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ABSTRACT

DETERMINATION OF LANDING ZONES OF QUADROTORS

EXPERIENCING IN-FLIGHT FAILURES

AHMET TOLCU, M.S.

The University of Texas at Arlington, December, 2020

Supervising Professor: Animesh Chakravarthy

Co-supervising Professor: Atilla Doğan

In recent years, unmanned aerial vehicles (UAVs), commonly known as drones,

have attained considerable prominence in a wide range of areas ranging from military

operations, including surveillance, intelligence, and reconnaissance, to nonmilitary

sectors such as delivery, entertainment, and agriculture. The low cost, small size,

and ease of use of quadrotors provide significant advantages for such missions. At the

same time however, the occurrence of physical failures in such vehicles, particularly

if these failures occur while flying over highly populated areas, can pose considerable

risk to people and premises on the ground. This thesis investigates scenarios of

power loss due to one or more rotor failures of a quadrotor and performs an analysis

of the ensuing crash radius of the vehicle, occurring because of this power loss. The

baseline controller of the vehicle is assumed to be a nonlinear controller designed using

a dynamic inversion method. Four different failure scenarios are simulated, and a

comparison of the crash radius obtained from simulation results and an analytical

formulation is performed.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

In recent years, unmanned aerial vehicles (UAVs), commonly known as drones,

have been given extraordinary prominence in a wide range of areas from military op-

erations, including surveillance, intelligence and reconnaissance with the features of

stealth and low radar cross-section to nonmilitary sectors such as delivery, entertain-

ment, agriculture. The UAVs are operated with different levels of autonomy from

the remote control by an operator to autonomously onboard computers.

The UAVs can be categorized into two main groups based on wing shape:

fixed-wing and rotary-wing. Rotary wing UAVs have some operational superiorities

over fixed-wing by virtue of vertical take-off landing, hovering, and low-speed flight

capabilities. These capabilities enable them to perform aggressive maneuvers in both

indoors and outdoors environments. Furthermore, the robustness of these systems

meets safety measurements in the course of high-risk operations in dangerous and re-

stricted areas. Based on these criteria, many rotary-wing vehicles such as helicopters

and quadrotors have gained importance over other aerial vehicles.

Quadrotors provide significant advantages compared with conventional VTOL

vehicles such as helicopters because they are low cost, smaller in size and easier to

use. In contrast, helicopters have greater mechanical complexity, but since quadro-

tors are mechanically more simple. They are popular among researchers, because

they are easier to use in laboratories and can give real-time applications to confirm

their studies. However, nonlinearity behaviors of these platforms’ dynamics can be
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seen as primary disadvantages. Therefore, the quadrotors need a reliable nonlin-

ear controller to overcome this drawback and accomplish the mission demanding

aggressive maneuvers and high accuracy.

The quadrotors are also appropriate testbeds to improve control techniques

while performing a flight simulation for exposed uncertainties and disturbances. In

this context, the essential part is to gauge the quadrotor orientation and position uti-

lizing remarkable development in sensors, actuators, and other technological devices

on the system.

On the other hand, these vehicles have a considerable risk to populated areas

and properties on the ground due to possible physical failures. Therefore, this risk

may cause several safety concerns for the public areas and it must be determined

for risk assessment to get a nonhazardous flight. One of the risky conditions for

a quadrotor is actuator failure while operating. This type of failure ends with a

crash on the ground in parallel with the loss of power of the system. To develop a

risk assessment for flight, the maximum crash radius should be calculated. In this

thesis, the analytical approach is used to find the crash zone predetermined by flight

conditions and the number of faulted rotors in several rates of power loss.

1.2 Literature Survey

The control methods for quadrotors should be addressed on a large scale since

they have high order nonlinearities and complicated dynamic models. One of the

factors that make the control more difficult for these vehicles is the underactuated

characteristic specified to have fewer inputs than the degree of freedom [17]. More-

over, the strong coupling between rotational dynamics can be considered the crucial

factor for position and orientation control problems. [11] The control algorithms

can comprehensively be categorized into two groups as the linear and nonlinear ap-
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proaches. The linearization proceeding is necessary for the equilibrium point to apply

linear control methods.

The PID controller is a linear control algorithm and the most popular con-

trol scheme in the electrical and mechanical industry. In terms of adjusting the

gain parameters, straightforward design, and easy implementation, this method is

more advantageous than others for quadrotor platforms [23], [25]. But it has some

disadvantages, such as performance limits due to nonlinearities related to the math-

ematical model [14]. For example, a PID controller was introduced for a quadrotor

in [18] and [1] to track desired positions and orientations. The controller achieved ef-

fective performance to stabilize the system in ideal time with nearly zero steady-state

error and modest overshoot. Although the PID controller has some performance lim-

itations, it is broadly preferred by introducing the quadrotors in the literature. The

tuning of this type of controller’s gain parameters may cause some difficulties that

require practice at the hovering position defined as the equilibrium point.

Furthermore in [12], the researchers discussed the remarkable deviations inflict-

ing vehicle airframe and velocity while the quadrotor was hovering. They concluded

that a proportional-derivative controller was adequate to stabilize for pitch motion

but as velocity enhanced, the different measurements were necessary for blade flap-

ping. Their work illustrated that the current control method was weak when using

high-speed action and in windy experimental environments.

The optimal control algorithms act on linear dynamic systems by minimizing

the cost performance index weighting coefficients sourced by the operator. In [2], re-

searchers applied the linear quadratic regulator (LQR) on the structure and attained

a performance comparison between PID and LQR. Both control techniques provided

the same effect approximately; however, LQR performance is slightly better than

PID in consideration that it was introduced as a more fully dynamic model.
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For example, Cowling and coresearchers employed the LQR technique on a

quadrotor’s complete dynamic model for a path following in [8]. It was illustrated

that despite there being wind and disturbance, the path following was attained pre-

cisely utilizing optimal trajectory. When the quadrotor tried to escape from an

obstacle, it showed a tendency to lose tracking capability. The LQR method can be

transformed into a Linear Quadratic Gaussian with a Kalman Filter for Gaussian

noise and missing state data. The full state information is not necessary anymore

with LQG implemented in [22] for quadrotor control.

Furthermore, to get better controller performance, nonlinear control methods

were developed. One of the most rampant nonlinear control approaches is feedback

linearization. This control method transforms the quadrotor platform’s nonlinear

system dynamics into a corresponding dynamic via change of variables on feedback

rather than the small-angle approximation method. This technique requires exact

models for application and has some loss of accuracy. It was used in a wide range

of studies to design a flight controller. For example, Ghandour et al. presented a

control scheme with this technique to make the platform follow a trajectory in the

rotor faults circumstances in [13]. Additionally, D. Lee et al. developed a flight

controller based on feedback linearization [16]. Their research pointed out that this

controller technique is delicate to uncertainties and noise. Therefore, they neglected

the disturbance and used small-angle deviation to abstain from elaborate differen-

tiation terms. As a result, the researchers obtained results without disturbance in

simulation by getting the gain parameters with the LQR technique.

Another study was presented on the basis of feedback linearization by Choi et

al. practicing the controller used adaptive feedback linearization [7]. The quadrotor

model uncertainties may deprive the task’s achievement and can be obviated with

an adaptation law to get essential modifications. In the same way, the adaptive
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controller was designed in [5]. It can be seen that this method is sufficient for

decreased error while tracking and increased operational performance. Consequently,

nonlinear feedback linearization technique for control the quadrotor acts as well-being

tracking but it is not efficient to reject disturbance. If applied with the combination

of the alternative control algorithm, this shortcoming can be dealt with.

Backstepping control based on Lyapunov theory is one of the most popular

nonlinear control methods that divide the controller steps using a recursive algorithm

scheme to stabilize the sub-systems. Despite the low robustness and necessity of

full state knowledge, this type of controller has certain superiorities, such as less

computational load and its ability to considerably manage the disturbances. Because

of these reasons, numerous researchers applied this strategy to design a quadrotor

flight controller [10].

The research group implemented a backstepping controller in blocks with motor

dynamics and obtained the trajectory following virtually [20]. The controller design

in the [21] had a resemblance to [20]; however, the seventh block in [20] has consisted

of motor rotational speeds despite the seventh block formed by forces in [21]. In [20],

the optimum results are gained with a backstepping controller between five (applied)

different controller methods. The stabilization and trajectory tracking tasks for

quadrotor are accomplished with an integral backstepping technique terminating the

sensor noise, external disturbances, and unmodelled effects [4].

For example, in [9], the research group presented a different form of the back-

stepping technique, and obtained the dynamics in the form Lagrangian instead of

state-space representation. Due to the bilinearity of the Lagrangian position dy-

namics control in inverse kinematic, two neural networks are utilized to estimate

aerodynamics moments and aerodynamic forces. Kartal et al. implemented a back-

stepping approach to design a PID controller and achieve guaranteed performance
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later [15]. Firstly, to get this performance for micro UAV, the second order sliding

variable is utilized in the backstepping design. The vehicle’s nonlinear structure is

then transformed into a PID controller with small-angle approximation and specific

geometric manipulations.

The sliding mode control method is also a nonlinear control technique that

works to change the system variables using a discontinuous input signal to the sys-

tem to force it through an appointed path called sliding surface. This control al-

gorithm does not need any simplification for dynamics. The control law switches

in state- space from one state to another state using position information due to

its location between control blocks. Bouabdallah and co-researchers proposed the

sliding mode control, a sliding surface defined by the Lyapunov stability theory for

managing the rotation subsystem in [3]. This control approach was matched with the

backstepping algorithm and it was clearly illustrated that the SMC was not better

than backstepping due to the switching operations in high frequency.

In [19], a quadrotor stabilization is obtained by active and passive fault-tolerant

sliding mode controllers in the event of loss of effectiveness in a rotor. The sliding sur-

face is described by the sum of error, the integral and derivative of errors. Although

the sliding mode is good at eradicating external disturbance and model uncertain-

ties, this controller design endures the issue of chattering. An active fault-tolerant

controller is considered to give more suitable results than the passive fault-tolerant

considering that there are two switching situations in the active one. In [24], error

quaternion based on an adaptive sliding mode control scheme is proposed. This type

of controller deals with disturbance and model inertia uncertainty.

The researchers compared a dynamic sliding mode controller with another con-

troller based on the feedback linearization method in [6]. The dynamic sliding mode

controller performs more effectively than feedback linearization at canceling the un-
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known external disturbances. The system state responses approach the system’s

reference values accurately.

1.3 Thesis Outline

This thesis includes the mathematical model and a controller design of quadro-

tor and failure mode analysis to determine the crash zone. In chapter 2, the detailed

model and fundamental motion concepts are introduced, and the section follows to

derive the dynamic equations of this platform. In chapter 3, a nonlinear control

method called dynamic inversion is discussed based on a mathematical approach

and employed in the simulation platform. To calculate the crash zone resulting actu-

ator power loss, the analytical approach is introduced considering the several failure

scenarios in chapter 4. Finally, chapter 5 addresses the results that compare the

simulation and analytical solutions of the failure scenarios.
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CHAPTER 2

SYSTEM DYNAMICS & MODELLING

This chapter will discuss the detailed analysis of quadrotor dynamics and mod-

eling starting with the fundamental motion concepts. The section then proceeds to

describe the reference frames and rotation matrix that provide transformation for

motion. In the next part, quadrotor rotational and translational dynamics equations

are derived for the mathematical model. In the end, control inputs that are necessary

for the controller section are defined under the control allocation section.

2.1 Fundamental Motion Concepts

The quadrotor is an underactuated aerial system with six degrees of freedom

body moved by variation between the rotational speeds of the four rotors. Each

rotor comprises a propeller with a certain number of blades that create the airflows

downward to get lift force thanks to their design shape, no matter direction of their

rotation.

The quadrotor can move only upward and downward as translational motion

due to being an underactuated vehicle. The translational movements in the direction

of x and y axes are related to the lift force coupled with rotation about all three axes.

The lift force is generated as the total contribution of four rotors, and the torques

about all three-axis called the roll, pitch, and yaw motions are produced due to

different speeds between rotor pairs.

The four rotors can be grouped into two-part. The first group is the front

and rear rotors (1 & 3) and produces pitch movement around the y-axis rotating
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in a clockwise direction. The second group is the right and left rotors (2 & 4) and

produces roll movement around the x-axis rotating in a counterclockwise direction.

The rotor pairs cause the yaw motion different than the roll and pitch moment

rotating faster or slower than each other. Also, the rotor pairs virtually remove

aerodynamic moments and gyroscopic effects rotating the opposite directions.

Quadrotor’s fundamental motion concepts can be seen in Figure 1. The mag-

nitude of each rotor propeller rotation speed is illustrated to be directly proportional

to the width of the arrows in the figure.

Figure 1. Fundamental motions of a quadrotor.

a – Yaw motion in the counterclockwise direction

b – Yaw motion in the clockwise direction

c – Take-off or hovering

d – Roll motion in the clockwise direction

e – Pitch motion in the counterclockwise direction

f – Pitch motion in the clockwise direction
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g – Landing or descent

h – Roll motion in the counterclockwise direction

2.2 Reference Frames

To describe a quadrotor’s position and orientation, it is necessary to specify

some fundamental concepts before the mathematical model. A quadrotor has var-

ious sensors that have position and orientation data and outputs of these sensors

are defined on a set of frames; earth-fixed and body-fixed frames. The gyro and ac-

celerometer on the quadrotor measure data with respect to the body frame, whereas

a GPS, required for position and ground speed, gives information in the earth-fixed

frame.

The earth-fixed frame is located on the earth’s surface, and the body frame is

fixed to the center of gravity of the quadrotor’s body, and it moves together with the

quadrotor. As shown in Figure 2, the xb and yb axes are indicated to Rotor 1 and

Rotor 2 direction, and ultimately the zb axis is indicated vertically upward; that is

the opposite way of the ground.

Figure 2. Earth-fixed and body-fixed reference frames.
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2.3 Rotation Matrix

While modeling the quadrotor mathematically, equations of motions must be

expressed on the same coordinate frame. The required transformations such as trans-

lation and rotation are developed between the frames using Euler angles and their

rotation matrices. A rotation sequence of Euler angles ψ − θ − φ can be utilized to

achieve these transformations. The Euler angles are the rotation angles that enable

the earth-fixed frame to coincide with the body frame. The following rotation ma-

trices (2.1) are used respectively to represent the rotations around each axis, x, y,

and z, as given in Figure 3.

R(φ) =


1 0 0

0 cosφ −sinφ

0 sinφ cosφ

 (2.1a)

R(θ) =


cos θ 0 sin θ

0 1 0

−sinθ 0 cos θ

 (2.1b)

R(ψ) =


cosψ −sinψ 0

sinψ cosψ 0

0 0 1

 (2.1c)
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Figure 3. Euler angles.

The rotation matrix converting a vector from the body to the earth-fixed frame is

constructed multiplying the matrices for each rotation and expressed as:

Re
b = R(ψ)R(θ)R(φ) (2.2)

Re
b =


cosψ cos θ sin θ cosψ sinφ− sinψ cosφ cosψ sin θ cosφ+ sinψ sinφ

sinψ cos θ sinψ sin θ sinφ+ cosψ cosφ sinψ sin θ cosφ− sinφ cosψ

− sin θ cos θ sinφ cos θ cosφ


(2.3)

2.4 Mathematical Model

A convenient model should be designed to make a quadrotor fly smoothly in

compliance with its structural properties. Quadrotors have strict requirements for

developing controller approaches due to being nonlinear underactuated systems. At

this stage, a rigorous dynamic model is a very critical cornerstone, because quite dif-

ferent outcomes in theory and practical implementations can result from differences

between model and real dynamics. Considering the importance of these systems’

dynamics, they must be modeled as meticulously as possible.
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In this thesis, in order to derive the mathematical model of the vehicle by using

the Newton-Euler technique, the following assumptions need to be made.

• The structure of the frame is rigid.

• The total mass is fixed, and the vehicle is symmetrical.

• The center of gravity coincides with the body frame.

• The earth is flat and the earth-fixed frame is accepted as inertial.

• The propeller of the rotors is rigid and not flapping.

• Drag and thrust forces are in proportion with the square of the speed of the

rotors.

• Aerodynamic effects are neglected.

2.4.1 Kinematic Equations

2.4.1.1 Rotational Kinematics

The angular velocities of the quadrotor defined on the body frame are rep-

resented as ω = (p, q, r) . These velocity rates can be measured using an Inertial

Measurement Unit sensor, and they should be expressed with respect to Euler rates

η̇ = (φ̇, θ̇, ψ̇) by a series of rotation matrices using the transformation below be-

cause quadrotor makes a move on the earth’s surface and the Euler angles and these

angular body rates are different from each other.


p

q

r

 = I


φ̇

0

0

+R(φ)


0

θ̇

0

+R(φ)R(θ)


0

0

ψ̇

 (2.4)

Substituting x and y rotation matrices in equation (2.4)
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
p

q

r

 =


1 0 0

0 1 0

0 0 1



φ̇

0

0

+


1 0 0

0 cosφ − sinφ

0 sinφ cosφ




0

θ̇

0

+


1 0 0

0 cosφ − sinφ

0 sinφ cosφ




cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ




0

0

ψ̇


(2.5)


p

q

r

 =


1 0 − sin θ

0 cosφ sinφ cos θ

0 − sinφ cosφ cos θ



φ̇

θ̇

ψ̇

 (2.6)


φ̇

θ̇

ψ̇

 =


1 sinφ tan θ tan θ cosφ

0 cosφ − sinφ

0 sinφ sec θ cosφ sec θ



p

q

r

 (2.7)

The quadrotor performs its motion mostly in hovering with small angles.

Therefore, angular velocities may be considered equal as the Euler angles rates with

small-angle assumptions. (φ̇ ∼= p, θ̇ ∼= q, ψ̇ ∼= r)

2.4.1.2 Translational Kinematics

The linear velocities defined on the body frame are represented as ν = (u, v, w)

and these can be transformed to linear velocities on the earth-fixed frame, ṙ =

(ẋ, ẏ, ż) using the rotation matrix.

ṙ = Re
bν (2.8)
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
ẋ

ẏ

ż

 =


cosψ cos θ sin θ cosψ sinφ− sinψ cosφ cosψ sin θ cosφ+ sinψ sinφ

sinψ cos θ sinψ sin θ sinφ+ cosψ cosφ sinψ sin θ cosφ− sinφ cosψ

− sin θ cos θ sinφ cos θ cosφ



u

v

w


(2.9)

2.4.2 Dynamic Equations

2.4.2.1 Translational Dynamics

Translational dynamics are obtained by the linear momentum change depen-

dent on Newton’s second law. By this law, the rate of change of linear momentum of

a rigid body is proportional to the force applied. In equation (2.10), Fe is the total

force affecting the quadrotor, m is the mass and ṙ is the linear velocity vector on the

earth-fixed frame.

Fe = m
dṙ

dt
(2.10)

Due to all forces acting on the body frame, the equation (2.10) can be expressed as

below on the body frame.

Fb = mν̇ + ω ×mν (2.11)


Fxb

Fyb

Fzb

 = m


u̇

v̇

ẇ

+


p

q

r

×m

u

v

w

 (2.12)
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The unbalanced external forces defined in the equation (2.13) acting on the

vehicle cause translational accelerations.

Fb = T − (Re
b)
TFg (2.13)

where Fg is gravitational force and T is the total thrust force required for flight.

In the quadrotor system, the total thrust force is produced by four rotors which

generate one-directional separate thrust force, Ti.

Ti = kΩ2
i , i = 1, 2, 3, 4 (2.14)

where k is the thrust factor defining the relation thrust and rotational speed of the

rotor.

T = T1 + T2 + T3 + T4 = k(Ω2
1 + Ω2

2 + Ω2
3 + Ω2

4) (2.15)

The transformation can be obtained between forces on the earth-fixed and

body frames utilizing the rotation matrix.


Fxe

Fye

Fze

 = Re
b


Fxb

Fyb

Fzb

 = Re
b


0

0

T

−m


0

0

g

 = m


ẍe

ÿe

z̈e

 (2.16)


ẍe

ÿe

z̈e

 =


(cosφ sin θ cosψ + sinφ sinψ) T

m

(cosφ sin θ sinψ − sinφ cosψ) T
m

(cosφ cos θ) T
m
− g

 (2.17)

16



2.4.2.2 Rotational Dynamics

Rotational dynamics are revealed by the angular momentum change from the

motions around the quadrotor’s center of gravity. Equations of the rotational dy-

namics are derived as below.

Me = I
dωe
dt

(2.18)

which ends up with the form of Euler’s equation

Me = Iω̇e + ωe × Iωe (2.19)

where Me is the moment acting on the quadrotor, I and ωe represent the inertia

matrix of the structure and the angular velocity matrix, respectively, on the earth-

fixed frame. Due to all moments acting on the body frame, the equation (2.19) can

be expressed below on the body frame utilizing the rotation matrix

M = Iω̇ + ω × Iω (2.20)

where the inertia matrix is diagonal resulting from the symmetrical structure and

given by

I =


Ix 0 0

0 Iy 0

0 0 Iz

 (2.21)

and the moment vector on the body frame is
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M =


L

M

N

 (2.22)

where L,M and N are the roll, pitch and yaw moments, respectively.


L

M

N

 =


Ix 0 0

0 Iy 0

0 0 Iz



ṗ

q̇

ṙ

+


p

q

r



Ix 0 0

0 Iy 0

0 0 Iz



p

q

r

 (2.23)

Using equation (2.6), the moment on the body frame can be represented on

the earth frame with respect to Euler angles and their rates as shown in equation

(2.24) where s denotes sin function, c denotes cos function.


L

M

N

 =


Ix(φ̈− sθψ̈ − cθθ̇ψ̇) + (Iz − Iy)(cφθ̇ + sφcθψ̇)(sφθ̇ − cφcθψ̇)

Iy(cφθ̈ + sφcθψ̈ − sφφ̇θ̇ + cφcθφ̇ψ̇ − sφsθθ̇ψ̇) + (Iz − Ix)(sφθ̇ − cφcθψ̇)(φ̇− sθψ̇)

Iz(−sφθ̈ + cφcθψ̈ − cφφ̇θ̇ − sφcθφ̇ψ̇ − cφsθθ̇ψ̇) + (Ix − Iy)(cφθ̇ + sφcθψ̇)(φ̇− sθψ̇


(2.24)

Assuming that the quadrotor mostly hovers and tends to orientate with the

small angles while in flight, we can simplify the equation (2.24) as below.


L

M

N

 =


Ixφ̈+ (Iz − Iy)θ̇ψ̇

Iyθ̈ + (Iz − Ix)φ̇ψ̇

Izψ̈ + (Ix − Iy)φ̇θ̇

 (2.25)
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The moments are produced with the thrust forces generated by each rotor. The

moment about xb axis is called roll moment with rotating of the Rotor 2 and Rotor

4 at different rotational speeds. Similarly, Rotor 1 and Rotor 3 create the moment

called pitch moment about yb axis.

The thrust forces generated by the rotor pairs (R1-R3 and R2-R4) cause a

moment difference between xb and yb axes proportional to air drag by rotating clock-

wise and counterclockwise directions. With the result of this drag force, a moment

is produced about zb axis called yaw moment.

Mφ = −lT2 + lT4 = lk(−Ω2
2 + Ω2

4) (2.26a)

Mθ = −lT1 + lT3 = lk(−Ω2
1 + Ω2

3) (2.26b)

Mψ = −M1 +M2 −M3 +M4 = d(−Ω2
1 + Ω2

2 − Ω2
3 + Ω2

4) (2.26c)

where l represents the distance between the rotor’s midpoint and quadrotor’s center

of gravity and d is the drag factor.


φ̈

θ̈

ψ̈

 =


θ̇ψ̇((Iy − Iz) +Mφ)/Ix

φ̇ψ̇((Ix − Iz) +Mθ)/Iy

φ̇θ̇((Iy − Ix) +Mψ)/Iz

 (2.27)

2.5 Control Inputs Allocation

The left sides of the equation (2.12) and (2.25) include applied force and mo-

ments of the quadrotor on the body frame. Therefore, these terms can be used to

get inputs in the system. To achieve desired outputs such as angular and linear ve-

locities on the body frame, the required thrusts for each rotor must be commanded
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in accordance with the desired inputs utilizing these equations. The control inputs

can be obtained with the following equations.



T

Mφ

Mθ

Mψ


=



T1 + T2 + T3 + T4

−lT2 + lT4

−lT1 + lT3

−M1 +M2 −M3 +M4


=



k(Ω2
1 + Ω2

2 + Ω2
3 + Ω2

4)

lk(−Ω2
2 + Ω2

4)

lk(−Ω2
1 + Ω2

3)

d(−Ω2
1 + Ω2

2 − Ω2
3 + Ω2

4)


=



k(u1 + u2 + u3 + u4)

lk(−u2 + u4)

lk(−u1 + u3)

d(−u1 + u2 − u3 + u4)


(2.28)

The equation (2.28) shows that there are linear relationships between inputs

and the moments and the thrust. Hence, to normalize the moments and thrust with

regard to the input u, the pseudo inputs vector, u∗, can be defined as in equation

(2.29) and the connection between the actual input and pseudo input is represented

as in equation (2.30):

u∗ = [uver , uroll , upitch , uyaw]T (2.29)



uver

uroll

upitch

uyaw


=



T/k

Mφ/kl

Mθ/kl

Mψ/d


=



1 1 1 1

0 −1 0 1

−1 0 1 0

−1 1 −1 1





u1

u2

u3

u4


(2.30)

To create the motion in exact directions, utilizing the pseudo inputs allows a

convenient method to control the vehicle. uver is the input that enables to ascend or

descend of the quadrotor and uroll , upitch and uyaw are the inputs to produce roll,

pitch and yaw motion, respectively.
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Furthermore, to perform the desired movement, each rotor’s desired rotational

speed can be found in terms of the given inputs in the equation (2.31):



Ω2
1

Ω2
2

Ω2
3

Ω2
4


=



1
4k

0 − 1
2k
− 1

4d

1
4k
− 1

2k
0 1

4d

1
4k

0 1
2k

− 1
4d

1
4k

1
2k

0 1
4d





uver

uroll

upitch

uyaw


(2.31)

2.6 State - Space Representation

In this stage, the state-space representation of the quadrotor is given model

dynamics in previous sections. The mathematical dynamic equations show that the

quadrotor platform is a nonlinear system with multiple inputs and multiple outputs

as in many modern systems. This situation makes understanding the system more

complicated and time-consuming. To reduce the designer’s load and to examine such

a system, a state-space representation is used to express the internal dynamics of the

system, namely state variables, with first-order differential equations.

The inputs created by the rotors and the outputs that are the movements of the

system for each degree of freedom are represented with u and y vectors in equation

(2.32) and (2.33):

u = [u1, u2, u3, u4]
T (2.32)

y = [x, y, z, φ, θ, ψ]T (2.33)

The mapping between the described input and output is crucial in understand-

ing the quadrotor system behaviors. The dynamic model and the measurement model

of the vehicle can be defined in the equation (2.34) and (2.35):
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ẋ(t) = f(x(t)) + g(x(t))u(t) (2.34)

y(t) = h(x(t)) (2.35)

We can define the quadrotor body response with models described in equation

(2.17) and equation (2.29). The system states are obtained as below:

y = [x, y, z, φ, θ, ψ, ẋ, ẏ, ż, φ̇, θ̇, ψ̇]T (2.36)

The whole model is then defined in full by

r̈ =
1

m
Re
b


0

0

kuver

−


0

0

g

 (2.37)

η̈ = I−1



kluroll

klupitch

duyaw

− η̇ × Iη̇
 (2.38)
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CHAPTER 3

CONTROL STRATEGY

The physical systems generally have inherent nonlinear and coupled dynamics.

For this reason, the systems need to be controlled by nonlinear techniques to deal

with the nonlinearities’ aspects during the missions. These nonlinear methods can

be obtained by making dynamic inversion or defining the nonlinear system with

nonlinear form. This chapter will discuss the dynamic inversion method employed

in the quadrotor dynamics in the simulation environment.

3.1 Nonlinear Dynamic Inversion

The dynamic inversion method has been one of the most rampant nonlinear

control approaches dealing with the nonlinear system, regarded as if it is linear to

control. This process can be considered a linearization type, but it differs entirely

from classical Jacobian linearization that utilizes the dynamics’ approximations. This

method obtains algebraically a coordinate transformation of nonlinear states to get

a linear feedback law between inputs and outputs. To apply the linear control notion

and achieve a mission such as tracking the trajectory or stabilizing the system, it is

crucial to find applicable state transformation. Before proceeding with the dynamic

inversion control strategy, some concepts about this control technique should be

discussed.
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3.1.1 The Relative Degree

Considering a nonlinear single input – single output (SISO) system of the form

ẋ = f(x) + g(x)u (3.1a)

y = h (x) (3.1b)

where x ∈ Rn , u and y are scalars, g (x) is a single vector field and h (x) is a scalar

function. Then

ẏ =
∂h

∂x
.
∂x

∂t
=
∂h

∂x
(f (x) + g (x)u) = Lfh+ Lghu (3.2)

If Lgh = 0 , there will not be the input variable in the output equation. This

means that the input does not have any effect in a given x0 that desired point for a

regulator or system trajectory. For that reason, the taking derivative of y should be

repeated until the output has the input u explicitly.

Continuing the taking derivatives in that condition:

y = h(x) (3.3a)

ẏ = L1
fh+ Lghu = L1

fh with Lgh = 0 (3.3b)

ÿ = L2
fh+ Lg(L

1
fh)u = L2

fh with Lgh = 0 (3.3c)

...

yr = Lrfh+ Lg(L
r−1
f h)u = v with Lgh 6= 0 (3.3d)
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The number r represents the term called the relative degree of y = h(x) if and

only if

Lg(L
r−1
f h) 6= 0 (3.4)

In other words, the relative degree is the lowest step number that the coefficient

of the input, u , is nonzero in the Rn space where is to be controlled.

To find the relative degree for nonlinear multi input – multi output systems

(MIMO), let’s define f (x) and g (x) are vector fields and γ is a scalar real-valued

function. The Lie derivatives that contain derivations of γ (x) along the f (x) and

g (x) are attained as follows:

Lfγ(x) =
∂γ(x)

∂x
.f(x) =

[
∂γ(x)

∂x1
. . .

∂γ(x)

∂xn

]
.f(x) (3.5)

Lkfγ(x) =
∂(Lk−1f γ(x))

∂x
.f(x) (3.6)

LgLfγ(x) =
∂(Lfγ(x))

∂x
.g(x) (3.7)

If G(x) = [g1(x) . . . gm(x)], introduced the Lie derivative on this function, we

have:

LGγ(x) = [Lg1γ(x) . . . Lgmγ(x) (3.8)

After formulating the fundamentals of Lie derivatives, the MIMO systems’

relative degree can be obtained as follow:
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ẏi =
∂yi
∂x

=
∂hi
∂x

.
∂x

∂t
=
∂hi
∂x

.f (x) +
∂hi
∂x

.G (x)u = Lfhi (x) + LGhi (x)u = Lfhi (x)

(3.9a)

ÿi =
∂ẏi
∂x

.
∂x

∂t
=
∂Lfhi
∂x

.
∂x

∂t
=
∂Lfhi
∂x

.f (x)+
∂Lfhi
∂x

.G (x)u = L2
fhi (x)+LGLfhi (x)u = L2

fhi (x)

(3.9b)

...

yrii =
∂yri−1i

∂x
.
∂x

∂t
=
∂Lri−1f hi

∂x
.
∂x

∂t
=
∂Lri−1f hi

∂x
.f (x) +

∂Lri−1f hi

∂x
.G (x) (3.9c)

yrii = Lri−1f hi (x) + LGL
ri−1
f hi (x)u with LGL

ri−1
f hi (x) 6= 0 (3.9d)

Summarizing the output dynamics as below:

yrii = B (x) + A (x)u (3.10)

where

B (x) =



Lr1f h1

Lr2f h2
...

Lrmf hm


and A (x) =



Lg1L
r1−1
f h1 Lg2L

r1−1
f h1 . . . LgmL

r1−1
f h1

Lg1L
r2−1
f h2 Lg2L

r2−1
f h2 . . . LgmL

r2−1
f h2

...
...

. . .
...

Lg1L
rm−1
f hm Lg2L

rm−1
f hm . . . LgmL

m−1
f hm


(3.11)
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The total relative degree for a MIMO system is in the form of [r1 . . . rm] vector

at x0 point and is found for the entire system by summing of each output’s relative

degree. It must be less than or equal to the order of the nonlinear system.

r =
m∑
r=1

ri ≤ n (3.12)

One of the relative degree’s crucial properties is to define the singularity of

the A (x) matrix, which is also called the decoupling matrix. Thus, the invertibility

of this matrix is assured by the relative degree vector. If there is a relative degree

vector existing, then A (x) , describing the matrix is invertible.

3.1.2 The System Transformation

In this section, the Lie derivatives will be used to obtain the state transforma-

tion. This transformation consists of replacing the original state variables x with the

new state variables z (linearizing state) in the new state space. Every output yi has

a relative degree ri and this output does not have any control input in the first ri−1

derivatives due to LgL
k
fh = 0 on condition that k ≤ r − 1 . When 1 ≤ k ≤ m , the

subsequent transformation is defined for 1 ≤ j ≤ rk Defining the function Tj (x) as

zj = Tj (x) = Lj−1f hk (x) (3.13)

Applying the equation, the entire system can be converted into the following trans-

formation:
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

z1

z2
...

zr1+...+rm−1+1

...

zr


=



y01
...

yr1−11

...

y0m
...

yrm−1m



=



L0
fh1
...

Lr1−1f h1
...

L0
fhm
...

Lrm−1f hm



(3.14)

The whole state transformation is represented by z = T (x) . The inverse is given by

x = T−1 (z) .

z = T (x)→ x = T−1 (z) (3.15)

Finally, nonlinear system dynamics can be transformed into an equivalent linear

system dynamic exploiting these properties.

3.1.3 Feedback Linearization

At the essence of the dynamic inversion is the feedback linearization loop con-

verting the nonlinear MIMO system model into a system consisting of decoupled

integrators. For that reason, the dynamic inversion has stipulated the selection of

input variables. To introduce this concept, the set of control variables can be stated

in the following:

yrii = B (x) + A (x)u (3.16)

υ = B (x) + A (x)u (3.17)
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υ is the new control variable called the virtual control variable and necessary

for the expression of the transformed system.

Solving for the input vector u, then the equation (3.18) is attained

u = A (x)−1 (υ −B (x)) (3.18)

When equation (3.18) is substituted into equation (3.17), the linear relation in

equation (3.19) is obtained between output and the virtual input.

[yr11 · · · yrmm ]T = [υ1 · · · υm]T (3.19)

In this way, the output’s nonlinear and coupled dynamics are replaced with

decoupled integrators between virtual control variables that correspond to outputs.

The resulting linear system is controlled with a feedback law that operates on out-

put’s elements. The virtual input is defined as the desired output r th derivative of

y in this closed-loop system. The sections related thus far will be made use of to

design controllers in this thesis.

Figure 4. Feedback linearization block diagram.
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3.2 Controller Design

To design an elegant controller using the nonlinear dynamic inversion method

for the quadrotor, the control architecture is divided into two main loops called the

inner and outer loop, which are nested based on two sets of outputs. The inner loop’s

objective is to stabilize the quadrotor’s attitude receiving the desired roll, pitch, yaw

angles, and control the height taking the total thrust generated by all rotors. On

the other hand, the outer loop aims to allow the quadrotor to obtain the desired

horizontal positions autonomously in the earth-fixed frame.

The inner loop outputs are defined as yi = [z φ θ ψ]T , and each element of this

output vector can be controlled with separate inputs, u∗ = [uver , uroll , upitch , uyaw]T

by the nature of the quadrotor. As a result, the inversion between these outputs and

the virtual inputs, υ∗ = [υver , υroll , υpitch , υyaw]T can be derived with a linear

relation. Then, a feedback law enables controlling the quadrotor’s attitudes and

height, determining the desired outputs.

To have appeared the control inputs in the output variables, the output must

be differentiated as much as the order relative degree. For quadrotor dynamics, it

can be seen that the relative degree is two as equations (2.39) and (2.40)

z̈ =
k

m
uver (cosφ cos θ)− g (3.20a)

φ̈ =
kl

Ix
uroll +

(Iz − Iy)
Ix

θ̇ψ̇ (3.20b)

θ̈ =
kl

Iy
upitch +

(Iz − Ix)
Iy

φ̇ψ̇ (3.20c)

ψ̈ =
d

Iz
uyaw +

(Ix − Iy)
Iz

φ̇θ̇ (3.20d)
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It is quite apparent that, the output is in the form of the equation (3.16) for

the inner loop where

B (x) =



−g
(Iz−Iy)
Ix

θ̇ψ̇

(Iz−Ix)
Iy

φ̇ψ̇

(Ix−Iy)
Iz

φ̇θ̇


, A (x) =



k
m

(cosφ cos θ) 0 0 0

0 kl
Ix

0 0

0 0 kl
Iy

0

0 0 0 d
Iz


, u =



uver

uroll

upitch

uyaw


(3.21)

Applying the dynamic inversion method using equation (3.18)

uver =
m

k (cosφ cos θ)
(υver + g) (3.22a)

uroll =
Ix
kl

(
υroll +

(Iy − Iz)
Ix

θ̇ψ̇

)
(3.22b)

upitch =
Iy
kl

(
υpitch +

(Ix − Iz)
Iy

φ̇ψ̇

)
(3.22c)

uyaw =
Iz
d

(
υyaw +

(Iy − Ix)
Iz

φ̇θ̇

)
(3.22d)

After deriving the dynamic inversion, each virtual input should be mapped to

the desired outputs for attitude and height control (3.22).

υ∗ =



υver

υroll

υpitch

υyaw


=



z̈

φ̈

θ̈

ψ̈


(3.23)
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The linear feedback laws may then be employed to follow these linearized feed-

back dynamics in the following forms.



υver

υroll

υpitch

υyaw


=



z̈des −K1z (ż − żdes)−K2z (z − zdes)

φ̈des −K1φ

(
φ̇− φ̇des

)
−K2φ (φ− φdes)

θ̈des −K1θ

(
θ̇ − θ̇des

)
−K2θ (θ − θdes)

ψ̈des −K1ψ

(
ψ̇ − ψ̇des

)
−K2ψ (ψ − ψdes)


(3.24)

K1 and K2 gains should be selected positively for the error dynamics poles

to be on the left-hand side of the s-plane. Thus, the inner loop may be stabilized

with this controller. To assure the desired trajectory control, it is also required that

the zero dynamics of the system defined by internal states ( x and y ) should be

stabilized. It is achieved by obtaining the desired roll and pitch angle commands in

terms of the desired dynamics of the horizontal accelerations in the equation (3.24)

and (3.25).

ẍ = (cosφ sin θ cosψ + sinφ sinψ)
k

m
uver (3.25)

ÿ = (cosφ sin θ sinψ − sinφ cosψ)
k

m
uver (3.26)

To obtain φdes and θdes the horizontal acceleration dynamics equation may be

inverted as the following

φdes = arcsin

(
m(ẍ sinψ − ÿ cosψ)

kuver

)
(3.27)

θdes = arcsin

(
m(ẍ cosψ + ÿ sinψ)

kuver cosφ

)
(3.28)
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For desired x and y accelerations, the feedback laws can be attained with the

same linear approach as the inner loop on the condition that there is instantaneous

response of roll and pitch angles.

ẍ = ẍdes −K1x(ẋ− ẋdes)−K2x(x− xdes) (3.29)

ÿ = ÿdes −K1y(ẏ − ẏdes)−K2y(y − ydes) (3.30)

Figure 5. Controller design with dynamic inversion.

Figure 6. and Figure 7. present results for a circular trajectory response of

controller designed with a dynamic inversion method. Figure 6. indicates a three-

dimensional illustration of the quadrotor’s path. The quadrotor is expected to take

off from origin and move 1 m in the z-axis and perform a pitch maneuver to go 1 m

in the x-axis. Then it draws a circle with both pitch and roll maneuvers. Finally,
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the quadrotor completes its motion by landing 1 m far away from the origin in the

x-axis.
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Figure 6. Following the 3d circular trajectory.

34



0 20 40 60

-1

0

1

x

x
d

(a)

0 20 40 60

-1

0

1

y

y
d

(b)

0 20 40 60

0

0.5

1

z

z
d

(c)

0 20 40 60

-1

0

1

d

(d)

0 20 40 60

-1

0

1

d

(e)

0 20 40 60

-1

0

1

d

(f)

Figure 7. x, y, z positions and φ, θ, ψ angles tracking responses .
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CHAPTER 4

ANALYTICAL SOLUTION

In this section, a study of the crash radius of the quadrotor is presented based

on loss of effectiveness resulting from actuator failures, considering specific scenarios

in the nonlinear simulation environment. The reason for the crash analysis is that

the rotors contain both control surfaces and thrust mechanism. The rotor failures

caused by propeller loss or other physical faults result in a persistent interruption in

system capability.

The prediction of the crash position on the ground requires probabilistic and

deterministic models. In this thesis, a deterministic model is utilized to find the

landing zone using an analytical approach and disregarding the dynamic model un-

certainties. It has been accepted that certain amounts of power loss in rotors cause

deviations in the system dynamics. Based on these deviations, the trajectories to

the impact point on the ground are obtained, making use of the small perturbation

theory.

4.1 The Small Perturbation Theory

The quadrotor equations of motion are highly nonlinear, and it may be chal-

lenging to get exact solutions. In view of the problem’s complexity, the linearization

of these equations creates particularly desirable simplifications. The small perturba-

tion theory brings about this linearization, which yields satisfactory results for far-

reaching applications. The small perturbation theory is based on the simple method.

Deviations from the previous steady states are defined by a small perturbed state
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in the form of Taylor series for dynamic motion variables. These expressions are

linearized by excluding high-order terms assuming that the products of two small

perturbation terms are always negligible.

Assuming a simple first-order nonlinear system given as

ẋ = f (x) (4.1)

The f function can be expressed performing Taylor expansion at an operating

point x0

f (x) =
∞∑
n=0

f (n) ( x0)

n!
(x− x0)

n = f ( x0)+
f (1) (x− x0)

1!
+
f (2) (x− x0)2

2!
+
f (3) (x− x0)3

3!
+. . .

(4.2)

Then, defining the deviation as ∆x = x − x0 which is an extremely small

quantity from the operating point. Therefore, high-order terms can be negligible for

this perturbation.

f (x) ≈ f ( x0) + f (1) (x− x0) (4.3)

After describing the change in output as ∆f (x) = f (x)− f (x0) , the equation

(4.3) can be written as below

∆f (x) ≈ f (1) (x0) ∆x (4.4)

f (1) (x0) is a constant value; therefore, the nonlinear system approaches a linear

system around the operating point. The operating point is determined at the quadro-

tor’s hovering motion for linearization. Linear and rotational velocities and Euler
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angles are considered as constant values at hovering motion. The small perturbation

theorem can be applied in line with this knowledge for the quadrotor platform.

4.2 Analytical Solution

Designing the controller for the quadrotor, the error function is considered

given as

e = yactual − ydesired (4.5)

When the power loss occurs on the system, a deviation is comprised of due to the

failure. The deviation term is added to equation (4.5)

yactual = e+ ydesired + ∆y (4.6)

To calculate the deviation term the following steps are introduced. The dynamic

equation for roll motion is given in equation (4.7)

φ̈ =
(
θ̇ψ̇ ((Iz − Iy) +Mφ)

)
/Ix (4.7)

The quadrotor is a steady-state condition at hovering and roll acceleration is equal

to zero.

φ̈0 = 0 =
(
θ̇0 ψ̇0 ((Iz − Iy) +Mφ0)

)
/Ix (4.8)

Defining the small displacement identities for each variable for roll moment dynamics

in (4.9)

φ̇ = φ̇0 + ∆φ̇, θ̇ = θ̇0 + ∆θ̇, ψ̇ = ψ̇0 + ∆ψ̇, φ̈ = φ̈0 + ∆φ̈, Mφ = Mφ0 + ∆Mφ (4.9)
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Substituting the identities into the equation (4.7)

φ̈0 + ∆φ̈ =
((
θ̇0 + ∆θ̇

)(
ψ̇0 + ∆ψ̇

)
(Iz − Iy) + (Mφ0 + ∆Mφ)

)
/Ix (4.10)

Note that φ̈0 = 0 and the product of two small disturbance terms are very small and

Euler rates are zero. Therefore, equation (4.9) becomes

∆φ̈ =
∆Mφ

Ix
⇒ ∆φ̇ =

∆Mφ

Ix
t⇒ ∆φ =

∆Mφ

2Ix
∆t2 (4.11)

The equation (4.12) and (4.13) are obtained with the same procedure for pitch and

yaw motions.

∆θ̈ =
∆Mθ

Iy
⇒ ∆θ̇ =

∆Mθ

Iy
t⇒ ∆θ =

∆Mθ

2Iy
∆t2 (4.12)

∆ψ̈ =
∆Mψ

Iz
⇒ ∆ψ̇ =

∆Mψ

Iz
t⇒ ∆ψ =

∆Mψ

2Iz
∆t2 (4.13)

To calculate the deviation in the direction of the x-axis and y-axis, the steps are

followed below with the assumption that there is not yaw motion while designing the

controller.

ẍ =
T

m
(cosφ sin θ cosψ + sinφ sinψ)⇒ ẍ =

T

m
(cosφ sin θ) (4.14)

Substituting the small displacement identities into the equation (4.14)
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ẍ0 + ∆ẍ =

(
T0 + ∆T

m

)
[cos (φ0 + ∆φ) sin (θ0 + ∆θ)] (4.15)

We use trigonometric identities in (4.15) and consider Ix = Iy due to the symmetric

structure of the vehicle.

ẍ0 + ∆ẍ =

(
T0 + ∆T

2m

)
[ sin(φ0 + θ0) cos(

(
∆Mφ + ∆Mθ

2Ix

)
∆t2)

+ cos(φ0 + θ0) sin(

(
∆Mφ + ∆Mθ

2Ix

)
∆t2)

− sin(φ0 − θ0) cos(

(
∆Mφ −∆Mθ

2Ix

)
∆t2)

− cos(φ0 − θ0) sin(

(
∆Mφ −∆Mθ

2Ix

)
∆t2)] (4.16)

The Taylor expansions are used instead of trigonometric functions in (4.16) and this

equation is integrated two times to find the deviation on the x-axis.

x0 + ∆x =

(
T0 + ∆T

2m

)
[ sin(φ0 + θ0)

∞∑
n

(−1)na2n(∆t)4n+2

(2n)! (4n+ 1)(4n+ 2)

+ cos(φ0 + θ0)
∞∑
n

(−1)na2n+1(∆t)4n+4

(2n+ 1)! (4n+ 3)(4n+ 4)

− sin(φ0 − θ0)
∞∑
n

(−1)nb2n(∆t)4n+2

(2n)! (4n+ 1)(4n+ 2)

− cos(φ0 − θ0)
∞∑
n

(−1)nb2n+1(∆t)4n+4

(2n+ 1)! (4n+ 3)(4n+ 4)
] (4.17)
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where φ0 and θ0 are initial angles while starting the failure and a =
∆Mφ + ∆Mθ

2Ix
,

b =
∆Mφ −∆Mθ

2Ix

The same method is used to find the deviation on the y-axis with the assumption

that there is not yaw motion.

ÿ =
T

m
(cosφ sin θ sinψ − sinφ cosψ)⇒ ÿ =

T

m
(− sinφ) (4.18)

Substituting the small displacement identities into the equation (4.18)

ÿ0 + ∆ÿ =−
(
T0 + ∆T

m

)
sin(φ0 + ∆φ) = −

(
T0 + ∆T

m

)
[sinφ0 cos ∆φ+ cosφ0 sin ∆φ]

(4.19)

Considering c =
∆Mφ

2Ix
and integrating two times the equation (4.19), we have equa-

tion (4.20) for y-axis deviation in Taylor expansion form.

y0 + ∆y = −
(
T0 + ∆T

m

)
[ sinφ0

∞∑
n=0

(−1)n c2n (∆t)4n+2

(2n) ! (4n+ 1) (4n+ 2)

+ cosφ0

∞∑
n=0

(−1)n c2n+1 (∆t)4n+4

(2n+ 1) ! (4n+ 3) (4n+ 4)
] (4.20)

To find the radius of the landing zone, the equation (4.21) is derived using ∆x and

∆y.

r =
√

(x0 + ∆x)2 + (y0 + ∆y)2 (4.21)
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One of the objectives of this thesis is to get the landing zone depending for

the certain power loss rate of the rotors on the quadrotor. Before proceeding, the

relation between the rotor power and rotor rotational speed should be expressed in

equation (4.22) below:

P = τΩ (4.22)

where P is power, τ is torque and Ω is rotational speed of the rotor.

In the following discussion, it is assumed that the net torque is constant to

attain necessary lift force for quadrotor. Therefore, it can be seen that the decrese

amount of the rotational speed of rotor is proportional to rate of the power loss due

to physical failures since the landing zone analysis is based on the power loss of the

rotors.

The failure scenarios are designed according to assumptions on the fault of

Rotor 1 and the fault of both Rotor 1 and 2 at the same rate of power loss. In line

with this knowledge, the equations (2.15) and (2.26) can be converted to find the

deviations of thrust and moments as below:

The case of Rotor 1 failure:

T0 + ∆T = k((Ω1 −∆Ω1)
2 + Ω2

2 + Ω2
3 + Ω2

4) (4.23)

Mφ0 = lk(−Ω2
2 + Ω2

4) (4.24)

Mθ0 + ∆Mθ = lk(−(Ω1 −∆Ω1)
2 + Ω2

3) (4.25)

Mψ0 + ∆Mψ = d(−(Ω1 −∆Ω1)
2 + Ω2

2 − Ω2
3 + Ω2

4) (4.26)
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The case of both Rotor 1 and Rotor 2 failures at the same rates and time:

T0 + ∆T = k((Ω1 −∆Ω1)
2 + (Ω2 −∆Ω2)

2 + Ω2
3 + Ω2

4) (4.27)

Mφ0 + ∆Mφ = lk(−(Ω2 −∆Ω2)
2 + Ω2

4) (4.28)

Mθ0 + ∆Mθ = lk(−(Ω1 −∆Ω1)
2 + Ω2

3) (4.29)

Mψ0 + ∆Mψ = d(−(Ω1 −∆Ω1)
2 + (Ω2 −∆Ω2)

2 − Ω2
3 + Ω2

4) (4.30)
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CHAPTER 5

SIMULATION RESULTS

5.1 Failure Scenarios

In this study, four different failure scenarios are simulated and solved analyti-

cally using the 3d circular trajectory in Figure 6. These scenarios can be categorized

into two groups as maneuvering and hovering flight depend on the number of failured

rotors on the quadrotor. The scenarios can be summarized with their conditions as

below.

• Scenario 1: Rotor-1 Failure in hovering flight

φ0 = 0, θ0 = 0 and ∆Mφ = 0 , ∆Mθ 6= 0

• Scenario 2: Rotor-1 and Rotor-2 Failures in hovering flight

φ0 = 0, θ0 = 0 and ∆Mφ 6= 0 , ∆Mθ 6= 0

• Scenario 3: Rotor-1 Failure in maneuvering flight

φ0 6= 0, θ0 6= 0 and ∆Mφ = 0 , ∆Mθ 6= 0

• Scenario 4: Rotor-1 and Rotor-2 Failures in maneuvering flight

φ0 6= 0, θ0 6= 0 and ∆Mφ 6= 0 , ∆Mθ 6= 0
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5.2 Scenario 1 Results

It is assumed that the quadrotor’s number 1 rotor is exposed the power loss at

the time of 65 s of hovering flight. The deviation trajectories are obtained based on

the power loss rate and the crash zone is shown.

Figure 8. 3d and top views for crash zone in scenario 1.
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Figure 9. Thrust & moments deviations vs power loss of Rotor 1 in hovering flight
and errors b/w simulation and analytical solution for scenario 1 .
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Figure 10. Euler angle deviations vs power loss of Rotor 1 in hovering flight and
errors b/w simulation and analytical solution for scenario 1.
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Figure 11. ∆θ , ∆φ and ∆ψ deviations vs time with certain power loss rates of Rotor
1 for scenario 1.
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Figure 12. Position deviations vs power loss of Rotor 1 in hovering flight and errors
b/w simulation and analytical solution for scenario 1 .
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Figure 13. ∆x and ∆y deviations vs time with certain power loss rates of Rotor 1
for scenario 1.
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5.3 Scenario 2 Results

It is assumed that the quadrotor’s number 1 and 2 rotors are subjected to

the same percent of power loss at the time of 65 s of hovering flight. The deviation

trajectories are obtained based on the power loss rate and the impact zone is shown.

Figure 14. 3d and top views for crash zone in scenario 2.
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Figure 15. Thrust & moments deviations vs power loss of both Rotor 1&2 in hovering
flight and errors b/w simulation and analytical solution for scenario 2 .

52



0 10 20 30 40 50 60 70 80 90 100

0

2

4

6

sim ana

0 10 20 30 40 50 60 70 80 90 100

0

2

4

6

sim ana

0 10 20 30 40 50 60 70 80 90 100

0

2

4

6 sim ana

0 10 20 30 40 50 60 70 80 90 100

-1

0

1

0 10 20 30 40 50 60 70 80 90 100

-1

0

1

0 10 20 30 40 50 60 70 80 90 100

-1

0

1

Figure 16. Euler angle deviations vs power loss of both Rotor 1&2 in hovering flight
and errors b/w simulation and analytical solution for scenario 2 .

53



65 65.2 65.4 65.6

0

1

2

3

4

5

sim

ana

65 65.2 65.4 65.6

0

1

2

3

4

5

sim

ana

65 65.2 65.4 65.6

-1

-0.5

0

0.5

1

sim

ana

65 65.2 65.4

0

1

2

3

4

5

sim

ana

65 65.2 65.4

0

1

2

3

4

5

sim

ana

65 65.2 65.4

-1

-0.5

0

0.5

1

sim

ana

65 65.2 65.4

0

1

2

3

4

5

sim

ana

65 65.2 65.4

0

1

2

3

4

5

sim

ana

65 65.2 65.4

-1

-0.5

0

0.5

1

sim

ana

65 65.2 65.4

0

1

2

3

4

5

sim

ana

65 65.2 65.4

0

1

2

3

4

5

sim

ana

65 65.2 65.4

-1

-0.5

0

0.5

1

sim

ana

Figure 17. ∆θ , ∆φ and ∆ψ deviations vs time with certain power loss rates of Rotor
1 and Rotor 2 for scenario 2.
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Figure 18. Position deviations vs power loss of both Rotor 1&2 in hovering flight
and errors b/w simulation and analytical solution for scenario 2 .
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Figure 19. ∆x and ∆y deviations vs time with certain power loss rates of Rotor 1&2
for scenario 2.
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5.4 Scenario 3 Results

It is assumed that the quadrotor’s number 1 rotor is exposed the power loss at

the time of 32 s of maneuvering flight. The deviation trajectories are obtained based

on the power loss rate and the impact zone is shown.

Figure 20. 3d and top views for crash zone in scenario 3.
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Figure 21. Thrust & moments deviations vs power loss of Rotor 1 in maneuvering
flight and errors b/w simulation and analytical solution for scenario 3 .
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Figure 22. Euler angle deviations vs power loss of Rotor 1 in maneuvering flight and
errors b/w simulation and analytical solution for scenario 3.
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Figure 23. ∆θ , ∆φ and ∆ψ deviations vs time with certain power loss rates of Rotor
1 for scenario 3.
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Figure 24. Position deviations vs power loss of Rotor 1 in maneuvering flight and
errors b/w simulation and analytical solution for scenario 3 .
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Figure 25. ∆x and ∆y deviations vs time with certain power loss rates of Rotor 1
for scenario 3.

62



5.5 Scenario 4 Results

It is assumed that the quadrotor’s number 1 and 2 rotors are subjected to the

same percent of power loss at the time of 32 s of maneuvering flight. The deviation

trajectories are obtained based on the power loss rate and the impact zone is shown.

Figure 26. 3d and top views for crash zone in scenario 4.
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Figure 27. Thrust & moments deviations vs power loss of both Rotor 1&2 in ma-
neuvering flight and errors b/w simulation and analytical solution for scenario 4
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Figure 28. Euler angle deviations vs power loss of both Rotor 1&2 in maneuvering
flight and errors b/w simulation and analytical solution for scenario 4 .
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Figure 29. ∆θ , ∆φ and ∆ψ deviations vs time with certain power loss rates of Rotor
1 and Rotor 2 for scenario 4.
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Figure 30. Position deviations vs power loss of both Rotor 1&2 in maneuvering flight
and errors b/w simulation and analytical solution for scenario 4.
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Figure 31. ∆x and ∆y deviations vs time with certain power loss rates of Rotor 1&2
for scenario 4.
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CHAPTER 6

CONCLUSION

This thesis started with deriving the fundamental motion concepts and nec-

essary mathematical basics to develop a quadrotor model. Then, the quadrotor’s

kinematic and dynamic equations were derived, considering certain assumptions.

Because the quadrotor platform is a highly nonlinear system, a nonlinear control

approach called dynamic inversion was utilized to attain good flight performance.

This control method can be accepted as a linearization procedure that was obtained

algebraically a coordinate transformation of nonlinear states. Thus, a linear feedback

law between inputs and outputs can be obtained by canceling nonlinearities of the

system. The designed controller was tested in 3d circular trajectory and it can be

seen that the quadrotor system followed the trajectory with a small amount of error.

In the second part of the thesis, the failure scenarios were developed to obtain

a crash radius. Because quadrotor platforms may cause severe risk factors in the

urban areas, this impact region must be defined to obtain an appropriate flying path.

The failure scenarios are based on the power loss of rotor faults due to considering

physical damages. Then, faulted rotors’ power loss information was utilized to find

the deviation on horizontal axes and the possible crash circle radius. Thus, the crash

zone can be calculated with the situation of the potential rotor failures. The results

illustrated that the simulation and analytical approach outcomes are close to each

other.

69



REFERENCES

[1] S. Bouabdallah. Design and control of quadrotors with application to au-

tonomous flying. 2007.

[2] S. Bouabdallah, A. Noth, and R. Siegwart. Pid vs lq control techniques applied

to an indoor micro quadrotor. 3:2451–2456 vol.3, 2004.

[3] S. Bouabdallah and R. Siegwart. Backstepping and sliding-mode techniques

applied to an indoor micro quadrotor. pages 2247–2252, 2005.

[4] S. Bouabdallah and R. Siegwart. Full control of a quadrotor. pages 153–158,

2007.

[5] H. Bouadi and F. Mora-Camino. Direct adaptive backstepping flight control for

quadcopter trajectory tracking. pages 1–8, 2018.

[6] Y. Bouzid, H. Siguerdidjane, and Y. Bestaoui. Boosted flight controller for

quadrotor navigation under disturbances. IFAC-PapersOnLine, 50(1):10293–

10298, 2017.

[7] I. Choi and H. Bang. Quadrotor-tracking controller design using adaptive dy-

namic feedback-linearization method. Proceedings of the Institution of Mechan-

ical Engineers, Part G: Journal of Aerospace Engineering, 228(12):2329–2342,

2014.

[8] I. D. Cowling, O. A. Yakimenko, J. F. Whidborne, and A. K. Cooke. A proto-

type of an autonomous controller for a quadrotor uav. pages 4001–4008, 2007.

[9] A. Das, F. Lewis, and K. Subbarao. Backstepping approach for controlling a

quadrotor using lagrange form dynamics. Journal of Intelligent and Robotic

Systems, 56(1-2):127–151, 2009.

70



[10] A. Das, K. Subbarao, and F. Lewis. Dynamic inversion with zero-dynamics

stabilisation for quadrotor control. IET control theory & applications, 3(3):303–

314, 2009.

[11] B. Erginer and E. Altug. Modeling and pd control of a quadrotor vtol vehicle.

2007 IEEE Intelligent Vehicles Symposium, pages 894–899, 2007.

[12] S. W. G. Hoffmann, H. Huang and C. Tomlin. Quadrotor helicopter flight

dynamics and control: Theory and experiment. AIAA Guidance, Navigation

and Control Conference and Exhibit, Aug. 2007, pages 10.2514/6.2007–6461,

2007.

[13] J. Ghandour, S. Aberkane, and J.-C. Ponsart. Feedback linearization approach

for standard and fault tolerant control: Application to a quadrotor UAV testbed.

Journal of Physics: Conference Series, 570(8):082003, dec 2014.

[14] S. Grzonka, G. Grisetti, and W. Burgard. A fully autonomous indoor quadrotor.

IEEE Transactions on Robotics, 28(1):90–100, 2012.

[15] Y. Kartal, P. Kolaric, V. Lopez, A. Dogan, and F. Lewis. Backstepping ap-

proach for design of pid controller with guaranteed performance for micro-air

uav. Control Theory and Technology, pages 1–15, 2019.

[16] D.-W. Lee, H. J. Kim, and S. Sastry. Feedback linearization vs. adaptive slid-

ing mode control for a quadrotor helicopter. International Journal of Control,

Automation and Systems, 7:419–428, 2009.

[17] K. Lee, H. Kim, J. Park, and Y. Choi. Hovering control of a quadrotor. In

ICCAS 2012 - 2012 12th International Conference on Control, Automation and

Systems, International Conference on Control, Automation and Systems, pages

162–167, 2012. Copyright: Copyright 2013 Elsevier B.V., All rights reserved.;

2012 12th International Conference on Control, Automation and Systems, IC-

CAS 2012 ; Conference date: 17-10-2012 Through 21-10-2012.

71



[18] J. Li and Y. Li. Dynamic analysis and pid control for a quadrotor. 2011

IEEE International Conference on Mechatronics and Automation, pages 573–

578, 2011.

[19] T. Li, Y. Zhang, and B. W. Gordon. Nonlinear fault-tolerant control of a quadro-

tor uav based on sliding mode control technique. IFAC Proceedings Volumes,

45(20):1317–1322, 2012.

[20] T. Madani and A. Benallegue. Backstepping control for a quadrotor helicopter.

2006 IEEE/RSJ International Conference on Intelligent Robots and Systems,

pages 3255–3260, 2006.

[21] T. Madani and A. Benallegue. Control of a quadrotor mini-helicopter via full

state backstepping technique. Proceedings of the 45th IEEE Conference on De-

cision and Control, pages 1515–1520, 2006.

[22] L. D. Minh and C. Ha. Modeling and control of quadrotor mav using vision-

based measurement. International Forum on Strategic Technology 2010, pages

70–75, 2010.

[23] P. Pounds, R. Mahony, and P. Corke. Modelling and control of a large quadrotor

robot. Control Engineering Practice, 18(7):691 – 699, 2010. Special Issue on

Aerial Robotics.

[24] Zhi Li, Xin Ma, Zhigang Xu, Yafang Wang, and Yibin Li. Chattering free sliding

adaptive attitude control for quadrotor. pages 707–712, 2016.

[25] M. Önder Efe and S. Member. Neural network assisted computationally simple

pid control of a quadrotor uav.

72



BIOGRAPHICAL STATEMENT

Ahmet Tolcu was born in Kayseri, Turkey. He received his bachelor’s degrees in

Mechatronics Engineering and Electrical-Electronics Engineering from Erciyes Uni-

versity in 2014 and 2015. He worked for Dener Machinery as an engineer in the Laser

CNC Department after graduation.

He is receiving his Master of Science degree in Aerospace Engineering at the

University of Texas at Arlington, in which the Republic of Turkey Ministry of Na-

tional Education sponsored him to study in the field of aerospace. His research

interests include advanced dynamics and control of autonomous systems.

73


