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ABSTRACT

STOCHASTIC RISK MEASURES FOR THE LUNDBERG MODEL WITH

REINSURANCE AND INVESTMENT

Benie Justine N’Gozan, Ph.D.

The University of Texas at Arlington, 2020

Supervising Professor: Andrzej Korzeniowski

Risk measures emerge in fields such as economics, insurance, finance and

are concerned with a stochastic representation of uncertainties stemming from the

unpredictability of the real world events. In essence, risk analysis amounts to

quantifying the chances of undesirable events and developing a model that limits the

impact of potential losses. Assets and liabilities in the Insurance industry, as well as

financial goals of Investment companies rely on calculating the probability that their

respective portfolios satisfy the preset constraints. On the flip side, risk measures serve

both industries by providing optimal strategies for minimizing losses. Our research is

concerned with Distorted Risk Measures (DRMs) in stochastic optimization regarding

decisions about the size of the risk exposure. We extend the classical Lundberg Risk

Model to the case of periodic reinsurance with investment.
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CHAPTER 1

INTRODUCTION

In simple terms, risk is the possibility of something bad happening. It involves

uncertainty about the effects/implications of an activity with respect to something

that humans value (such as health, well-being, wealth, property, or the environment),

often focusing on negative, undesirable consequences [30]. Risk is inherent in any

enterprise and is an important factor that affects all sectors of today’s economy.

Key elements of risk minimization are based on quantifying the adverse effects and

subsequent development of modeling through stochastic analysis. We include a sample

of extensive literature on the subject such as monographs, textbooks, research articles

([1], [3], [4], [12], [13], [18]) in the REFERENCES. Our interest in mathematical risk

stems from its wide-spread usage in the Insurance Industry, where stochastic model

for losses dates back to the 1900s, thanks to the pioneering work by Lundberg [25]. As

an integral part of risk management, reinsurance had emerged as a standard practice

for strategic risk spread, i.e., ceding a portion of insurer’s liability to the reinsurer for

reinsurance premium. We focus on developing a strategy that not only allows the

insurers to minimize their risk exposure but also maximize their profit at the same

time. Our research has been motivated by the works of Golubin ([15], [16], [17]), and

Cheung and Lo ([22], [23], [7] ,[8]). In a nutshell, we combined some ideas from the

dynamic model of Golubin with a static Model of Cheun-Lo and developed a novel

Model for periodic risk optimization. In Chapter 1, we give the background related

to risk and explain the motivation for the research.
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In Chapter 2, we describe our model based on the general Lundberg model,

which we extended to a periodic model coupled with reinsurance. We then describe

the risk process that is a subject of this study. In Chapter 3, we set up our first

extended Lundberg model without investment and give solutions with regards to

certain processes with independent increment. In Chapter 4, we propose our second

extended Lundberg model with investment and present solutions applicable to real

world problems. In Chapter 5, we extend our work to processes that no longer have

independent increments and obtain results for models with or without investment.

In chapter 6, we explore a new hybrid method that can be used to better assess the

underline risk and pave the way for future investigation.
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CHAPTER 2

MODEL FORMULATION

2.0.1 Lundberg Model

We start with the classical Lundberg model which describes a risk process of an

insurance company in order to balance two opposing cash flows. The following defines

the risk process (see, e.g., [17])

X in
t = u+ ct−

Nt∑
j=1

Xj (2.1)

where u > 0 is the initial capital of the company, Nt is a Poisson process of claims

with parameter λ that defines the number of claims for insurance payments. In other

words, it is the number of claims on the interval [0, t] and Xj are the claim sizes

which represent the sequence of independent, identically distributed random variables,

independent of Nt. The constant c > 0 represents the premium rate at which the

insurer is being continuously paid by insured customers.

The optimal control problem for the risk in dynamical insurance models based on the

Lundberg risk process has been studied in [20], [15], and [17]. In this research , we

are interested in a modified version of this model which takes into account the risk

associated with reinsurance.

3



Figure 2.1. A typical sample path of the risk process.

2.0.2 The periodic Lundberg model with Reinsurance

Suppose that the interval of operation [0,∞) is partitioned into intervals of a given

length T . T > 0 is constant that shows the duration of time intervals on which the

insurer periodically chooses a strategy for reinsurance payoffs. At time t = 0, he

chooses a reinsurance policy I0(Y1) (amount paid by the reinsurance) and at the same

time pays the reinsurer premium PI0(Y1) , with Yi =
Nt−∑
j=1

Xj. Let Xre
T− describe the

risk process involving reinsurance. Then

On [0, T ) we obtain

Xre
T− = u+ cT − PI0(Y1)−

Nt−∑
j=1

Xj + I0(Y1)

At time T , after choosing the new reinsurance contract with paramters (IT (Y2), PIT (Y2))

with Y2 =
N2T−∑
j=NT+1

Xj , we obtain

Xre
T = u+ cT − PI0(Y1)−

Nt−∑
j=1

Xj + I0(Y1)− PIT (Y2).

4



Figure 2.2. A typical sample path of the periodic risk process Xt.

Without loss of generality , let Xre
t ≡ XT .

Notice that at the end of the first period we may consider the problem of profit

maximization for the ending capital

XT = (u+ cT ) + I0(Y1)− Y1 − PI0(Y1)

through some relevant utility functions.

On the other hand, by means of Distortion Risk Measures (DRM) to be defined later,

we can consider the optimization problem of minimizing the risk exposure

RT = Y1 + PI0(Y1)− (u+ cT )− I0(Y1)
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In this section we will focus on the insurance risk exposure.

First period: [0, T ) , at time t = 0

(I0(Y1), PI0(Y1)) , Y1 =
Nt−∑
j=1

Xj

RT− = Y1 + PI0(Y1)− (u+ ct)− I0(Y1)

Second period: [T, 2T ); at T , (IT (Y2), PIt(Y2)) , Y2 =
N2T−∑
j=NT+1

Xj

RT− = RT− + PIT (Y2)

= Y1 + PI0(Y1) + PIT (Y2)− (u+ cT )− I0(Y1)

At the end of the second period

R2T− = RT + Y2 − IT (Y2)− cT

= Y1 + PI0(Y1) + PIT (Y2) + Y2 − I0(Y1)− IT (Y2)− (u+ cT )

= Y1 + Y2 + PI0(Y1) + PIT (Y2)− (I0(Y1) + IT (Y2) + u+ 2cT )

At t = (k − 1)T , where k = 1, 2, 3, .., we consider the pair (I(k−1)T (Yk), PI(k−1)T
(Yk))

with total claim Yk =
NkT−∑

j=N(k−1)T+1

Xj. Then the formula that defines the risk process

with periodic reinsurance has the form

RnT =


n∑
k=1

Yk +
n∑
k=1

PI(k−1)T
(Yk)− (

n∑
k=1

I(k−1)T (Yk) + (u+ ncT )) , t = nT, n ≥ 0

RntT − c(t− ntT ) +
Nt∑

j=Nnt+1

Xj t 6= 0

(2.2)

where nt = max{n : nT < t}
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As stated earlier, in what follows, the insurer risk exposure will be evaluated via risk

measures.

2.0.3 DRM-based model

Let’s first recall several definitions concerning risks measures.

Definition 2.0.1. We consider a financial position, as a non-negative random variable

X representing the insurer loss. Then the Coherent Risk Measure is given by

ρ(X) : X → [0,∞) satisfies the following conditions:

1. Bounded above by the maximum loss: ρ(X) ≤ max(X)

2. Bounded below by the mean loss: ρ(X) ≥ E(X)

3. Scalar additive and multiplicative: ρ(aX + b) = aρ(X) + b for a, b > 0

4. Sub-additive : ρ(X + Y ) ≤ ρ(X) + ρ(Y )

We describe our model using the Distorted Risk Measure (DRM).

Definition 2.0.2. let g : [0, 1]→ [0, 1] be a non-decreasing function with g(0) = 0

and g(1) = 1. For a non-negative random variable X, the Distorted Risk Measure

(DRM) is defined by

ρg(X) :=
∫∞

0
g(SX(x))dx

where SX(x) = P (X > x) is the survival function of X.

DRMs satisfy (1)-(3) while (4) holds if and only if g(x) is concave.

7



Figure 2.3. Value at Risk at the level α.

For 0 < α < 1

g(t) =


1 if 1− α < t < 1

0 if 0 < t < 1− α

ρg(X) :=
∫∞

0
g(SX(x))dx

:= inf{x : P (X > x) ≥ α}

:= V aRα(X)

is the classical Value at Risk, which measures the amount of asset needed to cover

a possible loss at a confidence level 1− α. In general, V aRα is not a coherent risk

measure, due to lack of sub-additivity . However, V aRα is sub-additive (thus coherent

risk measure) for a large class of elliptical distributions that include: Normal, Laplace,

t-Student, Cauchy and Logistic distributions.
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Example 2.0.1. Consider two loans and assume that if one lodefaults it is certain

that the other loan does not default ( i.e., defaults on A and B are dependent.)

D:defaulting ; Dc : non- defaulting

Table 2.1. Consider the loans separately

One year Loan ($10 millions) A B
P(D) 0.0125 0.0125
P(Dc) 0.9875 0.9875

Recovery |D U[0,10] U[0,10]

Let Y1 and Y2 be the loss corresponding to loan A and B respectively follow Y U [0, 10].

Then

P (Y > 2|D) = 0.8

P (Y > ∩D) = P (Y > 2|D)P (D)

= (0.8)(0.0125) = 0.01 = α

Therefore at the level α, the V aR0.01(Y ) = V aR0.01(Y1) = V aR0.01(Y2) = 2

Table 2.2. Consider the loans separately

Loan B — loan A P (D) P (Dc)
P(D) 0 0.0125
P(Dc) 0.0125 0.975

9



Table 2.3. Consider the above joint distribution

One year loan A B A ∪B
P(D) 0.0125 0.0125 0.025
P(Dc) 0.9875 0.9875 0.975

Recovery |D U[0,10] U[0,10] U[0,10]

P (Y1 + Y2|D) = P (Y1 + Y2 > 6|DA ∩DB)

= P (Y1+Y2>6∩DA)+P (Y1+Y2>6∩DB)
P (DA)+P (DB)

= P (Y1+Y2>6|DA)P (DA)
P (DA)+P (DB)

+ P (Y1+Y2>6DB)
P (DA)+P (DB)

= (0.4)(0.0125)
2(0.0125)

+ (0.4)(0.0125)
2(0.0125)

= 0.4

P (Y1 + Y2 > 6 ∩D) = P (Y1 + Y2 > 6|D)P (D)

= (0.4)(0.025)

= 0.01 = α

So at the level α, V aRα(Y1 + Y2) = 6 for the portfolio.

Note that 6 = V aRα(Y1 + Y2) > V aRα(Y1) + V aRα(Y2) = 4, which shows that

V aRα(·) is not sub-additive.

In our study, we assumed all random variables to be sufficiently integrable in the

sense that their distortion risk measures are well-defined and finite.

As previously stated the insurer risk exposure on one period is given by

Rin
T = Y + PI(Y )− (u+ cT )− I(Y ).

10



We now have to find a representation of the risk exposure and premiums function

using DRM.

For any Distortion function g and ceding function I,

ρgi(R
in
T ) = ρgi(Y + PI(Y )− (u+ cT )− I(Y ))

= ρgi(Y )− (u+ cT ) +
∫∞

0
[r(SY (y))− gi(SY (y))]I ′(y)dy

and the formula for the premium is given by

PI(Y ) =
∫∞

0
r(SY (y))I ′(y)dy

where r : [0,∞] → R+ is a non decreasing function satisfying r(0) = 0 and I is

restricted to the set of non-decreasing and Lipschitz functions, i.e.,

I = {I: R+ → R+| I(0) = 0, 0 ≤ I(x1)− I(x2) < x2 − x1 for 0 ≤ x1 ≤ x2}

In this context, we introduce an optimal reinsurance problem which consists of

minimizing the insurer’s total risk quantified by its distortion risk measure subject to

the constraint

Rre
T = I(Y )− PI(Y ) =

∫∞
0

[gr(SY (y))− r(SY (y))]I ′(y)dy ≤ π

where π represents the reinsurer’s risk tolerance and gI ≤ gr.

11



We now have to solve the following problem


inf
I

(ρgi(R
in
T ))

ρgr(R
re
T ) ≤ π

=⇒


inf
I
{ρgi(Rin

T ) = ρgi(Y + PI(Y )− (u+ cT )− I(Y ))}∫∞
0

[gr(SY (y))− r(SY (y))]I ′(y)dy ≤ π

=⇒


inf
I
{ρgi(Y )− (u+ cT ) +

∫∞
0

[r(SY (y))− gi(SY (y))]I ′(y)dy∫∞
0

[gr(SY (y))− r(SY (y))]I ′(y)dy ≤ π

This could be simplified to

=⇒


ρgi(Y )− (u+ cT ) + inf

I

{ ∫∞
0

[r(SY (y))− gi(SY (y))]I ′(y)dy∫∞
0

[gr(SY (y))− r(SY (y))]I ′(y)dy ≤ π

and reduces to the following minimization problem

=⇒


inf
I

∫∞
0
f1(y)I ′(y)d(y)∫∞

0
f0(y)I ′(y)d(y) ≤ π

where f1 and f0 are integrable functions defined on the non-negative real line such

that

f1(y) = r(SY (y))− gi(SY (y)) and f0(y) = gr(SY (y))− r(SY (y)

To solve this problem, we utilize the Neyman-Pearson approach introduced in [23].

12



Lemma 2.0.1. Neyman-Pearson Lemma

Let X be a random variable with possible densities f0(x) = f(x|θ0), f1(x) = f(x|θ1)

with respect to some measure µ. Among the test function

0 ≤ ϕ(x) ≤ 1 s.t. E0ϕ(x) =
∫
ϕ(x)f0(x)dµ ≤ α. (type I error )

H0 : f(x) = f0(x) H1 : f(x) = f1(x)

inf
ϕ
E1(1− ϕ(x)) =

∫
(1− ϕ(x))f1(x)dµ (type II error) is realized by

ϕ(x) =


1 if f1(x) > kf0(x)

γ if f1(x) = kf0(x)

0 if f1(x) < kf0(x)

(2.3)

for a unique constant k and 0 ≤ γ < 1

Lemma 2.0.2. Generalized Neyman-Pearson Lemma

Consider the following general minimization problem

g(t) =


inf
IεI

∫∞
0
f1(y)dI(x)∫∞

0
f0(y)dI(x) ≤ π, πεR

where f0 and f1 are fixed integrable functions on R+.

Define a non-decreasing function G : [−∞, 0] −→ R by G(c)
∆
=

∫
{f1<cf0}

f0(x)dx,

and c
∆
= G−1(π) = inf

{
c ε [−∞, 0]|

∫
{f1<cf0}

f0(x)dx ≥ π
}

13



(i) G(0) =
∫

{f1<0}
f(x)dx ≤ π, then the optimal solution is

I
′

∗(x) =


1 if f1(x) < 0

γ∗ if f1(x) = 0

0 if f1(x) > 0

(2.4)

where γ∗ : R+ −→ [0, 1] is any function s.t.

∫∞
0
f0(x)dI∗ = G(0) +

∫
{f1=0}

f0(x)γ∗(x)dx ≤ π

(ii) if G(−∞) =
∫

{f0<0}
f(x)dx ≤ π < G(0) =

∫
{f1 < 0}f0(x)dx, then the optimal

solution must be in the form of

I
′

∗(x) =


1 if f1(x) < c∗f0(x)

γ∗ if f1(x) = c∗f0(x)

0 if f1(x) > c∗f0(x)

(2.5)

where γ∗ : R+ −→ [0, 1] is any function s.t.

∫∞
0
f0(x)dI∗ = G(c∗) +

∫
{f1=c∗f0}

f0(x)γ∗(x)dx = π

(iii) if π < G(−∞) =
∫

{f0<0}
f0(x)dx, then the problem has no solution

14



CHAPTER 3

LUNDBERG RISK MODEL WITHOUT INVESTMENT COMPONENT

In this section, we set up the model using VaR as our risk measure and utilize

Lo’s approach to solve the problem of minimizing the insurer’s risk exposure with

respect to the reinsurer’s constraints. We take into account the insurer total liability

Y , the premium received from the insurer’s customers along with the premium paid

to reinsurer. We also consider the indemnities paid to the insurer and assume no

investment is made by the insurer.

3.1 Model set up

For fixed probability levels 0 < α < 1, 0 < β < 1 chosen by the insurer and reinsurer

respectively 
inf
I
V aRα

(
Y − (u− cT ) + PI(Y )− I(Y )

)
V aRβ

(
I(Y )− PI(Y )

)
≤ π

⇐⇒


inf
I

(
V aRα(Y )− (u− cT ) +

∞∫
0

[r(SY (y))− gi(SY (y))]I
′
(y)dy

)
∞∫
0

[gr(SY )(y))− r(SY (y))]I
′
(y)dy ≤ π

let r(y) = (1 + θ)y ; θ is the reinsurance loading factor

gi(y) =

{1, y>1−α

0, y<1−α

and gr(y) =

{1, y>1−β

0, y<1−β

Then, f1(y) = (1 + θ)SY (y)− 1{SY (y)>1−α}, and f0(y) = 1{SY (y)>1−β} − (1 + θ)SY (y)

15



Lemma 3.1.1. Given nth period [(n− 1)T, nT ] , let θn
1+θn

≤ βn ≤ αn where θnis the

reinsurance loading factor for the reinsurance premium PI(Y1) and αn, βn are the

corresponding risk levels for insurer and reinsurer V aR(αn)(·) corresponding to claim

Yn(λn) =
NnT∑
j

Xn
j with distribution Fn(y) and Xn

j are i.i.d.

The risk minimizing solution of


inf
I

{
V aRαn(Yn + PI(Yn)− I(Yn))

}
V aRβn(I(Yn)− PI(Yn)) ≤ πn

has the form

V ∗n (Yn, αn, βn) = V aRαn(Yn) +
∞∫
0

(1 + θn)(1− Fn(y))I
′
(y)dy −

∞∫
0

1{Fn(y)<αn}(y)I
′
(y)dy

where I
′
n = γn(y) · 1[0,F−1(βn))∪(F−1(αn),∞](Y ) , for 0 < γn = γn(βn, αn, θn, Fn) < 1

To better describe the rest of our result the following theorem is needed.

Theorem 3.1.2. Linderberg Central Limit theorem [4]

Let (ξk) be independent with mk = Eξk, σ2
k = E(ξk −mk)

2, s2
n =

n∑
k=1

σ2
k.

Assume (L) lim
n−→∞

n∑
k=1

1
s2n

∫
{|ξk−mk|≥εsn}

dp = 0 , ∀ε > 0

Then (CLT)

n∑
k=1

ξk−
n∑
k=1

mk

sn

D−→ N(0, 1), n −→∞

Proposition 3.1.3. (?)Let (ξk) be independent with 0 < a ≤ σ2
n ≤ b <∞, n = 1, 2, ...

for some constant a, b. Then (CLT) holds.

Proof. it suffices to show (L) . Notice that by (?)sn −→ ∞ =

√
n∑
k=1

σ2
k ≥
√
na and

σn <
√
b which implies (L) thanks to Feller ([14], p.264).
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Figure 3.1. One sample path of a Poisson process with intensity 2 on the left, and
intensity 0.5 on the right. The straight lines indicate the corresponding mean value
functions. For λ = 0.5 jumps occur less often than for the standard homogeneous-
Poisson process, whereas they occur more often when λ = 2..

3.2 Results

3.2.1 Homogeneous Compound Poisson process

The most common and best known claim arrival point process is the Homogeneous

Poisson process (HPP) with stationary and independent increments and the number

of claims in a given time interval governed by the Poisson law.

Definition 3.2.1. Poisson process

Let λ > 0 be fixed. The counting process {N(t), tε[0,∞)} is called a Poisson process

with rates λ if the following conditions hold:

(1) N(0) = 0;

(2) N(t) has independent stationary increments;

(3) The number of arrivals in any interval of length τ > 0 has Poisson (λτ) distribution.

If N(t) is a Poisson process with rate λ, then the inter-arrival times X1, X2, · · · are

independent and Xi ∼ Exponential(λt), for i = 1, 2, 3, · · · .
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Figure 3.2. A sample path of a compound Poisson process.

Definition 3.2.2. Compound Homogeneous Poisson process

A stochastic process {N(t), t ≥ 0} is said to be a Compound Poisson process if it

can be represented as Y (t) =
N(t)∑
i=1

Xi, t ≥ 0 where {N(t) : t ≥ 0} is a counting of a

Poisson process with rate λ , and {Xi : i ≥ 1} are i.i.d. that is also independent of

{N(t), t ≥ 0}. The expected value of a Compound Poisson process can be calculated

by using Wald’s identity

E(Y (t)) = E(X1 + · · ·+XN(t)) = E(N(t))E(X1) ≡ E(N(t))E(X) = λtE(X)

Making similar use of the law of total variance, the variance can be calculated as

V ar(Y (t)) = E(V ar(Y (t)|N(t))) + V ar(E(Y (t)|N(t))) = λtE(X2)

18



Now based on lemma 3.1.1 the following results holds when Y (t) follows a homogenous

compound Poisson process.

Theorem 3.2.1. Set V ∗k (Yk, αk, βk) ≡ V ∗k ; for k = 1, · · ·, n. Then V aRα1(RT ) =

V ∗1 − (u+ cT ) and given then nth period [(n− 1)T, nT ], the optimal solution has the

following cumulative Value at Risk at time (n− 1)T

V aR∗αn(RnT ) =
n−1∑
k=1

(Yk − I(Yk) + PI(Yk)) + V ∗n − (u+ cnT )

=
n∑
k=1

(Yk − I(Yk) + PI(Yk)) + V aRαn(Yn)− (Yn)− (u+ cnT )

Furthermore

E
(
V aR∗αn(RnT )

)
=

n−1∑
k=1

E
(
Yk − I(Yk) + PI(Yk)

)
+ V ∗n − (u+ cnT )

and

P

[
V aR∗αn(RnT ) > λT

n−1∑
k=1

E(Xk) +
NT∑
k=1

(
PI(Yk)− I(Yk)

)
+V ∗n − (u+ cnT ) +

√
λT

n−1∑
k=1

E(Xk)2 · zαn

]
' αn

where 1− Φ(zαn) = αn and Φ(·) is the cdf of N(0, 1)

Corollary 3.2.2. Let’s consider n cycles of L periods with (αi, βi where i = 1, · · ·, L.

As n −→∞, by the law of large numbers we have

• The expected Value at Risk per cycle

E
(
V aR∗αn (RnLT )

)
nL

−→
L∑
i=1

E(Yi)
L
−

L∑
i=1

I(Yi)
L
−

L∑
i=1

PI(Yi)
L
− cT
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• The expected value of the portfolio per cycle

E
(
V aR∗αn (RnLT

)
nL

−→
L∑
i=1

E(Yi)
L
−

L∑
i=1

I(Yi)
L
−

L∑
i=1

PI(Yi)
L
− cT

E(X∗nLT )

nL
−→ −

{ L∑
i=1

E(Yi)
L
−

L∑
i=1

I(Yi)
L
−

L∑
i=1

PI(Yi)
L
− cT

}

=
L∑
i=1

I(Yi)
L

+ cT −
L∑
i=1

E(Yi)
L
−

L∑
i=1

PI(Yi)
L

where
L∑
i=1

I(Yi)
L

+ cT represents the Expected Income and
L∑
i=1

E(Yi)
L

+
L∑
i=1

PI(Yi)
L

represents

the Expected Loss

3.2.2 Non-homogeneous Compound Poisson process

Definition 3.2.3. Non-homogeneous Poisson process

Let λ(t) : [0,∞) −→ [0,∞) be an integrable function. The counting process

{N(t), tε[0,∞)} is called a non-homogeneous Poisson process with rate λ(t) if all the

following conditions hold

(1) N(0) = 0

(2) N(t) has independent increments

(3) ∀ t ε [0,∞), we have

P (N(t+ ∆)−N(t) = 0) = 1− λ(t)∆ + o(∆)

P (N(t+ ∆)−N(t) = 1) = λ(t)∆ + o(∆)

P (N(t+ ∆)−N(t) ≥ 2) = o(∆)

where o(∆) is the little-o-notation for o(∆)/∆ as ∆→ 0.
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Figure 3.3. A typical sample path of a non-homogeneous Poisson process.

From those properties N(t+ ∆)−N(t) is a Poisson random variable with mean

E[N(t+ ∆)−N(t)] =
∫ t+∆

t
λ(s)d(s),

which implies

E[N(∆)] =
∫ ∆

0
λ(s)ds = V ar[N(∆)]

Definition 3.2.4. Compound non-homogeneous Poisson process

Let’s consider the compound non homogeneous Poisson process represented by:

Y (t) =
N(t)∑
i=1

Xi, t ≥ 0 . Then the expected value and the variance of the compound

non homogeneous Poisson process could be expressed respectively as followed :

E(Y (t)) = E(N)E(X) and V ar(Y (t)) = V ar(N)E[(X)]2
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Based on lemma 3.1.1 the following results holds when Y (t) is a non-homogenous

compound Poisson process.

Theorem 3.2.3. Set V ∗k (Yk, αk, βk) ≡ V ∗k ; for k = 1, · · ·, n. Then V aRα1(RT ) =

V ∗1 − (u+ cT ) and given then nth period [(n− 1)T, nT ], the optimal solution has the

following cumulative Value at Risk at time (n− 1)T

V aR∗αn(RnT ) =
n−1∑
k=1

(Yk(λk)− I(Yk(λk)) + PI(Yk(λk))) + V ∗n − (u+ cnT )

=
n∑
k=1

(Yk(λk)−I(Yk(λk))+PI(Yk(λk)))+V aRαn(Yn(λk))−(Yn)−(u+cnT )

Furthermore

E
(
V aR∗αn(RnT )

)
=

n−1∑
k=1

E(Yk(λk)− I(Yk(λk)) + PI(Yk(λk)) + V ∗n − (u+ cnT )

and

P
(
V aR∗αn(RnT ) >

n−1∑
k=1

(λkT )E(Xk) +
NT∑
k=1

(
PI(Yk(λk))− I(Yk(λk))

)
+V ∗n − (u+ cnT ) +

√
n−1∑
k=1

(λkT )E(Xk)2 · zαn
)
' αn

where 1− Φ(zαn) = αn and Φ(·) is the cdf of N(0, 1).

Corollary 3.2.4. Let’s consider n cycles of L periods with (αi, βi where i = 1, · · ·, L.

As n −→∞, by the law of large numbers we have

• The expected Value at Risk per cycle

E
(
V aR∗αn (RnLT )

)
nL

−→
L∑
i=1

λiTE(Xi)
L

−
L∑
i=1

I(Yi(λi))
L
−

L∑
i=1

PI(Yi(λi))
L

− cT
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• The expected value of the portfolio per cycle

E(X∗nLT )

nL
−→ −

{ L∑
i=1

λiTE(Xi)
L

−
L∑
i=1

I(Yi(λi))
L
−

L∑
i=1

PI(Yi(λi))
L

− cT
}

=
L∑
i=1

I(Yi(λi))
L

+ cT −
L∑
i=1

λiTE(Xi)
L

−
L∑
i=1

PI(Yi(λi))
L

where
L∑
i=1

I(Yi(λi))
L

+ cT represents the Expected Income and
L∑
i=1

λiTE(Xi)
L

+
L∑
i=1

PI(Yi(λi))
L

represents the Expected Loss.
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CHAPTER 4

LUNDBERG RISK MODEL WITH INVESTMENT COMPONENT

We focus on finding VaR for an insurer who considers investing a portion of

the premium received into stocks.

Consider a scenario where an investor has an option to invest in only two different

types of assets. Specifically, split the investment between risky assets such as stocks

and risk-free assets such as bonds.

I-Risky Asset

A frequently used model for the dynamics of risky asset prices is the geometric

Brownian motion. If St denotes the price of a risky asset at the time t, then St will

follow a geometric Brownian motion if it satisfies the following Stochastic Differential

Equation (SDE)

dSt = µStdt+ σStdBt (4.1)

where µ is the drift and σ > 0 is the volatility of the risky asset, with both µ and σ

assumed constant. Bt is the stochastic process known as Brownian motion defined

below.

Definition 4.0.1. Brownian motion Bt is a stochastic process starting at zero, i.e.,

B0 = 0, which satisfies the following three conditions:

1. Independent increments: The random variable Bt − Bs is independent of the

random variable Bu −Bv whenever t > s ≥ u > v ≥ 0

2. Stationary increments: The distribution of Bt+s −Bs is independent of s

3. Normal increments: The distribution of Bt −Bs ∼ N(0, t− s), t > s ≥ 0
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Using the Ito formula of stochastic calculus, the explicit solution of the SDE for the

geometric Brownian motion reads

St = S0e
(µ−σ

2

2
)t+σBt , t ≥ 0 (4.2)

II-Risk free asset

The price of the risk-free asset at time t is denoted by Mt and satisfies the following

deterministic differential equation

dMt = rMtdt (4.3)

The parameter “ r ” represents the risk-free interest rate. Given S0 = 1 , we

assume that ESt = eµt > Mt = ert which is equivalent to µ > r, and implies that the

average return on stock exceeds the return on bond.

III- Combined portfolio (risky and risk-free asset)

Let A(t) be the amount of money available to an investor at time t = nT . After

collection of the premium cT at the beginning of each cycle [(n− 1)T, nT ), a portion

w of the premium is invested in stock and the remaining portion 1−w is accumulated

without earning any interest, with 0 ≤ w ≤ 1.

Our objective is to analyze the effect of investing a portion of the collected premium

in equities (stocks) on the insurer’s risk exposure over the time horizon [0, nT ] .
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Recall form chapter 3 the optimal solution without investment has the following

cumulative Value at Risk at time (n− 1)T

V aRαn(RnT ) =
n−1∑
k=1

(Yk − I(Yk) + PI(Yk)) + V ∗n − (u+ cnt)

=
n∑
k=1

Yk − I(Yk) + PI(Yk)) + V aRαn(Yn)− Yn − (u+ cnt)

(4.4)

We begin investing upon collecting the premium cT by time T

Lemma 4.0.1. Difference of normal and lognormal.

Let X, Y be independent normal and lognormal random variables respectively , and

let C > 0 and 0 ≤ w ≤ 1 be any given constant. Then,

(i) ∀ 0 < α < 1, ∃ a unique A such that P (X − (1− w)C − CwY ≥ A) = α

(ii) If X ∼ N(m1, σ
2
1) and Y ∼ LN(m2, σ

2
2) then A satisfies the following equation

∫ ∞
−∞

(1− Φ(
A+ C(1− w) + Cwem2+σ2z −m1

σ1

))ϕ(z)dz = α (4.5)

where Φ(z) and ϕ(z) are cumulative distribution and density of Z ∼ N(0, 1)

(iii) A is readily obtained via numerical integration in (4.5) by trial and error based

on the fact that 1− Φ(A+C(1−w)+Cwem2+σ2z−m1

σ1
) is continuous and decreasing in A.
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Remark. When C = m1, w = 0 then A
σ1

= Zα or A = σ1Zα.

Proof. To show (i) , notice that U = X − CwY = X + V has density which is the

convolution of fx(x) and fv(v) = fy(
−v
Cw

)( 1
Cw

) ,fu(u) = fx(x) + fv(v).

Therefore

P (X − CwY ≥ A+ C(1− w)) = P (U ≥ A+ C(1− w))

=

∫ ∞
A+C(−w)

fu(u)du

= 1− Fu(A+ C(1− w))

= α

(4.6)

with unique

A = F−1
u (1−α)−C(1−w), because Fu(·) is strictly increasing and continuous.

To show (ii) notice that for Z ∼ N(0, 1)

P (X − C(1− w)− Cw ≥ A) = P (X − C(1− w)− Cwem2+σ2z ≥ A)

=

∫ ∞
−∞

P (X − C(1− w)− Cwem2+σ2z ≥ A | Z = z)ϕ(z)dz

=

∫ ∞
−∞

P (
X −m1

σ1

≥ A+ C(1− w) + Cwem2+σ2z −m1

σ1

)ϕ(z)dz

=

∫ ∞
−∞

[1− Φ(
A+ C(1− w) + Cwem2+σ2z −m1

σ1

)]ϕ(z)dz = α

(4.7)

Lemma 4.0.2. Let (Xn) be independent of (Yn) where Xn, Yn, X, Y are continuous

random variables such that

Fn(x) = P (Xn ≤ x)→ P (X ≤ x) = F (x) uniformly in x
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and

Gn(y) = P (Yn ≤ y)→ P (Y ≤ y) = G(y) uniformly in y

∀ 0 < α < 1, a ∈ R α = P (Xn + Yn ≥ an) = P (X + Y ≥ a), n = 1, 2, · · ·

Then lim an = a

Proof. For every n

Fn ∗Gn(an) = P (Xn + Yn ≤ a) = F ∗G(a)

or
∫
Fn(an − y)dGn(y) =

∫
F (a− y)dG(y)

Now

(4) 0 = (Fn ∗Gn(an))− (Fn ∗G(an)) + (Fn ∗G(an)− F ∗G(an))

+(F ∗G(an)− F ∗G(a))

|(Fn ∗Gn(an))− (Fn ∗G(an))| = |Gn ∗ Fn(an)−G ∗ Fn(an)|

= |
∫

(Gn(an − x)−G(an − x))dFn(x)|

≤ sup
x
|Gn(x)−G(x)| → 0

and similarly

|(Fn ∗Gn(an))− (Fn ∗G(an))| = |
∫

(Fn(an − x)− F (an − y))dG(y)|

≤ sup
y
|Fn(y)− F (y)| → 0

Hence by (4) lim
n
F ∗G(an) = F ∗G(a), since the convolution of continuous F and

G is continuous and strictly increasing, it follows that an → a.
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Theorem 4.0.3. Set V ∗k (Yk, αk, βk) ≡ V ∗k for k = 1, ..., n. Assume we invest in

different stocks at each time iT , i = 1, .., n − 1 . Then, the formula (3.4) with

investment becomes

V aR∗αn(RnT ) =
n−1∑
k=1

(Yk − I(Yk) + PI(Yk)) + V ∗n − [u+ (n− 1)(1− w)cT

+wcT
n−1∑
k=1

e(µi−
σ2i
2

)(n−i)T+σi(B
(i)
nT−B

(i)
iT )]

(4.8)

where σi(B
(i)
nT − B

(i)
iT ) ∼ N(0, σ2

i )(n − 1)T ) with the Brownian motion Bi(t) corre-

sponding to the ith stock and Bi are independent.

Proof. Assume we start investing on the second period given that we have collected

cT on [0,T). Then we have the following recursive formulas

on [T, 2T )

V aR∗α2
(R2T ) =

2−1∑
k=1

(Yk − I(Yk) + PI(Yk)) + V ∗n

−[u+ (1− w)cT + wcTe(µ1−
σ21
2

)T+σ1(B
(1)
2T −B

(1)
T )]

on [2T, 3T )

V aR∗α3
(R3T ) =

3−1∑
k=1

(Yk − I(Yk) + PI(Yk)) + V ∗n

−[u+ (1− w)cT + wcTe(µ1−
σ21
2

)T+σ1(B
(1)
3T −B

(1)
2T )

+(1− w)cT + wcTe(µ2−
σ22
2

)T+σ2(B
(2)
3T −B

(2)
2T )]

By continuing, we arrive at the following formula

on [(n− 1)T, nT )

V aR∗αn(RnT ) =
n−1∑
k=1

(Yk − I(Yk) + PI(Yk)) + V ∗n

−[u+ (n− 1)(1− w)cT + wcT
n−1∑
k=1

e(µi−
σ2i
2

)(n−i)T+σi(B
(i)
nT−B

(i)
iT )]
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Theorem 4.0.4. Let W =
n−1∑
i=1

e(µi−
σ2i
2

)(n−i)T+σi(B
(i)
nT−B

(i)
iT ) be the sum of independent

lognormal. Then the central limit theorem can be used to find the insurer risk exposure

after the following modifications are made.

Fenton-Wilkinson approximation (F-W)

Let Wi ∼ LN(ai, bi) be independent log-normally distributed, and W =
n−1∑
i=1

Wi. The

distribution of W has no closed-form expression, but can be reasonably approximated

by another log-normal distribution Ŵ . By Fenton-Wilkinson approximation, the

parameters of Ŵ is obtained by matching the mean and variance of another lognormal

distribution.

Case1 : Assume b = bi, a = ai = µi − 1
2
σ2
i , i.e. all stocks have the same drift

(average rate of return) and volatility . We obtain the following mean and variance

V ar(Ŵ ) = b̂ = ln[
eb

2 − 1

n− 1
+ 1]

E(Ŵ ) = â = ln[(n− 1)ea] +
b2

2
− V ar(Ŵ )

2

(4.9)

Using (4.8) and (4.9) we obtain

E(V aR∗αn(RnT )) =
n−1∑
k=1

E(Y (λk)− I(Y (λk)) + PI(Y (λk))) + V ∗n

−[u+ (n− 1)(1− w)cT + wcTE(Ŵ )]

=
n−1∑
k=1

E(Y (λk)− I(Y (λk)) + PI(Y (λk))) + V ∗n

−[u+(n−1)(1−w)cT +wcT (ln[(n−1)ea]+ b2

2
− V ar(Ŵ )

2
)]
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and

V ar(V aR∗αn(RnT )) =
n−1∑
k=1

λkTE(X(k))2 + (wcT )2V ar(Ŵ )

=
n−1∑
k=1

λkTE(X(k))2 + (wcT )2(ln[ e
b2−1
n−1

+ 1])

Case2: Assume b = bj, aj 6= ai, i, j = 1, ..., n− 1 , i.e. all stocks have different

drift (average rate of return) but same volatility. Then from Case 1, we can also find

the corresponding mean and variance .

V ar(Ŵ ) = b̂ = ln[(eb
2 − 1)

n−1∑
j=1

e2aj

(
n−1∑
j=1

eaj )2
+ 1];

E(Ŵ ) = â = ln[
n−1∑
j=1

eaj ] + b2

2
− V ar(Ŵ )

2

Using (4.8) we obtain

E(V aR∗αn(RnT )) =
n−1∑
k=1

E(Y (λk)− I(Y (λk)) + PI(Y (λk))) + V ∗n

−[u+ (n− 1)(1− w)cT + wcTE(Ŵ )]

=
n−1∑
k=1

E(Y (λk)− I(Y (λk)) + PI(Y (λk))) + V ∗n

−[u+ (n− 1)(1− w)cT + wcT (ln[
n−1∑
j=1

eaj ] + b2

2
− V ar(Ŵ )

2
)]
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and

V ar(V aR∗αn(RnT )) =
n−1∑
k=1

λkTE(X(k))2 + (wcT )2V ar(Ŵ )

=
n−1∑
k=1

λkTE(X(k))2 + (wcT )2(ln[(eb
2 − 1)

n−1∑
j=1

e2aj

(
n−1∑
j=1

eaj )2
+ 1])

Case3: Assume aj 6= ai ,bj 6= bi , i, j = 1, ..., n − 1 , i.e. all stocks have

different drift (average rate of return) and volatility. Then by F-W approximation.

Then from Case 1, we can also find the corresponding mean and variance .

V ar(Ŵ ) = b̂ = ln[

n−1∑
j=1

e
2aj+b

2
j (eb

2−1)

(
n−1∑
j=1

eaj+
b2
j
2 )2

+ 1];

E(Ŵ ) = â = ln[
n−1∑
j=1

eaj+
b2j
2 ]− V ar(Ŵ )

2

Using(3.8) we also get

E(V aR∗αn(RnT )) =
n−1∑
k=1

E(Y (λk)− I(Y (λk)) + PI(Y (λk))) + V ∗n

−[u+ (n− 1)(1− w)cT + wcTE(Ŵ )]

=
n−1∑
k=1

E(Y (λk)− I(Y (λk)) + PI(Y (λk))) + V ∗n

−[u+ (n− 1)(1− w)cT + wcT (ln[

n−1∑
j=1

e
2aj+b

2
j (eb

2−1)

(
n−1∑
j=1

eaj+
b2
j
2 )2

+ 1]]
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and

V ar(V aR∗αn(RnT )) =
n−1∑
k=1

λkTE(X(k))2 + (wcT )2V ar(Ŵ )

=
n−1∑
k=1

λkTE(X(k))2 + (wcT )2(ln[

n−1∑
j=1

e
2aj+b

2
j (eb

2−1)

(
n−1∑
j=1

eaj+
b2
j
2 )2

+ 1])

From Linderberg central limit theorem, after the proper substitutions are made, we

can find the value at risk for the insurer using the following

P

[
V aR∗αn(RnT ) >

n−1∑
k=1

λkTE(X(k)) +

NT∑
k=1

PI(Y (λk))− I(Y (λk)))

+ V ∗n − [u+ (n− 1)(1− w)cT + wcTE(Ŵ )]

+ zαn

√√√√n−1∑
k=1

λkTE(X(k))2 + (wcT )2V ar(Ŵ )

]
= αn

(4.10)

where 1− Φ(zαn) = αn and Φ(·)is the cdf of N(0, 1).

Theorem 4.0.5. Set V ∗k (Yk, αk, βk) ≡ V ∗k for k = 1, ..., n. Assume we invest in

different stocks at each time iT ,i = 1, .., n− 1.

Consider equation (4.8) such that
n−1∑
k=1

e(µi−
σ2i
2

)(n−i)T+σi(B
(i)
nT−B

(i)
iT ) is approximated by a

single lognormal eµ+σz using F-W. As mentioned in chapter 3

Yk(t) =
Nkt∑

j=N(k−1)T+1

X
(k)
j .

Denote by m
(k)
1 = E(Xk

j ) ; m
(k)
2 = E(Xk

j )2
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Then

E
n−1∑
k=1

Yk(t) =
n−1∑
k=1

λkTE(X(k)) =
n−1∑
k=1

λkTm
(k)
1 =

n−1∑
k=1

mk

and

V ar
n−1∑
k=1

Yk(t) =
n−1∑
k=1

λkTE(X(k))2 =
n−1∑
k=1

λkTm
(k)
2

which can be used along with Lemma 4.0.1 to find the insurer’s value at risk.

∫ ∞
−∞

P

( n−1∑
k=1

Yk −
n−1∑
k=1

mk√∑
k=1

n−1λkTm
(k)
2

≥
A+ C(1− w) + Cweµ+σz −

n−1∑
k=1

mk√
n−1∑
k=1

λkTm
(k)
2

)
ϕ(z)dz

=

∫ ∞
−∞

[
1− Φ

(A+ C(1− w) + Cweµ+σz −
n−1∑
k=1

mk√
n−1∑
k=1

λkTm
(k)
2

)]
ϕ(z)dz = α

(4.11)

Example 4.0.1. Find the V aRα

Case1: Without investment

Consider 25 independent and identically distributed random variables Xi ∼ N(0, 1)

P
(X1+X2+···+X25−25(0)√

25·(1)
> zα

)
= 0.05

P
(
X1 +X2 + · · ·+X25 − 25(0) > 5zα

)
= 0.05

P
(
X1 +X2 + · · ·+X25 − 25(0) > 8.25

)
= 0.05

Then V aRα without investment is 8.25.
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We will now consider three cases involving investment while assuming that all stocks

have the same drift (average rate of return) and volatility.

Using formula (4.10), let’s find the value at risk at the level α = 0.05 . Note that A

is the corresponding V aRα to be found.

Case2: With investment and fixed average rate of return

Table 4.1. with fixed µ = 0.1

Average rate of return µ Volatility σ2 Value at Risk V aRα

0.1 0.5 7.92
0.1 0.2 7.8
0.1 1 8.27
0.1 0.986 8.25

Comments: As mentioned earlier, at the level α = 0.05, the value at risk is 8.25

without investment . Now with investment, for the fixed average rate of return

µ = 0.1, the break-even point which is the corresponding point at which the V aRα is

the same with or without investment, is obtained when the volatility is σ2 = 0.986.

For any value of σ2 < 0.986, the risk exposure is decreased. This implies that to lower

the risk exposure, an investor should consider stocks with lower volatily. For instance,

stocks with volatility 0.2 will have a risk exposure of 7.8 < 8.25 (risk exposure without

investment). On the other hand, it is essential to mention the higher the volatily, the

higher the risk exposure, as it is the case for σ2 = 1, V aRα = 8.27 which is higher

than the Value at Risk of 8.25 corresponding to the V aRα without investment.

Case 3: With investment with fixed volatility
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Table 4.2. with fixed σ2 = 0.5

Average rate of return µ Volatility σ2 Value at Risk V aRα

0.02 0.5 8.71
0.2 0.5 6.8
0.5 0.5 2.8
0.067 0.5 8.25

Comments : While considering 8.25, which is the V aRα without investment, our

base for comparison at the level α = 0.05, we fix our volatility σ2 at 0.5. Then, the

break-even point is obtained when the average rate of return µ = 0.067. Note that

the risk exposure is decreased only if the average rate of return is greater than 0.067,

as it is the case for µ = 0.5 and µ = 0.2 whose corresponding value at risk 2.8 and 6.8

are smaller than 8.25. Nevertheless, for µ = 0.02, V aRα = 8.71 > 8.25, which in this

case implies that the smaller the average rate of return, the higher the risk exposure.

Case 4: With investment with fixed Value at Risk

Table 4.3. with fixed V aRα = 8.25

Average rate of return µ Volatility σ2 Value at Risk V aRα

0.054 0.1 8.25
0.1 0.986 8.25
0.067 0.5 8.25
0.085 0.8 8.25
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Comments: At the given level α = 0.05, consider the fix V aRα = 8.25. Based on

the investor’s risk tolerance σ2, the best stock to maintain the investor risk exposure

can be found by identifying the best pair ( µ, σ2) which guarantees the break-even

point as shown on the table . Based on case 3, the investor will be able to lower the

risk exposure by choosing stocks with a higher rate of return.
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CHAPTER 5

EXTENSION AND GENERALIZATION

In this section, we consider processes that no longer have independent incre-

ments.

5.1 Compound Mixed Poisson process

Definition 5.1.1. Mixed Poisson process

Let Ñ be a standard homogeneous Poisson process and {µ(t), t ≥ 0} be the mean

value function of a Poisson process on [0,∞) . Let θ > 0 be a random variable

independent of Ñ . Then the process {N(t) = Ñ(θµ(t)), t > 0} is said to be a mixed

Poisson process with mixing variable θ. We have

E(N(t)) = EÑ(θµ(t)) = E(E[Ñ(θµ(t)|θ)] = E(θµ(t)) = Eθµ(t)

V ar(N(t)) = E[V ar(N(t)|θ)] + V ar(E[N(t)|θ])

= E[θµ(t)] + V ar(θµ(t))

= Eθµ(t) + V ar(θ)(µ(t))2

= E(N(t)
(

1 + V ar(θ)
Eθ

µ(t)
)

It is noteworthy to mention that unlike Poisson process, the Mixed Poisson process

does not only have dependent increments but, in addition, it is also over-dispersed

(i.e., V ar(N(t)) > EN(t) for any t > 0 with µ(t) > 0) and in general, the distribution

of N(t) is not Poisson.
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Figure 5.1. Several sample paths of a Homogeneous Poisson process.

Figure 5.2. Several sample paths of a mixed Poisson process.
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Notice that Figure 5.1 and Figure 5.2 represent five sample paths of a homogeneous

Poisson process and mixed Poisson process respectively. In this example, the mixing

variable θ is exponential with parameter 1.

Fact. Let Y (t) =
N(t)∑
i=1

Xi, t ≥ 0 , with Xi iid and independent of N(t), be the

compound mixed Poisson process. Then the expected value and the variance are as

follows

E(Y (t)) = E(N(t))E(Xi) = Eθµ(t) (5.1)

V ar(Y (t)) = V ar(Xi)E(N(t)) + E(Xi)
2V ar(N(t))

= V ar(Xi)Eθµ(t) + E(Xi)
2
(
Eθµ(t) + V ar(θ)(µ(t))2

) (5.2)

Let’s define a sequence of independent mixed Poisson processes Nk(t) on [(k−1)T, kT )

and the corresponding compound Poisson processes

Yk(t) =

Nk(t)∑
j=1

Xk
j (5.3)

The cumulative loss reads

Y (t) =
k−1∑
j=1

Yj(jT−) + Yk(t) (5.4)

where (k − 1)T ≤ t < kT .

40



Based on Lemma 3.1.1 and (5.1)− (5.4) we arrive at the following

Theorem 5.1.1. Set V ∗k (Yk, αk, βk) ≡ V ∗k ; for k = 1, · · ·n. Then V aRα1(RT ) =

V ∗1 − (u+ cT ) and given then nth period [(n− 1)T, nT ], the the optimal solution has

the following cumulative Value at Risk at time (n− 1)T

V aR∗αn(RnT ) =
n−1∑
k=1

(Yk)− I(Yk) + PI(Yk)) + V ∗n − (u+ cnT )

=
n∑
k=1

(Yk)− I(Yk) + PI(Yk)) + V aRαn(Yn)− (Yn)− (u+ cnT )

Furthermore

E
(
V aR∗αn(RnT )

)
=

n−1∑
k=1

Eθµ(t) · E(Xk)− I(Yk) + PI(Yk) + V ∗n − (u+ cnT )

and

P

[
V aR∗αn(RnT ) >

n−1∑
k=1

Eθµ(t) · E(Xk) +
NT∑
k=1

(
PI(Yk)− I(Yk)

)
+ V ∗n − (u+ cnT )

+
√
V ar(Xi)Eθµ(t) + E(Xi)2

(
Eθµ(t) + V ar(θ)(µ(t))2

)
·zαn

]
' αn

where 1− Φ(zαn) = αn and Φ(·) is the cdf of N(0, 1).

Corollary 5.1.2. Let’s consider n cycles of L periods with (αi, βi where i = 1, ·, L.

As n −→∞, by the law of large numbers we have

• The expected Value at Risk per cycle

E
(
V aR∗αn (RnLT

)
nL

−→
L∑
i=1

Eθµ(t)·E(Xk)
L

−
L∑
i=1

I(Yi)
L
−

L∑
i=1

PI(Yi)
L
− cT
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• The expected value of the portfolio per cycle

E(X∗nLT )

nL
−→ −

{ L∑
i=1

Eθµ(t)·E(Xk)
L

−
L∑
i=1

I(Yi)
L
−

L∑
i=1

PI(Yi)
L
− cT

}
=

L∑
i=1

I(Yi)
L

+ cT −
L∑
i=1

Eθµ(t)·E(Xk)
L

−
L∑
i=1

PI(Yi)
L

where
L∑
i=1

I(Yi)
L

+ cT represents the Expected Income and
L∑
i=1

Eθµ(t)·E(Xk)
L

+
L∑
i=1

PI(Yi)
L

represents the Expected Loss.

5.2 Renewal Process

Definition 5.2.1. Renewal Process

A renewal process N = N(t) : t ≥ 0 is a process for which

N(t) = max{n : Tn ≤ t}

where

T0 = 0, Tn = M1 +M2 + · · ·+Mn for n ≥ 1

for i.i.d non-negative random variables Mi for all i ≥ 0.

Definition 5.2.2. Compound Renewal Processes

Let {(T1, X1), (T2, X2), · · ·} be a random marked point process with property that

{T1, T2, ···} is the sequence of renewal times of a renewal process, and let {N(t), t ≥ 0}

be the corresponding renewal counting process. Then the stochastic process Y (t), t ≥ 0

defined by

Y (t) =


N(t)∑
i=1

Xi if N(t) ≥ 1

0 if N(t) = 0

(5.5)
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Y (t), t ≥ 0 is called a compound renewal process with the corresponding mean and

variance

E(Y (t)) = E(Xi)E(N(t)) (5.6)

V ar(Y (t)) = V ar(Xi)E(N(t)) + E(Xi)
2V ar(N(t)) (5.7)

Let’s define a sequence of independent renewal processes Nk(t) on [(k− 1)T, kT ) and

the corresponding compound renewal processes

Yk(t) =

Nk(t)∑
j=1

Xk
j (5.8)

The cumulative loss reads

Y (t) =
k−1∑
j=1

Yj(jT−) + Yk(t) (5.9)

where (k − 1)T ≤ t < kT .

Based on Lemma 3.1.1 and (5.6)- (5.9) we obtain the following

Theorem 5.2.1. Set V ∗k (Yk, αk, βk) ≡ V ∗k ; for k = 1, ·n. Then V aRα1(RT ) = V ∗1 −

(u + cT ) and given then nth period [(n− 1)T, nT ], the the optimal solution has the

following cumulative Value at Risk at time (n− 1)T

V aR∗αn(RnT ) =
n−1∑
k=1

(Yk − I(Yk) + PI(Yk)) + V ∗n − (u+ cnT )

=
n∑
k=1

(Yk − I(Yk) + PI(Yk)) + V aRαn(Yn)− (Yn)− (u+ cnT )
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Furthermore

E
(
V aR∗αn(RnT )

)
=

n−1∑
k=1

(
E(Nk)E(X(k))− I(Yk) + PI(Yk)

)
+ V ∗n − (u+ cnT )

and

P

[
V aR∗αn(RnT ) >

n−1∑
k=1

E(Nk)E(X(k)) +
NT∑
k=1

(
PI(Yk)− I(Yk)

)
+ V ∗n − (u+ cnT )

+

√
n−1∑
k=1

V ar(X(k))E(Nk) + E2(X(k))V ar(Nk) · zαn

]
' αn

where 1− Φ(zαn) = αn and Φ(·) is the cdf of N(0, 1).

Corollary 5.2.2. Let’s consider n cycles of L periods with (αi, βi where i = 1, ·, L.

As n −→∞, by the law of large numbers we have

• The expected Value at Risk per cycle

E
(
V aR∗αn (RnLT

)
nL

−→
L∑
i=1

(E(Nk)E(X(k))
L

−
L∑
i=1

I(Yi)
L
−

L∑
i=1

PI(Yi)
L
− cT

• The expected value of the portfolio per cycle

E
(
V aR∗αn (RnLT

)
nL

−→
L∑
i=1

(E(Nk)E(X(k))
L

−
L∑
i=1

I(Yi)
L
−

L∑
i=1

PI(Yi)
L
− cT

E(X∗nLT )

nL
−→ −

{ L∑
i=1

(E(Nk)E(X(k)))
L

−
L∑
i=1

I(Yi)
L
−

L∑
i=1

PI(Yi)
L
− cT

}
=

L∑
i=1

I(Yi)
L

+ cT −
L∑
i=1

(E(Nk)E(X(k))
L

−
L∑
i=1

PI(Yi)
L

where
L∑
i=1

I(Yi)
L

+ cT represents the Expected Income and
L∑
i=1

(E(Nk)E(X(k))
L

+
L∑
i=1

PI(Yi)
L

represents the Expected Loss.
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Proposition 5.2.3. These extensions could also be applied to the investment portion.

Assume the premium collected is invested in different stocks at each time iT , i =

1, · · ·, n−1. and consider (4.8) such that
n−1∑
i=1

e(µi−
σ2i
2

)(n−i)T+σi(B
(i)
nT−B

(i)
iT ) is approximated

by a single lognormal Ŵ = eµ+σz using F.W.

1. Then in the case of compound mixed Poisson process , using (5.1)-(5.4) and

Theorem 5.1.1, we can find the insurer’s value at risk with the following

P

[
V aR∗αn(RnT )

)
>

n−1∑
k=1

Eθµ(t) · E(Xk) +
NT∑
k=1

(
PI(Yk)− I(Yk)

)
+V ∗n − [u+ (n− 1)(1− w)cT + wcTE(Ŵ )]

+zαn

√
V ar(Xi)Eθµ(t) + E(Xi)2

(
Eθµ(t) + V ar(θ)(µ(t))2

)
+ (wcT )2V ar(Ŵ )

]
' αn.

2. And in the case of compound renewal process, we can use (5.6)- (5.9) along

with Theorem 5.2.1 to describe the reinsurer value at. risk as follow

P

[
V aR∗αn(RnT )

)
>

n−1∑
k=1

E(Nk)E(X(k)) +
NT∑
k=1

(
PI(Yk)− I(Yk)

)
+ V ∗n

−(u+ (n− 1)(1− w)cT + wcTE(Ŵ )

+zαn

√
n−1∑
k=1

V ar(X(k))E(Nk) + E2(X(k))V ar(Nk) + (wcT )2V ar(Ŵ )

]
' αn

where 1− Φ(zαn) = αn and Φ(·) is the cdf of N(0, 1)
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CHAPTER 6

FUTURE WORK

6.1 Conditional Tail Expectation (CTE)

In this dissertation, we studied periodic reinsurance with investment, where

for each period a specific DRM, namely VaR, was considered. The main reason

for this approach to risk assessment stems from the fact that for a general DRM,

expressions involving the effective risk calculation have no closed form and become

hardly tractable.

Our future research will be devoted to a hybrid method, whereby in the final stage,

another concrete DRM with reasonable tractability, such as the Conditional Tail

Expectation (CTE), can be used. The reasons for pursuing such direction are two-fold:

(a) CTE risk calculation can be readily achieved via Monte Carlo simulation

(b) CTE offers a remedy for under-estimating risks associated with VaR

Remark. Observe that for every level 0 < α < 1, CTEα > V aRα. Whence it follows

that CTE offers a more informative risk estimate. Clearly, knowing the size of average

loss given the loss exceeded L, provides much better prediction than just knowing

that the loss is greater than L.

In what follows, we recall the definition of CTE and illustrate how this approach

leads to a Monte Carlo simulation of CTE for our model with investment.
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The CTE can be expressed in terms of distortion risk measure. Let’s recall

from chapter 2 the definition of DRM.

Definition 6.1.1. Let g : [0, 1]→ [0, 1] be a non-decreasing function with g(0) = 0

and g(1) = 1. For a non-negative random variable X, the Distorted Risk Measure

(DRM) is defined by

ρg(X) :=
∫∞

0
g(SX(x))dx

where SX(x) = P (X > x) is the survival function of X.

Given the parameter α, such that 0 < α < 1 if

g(t) =


1 if 1− α < t ≤ 1

t
1−α if 0 < t < 1− α

(6.1)

then

ρg(X) :=
∫∞

0
g(SX(x))dx = CTEα

As noted in [18], an equivalent way of defining CTEα is given by the following

Definition 6.1.2. Let X be a random loss variable with density f . Then the CTE

of the risk X is defined

CTE(X) = E[X|X ≥ V aRα(X)] = 1
α

∫∞
V aRα(X)

xf(x)dx, 0 ≤ α ≤ 1
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Assume that the pdf of the sum of two independent random variables has known

closed form.

Example 6.1.1. LetX, Y ∼ Exponential(λ), then the sum Z = X+Y ∼ Gamma(2, λ)

with pdf f(z) = ze−z. At the level α = 0.05 one calculates V aRα = 4.743, and the

Conditional Tail Expectation of Z is

CTE(Z) = 1
0.05

∫∞
4.743

z · ze−zdz = 5.9213

It turns out that if we simulate X and Y by Monte-Carlo using the following

1
α

N∑
i=1

(Xi+Yi)·1(Xi+Yi>V aRα)

N
, P (X + Y > V aRα) = α

we can then recover CTEα with very good degree of accuracy. Namely, by running

three simulations with N = 107 trials and taking their average we obtained 5.9214.

Based on this, we can apply Monte Carlo simulation to approximate CTEα in the

case the pdf of the sum is unknown.

Example 6.1.2. Let X ∼ Normal(13, 13) and Y ∼ Lognormal(0.163, 3.23), thus

we do not have a closed pdf form for Z = X − cwY . This case corresponds to Lemma

4.0.1 regarding the risk model with investment.

At the level α = 0.05 with V aRα = 8.25, c = 1 and w = 0.4, the Conditional Tail

Expectation of Z calculated by analogous Monte Carlo simulation was found to be

9.59, thus greater than the value at risk V aRα as expected.
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