
Generating Adversarial Examples for Recruitment

Ranking Algorithms

by

Anahita Samadi

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

University of Texas at Arlington

December 2020

ii

Copyright in this work rests with the author. Please ensure that any reproduction

or re-use is done in accordance with the relevant national copyright legislation.

iii

Abstract

Generating Adversarial Examples for Recruitment Ranking Algorithms

Supervisor: Dr. Shirin Nilizadeh

Committee Members: Dr. Dajiang Zhu, Dr. Jiang Ming

There is no doubt that recruitment process plays an important role for both

employers and applicants. Based on huge number of job candidates and open vacancies,

recruitment process is expensive, time consuming and stressful for both applicants and

companies. In today’s world so many recruitment processes are based on machine learning

techniques. Therefore, it is very important to ensure security of these algorithms.

Adversarial examples are proposed to examine vulnerability of machine leaning

algorithms. Many research studies have been done on evaluating the resistance of artificial

intelligence-based systems, in computer vision and text classification, against adversarial

examples. However, to the best of our knowledge, there is no other work evaluating the

robustness of NLP-based ranking algorithms that are used in recruitment process. In this

study, we proposed an attack model for generating adversarial texts and evaluate its success

rate on a set of real-world recruitment applications. We carried out our study into two

settings: white-box and black-box. In white-box setting, we proposed a new approach for

keyword extraction, and we applied our technique to change the target resume into an

adversarial example. Through extensive experiments, we examined our approach for

different recruitment algorithms, and we found that on average adversarial examples have

significant rank improvements. In black-box setting, we assumed that the adversary has no

knowledge about recruitment process and matching algorithms. We proposed a neural

network architecture to determine the proper keywords to be added to the adversarial

iv

resumes. The keywords that were predicted by our proposed neural network were tested in

two different settings: (1) simple setting where recruitment is a classification task for

accepting and rejecting the resumes, and (2) more complex setting where recruitment

algorithm is a ranking algorithm that ranks the resumes. We found that in setting (1)

number of accepted resumes increased significantly after adding predicted keywords and

in setting, over 95% present of resume got accepted (2) most of the resumes experienced

great rank improvement after predicted keywords were applied for example over 50% of

resumes them got over 150 number rank improvement. This study shows that ranking

algorithms that use very popular embedding algorithms, such as TF-IDF, and USE are

vulnerable to adversarial examples.

v

Acknowledgements

I would like to express my sincere gratitude to my dear supervisor, Dr. Shirin

Nilizadeh, whose insight, and knowledge steered me through mater’s journey and made

this success possible with her persistent support and guidance and provision. I would like

to extend my gratitude toward my committee members, Dr. Dajiang Zhu and Dr. Jiang

Ming, for their time and constructive feedback. In addition, a thank to Ms. Peace Ossom

Williamson, my supervisor in RDS team. She was truly a friend throughout this path and

always encouraged me and supported me to overcome all the hardships.

I would like to thank my parents, Roshanak Talebian and Morteza Samadi and my

sister, Katayoun Samadi who were always there for me and have been my best friends.

They always reminded me of my strengths, goals, and the bright future I am building with

my hard work.

I would like to thank my dear husband Mohammadvaghef Ghazvinian for his

support and patience. Finally, my deepest gratitude goes to my little darling daughter,

Hannah, for bringing warmth and hope to our life and soon became the most important

reason for working hard for a better future.

vi

Table of Contents

Abstract ... iii

Acknowledgements .. v

Table of Contents ... vi

List of Figures ... vii

List of Acronyms ... viii

Chapter 1. Introduction ... 1

Chapter 2. Background and Related work .. 5

2.1. Machine learning based text classification algorithms ... 8

2.1.1. Word Embedding ... 8

2.1.2. Document Embedding ... 10

Chapter 3. Data Collection ... 11

3.1. Data bases ... 11

3.2. Text tuning .. 12

Chapter 4. White-Box approach ... 13

4.1. Simple resume ranking algorithms ... 14

4.1.1. generating adversarial resumes ... 16

4.2. Universal Sentence Encoder .. 20

4.2.1. Phase one: New approach for keyword extraction ... 21

4.2.2. Why Phase two is required ... 24

4.2.3. Results .. 28

4.3. TFIDF .. 32

4.3.1. Adversarial example against TFIDF based recruitment process 33

4.3.2. Results .. 34

Chapter 5. Black-Box approach .. 38

5.1. Neural network .. 38

5.1.1. Examining a simple setting .. 41

5.1.2. Examining a more complex setting ... 45

Chapter 6. Conclusion and Future works .. 49

vii

List of Figures

Figure 1-1 Recruitment algorithm ... 2

Figure 4-1 White-Box approach block diagram ... 14

Figure 4-2 Simple recruitment algorithm ... 15

Figure 4-3 Min_Count recruitment algorithm... 15

Figure 4-4 Simple_Weighted recruitment algorithm .. 16

Figure 4-5 Count recruitment algorithm .. 16

Figure 4-6 Count_Weighted recruitment algorithm .. 16

Figure 4-7 Simple algorithm rank improvement result .. 18

Figure 4-8 Simple_Weighted algorithm rank improvement result .. 18

Figure 4-9 Count algorithm rank improvement result .. 19

Figure 4-10 Count_Weighted algorithm rank improvement result ... 19

Figure 4-11 Min_Count algorithm rank improvement result ... 20

Figure 4-12 Universal Sentence Encoder sample ... 21

Figure 4-13 keyword extraction phase one pseudo code .. 24

Figure 4-14 keyword extraction phase two pseudo code ... 27

Figure 4-15 rank improvement for three random job .. 30

Figure 4-16 Average rank improvement for all resumes ... 31

Figure 4-17 average rank improvement for all possible combinations 32

Figure 4-18 average rank improvement for ngrams ... 32

Figure 4-19 rank improvement for three random job ... 35

Figure 4-20 Average rank improvement for all resumes ... 36

Figure 4-21 average rank improvement for all possible combinations 37

Figure 4-22 average rank improvement for Unigram,Bigram,Trigram 37

Figure 5-1 one-hot example ... 39

Figure 5-2 Neural Network architecture .. 40

Figure 5-3 input and label setting of neural network .. 42

Figure 5-4 NN layers configuration in simple setting ... 43

Figure 5-5 NN simple setting model performance ... 44

Figure 5-6 simple setting recruitment result .. 45

Figure 5-7 NN layers configuration in complex setting ... 47

Figure 5-8 NN complex setting model performance .. 47

Figure 5-9 complex setting recruitment result ... 48

viii

List of Acronyms

NLP Natural Language Processing

ML Machine Learning

USE Universal Sentence Encoder

1

Chapter 1.

Introduction

Recruitment procedure is highly important in areas including job applications. Companies

seek to recruit candidates that fit better in the position, and job seekers try to be recognized

among the large number of applicants. According to (https://code.org), there were over

500,000 open computing positions in the US in 2017 and it is expected that in 2020, the

available seats will exceed by millions of job opportunities. Recruitment process is very

competitive and stressful for both applicants and recruiters.

Over the last few years Natural Language Processing (NLP) methods has been widely used

in different tasks of human being daily life. Since machine leaning approaches has been

successful in many fields of study, NLP method has utilized ML to automize its related

tasks. Despite Machine learning model’s success, they are vulnerable against adversarial

attacks [45]. One application of using machine learning methods in NLP in recent years is

in recruitment process for identifying the best candidates for specific job descriptions.

Companies use from simple algorithms to complicate ML based models to identify qualified

candidates to save time and money. In Figure 1-1 shows how recruitment process works.

Recruitment process mostly works based on two approaches, the first is keyword matching,

which analyses the resume and focuses to find relevant information to job description by

using NLP techniques. The second applies machine learning techniques to match the resume

and job description.

2

In this work, we are creating adversarial examples against recruitment applications that are

based on Machine Learning approach and non-Machine Learning approaches.

Figure 1-1 Recruitment algorithm

We pursue our study in two categories: white-box and black-box.

White-box approach: We assume that the adversary has little information on how

recruitment process works, and his/her aim is to improve its resume’s ranking for a specific

job position automatically. After analyzing applicant’s resume by employing NLP methods,

we demonstrate that for a job description by adding a few keywords to resume, its rank can

be improved significantly among other applicants. We proposed and applied a new approach

to find best keywords that improve the ranking of applicant’s resume. In particular, in this

work and for the white-box approach we use:

1- job description keyword extraction: since recruiters declare their requirements based on

their job description. We assumed we could have better rank for reach resume if we had

3

job description keywords in target resume. To this end, we applied new approach for

identifying best keywords based on Universal Sentence Encoder.

First, we vectorized job description by using Universal Sentence Encoder method then we

tokenized job description and step by step removed keywords, each time we calculated

cosine similarity between resulted job description with main job description to calculate

word importance. For the next step, we fitted the keywords from phase one in the resume

and we sorted keywords by their cosine similarity increasing rate. Experiments were

repeated for bigram and three-gram keywords and for adding different number of keywords

combination, we also tried many job descriptions and many resumes to have accurate

deduction.

2- We inserted keywords that we extracted in step one to target resume. To rank resumes

we assumed that recruiter was using Universal Sentence encoder as document

embedding algorithm and applied cosine similarity to calculate semantic similarity

among resume and job description.

3- To assure that our method in step one works great in other recruitment algorithms, we

applied another approach for recruitment algorithm. We used TF-IDF to vectorize

resumes and job description then cosine similarity to calculate semantic similarity

among them.

Black-box approach: in this phase, we assume that we have no information about the

recruitment process. To find the best keywords we designed multilabel Neural Network

architecture. To have proper input for our network, we coded resumes as one-hot method,

and designed the output to be keywords that lead to rank improvement for targeted resumes.

4

Output vector was one-hot the same as input vector. We developed black-box approach for

two different settings based on recruitment algorithms:

1- simple setting (binary classifier): in this setting, recruitment algorithm used some

rules to accept or reject applicants, the aim of our proposed neural network was to

find the keywords that satisfied that hidden rules and made the target resume be

accepted. We lowered the input dimension vector to simplify the problem.

2- complex setting (recruitment algorithm is a ranking algorithm): we considered

Universal Sentence Encoder as recruiter approach. Since we applied broad number

of words in this model, input vector of neural network is high in dimension, and

recruiter output was rank of resume. We aimed the neural network could find best

keywords that if they were added to resume, resume’s rank would improve in this

recruitment process.

Results: in this work we had several experiments for white-box and Black-box settings. In

both settings, we had generated successful adversarial attack to fool recruitment process. In

this regard, we proposed new approach for keyword extraction for White-box. By adding

the extracted keywords to target resume, the resume rank improved among different

recruitment algorithms. For Black-box, keywords that are generated in proposed neural

network, performed a great impact on resume rank improvement.

5

Chapter 2.

Background and Related work

Employment procedure plays an important role for both companies and job seekers.

Companies seek to recruit candidates that fit better in the position, and job seekers seek to

be recognized and obtain the job among the large pool of applicants. Recruitment Industry

is big, according to (www.Code.org), there were over 500,000 open computing positions in

the US in 2017 [1]. It is expected that in 2020, the available seats will exceed by millions

of job opportunity. Recruitment process is very competitive and stressful for both applicants

and recruiters. Based on Glassdoor statistics, the average job opening attracts 250 resumes

[2]. A recent survey by the Society of Human Resource Management (SHRM) found that

the average cost per hire is just over $4,000 [3]. Companies use simple to very complicated

algorithms to rank resumes based on their requirements [4]. Zaman et al. [5] used big data

analysis techniques which is branch of data mining field of study to choose resumes, where

they created a platform to evaluate an applicant by the information they provided in social

media, like Linked In and checked if it satisfied job criteria. They assigned score for each

feature in job and then classified the resumes by using decision tree. Word Embedding is

the neural network-based approach where words and phrases are mapped to vectors [6].

Fernández-Reyes et al. [7] applied information retrieval models to retrieve relevant resume

to the requested job. They represented each resume and job description by using hybrid

word embedding, then they built corpora with Word2Vec model for fast training then and

reduced the dimension of resulted vector was reduced. To retrieve best resume they used

cosine similarity as their ranking function. In Keenan et al. [8] users’ resumes were kept in

6

online dataset with predefined features, so the employers were able to choose among them

by considering their multi-criteria in resumes. In Faliagka et al. [9] for recruitment process

applicant was chosen by filling out online forms. Some machine learning methods, such as

linear regression, and support vector regression were proposed. First applicant score was

calculated based on the features that were mentioned in the resume, then by using mentioned

machine learning algorithms best resumes were chosen. In Apatean et al. [10] classifiers,

such as LDA, KNN, NB and tree, were applied to classify and choose among resumes. To

create the dataset, the authors gathered all information from employees that already fitted

in specific position and used that as training set. Test set included applicants who filled out

the online application. The score of each resume was calculated based on the features that

individuals entered in predetermined fields. Koh et al. [11] focused more on ontology

concepts. First, they looked for specific information in resumes, which requested in job

vacancies. Since there were too many data to match against, they created some criteria to

capture some necessary information in resume and job vacancies then assigned weight for

resumes, this weight showed relevancy between job and resume. Furthermore, they created

a mechanism to autofill information that are missed unintentionally in the resumes; this

helped candidates to have more chance to get the appropriate job. Khairina et al. [12]

categorized recruitment as Fuzzy Multiple Attribute Decision Making (FMADM) then

applied Weighted Product Methods and allocated weights for each key attribute in job

position then checked them among applicants and then chose those applicants with a better

rank. Sarda et al. [13] applied two-way relevancy ranking for every candidate after finding

important attributes in job requirement. In order to find attributes, they used data mining

methods. To match applicants for a job, they used Gradient Boost Decision Trees, and took

7

advantage of online websites like LinkedIn to find better understanding of candidate

qualifications.

In the following we will review important concepts of natural language processing and

security concerns about that.

With board application of machine learning techniques, it is very important to ensure

security of the related algorithms [14]. To understand vulnerability of machine leaning

algorithms adversarial examples are proposed. Adversarial examples are served as input of

machine leaning models to deliberately cause them make mistake and fool machine learning

models [15]. Successful attacks illustrate bugs of machine learning models and based on

that, proposing defense against such attacks helps machine leaning be more reliable. Hence,

implementation of adversarial examples and defense techniques ae popular and hot topics

in machine leaning and security field of study [14].

Since it is hard to distinguish between two text formats, type of possible adversarial example

for NLP differs from other types of adversarial attacks for machine learning tasks [16].

Adversarial examples in natural language processing includes many different categories

from character level to sentence and document level. Some of the categories are mentioned

as below: Character level, which attacker, insert, or delete a specific character in the token

of text. Token level, which specific token is deleted, inserted, or replaced by another token.

Sentence level, which attacker changes the whole sentence.

Based on the problem, description of adversarial example can be proposed in two different

settings: White-box and Black-box. In the white-box setting attacker access to the target

model architecture, target parameters and input features. In the back-box setting attacker

8

does not have access to the model specification, but it can send input to the model and

receive output of the model as response [17].

2.1. Machine learning based text classification algorithms

Most of the classifiers works on analysis text in different levels of text, some of them are

mentioned below:

• Document level: classifier considers the whole text document and categorizes it

base on all sentences included in the document.

• word level: classifier breaks documents into word element of each document and

categorizes based on words [18].

 We mention some popular text classifications hereunder.

2.1.1. Word Embedding

Considering semantic meaning of the words has a great effect to better analysing the text.

Since bag-of-word models do not include semantic information of the context and do not

respect the order of the words, they have serious difficulty to understand the sentences. In

this regard, Skip-gram and continuous bag-of-words (CBOW) models are proposed to

overcome the problems of bag of word model [20]. Word embeddings are one of the few

successful applications of unsupervised learning. Word embedding is a method that maps

each word in a context to N-dimensional vector. This method can be categorized as feature

learning, which learns to represent words with similar meaning with similar vectors [23]

Some of the most popular word embedding are mentioned in below.

9

Word2Vec

The Word2vec [20] is using word embedding concept to represent each word with a vector.

Its’ architecture is a neural network with two hidden layers, continuous bag-of-words

(CBOW), and the Skip-gram model that enables Word2vec to present high dimension vector

for each word. There are some pre-trained vectors for Word2Vec format, one of the most

important ones is Google News dataset (about 100 billion words). The model contains 300-

dimensional vectors for 3 million words and phrases.

Global Vectors for Word Representation (GloVe)

Glove concept is similar to Word2Vec. They both present a word in high dimensional vector

[21]. GloVe captures both global statistics and local statistics of a corpus, in order to come

up with word vectors [22]. GloVe is based on matrix factorization techniques on the word-

context matrix. A large matrix that includes text information is constructed and then count

each “word”, and the column is how frequently we see this word in the text. Some well-

known pretrained GloVe word vectorization datasets are Wikipedia 2014 + Gigaword 5 (6B

tokens, 400K vocab, uncased, 50d, 100d, 200d, & 300d vectors, 822 MB download) and

Twitter (2B tweets, 27B tokens, 1.2M vocab, uncased, 25d, 50d, 100d, & 200d vectors, 1.42

GB download).

FastText

Facebook introduced FastText for embedding words [24]. In the FastText, words are divided

into bag of n-gram character. By using FastText one can train supervised and unsupervised

representations of words and sentences. These embeddings can be used for various

10

applications including, data compression, candidate selection, or as initializers for transfer

learning [25].

BERT

BERT is another approach that applies bidirectional training to model the text. This means

that BERT learns from both the left and the right side of a context during the training. This

helps better understanding of the text [26]. BERT was pretrained on Wikipedia that includes

over 2,500 million words. There are two BERT variants available:

• BERT Base: 12 layers, 12 attention heads, and 110 million parameters

• BERT Large: 24 layers, 16 attention heads and, 340 million parameters [27]

2.1.2. Document Embedding

There is many real-world applications that need to understand text as a whole and not only

consider single words. Document embedding is an approach to create a relevant vector of a

context, this will give an approximation of that document’s content, and in this way, one

can compare and classify two text. There are many different ways to find a vector

representation of a document. In this study we applied tf-idf weighting and Universal

Sentence Encoder, we elaborated them in sections 4.2 and 4.3.

11

Chapter 3.

Data Collection

3.1. Data bases

We needed resumes and job descriptions for our experiments. To have more accurate results,

we collected 100 real applicant resumes. These resumes are public resumes and we collected

them among LinkedIn public job seeker resumes, GitHub, and personal websites. To have

equal chance for applicants and make our experiences closer to real world recruitment

procedures, we only considered resumes related to computer science. Resumes are chosen

to be in different levels of education, skills, experiments, gender, etc. We stored these

resumes in text format files.

For job descriptions, we developed a web scraper in python to extract data science jobs from

indeed website (https://www.indeed.com/). Our dataset includes over ten thousand records,

which are extracted from different areas of united states.

For black-box settings, our neural network architecture needs a huge amount of data to be

trained well. To have enough training set we augmented our data for our models. For simple

setting model, we created five thousand records by concatenated one hundred resumes to

fifty selected job description. For more complex setting, we split resumes into half, then

joined upper part of each resume to others resumes lowers part. With this approach, we

could maintain the structure of each resume and each resume could have common resumes

information, such as skills, education, work experiment, etc. We did this procedure for all

possible combinations and created a database with ten thousand resumes.

12

3.2. Text tuning

To have successful text analysis, it was crucial to clear out text from noise and

unnecessary words. These unwanted words had adverse effect on system performance. In

this section we mentioned some techniques that were applied for text preprocessing:

Tokenization: in tokenization phrase or sentence broken into meaningful part of sentence

called tokens. In this study, we focused on bag of word format, so we aimed to investigate

the place of each word (token) into document [18].

Stop Words: there are some words that are repeated many times in the text but they did

not carry out specific meaning for document analysing, e.g., “a”, “about”, “above”,

“across”, “after”, “afterwards”, “again”, etc. We chose to remove stop words form our

texts [18].

Noise Removal: presence of some characters, such as punctuations did not have any

positive effect for our text analysing algorithm. In this study we removed unnecessary

characters [18].

13

Chapter 4.

White-Box approach

In the white-box setting, we assume that the adversary, who is a job seeker, has knowledge

about the ranking algorithm, and tries to improve his/ her rank among all applicants by

modifying his/ her resume. Adversary also needs to have knowledge about the resumes of

the other applicants to better evaluate its own resume. This analysis also helps with

understanding in the worst-case scenario how much the adversary can improve their

ranking, and later we study black-box settings when the adversary has no knowledge about

the algorithm and other applicants' resumes. In the Figure 4-1, we demonstrated our

approach for adversarial attack in white box. First recruitment process receive resume and

job description and rank the resume based on its ranking algorithm, in the next step

adversary manipulate the resume based on the method that we proposed in sections 4.2.1.

and 4.2.1., finally improved resume considered as an input of recruitment process and new

resume rank calculated.

14

Figure 4-1 White-Box approach block diagram

4.1. Simple resume ranking algorithms

Resume Ranking Algorithms: We first examine the possibility of generating adversarial

examples for non-deep learning-based ranking algorithms. We designed five resume

ranking algorithms, which rank the resumes based on a list of keywords that are selected by

the employer, although these could also be a result of a separate job description parser.

These algorithms assign a score to each resume and then rank all the resumes based on their

scores, where higher score shows a better fit to the job.

• Algorithm 1: The score is computed as the percentage of keywords in the list

that are present in the resume. For example, if employers list of keywords

includes {python, software development, and computer science} and a resume

include only computer science, then the score for this resume would be 0.33.

• Algorithm 2: The score is computed as the percentage of keywords in the list

that are present in the resume at least a specified minimum number of times. For

example, if employers list of keywords includes {python, software development,

and computer science}, applicant with higher count number of appearances of

15

these keywords in their resume had the better rank. in the other words, we for

each appearance of each keywords we added one to applicant score.

• Algorithm 3: The score is computed as the number of occurrences of each

keyword in the resume.

Algorithm 4 and Algorithm 5: are variations of Algorithm 1 and 4 that assign weights to

keywords, when some keywords have higher weight than others.

Figure 4-2 Simple recruitment algorithm

Figure 4-3 Min_Count recruitment algorithm

16

Figure 4-4 Simple_Weighted recruitment algorithm

Figure 4-5 Count recruitment algorithm

Figure 4-6 Count_Weighted recruitment algorithm

4.1.1. generating adversarial resumes

We added five random keywords (work attributes) to one resume and did not modify the

other resumes. Then found the rank improvement due to these additions. We repeated this

procedure for all resumes for all algorithms.

17

Here are the keywords that are dedicated for each algorithm:

For Simple algorithm and Count algorithm: {Python, AngularJS, Spark, Java, C#, PHP,

CSS, html5, AI, Linux, Machine, bachelor, master, statistic, PhD, Publications, amazon,

Algorithm, Microsoft, Awarded, research, scholarship, Stanford, Harvard, TensorFlow,

Robotics, Reinforcement, git, thesis, OpenCV}

For Min_Count algorithm. in this set, corresponding number to each word indicated the

minimum required time for each keyword to be present in each resume to be accepted:

{Python, 2, AngularJS, 1, Spark, 1, Java, 1, PHP, 1, CSS, 1, AI, 1, Linux, 2, Machine, 3,

bachelor, 1, master, 1, Algorithm, 1, Awarded, 1, research, 1, scholarship, 1, TensorFlow,

1, git, 1, thesis, 1}

For Simple_Weighted and Count_Weighted algorithms. in this set, corresponding number

to each word indicated the weight of the word: {Python, 30, AngularJS, 10, Spark, 5, Java,

10, C#, 10, PHP, 5, CSS, 5, html5, 5, AI, 15, Linux, 15, Machine, 20, bachelor, 10, master,

15, statistic, 5, PhD, 20, Publications, 10, amazon, 5, Algorithm, 5, Microsoft, 5, Awarded,

5, research, 5, scholarship, 5, Stanford, 30, Harvard, 30, TensorFlow, 5, Robotics, 5,

Reinforcement, 5, git, 5, thesis, 5, OpenCV, 5}

The random keywords that we added to the target resume: {AngularJS, Python, Java,

Harvard, Machine}

The following plots show the rank improvement in X axis when adding the “random”

keywords to an adversarial resume.

Following plots demonstrate the number of resumes that had rank improvement by adding

5 random keyworks. For example, in simple algorithm plot above twenty resumes had three

18

rank improvement and for count_weighted algorithm five resumes had 32 rank

improvement that is significant result.

Figure 4-7 Simple algorithm rank improvement result

Figure 4-8 Simple_Weighted algorithm rank improvement result

19

Figure 4-9 Count algorithm rank improvement result

Figure 4-10 Count_Weighted algorithm rank improvement result

20

Figure 4-11 Min_Count algorithm rank improvement result

4.2. Universal Sentence Encoder

Universal sentence encoder is a well-known method that uses an encoder to convert given

text to a fixed-length 512-dimensional vector. This embedding has been used to solve

multiple tasks, such as semantic search [43], text classification [44], and many other NLP

tasks. it will return only the most informative features and will not consider noises [29].

Figure 4-12 shows how universal sentence encoder used for Semantic similarity among

sentences. Semantic similarity is a measure of the degree to which two pieces of text carry

the same meaning. The metric for calculating Semantic similarity is cosine similarity. It has

been shown that after embedding sentences, sentences that have closes meaning carry out

higher cosine similarity, it is because they have more resampling vectors. [29][44]

We used USE pretrained model, which applies STS benchmark. STS Benchmark is a

selection of the English datasets used in the STS tasks organized in the context of SemEval

21

between 2012 and 2017. The datasets, that are used in STS, are from different types,

including image captions, news headlines and user forums [29][30].

Figure 4-12 Universal Sentence Encoder sample

4.2.1. Phase one: New approach for keyword extraction

In this study we propose a new approach for keyword extraction enjoying Universal

Sentence Encoder algorithm. To have successful adversarial attack for recruitment process,

first we need to analyse job description as the only source from recruiter. Based on the job

description’s most relevant keywords and skills, the adversaries can change their resume to

better match the job description. Their objection is to add best keywords into the resume

and increase the resume's chance of getting through to the next round of recruitment.

In this project to evaluate similarity between resume and job description we embedded both

texts. The adversary manipulated the resume and then submitted it to recruitment process.

Recruitment algorithm in our project was based on universal Sentence encoder, it

considered document as a whole and despite of other approached like Doc2Vec that are

based on bag of words, it returned more accurate results.

22

 Regarding to the nature of the job description, we have not received decent results from

traditional keyword extraction algorithms like TF-IDF and RAKE [28], to have relevant

keywords from job description we need to consider job description document as a whole

not only choosing words with higher frequency as keyword. For this purpose, we enjoyed

Universal Sentence Encoder algorithm to embed whole job description document. We

implemented following steps regarding to extract job description keywords:

Step1: Text preprocessing: in this step we remove unnecessary symbols and words such

as stop words. In many algorithms, especially algorithms that work with statistics and

machine learning, noise and unnecessary attributes can have adverse effects on the

performance, therefore we try to minimize their effects by removing them from the

descriptions.

Step2: USE embedding: we embed the whole original job description into a vector using

Universal sentence encoder. We applied one of the universal family models family

pretrained model [29] The input of this model is English text and the output is a 512-

dimensional vector. The model is applied to the STS benchmark [30] for semantic similarity,

the universal sentence encoder model is trained with a deep averaging network (DAN)

encoder.in this version default inference function now returns the Tensor instead of a

dictionary. [29] we store this vector into a variable 𝑈𝑆𝐸𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝐽𝑜𝑏.

Step3: Tokenizing and deleting tokens: in this step we break the original job description

documents into tokens which are meaningful part of the sentence. We want to investigate

the importance level of each word in the job description. We delete single token 𝑇𝑜𝑘𝑒𝑛𝑖

from job description and save new job description that is excluded from 𝑇𝑜𝑘𝑒𝑛𝑖 as

𝐽𝑜𝑏𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛𝑛𝑒𝑤. Next, we need to embed 𝐽𝑜𝑏𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛𝑛𝑒𝑤base of Universal

23

Sentence Encoder formant that mentioned in step2. We store this vector in variable

𝑈𝑆𝐸𝑁𝑒𝑤𝑗𝑜𝑏.

Step4: Scoring keywords: until now, we have 𝑇𝑜𝑘𝑒𝑛𝑖 as a keyword that we want to know

its place among all other tokens of job description. We need a metric to measure the

similarity between two vectors 𝑈𝑆𝐸𝑁𝑒𝑤𝑗𝑜𝑏 and 𝑈𝑆𝐸𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝐽𝑜𝑏. For this purpose, we applied

Cosine Similarity. This metric measures the cosine of the angle between two vectors which

are multi-dimensional. Mathematical formula of Cosine Similarity is hereunder:

The result of cosine similarity among 𝑈𝑆𝐸𝑁𝑒𝑤𝑗𝑜𝑏 and 𝑈𝑆𝐸𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝐽𝑜𝑏 illustrate the

importance of deleted word 𝑇𝑜𝑘𝑒𝑛𝑖. In this regard, lower cosine similarity expressed

the fact that deleted token, caused impressive change in the job description contents

therefore it might be an important keyword.

Step5: repeating all the procedure: we need to repeat step 3 and step 4 for all tokens in

the job description. This procedure gives us dictionary data structure which the keys are

tokens, and the values are related cosine similarities. To obtain best keywords, we sorted

them in ascending order and selected the 50 best keywords among all words of job

description.

Step 6: N-gram phrases: by pursuing step1 to step 5 we will obtain 1-gram bag of words.

We run the experiment to have best keywords for 2-grams and 3-grams as well. For 2-grams

we deleted two consequence tokens and for 3-grams we deleted three consequence tokens

24

in step3. The rest of procedure is the same and will have dictionary of 2-grams and 3-grams

in step5 that we choose 50 best keywords among them.

4.2.2. Why Phase two is required

The adversary’s objective is to improve his/her resume to fool recruitment process.

We aim to show that without manipulating resume structure we can have impressive ranking

improvement among other resumes just by adding some important keywords from job

Figure 4-13 keyword extraction phase one pseudo code

25

description. We noticed by adding best keywords of job description to resume best results

would not be achieved, therefore we performed the following experiments:

• we added an irrelevant sentence to each pair of resume and job description: We

found that the similarities between a pair of resume and job description did not

change significantly.

• we added test sentence (“today is rainy day”) of job description for five times to

resumes: We found that similarity between the resume and job description got

decreased.

• we made a fake sentence with the best job description keyword (just one word): We

found that the similarities increased only for some while for the others it decreased.

We added this sentence five times: we found that the similarity increased for some

and decreases for some others. We added the best keyword five times instead of a

sentence with the keywords to examine the importance of a sentence: We found that

the similarity results did not change significantly from test4.

• we added the whole job description to the resumes: We found that similarity of some

resumes increased while others decreased.

Following conclusions have be achieved based on the mentioned experiments:

• Adding a keyword have different effects among different resumes

• Adding a lot of keywords is useless and keywords needs to be relevant to resume

structure, since, we added whole job description to the end of resumes and some

resumes even got worse similarity to job description.

26

Based on the following results we developed phase two that Resort the best keywords in

phase two for each resume to finds best keywords that fits in the specific resume.

Phase 2: New approach for keyword extraction We noticed just by adding best keywords

of job description to resumes, best results would not be achieved, and each resume based on

its previous information and structure needs specific keywords. In this regard, we developed

phase two that resorts the best keywords of phase one for each resume, our objective is to

find best keywords that fits in a specific resume. We performed phase two for each resume

and job description by following steps:

Step1: we added best fifty keywords of phase one, one by one to the resume.

Step2: we embedded the resume by Universal Sentence Encoder after adding each keyword

and we calculated cosine similarity between resume after adding keyword and job

description. Then we calculated rank improvement of the resume after adding keyword.

Now we resort keywords in descending order, based on the rank improvement. At this point

we have list of sorted keywords for each resume.

Step3: In this step we added N numbers of best keywords that we achieved in step2 to

original form of resume and we store this resume in variable 𝑅𝑒𝑠𝑢𝑚𝑒𝑗𝑛𝑒𝑤. We vectorized

new resume and job description based on Universal Sentence Encoder then we calculate

cosine similarity before and after adding keywords to calculate rank improvement.

Step4: We repeated these steps for fifty job descriptions, one hundred resumes and for group

numbers of 1, 2, 5, 10, 20, 50 keywords and used unigram, bigram and trigram keywords.

27

Figure 4-14 keyword extraction phase two pseudo code

28

4.2.3. Results

In this section we applied Universal Sentence Encoder as part of matching algorithm. In this

regard, we developed various experiment in our proposed mothed. In Fig 4-14 we chose 25

random resumes and three job descriptions, and we checked rank improvement when we

added different numbers of keywords to each resume. We aimed to investigate the effect of

adding different number of keywords on rank improvement. Experiments demonstrate that

rank improved significantly by adding more keywords. For example, with adding 10

keywords for resume one, we get about 20 rank improvement, while adding 50 keywords

for same resume and jobs will have about 50 rank improvement.

 In Fig 4-15 we chose 25 random job description and calculated average rank improvement

among all resumes with different N-gram setup. In most of the job descriptions we can see

that average rank improvement increased after adding more keywords. For example, with

adding 10 keywords for job one, we get on average 25 average rank improvement, while

adding 50 keywords for same job and jobs will have 30 average rank improvement.

In Fig 4-16 our objective was to show how many resumes’ ranks improve in average of all

settings included all job description, different number of added keywords and different type

of N-grams. As a result, we can see all resumes had rank improvement and in most of them

rank improvement is significant. For example, in average of all combination, about six

resumes had twenty-six average rank improvement.

In Fig 4-17 we aimed to show that when we added keywords how uni-gram, bi-gram and

trigram bag of words effected average rank improvement. In this regard, we calculated

average rank improvement for all combinations of different job descriptions. In this plot we

29

can see that when our ranking algorithm is Universal Sentence Encoder, we will achieve

better results for tri-grams bag of words and by increasing adding the number of keywords,

rank improvement for unigram, bigram and trigram approach to each other. For example,

by adding 20 keywords to resumes, in all job description combination, we will have

17,20,34 average rank improvement for unigram, bigram and trigram consequently.

30

ra

n
k
 i

m
p
ro

v
em

en
t

 Number of keywords

Figure 4-15 rank improvement for three random job

31

A
v
er

ag
e

ra
n
k
 i

m
p
ro

v
em

en
t

 Number of keywords

Figure 4-16 Average rank improvement for all resumes

32

Figure 4-17 average rank improvement for all possible combinations

Figure 4-18 average rank improvement for ngrams

4.3. TFIDF

TF-IDF “term frequency-inverse document frequency” is a numerical statistic that is

designed to reflect how important a word is in a collection or corpus [33].

33

The goal of using TF-IDF instead of the raw frequencies of a token is to reduce the impact

of tokens that occur very frequently which make them less informative than features that

occur in a small portion of the training corpus.

TF: Term Frequency reflects how often a term occurs in a document as every document has

different length, they may occur more often in longer documents than shorter ones. Thus,

TF is:

IDF: Inverse Document Frequency measures how important a term is. In TF, all terms are

considered similarly important. therefore, we need to cut down the frequent terms while

increasing the frequency of the rare ones, by following equation:

product of two weights, the TF and the IDF weight results the TF-IDF

However, the fundamental of TF-IDF remains the same: TF-IDF results in larger numbers

for less frequent words and is high when both IDF and TF values are high.

In general, until 2015, TF-IDF was the traditional method to assigning values to words that

emphasize the relevance in documents compared to the Bag of words way that treats every

word similarly important. It is still effectively used in solving NLP problems [32].

4.3.1. Adversarial example against TFIDF based recruitment process

In this step we added keywords to resumes from our novel approach in 6.2.1, we assumed

that recruiter used TF-IDF algorithm for ranking resumes. We vectorized resumes and job

description based on TF-IDF then we calculated cosine similarity before and after adding

keywords to calculate rank improvement. Our goal is to show our new approach is reliable

34

even with deferent ranking algorithms. We repeated this step for fifty job descriptions and

for group numbers of 1,2,5,10,20,50 keywords.

4.3.2. Results

In this section we applied TF-IDF as matching algorithm. To this end, we developed various

experiments. In Fig 4-18 we chose 25 random resumes and three random job descriptions

and checked rank improvement when added different numbers of keywords to each resume.

We aimed to investigate the effect of adding different number of keywords to resume rank

improvement. Experiments demonstrated that for most resumes and job descriptions rank

improvement increased significantly by adding more keywords.

 In Fig 4-19 we chose 25 random job description and calculated average rank improvement

among all resumes with different N-gram setup. In all of the job description we can see that

average rank improvement increased after adding more keywords.

In Fig 4-20 our objective was to show how many resumes ranks improved in average of all

settings included all job description, different number of added keywords and different type

of N-grams. As a result, we can see most resumes had rank improvement and in most of

them rank improvement is significant.

In Fig 4-21 we wanted to show that when we added keywords how uni-gram, bi-gram and

trigram bag of words effected average rank improvement. In this regard, we calculated

average rank improvement for all combinations of different job descriptions. In this plot we

can see that when our ranking algorithm TF-IDF we will achieve better results for tri-grams

35

bag of words and by increasing adding the number of keywords, rank improvement for

unigram, bigram, and trigram approach to each other.

ra
n
k
 i

m
p
ro

v
em

en
t

 Number of keywords

Figure 4-19 rank improvement for three random job

36

ra

n
k
 i

m
p
ro

v
em

en
t

 Number of keywords

Figure 4-20 Average rank improvement for all resumes

37

Figure 4-21 average rank improvement for all possible combinations

Figure 4-22 average rank improvement for Unigram,Bigram,Trigram

38

Chapter 5.

Black-Box approach

In the back-box setting, attacker does not have access to the model specification, but can

send input to the model and receive output of the model as response.

5.1. Neural network

Neural networks are known to be able to approximate arbitrary nonlinear functions. Recent

advancements in neural network architectures and GPU technology have resulted in scalable

and effective algorithms leading to growing their popularity in a variety of disciplines.

Neural networks have been applied in many real-world problems including business,

education, and environmental prediction [31][39][19]. Neural network models have been

used in NLP tasks, such as text classification, natural language inference, machine

translation, and question answering [42][46][47]. In this study we applied neural network

to predict keywords that improve resumes ranking. To provide an acceptable format for

neural network input, we applied one-hot style [34]. Choosing proper domain of relevant

words plays crucial role to code resume and job description so we tokenized all job

descriptions and resumes and created dictionary of words of all resumes and job

descriptions, where key is the token and value is the frequency of the word that has been

repeated in all resumes and job description that are available. In the next step we need to

vectorize resumes, we check each dictionary word in resume. If the word exists in resume

it appends one to resume vector, else appends 0. That is how one-hot style works for our

vectorization process.

39

Figure 5-1 shows an example where ones in the vector show the presence of those words in

a sentence.

Figure 5-1 one-hot example

In this figure, dictionary size is included some words and in sample sentence. As can be

seen, values of dictionary of words that are presented in the sample sentence are set to one

and rest of dictionary words are remained zero [35].

In this study, we proposed neural network model where input vector is the resumes, and

output is a vector that demonstrate the best keywords. In the output vector, ones indicate

index of words that adding them to resume will increase the rank of resume. For recruitment

algorithms we considered two different approaches that we will elaborate in the following

sections. Figure 5-2 shows the architecture of our proposed neural network model.

40

Figure 5-2 Neural Network architecture

Our proposed neural network architecture is shallow network. It consists of input layer, two

dense layers as hidden layers and output layer representing the labels. For the first two

hidden layers we used rectified linear unit (ReLU [37]) [y = max(0, x)]as the activation

function. ReLUs are the most commonly used activation functions in neural networks

models [39]. Due to their unique formulations, ReLUs provide faster training and better

convergence relative to other activation functions [37]. For the output layer we used sigmoid

activation function to map the output to lie in the range [0,1] i.e., actual probability values

[38].

As our problem was multilabel problem we applied Binary Cross-Entropy Loss (also known

as Sigmoid Cross-Entropy) defined as, 𝐻(𝑦, 𝑝) = −∑𝑦𝑖log(𝑝𝑖)
𝑖

. Where 𝑦𝑖 refers to binary

indicator zeros which is equal to one for correct class and 0 otherwise and 𝑝𝑖 refers to

estimated probability for each class. It is used when node activations can be perceived as

representing the probability that each hypothesis might be true, i.e., when the output is in

the form of a probability distribution [39].

41

In contrast to softmax cross entropy loss, binary Cross-Entropy is independent in terms of

class, i.e., the loss measured for every class is not affected by other classes. Thus, it is useful

for multi-label classification, where a parameter belonging to a particular class should not

impact the decision for the other class [36]. We used this method to predict proper keywords

in recruitment process, by adding these keywords to resumes their rank for recruitment

would be increased. For the optimization of loss function (training the neural network), we

used stochastic gradient descent-based optimization algorithm (Adam;[40]). Adam is an

adaptive learning rate method, which computes individual learning rates for different values

and uses estimations of first and second moments of gradient to adapt the learning rate for

each weight of the neural network [40].

As the regularization technique to avoid overfitting [39][41] we tested dropout with

different rates [0 to 0.5]. In dropout at each training stage, individual nodes are either

dropped out of the net with probability 1-p or kept with probability p, so that a reduced

network is left; incoming and outgoing edges to a dropped-out node are also removed.

Dropout was applied for all hidden layers and our assessment showed that dropout rate (0.1)

yielded better results.

5.1.1. Examining a simple setting

In this model recruitment process is defined as a binary classification algorithm (hire or

not), our objection is finding simple rules in job description. We assigned following rules

as recruitment conditions.

◦ if "python" is in resume

◦ if "university" is in job description applicant should be "master “or “PhD”

42

The Neural network input: in this model our objective was testing our model on a low

dimension and basic vector to generalize it to a more complicated model in the next section.

We chose 20 random words among most frequent words of all resumes and job descriptions

we already extracted. We coded the resumes and job descriptions as one-hot, then

concatenated resume and job descriptions together.

The Neural network labels: the value of word index is set to 1 if adding this word to

resume makes resume to be accepted. For example, if resume does not have word “masters”

in it and the recruitment algorithm looks for word “masters,” then the value for “masters”

index in y-train would be 1.

Figure 5-3 illustrates input and label setting of our neural network.

Figure 5-3 input and label setting of neural network

We designed this experiment as following:

• Ranking algorithm: simple rule detection

• Creating the ground truth: we added random words from our dictionary domain (20

words) to resumes and received the response from recruitment algorithm

• Xtrain: 5000 records of 40-dimension vectors, each vector is a resume that is

concatenated to job description and is coded by one-hot format.

43

• Ytrain: 5000 records of 20-dimension vector

• Goal: finding the best 20 keywords that improve the rank of each resume.

To train our neural network model, we split our data into train and test (70% train set, 30%

test set), to evaluate our training results, we used validation set approach (we allocated 30%

of training set for validation) and trained on 2,450 samples, validate on 1,050 samples. We

also set batch size equal to 50 and number of epochs equal to100. Figure 5-4 shows our

model architecture that demonstrate each layer input numbers, output numbers and

parameters.

Figure 5-4 NN layers configuration in simple setting

To check the performance of our model settings we used recall, precision and F1 over

validation set. Our results showed that the model is trained well through epochs (see, Figure

5-5).

44

Figure 5-5 NN simple setting model performance

 Finally, we need to check how the trained neural network model works for out of sample

data (test data). To test the performance of our trained neural network model, we added

predicted words in neural network to each related resume and submitted each resume to

recruitment algorithm. In the Figure 5-6, it is shown that the success rate of getting hired

increases by using suggested NN keywords.

45

Figure 5-6 simple setting recruitment result

5.1.2. Examining a more complex setting

This model is more complicated and used about 10000 words to model the input resumes

vector to have more accurate results.

Recruitment: is based on universal sentence encoder algorithm that we have in white-box.

It is for one random job description. And our focus is finding 20 unigram keywords.

Objective: we expect NN determines keywords that improve resumes in recruitment

process.

Input: one-hoted 10,000 resumes.

TrainY: one-hoted keywords that improves resume.

• We designed this experiment as following: Ranking algorithm is set to USE.

46

• Creating the ground-truth: we added random words to resumes and received the

response from the black box matching algorithm.

• Xtrain: 10000 records of 9054-dimension vectors, each vector is a resume that is

coded by one-hot format.

• Ytrain: 10000 records of 51-dimension vector

• Goal: finding the best 20 keywords that improves the rank of each resumes

To train our neural network model we split our data into train and test (70% train set, 30%

test set). To evaluate our training results, we used we allocated 30% of training set for

validation and trained on 4,900 samples, validate on 2,100 samples. We also set batch size

equal to 50 and number of epochs equal to 100.

Figure 5-7 shows our model architecture that demonstrates each layer input shapes, output

shapes and parameters.

47

Figure 5-7 NN layers configuration in complex setting

To check the performance of our model settings we used recall, precision and F1 over

validation set. Fig. 5-8 shows that this Model is trained well through epochs.

Figure 5-8 NN complex setting model performance

48

Finally, we set to check how the trained neural network model works with the test set. To

test the performance of our trained neural network model, we added predicted words in

neural network to each related resume and submitted each resume to recruitment algorithm.

In the Figure 5-9 we added predicted words to each resume, we can see that number of

getting hired increases significantly by using suggested NN keywords. For example, above

200 resumes rank increased by more than 400 after adding keywords while over 400

resumes rank increased by between 150 and 200 after adding keywords.

Figure 5-9 complex setting recruitment result

49

Chapter 6.

Conclusion and Future works

In this project we found that automatic recruitment process, machine learning based, and

non-machine learning based, are vulnerable against adversarial examples. We proposed

successful adversarial attack in two settings: white-box and black-box. We analysed one

hundred real applicant resumes and then thousand job descriptions based on NLP

techniques. In this study, we proposed a new approach for keyword extraction based on

Universal Sentence Encoder. We extracted meaningful and relevant bag of words keywords

of job description in unigram, bigram, and trigram. We ran different experiments for white-

box, then we repeated our experiments for two different recruitment approaches. We noticed

majority of resumes have significant rank improvements by adding more relevant keywords.

Finally, in black box setting, we proposed multilabel neural network architecture to predict

proper keyword for each resume and job description. We applied our model into augmented

datasets with five thousand and ten thousand records of resumes consequently for two

different settings. After testing our neural network model and predicting the proper

keyworks, we added keywords to related resumes and we found over 95% of resumes

getting accepted in first setting. For the second setting we examined three thousand resumes

as test set. The findings showed that over 85% of those resumes experienced rank

improvements above 5 and over 50% of the resumes experienced rank improvements

above150 .

50

Future Work

In this study we focused on basic recruitment algorithms. However, in well-known

companies, typically more constrains exist and complicated approaches might be used. In

our future works we will ask for companies for the approaches they are using for recruitment

and compare those approaches efficiencies with proposed schemes. In addition, we will ask

for real data and resumes and expand our project to use large scale data. In this regard, we

can offer defend solutions alongside analyzing their recruitment algorithm and creating

adversarial attack.

In the black-box section, we will optimize our neural network to have better performances.

Extensive grid search is one of the works can be performed to set the neural network

hyperparameters.

In this study, we considered access to other resumes data set to evaluate adversarial attack

in the white box setting. For our future work, we will explore an adversary who has access

to the model, but we will limit their access to the resume database.

51

Bibliography

[1] (Jan 2019). Talent Shortage of Software Developers. https://fullscale.io/talent-

shortage-software-developers/

[2] Glassdoor Team . (January 20, 2015). 50 HR & Recruiting Stats That Make You Think.

https://www.glassdoor.com/employers/blog/50-hr-recruiting-stats-make-think/

[3] Bika, N. Recruiting costs FAQ: Budget and cost per hire.

https://resources.workable.com/tutorial/faq-recruitment-budget-metrics

[4] Shehu, M. A., & Saeed, F. (2016). An adaptive personnel selection model for

recruitment using domain-driven data mining. Journal of Theoretical and Applied

Information Technology, 91(1), 117. ISSN 1992-8645

[5] Zaman, E. A. K., Kamal, A. F. A., Mohamed, A., Ahmad, A., & Zamri, R. A. Z. R. M.

(2018, August). Staff Employment Platform (StEP) Using Job Profiling Analytics. In

International Conference on Soft Computing in Data Science (pp. 387-401). Springer,

Singapore. http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/978-981-13-3441-2_30

[6] Bengio, Y., Ducharme, R., Vincent, P., & Jauvin, C. (2003). A neural probabilistic

language model. Journal of machine learning research, 3(Feb), 1137-1155.

[7] Fernández-Reyes, F. C., & Shinde, S. (2019). CV Retrieval System based on job

description matching using hybrid word embeddings. Computer Speech & Language,

56, 73-79. https://doi.org/10.1016/j.csl.2019.01.003

[8] Keenan, P., McGarraghy, S., McNamara, C., Phelan, M., & Schools, U. B. (2004).

Human resource management DSS. In International Conference DSS2004 (pp. 525-

534). Corpus ID: 1638639

[9] Faliagka, E., Ramantas, K., Tsakalidis, A., & Tzimas, G. (2012, May). Application of

machine learning algorithms to an online recruitment system. In Proc. International

Conference on Internet and Web Applications and Services. ISBN: 978-1-61208-200-4

[10] Apatean, A., Szakacs, E., & Tilca, M. (2017). MACHINE-LEARNING BASED

APPLICATION FOR STAFF RECRUITING. Acta Technica Napocensis, 58(4), 16-21.

https://fullscale.io/talent-shortage-software-developers/
https://fullscale.io/talent-shortage-software-developers/
https://www.glassdoor.com/employers/blog/50-hr-recruiting-stats-make-think/
https://resources.workable.com/tutorial/faq-recruitment-budget-metrics
http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/978-981-13-3441-2_30
https://doi.org/10.1016/j.csl.2019.01.003

52

[11] Koh, M. F., & Chew, Y. C. (2015). Intelligent job matching with self-learning

recommendation engine. Procedia Manufacturing, 3, 1959-1965.

https://doi.org/10.1016/j.promfg.2015.07.241

[12] Khairina, D. M., Asrian, M. R., & Hatta, H. R. (2016, October). Decision support

system for new employee recruitment using weighted product method. In 2016 3rd

International Conference on Information Technology, Computer, and Electrical

Engineering (ICITACEE) (pp. 297-301). IEEE. DOI:

10.1109/ICITACEE.2016.7892459

[13] Sarda, V., Sakaria, P., & Nair, S. (2014). Relevance ranking algorithm for job portals.

International Journal of Current Engineering and Technology, 4(5), 3157-3160.

[14] Ren, K., Zheng, T., Qin, Z., & Liu, X. (2020). Adversarial attacks and defenses in deep

learning. Engineering. https://doi.org/10.1016/j.eng.2019.12.012

[15] Goodfellow, I, Papernot, N, Huang, S, Duan, R, Abbeel P, Clark ,A. (February 24,

2017). Attacking Machine Learning with Adversarial Examples. Goodfellow, 2013.

https://openai.com/blog/adversarial-example-research/

[16] Morris, J, (Aug 28 2020). What are adversarial examples in NLP?.

https://towardsdatascience.com/what-are-adversarial-examples-in-nlp-f928c574478e

[17] Alshemali, B., & Kalita, J. (2020). Improving the reliability of deep neural networks in

NLP: A review. Knowledge-Based Systems, 191, 105210.

https://doi.org/10.1016/j.knosys.2019.105210

[18] Kowsari, K., Jafari Meimandi, K., Heidarysafa, M., Mendu, S., Barnes, L., & Brown,

D. (2019). Text classification algorithms: A survey. Information, 10(4), 150.

arXiv:1904.08067

[19] Hassanzadeh Y, Ghazvinian M, Abdi A, Baharvand S, Jozaghi A (2020) Prediction of

short and long-term droughts using artificial neural networks and hydro-meteorological

variables. arXiv:2006.02581 [physics.ao-ph]

[20] Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient estimation of word

representations in vector space. arXiv 2013, arXiv:1301.3781

[21] Pennington, J.; Socher, R.; Manning, C.D. Glove: Global Vectors forWord

Representation. In Proceedings of the 2014 Conference on Empirical Methods in

https://doi.org/10.1016/j.promfg.2015.07.241
https://doi.org/10.1016/j.eng.2019.12.012
https://openai.com/blog/adversarial-example-research/
https://doi.org/10.1016/j.knosys.2019.105210

53

Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October 2014; Volume

14, pp. 1532–1543. DOI: 10.3115/v1/D14-1162

[22] Ganegedara, T. (May 5, 2019). Intuitive Guide to Understanding GloVe Embeddings.

https://towardsdatascience.com/light-on-math-ml-intuitive-guide-to-understanding-

glove-embeddings-b13b4f19c010

[23] Hui, J. (Oct 21, 2019). NLP — Word Embedding & GloVe. https://jonathan-

hui.medium.com/nlp-word-embedding-glove-5e7f523999f6

[24] Bojanowski, P.; Grave, E.; Joulin, A.; Mikolov, T. Enriching word vectors with

subword information. arXiv 2016, arXiv:1607.04606.

[25] Subedi, N. (Jul 6, 2018). FastText: Under the Hood.

https://towardsdatascience.com/fasttext-under-the-hood-11efc57b2b3

[26] Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep

bidirectional transformers for language understanding. arXiv preprint

arXiv:1810.04805.

[27] Zaki Rizvi, M.(September 25, 2019). Demystifying BERT: A Comprehensive Guide

to the Groundbreaking NLP Framework.

https://www.analyticsvidhya.com/blog/2019/09/demystifying-bert-groundbreaking-

nlp-framework/

[28] Rose, S., Engel, D., Cramer, N., & Cowley, W. (2010). Automatic keyword extraction

from individual documents. Text mining: applications and theory, 1, 1-20.

https://doi.org/10.1002/9780470689646.ch1

[29] Google. (Dec 16 2020). universal-sentence-encoder.

https://tfhub.dev/google/universal-sentence-encoder/4

[30] (2017). STSbenchmark. http://ixa2.si.ehu.es/stswiki/index.php/STSbenchmark

[31] Nielsen, M. A., 2015: Neural Networks and Deep Learning. Determination Press,

http://neuralnetworksanddeeplearning.com/

[32] Rajaraman, A.; Ullman, J.D. (2011). "Data Mining" (PDF). Mining of Massive

Datasets. pp. 1–17. doi:10.1017/CBO9781139058452.002. ISBN 978-1-139-05845-2.

https://towardsdatascience.com/light-on-math-ml-intuitive-guide-to-understanding-glove-embeddings-b13b4f19c010
https://towardsdatascience.com/light-on-math-ml-intuitive-guide-to-understanding-glove-embeddings-b13b4f19c010
https://jonathan-hui.medium.com/nlp-word-embedding-glove-5e7f523999f6
https://jonathan-hui.medium.com/nlp-word-embedding-glove-5e7f523999f6
https://towardsdatascience.com/fasttext-under-the-hood-11efc57b2b3
https://www.analyticsvidhya.com/blog/2019/09/demystifying-bert-groundbreaking-nlp-framework/
https://www.analyticsvidhya.com/blog/2019/09/demystifying-bert-groundbreaking-nlp-framework/
https://doi.org/10.1002/9780470689646.ch1
https://tfhub.dev/google/universal-sentence-encoder/4
http://ixa2.si.ehu.es/stswiki/index.php/STSbenchmark
http://neuralnetworksanddeeplearning.com/
http://i.stanford.edu/~ullman/mmds/ch1.pdf
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1017%2FCBO9781139058452.002
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-1-139-05845-2

54

[33] Siva, S. Jun 12 2020. “Sklearn’s TF-IDF” vs “Standard TF-IDF”.

https://towardsdatascience.com/how-sklearns-tf-idf-is-different-from-the-standard-tf-

idf-275fa582e73d

[34] Harris, David and Harris, Sarah (2012-08-07). Digital design and computer architecture

(2nd ed.). San Francisco, Calif.: Morgan Kaufmann. p. 129. ISBN 978-0-12-394424-5.

[35] Silipo, R. Nov 21, 2019. Text Encoding: A Review.

https://towardsdatascience.com/text-encoding-a-review-7c929514cccf

[36] Sadowski, P. (2016). Notes on backpropagation. homepage: https://www. ics. uci.

edu/pjsadows/notes. pdf (online).

[37] Vinod, N, Hinton,G , (2010). Rectified Linear Units Improve Restricted Boltzmann

Machines (PDF). ICML. ISBN:9781605589077

[38] Han, Jun; Morag, Claudio (1995). "The influence of the sigmoid function parameters

on the speed of backpropagation learning". In Mira, José; Sandoval, Francisco (eds.).

From Natural to Artificial Neural Computation. Lecture Notes in Computer Science.

930. pp. 195–201. doi:10.1007/3-540-59497-3_175. ISBN 978-3-540-59497-0.

[39] Goodfellow, I., Y. Bengio, and A. Courville, (2016). Deep Learning. MIT Press.

pp. 180–184. ISBN 978-0-26203561-3.

[40] Diederik, Kingma; Ba, Jimmy (2014). "Adam: A method for stochastic optimization".

arXiv:1412.6980

[41] Hinton, Geoffrey E.; Srivastava, Nitish; Krizhevsky, Alex; Sutskever, Ilya;

Salakhutdinov, Ruslan R. (2012). " Improving neural networks by preventing co-

adaptation of feature detectors". arXiv:1207.0580

[42] Krizhevsky, A., I. Sutskever, and G. E. Hinton, 2012: Imagenet classification with deep

convolutional neural networks. In Advances in neural information processing systems

(pp. 1097-1105). Available online at:

http://www.csri.utoronto.ca/~hinton/absps/imagenet.pdf.

https://towardsdatascience.com/how-sklearns-tf-idf-is-different-from-the-standard-tf-idf-275fa582e73d
https://towardsdatascience.com/how-sklearns-tf-idf-is-different-from-the-standard-tf-idf-275fa582e73d
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0-12-394424-5
https://towardsdatascience.com/text-encoding-a-review-7c929514cccf
http://www.deeplearningbook.org/
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0-26203561-3
http://www.csri.utoronto.ca/~hinton/absps/imagenet.pdf

55

[43] Conneau, A., Kiela, D., Schwenk, H., Barrault, L., & Bordes, A. (2017). Supervised

learning of universal sentence representations from natural language inference data.

arXiv preprint arXiv:1705.02364.

[44] Cer, D., Yang, Y., Kong, S. Y., Hua, N., Limtiaco, N., John, R. S., ... & Sung, Y. H.

(2018). Universal sentence encoder. arXiv preprint arXiv:1803.11175.

[45] Huang, L., Joseph, A. D., Nelson, B., Rubinstein, B. I., & Tygar, J. D. (2011, October).

Adversarial machine learning. In Proceedings of the 4th ACM workshop on Security

and artificial intelligence (pp. 43-58). https://doi.org/10.1145/2046684.2046692

[46] Devlin, J., M. W. Chang, K. Lee, and K. Toutanova, 2018: Bert: Pre-training of deep

bidirectional transformers for language understanding. arXiv preprint

arXiv:1810.04805. https://arxiv.org/abs/1810.04805.

[47] Collobert, R., J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu and P. Kuksa, 2011:

Natural Language Processing (Almost) from Scratch. Journal of Machine Learning

Research, 12:2493-2537. Available online at: https://www.jmlr.org /papers/volume12

/collobert11a /collobert11a.pdf.

https://doi.org/10.1145/2046684.2046692
https://arxiv.org/abs/1810.04805

