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ABSTRACT 

Accurate forecasting of floods is a long-standing challenge in hydrology and water man-

agement. Data assimilation (DA) is a popular technique used to improve forecast accuracy by 

updating the model states in real time using the uncertainty-quantified actual and model-simulated 

observations. A particular challenge in DA concerns the ability to improve the prediction of hy-

drologic extremes, such as floods, which have particularly large impacts on society. Almost all 

DA methods used today are based on least squares minimization. As such, they are subject to 

conditional bias (CB) in the presence of observational uncertainties which often leads to under- 

and over-prediction of the predictand over the upper and lower tails, respectively. To address the 

adverse impact of CB in DA, conditional bias penalized Kalman filter (CBPKF) and conditional 

bias penalized ensemble Kalman filter (CBEnKF) have recently been proposed which minimize a 

weighted sum of the error variance and expectation of the CB squared. Whereas CBPKF and 

CBEnKF significantly improve the accuracy of the estimates over the tails, they deteriorate per-

formance near the median due to the added penalty. To address the above, this work introduces 

CB-aware DA, which adaptively weights the CB penalty term in real time, and assesses the flow-

dependent information content in observation and model prediction using the degrees of freedom 

for signal (DFS), which serves as a skill score for information fusion. CB-aware DA is then com-

paratively evaluated with ensemble Kalman filter in which the marginal information content of 

observations and its flow dependence are assessed given the hydrologic model used. The findings 

indicate that CB-aware DA with information content analysis offers an objective framework for 

improving DA performance for prediction of extremes and dynamically balancing the predictive 

skill of hydrologic models, quality and frequency of hydrologic observations, and scheduling of 

DA cycles for improving operational flood forecasting cost-effectively.  
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Chapter 1. General Introduction 

Accurate estimation of the dynamically-varying state of the hydrologic system is a requisite 

for accurate hydrologic prediction and advancing understanding and modeling of the physical pro-

cesses at work. Toward that end, it is necessary to co-utilize real-time observations and hydrologic 

model predictions via data assimilation (DA) or model-data fusion (Liu and Gupta, 2007; Liu et 

al., 2012; Seo et al., 2014). Information fusion for hydrologic state estimation, however, has proven 

to be a significant challenge. 

To achieve optimality in model-data fusion in some well-defined sense, it is necessary to 

quantify the information content in the observations and model predictions objectively and accu-

rately. Because the rainfall-runoff processes are nonlinear and the primary hydrologic variables of 

interest such as rainfall, soil moisture, runoff and discharge are generally skewed particularly at 

high resolutions, the hydrologic state variables tend to be highly heteroscedastic, often encompass-

ing several orders of magnitude. In addition, the information content assessed at one spatiotem-

poral scale does not transfer to other scales (NRC, 2012). These factors contribute to strong flow 

dependence in information content in the observations and model predictions, such that the content 

may vary greatly according to the dynamically-varying state of the hydrologic system. For exam-

ple, in flood forecasting, one may readily hypothesize that the information content in observed 

streamflow is larger in conditions of fast-increasing flow than in steady, normal flow, and that the 

additional information content in observations at new locations, or at the same locations but made 

more frequently, is also flow-dependent. 

State estimation of hydrologic systems at the catchment scale poses additional challenges 

because most catchments are under-observed. Though in-situ soil moisture sensing has become 
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more popular, they are usually available only from the mesoscale networks such as the Oklahoma 

Mesonet (Brock et al., 1995; Fiebrich et al., 2006), and the Texas Mesonet (Greene, 2013), and 

from the generally very sparse national networks such as the Soil Climate Analysis Network 

(SCAN)(Schaefer et al., 2007). Due to large spatial variability, in-situ soil moisture observations 

are subject to large representativeness errors which may greatly reduce their information content 

at the catchment scale (Mohanty et al., 2000; Margulis et al., 2002; Jacobs et al., 2004; Lee et al., 

2011; Chen et al., 2014). Although satellite sensing of soil moisture is steadily advancing, the 

relatively low sampling frequency and generally large uncertainties associated with retrieval sig-

nificantly limit its utility at the catchment scale (Crow and Ryu, 2009; Brocca et al., 2010; Crow 

et al., 2011; Chen et al., 2014; Afshar et al., 2019, p. 2; Das et al., 2019; Mao et al., 2019). Though 

spatially sparse, streamflow observations reflect the spatiotemporally-integrated state of the catch-

ment, and hence are high in information content at that scale. Given the above observations, one 

recognizes that effective assimilation of streamflow observations is critical to accurate estimation 

of the hydrologic state at the catchment scale and skillful prediction of streamflow, which is argu-

ably the most important variable in hydrologic prediction (Clark et al., 2008; Noh et al., 2018), 

and other hydrologic variables. 

An important consideration in hydrologic information fusion is that society places a much 

higher premium on accurate prediction of extremes, such as floods, droughts, and algal blooms, 

than that of “normal” events. As such, assessment and utilization of flow-dependent information 

content are particularly important to accurate prediction of large-to-extreme events. Also im-

portant, but not very widely recognized in the hydrologic literature, are the compounding obser-

vational uncertainties associated with assimilating observations of “non-normal” states. For exam-
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ple, streamflow observations are subject to errors due to imperfect measurement of stage and un-

certain estimation of flow from stage observations. In addition, statistical modeling using obser-

vations and model predictions such as DA and information fusion is subject to conditional bias 

(CB) when the system is in non-normal states, as in very high or low flow conditions. 

It is well known in statistics and econometrics that, in the presence of significant observa-

tion error, least-squares minimization tends to introduce negative and positive biases, or CB, over 

the upper and lower tails of the predictands, respectively (Fuller, W.A., 1987; Seber and Wild, 

1989; Frost and Thompson, 2000). Referred to as the “iron law of econometrics” for its ubiquity 

in statistical modeling and prediction (Hausman, 2001), the CB is more acute when large observa-

tional uncertainties exist or the predictability is limited, a condition frequently encountered in hy-

drologic prediction particularly of large-to-extreme events for under-observed systems. 

There are two types of CB (Jolliffe and Stephenson, 2003; Wilks, 2011). The Type-I CB, 

defined as 𝐸[𝑋|�̂� = �̂�] − �̂�, where 𝑋,  �̂�, and �̂� denote the unknown truth, the estimate, and the 

realization of �̂� , respectively, is associated with false alarm. The Type-II CB, defined as 

𝐸[�̂�|𝑋 = 𝑥] − 𝑥, where 𝑥 denotes the realization of 𝑋, is associated with failure to detect an event. 

Of the two, the Type-II is of particular interest for hydrologic prediction in that, whereas the Type-

I CB may be reduced by calibration (not desirable but not impossible if large enough data exist), 

the Type-II cannot (Wilks, 2011; Seo et al., 2018a, 2018b). Because the Type-II CB arises over 

the tails of the distribution, its reduction is particularly important for estimation and prediction of 

large-to-extreme events. Indeed, Lee et al. (2019) have shown that, in flood forecasting, the larger 

the event is, the larger the margin of improvement in predictive skill is from addressing the Type-

II CB. Figure 1-1 shows that CB-penalized ensemble Kalman filter (CBEnKF)(Lee et al., 2019), 
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which co-minimizes the Type-II CB and 

error variance, significantly improves 

over EnKF (Evensen, 1994, 2003) under 

identical conditions, and that, the larger 

the verifying flow is, the larger the mar-

gin of improvement is.  

One of the most important socie-

tal functions of hydrologic prediction is 

to minimize or reduce surprises, i.e., the 

Type-II errors. With urbanization and 

climate change, calibrating hydrologic 

models, including uncertainty models, 

based on long periods of records is be-

coming an increasingly tenuous practice (Wi et al., 2015; Alizadeh et al., 2020). In parts of TX, 

there are also growing evidence that the uncertainty in the initial conditions (IC) of operational 

hydrologic models may be increasing (Cotter, 2015). The record-breaking flooding of the Blanco 

River in central TX in May 2015 (Furl et al., 2018), which was attributed to rapid urbanization 

whose potential impact was assessed and predicted as early as in 2007 (Curran, 2007), is one of 

many recent examples that encapsulate the challenges in hydrologic state estimation and prediction 

in changing conditions. 

(Jervis 2015 USA TODAY) On May 23, 2015, the Blanco River in Central Texas rose 

more than 33 feet in 3 hours, cresting at about 40 ft, or 27 ft above flood stage. It broke the record 

crest in 1929 by about 7 ft before the gauge stopped reporting (see Figure 1-2). “Basically, no 

Figure 1-1. Mean Continuous Ranked Probability 

Skill Score (CRPSS) of the CBEnKF 1-hr stream-

flow forecast over the EnKF for 10 basins in TX as 

a function of the conditioning verifying observed 

flow exceeding the climatological probability shown 

on the x-axis. The probability levels used range from 

0 to 0.99. At each probability level, there are 90 val-

ues (10 basins, 9 cases) from which the 5, 25, 50, 75, 

95th percentiles and the mean value were calculated. 

Blue and red shaded areas represent the 5-95th and 

25-75th percentile ranges, respectively. Green line 

and black dot denote the median and mean, respec-

tively (from Lee et al. 2019). 
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warning,” said Jim Harris, a Blanco resident, 

whose three-bedroom home filled with 5 ft of wa-

ter. Local officials said they were caught off guard 

by the floods, due in part to a lack of urgency from 

federal forecasters who were predicting much 

lower flood levels than what actually occurred in 

town. Hydrologists at the West Gulf River Fore-

cast Center (WGRFC) forecasted at 7:15 p.m. that 

the Blanco River at Wimberley would crest at around 12 ft. Forty-five minutes later, they issued 

another forecast saying Wimberley could see "minor flooding," with the river cresting at 16 ft. The 

center only called for "major flooding" at 11:19 pm, hours into the flood and as residents in both 

Blanco and Wimberley were being rescued from rooftops.”  

The predictive skill for events such as flash floods is predicated on the skillful prediction 

of rainfall, a particularly large challenge for convective events (Clark et al., 2016; Herman and 

Schumacher, 2016). To gain as much hydrologic lead time as possible toward the “golden time”, 

i.e., the minimum time necessary to secure safety from flash flooding or flooding (Moon et al. 

2017), it is critically important to recognize and discern significant departures of the model pre-

dictions from the unfolding reality as quickly as possible, and to update the transient state of the 

hydrologic models objectively and accurately for skillful prediction. It is argued that, to utilize 

fully the flow-dependent information content in the observations and model predictions, it is nec-

essary to address the compounding observational uncertainties, and that advancing understanding 

and utilization of flow-dependent information is essential to identifying and addressing the science 

Figure 1-2. Blanco River at Wemberly, TX, 

on May 22 through 27, 2015 (from 

NOAA/NWS). 
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and technology gaps in the observation-prediction chain toward step-change improvement in water 

forecasting in a changing world. 

The overarching hypothesis of this research is that there exists significant flow-dependent 

information content in hydrologic observations that is currently not utilized fully in estimation and 

prediction of large-to-extreme events. It is also hypothesized that, by unraveling the compounding 

observational uncertainties, it is possible to realize significant improvement in predictive skill and 

to reduce predictive uncertainty. To test these hypotheses, this research proposes to develop and 

comparatively evaluate CB-aware DA, and objectively assess the flow-dependent information con-

tent in observations and model predictions under a wide range of hydrologic conditions. The de-

grees of freedom for signal (DFS)(Rodgers, 2000) is used as the primary measure of information 

content, and CBEnKF (Lee et al., 2019; Shen et al., 2019) is used as the primary building block 

for CB-aware DA. Simulation experiments for comprehensive comparative evaluation with EnKF 

using multiple hydrologic models are designed and carried out. The observations of the prognostic 

variable of streamflow, and the forcing variables of precipitation and potential evapotranspiration 

(PE) are assimilated. A diverse set of basins in TX, including those in semi-arid regions, is used 

for hypothesis testing, comparative evaluation of CB-aware DA, and assessment of flow-depend-

ent information content. 

The new and significant contribution of this research are: 

1) Advances in understanding of CB in optimal estimation and hydrologic prediction, 

2) Development of variance-inflated KF (VIKF), algorithmically simpler and computationally 

less expensive approximation for CB-penalized KF (CBPKF), 

3) Comparative evaluation of CBEnKF for flood forecasting, 

4) Development of adaptive CBPKF and CBEnKF, 
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5) Comparative evaluation of CB-aware DA based on adaptive CBEnKF for flood forecasting, 

6) Advances in understanding of flow-dependent information content in hydrologic observa-

tions in catchment’s streamflow response, 

7) Assessment of value of DA for event-based flash flood forecasting using one way-nested 

high-resolution hydrologic model. 

8) CB-aware DA is suitable add-on to any existing streamflow prediction systems to improve 

forecast skill of the extreme events, hence protect the flood prone areas, such as Texas. 

This dissertation is organized as follows. In Chapter 2, CBPKF, CB-penalized fisher-like 

solution, VIKF and adaptive CBPKF are described. Chapter 3 describes CBEnKF and its evalua-

tion. In Chapter 4, CB-aware DA is described and evaluated, including adaptive CBEnKF and 

assessment of information content using DFS. Chapter 5 describes the application of CB-aware 

DA in WRF-Hydro. Lastly, Chapter 6 provides the general conclusions and future research rec-

ommendations. 
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Chapter 2. CBPKF: Theory, Adaptive Extension and Approximation 

2.1 Introduction 

Kalman filter (KF) and its variants and extensions are widely used to fuse observations 

with model predictions in a wide range of applications (Reichle et al., 2002; Yu et al., 2005; Dong 

and You, 2006; Antoniou et al., 2007; de Wit and van Diepen, 2007; Kurtz et al., 2012; Wallace 

et al., 2012; Bhotto and Bajić, 2015; Muñoz-Sabater, 2015; Gao et al., 2016, p. 20; Houtekamer 

and Zhang, 2016; Jain and Krishnamurthy, 2016; Jiang et al., 2016; Lu et al., 2016; Lv et al., 2016; 

Nair and Indu, 2016; Yan et al., 2016; Chen et al., 2017; Ma et al., 2017; Zhou et al., 2017; Bocher 

et al., 2018). In geophysics and environmental science and engineering, often the main objective 

of information fusion is to improve estimation and prediction of states in their extremes rather than 

in normal ranges. In hydrologic forecasting, for example, accurate prediction of floods and 

droughts is far more important than that of streamflow and soil moisture in normal conditions. 

Because KF minimizes unconditional error variance, its solution tends to improve estimation near 

median where the state of the dynamic system resides most of the times while often leaving sig-

nificant biases in the extremes. Such conditional biases (CB) (Ciach et al., 2000) generally result 

in consistent under- and overestimation of the true states in the upper and lower tails of the distri-

bution, respectively. To address CB, CB-penalized Fisher-like estimation and CB-penalized KF 

(CBPKF) (Seo et al., 2018a, 2018b) have recently been developed which jointly minimize error 

variance and expectation of the Type-II CB squared for improved estimation and prediction of 

extremes. The Type-II CB, defined as 𝐸[�̂�|𝑋 = 𝑥] − 𝑥 , is associated with failure to detect the 

event where 𝑥 denotes the realization of 𝑋 where 𝑋, �̂� and �̂� denote the unknown truth, the esti-

mate, and the realization of �̂�, respectively (Jolliffe and Stephenson, 2003). The original formula-

tion of CBPKF, however, is computationally extremely expensive for high-dimensional problems. 
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Also, whereas CBPKF improves performance in the tails, it deteriorates performance in the normal 

ranges. In this work, we approximate CBPKF with forecast error covariance-inflated KF, referred 

to hereafter as the variance-inflated KF (VIKF) formulation, as a computationally less expensive 

and algorithmically simpler alternative, and implement adaptive CBPKF to improve unconditional 

performance. 

Elements of CB-penalized Fisher-like estimation has been described in the forms of CB-

penalized indicator cokriging for fusion of predicted streamflow from multiple models and ob-

served streamflow (Brown et al., 2010), CB-penalized kriging for spatial estimation (Seo, 2012) 

and rainfall estimation (Seo et al., 2014), and CB-penalized cokriging for fusion of radar rainfall 

and rain gauge data (Kim et al., 2018). The original formulation of CBPKF have been described 

in (Seo et al., 2018a) and (Seo et al., 2018b), respectively. Its ensemble extension, CB-penalized 

ensemble KF, or CEnKF, is described in (Lee et al., 2018) in the context of ensemble data assim-

ilation for flood forecasting. Whereas CBPKF was initially motivated for environmental and geo-

physical state estimation and prediction, it is broadly applicable to a wide range of applications for 

which improved performance in the extremes is desired. 

This chapter is an adaptation of Shen et al. (2019) and is organized as follows. Sections 2.2 

and 2.3 describe CB-penalized Fisher-like solution and CBPKF, respectively. Section 2.4 de-

scribes approximation of CBPKF. Sections 2.5 describe the evaluation experiments and results, 

respectively. Section 2.6 describes adaptive CBPKF. Section 2.7 provides conclusions. 
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2.2 Conditional Bias-Penalized Fisher-Like Solution 

As in Fisher estimation (Schweppe, 1973), the estimator sought for CB-penalized Fisher-

like estimation is 𝑋∗ = 𝑾𝒁 where 𝑋∗ denotes the (𝑚 × 1) vector of the estimated states, 𝑾 de-

notes the (𝑚 × (𝑛 + 𝑚)) weight matrix, and 𝒁 denotes the ((𝑛 + 𝑚) × 1) augmented observa-

tion vector. In the above, n denotes the number of observations, m denotes the number of state 

variables, and (𝑛 + 𝑚) reflects the dimensionality of the augmented vector of the observations 

and the model-predicted states to be fused for estimation of the true state 𝑋. the purpose of aug-

mentation is to relate directly to CBPKF in Section 2.3. Throughout this chapter, we use regular 

and bold letters to differentiate the non-augmented and augmented variables, respectively. The 

linear observation equation is given by: 

𝒁 = 𝑯𝑋 + 𝑽 (2.1) 

where 𝑋 denotes the (𝑚 × 1) vector of the true state with 𝐸[𝑋] = 𝑀𝑥 and 𝐶𝑜𝑣[𝑋, 𝑋𝑇] = ΨXX, H 

denotes the ((𝑛 + 𝑚) × 𝑚) augmented linear observation equation matrix, and 𝑽 denotes the 

((𝑛 + 𝑚) × 1) augmented zero-mean observation error vector with 𝐶𝑜𝑣[𝑉, 𝑉𝑇] = 𝑹. Assuming 

independence between 𝑋 and 𝑽, we write the Bayesian estimator for 𝑋, or 𝑋∗, as (Schweppe 1973): 

𝑋∗ = 𝑀𝑋 + 𝑾(𝒁 − 𝑴𝒁) (2.2) 

The error covariance matrix for 𝑋∗, 𝐸[(𝑋 − 𝑋∗)(𝑋 − 𝑋∗)𝑇], is given by: 

Σ𝐸𝑉 = (𝑰 − 𝑾𝑯)Ψ𝑋𝑋(𝑰 − 𝑾𝑯)𝑻 + 𝑾𝑹𝑾𝑻 (2.3) 

With Eq.(2.2), we may write Type-II CB as: 

𝑋 − 𝐸[𝑋∗|𝑋] = (𝑋 − 𝑀𝑋) − 𝑾𝐸[(𝒁 − 𝑯𝑀𝑥)|𝑋] (2.4) 

Inverting Eq.(2.1), we have for the observation equation for Z: 
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𝑿 = 𝑮𝑇𝒁 − 𝑮𝑇𝑽 (2.5) 

The (𝑚 × 𝑛) matrix, 𝑮𝑇, in Eq.(2.5) is given by: 

𝑮𝑻 = (𝑼𝑻𝑯)−𝟏𝑼𝑻 (2.6) 

where 𝑼𝑻 is some (m×(n+m)) nonzero matrix. Using Eq.(2.5) and the identity, 𝚿𝒁𝒁 = 𝑯Ψ𝑋𝑋𝑯𝑻 +

𝑹, we may write the Bayesian estimate for E[Z|X] in Eq.(2.4) as: 

�̂�[𝒁|𝑋] = 𝑯𝑀𝑋 + 𝑪(𝑋 − 𝑀𝑋) (2.7) 

where 

𝑪 = (𝑯Ψ𝑋𝑋𝑯𝑻 + 𝑹)𝑮𝑻[𝑮(𝑯Ψ𝑋𝑋𝑯𝑻 + 𝟐𝑹)𝑮𝑻]−𝟏 (2.8) 

Eqs.(2.7) and (2.8) state that, if the a priori state error covariance Ψ𝑋𝑋 is noninformative or there 

are no observation errors, the Bayesian estimate of Z given X is given by HX, but that, if the a 

priori Ψ𝑋𝑋 is perfectly informative or observations are information-less, the Bayesian estimate is 

given by the average of the a priori mean 𝑀𝑋 and the observed true state X.  

With Eq.(2.4), we may write the quadratic penalty due to Type-II CB as: 

Σ𝐶𝐵 = 𝐸[(𝑋 − 𝐸𝑋∗[𝑋∗|𝑋])(𝑋 − 𝐸𝑋∗[𝑋∗|𝑋])𝑇 ] = (𝐼 − 𝑾𝑪)Ψ𝑋𝑋(𝐼 − 𝑾𝑪)𝑇 (2.9) 

where I denotes the (m×m) identity matrix. Combining Σ𝐸𝑉 in Eq.(2.3) and Σ𝐶𝐵 in Eq.(2.9), we 

have the apparent error covariance, Σ𝑎, which reflects both the error covariance and Type-II CB: 

Σ𝑎 = (𝐼 − 𝑾𝑯)𝚿𝑿𝑿(𝐼 − 𝑾𝑯)𝑻 + 𝑾𝑹𝑾𝑻 + 𝛼(𝐼 − 𝑾𝑪)Ψ𝑋𝑋(𝐼 − 𝑾𝑪)𝑻 (2.10) 

where α denotes the scaler weight given to the CB penalty term. Minimizing Eq.(2.10) with respect 

to W, or by direct analogy with the Bayesian solution (Schweppe 1973), we have: 
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𝐖 = Ψ𝑋𝑋�̂�𝑻[�̂�Ψ𝑋𝑋�̂�𝑻 + 𝚲]
−𝟏

 (2.11) 

The modified structure matrix �̂�𝑻  and observation error covariance matrix 𝚲 in Eq.(2.11) are 

given by: 

�̂�𝑻 = 𝑯𝑻 + 𝛼𝑪𝑻 (2.12) 

𝚲 = 𝑹 + 𝛼(1 − 𝛼)𝑪Ψ𝑋𝑋𝑪𝑻 − 𝛼𝑯Ψ𝑋𝑋𝑪𝑻 − 𝛼𝑪Ψ𝑋𝑋𝑯𝑻 (2.13) 

Using Eq.(2.11) and the matrix inversion lemma (Woodbury 1950), we may write Σ𝑎 and 

𝑋∗ in Eqs.(2.10) and (2.2), respectively, as:  

Σ𝑎 = 𝛼Ψ𝑋𝑋 + [�̂�𝚲−𝟏�̂�𝑻 + Ψ𝑋𝑋
−1]

−𝟏
 (2.14) 

𝑋∗ = [�̂�𝑻𝚲−𝟏�̂� + Ψ𝑋𝑋
−1]

−𝟏
{�̂�𝑻𝚲−𝟏𝒁 + Ψ𝑋𝑋

−1𝑀𝑋} + Δ (2.15) 

where Δ = αΨ𝑋𝑋�̂�𝑻[�̂�Ψ𝑋𝑋�̂�𝑻 + 𝚲]−𝟏𝑪𝑀𝑋. To render the above Bayesian solution to a Fisher-

like solution, we assume no a priori information in X by letting Ψ𝑋𝑋
−1, which is associated with error 

covariance in Eq.(2.3), vanish in the brackets in Eqs.(2.14) and (2.15) to arrive at: 

Σ𝑎 = 𝐵[�̂�𝚲−𝟏�̂�𝑻]
−𝟏

(2.16) 

𝑋∗ = [�̂�𝑻𝚲−𝟏�̂�]
−𝟏

�̂�𝑻𝚲−𝟏𝒁 + Δ (2.17) 

where the scaling matrix B is given by 𝐵 = 𝛼Ψ𝑋𝑋�̂�𝑻𝚲−𝟏�̂� + 𝐼. To obtain the estimator of the 

form, 𝑋∗ = 𝑾𝒁, we impose the unbiasedness condition, 𝐸[𝑋∗] = 𝑋, or equivalently, 𝑾𝑯 = 𝐼. 

The unbiasedness condition is satisfied by replacing [�̂�𝑻𝚲−𝟏�̂�]−𝟏 with [�̂�𝑻𝚲−𝟏𝑯]−𝟏 and drop-

ping ∆ in Eq.(2.17), which yields: 

Σ𝑎 = 𝑩[�̂�𝚲−𝟏𝑯𝑻]
−𝟏

 (2.18) 
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𝑋∗ = [�̂�𝑻𝚲−𝟏𝑯]
−𝟏

�̂�𝑻𝚲−𝟏𝒁 (2.19) 

Finally, we obtain from Eq.(2.3) the error covariance, Σ𝐸𝑉, associated with 𝑋∗ in Eq.(2.19): 

Σ𝐸𝑉 = 𝑾𝑹𝑾𝑻 = [�̂�𝑻𝚲−𝟏𝑯]
−𝟏

�̂�𝑻𝚲−𝟏𝑹𝚲−𝟏�̂�[�̂�𝑻𝚲−𝟏𝑯]
−𝟏

 (2.20) 

It is readily seen that, if α=0, we have �̂�𝑻 = 𝑯 and 𝚲 = 𝑹, and hence the CB-penalized Fisher-

like estimator, Eqs.(2.19) and (2.20), is reduced to the Fisher estimator (Schweppe, 1973).  

2.3 Conditional Bias-Penalized Kalman Filter 

CBPKF results directly from decomposing the augmented matrices and vectors in Eq.(2.19) 

and Eq.(2.20) as KF does from the Fisher solution (Schweppe, 1973). The CBPKF solution, how-

ever, is not very simple because the modified observation error covariance matrix, Λ, is no longer 

diagonal. An important consideration in casting the CB-penalized Fisher-like solution into CBPKF 

is to recognize that CB arises from the error-in-variable effects associated with uncertain observa-

tions (Hausman, 2001), and that the a priori state, represented by the dynamical model forecast, is 

not subject to CB. We therefore apply the CB penalty to the observations only, and reduce C in (8) 

to 𝑪𝑻 = (𝐶1,𝑘
𝑇 𝐶2,𝑘

𝑇 ) = (𝐶1,𝑘
𝑇  0). Separating the observation and dynamical model components in 

�̂�𝑻 and 𝚲 via the matrix inversion lemma, we have: 

�̂�𝑻 = (�̂�1,𝑘
𝑇  𝐼) (2.21) 

𝚲 = [
Λ11,𝑘 Λ12,𝑘

Λ21,𝑘 Λ22,𝑘
] (2.22) 

where 

�̂�1,𝑘
𝑇 = 𝐻𝑘

𝑇 + 𝛼𝐶1,𝑘
𝑇  (2.23) 
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Λ11,𝑘 = 𝑅𝑘 + 𝛼(1 − 𝛼)𝐶1,𝑘Ψ𝑋𝑋𝐶1,𝑘
𝑇 − 𝛼𝐻𝑘Ψ𝑋𝑋𝐶1,𝑘

𝑇 − 𝛼𝐶1,𝑘Ψ𝑋𝑋𝐻𝑘
𝑇 (2.24) 

Λ12,𝑘 = −𝛼𝐶1,𝑘Ψ𝑋𝑋 (2.25) 

Λ21,𝑘 = Λ12,𝑘
𝑇  (2.26) 

Λ22,𝑘 = Σ𝑘|𝑘−1 (2.27) 

In the above,𝐻𝑘 denotes the (n × m) observation matrix, and 𝑅𝑘 denotes the (n×n) observation 

error covariance matrix. To evaluate the (m × n) matrix, 𝐶1,𝑘, it is necessary to specify 𝑼𝑻 in (2.6). 

We use UT=HT which ensures invertibility of UTH, but other choices are also possible. We then 

have for 𝐶1,𝑘
𝑇 : 

𝐶1,𝑘 = [(𝐻𝑘Ψ𝑋𝑋𝐻𝑘
𝑇 + 𝑅𝑘)𝐺1,𝑘 + 𝐻𝑘Ψ𝑋𝑋𝐺2,𝑘]𝐿𝑘

−1 (2.28) 

where  

𝐺2,𝑘
𝑇 = (𝐻𝑘

𝑇𝐻𝑘 + 𝐼)−1 (2.29) 

𝐺1,𝑘
𝑇 = 𝐺2,𝑘

𝑇 𝐻𝑘
𝑇 (2.30) 

𝐿𝑘 = 𝐺2,𝑘
𝑇 [𝐻𝑘

𝑇(𝐻𝑘Ψ𝑋𝑋𝐻𝑘
𝑇 + 2𝑅𝑘)𝐻𝑘 + 𝐻𝑘

𝑇𝐻𝑘Ψ𝑋𝑋 + Ψ𝑋𝑋𝐻𝑘
𝑇𝐻𝑘 + Ψ𝑋𝑋 + 2Σ𝑘|𝑘−1]𝐺2,𝑘 (2.31) 

Expanding W in (2.11) with 𝚲−1 = 𝚪 = [
Γ11,𝑘 Γ12,𝑘

Γ21,𝑘 Γ22,𝑘
], we have; 

𝑾 = [�̂�𝑻𝚲−𝟏𝑯]
−𝟏

�̂�𝑻𝚲−𝟏 = (𝜛1,𝑘𝐻𝑘 + 𝜛2,𝑘)
−1

(𝜛1,𝑘𝜛2,𝑘) (2.32) 

In (2.32), the (m×n) and (m×m) weight matrices for the observation and model prediction, ω1,k 

and ω2,k, respectively, are given by: 

𝜛1,𝑘 = �̂�1,𝑘
𝑇 Γ11,𝑘 + Γ21,𝑘 (2.33) 
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𝜛2,𝑘 = �̂�1,𝑘
𝑇 Γ12,𝑘 + Γ22,𝑘 (2.34) 

where 

Γ22,𝑘 = [Λ22,𝑘−Λ21,𝑘Λ11,𝑘
−1 Λ12,𝑘]

−1
 (2.35) 

Γ11,𝑘 = Λ11,𝑘
−1 + Λ11,𝑘

−1 Λ12,𝑘Γ22,𝑘Λ21,𝑘Λ11,𝑘
−1  (2.36) 

Γ12,𝑘 = −Λ11,𝑘
−1 Λ12,𝑘Γ22,𝑘 (2.37) 

The apparent CBPKF error covariance, which reflects both Σ𝐸𝑉 and Σ𝐶𝐵, is given by (2.18) as: 

Σ𝑎,𝑘|𝑘 = 𝛼Σ𝑘|𝑘−1 + [𝜛1,𝑘𝐻𝑘 + 𝜛2,𝑘]
−1

(2.38) 

The CBPKF error covariance, which reflects Σ𝐸𝑉 only, is given by (2.20) as: 

Σ𝑘|𝑘 = [𝜛1,𝑘𝐻𝑘 + 𝜛2,𝑘]
−1

(𝜛1,𝑘𝑅𝑘𝜛1,𝑘
𝑇 + 𝜛2,𝑘Σ𝑘|𝑘−1𝜛2,𝑘

𝑇 )[𝜛1,𝑘𝐻𝑘 + 𝜛2,𝑘]
−1

(2.39) 

Because CBPKF minimizes Σ𝑎,𝑘|𝑘 rather than Σ𝑘|𝑘, it is not guaranteed that (2.39) satisfies Σ𝑘|𝑘 ≤

Σ𝑘|𝑘−1 a priori. If the above condition is not met, it is necessary to reduce α and repeat the calcu-

lations. If α is reduced all the way to zero, CBPKF collapses to KF. The CBPKF estimate may be 

rewritten into a more familiar form: 

�̂�𝑘|𝑘 = [𝜛1,𝑘𝐻𝑘 + 𝜛2,𝑘]
−1

[𝜛1,𝑘𝑍𝑘 + 𝜛2,𝑘�̂�𝑘|𝑘−1] = X̂𝑘|𝑘−1 + 𝐾𝑘[𝑍𝑘 − 𝐻𝑘X̂𝑘|𝑘−1] (2.40)  

In (2.40), Zk denotes the (n×1) observation vector, and the (m×n) CB-penalized Kalman gain, 𝐾𝑘, 

is given by: 

𝐾𝑘 = [𝜛1,𝑘𝐻𝑘 + 𝜛2,𝑘]
−1

𝜛1,𝑘 (2.41) 
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To operate the above as a sequential filter, it is necessary to prescribe Ψ𝑋𝑋 and α. An obvious 

choice for Ψ𝑋𝑋, i.e., the a priori error covariance of the state, is Σ𝑘|𝑘−1. Specifying α requires some 

care. In general, a larger α improves accuracy over the tails but at the expense of increasing un-

conditional error. Too small an α may not effect large enough CB penalty in which case the CBPKF 

and KF solutions would differ little. Too large an α, on the other hand, may severely violate the 

Σ𝑘|𝑘 ≤ Σ𝑘|𝑘−1 conditionin which case the filter may have to be iterated at additional computational 

expense with successively reduced 𝛼 . A reasonable strategy for reducing 𝛼  is 𝛼𝑖 = 𝑐𝛼𝑖−1, 𝑖 =

1,2,3, …, with 0 < 𝑐 < 1 where 𝛼𝑖 denotes the value of α at the i-th iteration (Lee et al., 2018, p. 

2; Seo et al., 2018a). For high-dimensional problems, CBPKF can be computationally very expen-

sive. Whereas KF requires solving an (m×n) linear system only once per updating or fusion cycle, 

CBPKF additionally requires solving two (m×m) linear systems (for 𝐶1,𝑘 and Γ22), and an (n×n) 

system (for 𝛬11), assuming that the structure of the observation equation does not change in time 

(in which case 𝐺2,𝑘
𝑇  in (2.29) may be evaluated only once). To reduce computation, below we ap-

proximate CBPKF with KF by inflating the forecast error covariance. 

2.4 VIKF Approximation of CBPKF 

To address CB, CB-penalized Fisher-like estimation and CB-penalized KF (CBPKF) (Seo 

et al., 2018a, 2018b) have recently been developed which jointly minimize error variance and 

expectation of the Type-II CB squared for improved estimation and prediction of extremes. The 

original formulation of CBPKF, however, is computationally very expensive for high-dimensional 

problems. Also, whereas CBPKF improves performance in the tails, it deteriorates performance in 

the normal ranges. In this chapter, we approximate CBPKF with forecast error covariance-inflated 

KF, referred to hereafter as the variance-inflated KF (VIKF) formulation, as a computationally 
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less expensive and algorithmically simpler alternative, and implement adaptive CBPKF to improve 

performance in the unconditional mean sense. 

The main idea behind this simplification is that, if the gain for the CB penalty, C, in 

Eq.(2.10) can be linearly approximated with H, the apparent error covariance Σ𝑎 becomes identical 

to Σ𝐸𝑉 in Eq.(2.3) but with Ψ𝑋𝑋 inflated by a factor of 1+α: 

Σ(1+𝛼) = (𝐼 − 𝑾𝑯)(1 + 𝛼)Ψ𝑋𝑋(𝐼 − 𝑾𝑯)𝑇 + 𝑾𝑹(𝟏+𝜶)𝑾𝑻 (2.42) 

where 𝑹(𝟏+𝜶) = [
𝑅 0
0 (1 + 𝛼)Ψ𝑋𝑋

]. The KF solution for (2.42) is identical to the standard KF so-

lution but with Σ𝑘|𝑘−1 replaced by (1 + α)Σ𝑘|𝑘−1: 

X̂𝑘|𝑘 = [𝐻𝑘
𝑇𝑅𝑘

−1𝐻𝑘 + {(1 + 𝛼)Σ𝑘|𝑘−1}
−1

]
−1

[𝐻𝑘
𝑇𝑅𝑘

−1𝑍𝑘 + {(1 + 𝛼)Σ𝑘|𝑘−1}
−1

X̂𝑘|𝑘−1] (2.43) 

With WH=I in (2.43) for the VIKF solution, we have Σ(1+𝛼) = 𝑾𝑹(𝟏+𝜶)𝑾𝑻for the apparent fil-

tered error variance of X̂𝑘|𝑘 in (42). The error covariance of X̂𝑘|𝑘, Σ𝑘|𝑘, is given by (2.3) as: 

Σ𝑘|𝑘 = 𝑾𝑹𝑾𝑻 = [𝑯𝑻𝑹(𝟏+𝜶)
−𝟏 𝑯]

−𝟏
𝑯𝑻𝑹(𝟏+𝜶)

−𝟏 𝑹𝑹(𝟏+𝜶)
−𝟏 𝑯[𝑯𝑻𝑹(𝟏+𝜶)

−𝟏 𝑯]
−𝟏

= Σ(1+𝛼),𝑘|𝑘Σ(1+𝛼)2,𝑘|𝑘
−1 Σ(1+𝛼),𝑘|𝑘 (2.44)

 

In (2.44), the inflated filtered error covariance, Σ𝛽,𝑘|𝑘, where 𝛽 denotes the multiplicative inflation 

factor, is given by: 

Σ𝛽,𝑘|𝑘 = 𝛽Σ𝑘|𝑘−1 − βΣ𝑘|𝑘−1𝐻𝑘
𝑇[𝐻𝑘βΣ𝑘|𝑘−1𝐻𝑘

𝑇 + 𝑅𝑘]
−1

𝐻𝑘βΣ𝑘|𝑘−1

= [𝐻𝑘
𝑇𝑅𝑘

−1𝐻𝑘 + (𝛽Σ𝑘|𝑘−1)
−1

]
−1

 (2.45)
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Computationally, evaluation of (2.43) and (2.44) requires solving two (m×n) and an (m×m) linear 

systems. As in the original formulation of CBPKF, iterative reduction of 𝛼 is necessary to ensure 

Σ𝑘|𝑘 ≤ Σ𝑘|𝑘−1. 

The above approximation assumes that the CB penalty, Σ𝐶𝐵, is proportional to the error 

covariance, Σ𝐸𝑉. To help ascertain how KF, CBPKF and the VIKF approximation may differ, we 

compare in Table 2-1 their analytical solutions for gain 𝜅𝑘, and filtered error variance 𝜎𝑘|𝑘
2 for the 

1D case of m=n=1. The table shows that the VIKF approximation and CBPKF are identical for the 

1D problem except that the CB penalty for CBPKF is twice as large as that for the VIKF approx-

imation. To visualize the differences, Fig. 2-1 shows 𝜅𝑘and 𝜎𝑘|𝑘
2 for KF, the VIKF approximation 

Figure 2-1 Comparison of  𝜿𝒌 and 𝝈𝒌|𝒌
𝟐  for KF, VIKF and CBPKF for three different cases: 

𝝈𝒌|𝒌−𝟏
𝟐 = 𝟏 and 𝝈𝒁

𝟐 = 𝟏 (Case 1), 𝝈𝒌|𝒌−𝟏
𝟐 = 𝟏 and 𝝈𝒁

𝟐 = 𝟒 (Case 2), 𝝈𝒌|𝒌−𝟏
𝟐 = 𝟒 and 𝝈𝒁

𝟐 = 𝟏 (Case 

3) 
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and CBPKF for the three cases of 𝜎𝑘|𝑘−1
2 = 1  and 𝜎𝑍

2 = 1  (left), 𝜎𝑘|𝑘−1
2 = 1and 𝜎𝑍

2 = 4(mid-

dle),and 𝜎𝑘|𝑘−1
2 = 4 and 𝜎𝑍

2 = 1 (right). For all cases, we set h to unity and varied 𝛼from 0 to 

1.The figure indicates that, compared to KF, the VIKF approximation and CBPKF prescribe ap-

preciably larger gains, that the increase in gain is larger for CBPKF solutions are the smallest for 

𝜎𝑘|𝑘−1
2 > 𝜎𝑍

2, a reflection of the diminished impact of CB owing to the comparatively smaller un-

certainty in the observations. The above development suggests that one may be able to approximate 

CBPKF very closely with the VIKF-based formulation by adjusting α in the latter. Below, we 

evaluate the performance of CBPKF relative to KF and the VIKF-based approximation of CBPKF. 

2.5 Evaluation and Results 

For comparative evaluation, we carried out the synthetic experiments of (Seo et al., 2018a). 

We assume the following linear dynamical and observation models with perfectly known statistical 

parameters: 

𝑋𝑘 = Φ𝑘−1𝑋𝑘−1 + 𝑊𝑘−1 (2.46) 

𝑍𝑘 = 𝐻𝑘𝑋𝑘 + 𝑉𝑘 (2.47) 

 Gain Filtered error variance, 𝝈𝒌|𝒌
𝟐  

KF 
ℎ𝜎𝑘|𝑘−1

2

ℎ2𝜎𝑘|𝑘−1
2 + 𝜎𝑍

2 
𝜎𝑍

2

ℎ2𝜎𝑘|𝑘−1
2 + 𝜎𝑍

2 𝜎𝑘|𝑘−1
2  

VIKF 

approx. 

ℎ(1 + 𝛼)𝜎𝑘|𝑘−1
2

ℎ2(1 + 𝛼)𝜎𝑘|𝑘−1
2 + 𝜎𝑍

2 
{(1 + 𝛼)2ℎ2𝜎𝑘|𝑘−1

2 + 𝜎𝑍
2}𝜎𝑍

2

{(1 + 𝛼)ℎ2𝜎𝑘|𝑘−1
2 + 𝜎𝑍

2}2
𝜎𝑘|𝑘−1

2  

CBPKF 
ℎ(1 + 2𝛼)𝜎𝑘|𝑘−1

2

ℎ2(1 + 2𝛼)𝜎𝑘|𝑘−1
2 + 𝜎𝑍

2 
{(1 + 2𝛼)2ℎ2𝜎𝑘|𝑘−1

2 + 𝜎𝑍
2}𝜎𝑍

2

{(1 + 2𝛼)ℎ2𝜎𝑘|𝑘−1
2 + 𝜎𝑍

2}2
𝜎𝑘|𝑘−1

2  

 

Table 2-1 Comparison of gain and filtered error variance among KF, the VIKF approximation, 

and CBPKF. 
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where Xk and Xk-1 denote the state vectors at time steps k and k-1, respectively, Φk-1 denotes the 

state transition matrix at time step k-1 assumed as Φ𝑘−1 = 𝜑𝑘−1𝐼, 𝑊𝑘−1 denotes the white noise 

vector, 𝑤𝑗,𝑘−1~𝑁(0, 𝜎𝑤𝑘−1
2 ), j=1,…,m, with 𝑄𝑘−1 = 𝐸[𝑊𝑘−1𝑊𝑘−1

𝑇 ], and Vk denotes the observa-

tion error vector,  𝑣𝑖,𝑘~𝑁(0, 𝜎𝑣𝑘
2 ), i=1,…,n. The number of observations, n, is assumed to be time-

invariant. The observation errors are assumed to be independent among themselves and of the true 

state. To assess comparative performance under widely varying conditions, we randomly perturbed 

φk-1, σw,k-1 and σv,k above according to (2.48) through (2.50) below, and used only those deviates 

that satisfy the bounds: 

𝜙𝑘−1
𝑝 = 𝜙𝑘−1 + 𝛾𝜙𝜀𝜙                      0.5 ≤ 𝜙𝑘−1

𝑝 ≤ 0.95 (2.48) 

𝜎𝑤,𝑘−1
𝑝 = 𝜎𝑤,𝑘−1 + 𝛾𝑤𝜀𝑤                          𝜎𝑤,𝑘−1

𝑝 ≥ 0.01 (2.49) 

𝜎𝑣,𝑘
𝑝 = 𝜎𝑣,𝑘 + 𝛾𝑣𝜀𝑣                                        𝜎𝑣,𝑘

𝑝 ≥ 0.01 (2.50) 

In the above, the superscript p signifies that the variable is a perturbation, 𝜀𝜙, 𝜀𝑤 and 𝜀𝑣 

denote the normally-distributed white noise for the respective variables, and 𝛾𝜙, 𝛾𝑤 and 𝛾𝑣 denote 

the standard deviations of the white noise added to 𝜙𝑘−1, 𝜎𝑤,𝑘−1 and 𝜎𝑣,𝑘, respectively. The pa-

rameter settings (see Table 2-1) are chosen to encompass less predictable (small φk-1) to more 

predictable (large φk-1) processes, certain (small σw,k-1) to uncertain (large σw,k-1) model dynamics, 

and more informative (small σv,k) to less informative (large σv,k) observations. The bounds for 

𝜙𝑘−1
𝑝

 in (2.48) is based on the range of lag-1 serial correlation representing moderate to high pre-

dictability where CBPKF and KF are likely to differ the most. The bounding of the perturbed 

values 𝜎𝑤,𝑘−1
𝑝

 and 𝜎𝑣,𝑘
𝑝

 in (2.49) and (2.50), respectively, is necessary to avoid the observational 

or model prediction uncertainty becoming unrealistically small. Very small 𝜎𝑤,𝑘−1
𝑝

 and 𝜎𝑣,𝑘
𝑝

render 
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the information content of the model prediction, 𝛴𝑘|𝑘−1, and the observation, Zk, respectively, very 

large, and hence keep the filters operating in unrealistically favorable conditions for extended pe-

riods of time. We then apply KF, CBPKF and the VIKF approximation to obtain �̂�𝑘|𝑘 and Σ𝑘|𝑘, 

and verify them against the assumed truth. To evaluate the performance of CBPKF relative to KF, 

we calculate percent reduction in root mean square error (RMSE) by CBPKF over KF conditional 

on the true state exceeding some threshold between 0 and the largest truth. 

Figure 2-2 show the percent reduction in RMSE by CBPKF over KF for Cases 1 (left), 5 

(middle) and 9 (right) representing Groups 1, 2 and 3 in Table I, respectively. The three groups 

differ most significantly in the variability of the dynamical model error, 𝛾𝑤, and may be charac-

terized as nearly stationary (Group 1), nonstationary (Group 2), and highly nonstationary (Group 

3). The range of 𝛼 values used is [0.1, 1.2] with an increment of 0.1. The numbers of state variables, 

observations, and updating cycles used in Fig. 2-2 are 1, 10, and 100,000 for all cases. The dotted 

line at 10% reduction in the figure serves as a reference for significant improvement. The figure 

shows that, at the extreme end of the tail, CBPKF with 𝛼 of 0.7, 0.6 and 0.5 reduces RMSE by 

about 15, 25 and 30% for Cases 1, 5 and 9, respectively, but at the expense of increasing uncondi-

tional RMSE by about 5%.The general pattern of reduction in RMSE for other cases in Table 2-2 

Figure 2-2 Percent reduction in  RMSE by CBPKF over KF for a  range of values of 𝜶 for Cases 

1 (left), 5 (middle) and 9 (right). 
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is similar within each group and is not shown. We only note here that larger variability in obser-

vational uncertainty (i.e., larger 𝛾𝑣) reduces the relative performance of CBPKF somewhat, and 

that the magnitude of variability in predictability (i.e., 𝛾𝜑) has relatively small impact on the rela-

tive performance.  

It was seen in Table 2-1 that the VIKF approximation is identical to CBPKF for m=n=1 

but for the multiplicative scaler weight for the CB penalty. Numerical experiments indicate that, 

whereas the above relationship does not hold for other m or n, one may very closely approximate 

CBPKF with the VIKF-based formulation by adjusting𝛼. For example, the VIKF approximation 

with 𝛼 increased by a factor of 1.25 to 1.90 differ from CBPKF only by 1% or less for all 12 cases 

in Table 2-2 with m=1 and n=10. The above findings indicate that the VIKF approximation may 

be used as a computationally less expensive alternative for CBPKF. Table 2-3 compares the CPU 

time among KF, CBPKF and the VIKF approximation for 6 different combinations of m and n 

based using Intel(R) Xeon(R) Gold 6152 CPU @ 2.10GHz. The computing time is reported in 

multiples of the KF’s. Note that the original formulation of CBPKF quickly becomes extremely 

expensive as the dimensionality of the problem increases whereas the CPU time of the VIKF ap-

proximation stays under 3.5 times that of KF for the size of the problems considered. 

Group Case 𝝈𝒘,𝒌−𝟏 𝜸𝒘 𝝈𝒗,𝒌 𝜸𝒗 𝝋𝒌−𝟏 𝜸𝝋 

1 1 0.1 0.01 1.5 0.4 0.7 0.1 

2 0.1 0.01 1.5 0.4 0.7 0.8 

3 0.1 0.01 1.5 1.2 0.7 0.1 

4 0.1 0.01 1.5 1.2 0.7 0.8 

2 5 0.1 0.1 1.5 0.4 0.7 0.1 

6 0.1 0.1 1.5 0.4 0.7 0.8 

7 0.1 0.1 1.5 1.2 0.7 0.1 

8 0.1 0.1 1.5 1.2 0.7 0.8 

3 9 0.1 0.2 1.5 0.4 0.7 0.1 

10 0.1 0.2 1.5 0.4 0.7 0.8 

11 0.1 0.2 1.5 1.2 0.7 0.1 

12 0.1 0.2 1.5 1.2 0.7 0.8 

 

Table 2-2 Parameter settings for the 12 cases considered. 
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If the filtered error variance is unbiased, one would expect the mean of the actual error 

squared associated with the variance to be approximately the same as the variance itself. To verify 

this, we show in Fig. 2-3 the filtered error variance vs. the actual error squared for KF (left), the 

VIKF approximation (middle) and CBPKF (right) for all ranges of filtered error variance. For 

reference, we plot the one-to-one line representing the unbiased error variance conditional on the 

magnitude of the filtered error variance and overlay the local regression fit through the actual data 

points using the R package locfit (Catherine Loader, 2013). The figure shows that all three provide 

conditionally unbiased estimates of filtered error variance as theoretically expected, and that the 

VIKF approximation and CBPKF results are extremely similar to each other. 

Figure 2-3 Filtered error variance vs. error squared for KF (left), the VIKF approximat ion 

(middle) and CBPKF (right). The one-to-one line is shown in black and the local regression fit 

is shown in green. 

Dimensionality Normalized Computing Time 

m n KF CBPKF VIKF approx. 

1 10 1 5.23 1.51 

1 40 1 18.41 2.74 

5 10 1 6.44 1.67 

5 40 1 24.03 2.88 

10 10 1 14.27 2.03 

10 40 1 27.96 3.46 

 

Table 2-3 Comparison of computing time among KF, CBPKF and VIKF approximation.  
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2.6 Adaptive CBPKF 

Whereas CBPKF or the VIKF approximation significantly improves the accuracy of the 

estimates over the tails, it deteriorates performance near the median. Fig. 2-2 suggests that, if 𝛼 

can be prescribed adaptively such that a small/large CB penalty is effected when the system is in 

the normal/extreme state, the unconditional performance of CBPKF would improve. Because the 

true state of the system is not known, adaptively specifying 𝛼 is necessarily an uncertain proposi-

tion. There are, however, certain applications in which the normal-vs.-extreme state of the system 

may be ascertained with higher accuracy than others. For example, the soil moisture state of a 

catchment may be estimated from assimilating precipitation and streamflow data into hydrologic 

models (Seo et al., 2003; Lee et al., 2011, 2012, 2015; Lee and Seo, 2014; Rafieeinasab et al., 

2014b). If 𝛼 is prescribed adaptively based on the best available estimate of the state of the catch-

ment, one may expect improved performance in hydrologic forecasting. In this section, we apply 

adaptive CBPKF in the synthetic experiment and assess its performance. An obvious strategy for 

adaptively filtering is to parameterize 𝛼 in terms of the KF estimate (i.e., the CBPKF estimate with 

𝛼 = 0) as the best guess for the true state. The premise of this strategy is that, though it may be 

conditionally biased, the KF estimate fuses the information available from both the observations 

and the dynamical model, and hence best captures the relationship between 𝛼 and the departure of 

the state of the system from median. A similar approach has been used in fusing radar rainfall data 

and rain gauge observations for multisensor precipitation estimation in which ordinary cokriging 

estimate was used to prescribe 𝛼 in CB-penalized cokriging (Kim et al., 2018, p. 201).  
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Necessarily, the effectiveness of the above strategy depends on the skill of the KF estimate; 

if the skill is very low, one may not expect significant improvement. Fig. 2 suggests that, qualita-

tively, α should increase as the state becomes more extreme. To that end, we employed the follow-

ing model for time-varying 𝛼: 

𝛼𝑘 = 𝛾‖�̂�𝑘|𝑘
𝐾𝐹 ‖ (2.51) 

where 𝛼𝑘 denotes the multiplicative CB penalty factor for CBPKF at time step k, ‖�̂�𝑘|𝑘
𝐾𝐹 ‖ denotes 

some norm of the KF estimate at time step k, and 𝛾 denotes the proportionality constant.  

Figure 2-4a shows the RMSE reduction by adaptive CBPKF over KF with 𝛼𝑘 = 𝛾|�̂�𝑘|𝑘
𝐾𝐹 | 

for the 12 cases in Table 2-2 m=1 and n=10. The 𝛾 values used were 3.0, 1.0 and 0.5 for Groups 

1, 2 and 3 in Table 2-2, respectively. The figure shows that adaptive CBPKF performs comparably 

to KF in the unconditional sense while substantially improving performance in the tails. The rate 

of reduction in RMSE with respect to the increasing conditioning truth, however, is now slower 

than that seen in Fig. 2-2 due to the occurrences of incorrectly specified α. To assess the uppermost 

Figure 2-4 Percent reduction in RMSE by adaptive CBPKF over KF in which 𝜶 is prescribed 

using the KF estimate (left) and the truth (right). 
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bound of the feasible performance of adaptive CBPKF, we also specified 𝛼 with perfect accuracy 

under (2-51) via 𝛼𝑘 = 𝛾|𝑋𝑘| where 𝑋𝑘 denotes the true state.The results are shown in Fig. 2-4b for 

which the 𝛾 values used were 3.0, 1.5 and 1.0 for Groups 1, 2 and 3 in Table II, respectively. The 

figure indicates that adaptive CBPKF with perfectly prescribed 𝛼 greatly improves performance, 

even outperforming KF in the unconditional sense. Fig. 2-4 suggests that, if 𝛼 can be prescribed 

more accurately with additional sources of information, the performance of adaptive CBPKF may 

be improved beyond the level seen in Fig. 2-4a. Finally, we show in Fig. 2-5 the example scatter 

plots of the KF (black) and adaptive CBPKF (red) estimates vs. truth. They are for Cases 1 and 9 

in Table 2-2 representing Groups 1 and 3, respectively. It is readily seen that the CBPKF signifi-

cantly reduces CB in the tails while keeping its estimates close to the KF estimates in normal 

ranges. 

2.7 Conclusions 

Conditional bias-penalized Kalman filter (CBPKF) has recently been developed to improve 

estimation and prediction of extremes. The original formulation, however, is computationally very 

expensive, and deteriorates performance in the normal ranges relative to KF. In this chapter, we 

Figure 2-5 Example scatter plots of KF (black) and adaptive CBPKF (red) estimates vs. truth 

for Cases 1 (left) and 9 (right) in Table 2-2. 
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present a computationally less expensive alternative based on the variance-inflated KF (VIKF) 

approximation, and improve unconditional performance by adaptively prescribing the weight for 

the CB penalty. For evaluation, we carried out synthetic experiments using linear systems with 

varying degrees of dynamical model uncertainty, observational uncertainty, and predictability. The 

results indicate that the VIKF-based approximation of CBPKF provides a computationally much 

less expensive alternative to the original formulation, and that adaptive CBPKF performs compa-

rably to KF in the unconditional sense while improving estimation of extremes by about 20% to 

30% over KF. It is also shown that additional improvement may be possible by improving adaptive 

prescription of the weight to the CB penalty using additional sources of information. The findings 

indicate that adaptive CBPKF offers a significant addition to the dynamic filtering methods for 

general application in signal processing and, in particular, when or where estimation of extremes 

is of importance. The findings in this work are based on idealized synthetic experiments that satisfy 

linearity and normality. Additional research is needed to assess performance for non-normal prob-

lems and for nonlinear problems using the ensemble extension (Lee et al., 2018), and to prescribe 

the weight for the CB penalty more skillfully.  
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Chapter 3. CBEnKF and Application to Streamflow Prediction 

3.1 Introduction 

In this chapter, we describe the ensemble extension of the CBPKF, or conditional bias-penal-

ized ensemble Kalman filter (CBEnKF), toward addressing conditional bias in hydrologic DA. 

Ensemble forecasting has been fast gaining acceptance in operational water forecasting for uncer-

tainty quantification and risk-based decision making (Cloke and Pappenberger, 2009; Demargne 

et al., 2014). As in single-valued forecasting, effective real-time DA is critical in ensemble fore-

casting to keeping the model states in line with the unfolding reality and hence to increasing pre-

dictive skill (Noh et al. 2018). The potency of manual adjustment of model states (Seo et al. 2003, 

2009) is well recognized in single-valued forecasting, in particular, of extreme events. In ensemble 

forecasting, however, such manual DA may not be considered feasible due to the higher-order 

nature of the information content. The purpose of the CBEnKF is to offer an ensemble DA tech-

nique which is superior to the EnKF for prediction of extreme events such as floods. In this work, 

we apply the CBEnKF for streamflow DA using the lumped Sacramento Soil Moisture Accounting 

(SAC, Burnash et al., 1973) and unit hydrograph (UH, Chow et al., 1988) models. We then com-

paratively evaluate the CBEnKF with the EnKF in a set of twin experiments wherein streamflow, 

precipitation and potential evapotranspiration (PE) observations are assimilated into the SAC-UH 

for high flow events. The DA experiments are carried out for ten headwater catchments in Texas 

(U.S.) in diverse climatological regions and of contrasting hydrologic response characteristics. The 

new and significant contributions of this chapter are: the development of the CBEnKF technique, 

comprehensive comparative evaluation of the CBEnKF with the EnKF for prediction of high flows 

using widely used and extensively studied hydrologic models, and the attribution and interpreta-

tion of the skill added by the CBEnKF. We note here that the CBPKF and CBEnKF are not bias-



41 

 

aware techniques used to address unconditional bias (Dee and da Silva, 1998; Dee, 2005; Drecourt 

et al., 2006; De Lannoy et al., 2007a; De Lannoy et al., 2007b; Pauwels and De Lannoy, 2015). As 

with the KF or EnKF, it is readily possible to render the CBPKF or CBEnKF, respectively, bias-

aware via state augmentation. In this work, we deal with systematic biases by introducing and 

estimating time-varying biases in the control variables in both the EnKF and CBEnKF in an iden-

tical manner. This chapter is an adaptation of Lee et al. (2019). The remainder of this chapter is 

organized as follows. Section 3.2 describes the methodology. Section 3.3 describes the study basins, 

evaluation metrics and observational uncertainty modelling. Section 3.4 presents the results and 

discussion. Section 3.5 provides the conclusions and future research recommendations. 

3.2 Methodology 

This section describes the DA problem, the CBEnKF solution, algorithmic considerations for 

implementation, the hydrologic models used, and the sequential assimilation approach based on 

fixed-lag smoothing. 

3.2.1 Problem description and formulation 

The assimilation problem at hand may be described as follows. Given the a priori model soil 

moisture states and observations of streamflow, precipitation and PE, update the model soil mois-

ture states and multiplicative biases for observed precipitation and PE by assimilating observed 

streamflow, precipitation and PE. This nonlinear DA problem may be solved via a number of dif-

ferent techniques, including EnKF with state augmentation (Lorentzen and Nævdal 2011). The 

main motivation for an ensemble approach is to capture the nonlinear model dynamics without 

having to approximate them. Among the ensemble techniques, EnKF is by far the most popular 

owing to its simplicity, and hence serves as a benchmark in this work. The purpose of state aug-

mentation is to render the nonlinear observation equation nominally linear for the KF solution. For 
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an ensemble technique with state augmentation, one may write the dynamical and observation 

equations, or models, as follows. The nonlinear dynamical model is written as: 

𝑋𝑘 = 𝑀(𝑋𝑘−1) + 𝑊𝑘−1 (3.1) 

where 𝑋𝑘 denotes the (𝑛𝑐 × 1) model state, or control, vector, where 𝑛𝑐 denotes the number of 

variables in the control vector, M( ) denotes the dynamical model for the state variables, and Wk-1 

denotes the dynamical model error at time step 𝑘 − 1. The observational model is written as: 

𝑍𝑘 = 𝐻𝑘𝑌𝑘 + 𝑉𝑘 (3.2) 

where Zk denotes the (n×1) observation vector where n denotes the total number of obser-

vations. The (n×m) observation matrix, Hk, where m=nc+n, consists of the )( cnn  zero matrix 

and )( nn  identity matrix, i.e., ]0[ IH k  . The (m×1) augmented state vector Yk  is given by 

 Tkkk XGXY )(  where Xk denotes the (𝑛𝑐 × 1) state vector defined in Eq.(3.1) and G(Xk) de-

notes the generally nonlinear function which maps the state variables to the (n×1) augmented state 

subvector. The above state augmentation reflects the nonlinear relations between the state varia-

bles and the observed variables, such as those between the state variables, Xk, and the observed 

flow, 𝑍𝑘
𝑄

, while keeping the observation equation linear in appearance (Evensen, 2003; Clark et 

al., 2008; Lorentzen and Naevdal, 2011; Houtekamer and Zhang, 2016). Lastly, Vk denotes the 

(n×1) observation error vector at time step k with its covariance matrix R.  

Because the observations of streamflow, precipitation and PE are generally uncertain, one may 

expect the DA solutions based solely on minimizing error variance such as the KF or EnKF to be 

conditionally biased as explained in the Introduction Section. The objective of the CBPKF or 

CBEnKF is to reduce the Type-II CB by minimizing the weighted sum of the error covariance and 
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the expectation of the Type-II CB squared (Seo et al., 2018a, 2018b; Shen et al., 2019) as  shown 

below: 

Σ𝑘 = 𝐸𝑌𝑘,𝑌𝑘
∗[(𝑌𝑘 − 𝑌𝑘

∗)(𝑌𝑘 − 𝑌𝑘
∗)𝑇] + 𝛼𝐸𝑌𝑘

[(𝑌𝑘 − 𝐸𝑌𝑘
∗[𝑌𝑘

∗|𝑌𝑘])(𝑌𝑘 − 𝐸𝑌𝑘
∗[𝑌𝑘

∗|𝑌𝑘])
𝑇

] (3.3) 

where Y* denotes the vector of the estimated states, the first and second terms represent the error 

covariance and the CB penalty, respectively, and α denotes the weight given to the latter. If α=0, 

the CBPKF or CBEnKF is reduced to the KF or EnKF, respectively. 

3.3 Conditional bias-penalized Ensemble Kalman Filter (CBEnKF) 

Because the hydrologic model dynamics in Eq.(3.1) are generally nonlinear, one may not ap-

ply the CBPKF directly. Instead, an ensemble filter is necessary. The formulation of the ensemble 

version of the CBPKF, or CBEnKF, is identical to that of the EnKF except for the Kalman gain 

and the filtered error covariance. For a general description of EnKF, the reader is referred to Lo-

rentzen and Nævdal (2011). For a description in the context of the DA problem at hand, the reader 

is referred to Rafieeinasab et al. (2014b). Below, we describe the CBEnKF solution which reflects 

the important corrections to Seo et al. (2018a) as reported in Seo et al. (2018b). 

As in the EnKF, the updated state vector of the ith ensemble member, 𝑌𝑘|𝑘
𝑖 , is given by: 

𝑌𝑘|𝑘
𝑖 = 𝑌𝑘|𝑘−1

𝑖 + 𝐾𝑘[𝑍𝑘 − 𝐻𝑘𝑌𝑘|𝑘−1
𝑖 ] (3.4) 

where 𝑌𝑘|𝑘−1
𝑖  denotes the (m×1) forecast state vector of the ith ensemble member, Kk denotes the 

(m×n) CB-penalized Kalman gain matrix, Zk denotes the (n×1) observation vector and Hk denote 

the (n×m) observation matrix. The gain, Kk, and the error covariance, Σ𝑘|𝑘, are given by: 

𝐾𝑘 = [𝜛1,𝑘𝐻𝑘 + 𝜛2,𝑘]
−1

𝜛1,𝑘 (3.5) 
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Σ𝑘|𝑘 = [𝜛1,𝑘𝐻𝑘 + 𝜛2,𝑘]
−1

(𝜛1,𝑘𝑅𝑘𝜛1,𝑘
𝑇 + 𝜛2,𝑘Σ𝑘|𝑘−1𝜛2,𝑘

𝑇 )[𝜛1,𝑘𝐻𝑘 + 𝜛2,𝑘]
−1

(3.6) 

In Eqs.(3.5) and (3.6), the (m×n) and (m×m) weight matrices for the observations and model 

prediction, 𝜛1,𝑘 and 𝜛2,𝑘, respectively, are given by: 

 

𝜛1,𝑘 = �̂�𝑘
𝑇Γ11,𝑘 + Γ21,𝑘 (3.7𝑎) 

𝜛2,𝑘 = �̂�𝑘
𝑇Γ12,𝑘 + Γ22,𝑘 (3.7𝑏) 

In Eq.(3.7), the (m×n) modified observation matrix, �̂�𝑘
𝑇, and the (n×n), (n×m) and (m×m) matri-

ces, Γ11,𝑘, Γ12,𝑘 (= Γ21,𝑘
𝑇 ) and Γ22,𝑘, respectively, are given by: 

�̂�𝑘
𝑇 = 𝐻𝑘

𝑇 + 𝛼𝐶𝑘
𝑇 (3.8) 

Γ22,𝑘
−1 = Λ22,𝑘−Λ21,𝑘Λ11,𝑘

−1 Λ12,𝑘 (3.9𝑎) 

Γ11,𝑘 = Λ11,𝑘
−1 + Λ11,𝑘

−1 Λ12,𝑘Γ22,𝑘Λ21,𝑘Λ11,𝑘 
−1 (3.9𝑏) 

Γ12,𝑘 = −Λ11,𝑘
−1 Λ12,𝑘Γ22,𝑘 (3.9𝑐) 

In Eqs.(3.8) and (3.9), the (n×m) gain matrix for the observation vector, 𝐶𝑘, and the (n×n), (n×m) 

and (m×m) modified error covariance matrices, Λ11,𝑘, Λ12,𝑘 (= Λ21,𝑘
𝑇 ) and Λ22,𝑘, respectively, are 

given by: 

𝐶𝑘 = [𝐻𝑘Σ𝑘|𝑘−1𝐺2,𝑘
−1 + 𝑅𝑘𝐻𝑘][𝐺2,𝑘

−1Σ𝑘|𝑘−1𝐺2,𝑘
−1 + 2(𝐻𝑘

𝑇𝑅𝑘𝐻𝑘 + Σ𝑘|𝑘−1)]−1𝐺2,𝑘
−1 (3.10) 

Λ11,𝑘 = 𝑅𝑘 + 𝛼(1 − 𝛼)𝐶𝑘Σ𝑘|𝑘−1𝐶𝑘
𝑇 + Λ12,𝑘𝐻𝑘

𝑇 + 𝐻𝑘Λ21,𝑘 (3.11𝑎) 

Λ12,𝑘 = −𝛼𝐶𝑘Σ𝑘|𝑘−1 (3.11𝑏) 
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Λ22,𝑘 = Σ𝑘|𝑘−1 (3.11𝑐) 

In Eqs.(3.10) and (3.11), 𝑅𝑘  and Σ𝑘|𝑘−1 denote the (n×n) observation error covariance matrix, 

𝐶𝑜𝑣[𝑉𝑘, 𝑉𝑘], and the (m×m) forecast error covariance matrix, respectively, and 𝐺2,𝑘
−1 = 𝐻𝑘

𝑇𝐻𝑘 + 𝐼. 

The forecast error covariance matrix is estimated by:  

 

Σ𝑘|𝑘−1 = (𝑌𝑘|𝑘−1 − 𝑌𝑘|𝑘−1
̅̅ ̅̅ ̅̅ ̅̅ )(𝑌𝑘|𝑘−1 − 𝑌𝑘|𝑘−1

̅̅ ̅̅ ̅̅ ̅̅ )
𝑇

(3.12) 

where the overbar represent an average over the ensemble members and 𝑌𝑘|𝑘−1
̅̅ ̅̅ ̅̅ ̅̅  denotes the ensem-

ble mean vector of the state vector 𝑌𝑘|𝑘−1  (Evensen, 2003). With 𝛼 = 0 , we have Λ12,𝑘 =

0, Λ11,𝑘 = 𝑅𝑘, Λ22,𝑘 = Σ𝑘|𝑘−1, �̂�𝑘
𝑇 = 𝐻𝑘

𝑇 , Γ22,𝑘
−1 = Λ22,𝑘, Γ11,𝑘 = 𝑅𝑘

−1, Γ12,𝑘 = 0, 𝜛1,𝑘 =

𝐻𝑘
𝑇𝑅𝑘

−1, 𝜛2,𝑘 = Σ𝑘|𝑘−1
−1 , Σ𝑘|𝑘 = [𝐻𝑘

𝑇𝑅𝑘
−1𝐻𝑘 + Σ𝑘|𝑘−1

−1 ]
−1

, and 𝐾𝑘 = Σ𝑘|𝑘𝐻𝑘
𝑇𝑅𝑘

−1, which reduces the 

CBPKF solution to the KF. For further details, the reader is referred to Seo et al. (2018a,b) and 

Shen et al. (2019).  

3.3.1 Algorithmic considerations 

Because α in Eq.(3.3) can take on any nonnegative value, the CBPKF does not guarantee  

Σ𝑘|𝑘 ≤  Σ𝑘|𝑘−1 a priori. It is hence necessary to check the above inequality (or a less stringent 

necessary condition or conditions) and, if not satisfied, reduce α and repeat the calculations. For 

the CBEnKF, however, sampling errors in both Σ𝑘|𝑘 and Σ𝑘|𝑘−1 render the above check impracti-

cal, particularly when the ensemble size is small. For this reason, instead we check if the sample 

Σ𝑘|𝑘 lies within the theoretically expected bounds using the apparent CBPKF error covariance, 

Σ𝑘|𝑘
𝑎 , which represents Eq.(3.3) at minimum: 
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Σ𝑘|𝑘
𝑎 = 𝐵[𝜛1,𝑘𝐻𝑘 + 𝜛2,𝑘]

−1
 (3.13) 

where the (m×m) scaling matrix, B, is given by 𝐵 = 𝛼Σ𝑘|𝑘−1[𝜛1,𝑘�̂�1,𝑘 + 𝜛2,𝑘] + 𝐼. Because it 

represents the sum of error covariance and expectation of CB squared, Eq.(3.13) represents an 

upper bound for Σ𝑘|𝑘. A lower bound for Σ𝑘|𝑘 may also be obtained from Eq.(3.13) by setting 𝛼 =

0 or, equivalently, 𝐵 = 𝐼. With the above, we have: 

[𝜛1,𝑘𝐻𝑘 + 𝜛2,𝑘]
−1

≤ Σ𝑘|𝑘 ≤ 𝐵[𝜛1,𝑘𝐻𝑘 + 𝜛2,𝑘]
−1

 (3.14) 

For solving the linear systems in the KF or the EnKF, the least computationally-expensive 

method is the Cholesky decomposition (Press, 2007; Krishnamoorthy and Menon, 2013). In the 

CBPKF or CBEnKF, the linear systems may or may not be positive semidefinite. If the Cholesky 

decomposition is not successful in inverting Λ11,𝑘 or Γ22,𝑘
−1 , or solving for Kk or 𝐶𝑘, it is necessary 

to use the LU decomposition (Press, 2007). Finally, if Eq.(3.14) is not satisfied, it is necessary to 

reduce α and repeat the steps. The initial value of α, or 𝛼0, should be chosen carefully so that it is 

large enough to effect the CB penalty but not too large to incur too many iterations for successive 

reduction or over-correct the CB. An effective strategy is to start with a sufficiently large 𝛼0 and 

apply the filter in a hindcast mode over a sufficiently long analysis period and examine the distri-

bution of the final α. A good choice for 𝛼0 should result in iterative reduction of α only for a small 

fraction of the times for computational economy. We are currently exploring adaptive approaches 

for prescribing α for improved performance and reduced computing time, and the interested reader 

is referred to Shen et al. (2019). 

3.3.2 Hydrologic models 

We used the SAC (Burnash et al., 1973) for rainfall-runoff modeling and the UH (Chow et al., 

1988) for runoff routing. The SAC is a conceptual soil moisture accounting model and uses two 
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layers of conceptual soil storages, i.e., the upper zone and lower zone, to model soil water balance 

in the vertical. The lower zone is usually much thicker than the upper zone and provides moisture 

to meet the evapotranspiration demands (Koren et al., 2004). Each soil layer includes tension and 

free water contents, specifically, the Upper Zone Tension Water Content (UZTWC), Upper Zone 

Free Water Content (UZFWC), Lower Zone Tension Water Content (LZTWC), Lower Zone Free 

Primary Content (LZFPC) and Lower Zone Free Supplemental Content (LZFSC). The UZTWC is 

directly fed by rainfall. Rainfall exceeding the tension water capacity becomes the UZFWC which 

generates interflow or percolates into the lower zone. Surface runoff is generated from free water 

contents depending on the capacities of upper zone free water and lower zone tension and free 

water. Surface runoff includes both fast and slow runoffs. Fast runoff consists of the rainfall inten-

sity-dependent surface runoff from the unsaturated area, direct runoff from the saturated area, and 

impervious runoff from the impervious area. Slow runoff processes produce interflow, supple-

mental baseflow, and primary baseflow. The UH model is used to route the runoff components to 

produce streamflow at the outlet of the basin.  

The SAC is a long-standing operational model used by the National Weather Service (NWS) 

for hydrologic forecasting at most River Forecast Centers. The input forcings of the model include 

mean areal precipitation (MAP) and mean areal potential evapotranspiration (MAPE). In this 

work, we use a 1-hr time step for all basins given the flashiness and short response time of many 

of the basins. To refine the SAC parameters and to estimate UHs that are valid at a 1-hr time step, 

we used the Adjoint-Based OPTimizer (AB_OPT; (Seo et al., 2009) which corrects long-term bi-

ases in MAP and MAPE, derives empirical unit hydrographs, and locally optimizes the SAC pa-

rameters. In this way, systematic biases in inputs, systematic timing errors, and model parametric 
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uncertainties are reduced as much as possible so that DA may address the initial condition uncer-

tainties as intended.  

3.3.3 Assimilation approach 

The CBEnKF and the EnKF are applied as sequential assimilators but using the fixed-lag 

smoother formulation (Figure 3-1) (Schweppe, 1973). The size of the fixed lag, or the assimilation 

window, is chosen to be the same as the length of the UH (see Table 3-1). In this way, the time lag 

between runoff generation and the resulting flow at the basin outlet is captured in the DA process 

(Seo et al., 2009; Rafieeinasab et al., 2014b). The motivation for the fixed-lag smoother approxi-

mation using a filter formulation, as opposed to directly using a smoother formulation (Evensen 

and van Leeuwen, 2000), is to handle both cold and warm restarts with a clearly identifiable as-

similation window so that human forecasters may easily interpret the results and make decisions 

(Seo et al., 2009). In this approach, the control vector in Eq.(3.1) consists of 𝑋𝑘 =

(𝑋𝑘
𝑆, 𝑋𝑘

𝑃, 𝑋𝑘
𝐸 , 𝑋𝑘

𝑅)𝑇, i.e., the six SAC states, 𝑋𝑘
𝑆, the multiplicative adjustment factors for MAP and 

MAPE, 𝑋𝑘
𝑃 and 𝑋𝑘

𝐸, respectively, and the additive error to the Total Channel Inflow (TCI), 𝑋𝑘
𝑅 (see 

Basin USGS ID Area (km2) Dryness 

index 

UH duration 

(hr) 

TP (hr) Q95|S (m3/s) 

Justin 08053500 1037 1.47 80 6 166.0 

Houston 08076000 137 0.66 32 5 87.2 

Greenville 08017200 212 0.92 35 16 106.4 

Brays Bayou 08075000 246 0.39 24 3 80.8 

Lyons 08110100 508 1.25 75 18 130.0 

McKinney 08058900 427 0.91 41 14 135.5 

Madisonville 08065800 870 1.05 50 21 164.5 

Midfield 08162600 435 0.89 80 17 172.7 

Quinlan 08017300 197 0.82 25 12 113.7 

Schroeder 08176900 932 1.23 53 14 232.8 

 

Table 3-1  Hydrologic attributes of the study basins. TP and Q95|S denote time-to-peak and 95th 

percentile observed flow within the significant events, respectively. TP is estimated from the 

empirical unit hydrograph; dryness index is calculated as the ratio of mean annual potential 

evaporation to mean annual precipitation; Q95|S is calculated from the events whose peak flow 

exceeds 100 m3/s (see text for additional details). 
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Figure 3-1 and Table 3-2). In the above, 𝑋𝑘
𝑆, is valid at the beginning of the assimilation window; 

𝑋𝑘
𝑃, 𝑋𝑘

𝐸, and 𝑋𝑘
𝑅 are valid over the entire assimilation window; and 𝑋𝑘

𝐸 and 𝑋𝑘
𝑃 represent time-var-

ying systematic biases in PE and precipitation data (Gourley and Vieux, 2005; Seo et al., 2010; 

Stisen and Sandholt, 2010; Habib et al., 2013). The time evolution of 𝑋𝑘
𝑆 is given by the SAC. The 

time evolution of 𝑋𝑘
𝑃, 𝑋𝑘

𝐸and 𝑋𝑘
𝑅 is modeled as autoregressive-1 with a lag-1 (hr) serial correlation 

coefficient of 0.96 for all three (Smith and Krajewski, 1991; Anagnostou and Krajewski, 1999; 

Seo et al., 1999). The observation vector in Eq.(3.2) consists of 𝑍𝑘 = (𝑍𝑘
𝑃, 𝑍𝑘

𝐸 , 𝑍𝑘
𝑅 , 𝑍𝑘

𝑄)
𝑇
, i.e., the 

observed MAP, 𝑍𝑘
𝑃, the climatological MAPE, 𝑍𝑘

𝐸 , the observed additive error in TCI, 𝑍𝑘
𝑅, and the  

Figure 3-1 A schematic of the DA cycles based on the fixed-lag smoother formulation. See Table 

3-2 for description of the control variables. 
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streamflow observations, 𝑍𝑘
𝑄

. The observation error vector, 𝑉𝑘 = (𝑉𝑘
𝑃, 𝑉𝑘

𝐸 , 𝑉𝑘
𝑅 , 𝑉𝑘

𝑄
)

𝑇
, consists of 

the observation errors associated with 𝑍𝑘 = (𝑍𝑘
𝑃, 𝑍𝑘

𝐸 , 𝑍𝑘
𝑅 , 𝑍𝑘

𝑄)
𝑇
. It is assumed that the elements of 

Vk are uncorrelated among themselves and with Xk, and have mean of zero and covariance of Rk. 

The nonlinear observation equation, 𝐺(𝑋𝑘), consists of the model-simulated observations of MAP, 

or 𝑍𝑘
𝑃𝑋𝑘

𝑃, MAPE, or 𝑍𝑘
𝐸𝑋𝑘

𝐸, additive error in TCI, or 𝑋𝑘
𝑅, and streamflow, or 𝑋𝑘

𝑄
. In reality, 𝑍𝑘

𝑅 is 

not observed. As such, we set it to zero under the assumption that the model-simulated TCI is 

unbiased at all scales. 

The observations to be assimilated for each cycle include the MAP, MAPE, and streamflow 

valid over the assimilation window. The motivation for updating the multiplicative adjustment 

factors for MAP and MAPE is to account for dynamically-varying biases in the two forcing vari-

ables. In SAC, static adjustment factors already exist for MAP and MAPE, referred to as PXADJ 

and PEADJ, respectively (Seo et al., 2009). In this work, we include the two factors in the control 

vector and allow them to vary dynamically in the DA process. The MAP observations used in this 

work are from the Multisensor Precipitation Estimator (Seo et al., 2010). They are subject to vari-

ous sources of error which manifest themselves as time-varying biases as well as random errors 

Table 3-2 Control variables solved for by the CBEnKF and EnKF for streamflow prediction 

using the SAC-UH 

Control variable Description 

UZTWC Upper Zone Tension Water Content 

UZFWC Upper Zone Free Water Content 

LZTWC Lower Zone Tension Water Content 

LZFPC Lower Zone Primary Free Water Content 

LZFSC Lower Zone Supplemental Free Water Content 

ADIMC Additional impervious area water content 

PXADJ Multiplicative adjustment factor for MAP 

PEADJ Multiplicative adjustment factor for MAPE 

XR Additive error to the TCI 
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(Smith et al., 1996; Fulton et al., 1998). Because MAP is a spatially averaged quantity, purely 

random errors tend to cancel out whereas systematic biases do not. As such, it is important in 

streamflow DA to correct dynamically-varying biases in MAP over the assimilation window so 

that the SAC states valid at the prediction time and the TCIs valid over the assimilation window 

are as accurate as possible (Seo et al., 2003, 2009). The motivation for the additive error to TCI is 

to allow for the time-varying errors in SAC-UH that cannot be addressed by adjusting the model 

states, PXADJ, and PEADJ alone. The above formulation has proven very effective in several 

previous DA studies (Seo et al., 2003, 2009; Lee et al., 2011, 2012, 2016; Lee and Seo, 2014; 

Rafieeinasab et al., 2014b). In this work, the adjustment factors and the additive error in TCI are 

assumed to be temporally uniform within the assimilation window following Lee et al. (2012) who 

found that the use of temporally varying errors does not significantly improve performance while 

substantially increasing the computational amount. An assimilation cycle results in updated SAC 

states valid at the end of the assimilation window, or the prediction time, and updated TCIs valid 

over the assimilation window (see Figure 3.1). In the forecast generation process, the DA solution 

is used only for the initial conditions of the SAC and the TCIs valid over the assimilation window 

whereas all other control variables assume their default values. Accordingly, PXADJ and PEADJ 

are set to unity and the additive error to TCI is to zero for simulation over the forecast horizon. 

For assimilation and validation, we used the US Geological Survey hourly streamflow data at 

the outlets of all study basins. Our focus in this work is on flood forecasting. As such, we identified 

only the significant events from the observed streamflow data and used the resulting partial dura-

tion time series, where a significant event is defined as a hydrograph whose peak exceeds 100 

m3/s. Once a significant event is identified, the beginning and ending hours of that event are de-
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termined by subtracting and adding 72 hours from and to the first and last hours of the flow dura-

tion over 100 m3/s, respectively. In this way, the comparative evaluation is focused on the perfor-

mance of DA for relatively large events only, for which streamflow DA is likely to be affected by 

significant CB in the state variables. The MAP data used were operationally produced by the West 

Gulf River Forecast Center using the Multisensor Precipitation Estimator (Seo et al., 2010). For 

MAPE, the monthly climatology of daily estimates was used. Because the DA cycles consist only 

of the periods of significant flow, PE does not play a significant role, and hence the lack of dy-

namically-varying MAPE is unlikely to impact the outcome in any significant way. 

Because both the CBEnKF and the EnKF solve unconstrained minimization, there is no guar-

antee a priori that the updated states of all members lie within the feasible region of the SAC states. 

Various approaches have been reported in the literature to solve constrained KF and EnKF (Gupta 

and Hauser, 2007; Wang et al., 2009). In this work, we use the trial-and-error approach of Wang 

et al. (2009); if not all updated ensemble members are in the feasible region, we additionally sam-

ple random perturbations for the infeasible members and update the states until all members are 

feasible. The above strategy was used for both the CBEnKF and the EnKF in an identical manner. 

To initiate ensemble DA, each SAC state is perturbed by sampling from a lognormal distribution 

with mean and standard deviation given by the current SAC state and approximately 17% of the 

square root of the maximum soil water content, respectively. The perturbations for PXADJ and 

PEADJ are sampled from a lognormal distribution with mean and standard deviation given by the 

current state and 0.17, respectively. The perturbations for the additive error of the TCI are sampled 

from a normal distribution with the same mean and standard deviation (in mm/hr) as above. The 

model states are randomly perturbed independently of one another for simplicity. Similarly, the 
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zero-mean dynamical model errors, Wk-1 in Eq. (3-1), are assumed to be independent of one an-

other and have the standard deviation of approximately 4% of the current state for the SAC states 

and 0.03 for all other variables. The ensemble size is 30 throughout this work. The above setup 

was identical for both the EnKF and the CBEnKF. For additional details on perturbation and en-

semble generation, the reader is referred to Rafieeinasab et al. (2014). 

3.4 Study basins, evaluation metrics and observational uncertainty modelling 

In this section, we describe the study basins, evaluation metrics and observational uncer-

tainty modelling. 

3.4.1 Study basins 

Ten hydroclimatologically diverse headwater basins in Texas (U.S.) are used (see Figure 

3-2). These catchments are a subset of the basins identified as particularly challenging in opera-

tional forecasting by the NWS West Gulf River Forecast Center. The basins have been used by the 

authors and their collaborators for hydrologic DA and related research in recent years (Seo et al., 

2009; Lee et al., 2011, 2012, 2016; Lee and Seo, 2014; Rafieeinasab et al., 2014b). The basins are 

wetter in the east and drier in the west as indicated by the dryness index calculated for the period 

of 1996 to 2005 (see Table 3-1) where the dryness index is defined as the ratio of mean annual PE 

to mean annual precipitation (Budyko, 1974). Table 3-1 also presents the time-to-peak (TP) and 

the 95th percentile observed flow within the selected events (Q95|S). Compared to the basins in the 

humid region, those in the semi-arid region pose larger challenges in streamflow forecasting due 

to the generally quicker catchment response, larger uncertainties in the initial conditions, possible 

structural uncertainties associated with unmodeled processes such as infiltration into dry channel 

beds, and larger parametric uncertainties due to the above factors and the limited number of large 

events available for calibration. In addition, the large spatio-temporal variability of precipitation 
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from highly convective storms adds large uncertainties in lumped modelling particularly for large 

basins. As such, the study basins offer an extremely challenging test for streamflow DA. 

3.4.2 Evaluation metrics 

To evaluate the comparative performance of the CBEnKF with the EnKF, we verified both 

ensemble mean and ensemble streamflow forecasts from hindcasting experiments. For ensemble 

mean forecasts, we used the root mean square error, maximum errors of under- and over-predic-

tion, correlation coefficient and mean square error skill score (MSE-SS)(Lee et al., 2011, 2012; 

Figure 3-2 Study basins in Texas, USA 
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Lee and Seo, 2014). The results indicate that the MSE-SS represents the overall comparative per-

formance very well and we hence focus below on the MSE-SS results. The MSE-SS for the 

CBEnKF ensemble mean in reference to the EnKF ensemble mean is given by: 

MSE-SS = 1 −

1
𝑁

∑ (𝑄𝑘
̅̅̅̅ 𝐶𝐵𝐸𝑛𝐾𝐹

− 𝑍𝑘
𝑄)

2
𝑁
𝑘=1

1
𝑁

∑ (𝑄𝑘
̅̅̅̅ 𝐸𝑛𝐾𝐹

− 𝑍𝑘
𝑄)

2
𝑁
𝑘=1

 (3.15) 

where 𝑄𝑘
̅̅̅̅ 𝐶𝐵𝐸𝑛𝐾𝐹

, 
EnKF

kQ , 
Q

kZ , and N denote the CBEnKF ensemble mean flow, EnKF ensemble 

mean flow, verifying observed flow, and the number of paired sets of 
Q

kZ  and 𝑄𝑘
̅̅̅̅ 𝐶𝐵𝐸𝑛𝐾𝐹

, respec-

tively. A perfect ensemble mean forecast would yield an MSE-SS of unity. No improvement in 

the ensemble mean forecast by the CBEnKF over the EnKF would yield an MSE-SS of zero. For 

ensemble forecasts, we used a large number of verification measures available in the Ensemble 

Verification System (EVS)(Brown et al., 2010), including the Brier score, Brier skill score, con-

tinuous ranked probability score (CRPS), CRPS decomposition (Hersbach, 2000), continuous 

ranked probability skill score (CRPSS)(Brown et al., 2014), reliability diagram, relative operating 

characteristic and others. The results indicate that the mean CRPS, its decomposition, and mean 

CRPSS represent the comparative performance very well and hence we focus on their results in 

this paper. The CRPS measures the integral squared difference between the cumulative distribution 

function (CDF) of ensemble forecast and that of the verifying observation. A more skilful ensem-

ble forecast will produce a smaller CRPS than the reference ensemble forecast. The mean CRPSS 

of the CBEnKF-based ensemble forecast in reference to the EnKF-based is given by: 

𝐶𝑅𝑃𝑆𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅ = 1 −
𝐶𝑅𝑃𝑆̅̅ ̅̅ ̅̅ ̅

𝐶𝐵𝐸𝑛𝐾𝐹

𝐶𝑅𝑃𝑆̅̅ ̅̅ ̅̅ ̅
𝐸𝑛𝐾𝐹

= 1 −

1
𝑁

∑ ∫ (𝐹𝑖
𝐶𝐵𝐸𝑛𝐾𝐹(𝑄) − 𝐹𝑖

𝑜𝑏𝑠(𝑄))
∞

0

2

𝑑𝑄𝑁
𝑖=1

1
𝑁

∑ ∫ (𝐹𝑖
𝐸𝑛𝐾𝐹(𝑄) − 𝐹𝑖

𝑜𝑏𝑠(𝑄))
∞

0

2

𝑑𝑄𝑁
𝑖=1

 (3.16) 
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where the 𝐶𝑅𝑃𝑆̅̅ ̅̅ ̅̅ ̅
𝐶𝐵𝐸𝑛𝐾𝐹 and EnKFCRPS

________

 denote the mean CRPS of the CBEnKF and the EnKF en-

semble forecast, respectively, 𝐹𝑖
𝐶𝐵𝐸𝑛𝐾𝐹(𝑄) and  QF EnKF

i  denote the CDFs of the ith CBEnKF and 

EnKF ensemble forecast, respectively, and  QF obs

i  denotes the CDF of the verifying observation 

(i.e., the Heaviside step function). A perfect ensemble forecast would yield a CRPSS of unity. No 

improvement by the CBEnKF over the EnKF ensemble forecast would yield a CRPSS of zero. 

Following Hersbach (2000), the CRPS can be decomposed into reliability (REL), resolution 

(RES), and uncertainty (UNC), or into REL and potential CRPS (CRPSPOT): 

𝐶𝑅𝑃𝑆 = 𝑅𝐸𝐿 − 𝑅𝐸𝑆 + 𝑈𝑁𝐶 = 𝑅𝐸𝐿 + 𝐶𝑅𝑃𝑆𝑃𝑂𝑇 (3.17) 

Smaller REL indicates more reliable ensembles (desirable) and larger RES means better resolution 

(desirable). The RES component (=UNC – CRPSPOT) is positive if the ensemble forecast is better 

than the climatological ensemble forecast (Hersbach, 2000). The UNC component reflects clima-

tologic uncertainties in the observations and does not relate to forecast attributes. The CRPSPOT 

represents the CRPS achievable by calibrating forecast probabilities for perfect reliability (Hers-

bach, 2000). Similarly to the CRPS, smaller CRPSPOT indicates improved performance by the sub-

ject ensemble forecast.  

3.4.3 Observational uncertainty modelling 

Observational errors are generally heteroscedastic and correlated in time (Lee et al., 2011). 

Due to lack of observed truth, however, their modeling is a large challenge. In this work, we as-

sume that all observational errors are temporally uncorrelated and homoscedastic, and use a wide 

range of settings for their variances. In this way, one may assess the comparative performance of 

the CBEnKF with the EnKF under widely varying, but identical conditions of the quality of the 

observations being assimilated and that of the model used. Generally speaking, one would expect 
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the observation error variance for MAPE, 𝜎𝐸
2, to be smaller than that for MAP, 𝜎𝑃

2. Given that we 

are using climatological MAPE rather than dynamically estimated values, however, we assumed 

𝜎𝐸
2 = 𝜎𝑃

2 for simplicity. We then used the settings of 10, 100 and 1000 (mm/hr)2 for 𝜎𝐸
2(=𝜎𝑃

2) to 

represent small, medium and large uncertainties, respectively, in input forcings. The same three 

settings were used for the error variance to represent small, medium and large model uncertainties 

in the SAC-UH. Table 3-3 lists the resulting 9 possible combinations of  𝜎𝑃
2 and 𝜎𝑅

2, represented 

by C1 through C9. 

Harmel et al. (2006) report streamflow measurement errors for small watersheds of 42%, 19%, 

10%, 6% and 3% for the worst case, typical maximum, typical average, typical minimum, and the 

best case scenarios, respectively. Baldassarre and Montanari (2009) report that the overall error 

affecting river discharge observations ranges from 6.2% to 42.8%, at the 95% confidence level, 

with an average value of 25.6%. Given the dependence of streamflow observation errors on the 

flow, one may consider prescribing larger or smaller 𝜎𝑄
2 depending on the magnitude of the ob-

served flow. The error associated with 𝑍𝑘
𝑄

 in 𝑍𝑘 in Eq.(3.2), however, reflects not only the obser-

vational error of streamflow but also the modeling errors associated with the simulated flow in 

Table 3-3 Observational error variances used for different basins  

Case 
𝝈𝑷

𝟐  

(mm/hr)2 

𝝈𝑹
𝟐  

(mm/hr)2 

𝝈𝑸
𝟐  

(m3/s)2 

C1 10 10 100 for 

Justin,  

Houston, 

Greenville, 

Brays Bayou, 

Midfield 

1000 for 

Lyons,  

McKinney,  

Madisonville, 

Quinlan, 

Schroeder 

C2 10 100 

C3 10 1000 

C4 100 10 

C5 100 100 

C6 100 1000 

C7 1000 10 

C8 1000 100 

C9 1000 1000 
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G(Xk). Note that, whereas the DA formulation addresses uncertain SAC states, biases in MAP and 

MAPE, and errors in the TCI, it does not address errors arising from model deficiencies such as 

timing errors (Liu et al., 2011). As such, a larger 𝜎𝑄
2 would be more appropriate if the model has 

large simulation errors which the DA procedure cannot address even though the basin produces 

smaller peak flows. For this reason, a priori determination of 𝜎𝑄
2 is not readily possible and some 

form of sensitivity analysis is usually necessary. In this work, we used 𝜎𝑄
2 of 100 and 1,000 (m3/s)2, 

carried out assimilation experiments using both settings of 𝜎𝑄
2, and compare the relative perfor-

mance for each basin. To illustrate the above process, we show in Figure 3-3 the MSE-SS results 

for Midfield for C1 through C9 in Table 3-3 for 𝜎𝑄
2 of 100 and 1,000 (m3/s)2. The figure shows that 

Figure 3-3 Box plots of the MSE-SS of the CBEnKF 1-6 h ensemble mean flow forecast over 

the EnKF for Midfield for the 9 different combinations of 𝝈𝑷
𝟐  and 𝝈𝑹

𝟐 , and two different values 

of 𝝈𝑸
𝟐  in Table 3-3. A total of 6 data points are used at each box where each data point is from 

each of the first 6 lead hour ensemble mean flow. The top and bottom of the boxes are associ-

ated with the 1 and 6 hr-ahead predictions, respectively. Red dots and the bars in the middle 

of boxes represent the mean and the median, respectively. 
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the CBEnKF improves over the EnKF in the ensemble mean sense for all cases, but that the margin 

of improvement is larger with 𝜎𝑄
2 = 100 (m3/s)2. Similar results for all other basins suggest 𝜎𝑄

2 of 

100 (m3/s)2 for Justin, Houston, Greenville and Brays Bayou and 𝜎𝑄
2 of 1,000 (m3/s)2 for Lyons, 

McKinney, Madisonville, Quinlan and Schroeder. In terms of the observed 95th percentile flow, 

Schroeder, Madisonville, Midfield and Justin produce the largest peak flows whereas Greenville, 

Houston and Brays Bayou produce the smallest. Comparison of the basin groupings based on the 

choice of 𝜎𝑄
2 and those based on the 95th-percentile flow suggests that the smaller 𝜎𝑄

2 of 100 (m3/s)2 

might not be appropriate for Justin and Midfield which produce the largest peak flows. Examina-

tion of the hydrographs indicated, however, that the above two basins have significantly smaller 

timing errors (Liu et al., 2011) which makes the smaller 𝜎𝑄
2 more realistic. In the opposite case, 

Quinlan has significantly larger timing errors though its 95th-percentile flow is not very large which 

makes the larger 𝜎𝑄
2 of 1,000 (m3/s)2 more appropriate. With the above choices, we arrive at the 

nine cases for each of the two groups of 𝜎𝑄
2 = 100 (m3/s)2 and 𝜎𝑄

2 = 1,000 (m3/s)2 as shown in 

Table 3-3. It is worth noting that the resulting upper bounds for the observation error variances are 

at least an order of magnitude larger than those used in Rafieeinasab et al. (2014). The rationale 

for the larger bounds is to use uncertainty estimates that are realistic for large events and to assess 

the relative performance between the CBEnKF and the EnKF under the limiting conditions of very 

large and very small observational and modeling uncertainties.  

3.5 Results and discussion 

In this section, we present the comparative evaluation results. For each basin, the CBEnKF 

and EnKF were applied for prediction of all events whose peak flow exceeds 100 m3/s within the 

10-yr period of record. We first present illustrative examples of the CBEnKF and EnKF results in 
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Subsection 3.5.1. We then describe comparative verification of ensemble mean and ensemble pre-

dictions in Subsections 3.5.2 and 3.5.3, respectively. 

3.5.1 Illustrative examples 

To help intuitive understanding of how the CBEnKF and EnKF predictions may compare, we 

first present in Figure 3-4 illustrative examples of predicted hydrographs for selected events only 

for a subset of the basins due to space limitations. In the figure, it is readily seen that the CBEnKF 

ensembles are of higher quality than the EnKF in terms of both ensemble mean and spread. In 

general, the CBEnKF ensembles are able to encompass the observed peak flow whereas the EnKF 

ensembles are not. Examination of the hydrographs for all basins may be summarized as follows. 

For Greenville and Quinlan, the overall shape of the simulated hydrograph indicated the presence 

of timing errors. For McKinney and Midfield, it was observed that the EnKF ensembles lack spread 

in the recession phase. The above suggests that one or more SAC states for the soil water contents 

may have been completely full, thereby suppressing the ensemble spread. The above observations 

point out the need for parametric uncertainty modeling to mitigate the negative impact of timing 

errors and to account for the uncertainties in the soil water holding capacities of the soil moisture 

accounting model.  

Figure 3-5 shows an example set of ensemble mean results for a single event at Lyons. The 

figure shows the open-loop, and DA-updated streamflow, UZTWC, UZFWC, LZTWC, LZFSC, 

LZFPC, precipitation, PE and the TCI. They illustrate how the CBEnKF- and EnKF-updated states 

may compare during the course of an event. For streamflow, the verifying observations are also 

shown. In the figure, each time step represents the ending hour of the assimilation window, and 

the associated results represent the updated states and the model-simulated flow valid at that hour 

(i.e., the prediction time). The figure hence represents the time series of the analysis results from 
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successive DA cycles during the course of the event. The observation uncertainty parameters as-

sociated with Figure 3-5 are 000,12 Q  (m3/s)2, and 
2

P =
2

E =
2

R =1,000 (mm/h)2. It is seen that 

both the CBEnKF and EnKF streamflow analyses are much closer to the observed than the open-

loop analysis, and that the CBEnKF streamflow analysis tracks the observed more closely than the 

Figure 3-4 Example ensemble streamflow forecasts for Houston, McKinney, Midfield and Mad-

isonville. 
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EnKF (upper left). The corresponding CBEnKF and EnKF analyses of the state variables may at 

first appear similar, but significant differences exist in the lower zone soil moisture states through-

out the event as well as in the UZFWC and the additive error in the TCI at certain DA cycles. 

Because there are no truths available, it is not possible to assess the accuracy of the state variables. 

One may nevertheless observe that, compared to the EnKF, the CBEnKF solutions are closer to 

those of the open loop simulation especially in the three lower zone soil moisture states of LZTWC, 

LZFSC and LZFPC, precipitation, and the TCI while producing more accurate streamflow analysis. 

Visual examination of many results similar to Figure 3-5 suggests that the CBEnKF- and EnKF-

updated states differ by varying degrees among different combinations of the observational uncer-

tainty parameters and different state variables, but that, in general, the CBEnKF-updated states 

Figure 3-5 Ensemble mean analyses valid at each hour of a single event in Case 9 (C9) for 

Lyons. 
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tend to maintain the joint relationships among the different states of the open-loop simulation more 

closely than the EnKF-updated.  

To illustrate the above point, we show in Figure 3-6 the scatter plots between the UZFWC and 

LZFPC, the fastest and the slowest varying SAC states, respectively, from the open-loop, EnKF-

updated and CBEnKF-updated ensemble results. In the top left plot of Figure 6, each “stripe” of 

data points represents an open-loop simulation associated with the peak flow portion of the hydro-

graph associated with a significant event (see the bottom plot in Figure 3-6). The herringbone-like 

patterns are due to the ensemble members from the same assimilation cycle possessing similar 

updated states. Figure 6 indicates that the CBEnKF-updated states resemble the joint relationships 

Figure 3-6 (Upper) Scatter plots of UZFWC vs. LZFPC analysis ensembles valid at prediction 

time for Case 1 (C1) of Midfield and (Lower) the corresponding observed flow time series. The 

same colors between the scatter and the time series plots represent the same events. Only those 

portions of ZQ ≥ 100 (m3/s) are shown for clarity where ZQ denotes observed streamflow. 
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between the UZFWC and LZFPC in the open-loop states more closely than the EnKF-updated 

even though the locations of the stripes are quite different among the three results in the bivariate 

phase space. Observations from Figs 3-5 and 3-6 and many similar results suggest that the 

CBEnKF retains the open-loop model dynamics among the different soil moisture states more 

closely than the EnKF, and that, when both the CBEnKF and EnKF produce streamflow analyses 

of similar quality, the CBEnKF-updated states stay closer to the open-loop states than the EnKF 

states. This supports the argument that the improved skill by the CBEnKF is due in part to the 

updated states being more in line with the open-loop model dynamics. Similar results were also 

obtained by Noh et al. (2018) in which a multi-scale version of the fixed-lag smoother (see Figure 

3-1) was compared for streamflow DA with the single-scale version as implemented in this work 

but using variational assimilation rather than the EnKF or CBEnKF. They showed that minimizing 

adjustment to the model states while producing high-quality streamflow analyses significantly im-

proves predictive skill in DA solutions albeit at a substantially higher computational cost. 

3.5.2 Ensemble mean streamflow evaluation 

Here we present the scatter plots and MSE-SS results to assess the performance of ensemble 

mean predictions. Figure 3-7 shows the scatter and quantile-quantile plots of 3 hr-ahead ensemble 

mean streamflow forecast vs. verifying observation. Also shown in the figure are the sample CBs 

computed over the 10 sub-ranges that equally divide the entire range of observed flow. It is seen 

that the CBEnKF further reduces CBs in the ensemble mean sense beyond what the EnKF is able 

to for the entire range of flow. Table 4 summarizes the mean absolute CB and RMSE of 3 hr-ahead 

ensemble mean streamflow forecasts shown in Figure 3-7. The table shows that the CBEnKF gen-

erally reduces both the mean absolute CB and RMSE further than the EnKF. For Justin and Mid-
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field, the reduction in both the mean absolute CB and RMSE by the EnKF over open-loop simu-

lation is already very large, and that for the CBEnKF is similarly large. Figure 3-8 shows the MSE-

Figure 3-7 Scatter and quantile-quantile plots of ensemble mean simulated flow vs. observed 

at lead time of 3 hrs. The simulations are from the open loop (blue line), EnKF (green line) and 

CBEnKF (red line) runs for significant events. The bar plots show the CB calculated as the 

mean difference between simulated and observed flows for each of the ten equally divided flow 

ranges. For each basin, a single case from the nine cases of C1 to C9 in Table 3 is shown, chosen 

based on the MSE-SS results in Figure 3-8. The selected cases are C4, C4, C2 and C8 for Hou-

ston, McKinney, Midfield, Madisonville, respectively. 
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SS of the CBEnKF ensemble mean forecast for a subset of the basins for all verifying observed 

flow within the periods of significant events as a function of lead time. The reference forecast is 

the EnKF ensemble mean forecast. The positive MSE-SS means that the CBEnKF outperforms 

Figure 3-8 MSE-SS of the CBEnKF ensemble mean streamflow forecast over the EnKF as a 

function of lead time 
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the EnKF in the ensemble mean sense. In each plot, there are 9 MSE-SS curves representing the 9 

different cases in Table 3-3. The multi-basin mean for all 10 basins of the MSE-SS of the CBEnKF 

over the EnKF is 0.37 for lead time of 1 hr, and 0.15 over lead times of up to the time-to-peak of 

the basin. For Houston and Brays Bayou, the two most quickly-responding small urban basins in 

the humid region, the positive impact of the CBEnKF over the EnKF diminishes rather quickly 

due to the short basin memory and relatively small CB in the base simulation (for Houston, see 

also Figure 3-7). For larger basins, the positive impact extends to longer lead times. For Lyons, 

McKinney and Madisonville, the increased skill in the CBEnKF ensemble mean forecast remains 

significantly high well beyond the first 24 hrs of lead time for a number of observational uncer-

tainty parameter combinations. For the largest basin, Justin, on the other hand, the skill dissipates 

rather quickly due to the short time-to-peak associated with rain falling in the lower part of this 

very elongated basin which dominates the generation of large flows at the outlet (see Figure B1 of 

Seo et al., 2009). Figure 3-8 also shows that the CBEnKF improves over the EnKF in the ensemble 

mean sense under widely varying combinations of 
2

P  (=
2

E ) and 
2

R . The above observations 

indicate that the CBEnKF is robust and may be expected to perform well even if the uncertainty 

parameters are not prescribed with accuracy, an important consideration for real-world applica-

tions.  

3.5.3 Ensemble streamflow evaluation 

Here we present the ensemble verification results to assess the performance of ensemble pre-

dictions. Figure 3-9 shows the mean CRPSS of the CBEnKF ensemble forecast for a subset of the 

basins. The reference is the EnKF ensemble forecast. All results in Figure 3-9 are conditional on 

the verifying observation exceeding the 95th-percentile flow of the associated basin within the sig-

nificant events (see Table 3-1). As such, the figure assesses comparative skill specifically for 
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prediction of large flows for which there exists only limited hydrologic memory for DA to rely on. 

For each basin, there are 9 mean CRPSS curves corresponding to the 9 combinations of 
2

P  (=
2

E

Figure 3-9 Mean CRPSS vs. lead time of the CBEnKF ensemble streamflow forecast condi-

tional on the observed flow exceeding the 95 th percentile within significant events. The refer-

ence is the EnKF ensemble forecast. 
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) and 
2

R  given the basin-specific 2

Q  (see Table 3-3). Figure 3-9 shows that the CBEnKF consid-

erably improves over the EnKF for all basins shown for short lead times. As with the MSE-SS, the 

increased skill quickly dissipates for Houston and Brays Bayou. For the larger basins, Lyons, 

McKinney and Madisonville, the increase skill persists into significantly longer lead times. For 

the rest of the basins, Justin, Greenville, Midfield, Quinlan and Schroeder, the increased skill stays 

significant for the first several hours or more but dissipates within the first 24 hours or so. It is 

observed in Figure 3-9 that, for some mean CRPSS curves for Midfield, the skill is lower at lead 

time of zero (i.e., analysis) than at lead time of 1 hr. Examination of the comprehensive verification 

results from the EVS indicates that, for large basins such as Midfield, the analysis ensembles are 

not always as reliable as the 1-hr forecast ensembles. The above observations point out the need 

for improving uncertainty modeling particularly for large basins, a topic left as a future endeavor. 

For attribution of the increased skill in CBEnKF ensembles, we carried out mean CRPS de-

composition for 1-6 hr-ahead streamflow ensemble forecasts. Figure 3-10 shows the mean CRPSS, 

CRPS, REL, RES and CRPSPOT for all basins. For each basin, there are 9 data points representing 

the 9 combinations of 
2

P  (=
2

E ) and 
2

R  given the basin-specific 2

Q . In the figure, the results are 

connected across all basins only to aid visualization of the differences between the CBEnKF and 

EnKF results. The figure shows that the CBEnKF generally improves both reliability and resolu-

tion of ensemble forecasts over the EnKF for all basins. The mean CRPSS varies from 0.06 to 0.19 

with a mean of 0.12. The mean improvement for all basins in the REL, RES, CRPSPOT and CRPS 

by the CBEnKF over the EnKF are 17, 7, 10 and 11%, respectively. Because the magnitude of the 
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RES is generally much larger than that of the REL at short lead time, the above reduction in the 

Figure 3-10 (From top to bottom) Mean CRPSS of the CBEnKF 1-6h flow forecast over the 

EnKF and corresponding mean CRPS, REL, RES and CRPSPOT. Red and blue colors are used 

for the CBEnKF and EnKF, respectively. Shaded areas represent 5-95th percentile ranges. 

Lower and upper dotted lines denote minimum and maximum, respectively. Solid lines and 

dots denote the median and mean, respectively. 
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REL and increase in the RES are comparable in magnitude in terms of reducing the mean CRPS 

of the CBEnKF ensembles. Figure 3-11 shows the mean CRPSS of 1 hr-ahead CBEnKF ensemble 

forecast in reference to the 1 hr-ahead EnKF forecast for all basins as a function of the conditioning 

threshold. For each threshold on the x-axis, a total of 90 data points are represented in the vertical 

which include 9 cases for each of the 10 basins. The figure shows that, the larger the verifying 

flow is, the larger the margin of improvement by the CBEnKF is. The mean CRPSS of the 

CBEnKF ensembles in reference to the EnKF is about 0.2 for all ranges of verifying flow and 

increases to about 0.3 or larger for observed flows at or above the 95th percentile flow within the 
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significant events (see Table 3-1). That the gain in skill increases as the threshold increases is an 

extremely appealing attribute of the CBEnKF and is consistent with the CBPKF results (Seo et al., 

2018a,b; Shen et al. 2019). The above indicates that SAC-UH simulations of floods generally con-

tain significant CB for the study area, and that the CBEnKF is able to reduce its ill effects and 

significantly improve prediction.  

The results presented above pertain only to prediction of significant events. When the assim-

ilation cycles include both the storm and inter-storm periods, the skill of the CBEnKF predictions 

Figure 3-11 Mean CRPSS of the CBEnKF 1-hr streamflow forecast over the EnKF for all basins 

as a function of the conditioning verifying observed flow exceeding the climatological proba-

bility shown on the x-axis. The probability levels used range from 0 to 0.99. At each probability 

level, there are 90 values (=10 basins× 9 cases) from which the 5, 25, 50, 75, 95th percentiles and 

the mean value were calculated. Blue and red shaded areas represent the 5-95th and 25-75th 

percentile ranges, respectively. Green line and black dot denote the median and mean, respec-

tively. 
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in reference to the EnKF is expectedly smaller. For example, for C5 and C9 at Madisonville, the 

mean CRPSS for flood periods only and for all periods are about 0.35 and 0.20, respectively. When 

the assimilation cycles include only the inter-storm periods, the CBEnKF shows little improve-

ment over the EnKF. When only the periods of extremely low flows are included, however, the 

CBEnKF improves over the EnKF. The above results are fully expected in that the EnKF already 

provides the optimal solution when the true state of the system is at or near median, which corre-

sponds generally to low flow conditions, and that the CBEnKF provides improvement over the 

tails of the distribution (Seo et al., 2018a, 2018b; Shen et al., 2019). The above observations sug-

gest that, in real-time operation, one may normally run the EnKF and supersede it with the 

CBEnKF only in non-normal conditions. 

3.6 Conclusions and future research recommendations 

The conditional bias-penalized ensemble Kalman filter (CBEnKF) is developed and evaluated 

for real-time assimilation of streamflow data to improve flood forecasting. The ensemble mean 

results show that, for the ten basins in TX, the CBEnKF improves the mean square error skill score 

(see Eq. (3.15)) over the EnKF on average by about 0.15 over lead times of up to the time-to-peak 

of the basin. The ensemble results show that on average the CBEnKF improves the mean contin-

uous ranked probability skill score (see Eq.(3.16)) over the EnKF by about 0.2 for all observed 

flows in significant events, and by about 0.3 or larger for observed flows exceeding the 95th per-

centile in those events. That the margin of improvement is larger for larger flows is a particularly 

appealing aspect of the CBEnKF. Both the ensemble mean and ensemble results show that the 

considerable improvement by the CBEnKF over the EnKF is realized over a wide range of com-

binations of observational uncertainties. As such, one may expect the CBEnKF to improve over 

the EnKF even if the uncertainty modeling may not be very accurate, an important consideration 
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in operational forecasting. Visual comparison of forecast hydrographs with verifying observations 

indicates that the CBEnKF ensemble forecasts are generally of higher quality in the mean and 

spread than the EnKF ensembles, but that, for a few basins, the quality of both the CBEnKF and 

EnKF ensembles is compromised by phase errors in the UH and lack of parametric uncertainty 

modeling in the maximum soil water storages of the SAC. The CRPS decomposition indicates that 

the improved skill in CBEnKF ensembles is due to improvement in both reliability and resolution, 

and that their contributions are comparable in magnitude at short lead times. The examination of 

the updated and open-loop states indicates that the CBEnKF is able to improve the quality of 

streamflow analysis over the EnKF by adjusting the model states beyond what the EnKF is able 

to, and that, when the CBEnKF and EnKF produce streamflow analyses of comparable quality, the 

CBEnKF generally makes smaller adjustments to the open-loop state variables than the EnKF 

while still outperforming the EnKF in streamflow prediction. The last observation is supported by 

the examination of the joint relationships of the SAC states with and without DA in that the 

CBEnKF-updated states tend to follow the patterns of the open-loop states more closely than the 

EnKF-updated. It is hence surmised that the improved skill is due in part to the CBEnKF-updated 

states being more in line with the open-loop model dynamics than the EnKF-updated. 

The CBEnKF in its current form is computationally expensive (Shen et al. 2019). Compared 

to the EnKF, the CBEnKF additionally requires inverting an (n×n) and two (m×m) matrices in 

each assimilation cycle where m and n denote the number of state variables and observations, 

respectively. Toward remedying the situation, at least two approaches seem possible. The first is 

to build a hybrid filter which runs the EnKF in “normal” conditions but switches to the CBEnKF 

in non-normal conditions. The second is to reduce the dimensionality of the linear systems via the 

singular value decomposition or its variant. The latter will also allow assessment of dynamically-
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varying information content in the observation and forecast error covariance matrices. The state 

augmentation approach used in this work renders the dimensionality of the state vector very large. 

Alternative approaches are possible which greatly reduces dimensionality but at some expense of 

reduced accuracy. The weight for the CB penalty, α, is specified in this work by prescribing the 

initial value, 𝛼0, and reducing successively until a valid solution is obtained. If α could be specified 

adaptively without iterations based on the state of the dynamical system, the computational burden 

associated with the CBEnKF would be significantly reduced (Shen et al. 2019).  We are currently 

evaluating lower-dimensional reformulation of the DA problem, the use of the randomized decom-

position approaches for rank reduction (Halko et al., 2011), and machine learning-based state clas-

sification approaches for adaptive filtering, and the results will be reported in the near future. 
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Chapter 4. Adaptive CBEnKF for CB-Aware DA 

4.1 Introduction 

Data assimilation (DA) is widely used to reduce uncertainty in the initial conditions (IC) 

of prediction models by fusing the actual and model-predicted observations (Evensen, 1994; Even-

sen and van Leeuwen, 2000; Moradkhani et al., 2005; Liu and Gupta, 2007; Reichle, 2008; Liu et 

al., 2012). For cost-effective DA operation and observation, it is necessary to consider not only 

the DA method but also the flow-dependent information content. For example, an additional 

streamflow observation at the base of the rising limb of an unfolding hydrograph has a larger 

marginal information content relative to the model prediction than one at the lower recession limb. 

It is hence desirable to make more frequent observations of streamflow in the early rise phase of 

the streamflow response and schedule the DA cycles accordingly. In the context of DA, the mar-

ginal information content of an observation may be expressed in terms of the reduction in uncer-

tainty in the ICs due to DA relative to the uncertainty without DA. If the assimilation completely 

eliminates the uncertainty in the ICs, the marginal information content of the observation would 

be 100%. If it does not reduce the uncertainty at all, the observation has no marginal information 

content. For optimal information fusion, observation and DA operation, it is hence important that 

the DA method be able to model the predictive uncertainty as accurately as possible. 

In the CB-penalized techniques, the largest additional source of uncertainty and potential 

subjectivity is the scalar weight for the CB penalty, 𝛼 (see Eq. (4.1) in Section 0). In the context 

of multiple linear regression, 𝛼  may be considered analogous to the tuning parameter, 𝜆 , in 

Tikhonov regularization (Tikhonov and Arsenin, 1977; Tikhonov et al., 1995) or ridge regression  

(Hoerl, 1962; Hoerl and Kennard, 1970), or its 𝐿1  version, the Least Absolute Selection and 

Shrinkage Operator LASSO, (Tibshirani, 1996, 1997), although the nature of the penalty is quite 
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different (Jozaghi et al., 2020). The choice for the value of 𝛼 depends on whether the state of the 

system that manifests the predictor-predictand relationship being observed is in a normal or ex-

treme state. If the system is at or near its median state, 𝛼 should be set to near zero so that CBEnKF 

reduces to EnKF and produces the least squares solution. If the system is in an extreme state, 𝛼 

should be set to a large value so that CB is reduced as much as possible. In this work, we describe 

an adaptive extension of CBEnKF in which 𝛼 is prescribed in real time flow-dependently. The 

premise of the approach is that, by significantly reducing the parametric uncertainty in 𝛼, one may 

quantify the marginal information content of the observations more accurately, which in turn im-

proves the DA-aided analysis and prediction, particularly when the hydrologic system is in non-

normal states. Toward the above end, we describe adaptive CBEnKF, comparatively evaluate with 

EnKF, and assess the flow-dependent information content in relation to streamflow response to 

precipitation at the catchment scale. For quantification of marginal information content, we use 

the degrees of freedom for signal (DFS) (Rodgers, 2000; Zupanski et al., 2007) which may be 

considered as a skill score for information fusion. The new and significant contributions of this 

chapter are: development of CB-aware DA in the form of adaptive CBEnKF for assimilation of 

streamflow observations, comparative evaluation of adaptive CBEnKF with EnKF, and advances 

in understanding of flow-dependent information content in hydrologic prediction and its temporal 

variations in relation to streamflow response at the catchment scale. This chapter is an adaptation  

of Shen et al. (2020) and is organized as follows. Section 4.2 describes the hydrologic models, 

streamflow and precipitation data, and basins used for the study. Section 0 describes CBEnKF and 

formulation of the control vector, adaptive extension, flow-dependent information content and 

uncertainty modeling. Section 4.4 presents the results. Section 4.5 provides conclusions and future 

research recommendations. 
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4.2 Models, Data and Basins Used 

In this section, we describe the hydrologic models, the forcings and streamflow data and 

the basins used in this study. They were used in a number of previous studies of hydrologic mod-

eling and DA (Seo et al., 2009; Lee et al., 2012, 2016, 2019; Lee and Seo, 2014; Rafieeinasab et 

al., 2014b). As such, we limit the descriptions only to those that are essential to the development 

of this paper. 

4.2.1 Hydrologic Models Used 

We used the Sacramento soil moisture accounting model (SAC) (Burnash et al., 1973) for 

rainfall-runoff modeling and the unit hydrograph (UH) (Chow et al., 1988) for runoff routing. They 

represent long-standing hydrologic models used at the River Forecast Centers (RFC) of the Na-

tional Weather Service (NWS) for operational hydrologic forecasting for headwater basins. The 

SAC inputs mean areal precipitation (MAP) and mean areal potential evapotranspiration (MAPE) 

and outputs the total channel inflow (TCI) which represents the sum of surface and subsurface 

runoffs into the channels. In this work, we assume clairvoyant forcing forecasts and use (observed) 

MAP and MAPE for future input as well. The UH inputs the TCI and outputs discharge at the 

catchment outlet. The SAC is a conceptual soil moisture accounting model and uses two layers of 

soil storages, i.e., the upper and lower zones, to model soil water balance in the vertical. Surface 

runoff includes both fast and slow runoffs. Fast runoff consists of the rainfall intensity-dependent 

surface runoff from the unsaturated area, direct runoff from the saturated area, and impervious 

runoff from the impervious area. Slow runoff processes produce interflow, supplemental baseflow, 

and primary baseflow. The UH model is used to route the runoff components to produce stream-

flow at the outlet of the basin.  

The objective of DA in this work is reduce the IC uncertainty. As such, it is important to 
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reduce other sources of error, such as systematic biases in observed forcings, systematic timing 

errors, and model parametric uncertainties, as much as possible so that one may ascertain the ef-

fectiveness of DA for the intended purpose of reducing the IC uncertainty. In this work, we used 

hourly MAP given the flashiness and short response time of a number of the study basins. For 

MAPE, we used climatological mean values adjusted via calibration. In SAC, MAP and MAPE 

may be adjusted for long-term biases via multiplicative correction factors. To estimate the adjust-

ment factors, derive the empirical UH and refine the SAC parameters, we used the Adjoint-Based 

OPTimizer (AB_OPT) (Seo et al., 2009). For details on the calibration technique used in AB_OPT, 

the reader is referred to (Kuzmin et al., 2008). 

4.2.2 Data Used 

The observations assimilated are MAP, MAPE, and streamflow. The MAP observations 

are from the Multisensor Precipitation Estimator (Fulton et al., 1998; Seo, 1998; Seo et al., 1999, 

2010; Young et al., 2000) produced operationally by the West Gulf River Forecast Center 

(WGRFC). For MAPE, the monthly climatology of daily estimates were disaggregated to hourly 

estimates based on the diurnal cycle of solar radiation. Because the DA cycles consist only of the 

periods of significant flow, potential evapotranspiration does not play an important role and the 

lack of dynamically-varying MAPE does not impact the outcome in any significant way. For as-

similation and validation, we used the US Geological Survey’s hourly streamflow data at the catch-

ment outlet. Because our focus is on flood forecasting, we identified only the significant events 

from the observed streamflow data and used the resulting partial-duration time series. A significant 

event is defined as a hydrograph whose peak flow exceeds 100 m3/s. Once an event is identified, 

the beginning and ending hours of the event were determined by subtracting and adding 72 hrs 

from and to the first and last hours of the partial-duration exceeding 100 m3/s, respectively. The 
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choice of 72 hrs is made to include the most significant portions of the primary baseflow response 

in the assimilation process. 

4.2.3 Basin Used 

A total of 6 basins was used in the WGRFC’s service area: DCJT2, LYNT2, MDST2, 

MTPT2, REFT2 and SBMT2 (see Figure 4-1 and Table 4-1 for location and hydroclimatological 

attributes). In Table 4-1, the dryness index (DI) is defined as the ratio of mean MAPE to mean 

MAP (Budyko, 1974). A value of DI greater and less than unity indicates the catchment is water- 

and energy-limited, respectively. They are part of the WGRFC DA testbed which includes a group 

of 23 basins identified as particularly challenging for operational streamflow forecasting. The 

Figure 4-1 Locations of the 6 basins in the WGRFC’s service area used in the study, DCJT2, 

LYNT2, MDST2, MTPT2, REFT2 and SBMT2, with mean annual precipitation and its contour 

lines 
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testbed has been previously used by the authors and their collaborators for hydrologic DA and 

related research (Seo et al., 2009; Liu et al., 2011; Lee et al., 2012, 2016, 2019; Rafieeinasab et al., 

2014b; Kim et al., 2018). The 6 basins used in this work are located along the longitudinal line of 

mean annual precipitation of approximately 1,000 mm. Due to the strong east-to-west gradient in 

precipitation climatology and the influence of the Gulf of Mexico, significant hydroclimatological 

variations exist among the basins ranging from semi-arid to humid, providing a degree of diversity 

(see Figure 4-1, Table 4-1). 

Table 4-1 Study basins and their attributes (see Figure 4-1 for locations) 

 Basin ID Basin name USGS ID Area (km
2

) 
Time to 

peak (hr) 

Average an-

nual dis-

charge (m
3

/s) 

Average annual 

precipitation 

(mm) 

Dryness 

index 

1 DCJT2 Justin – Denton Creek 08053500 1039 6 2.38 684 1.47 

2 LYNT2 Lyons – Davidson Creek 08110100 508 18 2.45 858 1.25 

3 MDST2 Madisonville – Bedias Creek 08065800 870 21 6.40 933 1.05 

4 MTPT2 Midfield – Tres Palacios 08162600 435 17 4.89 1126 0.89 

5 REFT2 Refugio – Mission River 08189500 1787 39 4.48 748 1.06 

6 SBMT2 Sublime – Navidad River 08164300 896 26 5.01 934 1.34 

Streamflow forecasting is generally more challenging for more arid basins due to the 

quicker catchment response, larger uncertainties in the ICs, generally larger structural uncertainties 

due to unmodeled processes such as infiltration into dry channel beds, and larger parametric un-

certainties due to the above factors and the limited number of large events available for calibration 

(Alizadeh et al., 2020). In addition, the large spatio-temporal variability of precipitation from con-

vective events adds uncertainty in lumped modelling particularly for large basins (Smith et al., 

2004). Hence, the study basins collectively offer a rather challenging test for streamflow DA. In 

addition to the hydroclimatological variations, we also considered the size of the basins as ex-

plained below. Given the hydrologic models, observations and DA method used, the potency of 

DA depends primarily on the memory of the hydrologic system (Alizadeh et al., 2020). In general, 

the larger the storage of surface and subsurface water is, the larger the streamflow predictability 
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is. Streams in semi-arid basins may be ephemeral due to intermittent soil water in some of the 

storages, resulting in significantly smaller predictability. Accordingly, one may expect the poten-

tial gains from DA to be relatively small for small urban basins or semi-arid basins even though 

they may be relatively large in size. For this reason, we chose larger basins in the 23-basin testbed 

even though they are less likely to satisfy the UH assumptions (Chow et al., 1988; Liu et al., 2011). 

4.3 Methods Used 

In this section, we describe adaptive CBEnKF and how flow-dependent marginal infor-

mation content is assessed using DFS. The technical details of CBEnKF are not central to the 

development of this work. For a complete mathematical and algorithmic description of CBEnKF, 

the reader is referred to Lee et al., (2019). For a complete derivation of CBPKF, the reader is 

referred to Seo et al. (2018a, 2018b) and Shen et al. (2019). For a simpler and computationally 

less-expensive approximation of CBPKF via variance-inflated KF, the reader is referred to Shen 

et al. (2019).  

4.3.1 CBEnKF and Formulation of Control Vector 

CBEnKF (Lee et al., 2019) is an ensemble extension of CBPKF (Seo et al., 2018a, 2018b) 

and is completely analogous to what EnKF (Evensen, 1994; Lorentzen and Naevdal, 2011) is to 

KF (Kalman, 1960). Whereas KF minimizes error variance only, CBPKF minimizes a linearly 

weighted sum of error variance and expectation of the Type-II error squared: 

Σ𝑘 = 𝐸𝑋𝑘,𝑋𝑘
∗[(𝑋𝑘 − 𝑋𝑘

∗)(𝑋𝑘 − 𝑋𝑘
∗)𝑇] + 𝛼 ∙ 𝐸𝑋𝑘

[(𝑋𝑘 − 𝐸𝑋𝑘
∗[𝑋𝑘

∗|𝑋𝑘])(𝑋𝑘 − 𝐸𝑋𝑘
∗[𝑋𝑘

∗|𝑋𝑘])
𝑇

] 4.1 

where 𝑋𝑘
∗ denotes the vector of the estimated states, the first and second terms represent the error 

covariance and the CB penalty, respectively, and α denotes the scalar weight given to the latter. If 

α=0, the CBPKF and CBEnKF reduce to the KF and EnKF, respectively. The CBEnKF and EnKF 
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are applied as sequential assimilators in this work but using the fixed-lag smoother formulation 

(Lee et al., 2019) The size of the fixed lag, or the assimilation window (see Figure 4-2), is chosen 

to be the same as the length of the UH. In this way, the time lag between the runoff generation at 

the most upstream areas of the catchment and the resulting flow appearing at the basin outlet is 

captured in the DA process (Seo et al., 2009; Rafieeinasab et al., 2014b). The motivation for the 

fixed-lag smoother approximation, as opposed to directly using a smoother formulation (Evensen 

and van Leeuwen, 2000), is to handle both cold and warm restarts with a clearly identifiable as-

similation window for human forecaster-supervised operation (Seo et al., 2009). The duration of 

the UH is 40, 40, 53, 81, 72 and 43 hrs for DJCT2, LYNT2, MDST2, MTPT2, REFT2 and SBMT2, 

respectively (see Figure 4-2). 

As with any models, hydrologic prediction using SAC-UH is subject to various sources of un-

certainty. Because MAP is a spatially averaged quantity, purely random errors tend to cancel out 

whereas systematic errors do not. To address time-varying biases in the forcings, we include in the 

control vector, 𝑋𝑘, in Eq. (4.1) the multiplicative adjustment factors to MAP and MAPE, 𝑋𝑘
𝑃 and 

Figure 4-2 Schematic of the assimilation cycles based on the fixed-lag smoother formulation 
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𝑋𝑘
𝐸, respectively. We assume that ln(𝑋𝑘

𝑃) and ln(𝑋𝑘
𝐸) are normally distributed and autoregressive 

(AR)-1 (Smith and Krajewski, 1991; Anagnostou and Krajewski, 1999; Seo et al., 1999): 

𝐿𝑋𝑘
𝑃 = Φ𝑃𝐿𝑋𝑘−1

𝑃 + 𝑊𝑃 (4.2) 

𝐿𝑋𝑘
𝐸 = Φ𝐸𝐿𝑋𝑘−1

𝐸 + 𝑊𝐸 (4.3) 

where 𝐿𝑋𝑘
𝑃 and 𝐿𝑋𝑘

𝐸  denote ln(𝑋𝑘
𝑃) and ln(𝑋𝑘

𝐸), respectively, Φ𝑃 and Φ𝐸 denote lag-1 autocorre-

lation for ln(𝑋𝑘
𝑃) and ln(𝑋𝑘

𝐸), respectively, and 𝑊𝑃 and 𝑊𝐸 denote the white noise for the respec-

tive AR(1) models. The SAC soil moisture states are conceptual quantities which may also be 

expressed as volumetric soil water contents (Lee et al., 2011; Koren et al., 2014). In reality, soil 

water is seldom observed at catchment scale. As such, the SAC states are subject to potentially 

large structural and parametric uncertainties of the soil moisture accounting model in addition to 

input uncertainty in observed forcings (Carpenter et al., 2001; Yilmaz et al., 2008; Lee and Seo, 

2014; Lee et al., 2016). In this work, we include all 6 SAC state variables, 𝑋𝑘
𝑆, valid at the begin-

ning of the assimilation window in the control vector for updating. The temporal evolution of the 

SAC states is modelled as: 

𝑋𝑘−𝐿+1
𝑆 = 𝑀(𝑋𝑘−𝐿

𝑆 ) + 𝑊𝑘−𝐿
𝑆 (4.4) 

where 𝑋𝑘−𝐿+1
𝑆  denotes the SAC states valid at the beginning of the assimilation window at the k-

th assimilation cycle, 𝑀( ) denotes the SAC, and 𝑊𝑘−𝐿
𝑆  denotes the model error for state transi-

tion from the (k-1)-st to the k-th assimilation cycle (see Figure 4-2). The zero-mean errors, 𝑊𝑘−𝐿
𝑆 , 

are assumed to be independent of one another and have standard deviation of approximately 4% 

of the time-varying SAC states. 
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As noted above, the study area is hydroclimatologically challenging for streamflow prediction 

(Alizadeh et al., 2020). It is very possible that the ensemble subspace for streamflow spanned by 

𝑋𝑘
𝑃, 𝑋𝑘

𝐸 and 𝑋𝑘−𝐿+1
𝑆  may fail to encompass the observed flow due to a combination of large hydro-

logic and input uncertainties (Krzysztofowicz, 1999; Seo et al., 2006). For this reason, we include 

the additive error to TCI, 𝑋𝑘
𝑅, to the control vector. The control variable 𝑋𝑘

𝑅 may be best under-

stood in the context of the UH operation expressed as a continuous convolution shown below: 

𝑍𝑄(𝑡) = ∫ {𝐼(𝜏) + 𝑤(𝜏)}
𝑡

0

𝑢(𝑡 − 𝜏)𝑑𝜏     𝐼(𝜏) + 𝑤(𝜏) ≥ 0 (4.5) 

where Z𝑄(t) denotes the observed streamflow valid at time t, 𝐼(𝜏) denotes the TCI, 𝑤(𝜏) denotes 

the additive error to TCI, and 𝑢( ) denotes the UH. The control variable, 𝑋𝑘
𝑅, is a discrete imple-

mentation of w( ) in Eq. (4.5) and represents the time-varying errors in SAC-UH that cannot be 

addressed by adjusting the SAC states, MAP and MAPE alone. We assume that 𝑋𝑘
𝑅 is normally 

distributed and AR(1): 

𝑋𝑘
𝑅 = Φ𝑅𝑋𝑘−1

𝑅 + 𝑊𝑅 (4.6) 

where Φ𝑅 and 𝑊𝑅 denote the lag-1 correlation coefficient and the white noise for the AR(1) model, 

respectively. With the addition of 𝑋𝑘
𝑅, the control vector in Eq.(1) for the k-th assimilation cycle 

is given by 𝑋𝑘 = (𝑋𝑘−𝐿+1
𝑆 , 𝑋𝑘

𝑃, 𝑋𝑘
𝐸 , 𝑋𝑘

𝑅)𝑇. The above formulation has proven very effective in the 

study area in numerous previous studies (Seo et al., 2003; Lee et al., 2011, 2012, 2016; Lee and 

Seo, 2014; Rafieeinasab et al., 2014; Noh et al., 2018).  

The control variables, 𝑋𝑘
𝑃, 𝑋𝑘

𝐸  and 𝑋𝑘
𝑅, are applied to MAP, MAPE and TCI valid over the as-

similation window whereas 𝑋𝑘−𝐿+1
𝑆  is applied at the beginning of the window only (see Figure 4-

2). The highest-dimensional implementation of the above control vector would be to allow 𝑋𝑘
𝑃, 𝑋𝑘

𝐸  
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and 𝑋𝑘
𝑅 to vary at hourly scale within the assimilation window. The lowest-dimensional imple-

mentation is to assume temporal uniformity of 𝑋𝑘
𝑃, 𝑋𝑘

𝐸  and 𝑋𝑘
𝑅 over the entire assimilation window. 

Lee et al. (2012) have shown using VAR that modeling the above control variables at an hourly 

scale improve performance only rather modestly while substantially increasing the computational 

amount and possibly contributing to under-determinedness of the inverse problem. As such, we 

chose the lowest-dimensional implementation in this work. It is possible, however, this choice may 

compromise the performance of DA for large basins with lengthy response time for fast runoff. 

Note that, for such basins, even a very small 𝑤(𝜏) may greatly alter the adjusted runoff hyetograph 

due to the nonlinearity in 𝐼(𝜏) + 𝑤(𝜏), 0 ≤ 𝜏 ≤ 𝑡 (see Eq. (5)). For assimilation of streamflow 

observation using linear filtering, state augmentation is necessary to render the observation equa-

tion linear in appearance (Lorentzen and Naevdal, 2011; Rafieeinasab et al., 2014; Lee et al., 2019). 

In this work, we assimilate observed streamflow valid at the prediction time only, which adds 

another control variable to the control vector. There are hence a total of 10 control variables, i.e., 

the 6 SAC states for 𝑋𝑘−𝐿+1
𝑆 , 1 each for 𝑋𝑘

𝑃, 𝑋𝑘
𝐸  and 𝑋𝑘

𝑅, and the model-simulated streamflow anal-

ysis, representing the lowest-dimensional formulation possible for streamflow DA using SAC-UH. 

For the CBEnKF solution and the algorithm for the DA problem formulated above, the reader is 

referred to Lee et al. (2019). 

Collectively, the control variables employed in this work encompass a very large feasible region 

for input and hydrologic uncertainties. For some basins, however, the variables may not well rep-

resent the actual errors, in which case they only add noise. To assess the relative performance of 

adaptive CBEnKF under varying levels of hydrologic uncertainty (Lee et al., 2012, 2016), we 

performed DA under three different levels of hydrologic uncertainty modeling. In the weakly-

constrained implementation, or WC, we invoke the adjustment factors to forcings, uncertainty in 
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soil moisture transition dynamics, 𝑊𝑘−𝐿
𝑆 , and uncertainty in runoff depth, w(τ), which results in 

the control vector of 𝑋𝑘 = (𝑋𝑘−𝐿+1
𝑆 , 𝑋𝑘

𝑃, 𝑋𝑘
𝐸 , 𝑋𝑘

𝑅)𝑇. In the moderately-constrained implementation, 

or MC, we drop w(τ) from WC, which results in the control vector of 𝑋𝑘 = (𝑋𝑘−𝐿+1
𝑆 , 𝑋𝑘

𝑃, 𝑋𝑘
𝐸)𝑇. 

The strongly-constrained implementation, or SC, is the same as MC but the variance of 𝑊𝑘−𝐿
𝑆  is 

reduced by an order of magnitude to emulate the control vector of 𝑋𝑘 = (𝑋𝑘
𝑃, 𝑋𝑘

𝐸)𝑇. In this way, 

we assume near-perfect hydrologic models in SC, uncertain soil moisture ICs in MC valid at the 

beginning of the assimilation window, and uncertain soil moisture ICs and runoff depth in WC. It 

is important to note that, with temporally uniform 𝑋𝑘
𝑅 over the assimilation window, we are im-

plicitly assuming perfect UH, which may not be very realistic particularly for large basins under 

highly convective precipitation (Dooge, 1959; Chow et al., 1988, p. 1; Saghafian, 2006; Liu et al., 

2011).  

4.3.2 Adaptive Extension 

Although CB-penalized estimation significantly improves performance over the tails of the dis-

tribution of the predictand, they do not yield minimum unconditional mean squared error (MSE) 

due to the additional penalty (see Eq. (4.1)). This deterioration in unconditional performance may 

be reduced by prescribing the weight to the CB penalty, 𝛼, adaptively based on the best available 

estimate of the unknown true state. The basic strategy is to prescribe a large weight if the true state 

is in the tail and a small weight if it is near median, respectively (Kim et al., 2018; Shen et al., 

2019). Because the true state is not known in reality, 𝛼 can only be prescribed sub-optimally. Us-

ing synthetic experiments with known truth, Shen et al. (2019) assessed the upper bound of the 

possible improvement by CBPKF over KF by prescribing 𝛼 perfectly. The results show that, with 

uncertainty in 𝛼 removed, adaptive CBPKF is not only far superior to KF for large truth but also 

improves over KF in the unconditional sense as well. Whereas the upper bound of the performance 
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seen in Shen et al. (2019) is not attainable in reality, it is possible to use real-time streamflow 

observations to infer the state of the hydrologic system and prescribe 𝛼 adaptively. To that end, 

we optimize 𝛼 by minimizing the Continuous Ranked Probability Score (CRPS; Hersbach, 2000) 

of the ensemble streamflow analysis valid at the prediction time (see Figure 4-2).  

Because streamflow data have observational uncertainties, the above optimization of 𝛼 should 

ideally be carried out in an ensemble mode using the uncertainty-added streamflow observations 

(Lee et al., 2019). Due to excessive computation, however, it is assumed in this work that stream-

flow is observed perfectly for the purpose of optimizing 𝛼 (but not for CBEnKF itself). A potential 

negative consequence of this shortcut is that 𝛼 may be overfit and may deteriorate performance at 

longer lead times particularly when phase errors are present (Liu et al., 2011). The optimization is 

carried out by selecting multiple values for starting 𝛼 and, for each assimilation cycle, running 

CBEnKF for each of the starting values and identifying the CRPS-minimizing CBEnKF solution. 

An optimum 𝛼 of zero is an indication that CB is not important, and that EnKF suffices for the DA 

cycle. A large value of optimal 𝛼 is an indication that significant CB exists and one may expect 

CBEnKF to improve over EnKF. 

4.3.3 Flow-Dependent Information Content 

To quantify the flow-dependent marginal information content in the observations, we use 

the DFS (Rodgers, 2000; Zupanski et al., 2007). The DFS is widely used in atmospheric DA for 

prognostic assessment of the impact of new observations (Fisher, 2003; Zupanski et al., 2007; 

Zupanski, 2009). The DFS is based on the degrees of freedom (DOF) of the cost function under 

the normality assumption for the true state, 𝑋𝑘, and describes the number of useful independent 

quantities in the observation (Rodgers, 2000): 
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𝜒𝑘
2 = 𝐸 [(�̂�𝑘 − 𝑋𝑘|𝑘−1)

𝑇
Σ𝑘|𝑘−1

−1 (�̂�𝑘 − 𝑋𝑘|𝑘−1)] + 𝐸 [(𝑍𝑘 − 𝐻𝑘�̂�𝑘)
𝑇

𝑅𝑘
−1(𝑍𝑘 − 𝐻𝑘�̂�𝑘)] (4.4) 

where �̂�𝑘 denotes the optimal solution. In Eq. (4.2), the first term is referred to as the DFS, 𝑑𝑠, and 

is attributable to the state vector. The second term is referred to as the DOF for noise, 𝑑𝑛, and is 

attributable to the residuals, or noise. The sum of the two equals the number of measurements, i.e., 

𝑑𝑠 + 𝑑𝑛 = 𝑚 where 𝑚 denotes the number of measurements (Rodgers, 2000). Because the DOF 

exceeding the number of observations, 𝑚, or the number of states, 𝑛, is meaningless, the largest 

possible DOF is given by the smaller of 𝑚 and 𝑛, where 𝑛 denotes the dimensionality of the state 

vector. In the context of KF (or a similar sequential filter), one may express the DFS, 𝑑𝑠, as (Rodg-

ers, 2000):  

                         𝑑𝑠 = 𝑇𝑟[(Σ𝑘|𝑘−1 − Σ𝑘|𝑘)Σ𝑘|𝑘−1
−1 ] = 𝑇𝑟[𝐼 − Σ𝑘|𝑘Σ𝑘|𝑘−1

−1 ] = 𝑇𝑟[𝐾𝑘𝐻𝑘]               (4.5) 

In the above, the Kalman gain, 𝐾𝑘, is given by: 

𝐾𝑘 = Σ𝑘|𝑘𝐻𝑘𝑅𝑘
−1 (4.6) 

In the above, the updated covariance matrix for the state is given by: 

Σ𝑘|𝑘 = (𝐻𝑘
𝑇𝑅𝑘

−1𝐻𝑘 + Σ𝑘|𝑘−1
−1 )

−1
 (4.7) 

where 𝑇𝑟[  ] denotes the trace of the matrix bracketed, 𝐼 denotes the identity matrix, and Σ𝑘|𝑘 and 

Σ𝑘|𝑘−1 denote the updated and forecast error covariance matrices of the state variables, respec-

tively. The DFS may also be evaluated by singular-value-decomposing �̃�𝑘 below: 

�̃�𝑘 = 𝑅𝑘

1
2𝐻𝑘Σ

𝑘|𝑘−1

1
2 = 𝑈Λ𝑉𝑇 (4.8) 
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where 𝑈 and 𝑉 are unitary matrices and Λ is the diagonal matrix of singular values. The DFS is 

then given by (Rodgers, 2000; Zupanski, 2009): 

𝑑𝑠 = 𝑇𝑟[Λ2(Λ2 + 𝐼)−1] = Σ𝑖=1
𝑚 𝜆𝑖

2

1 + 𝜆𝑖
2  (4.9) 

where 𝜆𝑖 denote the 𝑖-th largest singular value. 

As seen in Eq. (4.8), the DFS quantifies the reduction in uncertainty due to the observation 

relative to the uncertainty without. If assimilating the observation completely reduces or does not 

reduce uncertainty at all, we have 𝑑𝑠 = min {𝑚, 𝑛} or 𝑑𝑠 = 0, respectively. In sequential DA, one 

may hence consider 𝑑𝑠 as a skill score (when normalized by dividing by min {𝑚, 𝑛}) for uncer-

tainty reduction due to the assimilation of new observations. Because 𝑑𝑠 depends on the relative 

magnitude of Σ𝑘|𝑘 and Σ𝑘|𝑘−1, its utility as a skill score for information fusion depends on the 

goodness of the uncertainty modeling. It is possible that one may calibrate the uncertainty models 

to increase 𝑑𝑠 but without improving forecast skill. For this reason, it is necessary to accompany 

the information content analysis with verification of the ensemble analysis and forecast. Lee et 

al.(2019) have shown that ensemble predictions for flood events from CBEnKF are more reliable 

and have larger resolution than those from EnKF. One may hence expect adaptive CBEnKF to 

provide more realistic characterization and quantification of the DFS and further improve predic-

tive skill. 

4.3.4 Uncertainty Modelling 

The accuracy of the DFS depends on the goodness of the uncertainties modelling. As such, 

it is particularly important to model the dynamical and observational uncertainties as accurately as 
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possible. In this work, observational errors are modeled as heteroscedastic and temporally uncor-

related. For heteroscedastic modeling of observation errors for streamflow and MAP, we used the 

following formulations (Sorooshian and Dracup, 1980; Carpenter and Georgakakos, 2004; Weerts 

and El Serafy, 2006; Rakovec et al., 2012): 

σP = CPZ𝑃 + CPo(𝑚𝑚/ℎ𝑟) (3.10) 

σQ = CQ𝑍𝑄 + CQo (𝑚𝑚/ℎ𝑟) (3.11) 

where ZQ and ZP denote the streamflow and MAP observations, respectively, σQ and σP denote the 

observation error standard deviations for streamflow and MAP, respectively, CQ and CP denote the 

multiplicative coefficients for the streamflow and MAP observation error standard deviation, re-

spectively, and CQo and CPo denote the additive coefficients for the streamflow and MAP observa-

tion error standard deviation, respectively. The additive coefficients are necessary to keep the var-

iance positive when the observation is zero. For hourly MAPE, we used a fixed observational 

uncertainty of 1 𝑚𝑚2. The coefficients in Eqs.(18) and (19) should be carefully chosen as inaccu-

rate heteroscedastic modeling may be counter-productive compared to homoscedastic modeling 

(Rafieeinasab et al., 2014b). Ideally, the parameters should be estimated based on statistical anal-

ysis using the truth. Due to lack of such data, however, the above coefficients are estimated in this 

work from a combination of the literature (Carpenter and Georgakakos, 2004; Weerts and El Ser-

afy, 2006; Clark et al., 2008; Rakovec et al., 2012) and limited sensitivity analysis. Based on the 

above, we chose 0.15 and 0.25 for 𝐶𝑄 and 𝐶𝑄𝑜, respectively, and 0.4 and 0.25 for 𝐶𝑃 and 𝐶𝑃𝑜, re-

spectively. 

Because runoff is not directly observed, variance of 𝑋𝑘
𝑅 cannot be estimated empirically. 

In this work, it is inferred from the observed and simulated streamflow via the following steps. 
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Assuming stationarity of 𝑤(𝜏) in Eq. (4.5) within the UH duration, we have for error variance of 

simulated streamflow: 

σeq
2 = σRs

2 ∫ ∫ u(t − τ)
t

0

u(t − s)dsdτ
t

0

 (3.12) 

where σeq
2  denotes the error variance of simulated streamflow and σRs

2  denotes the runoff error 

variance. With Eq. (12), one may develop a regression which relates σeq
2  with the observed flow, 

and express σRs
2  as a function of σeq

2  and hence of the observed flow (Rafieeinasab et al., 2014b). 

For the relationship between 𝜎𝑒𝑞
2  and observed flow, we used simple slope-only linear regression 

for simplicity. It is likely, however, that nonlinear modeling would improve performance. If sig-

nificant timing errors exist, they would be incorrectly attributed to 𝜎𝑅𝑠
2 . In such cases, 𝜎𝑅𝑠

2  esti-

mated as described above is likely to be an overestimate. For this reason, we adjusted the regres-

sion slope within 10% based on sensitivity analysis. 

4.4 Results 

In this section, we present the comparative evaluation results and offer discussion. For each 

basin, adaptive CBEnKF and EnKF were run for all events whose peak flow exceeded 100 m3/s 

within the 12-yr period of record of 1996 through 2007. We then verified ensemble mean stream-

flow analysis and predictions from the twin hindcasting experiments using CBEnKF and EnKF. 

Lee et al. (2019) showed that the CBEnKF ensembles are generally more reliable and has better 

resolution than the EnKF ensembles, and that the CRPS and continuous ranked probability skill 

score (CRPSS) results are qualitatively very similar to root mean square error (RMSE) and mean 

square error skill score (MSE-SS) of ensemble mean results, respectively. As such, we focus in 

this work on the ensemble mean results which are more easily interpretable and relatable. For 
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comparative verification of CBEnKF ensemble predictions, the reader is referred to Lee et al. 

(2019). For performance measures, we used the RMSE, maximum errors of under- (MAXEU) and 

over-prediction (MAXEO), correlation coefficient (CORR) and MSE-SS (Lee et al., 2011, 2012; 

Lee and Seo, 2014). A large ensemble size of 200 was used for all experiments to reduce sampling 

uncertainty.  

4.4.1 Ensemble Mean Streamflow Analysis and Flow-Dependent Information Con-

tent 

To provide a visual sense of how the ensemble mean analysis from adaptive CBEnKF may 

compare with that from EnKF, we show in Figure 4-4 to Figure 4-7 examples of the observed 

hydrograph (black) with the adaptive CBEnKF analysis (red), EnKF analysis (blue) and DA-less 

ensemble mean simulation (green) overlaid. The DA results in the figure are based on the weakly-

Figure 4-3 Empirical UHs for the 6 basins 
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constrained implementation, or WC (see Section 4.3.1). The vertical cyan bars show the final val-

ues of 𝛼 from adaptive CBEnKF following minimization of the CRPS of ensemble analysis. The 

larger the value of 𝛼 is, the larger the relative weight given to the CB penalty is (see Eq. (4.1)). 

For those assimilation cycles with 𝛼 of zero, CBEnKF is reduced to EnKF. The solid and dashed 

gray lines in the figure denote the DFS evaluated by adaptive CBEnKF and EnKF, respectively. 

At the beginning of each event, the EnKF and adaptive CBEnKF are initialized identically. Adap-

tive CBEnKF and EnKF are then performed independently of each other every hour under the 

identical conditions for the entire event. Skillful DA performance in times of very poor ICs is an 

Figure 4-4 Ensemble mean analysis from adaptive CBEnKF (red) compared with that 

from EnKF (blue) for DCJT2. Also shown are the DA-less ensemble mean simulation 

(green), observed hydrograph (black), DFS (grey) and final 𝜶 (cyan) 
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extremely important consideration for event-based flood forecasting (Kim et al., 2020). To reflect 

performance under wide-ranging qualities of the ICs, we also included in the evaluation the 

warmup periods for SAC. Accordingly, in the early part of the assimilation horizon, the base sim-

ulation has very large errors in the ICs, resulting in severe under-simulation (see Figs 4-4, 4-6, 4-

7) which offers a very tough test for DA. 

It is readily seen in Figure 4-4 to Figure 4-7 that the CBEnKF analysis tracks the observed 

hydrographs more closely than the EnKF analysis. The reduction in RMSE of streamflow analysis 

Figure 4-5 Ensemble mean analysis from adaptive CBEnKF (red) compared with that 

from EnKF (blue) for LYNT2. Also shown are the DA-less ensemble mean simulation 

(green), observed hydrograph (black), DFS (grey) and final 𝜶 (cyan) 



96 

 

by adaptive CBEnKF over EnKF is 20.8, 29.9, 24.5, 44.1, 10.2 and 17.6% for DCJT2, LYNT2, 

MDST2, MTPT2, REFT2 and SBMT2, respectively. The differences in the analysis results are 

due to the fact that accounting for CB tends to increase the model-predicted uncertainty, Σ𝑘|𝑘−1, 

particularly in high flows, and hence CBEnKF weighs the observed streamflow more heavily. As 

a specific example, note in Figure 6 that the EnKF analysis is not able to keep up with the fast-

rising observed flow in the rising limb of the hydrograph whereas the CBEnKF analysis is, owing 

to the significant CB penalty being invoked at almost every assimilation cycle during that period. 

Figure 4-4 to Figure 4-7 indicates that CB occurs rather frequently. The number of assimilation 

Figure 4-6 Ensemble mean analysis from adaptive CBEnKF (red) compared with that 

from EnKF (blue) for MDST2. Also shown are the DA-less ensemble mean simulation 

(green), observed hydrograph (black), DFS (grey) and final 𝜶 (cyan) 
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cycles with 𝛼 > 0.1 is approximately 13, 24, 29, 34, 17 and 22% of the entire partial-duration 

assimilation horizon for DCJT2, LYNT2, MDST2, MTPT2, REFT2 and SBMT2, respectively. 

The CB penalty is invoked particularly frequently in the rising limb and in the receding limb sur-

rounding the inflection point where runoff generation transitions from the lower-zone supple-

mental free water content to lower-zone primary free water content of SAC.  

Figure 4-4 to Figure 4-7 shows that DFS varies approximately inversely with the observed 

streamflow. In general, the DFS values are similar between adaptive CBEnKF and EnKF but differ 

significantly in high flow periods where 𝛼 is larger. In such periods, the DFS of adaptive CBEnKF 

Figure 4-7 Ensemble mean analysis from adaptive CBEnKF (red) compared with that 

from EnKF (blue) for MTPT2. Also shown are the DA-less ensemble mean simulation 

(green), observed hydrograph (black), DFS (grey) and final 𝜶 (cyan) 
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is significantly smaller than that of EnKF due to the larger forecast error covariance resulting from 

the accounting of CB. The DFS plots show that the observations contribute about 1.5 to 2.5 inde-

pendent quantities of information in low flow periods but the contribution drops by about 1 to 2 as 

the hydrograph rises and reaches peak. The above indicates that, in high flows, the marginal infor-

mation content of the observations is reduced by about a half of that in low flows. Figure 4-7 shows 

a pronounced example of the above observation where the DFS of adaptive CBEnKF drops to only 

about 0.1 from about 1.85 as the streamflow rises. Note in the figure that 𝛼 spikes up when the 

observed hydrograph begins to rise quickly, reducing the DFS of adaptive CBEnKF well below 

that of EnKF. It is this CB awareness that allows the adaptive CBEnKF analysis to continue to 

track the observed flow whereas the EnKF analysis is not able to. Note also in Figure 4-7 that, 

over the crest of the first peak, the 𝛼 values fluctuate greatly. This is because, once the CB penalty 

is invoked in the preceding assimilation cycle, the updated model states are able to produce a 

realistic streamflow simulation in the current assimilation cycle without the aid of the CB penalty. 

This positive impact, however, is often short-lived and CB-aware DA again invokes the CB pen-

alty, and the process repeats. Figure 4-4 to Figure 4-7 indicates that, over the crest, the CB penalty 

is invoked less frequently or not invoked. This is because the model states tend to maintain a 

temporary steady state over peak flow. Once corrected for CB, no subsequent corrections for CB 

are necessary until the model exits the temporary steady state. 

4.4.2 Ensemble Mean Streamflow Prediction 

Figure 4-8 shows the RMSE vs. lead time for all 6 basins. These results include all streamflow 

observations within the partial-duration time series of all events whose peaks exceed 100 cms. 

There are three pairs of curves for each basin, each pair consisting of the RMSE vs. lead time 

curves for adaptive CBEnKF (red) and EnKF (blue). The solid, dotted and dashed lines denote the 
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WC, MC and SC results (see Section 3.1). The solid green line shows the DA-less ensemble pre-

diction result. For WC, the reduction in RMSE by adaptive CBEnKF over EnKF at lead time of 1 

hr (the first data point) is about 20.8, 29.9, 24.5, 44.1, 15.4 and 25.3% with sample sizes of 2236, 

1560, 4389, 2964, 1918 and 2840 for DCJT2, LYNT2, MDST2, MTPT2, REFT2 and SBMT2, 

respectively. The above reductions in RMSE translates into gains of a few to several hours in lead 

time. Figure 4-8 indicates that, in general, the potency of DA increases as the level of hydrologic 

uncertainty modeling increases, i.e., WC performs better than MC which performs better than SC. 

For DCJT2, LYNT2 and MDST2, the potency of DA seen in Figure 4-8 follows the above general 

pattern. For MTPT2, which is the most humid basin (see Figure 4-1, Table 4-1), little difference 

is seen in performance between WC and MC, i.e., the inclusion of the additive runoff error, 𝑋𝑘
𝑅 (or 

Figure 4-8 RMSE of CBEnKF (red), EnKF (blue) and No DA (green) predictions vs. lead time 

for the 6 basins. The solid, dotted and dashed lines denote the WC, MC and SC results  
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w(τ), in Eq. (5)), has little positive impact. It suggests that, for MTPT2, the SAC-simulated TCI 

has little bias, and that the positive impact of DA comes from reducing biases in MAP and MAPE 

and providing the SAC with higher-quality ICs at the beginning of the assimilation window. That 

MTPT2 shows the largest positive impact of DA among the 6 basins is a reflection of the large 

storage of water in this humid basin and the resulting stronger hydrologic memory.  

For REFT2, which is the largest of the 6 basins, MC outperforms WC, i.e., the additive 

error in TCI negatively impacts DA performance. For SBMT2, WC performs the best at short lead 

times but is inferior to MC and SC at longer lead times where SC is better than MC. The above 

observations for SBMT2 indicate that DA is able to address the input uncertainty but not the hy-

drologic uncertainty. As explained in Section 4.3.1, 𝑋𝑘
𝑅 is modeled as temporally uniform over the 

entire duration of the UH (see Figure 4-3). It is likely that the above simplification introduces 

unintended nonlinear distortions in the temporal distribution of SAC- simulated runoff within the 

assimilation window. Further investigation is needed, however, to ascertain the above conjecture. 

The study basins are relatively large and heavy convective precipitation events are common. As 

such, timing errors in streamflow simulation at the outlet tend to vary significantly from event to 

event. Liu et al. (2011) reported that REFT2 and SBMT2 have significant timing errors for which 

the model simulation tends to trail the observed. In such cases, DA is likely to over-adjust the 

control variables when the catchment starts to respond to precipitation. Such over-adjustment 

makes reducing hydrologic uncertainty particularly challenging and tends to result in phase errors 

in DA-aided predictions. In Figure 4-8, the local concavity in the RMSE vs. lead time curves for 

SBMT2 around the lead time of 10 hours is a symptom of such over-adjustment. Though not very 

pronounced, the slight concavity in the WC and MC results of LYNT2 in Figure 4-8b also suggests 

timing errors. Figure 4-8 shows that, regardless of the level of hydrologic uncertainty modeled or 
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the apparent severity of timing errors, adaptive CEnKF improves over EnKF consistently and sig-

nificantly. We also examined the comparative performance of adaptive CBEnKF with EnKF for 

ME, CORR, MAXEU and MAXEO. Qualitatively, the performance characteristics of adaptive 

CBEnKF and EnKF are similar but CBEnKF generally outperforms EnKF under each of the above 

criteria. The above indicates that adaptive CBEnKF improves the overall quality of ensemble mean 

prediction, in agreement with the ensemble verification results (Lee et al., 2019).  

We now turn out attention to comparative evaluation of adaptive CBEnKF conditioned on 

𝛼. If the adaptive extension prescribes 𝛼 skillfully, one may expect CBEnKF to outperform EnKF 

by larger margins than seen in Figure 4-8 when only the predictions associated with larger 𝛼 are 

considered. This conditional performance is particularly important from the perspective of flood 

forecasting in that, the larger the verifying observed flow is, the larger the CB and hence 𝛼 tend to 

be (see Figure 4-4 to Figure 4-7). Figs 4-9a,b,c show the RMSE vs. lead time plots for DCJT2, 

MDST2 and MTPT2 conditioned on 𝛼 ≥ 0.65, respectively. These basins are chosen because they 

are least impacted by timing errors and hence are better-suited for the conditional evaluation. The 

threshold value of 0.65 represents the largest 𝛼 that yielded sample size of at least 30 (31, 502 and 

205 for DCJT2, MDST2 and MTPT2, respectively). Predictions associated with large 𝛼 tend occur 

more frequently over the receding limb than over the rising limb because of the longer duration of 

the former. As such, the verifying observed flow for these predictions tends to decrease as the lead 

time increases, which explains why the RMSE associated with the No DA results in Figure 6abc 

decreases as the lead time increases. Comparison of Figure 4-9 with Figure 4-8 shows that the 

margin of improvement by adaptive CBEnKF over EnKF is significantly larger when a large CB 

penalty is invoked. The reduction in RMSE by adaptive CBEnKF over EnKF for 1 hr-ahead pre-
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diction is approximately 24.0, 36.4 and 57.3% for DCJT2, MDST2 and MTPT2, respectively. Ex-

pectedly, the margin of improvement decreases as the conditioning 𝛼 decreases. For 𝛼 = 0, the 

adaptive CBEnKF results are very close to the EnKF results but still slightly superior due to the 

cumulative positive impact of adaptive CBEnKF in the preceding assimilation cycles. Figs 4-9d,e,f 

show the RMSE vs. lead time plots for DCJT2, MDST2 and MTPT2 for verifying observed flow 

exceeding 200 cms regardless of 𝛼. The relative reduction in RMSE by adaptive CBEnKF over 

EnKF is 29.1, 46.9 and 57.0% for ensemble mean analysis associated with Figs 6def for DCJT2, 

MDST2 and MTPT2, respectively. Figs 4-9d,e,f are to be compared with Figs 4-8a,c,d, respec-

tively, which show the same results but for all ranges of verifying observed flow. Note that the y-

Figure 4-9 RMSE of CBEnKF (red) and EnKF (blue) and No DA (green) predictions for a) 

DCJT2, b) MDST2 and c) MTPT2 conditioned on 𝜶 > 𝟎. 𝟔𝟓, and d) DCJT2, e) MDST2 and f) 

MTPT2 conditioned on the verifying observed flow exceeding 200 cms 
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axis range varies from panel to panel in these plots. It is seen that the marginal improvement by 

adaptive CBEnKF over EnKF is larger when only high flows are considered, in agreement with 

Lee et al. (2019). 

Finally, we examine the comparative performance of adaptive CBEnKF for rising vs. fall-

ing limbs. Given that the rate of change in streamflow is generally larger in the rising limb than in 

the falling limb, one may hypothesize that CB, and hence the positive impact of CB-aware DA, 

may be larger in the rising limb. To test this, we conditioned the predictions on increasing vs. 

decreasing observed flow as a proxy for rising vs. falling limbs. Admittedly, this stratification is 

only approximate in that streamflow may increase and decrease within falling and rising limbs, 

Figure 4-10 RMSE of CBEnKF (red) and EnKF (blue) and No DA (green) predictions condi-

tioned on the verifying observed flow exceeding 150 cms for a) DCJT2, b) MDST2 and c) 

MTPT2 for increasing observed flow and d) DCJT2, e) MDST2 and f) MTPT2 for decreasing 

observed flow. 
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respectively. Figure 4-10 shows the RMSE vs. lead time plots for DCJT2, MDST2 and MTPT2 

conditional on the verifying observation exceeding 150 cms. For each pair, the upper and lower 

panels are further conditioned on increasing vs. decreasing flows, respectively. Because the mag-

nitude of flow is generally smaller for decreasing flow and the sample size is not the same, head-

to-head comparisons are not readily possible. Nevertheless, it may be seen in Figure 7 that the 

marginal improvement by adaptive CBEnKF over EnKF tends to be larger over the rising limb 

than over the falling limb. Not surprisingly, the rising-vs.-falling limb results for the timing error-

impacted basins, LYNT2, REFT2 and SBMT2, are unclear as they are masked by varying degrees 

of phase errors in the DA results. Additional research is needed for more rigorous evaluation based 

on a large number of basins in different hydroclimatological regions. 

4.5 Conclusions and future research recommendation 

Floods are associated with extreme states of the hydrologic system which can only be ob-

served with significant uncertainty. As such, data assimilation (DA) for flood forecasting is subject 

to conditional bias (CB) which impacts optimal information fusion. This work describes CB-aware 

DA based on an adaptive extension of the conditional bias-penalized ensemble Kalman filter 

(CBEnKF) and comparatively evaluates with the ensemble Kalman filter (EnKF) for 6 headwater 

basins in Texas using the NWS’s operational lumped hydrologic models. CB-aware DA and the 

degrees of freedom for signal are then used to quantify the marginal information content of the 

observations. The main findings, conclusions and future research recommendations follow below. 

CB arises very frequently in varying magnitude when assimilating streamflow observations 

during the catchment’s response to precipitation and drainage. In general, the larger the discharge 

is, the larger the CB is. Adaptive CEnKF improves over EnKF consistently and significantly re-

gardless of the level of hydrologic uncertainty modeled. The improvement is particularly large 
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during sharp rises of the outlet hydrograph with large peak flow. CB-aware DA is hence likely to 

have the largest positive impact for forecasting of rising flood flows in fast-responding basins. The 

flow-dependent marginal information content in the observations varies with the streamflow re-

sponse of the catchment and the magnitude of CB, and tends to decrease and increase in the rising 

and falling phases of the hydrograph, respectively. The overall findings indicate that CB-aware 

DA with information content analysis offers an objective framework for dynamically balancing 

the flow-dependent predictive skill of hydrologic models, quality and frequency of hydrologic ob-

servations, and scheduling of the DA cycle toward cost-effective improvement of operational flood 

forecasting. Timing errors remain a very significant challenge in streamflow DA. Novel, phase 

error-agnostic approaches such as multi-scale bias correction (Noh et al., 2018) warrant further 

attention. Additional research is also needed toward computationally less expensive and algorith-

mically simpler alternatives and approximations to CBPKF and CBEnKF such as variance-inflated 

KF (VIKF) and its ensemble extension (Shen et al., 2019). In this work, 𝛼 was optimized in less 

than an efficient manner. Additional research is needed to utilize the closed-form expression for 

𝜕𝑋𝑘|𝑘/𝜕𝛼 available in VIKF for efficient gradient-based minimization. 
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Chapter 5. DA for WRF-Hydro for Event-Based Urban Flash Flood 

Forecasting 

5.1 Introduction  

With the implementation of the National Water Model (NWM), the National Weather Ser-

vice (NWS) has made a step-change advance in operational water forecasting by enabling high-

resolution (1 hr, 1 km for land surface and 250 m for routing) hydrologic modeling across the US 

(NWS 2020). As a part of the NWM initiative, the NWS has been mandated to provide forecasts 

at even higher spatiotemporal resolutions when and where such information is demanded such as 

in large urban areas for flood warning, and areas of high-value infrastructure, susceptible to land-

slides, or impacted by forest fires (Graziano et al., 2017). The value of high-resolution products 

and services depends not only on the hydrologic and hydraulic models but also on the quality of 

the forcings, model parameters, initial conditions (IC) and boundary conditions at the commensu-

rate resolutions. In the DFW area, the Collaborative Adaptive Sensing of the Atmosphere (CASA) 

Program operates a network of X-band radars to provide a suite of meteorological, hydrometeor-

ological and hydrologic products for severe weather and flash flood monitoring and prediction 

(Chandrasekar et al., 2013). The network currently consists of 7 radars located at Addison, Arling-

ton, Cleburne, Denton, Fort Worth, Mesquite and Midlothian, TX. A salient feature of the above 

operation is that the radar rainfall data are available at a very high resolution of 500 m and 1 min. 

The CASA quantitative precipitation estimates (QPE) are currently input to the NWS Hydrology 

Laboratory-Research Distributed Hydrologic Model (HL-RDHM, (Koren et al., 2004; NWS, 2008) 

to produce a suite of hydrologic products at the same resolution in real time (Rafieeinasab et al., 

2015a; Habibi et al., 2016; Habibi and Seo, 2018). The characteristic spatial scale of natural and 

man-made physiographic features in the study area suggests that a further increase in hydrologic 
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model resolution may improve the information content of the model output (Habibi et al., 2019). 

There is also an ever increasing demand for higher resolution hydrologic products for enhanced 

spatio-temporal specificity. The purpose of this work is to assess using WRF-Hydro how increas-

ing the resolution of hydrologic modeling, calibration of selected model parameters and assimilat-

ing locally-available observations of precipitation and streamflow may improve flood modeling 

and prediction toward high-resolution water forecasting in urban areas.  

Real-time continuous operation of high-resolution models is computationally very expen-

sive particularly for large areas (Habibi et al., 2019). A more practical approach is likely to be 

event-based operation with robust initialization. As such, our assessment is carried out in the con-

text of event-based modeling and prediction. The event-based paradigm meant that most conven-

tional calibration methods, which rely on time-continuous observations of precipitation and 

streamflow, and sequential DA methods, which employ recursive state updating, may not be ap-

plicable or desirable. To that end, we employ multi-event averaging of event-specific parameter 

optimization results for calibration and reduced-rank fixed-lag smoothing for DA. The new con-

tributions of this chapter are: selective calibration of WRF-Hydro for urban flood modeling and 

prediction, improving simulation of highly peaked hydrographs with the addition of a conditional 

bias (CB) penalty, and assessment of the impacts of different spatio-temporal resolutions of rain-

fall-runoff and routing models, of ICs and land cover, and of assimilation of streamflow observa-

tions for initialization of WRF-Hydro toward event-based operation of high-resolution urban flood 

prediction. This chapter is an adaptation of Kim et al. (2020) and is organized as follows. In Section 

5.2, we describe the study area, data used and the hydrologic models used. Section 5.3 describes 
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the methods used in the experiment design, calibration and DA. Section 5.4 describes the experi-

ments and presents the results. Section 5.5 provides the conclusions and future research recom-

mendations. 

5.2 Study area, data and hydrologic models used 

Here we describe the study area, data used and hydrologic models used. 

5.2.1 Study area 

The study area comprises the Johnson (40.2 km2), Cottonwood (32.3 km2) and Fish (54.6 

km2) Creek Catchments in the Cities of Arlington and Grand Prairie in the Dallas-Fort Worth 

Figure 5-1 a) The 3-basin study area with commercial impervious (purple) and high-density 

developed (red) areas in the background. b) State-wide view of the study area. c) USGS 24-

category and d) NLCD land cover in the study area 
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(DFW) area of TX (see Figure 5-1a,b). These basins have been used in previous studies of high-

resolution hydrologic modeling and sensing (Rafieeinasab et al., 2015a; Habibi et al., 2016, 2019; 

Norouzi, 2016). The Johnson, Cottonwood and Fish Creek Catchments, referred to herein as JC, 

CC and FC, respectively, are highly urbanized with impervious fractions of 0.48, 0.37 and 0.31, 

respectively (Habibi et al., 2019), see Figure 5-1a). Hydroclimatologically, the study basins are 

particularly challenging for hydrologic modeling and prediction due to very short memory in the 

surface and soil water storages. Recent assessment of the streamflow prediction skill of the NWS 

operational hydrologic models indicates that the study region has the smallest predictability among 

the 138 basins assessed in 8 different River Forecast Centers’ (RFC) service areas across large 

sections of the US (Alizadeh et al., 2020).  

5.2.2 Data used 

The CASA QPE products have been extensively evaluated (Chandrasekar et al., 2012; 

Cifelli et al., 2018). Comparative evaluation of different radar-based QPE products (Rafieeinasab 

et al., 2014a, 2015b) showed that the CASA QPE is generally more accurate for larger precipitation 

amounts in the study area whereas the Multisensor Precipitation Estimator (MPE) (Seo et al., 2010) 

estimates do better for smaller amounts. The CASA QPE operation recently began fusing the QPE 

Event Event total mean areal rainfall (mm)  

Period of record 

 

Duration 
JC1 CC2 FC3 

Jan 2017 75.8 90.8 71.6 00:00Z 01/16/2017 - 23:59Z 01/17/2017 48 hrs 

Feb 2018 95.2 93.7 100.5 00:00Z 02/20/2018 - 07:59Z 02/21/2018 32 hrs 

Sep 2018 97.6 103.1 131.9 12:00Z 09/21/2018 - 19:59Z 09/22/2018 32 hrs 

Apr 2019 31.5 33.5 27.1 00:00Z 04/17/2019 – 11:28Z 04/18/2018 35 hrs 

May 2019 56.5 60.1 62.5 00:00Z 05/08/2019 – 03:43Z 05/09/2019 28 hrs 
1Johnson Creek Catchment 
2Cottonwood Creek Catchment 
3Fish Creek Catchment 

 

Table 5-1 List of rainfall events used. 
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from the X-band radar network with that from the WSR-88D in Burleson, TX (Chen and Chan-

drasekar, 2015). The rainfall estimates used in this study are the resulting fused QPE product. For 

details, the reader is referred to Chandrasekar (2017). 

Because the CASA network has been in continuous operation only for several years, a long 

period of time-continuous data is not available. In this study, we used the 5 recent events of varying 

magnitude listed in Table 5-1. Figure 5-2 shows the total rainfall maps for the 4 largest events. All 

Figure 5-2 Event total rainfall maps (in mm) for the a) Jan 2017, b) Feb 2018, c) Sep 2018 and 

d) May 2019 events 
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other forcings for WRF-Hydro are from the near real-time North American Land Data Assimila-

tion System (NLDAS) Phase 2 forcing and model output produced operationally at the Environ-

mental Modeling Center of the NOAA/NWS/National Centers for Environmental Prediction (Cos-

grove et al., 2003). Networks of ALERT sensors operated by the Cities of Arlington and Grand 

Prairie provide water level observations in the study area including at the catchment outlets. The 

observations are based on pressure transducers located at the channel bottom. To estimate dis-

charge from stage observations, we used rating curves derived by Norouzi (2016) at the outlets of 

the 3 catchments (see Figure 5-1a) based on the numerical modeling approach of Kean and Smith 

(2004, 2005, 2010).  

5.2.3 Hydrologic model used 

The hydrologic model used is WRF-Hydro Version 5.0.2. (Gochis et al., 2018). For urban 

flood modelling, the most important components are the rainfall-runoff, terrain, or hillslope, rout-

ing and channel routing models. Below, we describe only the core model dynamics that are directly 

relevant to the development of this work. 

5.2.4 Rainfall-runoff model 

The rainfall-runoff option used in this work is the Simple Water Balance model (SWB) of 

Schaake et al. (1996) which is used by the NWM also. As in Moore (1985) and the SCS curve 

number method (USDA, 1986), the SWB models the average runoff depth over a grid box or a 

catchment, 𝑄𝑠, as (Schaake et al., 1996): 

𝑄𝑠 =
𝑃𝑥

2

(𝑃𝑥 + 𝐼𝑐)2
 (5.1) 

where 𝑃𝑥 and 𝐼𝑐 denote the average precipitation depth and infiltration capacity over the grid box. 

The infiltration capacity, 𝐼𝑐, in Eq. (5.1) is modeled as (Schaake et al., 1996): 
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𝐼𝑐 = 𝐷𝑥(1 − 𝑒−𝑘𝑡) (5.2) 

Where 𝐷𝑥 denotes the maximum water holding capacity of the soil column, 𝑘 denotes the decay 

coefficient and 𝑡 denotes the time elapsed. Eq. (5.2) is analogous to the potential infiltration depth, 

𝐹, of the Horton infiltration model (Horton, 1941) without the constant infiltration rate due to 

gravity: 

𝐹 =
𝑓𝑜

𝑘
(1 − 𝑒−𝑘𝑡) (5.3) 

where 𝑓0 denotes the initial potential infiltration rate due to suction pressure and 𝑘 denotes the 

decay rate. One may hence interpret the maximum soil water holding capacity, 𝐷𝑥, as representing 

𝑓0/𝑘 in Eq. (5.2) where 1/𝑘 represents the time scale of decay of potential infiltration rate. The 

maximum water holding capacity 𝐷𝑥 in Eq. (5.2) is modeled as (Schaake et al., 1996): 

𝐷𝑥 = ∑ Δ𝑍𝑖(𝜃𝑠𝑎𝑡 − 𝜃𝑖)
4

𝑖=1
 (5.4) 

where Δ𝑍𝑖 denotes the thickness of the 𝑖-th soil layer, 𝜃𝑠𝑎𝑡 denotes the saturation soil water content 

(i.e., porosity) and 𝜃𝑖 denotes the initial soil water content in the i-th soil layer. Eq. (45.) is analo-

gous to the total infiltration depth in the Green-Ampt infiltration equation (Green and Ampt, 1911): 

𝐹 = 𝑍𝑓(𝜃𝑠𝑎𝑡 − 𝜃𝑖𝑛𝑖𝑡) (5.5) 

where 𝑍𝑓 denotes the depth to the wetting front and 𝜃𝑖𝑛𝑖𝑡 denotes the vertically uniform 

initial soil water content. As shown above, the surface runoff component of the SWB may be 

considered as a combination of the SCS method for runoff ratio and the Horton infiltration equation 

without the gravity term for time decay in potential infiltration rate in which the maximum water 

holding capacity is prescribed by the depth-integrated soil pore space given the antecedent soil 

water content. The study area is highly urbanized. Accurate high-resolution depiction of land cover 
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is hence very important (Rafieeinasab et al., 2015a; Habibi et al., 2016; Norouzi, 2016). WRF-

Hydro uses the United States Geological Survey’s (USGS) 24-category land cover product (Love-

land et al., 1995), see Figure 5-1c) to parameterize the Land Surface Model (LSM). In this work, 

we use the USGS’s National Land Cover Database (Wickham et al., 2020) for higher resolution 

depiction (see Figure 5-1d) and compare with the USGS 24-category land cover. 

5.2.5 Terrain routing model 

The terrain, or hillslope, routing option used in this work is the diffusive wave model. The 

mass balance equation is given by: 

𝜕ℎ

𝜕𝑡
+

𝜕𝑞𝑥

𝜕𝑥
+

𝜕𝑞𝑦

𝜕𝑦
= 𝑖𝑒 (5.6) 

where ℎ denotes the water depth, 𝑞𝑥 and 𝑞𝑦 denote the specific discharge along the x- and y-di-

rections, respectively, and 𝑖𝑒 denotes the excess precipitation, or surface runoff depth, given by 

the rainfall-runoff model. Though expressed as a 2D model, Eq. (5.6) is solved only along the 

steepest-descending direction, referred to as the D8 option in WRF-Hydro (Gochis et al., 2018). 

The momentum balance equation is given by: 

−
𝜕ℎ

𝜕𝑥
+ 𝑆𝑜𝑥 = 𝑆𝑓𝑥 = (

𝑛𝑜𝑣𝑞𝑥

ℎ
5
3

)

2

(5.7) 

where 𝑆𝑜𝑥 denotes the terrain or channel bed slope, 𝑆𝑓𝑥 denotes the friction slope and 𝑛𝑜𝑣 denotes 

the Manning’s friction coefficient for the hillslope. The last equality in Eq. (5.7) follows from the 

Manning’s equation under the wide channel assumption (Akan and Houghtalen, 2013). In WRF-

Hydro, 𝑆𝑜𝑥 is calculated based on the DEM data and 𝑛𝑜𝑣 is prescribed according to land cover. As 

such, the choice of the land cover data impacts terrain routing. 
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5.2.6 Channel routing model 

The channel routing option used in this work is the gridded diffusive wave model which 

solves the following mass and momentum balance equations: 

𝜕𝐴

𝜕𝑡
+

𝜕𝑄

𝜕𝑥
= 𝑞𝑙 (5.8) 

−
𝜕ℎ

𝜕𝑥
+ 𝑆𝑜 = 𝑆𝑓 = (

𝑛𝑄

𝐴𝑅
2
3

)

2

 (5.9) 

where 𝐴 denotes the wetted channel cross-sectional area, 𝑄 denotes the flow rate, 𝑞𝑙 denotes the 

lateral inflow from Eqs. (5.6) and (5.7), ℎ denotes the water depth, 𝑆𝑜 denotes the channel bed 

slope, 𝑛 denotes the Manning’s roughness coefficient for the channel bed and 𝑅 denotes the hy-

draulic radius of the channel cross section. The resulting finite difference equation is solved itera-

tively using the Newton-Raphson method (Gochis et al., 2018). The channels are delineated based 

on the National Hydrographic Dataset Plus Version 2 (NHDPlusV2, (Moore et al., 2019). The 

channel routing model assumes trapezoidal cross section for which two additional parameters, the 

channel bottom width and side slope, are necessary: 

𝑄 =
1

𝑛
𝐴𝑅

2
3𝑆𝑓

1
2 =

1

𝑛

((𝐵𝑤 + 𝑧ℎ)ℎ)
5
3

(𝐵𝑤 + 2ℎ√1 + 𝑧2)
2
3

𝑆𝑓

1
2 (5.10) 

where 𝐵𝑤 denotes the channel bottom width, 𝑧 denotes the channel side slope and ℎ denotes the 

water depth. WRF-Hydro prescribes the above parameters stream order-specifically, i.e., channels 

of the same Strahler stream order share the same parameter values for channel routing (Gochis et 

al., 2018). 
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5.3 Methods 

To assess how the resolution of hydrologic modeling, calibration, and DA may impact 

urban flood modeling and prediction using WRF-Hydro, we designed and carried out a set of sim-

ulation experiments. In this section, we describe the experiment design, calibration and DA. 

5.3.1 Design of experiments 

Table 5-2 shows the combinations of resolutions considered in this work. The CASA QPE 

is available at 500 m 1 min resolution. Rafieeinasab et al. (2015a) report that a resolution of 500 

m and 15 min or higher is necessary for streamflow prediction at the outlets of the study basins 

using CASA QPE and HL-RDHM (Koren et al., 2004). To assess how higher spatial resolution of 

hydrologic modeling may improve flood simulation in the study area, we disaggregate the 500 m 

QPE to QPEs at nominal resolutions of 250 m and 125 m by remapping the CASA QPE on a lat-

lon grid to a Lambert conformal conic grid for ingest by WRF-Hydro. For the remapping, we used 

the conserve method available for ESMF (NCAR 2020). In addition, to assess possible gains from 

higher temporal resolution modeling, we aggregated the native resolution 1 min CASA QPE to 10 

min accumulations. With the above choices, the LSM was run at 3 different spatial resolutions of 

500, 250 and 125 m with a common native temporal QPE resolution for the spatial resolution 

experiment, and at two different temporal resolutions of 1 and 10 min with a common spatial 

resolution of 250 m for the temporal resolution experiment. In the above experiments, the resolu-

tion of the routing models was fixed at 250 m. The limited number of combinations of resolutions 

 QPE Rainfall-runoff 
Terrain and  

channel routing 

Spatial 
125, 250, 500 m  

(all at 1 min resolution) 
125, 250 m 50, 125, 250 m 

Temporal 
1, 10 min  

(both at 250 m resolution) 
1 min timestep 15 sec timestep 

 

Table 5-2 Combinations of spatio-temporal resolutions used.  
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represent a compromise between the computational requirements and the range of resolutions that 

are most likely to be of operational interest in the study area.  

It was observed in the early stages of the spatial resolution experiment that the mean areal 

precipitation (MAP) calculated at 500 m resolution is significantly different from that at 250 m or 

125 m. The differences were traced to the coarseness of 500 m grid boxes in delineating small 

catchments in WRF-Hydro. Significant errors in precipitation volume often translate into signifi-

cant errors in peak flow and time-to-peak flow. As such, we excluded 500 m resolution from fur-

ther consideration. For routing, we initially considered 25 m resolution as well. It was discovered 

in the early stages, however, that the number of stream segments at this resolution for the study 

domain exceeds the maximum allowed by WRF-Hydro. For this reason, we excluded 25 m from 

further consideration for routing. Though limited in number, the resulting combinations allow 

comparisons of the LSM resolutions of 250 m and 125 m given the common routing model reso-

lution of 125 m and of the routing model resolutions of 250 m, 125 m and 50 m given the common 

LSM resolution of 125 m.  

5.3.2 Calibration  

WRF-Hydro employs a large number of parameters for rainfall-runoff and routing model-

ing. Most of them are modeled as spatially-varying and specified by spatial maps or lookup tables 

of the relevant physiographic variables. Due to the computational cost, it is impractical to calibrate 

a large number of parameters. The approach taken in this work is to identify only the most influ-

ential and adjust them up or down with multiplicative scaling factors over the entire catchment, 

thus maintaining the prescribed spatial variations and physiographic relationships (Gupta et al., 

2003). Examination of the model physics described in Eqs. (5.1) through (5.10) indicates the most 
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influential parameters for the rainfall-runoff and routing models are likely to be the potential infil-

tration rate decay coefficient 𝑘 in Eq. (5.2), the Manning’s friction coefficient for overland flow, 

𝑛𝑜𝑣, in Eq. (5.7) and the 4 channel routing parameters of the Manning’s friction coefficient 𝑛, the 

bottom width, 𝐵𝑤, the side slope 𝑧, and the initial water depth, ℎ. The above 6 parameters, 𝑘, 𝑛𝑜𝑣, 

𝑛, 𝐵𝑤 , 𝑧 and ℎ, are denoted in WRF-Hydro as 𝑟𝑒𝑓𝑑𝑘,  𝑠𝑓𝑐_𝑟𝑜𝑢𝑔ℎ, 𝑟𝑚𝑎𝑛𝑛𝑛, 𝑏𝑤, 𝑐ℎ𝑠𝑠𝑙𝑝 and 

ℎ𝑙𝑖𝑛𝑘, respectively, which are used below. Extensive sensitivity analysis involving all rainfall-

runoff and routing parameters confirm the above choices. The decay coefficient 𝑘 in Eq.( 5.2) is 

coded in WRF-Hydro as: 

𝑘 = (REFKDT
𝐷𝐾𝑆𝐴𝑇

𝑅𝐸𝐹𝐷𝐾
) ∙ (

𝐷𝑇

86400
) (5.11) 

where 𝐷𝐾𝑆𝐴𝑇 denotes the saturated hydraulic conductivity, 𝑅𝐸𝐹𝐷𝐾𝐷𝑇 and 𝑅𝐸𝐹𝐷𝐾 are param-

eters for surface runoff (Gochis et al. 2018), and 𝐷𝑇 denotes the time step in seconds. Both 

𝑅𝐸𝐹𝐾𝐷𝑇 and 𝑅𝐸𝐹𝐷𝐾 are calibratable parameters. Because adjusting 𝑅𝐸𝐹𝐷𝐾𝑇 has the same ef-

fect as adjusting 𝑅𝐸𝐹𝐷𝐾−1 for 𝑘, it is not necessary in practice to calibrate both. As such, we 

calibrate only 𝑅𝐸𝐹𝐷𝐾 in this work. Note in Eq. (5.11) that, if 𝑅𝐸𝐹𝐷𝐾 increases or decreases, 𝑘 

decreases or increases and hence the infiltration capacity decreases or increases given the maxi-

mum water holding capacity, 𝐷𝑥, respectively. Accordingly, one may consider 𝑅𝐸𝐹𝐷𝐾 as con-

trolling the runoff ratio. All other parameters in the LSM are set to the WRF-Hydro default (Go-

chis et al., 2018). 

For the terrain routing model, 𝑛𝑜𝑣 is by far the most important. In WRF-Hydro, 𝑛𝑜𝑣 is pre-

scribed according to the USGS 24-category land cover (Loveland et al., 1995). In this work, we 

use the National Land Cover Database (NLCD, (Wickham et al., 2020) and the same default land 



118 

 

cover-dependent values of 𝑛𝑜𝑣. In the calibration process, we apply a single multiplicative adjust-

ment factor to the spatially varying 𝑛𝑜𝑣 for the entire catchment. Calibration of channel routing 

parameters presents a particular challenge as elaborated below. There are a total of 4 parameters, 

𝐵𝑤, 𝑧 and 𝑛, and the initial condition, ℎ, to be determined in the calibration process whereas the 

only source of information available is observed streamflow at the catchment outlet. For most 

natural channels, the cross sections are not trapezoidal. It is hence difficult to prescribe 𝐵𝑤 and 𝑧 

externally based on physiographic information particularly for small streams. Given the above 

picture, we opted to assess first the impact of changes in each channel routing parameter via a 

series of idealized sensitivity analysis using the recently developed general analytical solution for 

nonlinear reservoir (Nazari and Seo, 2020). In this analysis, we prescribe an impulse as the up-

stream hydrograph and route it through a nonlinear reservoir which is modeled as a hydraulically-

equivalent trapezoidal channel as in WRF-Hydro. We then visually examine the shape of the 

downstream hydrographs and assess the impact of changes in each of the 4 parameters to the 

downstream hydrograph. The results indicate that changes in each of the 4 routing parameters often 

produce similar effects, that the shape of the outlet hydrograph is least sensitive to changes in 𝑧 

and that, in addition to 𝑛, both 𝐵𝑤 and ℎ shape the outlet hydrograph to a significant degree, in 

particular, the upper and lower parts of the falling limb. The above findings suggest that one may 

be able to prescribe 𝑧 externally and calibrate only the other three. In this work, we chose to cali-

brate all 4 parameters to assess empirically the degree of under-determinedness in each. 

For calibration, we initially considered the Shuffled Complex Evolution (SCE) (Duan et 

al. 1992) and the Stepwise Line Search (SLS) (Kuzmin et al., 2008). Due to excessive computa-

tional requirement of SCE, however, we chose SLS as the main calibration technique (see Kuzmin 
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et al. 2008 for comparison). Once the parameter space is defined, we use Latin Hypercube sam-

pling (LHS) (Tang, 1993) to run WRF-Hydro with the randomly-sampled parameter values from 

which a small number of best-performing parameter sets is retained. We then run SLS using the 

parameter sets retained above as starting points, visually examine the resulting hydrographs and 

choose the best. The original SLS minimizes the multi-scale objective function consisting of nor-

malized root mean square error of simulated flow at multiple time scales of aggregation such as 

hourly, daily, weekly, monthly, etc. The hydrologic response time of the study basins, on the other 

hand, is sub-daily for which the multiscale objective function is not necessary. A second modifi-

cation to SLS deals with the objective function itself as elaborated below. Arguably the two most 

important variables for urban flood prediction are the peak flow and time-to-peak flow, i.e., the 

time until the peak flow occurs relative to some reference time of user’s interest. The hydrographs 

for the study basins are often characterized by high degrees of peakedness due to fast surface runoff 

over urban and semi-dry land surfaces. Commonly used objective functions for calibration such as 

the mean squared error (MSE) of simulated flow or its variable transform is not very effective in 

simulating very sharp peaks due to the typically very small number of observations associated with 

peak flows. To address the above, we combine the mean error (ME), MSE and Type II conditional 

bias (CB) for the objective function as follows the last of which is specifically to improve simula-

tion of peaked hydrographs: 

𝐽 = (
1

𝑛
Σ𝑖=1

𝑛 𝑂𝑖 −
1

𝑛
Σ𝑖=1

𝑛 𝑆𝑖)
2

+
1

𝑛
∑ (𝑂𝑖 − 𝑆𝑖)

2
𝑛

𝑖=1
 

+𝛼
1

𝑛
∑ 𝑛𝑘 {𝑂𝑘

𝑚𝑖𝑑 −
1

𝑛𝑘
∑ (𝑆𝑖|𝑂𝑘

𝑚𝑖𝑛 ≤ 𝑂𝑖 ≤ 𝑂𝑘
𝑚𝑎𝑥)

𝑛𝑘

𝑖=1
}

2𝐾

𝑘
 (5.12) 

where 𝑂𝑖 and 𝑆𝑖 denote the observed and simulated flows at timestep 𝑖, 𝑛 denotes the total 

number of {𝑂𝑖, 𝑆𝑖} pairs in the calibration period, 𝛼 denotes the weight given to the conditional 
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bias penalty term, 𝐾 denotes the number of subintervals dividing the range of observed flow, 𝑂𝑘
𝑚𝑖𝑛 

and 𝑂𝑘
𝑚𝑎𝑥 denote the lower and  upper bounds of the 𝑘-th subinterval, 𝑛𝑘 denotes the number of 

observed flow within the 𝑘-th subinterval, 𝑂𝑘
𝑚𝑖𝑑 denotes the mid-point between 𝑂𝑘

𝑚𝑖𝑛 and 𝑂𝑘
𝑚𝑎𝑥, 

i.e., 𝑂𝑘
𝑚𝑖𝑑 = 𝑂𝑘

𝑚𝑖𝑛 + (𝑂𝑘
𝑚𝑎𝑥 − 𝑂𝑘

𝑚𝑖𝑛)/2 , and 𝑆𝑖|𝑂𝑘
𝑚𝑖𝑛 ≤ 𝑂𝑖 ≤ 𝑂𝑘

𝑚𝑎𝑥  denotes the 𝑖 -th simulated 

flow for which the verifying observed flow falls in the 𝑘-th subinterval. The three terms in Eq. 

(5.12) represent the ME, the MSE and the mean of the Type-II CB squared, respectively. The first 

term may appear redundant in that reducing CB is a sufficient condition for reducing ME. In prac-

tice, however, the CB penalty may not be effective across all ranges of flow due to small sample 

size in certain sub-ranges. Our experience indicates that a sub-range of 10 (cms) and 𝛼 = 2 gen-

erally yield satisfactory results for the study basins. We note here that the last two terms in Eq. 

(5.12) represent a sample statistic for the objective function used in CB-penalized optimal linear 

estimation for improved estimation of extremes (Seo, 2012; Brown and Seo, 2013; Seo et al., 2014, 

2018a, 2018b; Kim et al., 2018; Jozaghi et al., 2019; Lee et al., 2019; Shen et al., 2019). 

Though the number of parameters calibrated is small, it is still computationally too expen-

sive to perform resolution-specific calibration for all combinations of resolutions (see Table 5-2). 

The alternative strategy adopted in this work is to calibrate using SLS-LHS at the lowest spatial 

resolution, i.e., 250 m for both the LSM and routing models, and use the resulting parameter values 

as the starting point for calibration at the next higher-resolution using SLS only. For the routing 

model resolution of 50 m, however, the above strategy could not be used due to excessively large 

computational requirements (see Table 5-3). Instead, we borrow the calibration results at 250 m 

LSM and 125 m routing models and assess parameter transferability from 125 m to 50 m for rout-

ing. Event-specific calibration is bound to overfit the specific event at hand. To avoid dependent 

evaluation based on overfitted parameters, we averaged the middle 3 parameter values out of the 
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5 from event-specific calibration. The rationale for dropping the largest and the smallest values is 

to avoid large biases arising from possible extremes. The average parameter values thus obtained 

are referred to as the non-event-specific calibration results.  

5.3.3 Assimilation of streamflow observations 

Hydrologic and hydraulic processes are heavily controlled by complex local physiography. 

The models may not capture the fixed boundary conditions, the ICs or the physical processes oc-

curring over certain ranges of scale. In addition, the precipitation input may have significant sys-

tematic or random errors, or the hydrologic model may lack adequate calibration. In such situations, 

the model states may become too unrealistic to produce skillful predictions especially when the 

hydrometeorological or hydrologic conditions depart from the historically observed. For this rea-

son, some form of state updating, manual or automatic, is generally necessary for real-time flood 

forecasting (WMO, 1992). With high-resolution models, however, manual DA is not viable due to 

the very large dimensionality (Lee et al., 2011; Lee and Seo, 2014). In this work, we assess how 

assimilating streamflow observations at the catchment outlet may be used to initialize WRF-Hydro 

for event-based prediction. For the DA method, we use the fixed-lag formulation (Seo et al., 2003, 

2009) of the ensemble Kalman filter (EnKF) (Evensen, 1994, 2003). The motivation for the fixed-

lag smoother is to support forecaster-supervised on-demand initialization of WRF-Hydro whether 

DA was previously run or not. We note here that EnKF is implemented in OpenDA (Rakovec et 

Resolution (m) Number of threads 

LSM Routing models 4 8 16 32 

250 250 32 18 13 11 

250 125 63 37 26 22 

250 50 1043 637 386 264 

125 125 150 79 48 43 
1 On Intel(R) Xeon(R) Gold 6152 CPU @ 2.10GHz 44 CPU core (2 threads/core) Linux computer 

 

Table 5-3 Wall clock times (in sec) for a 32-hr WRF-Hydro simulation1 
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al., 2015; van Velzen et al., 2016) which is integrated with the NWS’s Community Hydrologic 

Prediction System (Roe et al., 2010), the main operational river forecast system at the RFCs. As 

such, there already exists an operational tool for implementation of the proposed method.  

The control variables, i.e., the variables to be updated or adjusted via DA, include the mul-

tiplicative adjustment factor, 𝛽𝑃, to precipitation, 𝑃𝑥, applicable uniformly to the precipitation over 

the entire catchment 𝑃𝑥, and over the entire assimilation window (see Eq. (5.13)), and the multi-

plicative adjustment factor, 𝛽𝜃, to soil moisture, 𝛽𝜃,  applicable uniformly to all 4 soil moisture 

layers 𝜃𝑖 , 𝑖 = 1, . . ,4, and valid at the beginning of the assimilation window(see Eq. (5.14)): 

𝑄𝑠 =
(𝛽𝑃𝑃𝑥)2

(𝑃𝑥 + 𝐼𝑐)2
,  𝛽𝑃 ≥ 0 (5.13) 

     𝐷𝑥 = ∑ Δ𝑍𝑖(𝜃𝑠𝑎𝑡 − 𝛽𝜃𝜃𝑖
4
𝑖=1 ), 𝛽𝜃 ≥ 0, 𝑖 = 1, . . ,4                     (5.14) 

The simulated streamflow observations are then augmented to the state vector to render the 

observation equation linear (Lorentzen and Naevdal, 2011; Rafieeinasab et al., 2014b; Lee et al., 

2019). As formulated above, the DA problem amounts to solving for the two adjustment factors in 

each assimilation cycle such that the simulated streamflow at the catchment outlet tracks the ob-

served. If sequential estimation is desired, the control variables may be propagated from one as-

similation cycle to the next based, e.g., on the first-order autogressive-1 model (Lee et al. 2019). 

Different variations of the above DA approach have been used successfully with both lumped and 

distributed hydrologic models in both operational and research settings in the US and elsewhere 

(Seo et al., 2003, 2009; Lee et al., 2011, 2012, 2015, 2016; Kim et al., 2014; Lee and Seo, 2014; 

Rafieeinasab et al., 2014b; Riazi et al., 2016; Mazzoleni et al., 2018; Noh et al., 2018). 

An important difference between the above formulation and the previous formulations of 

fixed lag smoothing is that the former does not include additive errors to runoff, i.e., later inflow 
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into channels. The reason for this departure is that the addition requires modifications to the WRF-

Hydro source code. Because there is no guarantee a priori that the model dynamics admit the error-

added flows, the above modifications may produce numerical instabilities that are difficult to di-

agnose or control. The lack of additive error in the control vector means that the DA formulation 

is strongly-constrained rather than weakly-constrained (Lee et al., 2016), and hence more likely to 

render the smoother more susceptible to model structural or parametric errors. In addition to the 

assimilation window length and ensemble size, it is necessary to prescribe several uncertainty pa-

rameters for the smoother: the observation error variances for precipitation and streamflow, and 

mean and variance (or, alternatively, median and coefficient of variation) of each of 𝛽𝜃 and 𝛽𝑝. In 

this work, the above DA parameters were prescribed following Lee et al. (2019) using the homo-

scedastic model and lognormal distribution for 𝛽𝜃 and 𝛽𝑝, and were estimated based on limited 

sensitivity analysis (Rafieeinasab et al., 2015a; Lee et al., 2019). Due to the strongly-constrained 

nature of the DA formulation, however, the performance of DA is likely to benefit significantly 

from more rigorous estimation of the DA parameters.  

5.4 Results  

Our assessment consisted of the 5 experiments described below. We use peak flow and 

time-to-peak flow errors as the primary performance measures, by far the two most important for 

urban flood prediction (Liu et al., 2011; Rafieeinasab et al., 2014b). 
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5.4.1 Experiment 1: Event-specific vs. non-event-specific calibration 

Figure 5-3 shows examples of event-specific (black) vs. non-event-specific (red) calibra-

tion results at 250 m resolution for both the LSM and routing models. Additional results are pre-

sented in Figure 10 in the context of DA. The temporal resolution of QPE is 1 min. The event-

Figure 5-3 Simulation results from event-specific (black) and non-event-specific (red) calibra-

tion vs. the observed (blue empty circles) for the a) JC Jan 2017, b) CC Jan 2017, c) FC Feb 

2018 and d) JC Sep 2018 cases 
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specific results are based on calibrating the 6 parameters specifically for each event. The non-

event-specific results are based on dropping the largest and smallest values from the 5 event-spe-

cific results and averaging only the middle 3. It is important to point out that, in event-specific 

calibration, 𝑟𝑒𝑘𝑓𝑡 reflects the soil moisture ICs. Note in Eqs. (2) and (4) that changing 𝑟𝑒𝑓𝑑𝑘 has 

effects similar to changing the maximum water holding capacity of the soil, 𝐷𝑥, which is a function 

of the initial soil water content. Event-specific calibration of 𝑟𝑒𝑓𝑑𝑘 is hence subject to event-to-

event variability of antecedent soil moisture conditions. The averaging of the 3 middle parameter 

values from the event-specific results is an attempt to dampen or average out this variability in the 

ICs. To illustrate, Figure 5-4a shows the event-specific result for the multiplicative factor to 

𝑟𝑚𝑎𝑛𝑛𝑛, or 𝑓𝑎𝑐_𝑟𝑚𝑎𝑛𝑛𝑛. Significant event-to-event variations are seen particularly for less im-
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pervious CC and FC (see Figure 1). Figure 5-5b shows the non-event-specific result from av-

eraging the middle 3 parameter values in Figure 5-5a. Note that JC, which has the largest imper-

vious fraction (see Figure 5-1), has significantly smaller 𝑟𝑚𝑎𝑛𝑛𝑛 than CC and FC, and that little 

adjustment from the WRF-Hydro default was needed for the least impervious FC. 

The event-specific results indicate that the calibration strategy is mostly successful in sim-

ulating hydrographs for the most important rising limbs. For a number of cases, however, the sim-

ulated hydrographs do not recede as quickly as the observed. A likely contributing factor is that 

WRF-Hydro does not model storm drains. While the impact of storm drains is not very significant 

for large events (Rafieeinasab et al., 2015a), in lower flow conditions, the impact is likely to be 

larger (Habibi and Seo, 2018). Of the 15 cases (i.e., from 5 events for 3 basins), significant differ-

ences were observed for 10 cases between the event-specific and non-even-specific results. Com-

parison of the parameter values between the two indicates that significant differences exist most 

Figure 5-4 a) Multiplicative factors to Manning’s 𝒏 for channel routing obtained from event-

specific calibration. b) Non-event-specific estimates of Manning’s 𝒏 for channel routing ob-

tained from averaging for each catchment the middle 3 of the 5 values in a)  
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often in 𝑟𝑒𝑓𝑑𝑘 followed by 𝑟𝑚𝑎𝑛𝑛𝑛 and 𝑠𝑓𝑐_𝑟𝑜𝑢𝑔ℎ. For 𝑏𝑤, ℎ𝑙𝑖𝑛𝑘 and 𝑐ℎ𝑠𝑠𝑙𝑝, significant dif-

ferences were observed only in a few cases. The large event-to-event variability of 𝑟𝑒𝑓𝑑𝑘 is not 

surprising in that in event-specific calibration this parameter can effectively control dynamically-

varying runoff ratio as explained above. Of the 15 non-event-specific cases, 6 and 3 cases show 

over- and under-simulation of runoff volume resulting in over- and under-simulation of peak flows 

and too early and late rises to peak flows, respectively. Figure 5-5a shows the simulated peak flows 

from event-specific (black) and non-event-specific (red) calibration vs. the observed. Figure 5b 

shows the associated time-to-peak flow since the beginning of the rising limb vs. the observed. In 

Figure 5-5b, the absolute magnitude of the time-to-peak flow is of little importance because the 

beginning of the rising limb can be anywhere, and only the departure of the time-to-peak flow 

from the diagonal is of interest. In Figure 5-5, the JC Feb 2018 event was excluded due to lack of 

observed peak flow. Shown for reference in Figure 5a and Figure 5b are the lines of 10, 20 and 30 

percent errors in peak flow and of 1, 2 and 3 hr errors in time-to-peak flow, respectively. Harmel 

et al. (2006) report streamflow measurement errors of 42%, 19%, 10%, 6% and 3% for small 

watersheds for the worst, typical maximum, typical average, typical minimum, and the best case 

scenarios, respectively. Di Baldassarre and Montanari (2009) report that the overall error affecting 

river discharge observations ranges from 6.2% to 42.8%, at the 95% confidence level, with an 

average value of 25.6%. The 10 to 30 percent error lines in Figure 5a hence provide a sense of the 

magnitude of the errors in simulated peak flow relative to possible observational errors. Empirical 

unit hydrographs for JC, CC and FC show time-to-peak values of 0.75, 3 and 2.75 ℎ𝑟𝑠, respec-

tively (Rafieeinasab et al., 2015a). An error in time-to-peak flow on the order of the time-to-peak 

values hence indicates poor performance. Figure 5-5 indicates that most case-specific calibration 

results have less than 10% error in peak flow and less than an hour of time-to-peak flow error, but 
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that, for about 5 cases, the non-event-specific results suffer from significantly larger errors. All 5 

cases of excessively large peak flow or time-to-peak flow errors are associated with significant 

volume errors except for the FC May 2019 case for which a less than accurate simulation of the 

rising limb is responsible for the large time-to-peak flow error. The above results indicate that 

high-quality initialization is necessary for event-based urban flood prediction using WRF-Hydro. 

In Experiment 5, we assess how DA may help address the situation. 

5.4.2 Experiment 2: Impact of temporal resolution of precipitation 

In this experiment, we assess how the temporal resolution of precipitation input may impact 

the quality of streamflow simulation by forcing the LSM with 1-min average of 10-min QPE vs. 

the native 1-min QPE. For 10 min QPE, we aggregate the 1-min CASA QPE to 10 min accumu-

lations and run the LSM at 1 min timestep using the 1-min average over each 10 min period. For 

comparison, we also ran the LSM at 10 min timestep using 10-min QPE. In this experiment, we 

Figure 5-5 a) Comparison of simulated peak flow from event-specific (black) and non-event-

specific (red) calibration vs. the observed for all 15 cases except for the JC Feb 2018 case. The 

symbols “J”, “C” and “F” denote the JC, CC and FC results, respectively. The solid, dashed 

and dotted gray lines represent ±10, 20 and 30% errors. b) Same as a) but for time-to-peak 

flow. The solid, dashed and dotted gray lines represent ±1, 2 and 3-hr errors 
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use the parameter values obtained from the event-specific calibration to reduce hydrologic uncer-

tainty. The common spatial resolution used is 250 m for both the LSM and routing models. Exam-

ination of the results for all cases indicates that the differences in simulated hydrographs due to 1 

min vs. 10 min QPE are very small except for the May 2019 event which we elaborate below. 

Figure 5-6 shows the simulated vs. observed hydrographs at the outlet of JC for the May 2019 

event. The simulation of the second rise for this double-peaked event is cut short due to missing 

CASA QPE. To identify possible causes for the disparate response in simulated streamflow, we 

examined the MAP time series for all cases. It is observed that the MAP values for the second peak 

of the May 2019 event are significantly smaller than those for all other events. Because runoff 

generation may be considered as thresholding rainfall such that little runoff occurs for rain rate 

below some threshold and almost all excess rainfall runs off for rain rate above the threshold (see 

Subsection 5.2.4, (Norouzi et al., 2019), one may look for a threshold rain rate above and below 

which the runoff response is very different. Examination of the MAP hyetographs and the associ-

ated hydrographs for the May 2019 event points to a threshold of about 0.5 mm. For this event, 

the maximum 1 min MAP associated with the second peak was well above 0.5 mm for all three 

basins. The maximum 1 min-average of 10 min MAP, on the other hand, was well below 0.5 mm 
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for JC and CC, and stayed above 0.5 mm only for a single 10 min period for FC. The above findings 

indicate that the SWB used for rainfall-runoff modelling in WRF-Hydro is sensitive to the tem-

poral resolution of precipitation for moderate precipitation amounts due to the increased nonline-

arity in runoff generation (see Eqs. (5.1), (5.2) and (5.11)).  

5.4.3 Experiment 3: Impact of spatial resolutions of rainfall-runoff modelling and 

routing 

In this experiment, we compare the quality of the outlet simulations for peak flow and time-

to-peak flow among the resolutions of 250 m, 125 m and 50 m for routing with a common LSM 

Figure 5-6 Comparison of simulated hydrographs forced by 1-min (black) and 1-min average 

of 10-min (red) CASA QPE vs. the observed (blue empty circles) for the JC May 2019 case  
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resolution of 125 m, and between the resolutions of 250 m and 125 m for LSM with a common 

routing model resolution of 125 m. The 250 m LSM and 250 m routing model simulations, referred 

to herein as the 250m-250m results, are based on event-specific calibration using SLS with LHS. 

One may hence consider the above calibration as based on quasi-global optimization. The 250 m 

LSM and 125 m routing simulations, referred to herein as the 250m-125m results, are based on 

event-specific calibration using only SLS in which the local search is started with the 250m-250m 

results. One may hence consider the above calibration as local optimization of a priori parameter 

values from a coarser resolution. As mentioned in Section 3, it was not possible to calibrate at the 

250 m LSM and 50 m routing resolution due to excessive computational requirements (see Table 

5-3). The 250 m LSM and 50 m routing simulations, referred to herein as the 250m-50m results, 

are based on the parameter values borrowed from the 250m-125m results. One may hence consider 

the above results as based solely on a priori parameter values transferred from a coarser resolution. 

Because the level of calibration is different from one resolution to another, it is not very meaningful 

to compare the non-event-specific results. For this reason, we focus below on the event-specific 

results only. 

Figure 5-7a and 5-7b show the simulated peak flow vs. the observed, and the simulated 

time-to-peak flow vs. the observed, respectively. As in Figure 5-5, we overlay the 10, 20 and 30 

percent error lines in Figure 5-7a and of 1, 2 and 3 hours of timing error lines in Figure 5-7b to 

help assess the magnitude of the errors. Figure 5-7 indicates that the 250m-250m and 250m-125m 

results, both of which are calibrated scale-specifically, are very similar, and that for a number of 

events the 250m-50m results are not as good as the above two. The above observations are perhaps 

not very surprising in that one may expect scale-specific calibration to perform better than using 

parameter values borrowed from a lower resolution. The magnitude of the errors in the 250m-50m 
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results, however, is surprisingly large for a number of events. To trace the potential sources of the 

error, we examined the spatially-distributed channel routing parameters, including the channel grid, 

flow accumulation, flow direction and stream order at all resolutions. It is seen that, whereas the 

differences between 250 and 125 m are relatively small, there are large differences between 50 m 

and the coarser resolutions. To illustrate, Figures 5-8a and 5-8b show the histograms of the stream 

order in the model domain at resolutions of 125 m and 50 m, respectively. The histogram at 250 

m is similar to that at 125 m. In the figure, the frequency for the stream order of zero represents 

the number of grid boxes that do not contain any channel segments. As one may expect, at 50 m 

resolution, the channel network is much denser and has more higher-order streams. WRF-Hydro 

prescribes the channel routing parameters according to the stream order. As such, changes in the 

channel density or stream order are very likely to change the conveyance characteristics of the 

Figure 5-7 Same as Figure 5 but the comparison is among the 250 m LSM and 250 m routing 

(black), 250 m LSM and 125 m routing (red) and 250 m LSM and 50 m routing (green) results  
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channel network. The above findings suggest that a combination of resolution-specific prescription 

of the channel routing parameters and their calibration is likely to be necessary to benefit from 

very high-resolution modeling using WRF-Hydro. We also compared the 250m-125m results with 

the 125m-125m to assess the impact of increasing the LSM resolution. As with the 250m-125m 

results, the 125m-125m results are based on scale-specific local optimization using SLS in which 

the parameter values from the 250m-125m results are used as the starting point. The comparison 

indicates that the 125m-125m results improve the peak flow prediction over the 250m-125m for 

the study basins but only marginally. 

5.4.4 Experiment 4: Impact of quality of ICs 

In this experiment, we assess how the quality of the ICs of the rainfall-runoff model may 

impact the accuracy of streamflow prediction. A potential source of the ICs in real-time event-

based operation of WRF-Hydro is the warm states of the NWM. A direct use in this experiment of 

the NWM warm states, however, is not likely to allow clear attribution at least for two reasons. 

Figure 5-8 Histograms of stream order as modeled at resolutions of a) 125 m and b) 50 m 



134 

 

The first is that the USGS 24-category land cover (see Figure 5-1c) and the MRMS QPE (Zhang 

et al., 2011, 2016) used in NWM are of coarser resolution than those used in this work. The second 

is that the model parameter values used in the NWM (Gochis et al., 2019) are not the same as those 

used in WRF-Hydro in this work. As such, the ICs from the NWM analysis are not likely to transfer 

cleanly to WRF-Hydro as implemented in this work as evidenced in Experiments 1 through 3 

above. As a compromise, we emulate the NWM analysis by running WRF-Hydro using the USGS 

24-category land cover and NLDAS precipitation (Cosgrove et al., 2003) in place of the NLCD 

land cover and CASA QPE, respectively. The NLDAS precipitation has a much lower resolution 

than the 1 km 1 hr MRMS QPE used by the NWM. It is hence possible that the results from this 

experiment may somewhat inflate the positive impact of higher resolution precipitation. The above 

experiment design nonetheless completely removes all model-parametric uncertainties and hence 

makes possible unambiguous attribution. 

In this experiment, we start running WRF-Hydro at least several hours before the prediction 

time using the NLDAS precipitation and USGS 24-category land cover where the lower resolution 

NLDAS precipitation is disaggregated uniformly in space and time to a resolution of 250 m and 1 

min. The prediction time is chosen where the observed hydrograph begins to rise. This is also when 

streamflow response is most sensitive to the ICs. At the prediction time, we switch to the CASA 

QPE and NLCD land cover for simulation over the forecast horizon. For the above comparison 

run, we assume average soil moisture conditions for the LSM and pre-storm conditions for the 

hillslopes and channel routing models as obtained from event-specific calibration (see Subsection 

4.1). In the baseline run, we run the model at 250 m 1 min resolution using the CASA QPE and 

NLCD land cover for the entire simulation period. Any differences in the two simulated hydro-

graphs over the forecast horizon are hence due solely to the ICs valid at the prediction time. Figure 
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5-9a shows the simulated vs. observed peak flow for the NLCD (black) and USGS 24-category 

(red) land cover. All other conditions are the same as in the baseline 250m-250m simulation. The 

positive impact of higher-resolution land cover is readily seen. Note that the differences are the 

smallest for JC which is identified mostly as urban by the USGS 24-category land cover in agree-

ment with the NLCD (see Figure 5-1c,d). Figure 5-9b shows the simulated vs. observed peak flow 

for the CASA (black) and NLDAS (red) QPE-forced ICs. All other conditions are the same as in 

the baseline 250m-250m simulation. Note the very significant positive impact of higher-resolution 

QPE, particularly for CC and FC for Feb 2018 and Sep 2018, the two largest events among the 

five (see Figure 5-2 and Table 5-1). Examination of timing errors associated with Figs 5-9a and 5-

9b shows similarly positive impact of higher-resolution QPE and, to a lesser extent, land cover. 

Figure 5-9 Same as Figure 5-5a but the comparison is for a) the NLCD (black) vs. the 

USGS 24-category (red) land cover results, and b) the CASA QPE (black) vs. the 

NLDAS QPE (red) results 
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5.4.5 Experiment 5: Impact of updating ICs via DA 

In this Experiment, we assess how DA may potentially be used to initialize WRF-Hydro 

for event-based prediction. In the real world, it is generally not possible to schedule pre-storm 

warmup runs as described in the 4th Experiment. Instead, it is necessary to be able to initialize the 

model on demand often without the aid of any a priori information. The fixed-lag smoother, solved 

using EnKF in this work, is aimed at supporting such an operation. For high-resolution runs, EnKF 

is computationally expensive. In this work, all ensemble runs were made at the coarsest spatial 

resolution of 250 m for both the LSM and routing models. Limited sensitivity analysis suggests 

that a small ensemble size of 12 is generally acceptable for ensemble mean prediction owing to 

the very low dimensionality of the DA formulation. We then use the non-event-specific calibration 

results to emulate realistic model-parametric uncertainty and predict streamflow with and without 

DA. Due to the small sample size, quantitative verification was not possible. Instead, we critically 

examine the DA-aided predictions for those 5 cases for which the non-event-specific calibration 

results compare least favorably with the event-specific in Experiment 1 (see Figure 5-3). By far 

the largest potential value of DA in urban flood prediction is improving peak flow and time-to-

peak flow predictions when the streams first respond to rainfall. Accordingly, we focus specifically 

on DA-aided predictions when the hydrograph begins to rise. This is also the time when the degrees 

of freedom for signal for DA (Rodgers, 2000) is greatly reduced due to the generally reduced 

predictive skill of rainfall-runoff and routing models, and hence streamflow observations carry 

larger information content relative to the model prediction (Zupanski et al., 2007; Zupanski, 2009). 

Figure 5-10 shows the streamflow predictions without DA (red), DA-aided ensemble pre-

dictions (cyan), the associated ensemble mean predictions (blue), ensemble streamflow analysis 

from DA (green) and the verifying observed hydrographs (empty blue circles) for 4 of the 5 cases 
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for which non-event-specific calibration produced very poor simulations in Experiment 1. The 

case not shown in Figure 5-10 due to space limitations is JC Apr 2019 which is by far the smallest 

Figure 5-10 DA-aided ensemble predictions (cyan), ensemble mean prediction (blue) and 

DA-unaided base predictions based on non-event-specific calibration (red) vs. the ob-

served (blue empty circles) for the a) FC Jan 2017, b) CC Feb 2018, c) FC Feb 2018 and 

d) CC Sep 2018 cases. The green and black lines show the ensemble DA analysis within 

the assimilation window and the prediction time, respectively 
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event of the 5 and is hence of lesser interest. In the figure, the vertical gray line indicates the 

prediction time which also marks the end of the assimilation window. The horizontal extent of the 

ensemble analysis (green) shows the size of the assimilation window. All streamflow and precip-

itation observations valid within the assimilation window are assimilated in these runs to update 

the soil moisture states valid at the prediction time. All DA results are based on single assimilation 

cycles to emulate on-demand operation without the potential benefit of any previous DA cycles. 

The results indicate that DA improves prediction for all 5 cases over the DA-unaided base predic-

tions. For the FC Jan 2017 and CC Feb 2018 events, for which non-event-specific calibration very 

significantly over- and under-predict, respectively, DA greatly improves prediction. As noted in 

Section 3, the primary source of error in peak flow or time-to-peak flow is the error in runoff 

volume. The results indicate that DA is largely able to reduce runoff volume errors by providing 

WRF-Hydro with high quality ICs. Figure 10 shows, however, that the ensembles are significantly 

underspread in the recession limb due to lack of accounting of structural and parametric uncertain-

ties, and that WRF-Hydro is not able to reproduce the bimodal or attenuated peaks, or the fast-

receding falling limbs in FC Jan 2017 (Figure 5-10a) and FC Feb 2018 (Figure 5-10c). The above 

results indicate that, overall, the fixed-lag smoother is very effective in reducing runoff volume 

errors and hence errors in peak flow and time-to-peak flow. 

5.5 Conclusions and future research recommendations 

We assess the impact of increasing the resolution of hydrologic modeling, calibration of 

selected model parameters and assimilation of streamflow observations toward event-based high-

resolution urban flood modeling and prediction using WRF-Hydro in the Dallas-Fort Worth area 

(DFW). We use quantitative precipitation estimates (QPE) at 500-m 1-min resolution from the 

Collaborative Adaptive Sensing of the Atmosphere (CASA) operation for observed rainfall, the 
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Stepwise Line Search for calibration, and ensemble Kalman filter (EnKF) implementation of fixed-

lag smoothing for data assimilation (DA). The model domain is a 144.6 km2 area comprising 3 

urban catchments in the Cities of Arlington and Grand Prairie in the middle of DFW. The main 

findings, conclusions and recommendations follow below. 

Event-specific calibration of the 6 WRF-Hydro parameters identified in this work is largely 

successful in simulating hydrographs in the study area, in particular, the most important rising 

limbs. It is less successful, however, for attenuated peaks or fast-receding falling limbs. A novel 

element in the above calibration is the inclusion of a conditional bias penalty in the objective func-

tion to improve simulation specifically of highly peaked hydrograph. A spatial resolution of at 

least 250 m is necessary for the land surface model (LSM) to delineate small catchments and hence 

to capture catchment-wide rainfall with acceptable accuracy. Increasing the resolution of the LSM 

from 250 m to 125 m showed marginal improvement. The same resolution increase for the routing 

models showed little improvement. Increasing the routing resolution further to 50 m using param-

eter values borrowed from 125 m, on the other hand, increased errors for a number of cases due to 

large changes in channel grid and stream order. The above findings suggest that, to benefit from 

very high-resolution modeling using WRF-Hydro, a combination of resolution-specific prescrip-

tion and calibration of the channel routing parameters is likely to be necessary. The high-resolution 

CASA QPE and the National Land Cover Database (NLCD) land cover showed very significant 

and significant positive impact on streamflow simulation compared to the lower-resolution North 

American Land Data Assimilation System (NLDAS) QPE and USGS 24-category land cover, re-

spectively. The above points out the importance of resolution-consistent high-quality initialization 

of WRF-Hydro for event-based operation. The EnKF implementation of fixed-lag smoother sig-

nificantly reduced peak flow errors under realistic parametric uncertainty for predictions made 
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when streams first respond to rainfall. The DA-aided ensemble predictions are, however, signifi-

cantly underspread in the recession limb due to lack of accounting of structural and parametric 

uncertainties. The overall results suggest that, in the absence of resolution-specific prescription 

and calibration of channel routing parameters, a resolution of 250 m for both the LSM and routing 

models is a good choice in terms of performance and computational requirements. Recall that the 

National Water Model currently runs routing at 250 m over the continental US. The results also 

suggest that, in the absence of high-quality calibration and continuous simulation of streamflow, 

DA is necessary to initialize WRF-Hydro for event-based operation for high-resolution urban flood 

prediction. 
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Chapter 6. Conclusions and Future Research Recommendations 

Floods are associated with extreme states of the hydrologic system which can only be ob-

served with significant uncertainty. As such, data assimilation (DA) for flood forecasting is subject 

to conditional bias (CB) which impacts optimal information fusion. While existing solutions such 

as CBPKF and CBEnKF can drastically improve the DA performance over the tails, they do not 

improve unconditional performance. In this work, we proposed CB-aware DA techniques, which 

adaptively prescribe the weight for CB penalty, thereby optimally combines the information con-

tent in observation and model prediction. 

Chapter 2 presents adaptive CBPKF and demonstrate its capability of improving improve 

unconditional performance by adaptively prescribing the weight for the CB penalty. For evaluation, 

we carried out synthetic experiments using linear systems with varying degrees of dynamical 

model uncertainty, observational uncertainty, and predictability. We also introduced VIKF, which 

is an approximation of CBPKF that is much less computationally intensive.  

Chapter 3 describes conditional bias-penalized ensemble Kalman filter (CBEnKF) which 

is then used as the foundation for adaptive CBEnKF presented in Chapter 4. We evaluate adaptive 

CBEnKF against widely applied ensemble Kalman filter (EnKF) for 6 headwater basins in Texas 

using the NWS operational lumped hydrologic models. CB-aware DA and the degrees of freedom 

for signal are then used to quantify the marginal information content in the observations. The main 

findings, conclusions and future research recommendations follow below. 

CB arises very frequently in varying magnitude when assimilating streamflow observations 

during the catchment’s response to precipitation and drainage. In general, the larger the discharge 
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is, the larger the CB is. Adaptive CEnKF improves over EnKF consistently and significantly re-

gardless of the level of hydrologic uncertainty modeling or the severity of timing errors. The im-

provement is particularly large during sharp rises of the outlet hydrograph with large peak flow. 

The flow-dependent marginal information content in the observations varies with the streamflow 

response of the catchment and the magnitude of CB, and tends to decrease and increase in the 

rising and falling phases of the hydrograph, respectively. The work summarized herein indicates 

that CB-aware DA with information content analysis offers an objective approach for dynamically 

balancing the flow-dependent predictive skill of hydrologic models, quality and frequency of hy-

drologic observations, and scheduling of the DA cycle toward cost-effective improvement of op-

erational flood forecasting. Addressing timing errors effectively remain a very significant chal-

lenge in streamflow DA. Multi-scale bias correction approaches (Noh et al., 2019), which are 

largely phase error-agnostic, warrant further attention. Additional research is also needed toward 

computationally less expensive and algorithmically simpler approximations to CBPKF/CBEnKF 

such as variance-inflated KF (VIKF)/EnKF (Shen et al., 2019). In this work, 𝛼 was optimized in a 

brute-force manner. Additional research is necessary to utilize the closed-form expression for the 

derivative of the quadratic cost function with respect to 𝛼 available in VIKF for gradient-based 

minimization. 
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