
INCOMPLETE TIME SERIES FORECASTING USING

GENERATIVE NEURAL NETWORKS

by

HARSHIT TARUN SHAH

THESIS

Submitted in partial fulfillment of the requirements for the degree of Master of

Science in Computer Science at The University of Texas at Arlington.

December, 2020

Arlington, Texas

Supervising Committee:

Dr. Manfred Huber, Supervising Professor

Dr. Farhad Kamangar

Dr. Vassilis Athitsos

Copyright c© 2020 Harshit Tarun Shah

All Rights Reserved

i

This thesis is dedicated to my mom, dad and sister.

ii

Acknowledgements

I would like to deeply thank Dr. Manfred Huber for accepting my request to

serve as a thesis supervisor. His vast expertise in the multiple areas of research has

helped from selecting a domain area for research to completing the research itself. I

want to thank him for always answering my questions and directing me in the right

direction. I am also grateful to him for letting me use the lab and its resources for

my research.

I would also like to thank Dr. Farhad Kamangar and Dr. Vassilis Athitsos for

taking out their valuable time to serve as my committee members. Their courses

which I had enrolled into in my past semesters, helped me build relevant background

knowledge for my research.

I also want to take this opportunity to thank Mr. Sri Sridharan and Mrs.

Shruti Shah for motivating me through my master’s program and providing me

with valuable advice every time I doubted myself. They have always made me feel

home in U.S.A and this thesis wouldn’t have been possible without their support.

I also want to thank my friends Deep, Arya, Nishad, Haresh, Harish, Preet,

Tushar, Akshay, Yugesha, Meet, Harshil, Ravi and Chintan for making my time at

UTA fun and enjoyable. They have always looked out for me and motivated me

throughout my research.

Lastly, I want thank my parents for believing in me and supporting me finan-

cially. Their unconditional love has given me strength to complete my master’s

program successfully.

iii

Incomplete Time Series Forecasting Using

Generative Neural Networks

by

Harshit Tarun Shah

Department of Computer Science and Engineering

The University of Texas at Arlington

Supervising Professor: Dr. Manfred Huber

Abstract

Dealing with missing data is a long pervading problem and it becomes more

challenging when forecasting time series data because of the complex relation be-

tween data and time, which is why incomplete data can lead to unreliable results.

While some general purpose methods like mean, zero, or median imputation can be

employed to alleviate the problem, they might disrupt the inherent structure and the

underlying data distributions. Another problem associated with conventional time

series forecasting methods whose goal is to predict mean values is that they might

sometimes overlook the variance or fluctuations in the input data and eventually

lead to faulty predictions. To address these issues, we employ a probabilistic fore-

casting technique which can accommodate the variations in data and predict a full

conditional probability distribution of future values given past data. We introduce

a novel generative adversarial network (GAN) architecture with the goal to forecast

a probability distribution on time series data and also introduce an auxiliary GAN

which learns the temporal pattern of which data is missing, thereby removing the

dependency on using general purpose imputation methods. We create two complex

iv

Incomplete Time Series Forecasting Using Generative Neural Networks

time series datasets to test our architecture and also show a comparison between

our architecture’s forecasting capability (with incomplete data) to a state-of-the-

art architecture which is trained with complete data. We also demonstrate that

our model’s predicted data distribution does not collapse with incomplete data, but

instead successfully learns to estimate the true underlying data distribution.

Chapter 0 Harshit Shah v

Contents

Acknowledgements iii

Abstract iv

List of Figures ix

List of Tables xi

1 Introduction 1

2 Background 3

2.1 Time Series Data . 3

2.1.1 Components . 4

2.1.2 Representation . 5

2.1.3 Time Series Forecasting . 5

2.1.4 Missing Data . 7

2.2 Recurrent Neural Networks . 9

2.2.1 Long Short Term Memory Network 12

vi

Incomplete Time Series Forecasting Using Generative Neural Networks

2.3 Temporal Convolutional Networks . 15

2.3.1 1-D Convolutions . 15

2.4 Generative Models . 17

2.4.1 Generative Adversarial Networks 18

2.4.2 Conditional Generative Adversarial Networks 19

2.4.3 Wasserstein Generative Adversarial Networks 20

2.4.4 Wasserstein Generative Adversarial Networks with Gradient

Penalty . 26

3 Related Work 29

3.1 Missing Data Imputation in Episodic Tasks 29

3.2 Missing Data Imputation in Time Series 30

4 Approach 33

4.1 Problem Formulation . 33

4.2 Proposed Method . 37

4.2.1 Architecture . 37

4.2.2 Auxiliary GAN . 38

4.2.3 Training Scheme . 38

4.2.4 Network Specifications . 40

5 Experiments and Discussions 42

Chapter 0 Harshit Shah vii

Incomplete Time Series Forecasting Using Generative Neural Networks

5.1 Datasets . 42

5.1.1 Lorenz Dataset . 42

5.1.2 Mackey-Glass Dataset . 43

5.1.3 Mask dataset . 44

5.2 Evaluation Metric . 45

5.2.1 Kullback-Leibler Divergence 45

5.2.2 Jensen-Shannon Divergence 46

5.3 Results . 46

5.3.1 Lorenz Dataset Forecasting 47

5.3.2 Mackey-Glass Dataset Forecasting 48

5.3.3 Comparison with Other Methods 49

6 Conclusion and Future Work 52

Bibliography 54

Chapter 0 Harshit Shah viii

List of Figures

2.1 Recurrent Neural Networks . 10

2.2 An Unrolled RNN . 10

2.3 LSTM Cell Structure . 12

2.4 1-D Convolution . 16

2.5 Patterns Learned by TCN . 17

2.6 GAN Architecture . 19

2.7 Conditional GAN Architecture . 20

2.8 First, a DCGAN is trained for 1, 10 and 25 epochs. Then, with

the generator fixed, a discriminator is trained from scratch and the

gradients are measured with the original cost function. We see that

the gradient norms decay quickly (in log scale) by up to 5 orders of

magnitude after 4000 discriminator iterations. [1] 22

2.9 A DCGAN model is trained with an MLP network with 4 layers,

512 units and ReLU activation function, configured to lack a strong

inductive bias for image generation. The results shows a significant

degree of mode collapse. [2] . 22

2.10 Ilustration of vanishing gradients in GAN [2] 25

ix

Incomplete Time Series Forecasting Using Generative Neural Networks

2.11 Effects of weight clipping hyperparameter c on gradients.[3] 27

4.1 Time series data with missing features 34

4.2 Time series data with missing time steps 34

4.3 Overall forecasting architecture of the system. 37

4.4 Overall operation of the forecasting system. 39

4.5 Generator Architecture. 40

4.6 Discriminator Architecture. 41

5.1 Visualization of Lorenz data set results 48

5.2 Visualization of Mackey-Glass data set results 49

5.3 Comparison with state-of-the-art method 51

Chapter 0 Harshit Shah x

List of Tables

4.1 The table above illustrates a multivariate time series representation

with T = 6 time steps and D = 3 features. nan indicates missing

values at xdt . 35

4.2 The table above illustrates a mask vector representation for X 35

4.3 X transformed into history and prediction time series. 36

4.4 M transformed into masked history and masked prediction time series. 36

5.1 JS divergence values with different settings on Lorenz dataset 47

5.2 JS divergence values with different settings on Mackey-Glass dataset . 49

5.3 KL divergence values with different settings on the state-of-the-art

dataset . 50

xi

Chapter 1

Introduction

We live in a world of data and nowadays data is generated almost everywhere:

sensor networks on Mars, submarines in the deepest ocean, opinion polls about

any topic, etc. Many of these real world applications suffer a common problem,

missing or incomplete data. Missing data can here result from a number of causes,

including sensor or communication failures, resource limitations, or the simple fact

that the rate at which different forms of data can be acquired can be vastly different,

leading data points in the sensory time series where only subsets of the data are

available. For example, in an industrial experiment some results can be missing

because of mechanical or electronic failures during the data acquisition process. In

medical diagnosis, some tests cannot be done because either the hospital lacks the

necessary medical equipment, or some medical tests may not be appropriate for

certain patients. In the same context, another example could be an examination by

a doctor, who performs different kinds of tests; some test results may be available

instantly, others may take several days to complete.

These challenges can be alleviated using various machine learning or filtering

and estimation techniques. However, these data imputation techniques are always

based on a set of assumptions and will yield good results only if these assumptions

are approximately correct. After the advent of deep learning, solving even very

1

Incomplete Time Series Forecasting Using Generative Neural Networks

complex tasks such as image classification, image generation, etc has become a

commonplace. This has also been supported by a significant increase in computation

power which acts as a backbone when training deep neural networks by developing

advanced computation units such as GPUs. Hence we can also tackle these missing

data challenges using the knowledge from the field of deep learning and statistical

modeling, and use the newer computational units to produce the results faster.

The goal of this thesis is to tackle the problems that occur when dealing with

complex, incomplete time-series sensor related data and propose a new generative

neural network architecture to forecast values for situations when part of the data

is missing or incomplete, by leveraging the rich structure in the available data.

Chapter 1 Harshit Shah 2

Chapter 2

Background

In this chapter we will introduce the neural network architectures and other formal

definitions used in the context of time series and underlying the work performed in

this thesis.

2.1 Time Series Data

In this work we primarily focus on working with sensor data which falls into the

domain of time series. A time series is basically a series of data points indexed

with respect to time. A single data point at any point in time is called a time step.

examples for sensory time series include data from a sensor recording humidity and

temperature values in a house every second or every minute, a video recording which

is simply a camera capturing pictures at every instance of time more formally known

as frames. similarly, the Stock price of a company which is recorded every second

also comes under the domain of time series.

One significant way to differentiate different types of time series data is in terms

of the dimensionality of each data point:

3

Incomplete Time Series Forecasting Using Generative Neural Networks

• Univariate time series: Univariate time series are defined as series of records

of data involving only one variable.

• Multivariate time series: Multivariate time series are defined as series of

records of data involving two or more variables.

One of the differentiating features between these types here is that in univariate

data, the only dependencies are over time while in multivariate time series data both

dependencies over time and dependencies between variables have to be considered

when performing missing value imputation or forecasting.

2.1.1 Components

As we know that data in time series changes over time we can identify some key

components in time series data:

• Seasonality: A seasonal effect is simply a pattern observed in data in a

systematic way at specific intervals of time. Eg: Sales increase in the month

of December due to Christmas.

• Cyclical Variation: Sometimes change takes place over longer time periods.

For instance, the US economy seems to go through periods of expansion and

recession once every decade or so. This is a cyclical variation.

• Trend: A trend is a non-cyclic, long term pattern observed in the series. We

might notice multiple upward and downward trends in data but there can be

an overall upward trend.

• Noise: Noise exists practically everywhere and represents those irregular fluc-

tuations that accompany a signal but are not a part of it and tend to obscure

it.

Chapter 2 Harshit Shah 4

Incomplete Time Series Forecasting Using Generative Neural Networks

2.1.2 Representation

Like any other tabular data we can also represent time series data in tabular form,

the only caveat being that the order of data points matter in a time series since

the order represents the data collected at that instance of time. Hence we represent

a time series using a M X N matrix for the multivariate case and M X 1 for the

univariate case:

A =


a11 a12 . . .

...
. . .

aM1 aMN


where M is the number of time steps in the time series and N is the number of

features or variables in each data point.

2.1.3 Time Series Forecasting

Time series forecasting is the process of predicting the data of future time steps. It

can be thought of as a mechanism to process or analyze the historical data and use

that learned information to make predictions about the future. Eg: Predicting the

price of a company’s stock on the next day.

Time series forecasting can be classified into two types:

1. One-step ahead prediction: This method is concerned only with predicting

the next time step given the time series. Eg: Predicting the value of a sensor

in the 11th second given 10 seconds of past data.

2. Multi-step ahead prediction: This, as the name suggests, is concerned

with predicting a sequence of time steps given a time series. Eg: Forecasting

the weather for the next 10 days given the past data.

Chapter 2 Harshit Shah 5

Incomplete Time Series Forecasting Using Generative Neural Networks

Regression Based Time Series Forecasting

Conventional statistical methods like ARMA and ARIMA [4], some machine learning

methods like Support Vector Machines, and newer, more advanced neural network

based forecasting techniques are usually concerned with predicting µ(P (xt+1|X))

where xt+1 is the future prediction and X is the historical time series. Generally,

these methods follow the principles of mean regression and because of that they

inherit the main limitation of these principles, i.e. they do not include the fluctu-

ations around the mean value. Hence the results can be misleading in some cases.

Hence we need to employ a method to consider all those fluctuations around the

mean which can be solved by a method known as probabilistic forecasting.

Probabilistic Forecasting

A probabilistic forecast represents an estimation of the respective probabilities for all

possible future outcomes of a random variable. In contrast to mean forecasting, the

probabilistic forecast represents a probability density function. In the following we

formalize somewhat the notion of probabilistic forecasts in the context of time-series.

Let X t be the time series containing the historical data up to time t.

We can model the future time step at time t+h for each forecasting step h as

follows:

xt+h = fh(Xt)

where: fh is a forecasting model specific to time step h. If h > 1 it becomes a

multi-step ahead forecasting problem.

Here fh is a singe value forecasting model. This can be modified into a proba-

bilistic forecasting model:

Chapter 2 Harshit Shah 6

Incomplete Time Series Forecasting Using Generative Neural Networks

xt+h = Fh(Xt)

Here F returns a random variable xt+h and not a single value. Hence the goal

of F h is to learn the conditional probability distribution of P (xt+h|Xt) rather than

a single value.

In line with this, the goal of this research is to build a model which can forecast

the full conditional probability distribution of future predictions.

2.1.4 Missing Data

The presence of missing values in a time series is a big problem in real world clas-

sification and forecasting tasks. It mainly occurs due to sensor failures, reboots, or

human error while recording data, but it can also be the simple result of limited

data acquisition resources or different acquisition rates of different sensor modalities.

Missing data introduces inconsistencies in data, and as a consequence can suggest a

different distribution from the true data distribution. However, depending on what

causes missing data, the gaps in the data will themselves have certain distributions.

For example, if different sensor rates are the cause of missing data, the missing

data time slots will have a cyclic, repetitive pattern, while in cases where sensor

failures are the cause, the pattern of missing data will be long, contiguous blocks

with random start times. Understanding these distributions may be helpful as they

can provide additional information about the pattern of missing data. In the ap-

proach introduced in this thesis we will explicitly try to learn this pattern and we

will discuss more about how we can leverage this information in order to forecast

data when we have time series with missing information in Section 4.1.

Mechanisms leading to missing data can be divided into three types based on

the statistical properties of the pattern with which data is missing:

Chapter 2 Harshit Shah 7

Incomplete Time Series Forecasting Using Generative Neural Networks

1. Missing completely at random (MCAR): In MCAR there is no pattern

observed on the way the data is missing. Missing data points occurs entirely at

random. This means there are two requirements: First, the probability for a

certain observation being missing is independent of the values of other features.

Second the probability for an observation being missing is also independent of

the value of the observation itself. In the univariate case this means that the

probability for a certain observation being missing is independent of the point

of time of this observation in the series. If A represents the vector indicating

whether each data item will be missing or available and Bobserved and Bmissing

are the values of the observed and of the missing data items, respectively, then

MCAR corresponds to the case where the probability of data items missing is

independent of all data:

P (A|Bobserved, Bmissing) = P (A)

Eg: Sensor recording data for 24 hours everyday and sending it to backend

systems but that due to unknown reasons and on random occasion fails to

transmit data.

2. Missing at random (MAR): Like in MCAR, in MAR the probability for an

observation being missing is again independent of the value of the observation

itself. But it is dependent on other variables. Since there are no other variables

other than time for univariate time series, it can be said, that in MAR the

probability for an observation being missed is dependent on the point in time

of this observation. This implies that the likelihood of data missing can depend

on the observed information but not on the missing information:

P (A|Bobserved, Bmissing) = P (A|Bobserved)

Eg: Machine sensor data are more likely to be missing on weekends due to

sensor reboots and shutdowns.

Chapter 2 Harshit Shah 8

Incomplete Time Series Forecasting Using Generative Neural Networks

3. Not missing at random (NMAR): NMAR observations are not missing

in a random manner. This data are not MAR and not MCAR. That means,

the probability for an observation being missing depends on the value of the

observation itself. Furthermore the probability can (but must not necessarily)

dependent on other variables (or point of time for univariate time series).

P (A|Bobserved, Bmissing) = P (A|Bobserved, Bmissing)

Eg: Temperature sensor that gives no value for temperatures over 100 degrees.

In this work we will be only dealing with the Missing at random (MAR) case.

2.2 Recurrent Neural Networks

The key difference in time series data from conventional image or tabular data is

the role of time. Data observed at each instance in time has a significance since it

is dependent on the data in the past; even while reading this our brain constantly

keeps history of past words and sentences in memory which helps it make sense of

the current words. In the same way in a time series dataset the current observation is

somehow dependent on its history and we can exploit this characteristic to forecast

future data. However the traditional feed-forward neural networks can not do this

since they do mot have an ability to establish temporal memory, which is why

recurrent neural networks(RNNs) were introduced. These networks can address this

issue since they have loops within them thereby allowing information to persist

and thus the potential for temporal memory to be established. In the diagram in

Figure 2.1, A looks at some input xt at time step t as well as at some hidden

state from the previous time step, t-1 and outputs a value ht. This can seem a

bit mysterious, however it it can be looked at as just a regular neural network with

multiple copies of same network, each passing a message to a successor. The unrolled

representation of a RNN is shown in Figure 2.2. After looking at the unrolled version

Chapter 2 Harshit Shah 9

Incomplete Time Series Forecasting Using Generative Neural Networks

Figure 2.1: Recurrent Neural Networks

Figure 2.2: An Unrolled RNN

of the RNN the architecture becomes very intuitive. It basically takes input at some

time step, process it, produces the output and sends the latent information to the

next copy of the network which essentially creates a memory mechanism. In the last

few years RNNs have been used for a variety of problems such as speech recognition,

language modeling, image captioning, etc. Hence it automatically becomes a natural

choice to use RNNs when dealing with time series data.

Modeling long term dependencies

As we have seen, RNNs can be useful in the context of time series data by

retaining information from the past and connect it to the present tasks. Sometimes

when we only have to look at a relatively recent piece of information to perform the

present task, for example when trying to predict the heart rate of a person when

walking, this would be possible based mainly on very recent information since it

would be similar to the most recent few values since heart rate remains relatively

stable during walking. In such cases, where the gap between the relevant information

and the place that it is needed is small, RNNs can learn to use the past information

Chapter 2 Harshit Shah 10

Incomplete Time Series Forecasting Using Generative Neural Networks

relatively effectively. However, there are cases where we might need more context

and in particular context that is temporally relatively far removed from the point in

time at which it is relevant. Consider, for example, a case when a person runs every

morning and only walks during the day. Since the gap between today morning

and tomorrow morning is big, RNNs might predict the person walking even the

next morning, which is not true because there exists a pattern that becomes clear

after a longer period of time. Unfortunately as that time gap grows, RNNs become

unable to learn to connect the information. This problem was explored in depth

[5], and some pretty fundamental reasons why it might be difficult were found.

To address this, special forms of recurrent networks were developed that aim to

maintain information over longer time spans. The most popular of these are Long

Short Term Memory networks (LSTM) that do not have this problem to the same

degree.

2.2.1 Long Short Term Memory Network

To alleviate the problem of long term dependencies in RNNs, Long Short Term

Memory (LSTM) [6] ,a special kind of RNNs were introduced. LSTMs are better

at retaining the longer term dependencies through the use of gaiting mechanisms,

which is one of the main reason why they are used frequently in the context of time

series data. The problem actually faced by the RNNs is the problem of vanishing

gradients [7] which is the phenomenon where the gradients becomes so small that

it is practically impossible to learn anything for the network. To avoid the problem

of vanishing gradients LSTMs are frequentlyused. In the same way as RNNsLSTMs

also have the form of a chain of repeating modules but their cell structure is different.

Cell structure of LSTM

Since LSTMs were designed with a goal to work with long sequences of data

there is an inherent difference in cell structure. By cell we mean the module which

Chapter 2 Harshit Shah 11

Incomplete Time Series Forecasting Using Generative Neural Networks

repeats to retain information. The LSTM’s core concept revolves around the idea of

gates which can also be thought similar to the knobs in water pipes controlling the

flow of water. However in this case they control the flow of relevant information.

Figure 2.3: LSTM Cell Structure

The cell state here acts as a transport highway that delivers relevant information

all the way down the sequence chain. It basically represents the memory of the

network. The cell state, in theory, can carry relevant information throughout the

processing of the sequence. So even information from significantly earlier time steps

can make its way to later time steps, reducing the effects of short term memory. As

the cell state travels through time, information get’s added or removed to the cell

state via gates. The gates are different neural network components that decide which

information should be part of the cell state. The gates can learn what information

is relevant to keep or forget during training.

The gates contain sigmoid activations as shown in Figure 2.3. Since the sigmoid

activation function can squash values between 0 and 1, it is helpful to update or

forget data because any input that gets multiplied by 0 becomes 0, causing the

values to disappear or be forgotten. Any input multiplied by 1 is the same value,

which mean the value is kept. The network can learn which data is important and

which is not and accordingly remember or forget.

Forget Gate

This gate decides what information to keep or thrown away. Labelled as Ft in

Chapter 2 Harshit Shah 12

Incomplete Time Series Forecasting Using Generative Neural Networks

Figure 2.3 it gets information from the previous hidden state and information from

the current input and passes a trainable linear function of this through the sigmoid

function. The output is between 0 and 1 where anoutput close to 0 means to forget

and close to 1 means to keep the information currently in the cell state. This gate

is formulated as follows:

ft = σ(Wf [ht−1, xt] + bf)

where σ() is the sigmoid function, Wf is a trainable weight vector, ht−1 repre-

sents the hidden state of the LSTM from the previous time step and xt is the input

at time step t.

Input Gate

This gate (labelled It in Figure 2.3) is responsible for updating the cell state.

First a trainable linear function of the previous hidden state and current input is

passed to a sigmoid unit which decides which values to update. A separate trainable

linear function of the previous hidden state and current input is also passed to a

hyperbolic tangent activation which squashes the values between -1 to 1 to help

regulate the network followed by a product between the output of the sigmoid and

hyperbolic tangent activation to update the state. This gate is formulated as follows:

it = σ(Wi[ht−1, xt] + bi)

Output from the hyperbolic tangent activation is formulated as follows:

čt = tanh(Wc[ht−1, xt] + bc)

Cell State

Both the forget gate and the input gate are used to update the cell state where

the forget gate helps remove information previously held in the cell state while the

Chapter 2 Harshit Shah 13

Incomplete Time Series Forecasting Using Generative Neural Networks

input gate regulates how to update the remaining content of the cell state using the

current input. To achieve this, the cell state first gets pointwise multiplied by the

forget vector (this provides the possibility of dropping values in the cell state if it

gets multiplied by values near 0). Then the output of the input gate is pointwise

added to obtain a new cell state that the network found relevant. This is formulated

as:

ct = ft ⊗ ct−1 + it ⊗ čt

where ⊗ is pointwise multiplication.

Output Gate

The last gate in the LSTM cell is the output gate which decides what the next

hidden state should be, i.e. what information about. the cell state should be passed

on to the next time step. First another trainable linear function of the previous

hidden state and the current input is passed through a sigmoid activation. Then

the newly modified cell state is passed through the hyperbolic tangent activation.

Finally the pointwise product between hyperbolic tangent output and sigmoid out-

put is taken to decide what information the hidden state should carry. The new

cell state and the new hidden state is then carried over to the next time step. The

output gate is formulated as:

ot = σ(Wo[ht−1, xt] + bo)

And the new hidden state is formulated as follows:

ht = ot ⊗ tanh(ct)

As indicated, in all the above formulations W represent weight matrices for the

respective gates. ht−1 represent the hidden state from previous cell and xt represent

the input from current time step.

Chapter 2 Harshit Shah 14

Incomplete Time Series Forecasting Using Generative Neural Networks

2.3 Temporal Convolutional Networks

Recently Convolutional Neural Networks(CNNs) have been in the lime light for

reaching human level performance in the domain of image processing and recogni-

tion. There have been multiple architectures [8, 9] that have won the ImageNet

challenge. Motivated by that researchers have started using CNNs for time series

analysis [10] as well. CNNs when used in time series analysis are commonly referred

to as Temporal Convolutional Networks(TCNs).

2.3.1 1-D Convolutions

A temporal convolution can be seen as applying and sliding a filter over a time series.

Unlike images, the filters exhibit only one dimension instead of two. Specifically,

when we are convoluting a filter of size 3 with a univariate time series where the

filter values are equal to [1/3, 1/3, 1/3], the result would be a moving average. The

general form for a 1-D convolution operation would be as follows:

Ct = activation(W ∗Xt−l/2:t+l/2 + b)|∀t ∈ [1, T]

where Ct denotes the result of convolution, X denotes a univariate time series of

length T . W denotes a filter of length l, and b corresponds to the bias. Figure 2.4

shows a pictorial representation of a 1D convolution. The filter runs through all the

time steps and generates a new representation.

Why TCNs work

CNNs have been suggested to learn specific patterns in image data [11] hence

using this feature learning capability of CNNs and applying them to the domain

of time series has also produced impressive results [12, 13, 14]. 1D convolutions

with a single layer extract features from raw input data using learnable kernels. By

computing the activations of 1D convolutions at different regions in the same input

Chapter 2 Harshit Shah 15

Incomplete Time Series Forecasting Using Generative Neural Networks

Figure 2.4: 1-D Convolution

we can detect patterns captured by the kernels, regardless of where they occur. A

kernel which can detect specific patterns in the input data would act as a feature

detector. Since the convolution operation uses the same filter/kernel to find the

output for all time steps, it also helps them learn filters that are invariant across the

time dimension. Figure 2.5 (from [15]) presents an excellent example of what TCNs

learn on the GunPoint dataset, a dataset containing hand position data sequences

for two movement classes.

Figure 2.5: Patterns Learned by TCN

We can clearly see in the convolution result that (by applying learned sliding

filters) TCN is able to discriminate between class 1 and class 2.

Temporal convolution, similar to LSTM networks learn temporal patterns in the

data. However, temporal convolution has the advantage that it can see the entire

section of the time series at the same time while LSTMs can only see one data

Chapter 2 Harshit Shah 16

Incomplete Time Series Forecasting Using Generative Neural Networks

point at a time. This tends to make temporal convolution more stable and easier

to train than LSTMs. On the other hand, this also forces the maximum length of a

pattern to be pre-determined and encoded into the design of the network, which is

not necessary for LSTMs which can in principle learn temporal patterns of arbitrary

length.

2.4 Generative Models

Recently there have been surveys [16, 17] claiming that we generate more than a

million gigabytes of data every day and that this data could be leveraged by train-

ing machine learning models to build intelligent systems. However state of the art

machine learning systems and neural networks still largely solve supervised learning

problems where the data collected needs to be labelled, which is not always possible

in the real world. The real world is full of unstructured data where the conventional

supervised models do not work. Hence we need to approach the unsupervised prob-

lem with different types of models. The main challenge here is to develop models

and algorithms that can analyze and understand this treasure trove of data.

Generative models are one of the most promising approaches towards this goal.

To train a generative model we first collect a large amount of data in some domain

(e.g., millions of images, sentences, or sounds, etc.) and then train a model to

generate data like it, thus developing an implicit model of the data itself.

2.4.1 Generative Adversarial Networks

Generative Adversarial Networks (GAN) [18] are one of the most interesting and

popular applications of Deep Learning. Recently, there has been a significant amount

of interesting research investigating [19] applications of GANs in many different

domains.

Chapter 2 Harshit Shah 17

Incomplete Time Series Forecasting Using Generative Neural Networks

Architecture of a Generative Adversarial Network

The basic GAN (commonly referred to as Vanilla GAN) consists of two neu-

ral networks, one for generating the desired data called the Generator, and one for

differentiating between the real data and fake data called the Discriminator. The

generator model could be thought of as analogous to a watch forger whose goal is

to produce the most real looking watches and sell them to the watch seller, while

the discriminator model is analogous to a watch seller whose goal is to detect fake

watches. The competition in this game drives both generator and discriminator to

improve their methods until the fake watches are indistinguishable from real ones.

Figure 2.6 depicts the architecture trying to solve an image generation task. The

generator G takes as input some white noise z (sampled from ρnoise) and trains to

generate a realistic looking image whose distribution follows the true data distri-

bution ρdata, whereas the discriminator D optimizes to discriminate between real

images and generated images by outputting a probability whether a particular im-

age is true or fake. Basically, G and D play a two-player minimax game with value

function V (G,D). Formally:

min
G

max
D

V (D,G) = Ex∼ρdata(x)[logD(x)] + Ez∼ρnoise(z)[log (1−D(G(z)))]

Figure 2.6: GAN Architecture

However, the Vanilla GAN is not the only GAN architecture available. Since

researchers have been exploring the space of generative models there are also other

types [20, 21, 2, 3, 22] of GAN available with different architectures to solve real-

world generative tasks. In the following subsections we will review the other GAN

Chapter 2 Harshit Shah 18

Incomplete Time Series Forecasting Using Generative Neural Networks

architectures that were used for completing this research.

2.4.2 Conditional Generative Adversarial Networks

Conditional Generative Adversarial Networks (CGANs) [21] can be thought of as

an extension of Vanilla GAN. CGANs are the conditional version of generative

adversarial nets, which can be constructed by simply feeding the data, y, we wish

to condition on to both the generator and discriminator. CGANs are very useful

when our data distribution is multi-modal. In an unconditional generative model,

there is no control on modes of the data being generated. However, by conditioning

the model on additional information it is possible to direct the data generation

process. Such conditioning could be based on class labels, on some part of data

for in-painting like [23], or even on data from a different modality. The objective

function of a conditional two-player minimax game would be as follows:

min
G

max
D

V (D,G) = Ex∼ρdata(x)[logD(x|y)] + Ez∼ρnoise(z)[log (1−D(G(z|y)))]

Here, y is the auxiliary information that we feed both to the generator and

discriminator. Figure 2.7 illustrates the architecture of a CGAN.

2.4.3 Wasserstein Generative Adversarial Networks

GANs can be a powerful mechanism to train networks to generate a data distribu-

tion. However, the adversarial training where the discriminator effectively generates

the error function for the generator also introduces a number of potential problems

that effect the learning results. Some of the most impactful of these are:

• Hard to achieve Nash Equilibrium: [24] discussed the problem with

GAN’s gradient-descent-based training procedure. Two models are trained si-

multaneously to find a Nash equilibrium [25] to a two-player non-cooperative

Chapter 2 Harshit Shah 19

Incomplete Time Series Forecasting Using Generative Neural Networks

Figure 2.7: Conditional GAN Architecture

game. However, each model updates its cost independently with no respect

to another player in the game. Updating the gradient of both models concur-

rently can not generally guarantee convergence.

• Vanishing Gradients: When the discriminator is perfect, the loss function

falls to zero and we end up with no gradient to update the loss during learning

iterations. Since this gradient of the discriminator is also used to drive the

loss of the generator, this implies that no further improvement will occur in

the generator, independent of the quality of the function it has learned. Fig-

ure 2.8 demonstrates an experiment illustrating that when the discriminator

gets better, the gradient vanishes fast.

• Mode Collapse: During training, the generator may collapse to a setting

where it always produces the same outputs. This is a common failure case for

GANs, commonly referred to as Mode Collapse. Even though the generator

might be able to trick the corresponding discriminator, it fails to learn to

represent the complex real-world data distribution and gets stuck in a small

Chapter 2 Harshit Shah 20

Incomplete Time Series Forecasting Using Generative Neural Networks

Figure 2.8: First, a DCGAN is trained for 1, 10 and 25 epochs. Then, with the gen-
erator fixed, a discriminator is trained from scratch and the gradients are measured
with the original cost function. We see that the gradient norms decay quickly (in
log scale) by up to 5 orders of magnitude after 4000 discriminator iterations. [1]

Chapter 2 Harshit Shah 21

Incomplete Time Series Forecasting Using Generative Neural Networks

space with extremely low variety.

Figure 2.9: A DCGAN model is trained with an MLP network with 4 layers, 512
units and ReLU activation function, configured to lack a strong inductive bias for
image generation. The results shows a significant degree of mode collapse. [2]

To alleviate the abovementioned problems, the Wasserstein Generative Adver-

sarial Network[2] or simply WGAN was introduced.

Wasserstein Distance

The Wasserstein distance or earth mover’s distance between two distributions

is proportional to the minimum amount of work required to convert one distribution

into the other. One unit of work is the amount of work necessary to move one unit

of weight by one unit of distance. Intuitively, the weight flows from one distribution

to the other until they are identical, similar to filling holes with piles of dirt. One

distribution acts as a group of holes, while the points of the other distribution are

dirt. A distribution can be represented by a set of clusters where each cluster is

represented by its mean (or mode), and by the fraction of the distribution that be-

longs to that cluster. We call such a representation the signature of the distribution.

The two signatures can have different sizes, for example, simple distributions have

shorter signatures than complex ones.

Formally, let P = {(p1, wp1)....(pm, wpm)} be first signature with m clusters,

where pi represents a cluster and wpi represents the weight of the cluster, and Q =

{(q1, wq1)....(qn, wqn)} be the second signature with n clusters. Also, let D = [dij]

Chapter 2 Harshit Shah 22

Incomplete Time Series Forecasting Using Generative Neural Networks

be the ground distance matrix where dij is the ground distance between clusters pi

and qj.

Now, we want to find a flow F = [fij] with fij the flow between pi and qj, that

minimizes the overall cost. The flow basically represents the amount of movement

that is to be performed between specific clusters pi and qj in the process of building

Q from P . The overall cost to be minimized represents the total work needed for

the transformation and is represented as:

WORK(P,Q,F) =
m∑
i=1

n∑
j=1

fijdij

subject to the following constraints:

fij ≥ 0 where 1 ≤ i ≤ m, 1 ≤ j ≤ n

n∑
j=1

fij ≤ wpj where 1 ≤ i ≤ m

n∑
i=1

fij ≤ wqi where 1 ≤ j ≤ n

m∑
i=1

n∑
j=1

fij = min(
m∑
i=1

wpi ,

n∑
j=1

wqj)

Once the transportation problem is solved and we have found the optimal flow F,

the earth mover’s distance is defined as the work normalized by the total flow:

EMD(P,Q) =

∑m
i=1

∑n
j=1 fijdij∑m

i=1

∑n
j=1 fij

.

In a Wasserstein GAN[2] (WGAN)this distance measure is used as an estimate

for the loss function rather than the traditional divergence measures. In their original

Chapter 2 Harshit Shah 23

Incomplete Time Series Forecasting Using Generative Neural Networks

paper, the authors also point out why using Wasserstein distance has nicer properties

when optimized than Jensen–Shannon Divergence. WGANs can learn no matter

whether the generator is performing well or not. The figure below shows a similar

plot of the value of D(X) for both GAN and WGAN. For GAN (red line), it shows

areas with diminishing or exploding gradients. For WGAN (green line), the gradient

is smoother everywhere and learns better, even when the generator is not producing

good images.

Figure 2.10: Ilustration of vanishing gradients in GAN [2]

WGAN Architecture

In the WGAN architecture, the Wasserstein distance metric is used in the

following form, as detailed in [2]:

W (Pr,Pg) = inf
γ∈Π(Pr,Pg)

E(x,y)∼γ[‖x− y‖]

Π(Pr,Pg)denotes the set of all joint distributions γ(x, y) whose marginals are

respectively Pr andPg.

Since the exact solution of the equation for the Wasserstein distance is highly

intractable, WGAN [2] uses the Kantorovich-Rubinstein duality, and simplifies the

calculation to

Chapter 2 Harshit Shah 24

Incomplete Time Series Forecasting Using Generative Neural Networks

W (Pr,Pθ) = sup
‖f‖L≤1

Ex∼Px [f(x)]− Ex∼Pθ [f(x)]

where sup is the least upper bound and f is a 1-Lipschitz function following

the constraint

‖f(x1)− f(x2)‖ ≤ |x1 − x2|

To find the 1-Lipschitz constant WGAN uses the discriminator (instead of

building another neural network) and outputs a scalar score rather than a probabil-

ity. Intuitively, this score can be interpreted as how real the input images are. Also,

the discriminator is renamed to critic to more clearly indicate this change in function

from distinguishing true and generated data points to generating an explicit score

for the generator. Hence, the new cost function for WGAN is as follows:

For Critic: ∇w
1

m

m∑
i=0

[f(x(i))− f(G(z(i))]

For Generator: ∇θ
1

m

m∑
i=0

f(G(z(i)))

To enforce the 1-Lipschitz constraint, WGAN applies a very simple clipping to

restrict the maximum weight value in f , i.e. the weights of the critic must be within

a certain range controlled by some hyperparameter c.

2.4.4 Wasserstein Generative Adversarial Networks with Gra-

dient Penalty

Challenges Faced by WGAN

The use of weight clipping in WGAN[2] as a method to enforce the Lipschitz

constraint on the critic’s model to calculate the Wasserstein distance introduces some

problems that need to be addressed to make it an effective approach. The model

Chapter 2 Harshit Shah 25

Incomplete Time Series Forecasting Using Generative Neural Networks

may still produce poor quality data and may not converge, in particular when the

hyperparameter c is not tuned correctly.

Figure 2.11: Effects of weight clipping hyperparameter c on gradients.[3]

The weight clipping behaves as a weight regularization. It reduces the capacity

of the model f and specifically limits its capability to model complex functions.

Architecture of WGAN with Gradient Penalty

WGAN with Gradient Penalty[3] (WGAN-GP) was introduced as a variant to

WGAN in order to reduce the effects of weight clipping.WGAN-GP uses a gradient

penalty instead of the weight clipping to enforce the Lipschitz constraint. WGAN-

GP penalizes the model if the gradient norm moves away from its target norm value

1. Hence the new cost function is:

L = E
x̃∼Pg

[D(x̃)]− E
x∼Pr

[D(x)] + λ E
x̂∼Px̂

[(‖∇x̂D(x̂)‖2 − 1)2]

where x̂ is sampled from linear interpolations of x̃ and x of the form x̂ =

tx̃+ (1− t)x with 0 ≤ t ≤ 1, with t uniformly sampled between 0 and 1.

λ is set to 10. The point x̃ used to calculate the gradient norm is a point

Chapter 2 Harshit Shah 26

Incomplete Time Series Forecasting Using Generative Neural Networks

sampled between the Pg and Pr.

Chapter 2 Harshit Shah 27

Chapter 3

Related Work

As discussed in the background section, GANs have become increasingly popular and

usable and have demonstrated their ability to generate high quality data in domains

where data is not easily available. While even the state-of-the-art GAN models[18,

2, 3] have usually been applied to generating images, GANs are not limited only

to image data. There have been multiple publications where GANs have also been

employed for generating sequential data and have remarkable results[26, 27, 28, 29].

3.1 Missing Data Imputation in Episodic Tasks

When considering non time series data that has missing values, the first step to

make the data complete includes methods like zero imputation, mean imputation or

mode imputation. [30] provides a comprehensive review on missing data imputation

techniques. There are also some GAN based data imputation architectures. GAIN

[31]has been developed using the conditional version of GAN. Here the generator is

conditional on the original data and a mask (indicating which values are observedor

missing), both passed to it as a matrix, outputs a completed version of the original

data. This completed data is sent as an input to the discriminator whose goal is

28

Incomplete Time Series Forecasting Using Generative Neural Networks

to output probabilities not for the whole imputed matrix but for each entry in the

matrix. They report the RMSE values which seems to outperform the conventional

imputation methods.

On the other hand, the MisGAN [32] architecture employs a completely differ-

ent approach.Their approach handles the missing data problem in two steps. They

first produce a network which can learn the input data distribution no matter if the

values are complete or incomplete. Secondly, they also design a separate network to

impute the missing values using the data from the first generator. Overall, the Mis-

GAN architecture consists of 4 neural networks: 2 generators and 2 discriminators.

One generator is responsible for generating fake data and the second generator is re-

sponsible for generating fake masks. In contrast the discriminators classify between

fake data/real data and fake mask/real mask, respectively. The whole goal of this

architecture is to learn the pattern of missingness and accordingly make a synthetic

missing sample which is then compared to the real sample in the discriminator.

Hence in the process we anticipate for the generator to learn the true distribution

of data.

3.2 Missing Data Imputation in Time Series

The methods described above however work in the non sequential case and we

can not directly use those ideas in the context of time series data and therefore have

to take a different approach. Since we are specifically concerned with forecasting of

time series data with missing/incomplete time steps, we will shift our focus to the

corresponding literature.

There have been multiple attempts to impute missing data in time series, too.

A very natural choice within the area of neural network models would be to use

LSTM networks since they have been designed to handle time series tasks well.

RIMP-LSTM [33] introduced the residual short path structure into the LSTM and

Chapter 3 Harshit Shah 29

Incomplete Time Series Forecasting Using Generative Neural Networks

constructed a Residual Sum Unit (RSU) to fuse the residual information flows.

They evaluated their model using the Root Mean Square Error (RMSE) and Mean

Absolute Error (MAE) on multivariate and univariate time series datasets.

In the healthcare domain [34] proposed a LSTM network to model missing data

in clinical time series. They mention multiple methods for dealing with missing data.

In particular they consider imputing missing time steps with either zero or to use

forward filling. When forward filling a missing value they just use the value from

last time step. However, if the value is not available they impute that time step

with the median estimated over all measurements in the training data. They also

talk about one of the methods which states using missing data indicators along with

input data. It turns out their methods performs best when using zero imputation

along with missing data indicators. However they use all these preprocessing steps

to ultimately perform classification whereas we want to perform forecasting.

[35] introduced recurrent neural networks in the generator as well as in the

discriminator. They developed a modified version of GRU [36] which included a

time decay vector to control the influence of past information. The goal of the

research was to impute missing values in a multivariate time series.

RNNs were also used by [37] in the generator and discriminator. The aim of

the research was to generated synthetic but realistic sensor outputs, conditioned on

the environment. However they did not considered the case where the time series

had missing values and only dealt with complete data.

Hyland and Esteban [38] propose RGAN and RCGAN to produce realistic real-

valued multi-dimensional medical time series. Both of these GANs employ LSTM

in their generator and discriminator while RCGAN uses Conditional GAN instead

of Vanilla GAN to incorporate a condition in the process of data generation. They

also describe novel evaluation methods for GANs, where they generate a synthetic

labeled training dataset and train a model using this set. Then, they test this

Chapter 3 Harshit Shah 30

Incomplete Time Series Forecasting Using Generative Neural Networks

model using real data. They repeat the same process using a real training set and

a synthetic labeled test set.

ForGAN [39] also presented impressive results by forecasting time series on

chaotic datasets. They used the conditional version of GAN to forecast the next

time step. The generator was conditional on some time window, then concatenated a

noise vector to eventually produce the predicted value xt+1. The discriminator takes

xt+1 either from the generator or the dataset alongside the corresponding condition

window and concatenates xt+1 at the end of the condition window. The rest of the

network tries to check the validity of this time window.

We can see that a significant amount of literature is concerned with solving

the imputation task. However, existing models used for imputation in the context

of distributions generally work on episodic data, disregarding the temporal depen-

dencies in the data and thus might yield incorrectly imputed distributions in time

series. On the other hand, networks employ currently in time series situations gen-

erally use point wise error metrics to check the effectiveness of their model instead of

valicating a complete distribution and can thus fail in the scenarios where the xt+1

comes from a distribution. So, to the best of our knowledge, this presented work is

the first time that a GAN is employed for the forecasting task with missing data in

the context of time series data.Here we want to use the missingness as a feature itself

when performing forecasting without inherently tampering with the distributions.

Our work is analogous to [39, 38], but applied in the context of missing data and

thus pursues a different goal. As a result, we need to take a different approach to

train and evaluate the performance of our model.

Chapter 3 Harshit Shah 31

Chapter 4

Approach

In this chapter we will formally discuss the problem formulation and approach taken

to solve that problem.

4.1 Problem Formulation

The main problem we are trying to address in this thesis is the time series forecast-

ing problem in the context of missing information. In particular we are interested in

predicting the future values of the complete time series from incomplete information

about past time steps. In a time series, (multivariate or univariate) if it contains

missing values the forecasting task becomes difficult. However to address the prob-

lem we can take into consideration the inherent structure in the missingness as a

feature and predict future data. In the following we define what missing time series

data looks like.

Missing time series can be of two basic types:

1. Missing features: Some features are missing at some time steps, however

this can only occur in multivariate time series. This can be illustrated as

32

Incomplete Time Series Forecasting Using Generative Neural Networks

follows:

Figure 4.1: Time series data with missing features

2. Missing time steps: In this case the complete time steps are missing for all

features. This can occur in both univariate time series and multivariate time

series. This can be illustrated as follows:

Figure 4.2: Time series data with missing time steps

We denote a time series X = {x1,x2,,xT} as a sequence of T observations.

The tth observation xt ∈ RD consists ofD features {x1
t , x

2
t ,, x

D
t }. X is a univariate

time series if D = 1. Since the time series might have missing data we also introduce

a concept of mask vector mt (denoted in time series form as M) which simply

indicates whether a data point in xt was observed or not.

Chapter 4 Harshit Shah 33

Incomplete Time Series Forecasting Using Generative Neural Networks

md
t =


0 if xdt is not observed

1 otherwise

Table 4.1 and Table 4.2 illustrates the above definitions.

X =
nan nan -0.32 0.64 0.11 nan
0.64 0.11 nan -0.78 0.39 0.2
-0.78 0.39 0.2 0.10 nan 0.12

Table 4.1: The table above illustrates a multivariate time series representation with
T = 6 time steps and D = 3 features. nan indicates missing values at xdt

M =
0 0 1 1 1 0
1 1 0 1 1 1
1 1 1 1 0 1

Table 4.2: The table above illustrates a mask vector representation for X

To combine the mask and data we also define a masking operation fκ that fills

the missing values with some constant value κ.

fκ(X,M) = X�M + κM

In this thesis, we study a general setting for forecasting time series data with

missing values. Given a time series X our goal would be to predict the future. We

denote this future by y. In general y can be a scalar or a vector. However we want

to model the full probability distribution of possible y values and not only asingle

value. The main reason for this is that we are often not only interested in the most

likely forecast value but in the entire range of potential forecasts, including their

Chapter 4 Harshit Shah 34

Incomplete Time Series Forecasting Using Generative Neural Networks

likelihoods. This, however, can only be achieved when being able to forecast all

elements of the data distribution.

In real world applications the existence of missing data is usually the result of

a process which includes communications failures, different data collection speeds

for different features, or sensor failures due to environmental effects. As a result,

the missingness of the data is often not independently random but follows a pattern

distribution. To account for this, it becomes important to not only forecast data

values but also missingness pattern distributions. It is therefore important to also

predict the missingness patterns in order to be able to make effective forecasts. To

be able to make these predictions, we can for training purposes split the time series

X in two parts: history and prediction. We consider time steps until xT−1 as history

and denote it as H and the xT time step will serve as our prediction denoted as Y.

History (H) =
nan nan -0.32 0.64 0.11
0.64 0.11 nan -0.78 0.39
-0.78 0.39 0.2 0.10 nan

Prediction (Y) =
nan
0.2
0.12

Table 4.3: X transformed into history and prediction time series.

In the same way we also transform the mask time series M into a masked

history HM and a masked prediction YM

Masked history (HM) =
0 0 1 1 1
1 1 0 1 1
1 1 1 1 0

Masked prediction (YM) =
0
1
1

Table 4.4: M transformed into masked history and masked prediction time series.

Chapter 4 Harshit Shah 35

Incomplete Time Series Forecasting Using Generative Neural Networks

4.2 Proposed Method

In this section we will discuss the key steps taken to solve the problem described

previously. Since we want to model the full probability distribution of y values we

will build a generative system to achieve it.

4.2.1 Architecture

The overall system for forecasting is made up of a simple conditional GAN where

both the generator and the discriminator are conditioned on the history. The goal

of the generator is to generate prediction y realistic enough to fool the discriminator

and the discriminator tries to distinguish between true and fake predictions.

Figure 4.3: Overall forecasting architecture of the system.

Before we discuss the detailed architecture of the neural network we want to

introduce an Auxiliary GAN whose main goal is to learn the distribution of missing-

ness. Since the masks in the incomplete data are fully observable, we can estimate

their distribution using a standard GAN.

Chapter 4 Harshit Shah 36

Incomplete Time Series Forecasting Using Generative Neural Networks

4.2.2 Auxiliary GAN

Since we are dealing with modeling the Missing at random(MAR) case we can say

that, there does exist an inherent pattern in the missing data and if so we can use

a GAN architecture to learn this distribution of patterns. Since we can observe

the mask from our time series we can train a network to learn the distribution of

missing values [32] occurring in the series and in turn we will use this information

to mask the forecasted data which goes as an input to the discriminator. As we

know that data generated by the previously described data forecasting generator

will always be complete while real data follows the missingness distribution, the

discriminator could easily figure out that it is fake data because the true data never

contained complete values. Hence, in order to encourage the discriminator to learn

to recognize meaningful data distributions we mask the data generated. Therefore

there is no need to develop a customized approach to impute missing values, rather

we can directly use the standard GAN architectures to forecast the data.

4.2.3 Training Scheme

Now, that we have defined the structure of our overall system we can now look at

the steps necessary for training the system.

First, we train the Auxiliary GAN to learn the mask distribution. The architec-

ture for the Auxiliary GAN is the same as shown in Figure 4.3 where the condition

window is the corresponding mask vectors M of the time series X and the goal

would be to predict mT+1. The loss function for this Auxiliary GAN is defined as

follows:

Laux(Daux, Gaux) = EmT+1
[Daux(mT+1|M)]− Ez[Daux(Gaux(z|M))]

The loss function defined above follows the Wasserstein GAN formulation [2].

Chapter 4 Harshit Shah 37

Incomplete Time Series Forecasting Using Generative Neural Networks

Figure 4.4: Overall operation of the forecasting system.

Daux and Gaux represent the Auxiliary GAN’s discriminator and generator, respec-

tively. We optimize the generator and the discriminator with the following objective:

min
Gaux

max
Daux

Laux(Daux, Gaux)

After the Auxiliary GAN has completed the training we can use it to gener-

ate synthetic masks for the forecasting GAN. Once the data forecasting GAN has

generated the xT+1 prediction we use the masking operation (refer to Figure 4.4)

to mask the generated time step and use it as input to the discriminator. The loss

function for this forecasting GAN is defined as follows:

Ldata(Ddata, Gdata) = ExT+1
[Ddata(xT+1|X)]− Ez[Ddata(Gdata(z|X))]

Ddata and Gdata represent the data forecasting GAN’s discriminator and genera-

tor, respectively. We optimize the generator and the discriminator with the following

objective:

Chapter 4 Harshit Shah 38

Incomplete Time Series Forecasting Using Generative Neural Networks

min
Gdata

max
Ddata

Ldata(Ddata, Gdata)

4.2.4 Network Specifications

Here, we discuss the skeletal structure for both generator and discriminator. Note

that we can use the same specifications for both the Auxiliary GAN and the data

forecasting GAN.

Generator

The architecture is pretty intuitive. We start with a temporal convolution layer,

followed by a LSTM layer to generate a hidden representation for the conditional

window. We can consider this as a pre-processing step followed by concatenation

of noise input and hidden representation followed by a dense layer and finally the

prediction. The dense layer applied to the hidden representation with noise forms

the main generator for the forecasting distribution. (See Figure 4.5 for illustration.)

Figure 4.5: Generator Architecture.

Chapter 4 Harshit Shah 39

Incomplete Time Series Forecasting Using Generative Neural Networks

Discriminator

The architecture for discriminator is analogous expect that we have two dense layers

after the concatenation step (See Figure 4.6 for illustration). The intuition for this

is to make the discriminator a little bit deeper than the generator as suggested in

[40]. We can also do this with respect to the temporal convolution filters and LSTM

units and we will discuss more about these hyper-parameters in the experiments

section.

Figure 4.6: Discriminator Architecture.

Chapter 4 Harshit Shah 40

Chapter 5

Experiments and Discussions

This chapter deals with the practical aspect of training and optimizing the Auxiliary

GAN and data forecasting GAN.

5.1 Datasets

To test the forecasting capability of the architecture we test it with two famous

chaotic datasets that have also been used in other time series forecasting work.

5.1.1 Lorenz Dataset

In 1963 E. N. Lorenz developed a three parameter family of three-dimensional ordi-

nary differential equations as a model for atmospheric convection with applications

to weather forecasting. This model appeared, when integrated numerically on a

computer, to have extremely complicated solutions. The equations are as follows:

dx

dt
= σ(y − x)

dy

dt
= ρx− y − xz

41

Incomplete Time Series Forecasting Using Generative Neural Networks

dz

dt
= xy − bz

the variable x measures the rate of convective overturning, the variable y mea-

sures the horizontal temperature variation, and the variable z measures the vertical

temperature variation. The three parameters σ, ρ and b are respectively propor-

tional to the Prandtl number, the Rayleigh number, and some physical proportions

of the region under consideration. The most interesting characteristic of this equa-

tions is the emergence of chaos [41, 42] for certain values of σ, ρ and b. To construct

the dataset we chose x0 = y0 = z0 = 1.0 and created 10000 samples each with a

gaussian noise of mean 0 and standard deviation 3 to create a distribution. The con-

stant parameters σ, ρ and b have values 7, 70, and 2.667 respectively. We generate

101 time steps where the last time step serves as the xT+1 prediction.

5.1.2 Mackey-Glass Dataset

The time delay differential equations suggested by Mackey and Glass [43] has been

used widely for forecasting tasks. These equations have originally been explored

as models for physiological control processes and illustrate chaotic behavior and in

particular dynamic bifurcations. The equation is defined as follows:

dx

dt
= β

xτ
1 + xnτ

− γx; γ, β, n > 0

where β, γ, τ and n are real numbers. xτ represents the value of variable x at

time (t − τ) and depending on these parameters the equation displays a range of

periodic and chaotic dynamics. We set β to 0.2, γ to 0.1, n to 10 and τ to 17 and

generate 10000 samples. We generate 201 time steps where the last time step serves

as the xT+1 prediction.

Chapter 5 Harshit Shah 42

Incomplete Time Series Forecasting Using Generative Neural Networks

5.1.3 Mask dataset

For learning the mask distribution we create synthetic mask datasets using the

following steps:

1. Randomly sample a positive integer s from an uniform distribution. s should

be less the number of time steps.

2. Create an array a with values 0.5, 1, 2. This will serve as missing patterns

meaning if we have data available for s time steps then data is missing for

a[i] ∗ s time steps where i can be either 0, 1 or 2. a[i] ∗ s should also be less

than number of time steps in order to avoid out of bounds errors.

3. Then we create an empty mask array and move over it until we reach the total

number of time steps. We set mask values to 1 for s time steps and to 0 for

a[i] ∗ s.

4. We repeat this process for all the samples in the dataset thereby creating

missing value masks for each and every sample.

We create a mask dataset with the same number of time steps as the number

of time steps for each dataset and the last time step serves as the prediction mT+1.

5.2 Evaluation Metric

Since we are aiming to estimate the distributions of future time steps, the natural

selection for an evaluation metric would be to use Kullback-Leibler (KL) divergence

to assess the generated values. However some questions arise regarding the symmet-

ric properties of Kullback-Leibler divergence and hence we choose Jensen-Shannon

(JS) divergence to assess the quality of predictions since it provides a normalized

Chapter 5 Harshit Shah 43

Incomplete Time Series Forecasting Using Generative Neural Networks

and symmetrical version of the KL divergence. To define the JS divergence we need

to define KL divergence first.

5.2.1 Kullback-Leibler Divergence

The KL divergence score intuitively quantifies how much one probability distribu-

tion differs from another probability distribution. The KL divergence between two

distributions Q and P is often stated using the following notation:

KL(P ||Q)

where the || operator indicates “divergence” or P’s divergence from Q. It can

be calculated as follows:

DKL(P ||Q) = −
∑
x∈X

P (x) log

(
P (x)

Q(x)

)

The intuition for the KL divergence score is that when the probability for an

event from P is large, but the probability for the same event in Q is small, there is

a large divergence. When the probability from P is small and the probability from

Q is large, there is also a large divergence, but not as large as the first case. Now,

that we have defined the KL Divergence we can look at JS divergence.

5.2.2 Jensen-Shannon Divergence

JS divergence uses the KL divergence to calculate a normalized score that is sym-

metric. This means that the divergence of P from Q is the same as of Q from P , or

stated formally:

Chapter 5 Harshit Shah 44

Incomplete Time Series Forecasting Using Generative Neural Networks

JS(P ||Q) = JS(Q||P)

It can be calculated as follows:

JS(P ||Q) = 1/2 ∗KL(P ||M) + 1/2 ∗KL(Q||M)

where M is calculated as follows:

M = 1/2 ∗ (P +Q)

5.3 Results

Now, since we have already defined our evaluation metric we can visualize and cal-

culate the divergence values. Since we want our architecture to forecast all possible

values given the history we randomly select one sample from the test set and gener-

ate a number of xT+1values and calculate the JS divergence between the generated

values and the true prediction distribution. To evaluate the architecture we also

train the neural network with complete data which in-turn gives us an upper bound

in terms of performance. Then, we again train the network with incomplete data to

show the network’s efficiency.

5.3.1 Lorenz Dataset Forecasting

On the Lorenz dataset we test the network with multiple settings such as percent-

age of missing values and no of features missing and report the corresponding JS

divergence values.

Chapter 5 Harshit Shah 45

Incomplete Time Series Forecasting Using Generative Neural Networks

Metric: JS Divergence
No of features missing

0 1 2
0% missing data 0.4663 - -

20%-30% missing data - 0.6223 0.625
40%-50% missing data - 0.6338 0.6462

Table 5.1: JS divergence values with different settings on Lorenz dataset

For visualizing the results we used principal component analysis to reduce the

xT+1 dimension to 1D for effective plotting. in particular, in the following we vi-

sualize the ground truth data distribution for the prediction step as well as the

generated data distribution for this step. In addition we show the distribution of

the missing data values for the corresponding time step to illustrate the systematic

relation between the missing data and the history resulting from the missingness

pattern distribution. The results for different settings can be observed in the follow-

ing Figure 5.1. From Figure 5.1 we can see how the network is able to forecast the

true data distribution given missing data. We also notice that the discriminator does

not collapse to a single mode in the missing data distribution and does approximate

the true data distribution so that the generator can in turn learn efficiently.

Chapter 5 Harshit Shah 46

Incomplete Time Series Forecasting Using Generative Neural Networks

(a) 20% incomplete time steps in 1 feature (b) 50% incomplete time steps in 1 feature

(c) 20% incomplete time steps in 2 features (d) 50% incomplete time steps in 2 features

Figure 5.1: Visualization of Lorenz data set results

5.3.2 Mackey-Glass Dataset Forecasting

For the univariate case we used the Mackey-Glass dataset. In this case, since

the data has only one feature we cannot make more than 1 feature missing, hence

we check the robustness of our model with the percentage of missingness. We also

set upper bounds by training the model with complete data and then compare how

Chapter 5 Harshit Shah 47

Incomplete Time Series Forecasting Using Generative Neural Networks

Metric 0% missing data 20 - 30% missing data 40 - 50% missing data
JS Divergence 0.0309 0.0862 0.1393

Table 5.2: JS divergence values with different settings on Mackey-Glass dataset

the model performs with incomplete data.

Figure 5.2 illustrates data generated for different settings in the Mackey-Glass

data set. As in the case of the Lorenz dataset, we again show the ground truth

distribution, the forecasting distribution, and the distribution of the missing values.

Again, the latter shows that missing data items are not independently distributed

but depend on the previous time series.

(a) 20% incomplete time steps (b) 50% incomplete time steps

Figure 5.2: Visualization of Mackey-Glass data set results

In the above figure we can see that when 40-50% data is missing the model is

not able to generate the complete distribution of the ground truth. However, we

can clearly see it does not collapse in the incomplete data distribution.

5.3.3 Comparison with Other Methods

We also compared our model with the state-of-the-art ForGAN model [39].

Since the state-of-the-art method does not solve the missing data problem we use

Chapter 5 Harshit Shah 48

Incomplete Time Series Forecasting Using Generative Neural Networks

their results as an upper bound to assess our model and also visualize the results.

[39] reported KL divergence values in their work hence we also adapt to the same

performance metric and report our KL divergence scores on missing data. [39] has

also made their synthetically generated dataset publicly available which makes it

easier for us to compare.

Metric KL divergence
State-of-the-art Complete data 0.0167

Our Method

0 % missing data
(untuned hyperparameters)

0.0523

20 - 30% missing data 0.0958
40 - 50% missing data 0.1028

Table 5.3: KL divergence values with different settings on the state-of-the-art dataset

The KL Divergence values shown in Table 5.3 show that our method reaches

results that are close to the KLD values with complete data using the state-of-the-art

ForGAN model. Also, Figure 5.3 illustrates the results on the dataset provided by

[39]. Again, here we can observe that our method does not collapse in the incomplete

data distribution and learns the true data distribution as illustrated in Figure 5.3.

Chapter 5 Harshit Shah 49

Incomplete Time Series Forecasting Using Generative Neural Networks

(a) State-of-the-art (b) 0% incomplete time steps with untuned
hyperparameters

(c) 20 - 30% incomplete time steps (d) 40 - 50% incomplete time steps

Figure 5.3: Comparison with state-of-the-art method

Chapter 5 Harshit Shah 50

Chapter 6

Conclusion and Future Work

This thesis presents a novel generative model for time series forecasting with miss-

ing data. This model directly predicts the forecasting distribution without first

performing imputation and, to our knowledge, is the first model to make complete

distribution forecasts in the context of time series data with missing information.

In this work we dealt with two problems. Firstly it attempts to deal with missing

data and second it aims at effectively producing probabilistic forecasts for time se-

ries data with missing values. Our experiments show promising results. The use

of an Auxiliary GAN to learn the mask distributions helps significantly in the data

generation. The Auxiliary GAN effectively prevents the data generation GAN to

fall into the incomplete data distribution and allows the network to generate truely

probabilistic forecasts. It also allows us to by-pass the preprocessing step of im-

puting the missing values that is present in general purpose imputation techniques.

Moreover, directly predicting the distribution in the context of missing data rather

than first imputing values and then making predictions based on single imputed val-

ues also avoids the problem of overcommitment in the imputation phase which could

lead to incorrect predictions especially in the context of systems that exhibit bifur-

cations where imputed values would miss complete ”branches”, i.e. modes of the

forecasting distribution. After comparing our results with a state-of-art architecture

51

Incomplete Time Series Forecasting Using Generative Neural Networks

that operates strictly on complete data, we see that our method is able to perform

probabilistic forecasting despite having missing data with only small degradation in

performance.

However, there is always room for improvement. In the experiments we have

performed manual search for tuning of hyper-parameters and for the future work we

want to employ some automated methods such as using genetic algorithm, bayesian

optimization or random search methods for tuning the hyper-parameters. We also

want to explore multistep probabilistic forecasting using this method in the future.

Chapter 6 Harshit Shah 52

Bibliography

[1] Martin Arjovsky and Léon Bottou. Towards principled methods for training

generative adversarial networks, 2017.

[2] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan, 2017.

[3] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and

Aaron Courville. Improved training of wasserstein gans, 2017.

[4] George E. P. Box, Gwilym M. Jenkins, Gregory C. Reinsel, and Greta M. Ljung.

Time Series Analysis: Forecasting and Control, 5th Edition. Wiley, 2015.

[5] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term de-

pendencies with gradient descent is difficult. IEEE Transactions on Neural

Networks, 5(2), March 1994.

[6] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural

Computation, 1997.

[7] Sepp Hochreiter. The vanishing gradient problem during learning recurrent neu-

ral nets and problem solutions. International Journal of Uncertainty, Fuzziness

and Knowledge-Based Systems, 6(2):107–116, April 1998.

[8] Alex Krizhevsky, Ilya Sutskever, and GeoffreyE.Hinton. Imagenet classifica-

tion with deep convolutional neural networks. Advances in neural information

processing systems, 2012.

53

Incomplete Time Series Forecasting Using Generative Neural Networks

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual

learning for image recognition, 2015.

[10] John Cristian Borges Gamboa. Deep learning for time-series analysis. CoRR,

abs/1701.01887, 2017.

[11] S. Albawi, T. A. Mohammed, and S. Al-Zawi. Understanding of a convolu-

tional neural network. In 2017 International Conference on Engineering and

Technology (ICET), pages 1–6, 2017.

[12] Dimitri Palaz, M. Magimai-Doss, and Ronan Collobert. Analysis of cnn-based

speech recognition system using raw speech as input. In INTERSPEECH, 2015.

[13] Jian Bo Yang, Minh Nhut Nguyen, Phyo Phyo San, Xiao Li Li, and Shonali

Krishnaswamy. Deep convolutional neural networks on multichannel time se-

ries for human activity recognition. In Proceedings of the 24th International

Conference on Artificial Intelligence, IJCAI’15, pages 3995–4001. AAAI Press,

2015.

[14] Davide Figo, Pedro C. Diniz, Diogo R. Ferreira, and João M. P. Cardoso. Pre-

processing techniques for context recognition from accelerometer data. Personal

and Ubiquitous Computing, 14(7):645–662, 2010.

[15] Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane

Idoumghar, and Pierre-Alain Muller. Deep learning for time series classifi-

cation: a review. Data Mining and Knowledge Discovery, 33(4):917–963, Mar

2019.

[16] How much data is created on the internet each day?

https://blog.microfocus.com/how-much-data-is-created-on-the-internet-each-

day/.

[17] How much data is generated each day?

https://www.weforum.org/agenda/2019/04/how-much-data-is-generated-

each-day-cf4bddf29f/.

Chapter 6 Harshit Shah 54

Incomplete Time Series Forecasting Using Generative Neural Networks

[18] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-

Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative ad-

versarial nets. In Proceedings of the 27th International Conference on Neural

Information Processing Systems - Volume 2, NIPS’14, pages 2672–2680, Cam-

bridge, MA, USA, 2014. MIT Press.

[19] Hamed Alqahtani, Manolya Kavakli-Thorne, and Gulshan Kumar. Applications

of generative adversarial networks (gans): An updated review. Archives of

Computational Methods in Engineering, 2019.

[20] Anders Boesen Lindbo Larsen, Søren Kaae Sønderby, Hugo Larochelle, and Ole

Winther. Autoencoding beyond pixels using a learned similarity metric, 2015.

[21] Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets,

2014.

[22] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation

learning with deep convolutional generative adversarial networks, 2015.

[23] Ian Goodfellow, Mehdi Mirza, Aaron Courville, and Yoshua Bengio. Multi-

prediction deep boltzmann machines. In C. J. C. Burges, L. Bottou, M. Welling,

Z. Ghahramani, and K. Q. Weinberger, editors, Advances in Neural Information

Processing Systems 26, pages 548–556. Curran Associates, Inc., 2013.

[24] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Rad-

ford, and Xi Chen. Improved techniques for training gans, 2016.

[25] John Forbes Nash Jr. Non-cooperative games. PhD thesis, Princeton University,

May 1950.

[26] Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. Seqgan: Sequence gener-

ative adversarial nets with policy gradient, 2016.

[27] Yizhe Zhang, Zhe Gan, and L. Carin. Generating text via adversarial training.

NIPS Workshop, 2016.

Chapter 6 Harshit Shah 55

Incomplete Time Series Forecasting Using Generative Neural Networks

[28] Jiwei Li, Will Monroe, Tianlin Shi, Sébastien Jean, Alan Ritter, and Dan Ju-

rafsky. Adversarial learning for neural dialogue generation, 2017.

[29] Ofir Press, Amir Bar, Ben Bogin, Jonathan Berant, and Lior Wolf. Language

generation with recurrent generative adversarial networks without pre-training,

2017.

[30] Pedro J. Garćıa-Laencina, José-Luis Sancho-Gómez, and Ańıbal R. Figueiras-

Vidal. Pattern classification with missing data: a review. Neural Computing

and Applications, 19(2):263–282, 2010.

[31] Jinsung Yoon, James Jordon, and Mihaela van der Schaar. Gain: Missing data

imputation using generative adversarial nets, 2018.

[32] Steven Cheng-Xian Li, Bo Jiang, and Benjamin Marlin. Misgan: Learning from

incomplete data with generative adversarial networks, 2019.

[33] Lifeng Shen, Qianli Ma, and Sen Li. End-to-end time series imputation via

residual short paths. In Jun Zhu and Ichiro Takeuchi, editors, Proceedings

of Machine Learning Research, volume 95, pages 248–263. PMLR, 14–16 Nov

2018.

[34] Zachary C. Lipton, David C. Kale, and Randall Wetzel. Modeling missing data

in clinical time series with rnns, 2016.

[35] Yonghong Luo, Xiangrui Cai, Ying ZHANG, Jun Xu, and Yuan xiaojie. Multi-

variate time series imputation with generative adversarial networks. In S. Ben-

gio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett,

editors, Advances in Neural Information Processing Systems 31, pages 1596–

1607. Curran Associates, Inc., 2018.

[36] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau,

Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase repre-

sentations using rnn encoder-decoder for statistical machine translation, 2014.

Chapter 6 Harshit Shah 56

Incomplete Time Series Forecasting Using Generative Neural Networks

[37] H. Arnelid, E. L. Zec, and N. Mohammadiha. Recurrent conditional generative

adversarial networks for autonomous driving sensor modelling. In 2019 IEEE

Intelligent Transportation Systems Conference (ITSC), pages 1613–1618, 2019.

[38] Cristóbal Esteban, Stephanie L. Hyland, and Gunnar Rätsch. Real-valued

(medical) time series generation with recurrent conditional gans, 2017.

[39] A. Koochali, P. Schichtel, A. Dengel, and S. Ahmed. Probabilistic forecasting

of sensory data with generative adversarial networks – forgan. IEEE Access,

7:63868–63880, 2019.

[40] Ian Goodfellow. Nips 2016 tutorial: Generative adversarial networks, 12 2016.

[41] Colin Sparrow. The Lorenz Equations: Bifurcations, Chaos, and Strange At-

tractors. Springer, New York, NY, 2012.

[42] Stephen H. Kellert. In the Wake of Chaos: UNPREDICTABLE ORDER IN

DYNAMICAL SYSTEMS. University of Chicago Press, 1993.

[43] MC Mackey and L Glass. Oscillation and chaos in physiological control systems.

Science, 197(4300):287–289, 1977.

Chapter 6 Harshit Shah 57

