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Abstract 

Generating Adversarial Examples for Recruitment Ranking Algorithms 

 

Supervisor: Dr. Shirin Nilizadeh 

Committee Members: Dr. Dajiang Zhu, Dr. Jiang Ming 

There is no doubt that recruitment process plays an important role for both 

employers and applicants. Based on huge number of job candidates and open vacancies, 

recruitment process is expensive, time consuming and stressful for both applicants and 

companies. In today’s world so many recruitment processes are based on machine learning 

techniques. Therefore, it is very important to ensure security of these algorithms. 

Adversarial examples are proposed to examine vulnerability of machine leaning 

algorithms. Many research studies have been done on evaluating the resistance of artificial 

intelligence-based systems, in computer vision and text classification, against adversarial 

examples. However, to the best of our knowledge, there is no other work evaluating the 

robustness of NLP-based ranking algorithms that are used in recruitment process. In this 

study, we proposed an attack model for generating adversarial texts and evaluate its success 

rate on a set of real-world recruitment applications. We carried out our study into two 

settings: white-box and black-box. In white-box setting, we proposed a new approach for 

keyword extraction, and we applied our technique to change the target resume into an 

adversarial example. Through extensive experiments, we examined our approach for 

different recruitment algorithms, and we found that on average adversarial examples have 

significant rank improvements. In black-box setting, we assumed that the adversary has no 

knowledge about recruitment process and matching algorithms. We proposed a neural 

network architecture to determine the proper keywords to be added to the adversarial 
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resumes. The keywords that were predicted by our proposed neural network were tested in 

two different settings: (1) simple setting where recruitment is a classification task for 

accepting and rejecting the resumes, and (2) more complex setting where recruitment 

algorithm is a ranking algorithm that ranks the resumes. We found that in setting (1) 

number of accepted resumes increased significantly after adding predicted keywords and 

in setting, over 95% present of resume got accepted (2) most of the resumes experienced 

great rank improvement after predicted keywords were applied for example over 50% of 

resumes them got over 150 number rank improvement. This study shows that ranking 

algorithms that use very popular embedding algorithms, such as TF-IDF, and USE are 

vulnerable to adversarial examples. 
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Chapter 1.  

 

Introduction 

Recruitment procedure is highly important in areas including job applications. Companies 

seek to recruit candidates that fit better in the position, and job seekers try to be recognized 

among the large number of applicants. According to (https://code.org), there were over 

500,000 open computing positions in the US in 2017 and it is expected that in 2020, the 

available seats will exceed by millions of job opportunities. Recruitment process is very 

competitive and stressful for both applicants and recruiters.  

Over the last few years Natural Language Processing (NLP) methods has been widely used 

in different tasks of human being daily life. Since machine leaning approaches has been 

successful in many fields of study, NLP method has utilized ML to automize its related 

tasks. Despite Machine learning model’s success, they are vulnerable against adversarial 

attacks [45]. One application of using machine learning methods in NLP in recent years is 

in recruitment process for identifying the best candidates for specific job descriptions. 

Companies use from simple algorithms to complicate ML based models to identify qualified 

candidates to save time and money. In Figure 1-1 shows how recruitment process works. 

Recruitment process mostly works based on two approaches, the first is keyword matching, 

which analyses the resume and focuses to find relevant information to job description by 

using NLP techniques. The second applies machine learning techniques to match the resume 

and job description. 
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In this work, we are creating adversarial examples against recruitment applications that are 

based on Machine Learning approach  and non-Machine Learning approaches.  

 

Figure 1-1  Recruitment algorithm 

We pursue our study in two categories: white-box and black-box.  

White-box approach: We assume that the adversary has little information on how 

recruitment process works, and his/her aim is to improve its resume’s ranking for a specific 

job position automatically. After analyzing applicant’s resume by employing NLP methods, 

we demonstrate that for a job description by adding a few keywords to resume, its rank can 

be improved significantly among other applicants. We proposed and applied a new approach 

to find best keywords that improve the ranking of applicant’s resume. In particular, in this 

work and for the white-box approach we use: 

1- job description keyword extraction: since recruiters  declare their requirements based on 

their job description. We assumed we could have better rank for reach resume if we had 
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job description keywords in target resume. To this end, we applied new approach for 

identifying best keywords based on Universal Sentence Encoder. 

First, we vectorized job description by using Universal Sentence Encoder method then we 

tokenized job description and step by step removed keywords, each time we calculated 

cosine similarity between resulted job description with main job description to calculate 

word importance. For the next step, we fitted the keywords from phase one in the resume 

and we sorted keywords by their cosine similarity increasing rate. Experiments were 

repeated for bigram and three-gram keywords and for adding different number of keywords 

combination, we also tried many job descriptions and many resumes to have accurate 

deduction. 

2- We inserted keywords that we extracted in step one to target resume. To rank resumes 

we assumed that recruiter was using Universal Sentence encoder as document 

embedding algorithm and applied cosine similarity to calculate semantic similarity 

among resume and job description. 

3- To assure that our method in step one works great in other recruitment algorithms, we 

applied another approach for recruitment algorithm. We used TF-IDF to vectorize 

resumes and job description then cosine similarity to calculate semantic similarity 

among them. 

Black-box approach: in this phase, we assume that we have no information about the 

recruitment process. To find the best keywords we designed multilabel Neural Network 

architecture. To have proper input for our network, we coded resumes as one-hot method, 

and designed the output to be keywords that lead to rank improvement for targeted resumes. 
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Output vector was one-hot the same as input vector. We developed black-box approach for 

two different settings based on recruitment algorithms: 

1- simple setting (binary classifier): in this setting, recruitment algorithm used some 

rules to accept or reject applicants, the aim of our proposed neural network was to 

find the keywords that satisfied that hidden rules and made the target resume be 

accepted. We lowered the input dimension vector to simplify the problem. 

2- complex setting (recruitment algorithm is a ranking algorithm): we considered 

Universal Sentence Encoder as recruiter approach. Since we applied broad number 

of words in this model, input vector of neural network is high in dimension, and 

recruiter output was rank of resume. We aimed the neural network could find best 

keywords that if they were added to resume, resume’s rank would improve in this 

recruitment process. 

Results: in this work we had several experiments for white-box and Black-box settings. In 

both settings, we had generated successful adversarial attack to fool recruitment process. In 

this regard, we proposed new approach for keyword extraction for White-box. By adding 

the extracted keywords to target resume, the resume rank improved among different 

recruitment algorithms. For Black-box, keywords that are generated in proposed neural 

network, performed a great impact on resume rank improvement. 
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Chapter 2.  

 

Background and Related work 

Employment procedure plays an important role for both companies and job seekers. 

Companies seek to recruit candidates that fit better in the position, and job seekers seek to 

be recognized and obtain the job among the large pool of applicants. Recruitment Industry 

is big, according to (www.Code.org), there were over 500,000 open computing positions in 

the US in 2017 [1]. It is expected that in 2020, the available seats will exceed by millions 

of job opportunity. Recruitment process is very competitive and stressful for both applicants 

and recruiters. Based on Glassdoor statistics, the average job opening attracts 250 resumes 

[2]. A recent survey by the Society of Human Resource Management (SHRM) found that 

the average cost per hire is just over $4,000 [3]. Companies use simple to very complicated 

algorithms to rank resumes based on their requirements [4]. Zaman et al. [5] used big data 

analysis techniques which is branch of data mining field of study to choose resumes, where 

they created a platform to evaluate an applicant by the information they provided in social 

media, like Linked In and checked if it satisfied job criteria. They assigned score for each 

feature in job and then classified the resumes by using decision tree. Word Embedding is 

the neural network-based approach where words and phrases are mapped to vectors [6]. 

Fernández-Reyes et al. [7] applied information retrieval models to retrieve relevant resume 

to the requested job. They represented each resume and job description by using hybrid 

word embedding, then they built corpora with Word2Vec model for fast training then and 

reduced the dimension of resulted vector was reduced. To retrieve best resume they used 

cosine similarity as their ranking function. In Keenan et al. [8] users’ resumes were kept in 
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online dataset with predefined features, so the employers were able to choose among them 

by considering their multi-criteria in resumes. In Faliagka et al. [9] for recruitment process 

applicant was chosen by filling out online forms. Some machine learning methods, such as 

linear regression, and support vector regression were proposed. First applicant score was 

calculated based on the features that were mentioned in the resume, then by using mentioned 

machine learning algorithms best resumes were chosen. In Apatean et al. [10] classifiers, 

such as LDA, KNN, NB and tree, were applied to classify and choose among resumes. To 

create the dataset, the authors gathered all information from employees that already fitted 

in specific position and used that as training set. Test set included applicants who filled out 

the online application. The score of each resume was calculated based on the features that 

individuals entered in predetermined fields. Koh et al. [11] focused more on ontology 

concepts. First, they looked for specific information in resumes, which requested in job 

vacancies. Since there were too many data to match against, they created some criteria to 

capture some necessary information in resume and job vacancies then assigned weight for 

resumes, this weight showed relevancy between job and resume. Furthermore, they created 

a mechanism to autofill information that are missed unintentionally in the resumes; this 

helped candidates to have more chance to get the appropriate job. Khairina et al. [12] 

categorized recruitment as Fuzzy Multiple Attribute Decision Making (FMADM) then 

applied Weighted Product Methods and allocated weights for each key attribute in job 

position then checked them among applicants and then chose those applicants with a better 

rank. Sarda et al. [13] applied two-way relevancy ranking for every candidate after finding 

important attributes in job requirement. In order to find attributes, they used data mining 

methods. To match applicants for a job, they used Gradient Boost Decision Trees, and  took 
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advantage of online websites like LinkedIn to find better understanding of candidate 

qualifications. 

In the following we will review important concepts of natural language processing and 

security concerns about that. 

With board application of machine learning techniques, it is very important to ensure 

security of the related algorithms [14]. To understand vulnerability of machine leaning 

algorithms adversarial examples are proposed. Adversarial examples are served as input of 

machine leaning models to deliberately cause them make mistake and fool machine learning 

models [15]. Successful attacks illustrate bugs of machine learning models and based on 

that, proposing defense against such attacks helps machine leaning be more reliable. Hence, 

implementation of adversarial examples and defense techniques ae popular and hot topics 

in machine leaning and security field of study [14]. 

Since it is hard to distinguish between two text formats, type of possible adversarial example 

for NLP differs from other types of adversarial attacks for machine learning tasks [16]. 

Adversarial examples in natural language processing includes many different categories 

from character level to sentence and document level. Some of the categories are mentioned 

as below: Character level, which attacker, insert, or delete a specific character in the token 

of text. Token level, which specific token is deleted, inserted, or replaced by another token. 

Sentence level, which attacker changes the whole sentence. 

Based on the problem, description of adversarial example can be proposed in two different 

settings: White-box and Black-box. In the white-box setting attacker access to the target 

model architecture, target parameters and input features. In the back-box setting attacker 
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does not have access to the model specification, but it can send input to the model and 

receive output of the model as response [17].  

2.1. Machine learning based text classification algorithms 

Most of the classifiers works on analysis text in different levels of text, some of them are 

mentioned below: 

• Document level: classifier considers the whole text document and categorizes it 

base on all sentences included in the document. 

• word level: classifier breaks documents into word element of each document and 

categorizes based on words [18]. 

 We mention some popular text classifications hereunder. 

2.1.1. Word Embedding 

Considering semantic meaning of the words has a great effect to better analysing the text. 

Since bag-of-word models do not include semantic information of the context and do not 

respect the order of the words, they have serious difficulty to understand the sentences. In 

this regard, Skip-gram and continuous bag-of-words (CBOW) models are proposed to 

overcome the problems of bag of word model [20]. Word embeddings are one of the few 

successful applications of unsupervised learning. Word embedding is a method that maps 

each word in a context to N-dimensional vector. This method can be categorized as feature 

learning, which learns to represent words with similar meaning with similar vectors [23]  

Some of the most popular word embedding are mentioned in below. 
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Word2Vec 

The Word2vec [20] is using word embedding concept to represent each word with a vector. 

Its’ architecture is a neural network with two hidden layers, continuous bag-of-words 

(CBOW), and the Skip-gram model that enables Word2vec to present high dimension vector 

for each word. There are some pre-trained vectors for Word2Vec format, one of the most 

important ones is Google News dataset (about 100 billion words). The model contains 300-

dimensional vectors for 3 million words and phrases.  

Global Vectors for Word Representation (GloVe) 

Glove concept is similar to Word2Vec. They both present a word in high dimensional vector 

[21]. GloVe captures both global statistics and local statistics of a corpus, in order to come 

up with word vectors [22]. GloVe is based on matrix factorization techniques on the word-

context matrix. A large matrix that includes text information is constructed and then count 

each “word”, and the column is how frequently we see this word in the text. Some well-

known pretrained GloVe word vectorization datasets are Wikipedia 2014 + Gigaword 5 (6B 

tokens, 400K vocab, uncased, 50d, 100d, 200d, & 300d vectors, 822 MB download) and 

Twitter (2B tweets, 27B tokens, 1.2M vocab, uncased, 25d, 50d, 100d, & 200d vectors, 1.42 

GB download). 

 

FastText 

Facebook introduced FastText for embedding words [24]. In the FastText, words are divided 

into bag of n-gram character. By using FastText one can train supervised and unsupervised 

representations of words and sentences. These embeddings can be used for various 
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applications including, data compression, candidate selection, or as initializers for transfer 

learning [25]. 

BERT 

BERT is another approach that applies bidirectional training to model the text. This means 

that BERT learns from both the left and the right side of a context during the training. This 

helps better understanding of the text [26]. BERT was pretrained on Wikipedia that includes 

over 2,500 million words. There are two BERT variants available: 

• BERT Base: 12 layers, 12 attention heads, and 110 million parameters 

• BERT Large: 24 layers, 16 attention heads and, 340 million parameters [27] 

2.1.2. Document Embedding 

There is many real-world applications that need to understand text as a whole and not only 

consider single words. Document embedding is an approach to create a relevant vector of a 

context, this will give an approximation of that document’s content, and in this way, one 

can compare and classify two text. There are many different ways to find a vector 

representation of a document. In this study we applied tf-idf weighting and Universal 

Sentence Encoder, we elaborated them in sections 4.2 and 4.3. 
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Chapter 3.  

 

Data Collection 

3.1. Data bases 

We needed resumes and job descriptions for our experiments. To have more accurate results, 

we collected 100 real applicant resumes. These resumes are public resumes and we collected 

them among LinkedIn public job seeker resumes, GitHub, and personal websites. To have 

equal chance for applicants and make our experiences closer to real world recruitment 

procedures, we only considered resumes related to computer science. Resumes are chosen 

to be in different levels of education, skills, experiments, gender, etc. We stored these 

resumes in text format files.  

For job descriptions, we developed a web scraper in python to extract data science jobs from 

indeed website (https://www.indeed.com/). Our dataset includes over ten thousand records, 

which are extracted from different areas of united states. 

For black-box settings, our neural network architecture needs a huge amount of data to be 

trained well. To have enough training set we augmented our data for our models. For simple 

setting model, we created five thousand records by concatenated one hundred resumes to 

fifty selected job description. For more complex setting, we split resumes into half, then 

joined upper part of each resume to others resumes lowers part. With this approach, we 

could maintain the structure of each resume and each resume could have common resumes 

information, such as skills, education, work experiment, etc.  We did this procedure for all 

possible combinations and created a database with ten thousand resumes. 
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3.2. Text tuning 

To have successful text analysis, it was crucial to clear out text from noise and 

unnecessary words. These unwanted words had adverse effect on system performance. In 

this section we mentioned some techniques that were applied for text preprocessing: 

Tokenization: in tokenization phrase or sentence broken into meaningful part of sentence 

called tokens. In this study, we focused on bag of word format, so we aimed to investigate 

the place of each word (token) into document [18]. 

Stop Words: there are some words that are repeated many times in the text but they did 

not  carry out specific meaning for document analysing, e.g., “a”, “about”, “above”, 

“across”, “after”, “afterwards”, “again”, etc.  We chose to remove stop words form our 

texts [18]. 

Noise Removal: presence of some characters, such as punctuations did not have any 

positive effect for our text analysing algorithm. In this study we removed unnecessary 

characters [18]. 
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Chapter 4.  

 

White-Box approach 

In the white-box setting, we assume that the adversary, who is a job seeker, has knowledge 

about the ranking algorithm, and tries to improve his/ her rank among all applicants by 

modifying his/ her resume. Adversary also needs to have knowledge about the resumes of 

the other applicants to better evaluate its own resume. This analysis also helps with 

understanding in the worst-case scenario how much the adversary can improve their 

ranking, and later we study black-box settings when the adversary has no knowledge about 

the algorithm and other applicants' resumes. In the Figure 4-1, we demonstrated our 

approach for adversarial attack in white box. First recruitment process receive resume and 

job description and rank the resume based on its ranking algorithm, in the next step 

adversary manipulate the resume based on the method that we proposed in sections 4.2.1. 

and 4.2.1., finally improved resume considered as an input of recruitment process and new 

resume rank calculated. 
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Figure 4-1  White-Box approach block diagram 

4.1. Simple resume ranking algorithms  

Resume Ranking Algorithms: We first examine the possibility of generating adversarial 

examples for non-deep learning-based ranking algorithms. We designed five resume 

ranking algorithms, which rank the resumes based on a list of keywords that are selected by 

the employer, although these could also be a result of a separate job description parser. 

These algorithms assign a score to each resume and then rank all the resumes based on their 

scores, where higher score shows a better fit to the job. 

• Algorithm 1: The score is computed as the percentage of keywords in the list 

that are present in the resume. For example, if employers list of keywords 

includes {python, software development, and computer science} and a resume 

include only computer science, then the score for this resume would be 0.33. 

• Algorithm 2: The score is computed as the percentage of keywords in the list 

that are present in the resume at least a specified minimum number of times. For 

example, if employers list of keywords includes {python, software development, 

and computer science}, applicant with higher count number of appearances of 
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these keywords in their resume had the better rank. in the other words, we for 

each appearance of each keywords we added one to applicant score. 

• Algorithm 3: The score is computed as the number of occurrences of each 

keyword in the resume.  

Algorithm 4 and Algorithm 5: are variations of Algorithm 1 and 4 that assign weights to 

keywords, when some keywords have higher weight than others.  

 

Figure 4-2  Simple recruitment algorithm 

 

 

Figure 4-3  Min_Count recruitment algorithm 
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Figure 4-4  Simple_Weighted recruitment algorithm 

 

 

Figure 4-5  Count recruitment algorithm 

 

 

Figure 4-6  Count_Weighted recruitment algorithm 

 

4.1.1. generating adversarial resumes 

We added five random keywords (work attributes) to one resume and did not modify the 

other resumes. Then found the rank improvement due to these additions. We repeated this 

procedure for all resumes for all algorithms. 
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Here are the keywords that are dedicated for each algorithm: 

For Simple algorithm and Count algorithm: {Python, AngularJS, Spark, Java, C#, PHP, 

CSS, html5, AI, Linux, Machine, bachelor, master, statistic, PhD, Publications, amazon, 

Algorithm, Microsoft, Awarded, research, scholarship, Stanford, Harvard, TensorFlow, 

Robotics, Reinforcement, git, thesis, OpenCV} 

For Min_Count algorithm. in this set, corresponding number to each word indicated the 

minimum required time for each keyword to be present in each resume to be accepted: 

{Python, 2, AngularJS, 1, Spark, 1, Java, 1, PHP, 1, CSS, 1, AI, 1, Linux, 2, Machine, 3, 

bachelor, 1, master, 1, Algorithm, 1, Awarded, 1, research, 1, scholarship, 1, TensorFlow, 

1, git, 1, thesis, 1} 

For Simple_Weighted and Count_Weighted algorithms. in this set, corresponding number 

to each word indicated the weight of the word: {Python, 30, AngularJS, 10, Spark, 5, Java, 

10, C#, 10, PHP, 5, CSS, 5, html5, 5, AI, 15, Linux, 15, Machine, 20, bachelor, 10, master, 

15, statistic, 5, PhD, 20, Publications, 10, amazon, 5, Algorithm, 5, Microsoft, 5, Awarded, 

5, research, 5, scholarship, 5, Stanford, 30, Harvard, 30, TensorFlow, 5, Robotics, 5, 

Reinforcement, 5, git, 5, thesis, 5, OpenCV, 5} 

The random keywords that we added to the target resume: {AngularJS, Python, Java, 

Harvard, Machine} 

The following plots show the rank improvement in X axis when adding the “random” 

keywords to an adversarial resume. 

Following plots demonstrate the number of resumes that had rank improvement by adding 

5 random keyworks. For example, in simple algorithm plot above twenty resumes had three 



18 

rank improvement and for count_weighted algorithm five resumes had 32 rank 

improvement that is significant result. 

 

Figure 4-7 Simple algorithm rank improvement result 

 

 

 

Figure 4-8 Simple_Weighted algorithm rank improvement result 
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Figure 4-9  Count algorithm rank improvement result 

 

Figure 4-10  Count_Weighted algorithm rank improvement result 
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Figure 4-11  Min_Count algorithm rank improvement result 

4.2. Universal Sentence Encoder 

Universal sentence encoder is a well-known method that uses an encoder to convert given 

text to a fixed-length 512-dimensional vector. This embedding has been used to solve 

multiple tasks, such as semantic search [43], text classification [44], and many other NLP 

tasks. it will return only the most informative features and will not consider noises [29]. 

Figure 4-12 shows how universal sentence encoder used for Semantic similarity among 

sentences. Semantic similarity is a measure of the degree to which two pieces of text carry 

the same meaning. The metric for calculating Semantic similarity is cosine similarity. It has 

been shown that after embedding sentences, sentences that have closes meaning carry out 

higher cosine similarity, it is because they have more resampling vectors. [29][44] 

We used USE pretrained model, which applies STS benchmark. STS Benchmark is a 

selection of the English datasets used in the STS tasks organized in the context of SemEval 
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between 2012 and 2017. The datasets, that are used in STS, are from different types, 

including image captions, news headlines and user forums [29][30]. 

 

 

 

Figure 4-12 Universal Sentence Encoder sample 

 

4.2.1. Phase one: New approach for keyword extraction  

In this study we propose a new approach for keyword extraction enjoying Universal 

Sentence Encoder algorithm. To have successful adversarial attack for recruitment process, 

first we need to analyse job description as the only source from recruiter. Based on the job 

description’s most relevant keywords and skills, the adversaries can change their resume to 

better match the job description. Their objection is to add best keywords into the resume 

and increase the resume's chance of getting through to the next round of recruitment. 

In this project to evaluate similarity between resume and job description we embedded both 

texts. The adversary manipulated the resume and then submitted it to recruitment process. 

Recruitment algorithm in our project was based on universal Sentence encoder, it 

considered document as a whole and despite of other approached like Doc2Vec that are 

based on bag of words, it returned more accurate results. 
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  Regarding to the nature of the job description, we have not received decent results from 

traditional keyword extraction algorithms like TF-IDF and RAKE [28], to have relevant 

keywords from job description we need to consider job description document as a whole 

not only choosing words with higher frequency as keyword. For this purpose, we enjoyed 

Universal Sentence Encoder algorithm to embed whole job description document. We 

implemented following steps regarding to extract job description keywords: 

Step1: Text preprocessing: in this step we remove unnecessary symbols and words such 

as stop words. In many algorithms, especially algorithms that work with statistics and 

machine learning, noise and unnecessary attributes can have adverse effects on the 

performance, therefore we try to minimize their effects by removing them from the 

descriptions.  

Step2: USE embedding: we embed the whole original job description into a vector using 

Universal sentence encoder. We applied one of the universal family models family 

pretrained model [29] The input of this model is English text and the output is a 512-

dimensional vector. The model is applied to the STS benchmark [30] for semantic similarity, 

the universal sentence encoder model is trained with a deep averaging network (DAN) 

encoder.in this version default inference function now returns the Tensor instead of a 

dictionary. [29] we store this vector into a variable 𝑈𝑆𝐸𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝐽𝑜𝑏. 

Step3: Tokenizing and deleting tokens: in this step we break the original job description 

documents into tokens which are meaningful part of the sentence. We want to investigate 

the importance level of each word in the job description. We delete single token 𝑇𝑜𝑘𝑒𝑛𝑖 

from job description and save new job description that is excluded from 𝑇𝑜𝑘𝑒𝑛𝑖 as 

𝐽𝑜𝑏𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛𝑛𝑒𝑤. Next, we need to embed  𝐽𝑜𝑏𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛𝑛𝑒𝑤base of Universal 
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Sentence Encoder formant that mentioned in step2. We store this vector in variable 

𝑈𝑆𝐸𝑁𝑒𝑤𝑗𝑜𝑏. 

Step4: Scoring keywords: until now, we have 𝑇𝑜𝑘𝑒𝑛𝑖 as a keyword that we want to know 

its place among all other tokens of job description. We need a metric to measure the 

similarity between two vectors 𝑈𝑆𝐸𝑁𝑒𝑤𝑗𝑜𝑏 and 𝑈𝑆𝐸𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝐽𝑜𝑏. For this purpose, we applied 

Cosine Similarity. This metric measures the cosine of the angle between two vectors which 

are multi-dimensional. Mathematical formula of Cosine Similarity is hereunder: 

 

The result of cosine similarity among 𝑈𝑆𝐸𝑁𝑒𝑤𝑗𝑜𝑏 and 𝑈𝑆𝐸𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝐽𝑜𝑏 illustrate the 

importance of deleted word  𝑇𝑜𝑘𝑒𝑛𝑖. In this regard, lower cosine similarity expressed 

the fact that deleted token, caused impressive change in the job description contents 

therefore it might be an important keyword.  

Step5: repeating all the procedure: we need to repeat step 3 and step 4 for all tokens in 

the job description. This procedure gives us dictionary data structure which the keys are 

tokens, and the values are related cosine similarities. To obtain best keywords, we sorted 

them in ascending order and selected the 50 best keywords among all words of job 

description. 

Step 6: N-gram phrases: by pursuing step1 to step 5 we will obtain 1-gram bag of words. 

We run the experiment to have best keywords for 2-grams and 3-grams as well. For 2-grams 

we deleted two consequence tokens and for 3-grams we deleted three consequence tokens 
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in step3. The rest of procedure is the same and will have dictionary of 2-grams and 3-grams 

in step5 that we choose 50 best keywords among them. 

 

4.2.2. Why Phase two is required  

The adversary’s objective is to improve his/her resume to fool recruitment process. 

We aim to show that without manipulating resume structure we can have impressive ranking 

improvement among other resumes just by adding some important keywords from job 

Figure 4-13  keyword extraction phase one pseudo code 
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description. We noticed by adding best keywords of job description to resume best results 

would not be achieved, therefore we performed the following experiments: 

• we added an irrelevant sentence to each pair of resume and job description: We 

found that the similarities between a pair of resume and job description did not 

change significantly. 

• we added test sentence (“today is rainy day”) of job description for five times to 

resumes: We found that similarity between the resume and job description got 

decreased. 

• we made a fake sentence with the best job description keyword (just one word): We 

found that the similarities increased only for some while for the others it decreased. 

We added this sentence five times: we found that the similarity increased for some 

and decreases for some others. We added the best keyword five times instead of a 

sentence with the keywords to examine the importance of a sentence: We found that 

the similarity results did not change significantly from test4. 

• we added the whole job description to the resumes: We found that similarity of some 

resumes increased while others decreased.  

Following conclusions have be achieved based on the mentioned experiments: 

• Adding a keyword have different effects among different resumes 

• Adding a lot of keywords is useless and keywords needs to be relevant to resume 

structure, since, we added whole job description to the end of resumes and some 

resumes even got worse similarity to job description. 
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Based on the following results we developed phase two that Resort the best keywords in 

phase two for each resume to finds best keywords that fits in the specific resume. 

Phase 2: New approach for keyword extraction We noticed just by adding best keywords 

of job description to resumes, best results would not be achieved, and each resume based on 

its previous information and structure needs specific keywords. In this regard, we developed 

phase two that resorts the best keywords of phase one for each resume, our objective is to 

find best keywords that fits in a specific resume. We performed phase two for each resume 

and job description by following steps: 

Step1: we added best fifty keywords of phase one, one by one to the resume. 

Step2:  we embedded the resume by Universal Sentence Encoder after adding each keyword 

and we calculated cosine similarity between resume after adding keyword and job 

description. Then we calculated rank improvement of the resume after adding keyword. 

Now we resort keywords in descending order, based on the rank improvement. At this point 

we have list of sorted keywords for each resume.  

Step3: In this step we added N numbers of best keywords that we achieved in step2 to 

original form of resume and we store this resume in variable 𝑅𝑒𝑠𝑢𝑚𝑒𝑗𝑛𝑒𝑤. We vectorized 

new resume and job description based on Universal Sentence Encoder then we calculate 

cosine similarity before and after adding keywords to calculate rank improvement.  

Step4: We repeated these steps for fifty job descriptions, one hundred resumes and for group 

numbers of 1, 2, 5, 10, 20, 50 keywords and used unigram, bigram and trigram keywords. 
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Figure 4-14 keyword extraction phase two pseudo code 
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4.2.3. Results 

In this section we applied Universal Sentence Encoder as part of matching algorithm. In this 

regard, we developed various experiment in our proposed mothed. In Fig 4-14 we chose 25 

random resumes and three job descriptions, and we checked rank improvement when we 

added different numbers of keywords to each resume. We aimed to investigate the effect of 

adding different number of keywords on rank improvement. Experiments demonstrate that 

rank improved significantly by adding more keywords. For example, with adding 10 

keywords for resume one, we get about 20 rank improvement, while adding 50 keywords 

for same resume and jobs will have about 50 rank improvement. 

 In Fig 4-15 we chose 25 random job description and calculated average rank improvement 

among all resumes with different N-gram setup. In most of the job descriptions we can see 

that average rank improvement increased after adding more keywords. For example, with 

adding 10 keywords for job one, we get on average 25 average rank improvement, while 

adding 50 keywords for same job and jobs will have 30 average rank improvement. 

In Fig 4-16 our objective was to show how many resumes’ ranks improve in average of all 

settings included all job description, different number of added keywords and different type 

of N-grams. As a result, we can see all resumes had rank improvement and in most of them 

rank improvement is significant. For example, in average of all combination, about six 

resumes had twenty-six average rank improvement. 

In Fig 4-17 we aimed to show that when we added keywords how uni-gram, bi-gram and 

trigram bag of words effected average rank improvement. In this regard, we calculated 

average rank improvement for all combinations of different job descriptions. In this plot we 
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can see that when our ranking algorithm is Universal Sentence Encoder, we will achieve 

better results for tri-grams bag of words and by increasing adding the number of keywords, 

rank improvement for unigram, bigram and trigram approach to each other. For example, 

by adding 20 keywords to resumes, in all job description combination, we will have 

17,20,34 average rank improvement for unigram, bigram and trigram consequently. 
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Figure 4-15 rank improvement for three random job 

 

 

 



31 

 

 

A
v
er

ag
e 

ra
n
k
 i

m
p
ro

v
em

en
t 

 

 Number of keywords 

Figure 4-16  Average rank improvement for all resumes 
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Figure 4-17  average rank improvement for all possible combinations 

 

 

Figure 4-18  average rank improvement for ngrams 

4.3. TFIDF 

TF-IDF “term frequency-inverse document frequency” is a numerical statistic that is 

designed to reflect how important a word is in a collection or corpus [33].  
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The goal of using TF-IDF instead of the raw frequencies of a token is to reduce the impact 

of tokens that occur very frequently which make them less informative than features that 

occur in a small portion of the training corpus. 

TF: Term Frequency reflects how often a term occurs in a document as every document has 

different length, they may occur more often in longer documents than shorter ones. Thus, 

TF is: 

 

IDF: Inverse Document Frequency measures how important a term is. In TF, all terms are 

considered similarly important. therefore, we need to cut down the frequent terms while 

increasing the frequency of the rare ones, by following equation: 

 

product of two weights, the TF and the IDF weight results the TF-IDF 

However, the fundamental of TF-IDF remains the same: TF-IDF results in larger numbers 

for less frequent words and is high when both IDF and TF values are high. 

In general, until 2015, TF-IDF was the traditional method to assigning values to words that 

emphasize the relevance in documents compared to the Bag of words way that treats every 

word similarly important. It is still effectively used in solving NLP problems [32]. 

4.3.1. Adversarial example against TFIDF based recruitment process 

In this step we added keywords to resumes from our novel approach in 6.2.1, we assumed 

that recruiter used TF-IDF algorithm for ranking resumes. We vectorized resumes and job 

description based on TF-IDF then we calculated cosine similarity before and after adding 

keywords to calculate rank improvement. Our goal is to show our new approach is reliable 
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even with deferent ranking algorithms. We repeated this step for fifty job descriptions and 

for group numbers of 1,2,5,10,20,50 keywords. 

4.3.2. Results 

In this section we applied TF-IDF as matching algorithm. To this end, we developed various 

experiments. In Fig 4-18 we chose 25 random resumes and three random job descriptions 

and checked rank improvement when added different numbers of keywords to each resume. 

We aimed to investigate the effect of adding different number of keywords to resume rank 

improvement. Experiments demonstrated that for most resumes and job descriptions rank 

improvement increased significantly by adding more keywords. 

 In Fig 4-19 we chose 25 random job description and calculated average rank improvement 

among all resumes with different N-gram setup. In all of the job description we can see that 

average rank improvement increased after adding more keywords. 

In Fig 4-20 our objective was to show how many resumes ranks improved in average of all 

settings included all job description, different number of added keywords and different type 

of N-grams. As a result, we can see most resumes had rank improvement and in most of 

them rank improvement is significant. 

In Fig 4-21 we wanted to show that when we added keywords how uni-gram, bi-gram and 

trigram bag of words effected average rank improvement. In this regard, we calculated 

average rank improvement for all combinations of different job descriptions. In this plot we 

can see that when our ranking algorithm TF-IDF we will achieve better results for tri-grams 
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bag of words and by increasing adding the number of keywords, rank improvement for 

unigram, bigram, and trigram approach to each other.  
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Figure 4-19  rank improvement for three random job 
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Figure 4-20  Average rank improvement for all resumes 
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Figure 4-21  average rank improvement for all possible combinations 

 

Figure 4-22  average rank improvement for Unigram,Bigram,Trigram 
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Chapter 5.  

 

Black-Box approach 

In the back-box setting, attacker does not have access to the model specification, but can 

send input to the model and receive output of the model as response. 

5.1. Neural network 

Neural networks are known to be able to approximate arbitrary nonlinear functions. Recent 

advancements in neural network architectures and GPU technology have resulted in scalable 

and effective algorithms leading to growing their popularity in a variety of disciplines. 

Neural networks have been applied in many real-world problems including business, 

education, and environmental prediction [31][39][19]. Neural network models have been 

used in NLP tasks, such as text classification, natural language inference, machine 

translation, and question answering [42][46][47]. In this study we applied neural network 

to predict keywords that improve resumes ranking. To provide an acceptable format for 

neural network input, we applied one-hot style [34]. Choosing proper domain of relevant 

words plays crucial role to code resume and job description so we tokenized all job 

descriptions and resumes and created dictionary of words of all resumes and job 

descriptions, where key is the token and value is the frequency of the word that has been 

repeated in all resumes and job description that are available. In the next step we need to 

vectorize resumes, we check each dictionary word in resume. If the word exists in resume 

it appends one to resume vector, else appends 0. That is how one-hot style works for our 

vectorization process. 
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Figure 5-1 shows an example where ones in the vector show the presence of those words in 

a sentence. 

 

Figure 5-1  one-hot example 

In this figure, dictionary size is included some words and in sample sentence. As can be 

seen, values of dictionary of words that are presented in the sample sentence are set to one 

and rest of dictionary words are remained zero [35]. 

In this study, we proposed neural network model where input vector is the resumes, and 

output is a vector that demonstrate the best keywords. In the output vector, ones indicate 

index of words that  adding them to resume will increase the rank of resume. For recruitment 

algorithms we considered two different approaches that we will elaborate in the following 

sections. Figure 5-2 shows the architecture of our proposed neural network model. 
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Figure 5-2  Neural Network architecture 

 

Our proposed neural network architecture is shallow network. It consists of input layer, two 

dense layers as hidden layers and output layer representing the labels. For the first two 

hidden layers we used rectified linear unit (ReLU [37]) [y = max(0, x)]as the activation 

function. ReLUs are the most commonly used activation functions in neural networks 

models [39]. Due to their unique formulations, ReLUs provide faster training and better 

convergence relative to other activation functions [37]. For the output layer we used sigmoid 

activation function to map the output to lie in the range [0,1] i.e., actual probability values 

[38].  

As our problem was multilabel problem we applied Binary Cross-Entropy Loss (also known 

as Sigmoid Cross-Entropy) defined as, 𝐻(𝑦, 𝑝) = −∑𝑦𝑖log(𝑝𝑖)
𝑖

. Where 𝑦𝑖 refers to binary 

indicator zeros which is equal to one for correct class and 0 otherwise and 𝑝𝑖 refers to 

estimated probability for each class. It is used when node activations can be perceived as 

representing the probability that each hypothesis might be true, i.e., when the output is in 

the form of a probability distribution [39]. 
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In contrast to softmax cross entropy loss, binary Cross-Entropy is independent in terms of 

class, i.e., the loss measured for every class is not affected by other classes. Thus, it is useful 

for multi-label classification, where a parameter belonging to a particular class should not 

impact the decision for the other class [36].  We used this method to predict proper keywords 

in recruitment process, by adding these keywords to resumes their rank for recruitment 

would be increased. For the optimization of loss function (training the neural network), we 

used stochastic gradient descent-based optimization algorithm (Adam;[40]). Adam is an 

adaptive learning rate method, which computes individual learning rates for different values 

and uses estimations of first and second moments of gradient to adapt the learning rate for 

each weight of the neural network [40]. 

As the regularization technique to avoid overfitting [39][41] we tested dropout with 

different rates [0 to 0.5]. In dropout at each training stage, individual nodes are either 

dropped out of the net with probability 1-p or kept with probability p, so that a reduced 

network is left; incoming and outgoing edges to a dropped-out node are also removed. 

Dropout was applied for all hidden layers and our assessment showed that dropout rate (0.1) 

yielded better results.  

5.1.1. Examining a simple setting  

In this model recruitment process is defined as a binary classification algorithm (hire or 

not), our objection is finding simple rules in job description. We assigned following rules 

as recruitment conditions.  

◦ if "python" is in resume  

◦ if "university" is in job description applicant should be "master “or “PhD” 
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The Neural network input: in this model our objective was testing our model on a low 

dimension and basic vector to generalize it to a more complicated model in the next section. 

We chose 20 random words among most frequent words of all resumes and job descriptions 

we already extracted. We coded the resumes and job descriptions as one-hot, then 

concatenated resume and job descriptions together. 

The Neural network labels: the value of word index is set to 1 if adding this word to 

resume makes resume to be accepted. For example, if resume does not have word “masters” 

in it and the recruitment algorithm looks for word “masters,” then the value for “masters” 

index in y-train would be 1.  

Figure 5-3 illustrates input and label setting of our neural network. 

 

Figure 5-3  input and label setting of neural network 

  

We designed this experiment as following: 

• Ranking algorithm: simple rule detection 

• Creating the ground truth: we added random words from our dictionary domain (20 

words) to resumes and received the response from recruitment algorithm 

• Xtrain: 5000 records of 40-dimension vectors, each vector is a resume that is 

concatenated to job description and is coded by one-hot format.  
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• Ytrain: 5000 records of 20-dimension vector 

• Goal:  finding the best 20 keywords that improve the rank of each resume. 

To train our neural network model, we split our data into train and test (70% train set, 30% 

test set), to evaluate our training results, we used validation set approach (we allocated 30% 

of training set for validation) and trained on 2,450 samples, validate on 1,050 samples. We 

also set batch size equal to 50 and number of epochs equal to100. Figure 5-4 shows our 

model architecture that demonstrate each layer input numbers, output numbers and 

parameters. 

 

Figure 5-4  NN layers configuration in simple setting 

 

To check the performance of our model settings we used recall, precision and F1 over 

validation set. Our results showed that the model is trained well through epochs (see, Figure 

5-5). 
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Figure 5-5  NN simple setting model performance 

 Finally, we need to check how the trained neural network model works for out of sample 

data (test data). To test the performance of our trained neural network model, we added 

predicted words in neural network to each related resume and submitted each resume to 

recruitment algorithm. In the Figure 5-6, it is shown that the success rate of getting hired 

increases by using suggested NN keywords. 
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Figure 5-6  simple setting recruitment result 

 

5.1.2. Examining a more complex setting   

This model is more complicated and used about 10000 words to model the input resumes 

vector to have more accurate results.  

Recruitment: is based on universal sentence encoder algorithm that we have in white-box. 

It is for one random job description. And our focus is finding 20 unigram keywords. 

Objective: we expect NN determines keywords that improve resumes in recruitment 

process. 

Input: one-hoted 10,000 resumes. 

TrainY: one-hoted keywords that improves resume.  

•  We designed this experiment as following: Ranking algorithm is set to USE. 
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• Creating the ground-truth: we added random words to resumes and received the 

response from the black box matching algorithm. 

• Xtrain: 10000 records of 9054-dimension vectors, each vector is a resume that is 

coded by one-hot format. 

• Ytrain: 10000 records of 51-dimension vector  

• Goal:  finding the best 20 keywords that improves the rank of each resumes 

To train our neural network model we split our data into train and test (70% train set, 30% 

test set). To evaluate our training results, we used we allocated 30% of training set for 

validation and trained on 4,900 samples, validate on 2,100 samples. We also set batch size 

equal to 50 and number of epochs equal to 100. 

Figure 5-7 shows our model architecture that demonstrates each layer input shapes, output 

shapes and parameters. 
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Figure 5-7 NN layers configuration in complex setting 

  

To check the performance of our model settings we used recall, precision and F1 over 

validation set. Fig. 5-8 shows that this Model is trained well through epochs.  

 

Figure 5-8  NN complex setting model performance 
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Finally, we set to check how the trained neural network model works with the test set. To 

test the performance of our trained neural network model, we added predicted words in 

neural network to each related resume and submitted each resume to recruitment algorithm. 

In the Figure 5-9 we added predicted words to each resume, we can see that number of 

getting hired increases significantly by using suggested NN keywords. For example, above 

200 resumes rank increased by more than 400 after adding keywords while over 400 

resumes rank increased by between 150 and 200 after adding keywords. 

 

Figure 5-9  complex setting recruitment result 
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Chapter 6.  

 

Conclusion and Future works 

In this project we found that automatic recruitment process, machine learning based, and 

non-machine learning based, are vulnerable against adversarial examples. We proposed 

successful adversarial attack in two settings: white-box and black-box. We analysed one 

hundred real applicant resumes and then thousand job descriptions based on NLP 

techniques. In this study, we proposed a new approach for keyword extraction based on 

Universal Sentence Encoder. We extracted meaningful and relevant bag of words keywords 

of job description in unigram, bigram, and trigram. We ran different experiments for white-

box, then we repeated our experiments for two different recruitment approaches. We noticed 

majority of resumes have significant rank improvements by adding more relevant keywords. 

Finally, in black box setting, we proposed multilabel neural network architecture to predict 

proper keyword for each resume and job description. We applied our model into augmented 

datasets with five thousand and ten thousand records of resumes consequently for two 

different settings. After testing our neural network model and predicting the proper 

keyworks, we added keywords to related resumes and we found over 95% of resumes 

getting accepted in first setting. For the second setting we examined three thousand resumes 

as test set. The findings showed that over 85% of those resumes experienced rank 

improvements above 5 and over 50% of the resumes experienced rank improvements 

above150 . 
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Future Work  

In this study we focused on basic recruitment algorithms. However, in well-known 

companies, typically more constrains exist and complicated approaches might be used. In 

our future works we will ask for companies for the approaches they are using for recruitment 

and compare those approaches efficiencies with proposed schemes. In addition, we will ask 

for real data and resumes and expand our project to use large scale data. In this regard, we 

can offer defend solutions alongside analyzing their recruitment algorithm and creating 

adversarial attack. 

In the black-box section, we will optimize our neural network to have better performances. 

Extensive grid search is one of the works can be performed to set the neural network 

hyperparameters. 

In this study, we considered access to other resumes data set to evaluate adversarial attack 

in the white box setting. For our future work, we will explore an adversary who has access 

to the model, but we will limit their access to the resume database.  
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