
AUTONOMOUS LANDING OF QUADROTOR ON A MOVING UGV

WITH THE OPTIMAL CONTROL POLICIES

by

SUHAS PRIYATHAM MANDA

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2020

Copyright © by SUHAS PRIYATHAM MANDA 2020

All Rights Reserved

To my parents, younger brother and supportive friend.

ACKNOWLEDGEMENTS

In this occasion, I am very much pleased to express my sincere gratitude to all

the esteemed personalities for their generous guidance and motivation that helped

me in accomplishing this great endeavor on Autonomous landing of quadrotor on a

moving UGV with the optimal control policies.

Primarily I would like to thank Dr. Frank Lewis for his immense inspiration

and for filling great enthusiasm in me during the coursework. I feel lucky and blessed

to have him as my professor.

Further, I would like to express my heartfelt gratitude to Yusuf Kartal for

patiently listening to my progressing hypothesis and giving invaluable guidance until

the completion of the work. I could not have accomplished this work without his

continuous motivation and unconditional support. And I thank him for serving as a

chairperson.

I also take this opportunity to express my sincere thanks to Dr. Manry for his

inspiring lectures on neural networks.

Further, I express my gratitude to Dr. Yan Wan and Dr. Jonathan Bredow

for their willingness to serve on my committee. I especially thank the University of

Texas at Arlington Research Institute family for providing me the experimentation

platform.

Penultimately, my father, being an electrical engineer, motivated every moment

of my life, and needless to say, he is my inspiration.

iv

Finally, I take this opportunity to express my gratitude to my family for being

supportive. Further, I remember that I am greatly influenced by my mathematics

professor in high school, Mr. Vasu, and my friend Bala Gopal.

November 11, 2020

v

ABSTRACT

AUTONOMOUS LANDING OF QUADROTOR ON A MOVING UGV

WITH THE OPTIMAL CONTROL POLICIES

SUHAS PRIYATHAM MANDA, M.S

The University of Texas at Arlington, 2020

Academic Advisors: Dr. Frank Lewis, and Yusuf Kartal

This thesis proposes an offline method that uses an integral reinforcement

learning (IRL) technique along with the system identification to determine the optimal

control of a system with completely unknown dynamics. Unmanned aerial vehicles

(UAV) that are particularly deployed to track and land on an arbitrarily moving

unmanned ground vehicles (UGV), demand a high performance controller to perform

precise tracking. One way of designing an optimal tracking controller is developing

linear quadratic integrators (LQI) with a quadratic type of cost function that solves

Riccati equation. However, this approach requires prior knowledge of the linearized

UAV system dynamics. We overcome this problem by employing an IRL technique

that solves LQI through system identification. Usually, IRL techniques adopt a

conventional way of solving the Hamilton–Jacobi–Bellman (HJB) equation with value

function approximation. The proposed approach evaluates the optimal control using

IRL that solves the HJB equation using system identification instead of value function

approximation. Assuming that the UAV system dynamics are linear time-invariant

over a particular flight condition, we identify the linear model by analyzing the input

vi

and output data samples from a linear regression perspective, where we use the

conjugate gradient descent optimization algorithm. This approach addresses the

challenge to compute optimal control without the need to know UAV dynamics.

We have rigorously tested and simulated the proposed method on various flight

trajectories. The test results have shown significant improvement in the control policy

over each iteration of IRL. After validating the proposed method in simulation, we

have implemented this approach on a real UAV to track and land on a UGV.

vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iv

ABSTRACT . vi

LIST OF ILLUSTRATIONS . x

LIST OF TABLES . xii

Chapter Page

1. INTRODUCTION . 1

1.1 Background and motivation . 1

1.2 Thesis outline . 3

2. MATHEMATICAL MODEL . 5

2.1 Reference frames . 5

2.2 Euler angles and rotations . 6

2.3 Nonlinear model of quadrotor . 8

2.4 Linear model of quadrotor . 14

2.5 Kinematic model of skid-steer UGV 17

3. CONTROL STRATEGIES . 21

3.1 Linear quadratic tracking . 21

3.1.1 Stability of LQI . 26

3.2 PID control for UGV . 28

4. SYSTEM IDENTIFICATION WITH SIMULTANEOUS OPTIMAL CONTROL

ESTIMATION . 30

4.1 Conjugate gradient . 31

4.1.1 Conjugate gradient implementation 35

viii

4.2 Integral reinforcement learning . 35

4.3 Optimal gain calculation through IRL and CG identified system . . . 39

5. DESIGN AND SIMULATION RESULTS 42

5.1 Theoretical model of quadrotor . 42

5.2 Theoretical model of UGV . 43

5.3 Simulation results . 45

5.4 Theoretical vs estimated system . 52

6. EXPERIMENTAL DESIGN AND IMPLEMENTATION 57

6.1 Leap motion controller . 57

6.2 Vicon motion capture system . 59

6.3 Autonomous tracking and landing of quadrotor on a moving UGV . . 60

7. CONCLUSION . 65

Appendix

A. NOMENCLATURE . 66

REFERENCES . 70

BIOGRAPHICAL STATEMENT . 78

ix

LIST OF ILLUSTRATIONS

Figure Page

2.1 Frames and coordinate systems of a quadrotor 6

2.2 Skid-steered UGV . 18

3.1 Schematic of LQR . 24

3.2 Schematic of LQI . 26

3.3 Schematic of PID . 28

5.1 Theoretical model of quadrotor in Simulink 43

5.2 LQI feedback in Simulink . 44

5.3 Theoretical model of UGV in Simulink 44

5.4 PID controller in Simulink . 45

5.5 Response of x, y, z, ψ during first iteration of circular trajectory . . . 46

5.6 Response of x, y, z, ψ during first iteration of 8-figure trajectory . . . 47

5.7 Response of x, y, z, ψ during fifth iteration of circular trajectory . . . 48

5.8 Response of x, y, z, ψ during fifth iteration of 8-figure trajectory . . . 49

5.9 Circular trajectory during first iteration 50

5.10 Circular trajectory during last iteration 50

5.11 8-fig trajectory during first iteration 51

5.12 8-fig trajectory during last iteration 52

5.13 Estimated model of quadrotor in Simulink 55

6.1 Leap motion controller . 58

6.2 Direction of motion based on palm location with respect to Leap motion 60

6.3 A.R Drone 2.0 with Vicon markers . 61

x

6.4 Husky with Vicon markers . 61

6.5 Communication flow in the experiments 62

6.6 Implementation results . 63

6.7 AR.Drone following Husky . 64

xi

LIST OF TABLES

Table Page

5.1 AR.Drone 2.0 parameters . 42

5.2 AR.Drone 2.0 parameters . 44

6.1 Acceleration control using leap motion 59

xii

CHAPTER 1

INTRODUCTION

1.1 Background and motivation

Unmanned vehicles, especially unmanned ground vehicle (UGV) and unmanned

aerial vehicle (UAV), which gained great strategic significance due to high mobility

and the potential to perform a specific task, have become a research hotspot in

the fields of military surveillance and reconnaissance [1, 2, 3], and transportation

[4]. Another factor to have such diverse applications is, because of the considerably

simple dynamics. However, despite having simple dynamics, it is challenging to design

a robust controller because of the under-actuation, aerodynamic uncertainty [5],

coupling between lateral and longitudinal motions [6], and unmodelled disturbances.

In addition to all these, achieving coordination among multiple unmanned vehicles

adds an extra burden on the controller.

The initiative to solve the control problem is made by PID, which is one of the

classical nonlinear controllers, yet still used for position control in unmanned vehicles.

Though it is robust to slight uncertainties, the classical PID [7] may not assure the

desired performance [8] in variable operating regions for UAVs. Therefore, this created

a need to improvise PID [9, 10], resulting in the introduction of backstepping [11],

sliding mode, and H-infinity [12, 13] controllers. Moreover, research has been carried

out to control the linearized model of the quadrotor. The Linear Quadratic Regulator

(LQR) [14] is a well-known feedback controller that computes the optimal feedback

gains for a linear time invariant system subjected to a quadratic cost function by

solving Riccati equation [15]. With the recent developments in the field of RAM/ROM

1

products, fuzzy logic, intelligent, reinforcement learning (RL) [16, 17] based control

strategies have been employed to improve tracking and robustness, as they require

high memory.

Inspired by learning mechanisms observed in the biological animals, RL is

structured to learn the best policy, to maximize the performance by interacting

with an unknown environment [16, 18]. The RL algorithms requires to remember

successful control decisions, so that they will become more likely to be used for a

second time. Integral reinforcement learning (IRL) computes the optimal control

solution with a data-based approach to solve Hamilton–Jacobi–Bellman equation

using partial knowledge on system dynamics [19]. [17] presents a solution to the

optimal tracking control problem using IRL.

On the other side, parallel to the development in controllers, research has been

conducted to overcome aerodynamic uncertainties by parameter estimation using

system identification. [20] presents system identification using autoregressive with the

exogenous model method [21, 22] for linear estimation and the Hammerstein-Wiener

method [23, 24] for nonlinear estimation. However, the linear estimation can be

considered as a linear regression problem, which can also be solved using the conjugate

gradient [25, 26] approach. Intuitive techniques like usage of neural networks (NN) for

system identification [27], did not come into practice [28, 29] until the recent outbreak

in computational power. [30] proposed a closed-loop identification method based

on a reinforcement learning algorithm for multiple-input multiple-output (MIMO)

systems.

In this thesis, we propose a technique that guarantees a UAV to track and

land on an arbitrarily moving UGV. The expectation of the trajectory followed by

UGV is undetermined by UAV. To track such an arbitrary system, the design of the

controller for UAV demands an exceptional tracking performance. We use the integral

2

reinforcement learning technique (IRL), which can compute the optimal control to

deliver the desired tracking performance. However, the IRL calculates the optimal

control based on the knowledge of system dynamics. We propose a novel approach

that integrates the conjugate gradient algorithm with integral reinforcement learning

to determine optimal control. This approach addresses the challenge of computing

optimal control for a system with unknown dynamics. This approach is tested

rigorously on various flight trajectories, where the tracking is improved incredibly

over each iteration of the proposed IRL algorithm.

1.2 Thesis outline

The rest of the thesis is structured as follows:

• Chapter 2: The purpose of this chapter is to serve the basic understanding with

the mathematical model of the unmanned vehicles, UAV and UGV. Starting

with a brief explanation of reference frames and Euler angles, we derive the

nonlinear model of a UAV based on Newton-Euler formalism, then followed by

linearizing the derived nonlinear model subjected to small angle approximations.

Lastly, for a skid steered UGV, we derive the kinematic model.

• Chapter 3: This chapter is dedicated to providing the strategies adopted to

control the UAV and UGV. We discuss the linear quadratic integrator, enabling

the UAV to track a predefined trajectory. Further, we prove the stability of

the controller. Later we discuss the classical PID for UGV to achieve velocity

tracking.

• Chapter 4: In this chapter, we proposed a novel approach to compute the

optimal gain for a system with unknown dynamics by incorporating the conju-

gate gradient in integral reinforcement learning. Moreover, we provided a

pseudo code for the proposed algorithm.

3

• Chapter 5: In this chapter, we initially shown the design of UAV and UGV

models from chapter 2 and 3. Then, we illustrated the simulation results

obtained by using the proposed algorithm and discussed the differences between

theoretical and estimated models.

• Chapter 6: In this chapter, we briefly explained the experimental setup and

the lab environment. Then we presented the implementation of tracking and

landing on real UAV and UGV.

• Chapter 7: Finally, in this chapter, we drawn conclusions based on the proposed

method and provided recommendations for further research.

4

CHAPTER 2

MATHEMATICAL MODEL

This chapter introduces a nonlinear model of the quadrotor, an unmanned

aerial vehicle (UAV), along with the kinematics of an Unmanned Ground Vehicle

(UGV). Firstly, we give a brief explanation of the reference frames. Secondly, we

introduce Euler angles and their rotations in 3-dimensional (3D) space. Then, using

the kinematics equations developed for the translational and rotational motion of

the quadrotor, we introduce the nonlinear system dynamics of the UAV. Lastly,

we rigorously reveal the linearized model, obtained by making use of the small

perturbations around the equilibrium HOVER. Thereafter, finish the chapter by

presenting the UGV kinematics.

2.1 Reference frames

A reference frame is a framework comprising an observer with a coordinate

system of guided lines symbolically attached to a body, used to analyze the position

and vector quantities. In aerospace, we often come across vehicle-carried, earth-fixed,

and mobile reference frames. Based on the flat earth assumption, throughout this

work, we will consider vehicle-carried and earth-fixed frames as the fixed reference

frame.

The fixed frame is often referred as inertial frame spans 3D space in which

Newton’s laws are valid. In the fixed frame, based on our assumption, we use

the North-East-Down convention so that X-axis position in 3D space aligns with

5

geographic North, Y -axis aligns with geographic East, and Z-axis points towards the

center of the earth, with unit vectors being îe, ĵe, k̂e respectively.

Figure 2.1. Frames and coordinate systems of a quadrotor.

The mobile frame often referred to as body frame, is described as an alignment

in association with the body of the UAV, in our case it is quadrotor. The origin of

the body frame, OB, is assumed to be the center of mass of the quadrotor, while axes

aligning with the arms of the quadrotor with unit vectors îB, ĵB, k̂B (variables with

suffix B refers to body frame).

2.2 Euler angles and rotations

Euler angles reflect a rigid body’s orientation with respect to a fixed frame.

Three parameters are required to define the orientation in a Euclidean 3-dimensional

space. These parameters, φ(roll), θ(pitch), ψ(yaw), represent the amount of rotation

6

about the axes, X, Y , Z, respectively. The basic rotation matrices, Rx(φ), Ry(θ),

Rz(ψ), using the right-hand rule are given by [31]

Rx(φ) =


1 0 0

0 Cφ −Sφ

0 Sφ Cφ

 , (2.1)

Ry(θ) =


Cθ 0 Sθ

0 1 0

−Sθ 0 Cθ

 , (2.2)

Rz(ψ) =


Cψ −Sψ 0

Sψ Cψ 0

0 0 1

 , (2.3)

where the notations C· and S· represents trigonometric functions cos(·) and sin(·).

We use the ZYX rotation sequence [31], to rotate a point about the origin of

the fixed frame. The effective rotation matrix [32] will be the product of the base

rotation matrices in Z-Y-X order. Then, the rotation matrix fromX-frame to Y -frame

to Z-frame is

R = Rzyx(φ, θ, ψ) = Rz(φ)·Ry(θ)·Rx(ψ)

=


CθCψ SφSθCψ − CθSψ CφSθCψ + SφSψ

CθSψ SφSθSψ + CθSψ CφSθSψ − SφCψ

−Sθ SφCθ CφCθ

 , (2.4)

and, R is a Special Orthogonal SO(3) [33] matrix with the determinant equal to 1.

7

To transform angular velocities from the body frame to earth frame we use the

matrix T given by

T =


1 SφTθ CφTθ

0 Cφ −Sφ

0 Sφ/Cθ Cφ/Cθ

 , (2.5)

where the notations T(·) represents trigonometric function tan(·)

2.3 Nonlinear model of quadrotor

The nonlinear model is constructed on examining kinematics and dynamics of

the quadrotor. While kinematics studies the motion of objects without considering

the forces that are responsible for the motion, dynamics studies the motion that

results from the forces. In this section, we first begin with the quadrotor’s rotational

and translational kinematics. Then, using the kinematics, we formulate the dynamic

model. Finally, we present the nonlinear mathematical model of the quadrotor.

Let us define the position vector essentially center of mass of the quadrotor, with

respect to the inertial frame as [x y z]T , and the orientation vector of the quadrotor

i.e., Euler angles as [φ θ ψ]T . The vectors with linear and angular velocities with

respect to body frame is expressed as vB = [u v w]T and ωB = [p q r]T . Now,

transformation of the velocities between the reference frames is given by

v = R·vB, (2.6)

ω = T·ωB, (2.7)

where, v = [ẋ ẏ ż]T is velocity in the inertial frame, and ω = [φ̇ θ̇ ψ̇]T is Euler rate

in inertial frame.

8

The kinematics of the quadrotor are defined by these equations

ẋ = u(CθCψ) + v(SφSθCψ − CθSψ) + w(CφSθCψ + SφSψ),

ẏ = u(CθSψ) + v(SφSθSψ + CθSψ) + w(CφSθSψ − SφCψ),

ż = −u(Sθ) + v(SφCθ) + w(CφCθ),

(2.8)

φ̇ = p+ q(SφTθ) + r(CφTθ),

θ̇ = q(Cφ)− r(Sφ),

ψ̇ = q
Sφ
Cθ

+ r
Cφ
Cθ
.

(2.9)

To determine the resultant force FB and total moment mB on the quadrotor

we apply Newton’s second law and Euler’s equation to (2.6), and (2.7). Then we get

FB = m(v̇B + ωB × vB), (2.10)

mB = I· ω̇B + ωB × (I·ωB), (2.11)

where× represents cross product, m is mass of the quadrotor, FB = [FxB FyB FzB]T

is the force vector (FxB îB + FyB ĵB + FzB k̂B) in reference to the body frame, mB =

[mxB
myB

mzB]T is moment in the body frame, and I is inertia matrix containing

scalar moments and cross-products of inertia [31],

I =


Ixx −Ixy −Ixz

−Iyx Iyy −Iyz

−Izx −Izy Izz

 , (2.12)

where Ixx, Iyy, Izz, are moment of inertia along XB, YB, ZB, axes respectively,

Ixx =

∫
(y2 + z2)dm,

Iyy =

∫
(z2 + x2)dm,

Izz =

∫
(x2 + y2)dm.

(2.13)

9

Cross-product of inertia elements,

Ixy = Iyx =

∫
xydm,

Ixz = Izx =

∫
xzdm,

Iyz = Izy =

∫
yzdm,

(2.14)

are measures of symmetry. They are all equal to zero [33] as the structure of the

quadrotor is symmetric along the planes XBYB, YBZB, and ZBXB. This reduces I

to be a diagonal matrix, given by [34] as

I =


Ixx 0 0

0 Iyy 0

0 0 Izz

 , (2.15)

Usually, the moment of inertia is measured by building the mechanical structure of the

quadrotor using CAD tools. In [35], inertia is identified experimentally by creating a

rotational pendulum.

Now, the dynamics in reference to body frame are

FxB = m(u̇+ qw − rv),

FyB = m(v̇ − pw + ru),

FzB = m(u̇+ pv − qu),

(2.16)

mxB = ṗIxx − qr(Iyy − Izz),

myB = q̇Iyy − pr(Izz − Ixx),

mzB = ṙIzz − pq(Ixx − Iyy),

(2.17)

These forces (2.15) and moments (2.16) can be varied by changing the four-rotor

speeds through which attitude and position can be controlled. For instance, four

motors producing the same thrust results in a vertical motion; unequal rotor thrust of

10

left-right rotors and front-rear rotors result in rolling and pitching moments respectively;

unbalanced torque with pairs on diagonally opposite rotors results in yawing.

If the quadrotor is exposed to wind disturbances, in addition to gravitational

pull, the wind also exerts a force. This gives us,

FB = RT [0 0 mg]T − Ftk̂B + Fw
T , (2.18)

where g is acceleration due to gravity, Ft is the thrust generated by the rotors

along ZB-axis, and Fw = [Fwx Fwy Fwz]T holding the disturbance in body frame.

Similarly, quadrotor’s external moments are given by

mB = τB − ga + τw, (2.19)

where ga is gyroscopic moments which is negligible, τw is the wind disturbance

vector [τwx τwy τwz]T in body frame, and τB = [τx τy τz]T are the control torques

produced by the rotors in body frame. Significance of Ft and τB can be further

understood under the dynamics of actuator.

Equations corresponding to the dynamics of the quadrotor drawn from the pairs

(2.16)-(2.18) and (2.17)-(2.19) and given by

−mgSθ + Fwx = m(u̇+ qw − rv),

mgSφCθ + Fwy = m(v̇ − pw + ru),

mgCφCθ + Fwz − Ft = m(u̇+ pv − qu),

τx + τwx = ṗIxx − qr(Iyy − Izz),

τy + τwy = q̇Iyy − pr(Izz − Ixx),

τz + τwz = ṙIzz − pq(Ixx − Iyy).

(2.20)

The interrelation between the system inputs (thrust and torques) and actuators

is described by actuator dynamics. Using actuator dynamics, we determine the thrust

11

and torques that the rotors can generate at a given rotational speed. The system

inputs are directly proportional to the square of rotor speeds and given by

Ft

τx

τx

τx


=



b b b b

−bl 0 bl 0

0 −bl 0 bl

−d d −d d





Ω1
2

Ω2
2

Ω3
2

Ω4
2


, (2.21)

where b is the thrust factor, d is the drag factor and l is the distance from the

center to the rotor assuming that the quadrotor is symmetrical. Ω1, Ω2, Ω3, Ω4

are rotational speeds of the four rotors. The dynamics of the quadrotor in terms of

actuator dynamics are

−mgSθ + Fwx = m(u̇+ qw − rv),

mgSφCθ + Fwy = m(v̇ − pw + ru),

mgCφCθ + Fwz − b(Ω1
2 + ω2

2 + ω3
2 + ω4

2) = m(u̇+ pv − qu),

bl(−Ω1
2 + Ω3

2) + τwx = ṗIxx − qr(Iyy − Izz),

bl(−Ω2
2 + Ω4

2) + τwy = q̇Iyy − pr(Izz − Ixx),

d(−Ω1
2 + Ω2

2 − Ω3
2 + Ω4

2) + τwz = ṙIzz − pq(Ixx − Iyy).

(2.22)

The nonlinear model of quadrotor is described by preferring the states with

Euler angles, fixed frame position and velocities, and body frame angular velocities.

So the state vector is defined as x = [x y z φ θ ψ ẋ ẏ ż p q r]T . Then the

first derivative of the states will be

ẋ = [ẋ ẏ ż φ̇ θ̇ ψ̇ ẍ ÿ z̈ ṗ q̇ ṙ]T . (2.23)

For small angles of movements [36] the fixed frame and body frame angular velocities

are assumed to be equal. Therefore, [φ̇ θ̇ ψ̇]T = [p q r]T . So, the first derivatives of

12

both linear and angular positions can be readily accessible from kinematic equations.

However, by applying the Newton’s law on (2.18) we can write,

mv̇ = R·FB = [0 0 mg]T − FtR· k̂B + R·Fw
T , (2.24)

where v̇ = [ẍ ÿ z̈]T , to acquire the second derivatives. Disregarding the wind

disturbance, the linear accelerations are

ẍ = −Ft(CφSθCψ + SφSψ)/m,

ÿ = −Ft(CφSθSψ − SφCψ)/m,

z̈ = −Ft(CφCθ)/m+ g.

(2.25)

13

Further, ṗ, q̇, ṙ, can be obtained by subjecting the equations (2.20). Thus the final

mathematical model of the quadrotor considering all the wind disturbances in the

fixed frame is given by the following equations

ẋ = u(CθCψ) + v(SφSθCψ − CθSψ) + w(CφSθCψ + SφSψ),

ẏ = u(CθSψ) + v(SφSθSψ + CθSψ) + w(CφSθSψ − SφCψ),

ż = −u(Sθ) + v(SφCθ) + w(CφCθ),

φ̇ = p+ q(SφTθ) + r(CφTθ),

θ̇ = q(Cφ)− r(Sφ),

ψ̇ = q
Sφ
Cθ

+ r
Cφ
Cθ
,

ẍ = −Ft
m

(CφSθCψ + SφSψ) +
fwx
m

,

ÿ = −Ft
m

(CφSθSψ − SφCψ) +
fwy
m
,

z̈ = −Ft
m

(CφCθ) + g +
fwz
m
,

ṗ =
Iyy − Izz
Ixx

qr +
τx + τwx
Ixx

,

q̇ =
Izz − Ixx
Iyy

pr +
τy + τwy
Iyy

,

ṙ =
Ixx − Iyy
Izz

pq +
τz + τwz
Izz

,

(2.26)

where fwx, fwy, fwz are the disturbances caused due to the same wind as in FwB

but in reference to the fixed frame. Potentially, R·FwB = fw = [fwx fwy fwz]T .

2.4 Linear model of quadrotor

In this section, we show how to linearize the nonlinear model with states x =

[x y z φ θ ψ u v w p q r]T around the equilibrium point to formulate the

14

linear model. Notice that this point is called as hover flight regime. Thus considering

the states x, ẋ in linear model will be

ẋ = [ẋ ẏ ż φ̇ θ̇ ψ̇ u̇ v̇ ẇ ṗ q̇ ṙ]T . (2.27)

So the nonlinear model for these states can be written from the kinematics (1.8)-(1.9)

and the dynamics (1.20) equations, as

ẋ = u(CθCψ) + v(SφSθCψ − CθSψ) + w(CφSθCψ + SφSψ),

ẏ = u(CθSψ) + v(SφSθSψ + CθSψ) + w(CφSθSψ − SφCψ),

ż = −u(Sθ) + v(SφCθ) + w(CφCθ),

φ̇ = p+ q(SφTθ) + r(CφTθ),

θ̇ = q(Cφ)− r(Sφ),

ψ̇ = q
Sφ
Cθ

+ r
Cφ
Cθ
,

u̇ = −qw + rv − gSθ +
Fwx
m

,

v̇ = pw − ru+ gSφCθ +
Fwy
m

,

ẇ = −pv + qu− gCφCθ +
Fwz − Ft

m
,

ṗ =
Iyy − Izz
Ixx

qr +
τx + τwx
Ixx

,

q̇ =
Izz − Ixx
Iyy

pr +
τy + τwy
Iyy

,

ṙ =
Ixx − Iyy
Izz

pq +
τz + τwz
Izz

.

(2.28)

15

When a constant input ueq = [mg 0 0 0]T is applied, quadrotor remains hovering

in an equilibrium point say, xeq = [xeq yeq zeq 0 0 0 0 0 0 0 0 0]T . The

nonlinear equations (2.28) are approximated to obtain f(x,u,dw),

f(x,u,dw) =



ẋ = u+ v(φθ − Sψ) + w(θ + φψ),

ẏ = u(ψ) + v(φθψ + ψ) + w(θψ − φ),

ż = −u(θ) + v(φ) + w(φ),

φ̇ = p+ q(φθ) + r(θ),

θ̇ = q − r(φ),

ψ̇ = q(φ) + r,

u̇ = −qw + rv − gθ + Fwx

m
,

v̇ = pw − ru+ gφ+
Fwy

m
,

ẇ = −pv + qu− g + Fwz−Ft

m
,

ṗ = Iyy−Izz
Ixx

qr + τx+τwx

Ixx
,

q̇ = Izz−Ixx
Iyy

pr +
τy+τwy

Iyy
,

ṙ = Ixx−Iyy
Izz

pq + τz+τwz

Izz
,

(2.29)

where dw = [Fwx Fwy Fwz τwx τwy τwz]T is the wind disturbance. We use (2.29)

to acquire the continuous linear time-invariant state-space model. The linearization

[34] corresponding to the hover state xeq for the input ueq is given as

ẋ =
∂f(x,u,dw)

∂x

∣∣∣∣∣xeq
ueq

(x− xeq) +
∂f(x,u,dw)

∂x

∣∣∣∣∣xeq
ueq

(u− ueq) +
∂f(x,u,dw)

∂dw

∣∣∣∣∣x=xeq
u=ueq

(dw),

ẋ = A·x + B·u + Dw·dw. (2.30)

16

By, solving above equations the system matrices can be obtained as

A =



0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 −g 0 0 0 0 0 0 0

0 0 0 g 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0



,

B =



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

− 1
m

0 0 0

0 1
Ixx

0 0

0 0 1
Iyy

0

0 0 0 1
Izz



,Dw =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
1
m

0 0 0 0 0

0 1
m

0 0 0 0

0 0 1
m

0 0 0

0 0 0 1
Ixx

0 0

0 0 0 0 1
Iyy

0

0 0 0 0 0 1
Izz



.

(2.31)

2.5 Kinematic model of skid-steer UGV

Skid-steering is a drive mechanism that independently drives the wheels or

tracks on either side of the vehicle, and rotating the left and right wheels with different

angular velocities govern the direction of motion. Such drive mechanisms have simple

and robust construction as they do not need an explicit turning mechanism. Besides,

17

they can corner in a very small radius of curvature, which makes them extremely

maneuverable and ideal for robotic applications.

It is a little challenging to obtain a mathematical model due to the complicated

wheel-ground interactions and kinematic constraints [37]. To attain an acceptable

mathematical model, we make the following assumptions as in [38],

• The center of mass of the vehicle coincides with its geometric center,

• Vehicle movies with the wheels always in contact with the horizontal surface,

• Two wheels on either side rotate at the same speed,

• Slip and skid forces between the tires and the ground are the only external

forces acting on and do not change with the position on the surface,

These bring down to formulate the motion in 2D space and enable us to neglect drag

force and forces due to the rolling of tires.

Figure 2.2. Skid-steered UGV.

18

Defining, v1, v2, v3, v4 and ω1, ω2, ω3, ω4 as linear velocity of the wheel’s

center and angular velocities of front-left, front right, rear-left, and rear-right wheels

respectively. From the earlier assumptions, we have,

vL , v1 = v3, vR , v2 = v4,

ωL , ω1 = ω3, ωR , ω2 = ω4,

(2.32)

where ωL, ωR is the angular velocities on left and right wheels, vL, vR are linear

velocities of left and right wheel’s centers in the vehicle’s body frame. vL and vR in

terms of velocity of the center of mass (or simply, vehicle velocity) in body frame,

vCB
, are given by [38],

vL = vCB
− bl

2
ψ̇,

vR = vCB
+
bl
2
ψ̇,

(2.33)

where bl is the lateral wheel base and ψ̇ is the yaw rate of the vehicle. The same

equations can be further expressed as,

vCB
=

1

2
(vL + vR),

ψ̇ =
1

bl
(vL − vR).

(2.34)

Longitudinal wheel slip (S): It is defined as the ratio of difference between the wheel

tangential velocity and the velocity of wheel center relative to surface of the ground,

which is represented by,

SL =
rLωL − vL
rLωL

, SR =
rRωR − vR
rRωR

, (2.35)

where rL, rR are the radii of the left and right wheels respectively. Note that the

tangential velocity of the wheel is radius times its angular velocity. Also note that

the condition 0 ≤ S ≤ 1 holds when the wheel is under traction, and −∞ < S ≤ 0

holds when under braking.

19

Now, rewriting the body frame vehicle velocity,

vCB
=

1

2

[
(1− SL)rLωL + (1− SR)rRωR

]
. (2.36)

The vehicle can move either forward or backward with respect to its body frame. Thus

the component vCB
is only along XB-axis. For the kinematic model, it is essential to

have the vehicle velocity in a fixed frame. Transformation of velocity into the fixed

frame is achieved with the help of rotation matrix Rzyx(0, 0, ψ). The assumption that

the vehicle moves on a horizontal surfaces, forces the components φ and θ in R to be

equal to zero. 
Cψ −Sψ 0

Sψ Cψ 0

0 0 1



vCB

0

0

 =


ẋ

ẏ

0

 , (2.37)

where ẋ and ẏ are the velocities in fixed frame along îe and ĵe respectively. Therefore,

the kinematics of the skid-steer UGV are defined by,

ẋ =
1

2

[
(1− SL)rLωL + (1− SR)rRωR

]
Cψ, (2.38)

ẏ =
1

2

[
(1− SL)rLωL + (1− SR)rRωR

]
Sψ, (2.39)

ψ̇ =
1

bl

[
(1− SL)rLωL − (1− SR)rRωR

]
Cψ. (2.40)

Upon further examination, it is evident to say

vCB
=
√
ẋ+ ẏ. (2.41)

20

CHAPTER 3

CONTROL STRATEGIES

This chapter explains the control techniques to operate unmanned vehicles.

Tracking smooth trajectories is always a challenging problem for a quadrotor. It is

mainly because the quadrotor is an underactuated system with only four independent

inputs to control six degrees of freedom. Moreover, while deriving the mathematical

model in the earlier chapter, we made some approximations. Nevertheless, advanced

strategies are being developed either by improving the controller or by creating

the trajectory. [11] introduces nonlinear backstepping for a Proportional Integral

Differential (PID) controller to resolve the tracking problem. In [39], a real-time

generation of optimal trajectories with nonlinear control is used to address the issue

in indoor environments.

In section 3.1, we will limit ourselves unfolding the linear quadratic control

method for trajectory tracking of the quadrotor. In 3.2, the PID controller is discussed

for the velocity tracking in UGV.

3.1 Linear quadratic tracking

Linear Quadratic Regulator (LQR) is a conventional controller that provides

optimal feedback gain and enables the closed-loop system to be stable over a fixed

equilibrium point. The necessity to perform command tracking, termed as linear

quadratic tracking in control theory, is solved by extending the scope of LQR design

by introducing integral feedback, named as Linear Quadratic Integrator (LQI).

21

It is necessary to know the LQR control even before stating our control problem.

Accordingly, let us briefly go through LQR first by defining the linear time-invariant

system (2.30) without considering the disturbances,

ẋ = A·x + B·u, (3.1)

The quadratic performance index [15] related to the system (3.1) is

J(t0) =
1

2

∫ T

t0

(xTQx + uTRu)dt, (3.2)

where the time interval [t0, T] is the period we consider to determine the optimal

control u∗(t) that minimizes J . The weighting matrix Q is symmetric and positive

semi-definite and R is symmetric and positive definite. The Hamiltonian is given by

[15]

H =
1

2
(xTQx + uTRu) + λT(Ax + Bu), (3.3)

where λ(t) is an undetermined multiplier. The state and costate equations [15] are

ẋ =
∂H

∂λ
= Ax + Bu, (3.4)

−λ̇ =
∂H

∂x
= Qx + ATλ, (3.5)

and the stationary condition [15] is

0 =
∂H

∂u
= Ru + BTλ. (3.6)

From the stationary condition, it is possible to write the control as

u(t) = −R−1BTλ(t). (3.7)

Minimizing J for a given initial state x(t0) and free final state x(T) with closed-loop

control, the two-point boundary problem can be solved using the sweep method

22

(Bryson and Ho 1975). So, we can assume that x(t) and λ(t) are linearly dependent

on some unknown positive semi-definite symmetric matrix function S(t) [15]

λ(t) = S(t)x(t), ∀ t ∈ [t0, T]. (3.8)

Differentiating the assumption (3.8) and further substituting (3.1), (3.7),

λ̇(t) = Ṡ(t)x(t) + S(t)ẋ(t),

λ̇(t) = Ṡx(t) + S(Ax + Bu),

λ̇(t) = Ṡx(t) + S(Ax−BR−1BTλ(t)),

λ̇(t) = Ṡx(t) + S
(
Ax−BR−1BTSx(t)

)
.

Considering the costate equation, we can further write it as

−
(
Qx(t) + ATSx(t)

)
= Ṡx(t) + SAx− SBR−1BTSx(t),

−Ṡ = ATS + SA− SBR−1BTS + Q, ∀ t ≤ T. (3.9)

(3.9) is a matrix Riccati equation, and solving it backward in time for S gives us the

optimal control

u∗(t) = −R−1BTSx(t). (3.10)

Representing Kalman gain K as [15]

K = R−1BTS, (3.11)

we have optimal control

u∗(t) = −Kx(t). (3.12)

Note that the Riccati equation is nonlinear and is not straightforward to solve.

However, efficient numerical methods, [40], [41], are available to find the solution.

We will use MATLAB functions to solve the equation.

23

Figure 3.1. Schematic of LQR.

Now, let us get back to LQI to the solve the tracking problem using LQR for

the linear time-invariant system

ẋ = A·x + B·u,

y = C·x.
(3.13)

Redefining the state vector as

x =

 xT

xN

 , (3.14)

where xT holds the states we are interested to track, in our case the position, and xN

are non tracking states, we choose the matrix C in (3.1) such that

y = Cx = xT. (3.15)

Control problem: To design the optimal control u∗(t), such that a part of the

state vector, x(t), of the linear system (3.13) tracks a command reference signal rc(t).

24

Mathematically, the problem is expressed as

xT(t)→ rc(t) ∀t.

Solution: Augment the system dynamics with integral of the state error [42].

Therefore with the augmented dynamics, control is given by

u(t) = −Kx̄, (3.16)

where,

x̄ =

 x(t)

xi(t)

 ,
and xi(t) is integral of the state error. The difference between rc(t) and xT(t) gives

the state error,

xe(t) = rc(t)− xT(t). (3.17)

Thus,

xi(t) =

∫
xe(t)dt =

∫ (
rc(t)− xT(t)

)
dt. (3.18)

(3.16) will yield an optimal control solution when the gain K is solved from the

matrix Riccati equation (3.9). However, it is to be noted that changing the system

dynamics will affect the system matrices we defined in (3.13) and can no longer be

used to solve for K. Therefore, we redefine the system matrices by augmenting them

[42], [43] as

Anew =

 A 0

−C 0

 , Bnew =

 B

0

 . (3.19)

Using (3.19) to solve the Riccati equation will make the control defined in (3.16) to

be optimal.

25

Figure 3.2. Schematic of LQI.

3.1.1 Stability of LQI

Here, we will show that the LQI control mentioned in section 3.1 is stabilizing

the system, by using Lyapunov function L(x).

The linear time-invariant system with the augmented states is given by,

˙̄x = Anew· x̄ + Bnew·u, (3.20)

with performance index,

Jnew =
1

2

∫ T

t0

(x̄TQnewx̄ + uTRu)dt. (3.21)

Note that, the augmented system with Anew, Bnew is still controllable. Then the

algebraic Riccati equation with the updated variables, and the optimal gain K is

given by,

PAnew + Anew
TP−PBnewR−1Bnew

TP + Qnew = 0, (3.22)

K = R−1Bnew
TP. (3.23)

26

where, P is a symmetric positive semi-definite matrix. Let us assume the Lyapunov

function to be

L(x̄) = x̄TPx̄. (3.24)

Differentiating the Lyapunov function gives

L̇ = ˙̄x
T
Px̄ + x̄TP ˙̄x. (3.25)

Using the equations (3.20) and (3.23) with the relation u = −Kx̄, L̇ can be rewritten

as,

L̇ =
[
Anew· x̄ + Bnew·u

]T
Px̄ + x̄TP

[
Anew· x̄ + Bnew·u

]
,

L̇ =
[
Anewx̄−BnewR−1Bnew

TPx̄
]T

Px̄ + x̄TP
[
Anewx̄−BnewR−1Bnew

TPx̄
]
,

L̇ = x̄T
[(

Anew
T −PBnewR−1Bnew

T
)
P + P

(
Anew −BnewR−1Bnew

TP
)]

x̄,

L̇ = x̄T
[
Anew

TP−PBnewR−1Bnew
TP + PAnew −PBnewR−1Bnew

TP
]
x̄. (3.26)

Using (3.22), (3.26) can be simplified as,

L̇ = x̄T
[
−Qnew −PBnewR−1Bnew

TP
]
x̄,

L̇ = −x̄T
[
Qnew + PBnewR−1Bnew

TP
]
x̄. (3.27)

Notice that, Qnew is a positive semi-definite matrix and R is positive a definite matrix.

If R is positive definite, then R−1 will be positive definite as well.

For some matrices M and T , MTMT will be in quadratic form and will be

positive definite as long as T is positive definite. Notice that PBnewR−1Bnew
TP can

be expressed as (PBnew)R−1(PBnew)T , which is in quadratic form and is positive

definite.

Hence, (Qnew + PBnewR−1Bnew
TP) is always a positive definite. Therefore, L̇

is negative definite,

L̇(x) < 0. (3.28)

27

Figure 3.3. Schematic of PID.

So, we can conclude that the system is always asymptotically stable.

3.2 PID control for UGV

Despite being one of the classical control strategies, PID is the widely used

controller to date. This is because of the robust performance it can deliver to systems

with diverse dynamics while having simple tuning parameters. Most existing control

techniques deployed in unmanned vehicles rely on some kind of PID Control. In

[11] and [44] PID is used with backstepping for attitude control of UAV, making the

system robust. In [45], an algorithm is presented to optimize the PID parameters

to improve the controller efficiency. This section focuses on trajectory tracking with

PID using velocity control in a UGV.

Let KP , KI , and KD denote the proportional, integral, and differential gains

of the PID controller, as shown in fig (3.3). The error signal e(t), in our case, the

28

difference between the desired and estimated velocity of the UGV, fed to the to the

controller is given by,

e(t) = vd(t)− v(t), (3.29)

where vd(t) is the desired velocity, and V (t) is the estimated velocity. The desired

input generated by the PID corresponding to e(t) is

u(t) = KP e(t) +KI

∫
e(t)dt+KD

de(t)

dt
. (3.30)

Applying Laplace transform to (3.21),

U(s) = KPE(t) +
1

s
KIE(s) +KDsE(s), (3.31)

we can further realise the characteristics in s domain, with the transfer function

U(s)

E(s)
= KPE(t) +

1

s
KI +KDs. (3.32)

The performance of the system in terms of rise-time, overshoot, settling time, and

steady-state error can be set to the desired values by tuning these gains appropriately.

29

CHAPTER 4

SYSTEM IDENTIFICATION WITH SIMULTANEOUS OPTIMAL CONTROL

ESTIMATION

System identification is one of the essential aspects to be considered before

designing a controller. It helps us in understanding the system model with the

intent that we can examine the performance of the control strategy while deploying

a suitable controller. By analyzing the input and output data of the system, the

system identification algorithm applies an estimation method to derive values of the

parameters in the estimated model. The identification algorithms usually include

Artificial Neural Networks (NN) [27] and Deep learning [28] techniques. As the

modern industry keep on evolving exponentially, conventional identification techniqu-

es as in [27] have became extremely difficult to analyze the system dynamics efficiently

because of the uncertainty, time delays, and input-output constraints [30]. However,

due to the advancement in computational power, efficient algorithms, [29], [28], are

being employed. [29] derives a mathematical relationship between the network weights

and the transfer function parameters. A closed-loop identification method based on

a reinforcement learning algorithm is proposed for multiple-input multiple-output

systems in [30].

In this chapter, we carry out system identification by analyzing the measured

data from the perspective of the linear regression problem. Because we already know

that our system, the quadrotor, can be linearized. So we begin with the conjugate

gradient algorithm to solve linear regression in section 4.1. Thereby in section 4.2,

we explain the IRL technique to determine optimal gain. Finally, in section 4.3,

30

we propose an approach to evaluate the optimal control policy by simultaneously

estimating the system.

4.1 Conjugate gradient

Conjugate gradient (CG) algorithm [46], [47] is an iterative method primarily

invented for minimizing a quadratic function

F (a) =
1

2
aTGa− h·a+ c = 0, (4.1)

where G is n× n symmetric and positive definite matrix and a ∈ Rn. It is identical

to solving for a in ∇F (a) = 0, which is a linear equation

Ga = h. (4.2)

Let us represent (4.2) as a linear system r(a),

r(a) = Ga− h, (4.3)

so that at an instant a = ak, we have rk as,

rk = Gak − h. (4.4)

A set of nonzero vectors {p,p, . . . ,pn−} are said to be conjugate and linearly

independent with respect to the matrix A [46] if

pi
TGpj = 0 ∀ i 6= j. (4.5)

We can generate the sequence {ak} as

ak+ = ak + αkpk, (4.6)

with initial point a ∈ Rn and the set of conjugate vector directions, where αk is the

one dimensional minimizer of the quadratic function F (a) along ak + αpk given as

[46]

αk = − rk
Tpk

pkTGpk
(4.7)

31

Theorem 1: For any a ∈ Rn the sequence {ak} generated by the conjugate direction

algorithm (4.6), (4.7) converges to the solution a∗ of the linear system (4.2) in at

most n steps. [46]

Proof: The direction vectors {pi} covers the entire space Rn as they are linearly

independent. Hence, we can write the difference between a and the solution a∗ for

some scalar values of σk as

a∗ − a = σ0p + σ1p + · · ·+ σn−1pn−. (4.8)

By multiplying (4.8) with pk
TA and using the property (4.5), we get

σk =
pk

TG(a∗ − a)

pkTGpk
. (4.9)

We now establish the result by showing that these coefficients σk coincide with the

step lengths αk generated by (4.7). If ak is generated by algorithm (4.6), (4.7), then

ak is given by [46]

ak = a + σ0p + σ1p + · · ·+ σk−1pk−. (4.10)

Again by multiplying (4.10) with pk
TG and using the property (4.5), we get [46]

pk
TG(ak − a) = 0, (4.11)

and therefore,

pk
TG(a∗ − a) = pk

TG(a∗ − ak) = pk
TG(ak − a) = −pkT rk. (4.12)

Comparing the equations (4.12), (4.7) and (4.9), we can say that σk = αk.

Theorem 2 [46]: Let a ∈ Rn be any starting point and suppose that the sequence

{ak} is generated by the conjugate direction algorithm (4.6), (4.7). Then

rk
Tpi = 0, fori = 0, 1, . . . , k − 1, (4.13)

32

and ak is the minimizer of F (a) = 1
2
aTGa− h·a over the set

{a | a = a + span{a,a, . . . ,ak−}} (4.14)

Note that the notation span{a0, a1, . . . , ak−1} is used to denote the set of all

the linear combinations of the vectors a0, a1, . . . , ak−1.

In CG method, each direction pk is chosen to be a linear combination of the

negative residual −rk and the previous direction pk−1. We write

pk = −rk + βkpk−, (4.15)

where βk is a scalar to be determined by the requirement that pk− and pk must

be conjugate with respect to G. By multiplying (4.15) by pk−
TG and imposing the

condition pk−
TGpk = 0, we find that

βk =
rk
TGpk−

pk−TGpk
(4.16)

Conjugate gradient preliminary version:

Given a;

Set r0 ← Ga − h, p0 ← −r0, k ← 0;

while rk 6= 0;

αk ← − rk
T pk

pk
TGpk

; (4a)

ak+ ← ak + αkpk;

rk+1 ← Gak+ − h;

βk+1 ← rk+1
TGpk

pk
TGpk

;

pk+ ← −rk+ + βk+pk; (4b)

k ← k + 1;

end(while)

33

Theorem 3: Suppose that the kth iterate generated by the conjugate gradient method

is not the solution point a∗. The following four properties hold:

rk
T ri = 0, for i = 0, 1, . . . , k − 1, (4.17)

span{r0, r1, . . . , rk} = span{r0, Gr0, . . . , Gkr0}, (4.18)

span{p,p, . . . ,pk} = span{r0, Gr0, . . . , Gkr0}, (4.19)

pk
TGpi = 0, for i = 0, 1, . . . , k − 1. (4.20)

Therefore, the sequence {ak} converges to a∗ in at most n iterations [46].

By using the theorem 2 and 3, we can derive a slightly more economical form

of the CG method. First, we can use (4b) and (4.13) to replace the formula (4a) for

αk by

αk =
rk
T rk

pkTGpk
. (4.21)

Second, from the relations (4.4) and (4.6), it is possible to write αkGpk = rk+1 − rk.

So, by applying (4b) and (4.13) once again we can simplify the formula for βk+ to

βk+1 =
rk+1

T rk+1

rkT rk
(4.22)

By using these formulae, we obtain the standard form of the conjugate gradient

method given in the next subsection.

34

4.1.1 Conjugate gradient implementation

In this subsection, we provide the pseudo code [46] to implement for estimating

the weights for linearly dependent data.

Given a;

Set r0 ← Ga − h, p0 ← −r0, k ← 0;

while rk 6= 0;

αk ← rk
T rk

pk
TGpk

;

ak+ ← ak + αkpk;

rk+1 ← rk + αkGpk;

βk+1 ← rk+1
T rk+1

rkT rk
;

pk+ ← −rk+ + βk+pk;

k ← k + 1;

end(while)

4.2 Integral reinforcement learning

The Hamilton–Jacobi–Bellman (HJB) Equation is well known to solve for the

optimal control solutions [16], [19]. Integral Reinforcement Learning (IRL) [16],

[17], [48] uses an iterative technique to approximately solve the HJB equation and

guarantees that the attained control will converge to the optimal solution. Therefore,

let us begin this section with HJB associated with quadratic performance function

for a continuous time LQR case. Later, we will present the policy iteration algorithm

to acquire optimal control.

For the linear time invariant system (3.13), the quadratic cost function is given

as,

J(t) =
1

2

∫ ∞
t

(xTQx + uTRu)dt. (4.23)

35

The HJB equation is

−Jt = min
u

[
Jx

T ẋ +
1

2
xTQx +

1

2
uTRu

]
, (4.24)

−Jt = min
u

[
Jx

T (Ax + Bu) +
1

2
xTQx +

1

2
uTRu

]
, (4.25)

where, Jt, and Jx are partial derivatives of J(t) with respect to t, and x.

Assuming a solution for J(t) in quadratic form,

J(t) =
1

2
xTS(t)x, (4.26)

we can express the partial derivatives as,

Jx =
∂J(t)

∂x
= Sx, (4.27)

Jt =
∂J(t)

∂t
=

1

2
xTṠ(t)x. (4.28)

Differentiating the HJB equation (4.25) with respected to u to find the minimum,

BTJx + Ru = 0, (4.29)

u = −R−1BTJx,

u = −R−1BTSx. (4.30)

Now, to solve the HJB at minimum u, substitute (4.31) in (4.25).

−Jt = Jx
T (Ax−BR−1BTSx) +

1

2
xTQx +

1

2
xTSBR−1RR−1BTSx, (4.31)

Further, substituting (4.27) and (4.28), and solving,

−1

2
xTṠx = xTS

(
Ax− xTSBR−1BTSx

)
+

1

2
xTQx +

1

2
xTSBR−1RR−1BTSx,

−1

2
xTṠx = xTSAx−BR−1BTSx +

1

2
xTQx +

1

2
xTSBR−1BTSx,

−1

2
Ṡ = SA− 1

2
SBR−1BTS +

1

2
Q,

−Ṡ = SA + ATS− SBR−1BTS + Q. (4.32)

36

It is to be noted that (4.32) is matrix Riccati equation same as (3.9) we derived in

chapter 3. Therefore, the minimum u in (4.30) is the optimal control u∗.

Now, let us represent r with the quadratic function

r(x,u) = xTQx + uTRu. (4.33)

Value function V can be expressed in terms of r as,

V (x(t)) =

∫ ∞
t

r(x,u)dτ,

V (x(t)) =

∫ t+T

t

r(x,u)dτ +

∫ ∞
t+T

r(x,u)dτ,

V (x(t)) =

∫ t+T

t

r(x,u)dτ + V (x(t+ T)). (4.34)

(4.34) is a continuous time Bellman equation [19]. The optimal value V ∗ is obtained

on minimizing (4.34) subjected to control u, given as,

V ∗(x(t)) = min
u

[∫ t+T

t

r(x,u)dτ + V (x(t+ T))
]
,

V ∗(x(t)) = min
u

[∫ t+T

t

r(x,u)dτ
]

+ V ∗(x(t+ T)). (4.35)

(4.35) is known as continuous time Bellman optimality equation [19]. Notice that

in order to determine the optimal value at time t, one must know the optimal value

at time t + T . Therefore, to solve for the optimal value, Bellman equation yields

a backwards-in-time procedure [16], which is the base for Dynamic programming

algorithms. The drawback is that these are off-line methods and the system dynamics

are to be known.

In comparison to off-line methods, Policy Iteration (PI) method [Sutton and

Barto 1998], [16],[19],[49] is adopted to solve for the optimal control by exploiting

the Bellman equation (4.34) on-line real-time without the necessity to know the

system dynamics. The PI algorithm consists of policy evaluation followed by policy

improvement.

37

Policy Iteration:

step 0: Initialization

Select an admissible control policy π0 which stabilizes the system.

step 1: Policy evaluation

For the iteration k, evaluate the value of the current policy using IRL Bellman

equation

Vk =

∫ t+T

t

r(x,u)dτ + Vk
(
x(t+ T)

)
. (4.36)

It is to be noted that there are no system dynamics involved in (4.36). This is same

as solving the differential equivalent,

H(x,
∂V

∂x
,u) = V̇ + r(x,u) =

(∂V
∂x

)T
ẋ + r(x,u) = 0,

H(x,
∂V

∂x
,u) =

(∂V
∂x

)T (
Ax + Bu

)
+ r(x,u) = 0 (4.37)

(4.37) is Bellman equation in terms of Hamilton function, which is dependent on the

system dynamics A,B.

step 2: Policy Improvement

Update to an improved policy using

πk+1(x) = −R−1BT ∂Vk
∂x

. (4.38)

From (4.27), we can rewrite the control policy as

πk+1(x) = −R−1BTSkx. (4.39)

step 3: Check for convergence

Go to step 1 if not converged.

The IRL Bellman equation (4.36) is preferred to solve by using value function

approximation [48]. In the value function approximation approach, according to the

38

Weierstrass high-order approximation theorem [48], value function is approximated

to a single-layer NN by the Weierstrass approximator network. However, we will stick

to solve the differential Riccati equation to evaluate the value function with the help

of system identification using CG.

4.3 Optimal gain calculation through IRL and CG identified system

In this section, we develop a procedure to find an optimal control solution using

the CG while performing policy iteration. In the policy evaluation step, the value

function (4.36) is approximated to a neural network to determine the value of the

current policy, rather than using the Bellman equation [16], [19]. However, instead

of using value function approximation, we adopt CG mentioned from section 4.1 to

estimate the system dynamics.

In order to perform linear regression using CG, it is essential to represent the

time-invariant system (3.1) in a linear equation format as in (4.2). Then, (3.1) can

be expressed as

ẋ =

[
A B

] x

u

 , (4.40)

ẋ = Wδ. (4.41)

The CG algorithm takes in samples of ẋ, and δ to estimate W . Mathematically, for

some function say fcg,

Aest,Best = fcg(x,u, ẋ). (4.42)

However, the control input u is somehow always related to the current states and/or

the error. For LQI, this depends on x̄, and the relation is given by (3.16).

39

Therefore,

Aest,Best = fcg(x,−Kx̄, ẋ),

Aest,Best = gcg(x̄, ẋ)
∣∣∣
K
, (4.43)

which essentially says that the pair Aest and Best is a function, say gcg, of x̄, ẋ at a

given gain K.

To support the (4.43), we can redefine the system (3.1) in linear form as

ẋ =

[
A−BK1 −BK2

]
x̄, (4.44)

where [
K1 K2

]
= K. (4.45)

To conclude, either depending on (4.40) or (4.43) for system estimation yield

the same results. Note that (4.43) is independent of the control input u.

The Best obtained from CG is then used to determine the control policy (4.39)

for policy improvement. Therefore, the improved control is

π(x) = −R−1Best
TSx. (4.46)

40

Policy iteration with system estimation:

step 0: Initialization

Select an admissible gain K0 = Kad which stabilizes the system. The control

corresponding to K0 is π0.

Choose Q and R.

step 1: Policy Evaluation

For the iteration k, evaluate the value of the current policy from

Vk = xTSkx, (4.47)

by using the differential Riccati equation,

−Ṡk = SkAk + Ak
TSk − SkBkR

−1Bk
TSk + Q. (4.48)

The matrices Ak and Bk are determined from the system estimation using CG

by analysing the data samples of x, u, and ẋ, collected after running the system with

control πk−1(x).

Ak,Bk ≡ Aest,Best = fcg(x, πk−1, ẋ). (4.49)

step 2: Policy Improvement

Update to an improved policy by using

πk+1(x) = −R−1Bk
T∇Vk = −R−1Bk

TSkx. (4.50)

step 3: Check for convergence

If
∣∣||Kk|| − ||Kk−1||

∣∣ < ε stop, else go to step 1.

ε is the threshold limit of check the convergence. Note that Kk = R−1Bk
TSk

41

CHAPTER 5

DESIGN AND SIMULATION RESULTS

In this chapter, the algorithm proposed in chapter 4 will be tested in MATLAB

and Simulink. Starting with an admissible gain, we run the algorithm for several

iterations until we reach an optimal control value. At the optimal control value,

the performance of the estimated system matches the theoretical model. We begin

showing the theoretical model of the quadrotor, and the UGV in section 5.1, and

in section 5.2 respectively. Simulation results at different iterations are shared in

section 5.3. In section 5.4, we give the comparison between the estimated model and

theoretical model.

5.1 Theoretical model of quadrotor

The theoretical model in the simulation environment presented in this section

is based on commercially available Parrot AR.Drone 2.0. Hence, all the quadrotor

parameters mentioned in chapter 2 are assigned with the values corresponding to

AR.Drone 2.0 as given in table 5.1.

Table 5.1. AR.Drone 2.0 parameters

Parameter symbol value

Mass m 0.46kg
Moment of inertia long X-axis Ixx 0.0024kg/m2

Moment of inertia long Y -axis Iyy 0.0024kg/m2

Moment of inertia long Z-axis Izz 0.004803741kg/m2

Acceleration due to gravity g 9.81m/s2

42

Figure 5.1. Theoretical model of quadrotor in Simulink.

The implementation of the mathematical model we discussed earlier in chapter

2 in Simulink is shown in Fig 5.1. The feedback portion of the LQI from chapter 3

with error being integrated is shown in Fig 5.2.

5.2 Theoretical model of UGV

The theoretical model in the simulation environment presented in this section

is based on Husky from Clear Path Robotics. Therefore, we use the parameters

mentioned in chapter 2 associated with Husky, given in table 5.2.

Fig 5.3 shows the implementation of the mathematical model we discussed

earlier in chapter 2 in Simulink environment. The system inputs for the Husky are

linear velocity in body frame, vCB
, and yaw rate, dotψ. Therefore, we modify the

43

Figure 5.2. LQI feedback in Simulink.

Table 5.2. AR.Drone 2.0 parameters

Parameter symbol value

Lateral wheel base bl 0.555m
Radius of left wheel rL 0.1524m

Radius of right wheel rR 0.1524m

Figure 5.3. Theoretical model of UGV in Simulink.

44

Figure 5.4. PID controller in Simulink.

kinematics accordingly from the equations (2.36) and (2.40) to make the theoretical

model resemble the actual system. Consequently, we use a pair of PID controllers,

each for every input, as shown in Fig 5.4.

5.3 Simulation results

In this section, we show the simulation results of the algorithm proposed in

section 4.2 tested vigorously on different trajectories. We begin this section by

showing the time responses of the output variables, x, y, z, ψ during circular and

8-figure trajectories. Later, we show the ability of the algorithm in tracking circular

and 8-figure trajectories. Please note that the results shared here are obtained by

running the algorithm in section 4.2 for five iterations.

Figure 5.5 and 5.6 shows the responses during the first iteration of circular and

8-figure trajectories, respectively. Note that the theoretical responses corresponding

to figure 5.5 and 5.6 are acquired through the admissible gain. It is evident to say

45

(a) x(t) response during 1st iteration (b) y(t) response during 1st iteration

(c) z(t) response during 1st iteration (d) ψ(t) response during 1st iteration

Figure 5.5. Response of x, y, z, ψ during first iteration of circular trajectory.

that, these theoretical responses have unsatisfactory tracking ability. However, we

see a significant improvement in tracking from the estimated model, despite being

the first iteration.

46

(a) x(t) response during 1sh iteration (b) y(t) response during 1st iteration

(c) z(t) response during 1st iteration (d) ψ(t) response during 1st iteration

Figure 5.6. Response of x, y, z, ψ during first iteration of 8-figure trajectory.

47

(a) x(t) response during 5th iteration (b) y(t) response during 5th iteration

(c) z(t) response during 5th iteration (d) ψ(t) response during 5th iteration

Figure 5.7. Response of x, y, z, ψ during fifth iteration of circular trajectory.

Figures 5.7 and 5.8 shows the responses of circular and 8-figure trajectories

respectively, during the fifth iteration. It is apparent to notice that the theoretical

and the estimated model deliver the same performance.

48

(a) x(t) response during 5th iteration (b) y(t) response during 5th iteration

(c) z(t) response during 5th iteration (d) ψ(t) response during 5th iteration

Figure 5.8. Response of x, y, z, ψ during fifth iteration of 8-figure trajectory.

49

Figure 5.9. Circular trajectory during first iteration.

Figure 5.10. Circular trajectory during last iteration.

To check the trajectory tracking ability, we can look into figures 5.9 - 5.12.

Figures 5.9 and 5.10 show the circular trajectory in 3D space during the first and last

50

iterations, respectively. Figures 5.11 and 5.12 show the 8-figure trajectory during the

first and last iterations, respectively.

Note that even though the trajectory obtained from the theoretical model

during the first iterations is abysmal, the chosen admissible gain keeps the system

stable and helps in linearizing the system.

Figure 5.11. 8-fig trajectory during first iteration.

51

Figure 5.12. 8-fig trajectory during last iteration.

5.4 Theoretical vs estimated system

In this section, we reveal the estimated linear model obtained finally from the

algorithm 4.2 and compare it with the linear model we derived in section 2.7. Then

we show the gain K calculated by the estimated model.

We draw the A and B matrices of the state-space model (3.1) by substituting

the parameters from table 5.1 in (2.31). Thus we obtain the system matrices

52

A =



0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 −9.81 0 0 0 0 0 0 0

0 0 0 9.81 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0



, (5.1)

and

B =



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

−2.17 0 0 0

0 416.6 0 0

0 0 416.6 0

0 0 0 208.1



. (5.2)

53

The estimated linear model we obtain from the simulation are given by Aest

and Best as

Aest =



0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 −1.7 −9.81 0 0 0 0 0 0 0

0 0 0 9.81 −1.7 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 −0.01 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0



, (5.3)

Best =



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 −0.22 −0.01 0

0 −0.02 0.02 0.06

0 0 0 0.03

−2.17 −2.77 1.56 0.01

0 416.6 0 0

0 0 416.6 0

0 0 0 208.1



. (5.4)

Note that the the simulation results of the estimated model we have been sharing

in the section 5.3 are from the matrices Aest and Best. This model in Simulink

environment is shown in the figure 5.13

54

Figure 5.13. Estimated model of quadrotor in Simulink.

The gain K obtained by solving the Riccati equation (3.9) by using A, B for the

augmented matrices (3.19), as discussed in section 3.1, yields to the optimal control.

We denote this gain by Kopt. Upon solving for this gain in MATLAB, we have,

Kopt =



0 0 −4.28 0 0 0 0 0 −2.99 0 0 0 0 0 −2.23 0

0 −4.88 0 13.8 0 0 0 4.2 0 2.25 0 0 0 −2.2 0 0

−4.88 0 0 0 13.8 0 −4.2 0 0 0 2.25 0 −2.23 0 0 0

0 0 0 0 0 3.87 0 0 0 0 0 2.24 0 0 0 −2.23


.

The gain obtained by solving the Riccati equation (3.9) by using Aest, Best for

the augmented matrices (3.19) is given by

55

Kest =



0 0.01 −4.28 0.08 0 0 0 0 −2.99 −0.01 0.01 0 0 0 −2.23 0

−0.8 4.88 −0.01 13.8 0 0 −0.7 4.14 0 2.25 0 0 0.38 −2.2 0 0

−4.8 −0.8 0 0 13.8 0 −4.1 −0.7 0 0 2.25 0 −2.2 0.38 0 0

0 0 0 0 0 3.87 0 0 0 0 0 2.24 0 0 0 −2.23


.

To compare Kest with the initial admissible gain Kad, we have considered Kad

to be,

Kad =



0.78 0.45 −3.69 1.25 1.15 0.27 1.13 0.13 −2.79 1.32 1.28 0.87 0.31 1.22 3.20 0.01

0.09 6.02 1.25 14.3 1.20 0.26 0.01 4.31 1.23 2.30 0.00 0.16 1.34 −1.26 0.74 1.07

−4.53 1.19 0.64 0.27 14.3 0.03 −3.67 0.78 0.12 1.39 2.46 1.46 3.58 0.60 0.01 1.39

0.72 0.12 0.41 0.64 0.85 4.57 0.20 0.91 0.04 1.16 1.29 3.44 0.70 1.30 0.17 0.17


.

56

CHAPTER 6

EXPERIMENTAL DESIGN AND IMPLEMENTATION

In this chapter, we provide the details of the experimental setup, followed by

the implementation results. All the implementations are performed with the Robot

Operating System (ROS) as in [50]. ROS is a flexible framework with a set of tools,

libraries, and conventions for designing robot software. We have generated standalone

ROS nodes from the Simulink models to run on a Ubuntu Linux system. Please note

that we have not included the installation and setup of ROS. However, we have briefly

provided the details of the components we use and their integration with ROS. Section

6.1 explains the Leap motion controller. In section 6.2, we explain Vicon motion

capturing. In section 6.3, we show the implementation of autonomous tracking and

landing of a quadrotor on moving UGV.

6.1 Leap motion controller

The Leap Motion Controller is a 3D optical hand tracking device that tracks

the hand’s motions up to 200 fps [51], with incomparable accuracy and precision.

It consists of a pair of stereo cameras with a typical field of view of 140×120◦,

accompanying three infrared LEDs to draw a robust and reliable skeletal hand motion

model. Many hand gesture recognition techniques and applications rely on this

skeletal model. [52] and [53] analyze the hand motion data using the back-propagation

and Deep Neural Networks, respectively, for gesture recognition. [51] proposed the

design of an anthropomorphic robot hand using twenty servo motor for twenty degrees

of freedom to reproduce the exact and every gesture of our hand. [54] studies

57

controlling the SCARA robotic arm using leap motion. In this section, we explain the

usage of leap motion, relying on the skeletal model, to control and drive the UGV,

Husky.

The location and orientation information of the palm is collected from the

skeletal hand motion data by deploying a ROS node on Linux system after connecting

the leap motion controller physically to the system. Depending on the location and

orientation we generate the commands (2.40) and (2.41) accordingly to drive the

Husky. (ROS driver for Leap motion sensor, ”leap motion”, [55] needs to be installed

in order to access the data, and can be available at the Git repository [56]).

The data collected from the leap motion controller will be with respect to the

body frame coordinates as shown in figure 6.1.

Figure 6.1. Leap motion controller.

58

The direction of motion of the UGV, Husky, is determined based on the location

of the palm in XBZB plane. Figure 6.2 shows the sectors corresponding to the

direction of motion. The velocity and acceleration are determined based on the

orientation, which is the pitch of the palm, as shown in table 6.1.

Table 6.1. Acceleration control using leap motion

Pitch angle of palm (φ) Acceleration

φ < −25◦ acceleration > 0
−25◦ < φ < 20◦ acceleration = 0

φ > 20◦ acceleration < 0

6.2 Vicon motion capture system

Vicon motion capturing system provides the most precise and reliable data

in tracking the movement of objects by employing passive optical motion capture

technology [57], [58]. The optical-passive technique utilizes retroreflective markers

[59] that are tracked by infrared cameras. The accurate spatial location information

is obtained from the Vicon camera system by capturing the position of the markers

affixed to the objects. Majority of the indoor fight demonstrations [11], [44], [60],

[61], [62], [58] rely on Vicon system for positioning. In this section, we briefly discuss

our approach in integrating Vicon for the implementations.

Figures 6.4 and 6.5 shows Vicon markers glued to the A.R Drone and Husky,

respectively. The real-time data of A.R. Drone and Husky captured by the Vicon

system through these markers is transmitted to a terminal, then to the ground station

computer [58] (Vicon Master Computer) through an ethernet cable. Finally, this data

is transmitted to the Linux machine installed with ”Vicon bridge” ROS driver package

59

Figure 6.2. Direction of motion based on palm location with respect to Leap motion.

which runs the ROS node. (ROS driver for Vicon system, ”Vicon bridge”, [63] needs

to be installed in order to access the data, and can be available at the Git repository

[64]). The position and orientation information is published by this ROS node.

6.3 Autonomous tracking and landing of quadrotor on a moving UGV

In this section, we explain the experimental framework and the demonstrations

conducted based on the simulations performed in the indoor lab environment at UTA

Research Institute. We are relying on the Vicon motion capture system, with sixteen

Vicon cameras equipped in the lab, to locate the unmanned vehicles in inertial frame.

60

Figure 6.3. A.R Drone 2.0 with Vicon markers.

Figure 6.4. Husky with Vicon markers.

Note that the ROS packages and the installation instructions for Husky, and

AR.Drone are available at [65], [66] and [67], [68] respectively. These packages help

61

us to communicate with Husky and AR.Drone through ROS topics to subscribe to

the command inputs.

Figure 6.5. Communication flow in the experiments.

The communication flow between the elements is shown in figure 6.5. The ROS

topics containing the position and location information of the Husky, and AR.Drone

is subscribed by the ROS nodes UAV, UGV control for the feedback purpose. The

input commands to the UGV are published by the UGV control node based on

the palm information topic, subscribed from leap motion. While UGV moves in

an arbitrary trajectory, UAV is made to track the UGV. Therefore, the UAV control

node subscribes to the UGV location topic from Vicon to publish the input commands

to the UAV.

62

The Simulink models shown in chapter 5 are converted into standalone ROS

nodes using ROS toolbox in MATLAB/Simulink software. We have written Linux

shell script to launch and run these ROS nodes. Note that the cooperation control of

UAV and UGV is based on [44].

Figure 6.6. Implementation results.

The tracking performance with the optimal control policy for the practical

implementation can be inferred from the figure 6.6, while Husky is moving in a

63

circular trajectory. Figure 6.7 shows the cooperation control of unmanned vehicles in

the lab. The experiments described in this chapter are recorded to illustrate visually.

The videos are available from the following links: https://youtu.be/Hx7D5e7yBB4,

https://youtu.be/e8AslCdRxfg, and

https://youtu.be/IpYZVY6k34k.

Figure 6.7. AR.Drone following Husky.

64

CHAPTER 7

CONCLUSION

In this thesis, we have presented the approach for calculating the optimal control

of a UAV to track and land on a moving UGV. The significance of this algorithm

relies on the ability to determine optimal gain in the absence of system dynamics.

This method deploys solving the IRL Bellman equation through system identification

instead of value function approximation. Through rigorous experimentation, we

showed that when started with an admissible control policy, this algorithm delivers an

efficient control over each iteration. Further, to strengthen this algorithm, the efforts

in implementing it on AR Drone helped in tracking and landing on the arbitrarily

moving Husky. The UAV system can be approximated to a linear time-invariant

system. The scope of future research will be in the field of exploring control strategies

for nonlinear systems. Furthermore, research can be conducted to examine the

performance of this approach to nonlinear systems.

65

APPENDIX A

NOMENCLATURE

66

îe, ĵe, k̂e : unit vectors in Earth frame

îB, ĵB, k̂B : unit vectors in Body frame

φ, θ, ψ : Euler angles roll, pitch and yaw

Rx(φ), Ry(θ), Rz(ψ) : rotation matrices along X, Y , Z axes

R : rotation matrix from Body to Earth frame

T : transform angular velocities from the Body to Earth frame

x : current position in X-axis in Earth frame

y : current position in Y -axis in Earth frame

z : current position in Z-axis in Earth frame

u : forward velocity in Body frame

v : sideward velocity in Body frame

w : vertical velocity in Body frame

p : roll rate

q : pitch rate

r : yaw rate

vB : linear velocity vector in Body frame

v : linear velocity vector in Earth frame

ωB : angular velocity vector in Body frame

ω : angular velocity vector in Earth frame FB : force vector in Body frame

mB : moment vector in Body frame

I : inertia matrix

Ft : thrust generated by the rotors along ZB-axis

Fw : force due to wind disturbances in Body frame

τB : control torque produced by the rotors in body frame

τw : torque due to wind disturbance in Body frame

67

m : mass of the quadrotor

g : acceleration due to gravity

Ω1, Ω2, Ω3, Ω4 : rotational speeds of the four rotors

b : thrust factor

d : drag factor

l : distance from the center to the rotor

x : state vector

u : control input

ueq : control input to make the quadrotor hover

xeq : states corresponding to the input ueq

A, B : linearized system matrices of quadrotor

v1, v2, v3, v4 : linear velocity of UGV wheel centers

ω1, ω2, ω3, ω4 : angular velocity of UGV wheels

vCB
: UGV velocity in Body frame

bl : lateral wheel base

rL, rR : radius of left and right wheels

SL, SR : longitudinal left and right wheel slips

A, B, C : linear time invariant system matrices

J(t0) : quadratic performance index

Q, R, S, P : weighing matrices in LQR

H : Hamiltonian

K : feedback gain

xT : tracking states

xN : non tracking states

rc(t) : command reference signal

xi(t) : integral of the state error

68

x̄ : x(t) appended with xi(t)

xe(t) : error in tracking states

Anew, Bnew : augmented system matrices for LQI

Jnew : performance index of LQI

Qnew : Weighing matrix for LQI

L(x̄) : Lyapunov function

KP : proportional gain

KI : integral gain

KD : differential gain

v(t) : instantaneous velocity

vd(t) : desired velocity

e(t) : velocity error signal

E(s) : Laplace transform of error signal

U(s) : Laplace transform of input signal

F (x) : quadratic function

Jt, Jx : partial derivatives of J(t) with respect to t, and x

V (x(t)) : value function

π0 : initial admissible policy

πk : policy during iteration k

fcg, gcg : functions to represent CG

W : augmented A and B

δ : x appended with u

Aest, Best : system matrices identified by CG

ε : threshold limit of check for convergence

69

REFERENCES

[1] Z. He and L. Zhao, “A simple attitude control of quadrotor helicopter based on

ziegler-nichols rules for tuning pd parameters,” The Scientific World Journal,

2014.

[2] R. Lalantha and R. Munasinghe, “Feasibility study of a novel cross assembled

multi-quadrotor unmanned aerial vehicle,” in 2018 IEEE International

Conference on Information and Automation for Sustainability (ICIAfS), 2018,

pp. 1–6.

[3] F. Fraundorfer, L. Heng, D. Honegger, G. H. Lee, L. Meier, P. Tanskanen,

and M. Pollefeys, “Vision-based autonomous mapping and exploration using

a quadrotor mav,” in 2012 IEEE/RSJ International Conference on Intelligent

Robots and Systems, 2012, pp. 4557–4564.

[4] B. S. E. G. D. K. Hong Chul Yang, Rami AbouSleiman and O. Rawashdeh,

“Implementation of an autonomous surveillance quadrotor system,” AIAA

Infotech@ Aerospace Conference, 2009.

[5] M. J. R. Michail G. Michailidis* and K. P. Valavanis, “A survey of controller

designs for new generation uavs: The challenge of uncertain aerodynamic

parameters,” International Journal of Control, Automation and Systems, vol. 18,

pp. 801–816, 2019.

[6] K. J. Orlik-Ruckemann, “Aerodynamic coupling between lateral and longitudinal

degrees of freedom,” AIAA JOURNAL, vol. 15, pp. 1792–1799, 1977.

[7] B. Erginer and E. Altug, “Modeling and pd control of a quadrotor vtol vehicle,”

in 2007 IEEE Intelligent Vehicles Symposium, 2007, pp. 894–899.

70

[8] S. W. Sung and I.-B. Lee, “Limitations and countermeasures of pid controllers,”

Industrial & Engineering Chemistry Research, vol. 35, no. 8, pp. 2596–2610,

1996.

[9] C. T. Ton and W. MacKunis, “Robust attitude tracking control of a quadrotor

helicopter in the presence of uncertainty,” in 2012 IEEE 51st IEEE Conference

on Decision and Control (CDC), 2012, pp. 937–942.

[10] F. R. R. R. A. Garćıa and M. G. Ortega, “Robust pid control of the quadrotor

helicopter,” IFAC Proceedings Volumes, vol. 45, pp. 229–234, 2012.

[11] Y. Kartal, V. L. Patrik K, A. Dogan, and F. Lewis, “Backstepping approach for

design of pid controller with guaranteed performance for micro-air uav,” Control

Theory and Technology, vol. 18, pp. 19–33, 2019.

[12] Y. ohnson and S. Dasgupta, “Robust hurwitz stability and performance analysis

of h-infinity controlled forward-velocity dynamics of uavs in close formation flight

using bounded phase conditions in a kharitonov framework,” Journal of The

Institution of Engineers (India): Series C, vol. 95, p. 223–231, 2014.

[13] M. G. O. Guilherme V. Raffo and F. R. Rubio, “Path tracking of a uav via an

underactuated h-infinity control strategy,” European Journal of Contro, vol. 2,

p. 194–213, 2011.

[14] M. Farrell, J. Jackson, J. Nielsen, C. Bidstrup, and T. McLain, “Error-state lqr

control of a multirotor uav,” in 2019 International Conference on Unmanned

Aircraft Systems (ICUAS), 2019, pp. 704–711.

[15] F. L. Lewis, D. Vrabie, and V. L. Syrmos, Optimal Control, John Wiley Sons,

2012.

[16] F. L. Lewis and D. Vrabie, “Reinforcement learning and adaptive dynamic

programming for feedback control,” IEEE Circuits and Systems Magazine, vol. 9,

no. 3, pp. 32–50, 2009.

71

[17] H. Modares and F. L. Lewis, “Optimal tracking control of nonlinear

partially-unknown constrained-input systems using integral reinforcement

learning,” Automatica, vol. 50, p. 1780–1729, 2014.

[18] R. S. Sutton and A. G. Barto, “Reinforcement learning: An introduction,”

Cambridge, U.K.: Cambridge Univ. Press, 1998.

[19] D. V. Kyriakos G. Vamvoudakis and F. L. Lewis, “Online adaptive algorithm

for optimal control with integral reinforcement learning,” International Journal

of Robust and Nonlinear Control, vol. 24, p. 2686–2710, 2014.

[20] B. Khalil and A. Yesildirek, “System identification of uav under an autopilot

trajectory using arx and hammerstein-wiener methods,” in 7th International

Symposium on Mechatronics and its Applications, 2010, pp. 1–5.

[21] C. Alippi and V. Piuri, “Experimental neural networks for prediction and

identification,” IEEE Transactions on Instrumentation and Measurement,

vol. 45, no. 2, pp. 670–676, 1996.

[22] C. J. Li and Y. C. Jeon, “Genetic algorithm in identifying non linear auto

regressive with exogenous input models for non linear systems,” in 1993

American Control Conference, 1993, pp. 2305–2309.

[23] D. Wang and F. Ding, “Hierarchical least squares estimation algorithm for

hammerstein–wiener systems,” IEEE Signal Processing Letters, vol. 19, no. 12,

pp. 825–828, 2012.

[24] M. Sano and Lianming Sun, “Identification of hammerstein-wiener system with

application to compensation for nonlinear distortion,” in Proceedings of the 41st

SICE Annual Conference. SICE 2002., vol. 3, 2002, pp. 1521–1526 vol.3.

[25] L. Lasdon, S. Mitter, and A. Waren, “The conjugate gradient method for optimal

control problems,” IEEE Transactions on Automatic Control, vol. 12, no. 2, pp.

132–138, 1967.

72

[26] T. Blumensath and M. E. Davies, “Gradient pursuits,” IEEE Transactions on

Signal Processing, vol. 56, no. 6, pp. 2370–2382, 2008.

[27] J. Sjöberg, H. Hjalmarsson, and L. Ljung, “Neural networks in system

identification,” IFAC Symposium on System Identification (SYSID’94), pp.

359–382, 1994.

[28] A. Ayyad, M. Chehadeh, M. I. Awad, and Y. Zweiri, “Real-time system

identification using deep learning for linear processes with application to

unmanned aerial vehicles,” IEEE Access, vol. 8, pp. 122 539–122 553, 2020.

[29] T. A. Tutunji, “Parametric system identification using neural networks,” Applied

Soft Computing, vol. 47, pp. 251–261, 2016.

[30] M. Jiang and Q. Jin, “Multivariable system identification method based on

continuous action reinforcement learning automata.”

[31] B. L. Stevens, F. L. Lewis, and E. N. Johnson, Aircraft Control and Simulation:

Dynamics, Controls Design, and Autonomous Systems, John Wiley Sons, 2016.

[32] D. Lee, T. C. Burg, D. M. Dawson, D. Shu, B. Xian, and E. Tatlicioglu,

“Robust tracking control of an underactuated quadrotor aerial-robot based on a

parametric uncertain model,” pp. 3187–3192, 2009.

[33] H. D. Curtis, Orbital Mechanics for Engineering Students, Elsevier

Butterworth-Heinemann, 2005.

[34] C. Powers, D. Mellinger, and V. Kumar, Handbook of Unmanned Aerial Vehicles:

Quadrotor Kinematics and Dynamics, Springer Netherlands, 2015.

[35] L. Derafa, T. Madani, and A. Benallegue, “Dynamic modelling and experimental

identification of four rotors helicopter parameters,” in 2006 IEEE International

Conference on Industrial Technology, 2006, pp. 1834–1839.

73

[36] A. Das, K. Subbarao, and F. Lewis, “Dynamic inversion with zero-dynamics

stabilisation for quadrotor control,” IET, Control Theory Applications, vol. 3,

p. 303–314, 2009.

[37] D. Wang and C. B. Low, “Modeling and analysis of skidding and slipping in

wheeled mobile robots: Control design perspective,” IEEE Transactions on

Robotics, vol. 24, no. 3, pp. 676–687, 2008.

[38] J. Yi, H. Wang, J. Zhang, D. Song, S. Jayasuriya, and J. Liu, “Kinematic

modeling and analysis of skid-steered mobile robots with applications to low-cost

inertial-measurement-unit-based motion estimation,” IEEE Transactions on

Robotics, vol. 25, no. 5, pp. 1087–1097, 2009.

[39] D. Mellinger and V. Kumar, “Minimum snap trajectory generation and control

for quadrotors,” in 2011 IEEE International Conference on Robotics and

Automation, 2011, pp. 2520–2525.

[40] J. Willems, “Least squares stationary optimal control and the algebraic riccati

equation,” IEEE Transactions on Automatic Control, vol. 16, no. 6, pp. 621–634,

1971.

[41] A. Laub, “A schur method for solving algebraic riccati equations,” IEEE

Transactions on Automatic Control, vol. 24, no. 6, pp. 913–921, 1979.

[42] P. C. Young and J. C. Willems, “An approach to the linear multivariable

servomechanism problem,” International Journal of Control, vol. 15, no. 5, pp.

961–972, 1972.

[43] I. Kisszölgyémi, K. Beneda, and Z. Faltin, “Linear quadratic integral (lqi)

control for a small scale turbojet engine with variable exhaust nozzle,” in 2017

International Conference on Military Technologies (ICMT), 2017, pp. 507–513.

74

[44] Y. Kartal, K. Subbarao, N. R. Gans, and F. Lewis, “Distributed backstepping

based control of multiple uav formation flight subject to time delays,” IET

Control Theory and Applications, pp. 1–11, 2020.

[45] A. A. Aly, “Distributed backstepping based control of multiple uav formation

flight subject to time delays,” Intelligent Control and Automation, vol. 2, pp.

69–76, 2011.

[46] J. Nocedal and S. J. Wright, Numerical Optimization, Springer Series in

Operation Research and Financial Engineering, 2006.

[47] C. T. Kelley, Iterative Methods for Linear and Nonlinear Equations, Society for

Industrial and Applied Mathematics, 1995.

[48] F. L. L. Hamidreza Modares and M.-B. Naghibi-Sistani, “Integral reinforcement

learning and experience replay for adaptive optimal control of partially-unknown

constrained-input continuous-time systems,” Automatica, vol. 50, pp. 193–202,

2014.

[49] J. Y. Lee, J. B. Park, and Y. H. Choi, “Integral reinforcement learning

for continuous-time input-affine nonlinear systems with simultaneous invariant

explorations,” IEEE Transactions on Neural Networks and Learning Systems,

vol. 26, no. 5, pp. 916–932, 2015.

[50] S. Gatesichapakorn, J. Takamatsu, and M. Ruchanurucks, “Ros based

autonomous mobile robot navigation using 2d lidar and rgb-d camera,” in

2019 First International Symposium on Instrumentation, Control, Artificial

Intelligence, and Robotics (ICA-SYMP), 2019, pp. 151–154.

[51] L. Heisnam and B. Suthar, “20 dof robotic hand for tele-operation: —

design, simulation, control and accuracy test with leap motion,” in 2016

International Conference on Robotics and Automation for Humanitarian

Applications (RAHA), 2016, pp. 1–5.

75

[52] A. Dzikri and D. E. Kurniawan, “Hand gesture recognition for game 3d

object using the leap motion controller with backpropagation method,” in 2018

International Conference on Applied Engineering (ICAE), 2018, pp. 1–5.

[53] Q. Yang, W. Ding, X. Zhou, D. Zhao, and S. Yan, “Leap motion hand

gesture recognition based on deep neural network,” in 2020 Chinese Control

And Decision Conference (CCDC), 2020, pp. 2089–2093.

[54] C. Chen, L. Chen, X. Zhou, and W. Yan, “Controlling a robot using leap motion,”

in 2017 2nd International Conference on Robotics and Automation Engineering

(ICRAE), 2017, pp. 48–51.

[55] http://wiki.ros.org/leap motion.

[56] https://github.com/ros drivers/leap motion.

[57] Y. Bai, H. Hu, Y. Li, C. Zhao, L. Luo, and R. Wang, “Research methods

for human activity space based on vicon motion capture system,” in 2017 5th

International Conference on Enterprise Systems (ES), 2017, pp. 202–206.

[58] L. T. Goodarzi F A, Lee D, “Geometric adaptive tracking control of a quadrotor

unmanned aerial vehicle on se(3) for agile maneuvers,” Journal of Dynamic

Systems Measurement Control, vol. 137, no. 9, p. 393–398, 2015.

[59] H. G. Aalerud A, Dybedal J, “Automatic calibration of an industrial

rgb-d camera network using retroreflective fiducial markers,” Sensors (Basel,

Switzerland), vol. 19, no. 7, 2019.

[60] S. Al Habsi, M. Shehada, M. Abdoon, A. Mashood, and H. Noura, “Integration

of a vicon camera system for indoor flight of a parrot ar drone,” in 2015 10th

International Symposium on Mechatronics and its Applications (ISMA), 2015,

pp. 1–6.

76

[61] F. Ruffier and F. Expert, “Visual motion sensing onboard a 50-g helicopter flying

freely under complex vicon-lighting conditions,” in 2012 ICME International

Conference on Complex Medical Engineering (CME), 2012, pp. 634–639.

[62] Y. Xu, Y. Zhang, Y. Wang, and X. Wang, “Physical experimental realization

of modified artificial physics method based on uavs formation control,” in

2017 9th International Conference on Intelligent Human-Machine Systems and

Cybernetics (IHMSC), vol. 2, 2017, pp. 3–6.

[63] http://wiki.ros.org/vicon bridge.

[64] https://github.com/ethz asl/vicon bridge.

[65] http://wiki.ros.org/Robots/Husky.

[66] https://github.com/husky/husky/tree/kinetic devel.

[67] http://wiki.ros.org/ardrone autonomy.

[68] https://github.com/AutonomyLab/ardrone autonomy.

77

BIOGRAPHICAL STATEMENT

Suhas Priyatham MANDA received his Bachelor of Engineering degree in Elec-

tronics and Communications Engineering at Osmania University, India in 2016. He

is a Master of Science student at Electrical Engineering Department in University of

Texas at Arlington. His current interests include nonlinear control, machine learning,

distributed controls, wireless sensor networks, autonomous and intelligent robots.

Email: suhaspriyatham.manda@mavs.uta.edu

78

