide pathological images (WSIs). To have a efficient approach

on WSIs, a patch sampling preprocessing on WSIs is inevitable, and without any
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validated prior knowledge, the patch sampling is random. However, their DeepCon-

vSurv model was trained on clustered patch samples separately. Consequently, the

features extracted were over-localized for WSIs because the receptive field is con-

strained within physical area corresponding to a single patch (0.063 mm2). The

pathological sections of nidus from patients contain more than the regions of interest

(e.g tumor cells), therefore, the representations from random patch may not strongly

correspond to the disease. Furthermore, it has been widely recognized that the topo-

logical properties of instances on pathological images are crucial in medical tasks, e.g.

cell subtype classification and cancer classification. While, WSISA is neither able to

learn global topological representations of WSIs nor to construct feature maps upon

given topological structures.

Graph is widely employed to represent topological structures. However, model-

ing a WSI as graph is not straightforward. Cell-graph [53] is infeasible for WSIs due

to its huge number of cells and the many possible noisy nodes (isolated cells). The

intermediate patch-wise features are a good option to construct graph with, balancing

efficiency and granularity. However, applying CNNs on graph-structured data is still

difficult.

Overall, in the chapter we introduce an end-to-end graph convolutional neural

network (GCN) based survival analysis model (DeepGraphSurv) where global topo-

logical features of WSI and local patch feature are naturally integrated via spectral

graph convolution operators. The contributions are summarized as:

1. learn both local and global representations of WSIs simultaneously: local patch

features are integrated with global topological structures through convolution;

2. task-driven adaptive graphs induce better representations of WSI;

3. introducing graph attention mechanism reduces randomness of patch sampling

and therefore increases model robustness.
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As far as we learn, DeepGraphSurv is the first end-to-end GCN based survival pre-

diction pipeline. It only utilized WSIs as input data and output survival risk directly.

Extensive experiments on large-scale cancer patient WSI datasets demonstrated that

our model outperformed the state-of-the-art models, including other GNNs, by pro-

viding more accurate survival risk predictions.

3.2 Related Work

3.2.1 Attention on Graph

Inspired by the success of attention-only sequence-mapping networks, e.g. Trans-

former [46], and a variety of attention mechanism on natural language understanding

tasks [54, 55], attention scoring scheme was introduced to GNNs by Graph Atten-

tion Network (GAT) [20], leveraging a masked self-attentional layer that allows nodes

specifying weights to different neighbors on graph. The mask applied to node selec-

tion is where the graph structure introduced, GAT computes attention coefficients

αi,j, where an edge appears i.e. Ai,j > 0 . And the neighborhood Ni are set of node

i’s directly linked neighbor nodes. Similar to [11], GAT claimed that a stacking of

first-order aggregation renders similar effects.

αi,j = softmaxj(ei,j) =
exp(ei,j)∑
j∈Ni

exp(ei,k)
. (3.1)

Eq 3.1 shows the formulation of a normalized attention coefficient from node i on

one of its neighbor j. ei,j is the raw attention coefficient before normalization. To

learn the node-wise representations that best computes point-wise attentions ei,j,

GAT parameterize the process by first applying a linear transformation W onto node

feature vector xi and xj, and then multiplying the concatenated joint feature vector

with attention weight transform aT . And finally an activation function was applied
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on each attentional head before normalization. the complete formulation of single

attentional layer from GAT [20]:

αi,j =
exp(LeakyReLU(aT [Wxi||Wxj]))∑
j∈Ni

exp(LeakyReLU(aT [Wxi||Wxj]))
(3.2)

After obtaining the node-wise normalized attention values, the convolutional operator

is nothing but a weighted summation of neighbor features:

x̂′i = σ
( ∑
j∈(Ni)∩i

αi,jWxj
)

(3.3)

, where x̂′i is the output of layer and the summation includes center node i itself. And

note that that weight is shared with the attention value calculation Eq 3.2, making

attention and aggregation happen in the same manifold.

3.2.2 Deep Learning for Survival Prediction

Survival analysis [56] is a set of statistical inference models where the output

is the elapsed time until a pre-defined event occurs. The event can be anything of

interest, ranging from vehicle part failures to adverse drug reactions. Clinical trials

are aimed to assess different treatment regimens with biological death as the primary

event of interest to observe. An accurate estimate of survival probability provides in-

valuable information for clinical interventions. The Cox proportional hazards model

[47] is the most popular model in survival analysis. While, the classical Cox model

and its early followers overly simplified the patient’s survival probability as linear

mapping from covariates. Recently, Katzman et-al, designed a fully connected net-

work (FCN), named as DeepSurv [48], to learn a nonlinear mapping of covariates

to the representations in survival prediction. Although it showed that the neural

networks [48, 49] outperformed the linear Cox survival model, their networks cannot

directly work on pathological images. Along with the success of convolutional neural
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networks (CNNs) on generic images, pathological images, including CT [57] and MRI

[50], have become ideal data sources for training DL-based survival models. Among

them, whole slide images (WSIs) are one of the most valuable data formats due to

their massive multi-level pathological information on nidus and its surrounding tissues

[58, 53].

WSISA [52] was the first success of introducing whole slide pathological images

(WSIs) as major data source to survival prediction. Because the data size of single

whole slide pathological image is usually at gigabyte level, to have a cost-efficient

algorithm, most of existing methods on WSIs, including [58, 52], are based on a set

of patches with reasonable size, like 128 × 128, as inputs. Therefore, a patch sam-

pling on WSIs is required before running the algorithm. However, WSISA model

comprises a series of CNNs, each of which was trained with a cluster of similar patch

samples collected from all training WSIs, respectively. Therefore, the representations

extracted by CNNs were over-localized for WSIs since their receptive field is con-

strained to be less than a patch’s size equivalent to a physical area of 0.063mm2. The

pathological sections of nidus from patients contain more than the regions of interest

(e.g. tumor cells), therefore, the representations drawn from random patches may

not strongly correspond to the disease. Furthermore, it has been widely recognized

that the topological properties of instances on pathological images are crucial for a

wide range of medical tasks, including cell subtype classification and cancer predic-

tion. While, WSISA is neither able to learn any topological representations from

WSIs nor to construct feature maps upon given topological structures. Therefore,

the proposed GCN based pipeline is attempting to build graph representation with

patch-level topological structure preserved.
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Figure 3.1: Attentional- Adaptive Graph Convolutional Network.

3.3 Methodology

3.3.1 Attentional AGCN

GAT [20] computes pair-wise attention coefficients between a node and its neigh-

borhood using node features and learned transformation {W,a} shared across nodes.

Given that the parameter scale of attentional layer is irrelevant to graph size and

that GAT only consists of attentional layers, similar to AGCN, GAT is also able to

accept graph data of diverse structures. However, attentional layers in GAT only ag-

gregate features from attended neighbors, i.e. the first-order vertices. Therefore, the

representational capability of GAT is weaker than SGC-LL layers. Because, within

a SGC-LL layer there are up to K-hop neighbors included in convolutional kernel,

equivalent to a receptive filed of size (2K + 1) × (2K + 1) on grid. In practice, we

set K = 2. While, GAT’s attentional layers aggregate neighbors with an equivalent

3 × 3 kernel on grid in practice, which is much smaller than tthe receptive field of

SGC-LL. To enable aggregating features from remote nodes to graph level, GAT has

to stack more layers, even though each layer GAT has more lightweighted calculation.

To utilize the advantage of SGC-LL, we use a stack of SGC-LL layers to construct a

fully graph convolutional network as attention network, which is to give a prediction
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of node-wise attention coefficient ei∀i ∈ V,G(V,E). One simple difference between

SGC-LL in attention network and those in AGCN backbone is the output feature

dimensionality is 1, instead of d′ which is the length of graph representation. At

last, softmax operator would normalize the attentional coefficients and have their

summation as 1 on each graph.

y =
∑

i∀V,G(V.E)

αiẋ
′
i (3.4)

The Figure 3.1 illustrated an example of attentional AGCN model consists of

two parallel components: AGCN and attention network. The former AGCN is to give

graph representation and latter is to learn weight on each node. In our setup, we did

not squeeze the size of input graph or downsample graph nodes or their neighbors.

After both graph representation x′i and normalized node-wise attention values αi are

both learned, a dot-product would be applied with them two to give a weighted

gathering of node features and output a final graph representation y (see Figure 3.4).

3.3.2 End-to-end Survival Framework: DeepGraphSurv

Medical image seems a more direct observation compared to other formats of

patient data toward an accurate survival time prediction. While, prior to CNNs,

medical imaging analysis is based on handcrafted features, irrelevant to survival. On

positive side, it has less chance of overfitting, but its accuracy and robustness are

both unsatisfactory. CNNs are proved to be able to generate more comprehensive

and generic representations of medical images. However, due to the tremendous

data scale of whole slides pathological images (WSIs), no existing CNNs are able to

accept the WSIs without down-sampling or cropping. State-of-the-arts of CNN based

survival data models were all trained with sampled patches losing the informative
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Figure 3.2: DeepGraphSurv: End-to-end Graph Neural Networks (GNNs) based Sur-
vival Prediction.

global topological structures among patches, which is crucial for making decision for

the entire WSI.

Graph is widely employed to represent topological structures among entities.

However, modeling a WSI as graph is not straightforward. Cell-graph [53] is infeasible

for tasks on WSIs due to the huge number of cells included and that many of them

are possibly noisy nodes, i.e. isolated cells. To control the complexity of overall

approach, the granularity of our model is set at patch level, for local substructure

smaller than patches, we assumed that the CNN for patch feature extraction is able

to represent them and include in patch embedding. To construct graphs for a WSI,

patches become graph nodes, and the graph edges were to be built from the scratch.

The extracted patch embeddings are, therefore, the original node features, when

constructing node-wise connections using methods like clustering. Given a cluster,

we set an edge appear on any two nodes belong to the same cluster. Not all sampled

patches will be used. For quality assurance purpose, we may have to dump some

patches drawn from the marginal areas in which few cells are included. The extensive
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cleaning preprocessing was done via a visual check by professionals. Therefore, the

cardinality of resulted patch samples per graph differs. Namely, the graphs that

represent WSIs are of different number of nodes. In our experiment, vertex features

are generated by the VGG-16 network pre-trained on ImageNet [59]. Due to the lack

of patch labels, we cannot fine-tune the network on WSI patches. We will introduce

how the proposed graph CNN model mitigates this deficiency in next session. The

graph edges were initialized by thresholding the Euclidean distances between all patch

pairs. The distance was calculated using the 128-dimensional node features that were

first generated by a VGG-16 pre-trained network and then compressed by principal

component analysis (PCA) [60].

After graph is constructed, with minor change on output dimension, the SGC-

LL layer is able to generate an attentional mask over graph, equivalent to the impor-

tance of each graph node in final graph representations. With a similar architecture as

AGCN proposed in [1], we created a graph attention network that comprises a stack

of SGC-LL layers, parallel to the AGCN that aimed at graph embedding learning,

to learn the normalized node-wise attentional coefficients. The output of the graph

attentional mask is about to be applied in the final weighted gather layer, elaborated

in Eq 3.4.

As shown in Figure 3.2, it elaborated the proposed end-to-end survival predic-

tion pipeline, named as DeepGraphSurv [2]. It includes several components: patch

sampling on WSI, feature extraction and compression (PCA), graph construction,

graph convolutional network and partial likelihood as loss function. Patch sampling

first converts a WSI into a bag of patches, each of which then get represented as

a 4096-dimensional embedding from a pre-trained VGG-16 network, after PCA, the

node feature vector becomes 128-dimensional vector. Finally, a graph was built us-

ing the short node embedding. Different from previous deep learning-based survival
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models which simply act as feature extractor [52], ignoring patch-wise geographical

relationship.

DeepGraphSurv is able to directly generate survival risks. The original propor-

tional hazard function:

λ(t/yi) = λ0(t)exp(yi) (3.5)

, where yi ∈ Y = {y0, · · · , yM−1}, the M graph samples (WSI) in batch. λ0 is the

base hazard value, while there is no need to figure out the exact value, since the

loss function is based on the normalized partial likelihood for one event. And this

event in the context of our research is the death of patient i at time ti, where ti is the

censorship time of patient i when the patient i is still alive at time ti. Since eventually

we focus on predicting the ordering of patients’ death risk, therefore the likelihood of

risk for patient i:

Li =
λ(ti/yi)∑

j∈{j:tj≥ti} λ(tj/yj)
=

λ0exp(yi)∑
j∈{j:tj≥ti} λ0exp(yj)

(3.6)

, which is the loss function used in DeepGraphSurv pipeline. The censorship time

tj ≥ ti, then patient j’s risk becomes part of denominator in Eq 3.6, because we

need to minimize the risks from those patients who stay alive after censorship time

ti and maximize the risk of patient i at censorship time ti. The actual loss function

for a batch of patients (WSIs) is the negative Cox log partial likelihood for censored

survival data as below [56]:

L(Y ) = log
M−1∏
i=0

Li =
∑

i∈{i,Si=1}

(
− yi + log

∑
j∈{j:tj≥ti}

exp(yj)
)

(3.7)

, where Si and ti are respectively the censor status and the survival time measurement

of patient i. Eq 3.7 is evaluated in batch-wise, since the ordering has to be evaluated

with a batch of samples. {yi, yj} are the risk values generated by DeepGraphSurv

for graph sample {i, j}. The penalty is generated by those sample (patients) whose
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survival time tj ≥ ti, while his risk yj is significantly higher than yi. During the

training, the graph embedding x′i and the survival-related residual graph A′ of WSI

patches are accessible at each SGC-LL layer. And the later layers usually provide

more high-level topology-aware features about WSI. We also visualize the attention

coefficients of graph node on the actual coordinates of corresponding patch on WSI

in experiment session.

3.4 Experiment

3.4.1 Dataset

As to experimental benchmark dataset, we utilized the whole slide pathological

images (WSIs) from a generic cancer patient dataset TCGA [61], which was originally

released by The Cancer Genome Atlas project, whose research objective is to discover

correlation between genetic errors in DNA and the occurrence of 33 cancer subtypes.

We trained and evaluated the baseline models and the introduced DeepGraphSurv

over the WSIs associated with two common cancer subtypes from the TCGA dataset:

glioblastoma multiforme (GBM) and lung squamous cell carcinoma (LUSC). Besides,

NLST (National Lung Screening Trials [62]) is another medical research that em-

ployed 53, 454 heavy smokers, whose age 55 to 74 with at least 30 -year smoking

history, as the high-risk patient group for lung cancer survival modeling and analy-

sis. We also committed an experiment over the WSIs data of NLST that consists of

both squamous-cell carcinoma (SCC) and adenocarcinoma (ADC) patients and their

lung tissue images to evaluate the performance of our model on survival prediction

for patients of mixed tumor subtype. The numeric facts on the datasets in the ex-

periments are listed in Table 3.1. Some patients have multiple WSIs collected and

included in dataset, we executed models on all data and report the average prediction
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per patient. Because the constructed graphs over patches on WSI is data-specific,

not patient-specific instead. Data quality in Table 3.1 is mostly related to image

resolution. Average size of single WSI is to emphasize the challenges in experiments,

because loading these WSIs of that size to memory is already difficult.

Data Source Cancer Type No. Patient No. WSI Quality Avg. Size
TCGA LUSC 464 535 medium 0.74 Gbyte
TCGA GBM 365 491 low 0.5 Gbyte
NLST ADC & SCC 263 425 high 0.74 Gbyte

Table 3.1: The Statistics of Whole Slides Pathological Image (WSI) Datasets.

3.4.2 Baselines

The baseline models included in survival prediction experiments are divided into

two categories: classic methods and deep learning-based end-to-end methods. Clas-

sic methods, such as LASSO-Cox linear model [47], BoostCI [63] and a multi-task

learning framework proposed for Survival Analysis, called MTLSA [64] are not able

to directly output survival probability or survival time, and the regression is executed

after extracting features from the raw data, no matter the data type is text or im-

age. Therefore, the performances of classic methods largely depend on the quality of

extracted hand-crafted features from raw data. Unfortunately, they were entirely not

designed for WSI-based survival analysis, which requires extensive calculation. And

no hand-crafted features are designed particularly for images at the scale of WSI.

Therefore, to have a fair comparison, we first feed those baselines with the selected

predefined features extracted over patches by CellProfiler [65], an open-source scien-

tific software for cell image analysis. Patches on WSIs were randomly sampled, and

the local features of WSI were the averaged ones of all sampled patches. Further-
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more, we also feed the classic survival models with the WSI-level features generated

by DeepGraphSurv, in order to demonstrate the unique gain on performance brought

by the end-to-end fine-tuned topology-preserved features from the new network.

Besides classic baselines replying on pre-calculated features, we compared Deep-

GraphSurv with the cutting-edge deep learning-based survival models on WSI. WSISA

[52] is the first approach that directly works on WSI. While, training of WSISA is

expensive and unscalable. It is required to train a CNN, e.g. VGG-16, for each cluster

of patch samples. Therefore, WSISA neglected the wide-existing topological relation-

ships among the patches, which are of great value to survival analysis. As opposite,

Graph CNNs are built upon the topological structures and have recognized power of

learning structured features on graph-structured data. To demonstrate the capability

of graph feature learning over data with no intrinsic graph structure given, we add

another GCN as baseline method. We concatenate the graph representation output

by ChevNet [10] with the proportional Cox regression function to give risk predic-

tion. While, [10] executed convolution over a pre-defined, fixed spectrum kernel, lack

of adaptiveness if the graph initialization is bad.

3.4.3 Result and Discussion

As far as we know, DeepGraphSurv is the first survival model that utilizes

graph-based attention scheme. As shown in Figure 3.3, after 40 epochs of training,

the regions that comprise the patches of high attentional coefficients have correctly

highlighted the most of Regions of Interest (RoIs) corresponding to tumor-related

cell clusters. The ground-truth of RoIs were annotated by experts. The embedding

learned on those patches of high attentional coefficient will be of higher weights in the

final representation of WSI, and then if the higher coefficients predicted by attentional

network geographically coincide with the RoIs related to tumor cells, the final graph
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Model LUSC GBM NLST
LASSO-Cox [47] 0.5280 0.5280 0.4738
LASSO-Cox + DeepGraphSurv embedding 0.5663 0.5165 0.5663
BoostCI [63] 0.5633 0.5543 0.5705
BoostCI + DeepGraphSurv embedding 0.5800 0.5130 0.5716
EnCox [66] 0.5216 0.5597 0.4883
EnCox + DeepGraphSurv embedding 0.5740 0.5231 0.5742
RSF [67] 0.5066 0.5570 0.5964
RSF + DeepGraphSurv embedding 0.5492 0.5193 0.5491
MTLSA [64] 0.5386 0.5787 0.6042
MTLSA + DeepGraphSurv embedding 0.5247 0.5630 0.5573
WSISA [52] 0.6380 0.5760 0.6539
ChevNet [10] + Cox regression 0.6280 0.5901 0.6845
DeepGraphSurv [2] 0.6606 0.6215 0.7066

Table 3.2: Concordance Index (C-index) of DeepGraphSurv and the State-of-the-art
Survival Models.

representation will be consequently more tumor-oriented and more helpful in survival

prediction.

The concordance probability (C-index) is the measurement of survival predic-

tion. It is defined as the fraction of all pairs of patients whose predicted survival

times/risks are correctly ordered as all censored patients that can be reasonably or-

dered. Formulating survival order as directed graph Gt where the edge εi,j implies

Figure 3.3: Visualization of node-to-graph attention on WSI.
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survival time Ti < Tj, then C-index of graph Gt, given the risk prediction f(x), is

defined as:

is the indicator function formulated as: 1a<b = 1 if a < b, otherwise 0. f(x)

is the risk predicted by survival model for WSI x. When a patient has more than

one WSI included in dataset, we average the predicted risks for this patient before

calculating the C-index. A model who is able to more correctly order the censored

patients by the predicted survival time is supposed to have higher C-index. The C-

index result of the baseline models and the introduced DeepGraphSurv from three

experiments are reported in Table 3.2.

Testing dataset was separated from the training set to avoid data leakage. The

classic survival models, e.g. LASSO-Cox [47], failed to deliver compelling prediction

accuracy on WSI datasets, some possible explanations:

1. sampled patches are only part of a WSI given the computational constraint;

2. the data quality of patches may vary case by case.

Therefore, the features extracted from randomly sampled patches bring a noisy and

biased representation of WSIs. Moreover, the hand-crafted features offered by Cell-

Profiler are the generic descriptors of pathological images, not particularly designed

for images at the scale of WSI. Consequently, we believe it is the quality of hand-

crafted features that limit the performance of classic survival models. After feeding

the topology-aware graph embedding generated by DeepGraphSurv to classic base-

lines as input, the C-index showed a notable lift as large as 0.04 on average on NLST

and LUSC datasets. And the outcome supported our argument that the features

fine-tuned with survival labels are better representations of WSIs for survival pre-

diction purpose. However, we also observe that, due to the lower image quality of

GBM WSI data, only using the fine-tuned patch features cannot improve prediction

accuracy. Because we see that WSISA, a CNN based patch feature extractor, cannot
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beat MTLSA, which still use hand-crafted features as input. This means that, given

a low image quality, CNNs cannot always learn a better representation of image from

scratch than heuristic features, even though survival censorship labels were used as

penalty in the training of CNNs.

DeepGraphSurv generates predictions by encoding patch features with their

topological structure via spectral graph convolutions. When the patch features are

not discriminative, the topological structure among the patch instances will play a

significant role in recognition of survival patterns of WSI. This explains the additional

accuracy given by DeepGraphSurv compared to WSISA on GBM dataset, which is

of lower resolution. On other dataset of higher quality, DeepGraphSurv is able to

deliver a larger margin of gain on C-index compared to the baselines who cannot

learn anything from topological structures. The baseline GCN + Cox is the model

in which we use the graph representation learned from ChevNet with LASSO-Cox

survival regression. Compared to this baseline, on all 3 datasets DeepGraphSurv still

showed a lift, that comes from a better hidden representation disclosed on residual

graphs built upon the learned distance metrics. Due to that WSI data do not have

any intrinsic graph structures, the initial graphs constructed with the patch embed-

dings from a VGG-16 network are not guaranteed to be optimal in terms of learning

graph representations. While, DeepGraphSurv makes graph structure trainable and

adaptive in learning graph representations. Besides, the introduced end-to-end ap-

proach is able to directly generate risk prediction, the entire network including the

survival regressor are optimized jointly.

3.5 Conclusion

Survival prediction is a useful clinical intervention tool, although it cannot act

as expected in many scenarios. Efficient mining of survival-related structured features

55



on whole slide images is a promising solution of boosting survival analysis. In this

paper, we suggested to model WSI as graph and proposed DeepGraphSurv to learn

global topological representations of WSI. Instead of unsupervised graph, DeepGraph-

Surv creatively utilized a survival-specific graph trained under supervision of survival

labels. The effectiveness of our model has been confirmed by improved accuracy of

risk ranking on multiple cancer patient datasets across carcinoma subtypes.
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CHAPTER 4

Fast Regions-of-Interest Detection in Whole Slide Histopathology Images

4.1 Introduction

At our age, many hazardous infectious diseases, e.g. bird flu, and many differ-

ent kind of cancers, e.g. lung cancer, are still the top threats to our personal health

and the public sanitation as well. Automatic searching and localizing Regions of

Interest (ROIs) on histopathological images is a crucial intermediate step between

large-scale images acquisition and the computer-aided automated diagnosis that we

pursue. As the fast development of deep learning techniques and the introduction of

neural network models, e.g. convolutional neural networks (CNNs), to medical image

understanding area, we are finally able to extend the boundary of modern medical

image saliency detection, classification and segmentation [68, 69, 70]. Whole Slide

Images (WSIs) are the digitized histopathology images taken over an entire slide of

tissue, which retrains as much intact pathological information as possible. Therefore,

a typical WSI, that usually has resolution at scale of 106× 106, is 1.5 ∼ 2.0 Gigabyte

large on disk, which is thousands times larger than those images from deep learning

benchmark datasets, like MNIST [71] and CIFAR [72]. Therefore, traditional fully

convolutional networks, used to work perfectly for medical image segmentation [73],

are no longer applicable, because of the parameter scale that may explode and the

rising risk of under-fitting along with lack of labeled WSIs for training. We need a

brand-new cost-efficient solution designed especially for WSIs to handle such magnif-

icent scale of data without losing too much performance. As far as we know, there is

no existing convolutional neural networks who claim themselves to directly work on
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raw images at WSI scale without any downsampling or patching. The most popular

walk-around for extracting features from WSIs is to first sample a bag of patches over

WSIs and then train and execute inference on patches respectively. Then, aggregating

the prediction from patch level to WSI level is to give final model output. Patch-based

network [68] successfully handled classification task on WSIs, [74] enabled survival

time inference purely based on tumor tissue WSIs. Although, these models applied to

WSIs successfully saved most of computational cost by patching, they also dumped

lots of task-relevant information hidden in those patches not being sampled. Besides,

losing topological spatial information of patches after being sampled from WSI makes

predictor treat patches equally, which is obviously not the optimal strategy.

Considering the practical clinic scenarios for image detection and segmentation

techniques applied to CT [73] and MRI [?] and the associated pathophysiological

procedures, we summarized some challenging but necessary technical requirements

for any ROI detection and segmentation solutions for WSIs:

1. high time and energy efficiency. To make it scalable, the ROI detection and

localization is supposed to be accomplished within short period of time with

high recall and acceptable precision.

2. high fidelity and high trustworthiness on generated ROIs of WSI. We need to

quickly and correctly classify if a proposed ROI belongs to, at least partly,

ground truth ROIs. Because the ROI prediction may largely affect downstream

tasks, e.g. disease diagnosis decisions.

Regions of interest (ROI) could have different definition according to particular sce-

narios. In this article, we name ROIs as the local regions filled with tumor cell cluster

or other cancer-related cells such as lymphocyte. In past related works, ROI detection

and segmentation are usually treated separately as two different tasks. The former is

to quickly search and localize any suspicious regions on image according to predefined
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patterns. The output of this task may not have to be fine-detailed at pixel level, due

to computational efficiency concern, and sometimes a bounding box that surrounds,

at least partly, the ground-truth ROI is enough satisfactory. While, the latter task

is to give a pixel-accurate contour of each detected ROIs, which is significantly more

expensive. In fact, detection and segmentation are not strictly isolated, and on the

opposite, the two tasks could be combined as one under some circumstances. Many

CNNs based image segmentation models are indeed end-to-end solutions directly ex-

tract and learn hierarchical feature pyramid from raw channels of images to execute

pixel-clustering at different level of granularity. Semantic segmentation network [75]

is to obtain object detection and segmentation in single forward-pass of network. The

advantages of applying deep neural network is from treating the feature design work

as an optimization problem, and therefore CNNs are able to discover hidden represen-

tations that better serve prediction tasks than handcrafted descriptors, who are either

over-localized or not robust. The requirement on high recall rules out patch-based

WSI solutions. And patch-based methods obviously cannot handle segmentation of

entire WSIs. However, in order to directly work on WSI input, the networks either

make the receptive field of convolutional operators large enough to cover any poten-

tial region of interest, or stack more layers with relatively small kernel to aggregate

local features from entire ROI to form its high-level representations for classifica-

tion. No matter what architecture is chosen, the total count of parameter in WSI

segmentation network is going to be magnificent. Due to the expense of having qual-

ity annotation of all ROIs (i.e. tumor cells) on WSIs, the annotated ground-truths

of segmentation for training models is quite constrained and very likely not enough

to train a wide and deep network as described above that directly works on raw WSIs.

59



To work around this difficulty, in the method to be introduced, we first chose to

still rely on handcrafted features as descriptors of patches to save massive feature ag-

gregation calculations in CNNs, and in the meanwhile we also utilized the hierarchical

pyramid structures appear between feature maps of consecutive convolutional layers

of CNNs. While, different from what happened in CNNs, in the pyramid of introduced

multi-level iterative method, feature vectors of descriptor are not changed along with

level, because we did not have gradients back-propagated from loss to update feature

formations, while the spatial segmentation did get updated at different granularity

of patching. Without having ground-truth of segmentation of ROIs, we introduced

superpixel clustering as an unsupervised way to learn spatial segmentation of image,

since we do not have gradient to update the assignment of segmentations as well. At

different level granularity, we divide the entire WSI into patches of different scale,

then the introduced superpixel clustering method [4] is going to cluster patches based

on several handcrafted local textual descriptors, preserving both topological consis-

tency and appearance similarity. After superpixel constructed, we run a pre-trained

classifier, e.g. SVM or CRF, to classify superpixels represented by the averaged de-

scriptors of patches. Averaging of patch descriptors is to avoid additional difficulty

of training a classifier for superpixels of different size and varying shape. This is also

the biggest challenge for building an end-to-end fully convolutional network fed with

clustered superpixels, since the shape of input tensor to any neural network cannot

be undefined.

The main contributions of article is to decouple and reformulate ROI detection

and semantic segmentation, that requires dense annotation, into an iterative exe-

cution of unsupervised superpixel clustering and classification at coarse-to-fine level

of patching granularity. This semi-supervised approach largely replies on quality of
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superpixel clustering. To obtain better fine-detailed superpixels, we introduced a

novel topology-preserved superpixel clustering algorithm to this problem. Besides,

the approach introduced is also dependent on accurate classification of superpixels,

especially at coarser levels, because any mistaken classification of coarse superpixel

cannot be compensated in fine-grained superpixel refinement at next level of gran-

ularity. The recall of ROIs will benefit from the increased classification accuracy.

Therefore, we trained compact but robust classifier, e.g. SVM, with minimal data

requirement. On the other hand, without fine-tune, an improved segmentation of

superpixels will automatically boost accuracy of a pre-trained classifier.

4.2 Related Work

Superpixel is a common replacement of pixel with purposes more than saving

computational cost. It clusters nearby pixels of similar attributes together as funda-

mental operational unit in downstream tasks, e.g. object detection, segmentation and

even realtime tracking. In this session we introduced the state-of-the-art superpixel

clustering algorithms and the combination of superpixel with deep neural networks

(DNNs) in medical image understanding.

4.2.1 Superpixel Clustering

One important feature of superpixel construction is that this is a pure unsu-

pervised approach in which there are no annotated ground-truths in any format for

guiding the label assignment on pixels. The pixels are clustered purely based on the

attributes, such as appearance and physical location, etc. SLIC [76] is an iterative

K-mean superpixel clustering that walk through all pixels. It is able to generate al-

most equally-sized superpixels with outstanding boundary adherence. And the time

complexity could be further reduced by limiting search space to a small nearby area.
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Figure 4.1: Example of superpixel clustering on image with three classic solutions:
LSC, SEEDS and SLIC.

While, iterating over entire pixels is still too expensive, stopping SLIC from being

applied on large images like WSIs. If compromise part of accuracy, SEEDS [77] , that

started from randomly initialized superpixel partitions, focused on updating boundary

pixel allocation only and proposed a fast energy function to evaluate each adaption

of pixel label assignment by enforcing color homogeneity. Linear spectral clustering,

a.k.a. LSC, combined normalized cut and K-mean clustering after discovering op-

timizing these two objective functions are in fact equivalent on the condition that

defines similar function as inner product of feature vectors [78]. LSC also achieved

satisfactory boundary adherence and color consistency within segmented superpixels

with O(N) complexity, where N is the pixel number. Compared to SLIC, LSC saved

computations from pre-allocation of pixel to large regions by eigenvector-based nor-
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malized cuts. And different from the two-stage Ncuts [79], LSC accomplished Ncuts

and K-mean in one-stage. Similar to LSC, the computational complexity of SEEDS

and SLIC is also approximated as O(N). Therefore, within visual comparison in Fig-

ure 4.1, we did not include expensive solutions such as ERS [80] with O(N2 logN)

and EneOpt0 [81] with O(N3) complexity. Because we only consider those approaches

who are potentially feasible for segmenting whole slide images. Figure 4.1 showed su-

perpixel clustering on image with three classic solutions: LSC [78] (left), SEEDS [77]

(middle) and SLIC [76] (right). The upper row is the edges of superpixels displayed

on image. The middle row is the contours of superpixels. The bottom row is the

segmentation mask filled with different color on different superpixel.

4.2.2 ROI and Superpixel

Regions of interest (ROI) in histopathology whole slide images (WSIs) are usu-

ally those disease-related cells or the tissues of specific patterns, but they do not have

descriptive definitions to form a category of objects. Due to the magnificent scale

of WSI, the major challenge would be the scalability and the memory efficiency of

algorithms. [82] relied on cheap segmentation of superpixels on downsampled WSIs

to filter out those regions irrelevant to ROIs. However, it did not correctly notice the

inevitable influence of wrong classification of coarse superpixels, because the algo-

rithm completely ruled out those regions from later more accurate segmentation and

classification. Besides, the classifiers had to be trained multiple times with patches

extracted from the superpixels of different magnification to work on different lev-

els of granularity. [83] reduced the workload of labeling and grading by two ways:

by excluding the areas of definitely normal tissues within a single specimen or by

excluding entire specimens which do not contain any tumor cells. [83] presented a

multi-resolution cancer detection algorithm to boost the latter. while it also suffered
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1

Figure 4.2: Example of pathological whole slide image with ROI annotations and the
superpixels.

from the loss of recall as [82]. Another superpixel automated segmentation method is

[84], which trained a classifier to predict where mitochondrial boundaries occur using

diverse cues from superpixel graph. While, because the selected superpixel clustering

approach [76] did not offer satisfactory boundary adherence, the classifier encumber

the overall detection performance. As summary, in order to accomplish a quick de-

tection and segmentation of ROIs in WSI, a combination of superpixel clustering and

pre-trained classifier seems a popular choice, while the performance bottleneck was

the tradeoff between the efficiency and the quality of superpixel clustering, which

directly determined classifier accuracy.

To reduce the intense computational cost in superpixel clustering, the algo-

rithm to be introduced creatively combined the coarse-to-fine scheme [85] and the
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boundary-only update strategy proposed in SPSS [86]. In our method, clustering

manipulated the rectangular blocks of pixel as basic unit and a coarse segmenta-

tion of superpixel would be constructed before a more fine-detailed refinement got

executed. on each level of construction, only boundary blocks or their nearby neigh-

bors got chance of label update. Figure 4.3 illustrated the procedures of introduced

superpixel clustering. Furthermore, the introduced boundary-only update strategy

on next level would emphasize on differentiating foreground and background blocks,

considering the boundaries between superpixels within ROIs are less important. The

improvement brought by our algorithm on ROI detection accuracy has been proved

and verified in [4, 51], where the method had quantitatively verify the improvement

of the accuracy of ROI detection in histopathology images, e.g. lung cancer H&E-

stained WSIs. Figure 4.2 shows comparison of classic superpixel methods [78, 77, 76]

on cancer patients WSI.

4.2.3 DNNs on Superpixel

As success of deep neural networks in computer vision, many works have ex-

tended application of DNNs onto superpixel. [35] introduced a bilateral inceptions

module to accelerate convergence of CNNs with superpixel as network input for se-

mantic segmentation. [87] treated superpixels as ”pooling” layer in neural network,

but preserving low-level structures.Therefore, their framework trained semantic seg-

mentation network without pixel-level ground-truth. To construct superpixels for

small objects of complicated boundaries, [88] introduced a superpixel segmentation

based on pixel features trained with affinity loss and segmentation error. In medical

images domain, superpixels are also utilized as a topology-preserving simplification

of data for deep network. The organ segmentation network in [89] worked on the

descriptors extracted from superpixels clustered in CT images. And then CNN sim-
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ply did a pixel-wise refinement based on the coarse segmentation given by superpixel.

Different from previous works who simply utilized superpixels as reduction of image

primitives, [90] proposed an end-to-end ”Superpixel Sampling Network” (SSN) which

contains differentiable superpixel construction together with learning a task-specific

prediction.

The rest of article is organized as following: we first introduce the multi-

resolution fast superpixel clustering with coarse-to-fine and boundary-only strategy to

increase efficiency. Both mathematical explanation and illustrative examples will be

given in Section 3. Then we elaborate the numerical results on classification accuracy

and visual comparison of superpixels with classic methods on TCGA WSI dataset in

Session 4. Lastly, conclusion and future work will be given in Session 5.

4.3 Methodology

The detection framework introduced is not only going to propose bounding box

to surround ROIs, but also is going to offer fine-detailed, boundary-adherent super-

pixel segmentation of them. On the other hand, an improved superpixel construction

contributes the differentiation of ROI from background as well. Therefore, the pro-

posed approach comprised two components: fine-detailed superpixel segmentation

and superpixel classification. For reduction of computational expense, we chose not

to accomplish superpixel segmentation at finest level in one shot. For instead, we

first obtain a coarse superpixel segmentation from clustering big pixel blocks (e.g.

500× 500). A pre-trained binary classifier then predicts label (ROI v.s. background)

of superpixels. Afterwards, those superpixels labeled as ROI along with their neigh-

bors will move to next round of segmentation at finer resolution. The process will

be repeated until quality becomes satisfactory. Different from previous superpixel

clustering methods [76, 86], the introduced algorithm gave topology-preserving su-
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perpixels. A better detection recall is expected as well, since our method did not

completely rule out negatively labeled superpixel at coarse stage as [82, 83], and for

instead we include negative neighbor superpixels to next level of segmentation.

4.3.1 Superpixel Clustering and Detection

Figure 4.3: An example of the coarse-to-fine/boundary-only update based superpixel
segmentation algorithm first presented in [4].

4.3.1.1 Energy Function

Think of superpixels of flexible number of blocks S = {s0, · · · , sK−1}, and the

blocks belong to superpixel Sk as {b0, · · · , bM−1}, we devised two representations

of block: appearance and position. Appearance representation of block is the av-

eraged RGB color over pixels in block as C. Position representation of block is

the relative position coordinates at center point of block as P. At superpixel level,

Θ = (θ0, · · · , θK−1) and Ξ = (ξ0, · · · , ξK−1) are the center positions and the mean

color vectors of superpixels. The objective function to be minimized consists of a

series of energy functions and penalty terms. For appearance, total variance of three

color channels are color energy function of superpixel Sk defined as:

Ecol(Sk) =
2∑
q=0

1

‖s‖
∑
b∈Sk

(cqb − ξ
q
k)

2, (4.1)
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also known as appearance coherence. For position, the averaged l2 distance from block

position Pb to the centre position of its superpixel is the position energy function,

Epos(Sk) = 1
‖Sk‖

∑
b∈Sk
‖Pb−θk‖2. This is to ensure clustered blocks are geophysically

close. Besides, to avoid seeing any superpixels with sophisticated boundary, we use

the total boundary length as boundary penalty function. Furthermore, we constrain

the minimal size of finalized superpixel to be at least 25% of initial size. If any update

of block’s belonging violates this constrain, we give infinity penalty to this update,

therefore, the algorithm will reject such label assignment update.

Psize(Sk) =


+inf, size(Sk) < 0.25× initialsize

0, otherwise.

(4.2)

Similar penalty would be applied, if the update causes any isolated blocks who are

surrounded by blocks from other superpixels. This is to enforce all generated super-

pixels to be topologically connected.

4.3.1.2 Boundary-Only Update

To define boundary energy function, we need to define boundary block and

length. If a block has any neighbor block from other superpixel, then it is a boundary

block. The boundary length of block is the number of neighbor blocks that belong to

other superpixel.

Pb(s) =
∑
b∈Sk

∑
bn∈Neighbor(b)

S(Sk, bn), (4.3)

where S(Sk, bn) is the indicator function of superpixel belonging for block, which

return 0 if bn ∈ Sk, otherwise 1. In our algorithm, we first stack entire initial boundary

blocks into a queue, then the iterative superpixel clustering algorithm will work on

boundary blocks only for consideration of updating label (i.e. superpixel assignment)
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of block. This is so-called ‘boundary-only update’. In other words, the non-boundary

blocks will not be considered for label change until they become boundary blocks.

When the algorithm decides to update the label of a block, its neighbor will be

considered to become new boundary blocks. When using the boundary-only update,

there are two things to notice: 1) when update the label of block, it definitely change

the list of boundary blocks; 2) we need to append the new boundary block to the end

of the list because and follow the FIFO principle when deciding the order of blocks

for consideration of changing label, in order to avoid the risk of divergence given by

correlated dimensions in coordinate descent optimization. The candidate superpixel

labels for a boundary block to swap are limited to its neighbor superpixels, otherwise

it will trigger the topology connectivity penalty by having an isolated block. Given

a trial of label update, the algorithm compares the objective function values before

and after the change to see whether and how much the change is able to drive energy

down.

We elaborate objective function each step of updating block-wise superpixel

label assignment as below:

E(S) =
∑
s

(Ecol(s) + λposEpos(s) + λbPb(s) + Ptopo(s) + Psize(s)), (4.4)

where λpos, λb are respectively the tradeoff coefficients for position energy function

and boundary length penalty term. In practice, the regularization on superpixel size

and topological connectivity will give infinite penalty on those superpixels of over-

small size as Psize(Sk) ≈ inf and those of isolated blocks, i.e. Ptopo(Sk) ≈ inf .

Therefore, the algorithm will always reject such label proposal that violates topology

connectivity and size regularization. When superpixel assignment of a boundary

block is updated, the algorithm will add its neighbor blocks to queue, because those
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non-boundary blocks are now next to other superpixels. The convergence will arrive

when the queue is empty.

4.3.1.3 Coarse-to-Fine Detection

Figure 4.4: An illustration of multi-resolution process of ROI detection on WSI.

Instead of processing WSI at different resolutions [82], we cluster superpixels

at coarse-to-fine level of resolution. [4] adopted boundary-only update as well to

save unnecessary revisit to non-boundary blocks, while the boundary blocks on WSI

may still be too much for extensive iterations. To further reduce the amount of data

brought to finer update with more intense computation, we utilized a pre-trained
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input : Whole slide image - W , superpixel number - K

output: Superpixels - S

1 for l = 1 to levelMax do

2 if l = 1 then

3 1. Initialize blocks B on level l size on entire image W ;

4 2. Initialize K superpixels S;

5 3. initialize Θ,Ξ

6 end

7 else

8 1. Initialize blocks B on level l size within positive superpixels and

their neighbor superpixels Ŝ;

9 2. Initialize Θ,Ξ for Ŝ

10 end

11 Compute the mean color and position in each block;

12 Initialize L, the queue of boundary blocks on level l;

13 while length(L) 6= 0 do

14 Pop out block bli from the queue ;

15 Ebefore = E(S);

16 for bn ∈Neighbor(bli) do

17 change label of bli to neighbor bn’s label ;

18 Eafter(bn) = E(S);

19 end

20 find the b̂n = argminbn∈Neighbor(bli)Eafter(bn);

21 if Eafter(bn) < Ebefore then

22 update label of bli to that of b̂n

23 end

24 append Neighbor(bli) to L;

25 end

26 run binary classifier on superpixels to predict ROI

27 end

Algorithm 1: Multi-resolution ROI Detection (MROID)
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classifier, e.g. SVM, to predict whether the superpixel belongs part of ROI. For

any superpixel moved to finer update, smaller blocks will be initialized within its

region. For example, a 10 × 10 block will be divided into 25 block of size 2 × 2

arranged at 5×5 grid. Boundary block queue will be refilled with 2 × 2 blocks who

sit on superpixel boundaries. The classifier was trained using features extracted from

patches sampled from ROI and non-ROI regions over annotated WSIs. To deal with

different cardinality of patch per superpixel, we use pooling patch features at inference

time. Given that we did not downsample images, therefore, the classifier trained on

raw WSIs is able to be reused with different level of superpixel. Figure 4.4 showed

an example has 3 level of granularity in term of block size. Note that we did not

downsample the WSI directly, which dump falsely many local details, and we still

include neighbor superpixels close to positive ones at coarse classification to next

level. If the bounding box is the ROI (a rough identifier), as resolution goes high,

superpixels cover and surround the bounding box will get fine-detailed update.

4.3.2 Complexity Analysis

Pixel-wise superpixel constructions [76, 77] have O(N) complexity, where N is

number of pixel, while it made them infeasible on WSIs of trillions of pixels. The

introduced algorithm is able to reduce the complexity to scale of number of block

i.e. O(
∑K−1

k=0 ‖Sk‖) � O(N). The boundary-only update, first presented in [4],

further constrains involved blocks to those boundary blocks. Considering the purpose

of clustered superpixel, our algorithm combined detection and superpixel clustering

together, and it only executes finer segmentation within those coarse superpixels who

were classified as ROI. It saved the calculations wasted on updating the superpixels

that do not contribute to ROI detection. Due to the reduced dimensionality, the

convergence comes faster than pixel-wise clustering methods. The Figure 4.5 showed
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Figure 4.5: A coarse-to-fine superpixel clustering on a lung cancer WSI from NLST.

a coarse-to-fine superpixel clustering on a lung cancer WSI from NLST: 1) Coarse

segmentation of superpixels using large blocks (180×180); 2) Refined segmentation

with small blocks within selected superpixels.

4.4 Experiments

4.4.1 ROIs in Lung Cancer Histopathology WSI

In histopathology images like lung cancer WSIs, the regions of interest are

those areas consist of cancer cells or other tissues that may be related to tumor

diagnosis. A fast detection approach of ROIs is to search and localize those regions

on image at WSI scale, that usually have trillions of pixels. Traditional pixel-wise

methods and neural network cannot directly work on WSI, due to the extraordinary

data scale and image dimensionality. Downsampling of WSI reduces complexity but

also loses local fine-detailed features. Superpixels first cluster those pixels of similar

spacial, color and topological properties as whole, and then in downstream tasks e.g.

detection and segmentation, the superpixels will act as minimal manipulatable unit,
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Figure 4.6: The comparison of several superpixel clustering on lung cancer H&E
stained WSI.

reducing image primitives and complexity. If superpixels were well constructed, the

downstream will not be affected by the sparse representation of image. The tumor

cells of lung cancer patients (not only for lung cancer, but also generally appear in

other subtypes of cancer) infest as cell mass. If treat the regions where tumor cell

mass appears as ROIs, we can easily see that the H&E stained histopathology images

that those tumor cells are more deeply colored due to the massive reproduction of

genetic materials inside tumor nuclei (See Figure 4.6).

4.4.2 Experimental Setup

In the experimental stage, a random forest and a support-vector-machine (a.k.a.

SVM) classifier were trained with local features extracted from regions defined by the
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superpixels given by Algorithm 1. The total 384 dimensional features include local

binary patterns and statistics derived from the histogram of the three-channel HSD

color model as well as common texture features, e.g. color SIFT. The introduced

method was compared against the superpixels generated by SLIC [76] and tetragonum

(i.e. rectangular patches). The experiments used the adenocarcinoma and squamous

cell carcinoma lung cancer WSIs from the NLST (National Lung Screening Trial) Data

Portal1 1. In superpixel classification, we executed feature extraction on the sampled

patches (100 × 100) with 10% overlap with each other within each superpixel, we

rule out patches sit across boundary avoiding noise. Lastly, we averaged the feature

vectors of patches as representation of superpixel. When deciding ROI belonging for

superpixel, if any part of ground-truth ROI fall into a superpixel, it will count as

positive. The setup is rooted at the extremely high recall requirement for medical

diagnosis. Given this setup, for better detection precision, superpixels should be

better boundary adherent and clearly separated from background.

4.4.3 Experimental Results

Classifier Metric MROID SLIC
[76]

Tetragonum

Random Forest
Error Rate 0.1326 0.1933 0.2047
Precision 0.7127 0.6835 0.6740
Recall 0.7333 0.6108 0.6450

SVM
Error Rate 0.3011 0.3343 0.3061
Precision 0.6754 0.6672 0.6723
Recall 0.7450 0.6604 0.6972

Table 4.1: Precision and recall of RoI detection from the MROID, SLIC and
tetragonum (non-superpixel).

1https://biometry.nci.nih.gov/cdas/studies/nlst/
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Due to the overwhelming fidelity of superpixels given by our algorithm, the

classifier operated over the regions segmented by superpixels is able to deliver better

classification results (See Table 4.1). Since the feature descriptors were built on the

patches segmented by contours of superpixels, the better the superpixel adhere to the

boundaries, the better differentiability the features have for superpixel classification.

Figure 4.5 demonstrated the introduced multi-resolution coarse-to-fine super-

pixel segmentation in a lung cancer histopathology images. The algorithm first manip-

ulated large block (180× 180) to cluster superpixels, then move to finer segmentation

with 10× 10 blocks on the superpixels selected by the classifier. The recursive refine-

ment continues until the block queue run out, which means energy loss converges. In

Table 4.1, we compared the classification recall and precision using superpixels given

by SLIC and our method as well as simply patches without any preprocessing like su-

perpixel clustering. Our results showed that, compared to simple patching, utilizing

superpixel may not always increase ROI recall but definitely lift precision. Compared

to superpixel given by SLIC with sophisticated boundary, out method outperformed

on both recall and precision. We also observed that, if superpixels do not adhere to

boundary, a detection based on classification of superpixels of low segmentation accu-

racy leads to worse accuracy than a trivial patch based method. While, our method

delivered best results at both recall and precision.

4.5 Conclusion

In the chapter, we presented a novel local feature based solution to fast search

and detection of regions of interest (ROI) in whole slide lung cancer histopathology im-

age. For superpixel clustering, we introduced coarse-to-fine multi-resolution segmen-

tation of superpixel by manipulating blocks of different size. Besides, boundary-only
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update strategy also reduced the computational complexity to the scale of superpixel

boundary length, irrelevant of image size.

We creatively embedded the ROI classification into superpixel clustering algo-

rithm. Iteratively executing superpixel construction and ROI detection. A better

superpixel will accelerate detection and lift accuracy, while on the other hand, a

better classification of ROI on coarse superpixel guides superpixel segmentation at

finer level. Our algorithm performed a faster and finer ROI detection and segmen-

tation. The effectiveness and efficiency of our algorithm has been verified on large

histopathology WSI database, e.g. NLST.

In future, as the development of neural network capable of flexible input size

[1, 91], it is likely to merge superpixel construction and downstream tasks, e.g. se-

mantic segmentation, classification together in neural network architecture, in which

superpixels are clustered using hidden features, while superpixels boost feature learn-

ing as well.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

In the thesis, we reviewed and investigated the current state-of-the-arts GCNs

and their applications on biomedical data. From the study, we summarized several

technical challenges that prevent large-scale application of GCNs on data of dynamic

and sophisticated graph structures. Especially we unveiled the constrained represen-

tational capability of convolutional kernel built with fixed graph topology. And from

extensive experiments, we demonstrated the consequence of spectral kernel on fixed

graph to performance of network on downstream tasks. Therefore, we proposed a

the spectral graph convolution on learned Laplacian (SGC-LL) layer that work with

both the original graph and the learned graph. Besides, we enhanced the feature

extraction of GCN layer by reconstructing the cross-channel dependency, which clas-

sic CNNs always have. More importantly, the learned graph, also named as residual

graph, were trained together with the rest of network, therefore the proposed AGCN

model, equipped with stacked SGC-LL layers, combined graph representation learn-

ing and the searching for graph topology. Because we argued that the two processes

are strongly correlated and we could not learn good graph representation using a

mistakenly initialized graph. And our experiments showed the graph learning were

significantly affecting the convergence of regression network: when the graph topo-

logical structure that the model attempted to learn became stable, the rest part of

AGCN network would turn to convergence quickly. This finding makes us believe the

AGCN model is good at discovering hidden substructures on graph that not included

on original graph. To avoid introducing too many training parameters, we transfer
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the problem of searching optimal graph structure to the one of finding the optimal

distance metric in which node-wise l-2 similarity is measured. By doing this, we even-

tually add a graph learning step of minimal training complexity, independent from

graph size N , before graph convolutional operator.

After introduction of GAT [20], the spatial-based convolution on graph is re-

formulated as the problem of learning the node-to-node attention coefficients within

receptive field. As extension of AGCN for graph-wise representation learning, we want

to learn the emphnode-to-graph attentions that illustrate the importance of node with

respect to graph-wise predictive tasks. Therefore, we constructed attentional AGCN

model with parallel attention network, consist of a stack of SGC-LL layers, generate

node-wise attention values at the end. With those attentional coefficients learned,

the graph gather operator becomes a weighted summation of node features. Besides

the performance gain from attention network, the extra explanability offered by at-

tentional value distribution over graph nodes is more interesting. We already realized

the regions of high attentional values coincide with tumor and lymphocyte cell clus-

ter, which is plausibly related to patients’ survival risk. Finally, to better utilize the

power of attentional AGCN on large graph data and more importantly to extend the

application of it to non-graph data, e.g. images and whole slides image (WSI), we

built a end-to-end survival risk prediction pipeline, including patch sampling, graph

construction, attentional AGCN and prediction. During this process, we realized the

randomness introduced from patch sampling would largely affect overall accuracy of

prediction. Detecting and localizing pathological region of interest (ROI) over WSI

may mitigate this problem. To reduce computational complexity, we introduced a

two-stage superpixel-based ROI detection approach. To efficiently construct super-

pixels with fine details preserved, we utilized a novel superpixel clustering algorithm

which cluster blocks of pixel in a hierarchical fashion.
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As many following research after [1] pointed out spectral-based GCNs have

its own drawbacks on parallelizing the calculation of convolution into different work

nodes. While spatial-based GCNs are easily to be decomposed into several indepen-

dent convolutions over local cluster of nodes using shared kernel. This technique

limitation makes spectral -based methods less attractive for large graph, e.g. social

connection graph. However, it is not infeasible for spectral-based convolution to be

distributed among computer nodes, the major concern is about the efficiency and

effectiveness after decomposing the kernel together with graph. Besides, the graph

learning and graph representation learning are able to be further decoupled as two

independent but competing process. Borrowing the idea from Generative Adversarial

Network (GAN), the generator network is to propose new graph structures, the dis-

criminator is to learn the best graph representations on top and therefore boost the

performance of regression tasks. Similar to self-supervised learning, graph learning

is naturally a self-supervised task, if no annotation given. Those are very interesting

research direction for follower to consider and investigate.
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