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ABSTRACT

As computers become more advanced, affordable, and smaller in size, we start

to use them in almost every aspect of our daily life. Nowadays, the use of com-

puters is not just limited to accomplish work-related tasks. Instead, we use

computers for education, entertainment, healthcare, and in many other areas

to facilitate our daily life activities. From here, the Human-Computer Interac-

tion (HCI) field emerged. HCI is a multidisciplinary field of study that focuses

on utilizing computers and technology to interact with humans, improve their

quality of life, and enhance their performance. The rapid advancements in other

related research fields, such as robotics, artificial intelligence, and sensor tech-

nologies, have tremendously improved human-computer interaction applica-

tions and made it more personalized, adaptive, and smarter.

This research explores innovative HCI applications using robotics, sensors,

and wearable technologies to monitor and assess human cognitive and physical

abilities. The systems collect, analyze, and evaluate multimodal data, which in-

clude system-specific metrics and data from non-invasive sensors. The sensors

used in this research include electromyography (EMG), electroencephalogram

(EEG), electrocardiogram (ECG), electrodermal activity (EDA), pulse oximeter,

inertial measurement unit (IMU), eye-trackers and cameras. The analysis and

evaluation of these multimodal data are done using statistical analysis and ma-



chine learning techniques.

Primarily, this dissertation discusses gamified robot-assisted assessment and

rehabilitation, the impact of sleep quality on cognitive performance, the impor-

tance of understanding human behavior and physiology to provide adaptive

and personalized training, and the impact of cognitive workload on human

physical performance. The outcome of this research is a multimodal cognitive

and physical assessment platform, called ”9PM” that stands for 9-Peg Moves.

The platform combines a simple physical task based on the principles of a stan-

dard upper extremity test, with other standard cognitive tests to assess user cog-

nitive and physical performance and understand the correlation between users’

performance and their physiological and behavioral responses.
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CHAPTER 1

HUMAN ACTIVITY ASSESSMENT AND TRAINING: TRENDS AND

CHALLENGES

1.1 Introduction to Human Abilities Assessment

To solve a problem effectively, we need to find out what causes it in the first

place. Every year thousands of workers have unforeseen accidents and injuries

in the workplace. Is that due to the lack of safety measures, lack of proper

training, or that the workers are either physically or cognitively incapable of

performing the job? To answer such a complex question, we need to moni-

tor the work environment, and understand if it is a human error. The work-

ers performance needs to be assessed, and based on that, they should receive

proper training to improve their weaknesses. The abilities of the workers vary,

so they need to be assessed and given personalized training. Unfortunately, it

is time-consuming and challenging for human experts to provide such assess-

ment and training for every worker. This issue is not just related to workers,

but it also touches students, patients, soldiers, and many others. To overcome

this issue, researchers come up with standardized tests to help assess users and

determine their weaknesses. Generally, these tests are not to make formal diag-

noses, but to identify the deficiency and difficulties the participants have. One

of the well-known initiatives to develop such tests is the National Institutes of

Health Toolbox (NIH Toolbox) initiative, which is part of the NIH Blueprint

for neuroscience research initiative [86, 37]. The NIH Toolbox includes over

100 stand-alone measures to assess cognition, emotion, motor, and sensation for

children (3 years old and above) and adults. Also, it is designed to be brief,

1



affordable, and usable in large-scale studies.

The next sections discuss the current trends in cognitive and physical assess-

ment and the motivation and structure of this dissertation.

1.2 Cognitive Assessment

Cognitive assessment is one of the initial procedures to discover mental impair-

ments and learning disabilities. In this context, cognitive assessment refers to

the evaluation of mental capacity to gain and illustrate knowledge and com-

prehension, which includes the ability to think, do problem-solving, memorize,

execute complex behaviors, and many others. One of the commonly used cogni-

tive assessment tests in cognitive psychology is the Stroop task, which is consid-

ered to be the golden standard in attentional measures [71]. The participant in

this assessment sees color words, and the font-color of the word is different. The

participant is supposed to name the font-color instead of reading the word. For

instance, if the color word is Red, the participant should say ’Blue’ rather than

’Red.’ This task shows the participant’s mind control ability. Reading the words

is considered an automatic process, but naming colors is regarded as a con-

trolled process that requires more attention. In [45], the Stroop task was used to

identify executive function deficits associated with attention deficit hyperactiv-

ity disorder (ADHD) in children and adolescents. Their results show that poor

performance in the task is not sufficient to diagnose ADHD, but they found that

children and adolescents with ADHD consistently exhibit poor performance.

This finding confirms that people with ADHD generally have difficulties with

attention and concentration. Some researchers believe that the Stroop task is

2



sensitive to brain damage, especially when it is in the frontal or prefrontal area

[45]. [47] found using Magnetic Resonance Imaging (MRI) that children with

ADHD had significantly smaller right frontal width than control subjects.

In contrast, [21] explored the inhibitory control in children with Autism

Spectrum Disorder (ASD) using three cognitive tasks (Stroop task, Flanker task,

and Go/No-go task). There is a fixed number of stimuli shown at the same

time (e.g., OOXOO) in the Flanker task. The participant should identify if the

stimuli ’flanking’ the target stimulus (e.g., the middle stimulus) have the same,

opposite, or a neutral definition. In contrast, the Go/No-go task has one stim-

ulus shown at a time. The participant should act (e.g., press a button) when a

specific target stimulus (e.g., green light) is presented but should stay still oth-

erwise. They found that children with ASD had a similar performance to the

control subjects in the Stroop task, but they performed more poorly than the

controls in the Flanker and the Go/No-go tasks.

The cognitive assessments discussed above focus mainly on cognitive im-

pairments that affect young participants. However, there are other cognitive

dysfunctions commonly affect the elderly, and researches try to make assess-

ments for them. For instance, the Clock Drawing Test and the Mini-mental State

Examination are dementia screening assessments for the elderly.

1.3 Physical Assessment

Physical assessment in this context primarily refers to the evaluation of mo-

tor function, dexterity, strength, power, and endurance. Physical assessment of

post-stroke, traumatic brain injury, or multiple sclerosis patients helps clinicians

3



understand the level of physical dysfunction and create a treatment plan for

faster recovery or to slow down the impairment progression. Some of the com-

monly used physical assessment tasks are the 9-Hole Peg test, Box and Blocks

test, Timed Up-and-Go test, and the Manual Muscle Testing [99].

The 9-Hole Peg and the Box and Blocks are manual dexterity tests that as-

sess upper extremity function. The 9-Hole Peg is considered a gold-standard

test. In this test, the patient is instructed to move 9-pegs from a container to a

block with nine holes, then back to the original container. The patient is timed

and needs to do the test twice using each hand. Similarly, in the Box and Blocks

test, the patient is asked to move blocks quickly from one side of a rectangular

box to the other side in 60-seconds. The test score is the count of the blocks the

patient moves. The Timed up-and-Go test is a mobility assessment to assess

balance and walking defects. The patient in this assessment is instructed to sit

back in a standard armchair. Once the assessment starts, the patient needs to

stand up, walk a distance of 3 meters, and come back. The Manual Muscle Test-

ing is one of the methods of measuring extremity muscle strength. In this test,

the patient is asked to hold the corresponding body part while the practitioner

exerts manual resisting force in the opposite direction, and the muscle strength

is then evaluated accordingly.

1.4 Motivation

The advances of sensor technology have led to new cost and power-efficient de-

vices in the market, making them available for a larger population of develop-

ers and researchers. Nowadays, many portable sensing devices are consumer-
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grade and targeted for lifestyle applications. Smartwatches and smartphones

are just two of the many tools that can embody sensors that can track our move-

ment, sleep pattern and quality, heart-rate data, and many other possibilities.

Leveraging this vast amount of data can help us understand more about our

bodies and capabilities. It can be used to advance healthcare and educational

applications by personalizing them based on our needs. However, assessing

the skills of an individual is not straightforward. Human experts can have the

ability to evaluate users intuitively by identifying the skills required for evalu-

ation; however, developing systems and algorithms to do that is a complicated

task. With that in mind, researchers try to incorporate sensors and technology

in the assessment to make it quantifiable and easy to administrate. For instance,

they can use technology and software to automatically time experiments and

collect score and user feedback instead of using a stopwatch and write notes

by hand. In recent years, there have been many efforts to use sensors to detect

human mental and physical state. For instance, researchers have worked on

using EMG signals to detect muscle fatigue [110], EEG signals to sense pain, en-

gagement, and anxiety [56, 19], and ECG and EDA data to detect mental stress

[103, 106].

Our work moves towards the design of an intelligent system that acts au-

tonomously to decrease the workload on experts and allow them to monitor the

user’s performance and plan on the next course of action accordingly. For this

reason, this dissertation investigates how physiological and behavioral data can

be used to assess the user’s cognitive and physical performance.
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1.5 Dissertation Structure

This section shows the structure of this dissertation and the main focus of each

chapter:

• Chapter 1 introduce the trends and challenges in human assessment, and

shows some of the commonly used assessment.

• In Chapter 2, we discuss robot-assisted assessment and rehabilitation re-

lated work. Moreover, we showcase our work in analyzing EMG data to

detect muscle fatigue during physical rehabilitation [54]. In addition, we

show one of our systems that combine cognitive and physical assessment

using serious games and a rehabilitation robot [20]. This chapter presents

parts of our previous publications [54] and [20].

• Chapter 3 focuses on sleep-related studies and the impact of sleep quality

and disorder on our performance. We showcase our pre-screening tool for

apnea in a home environment that utilizes wearable sensors and computer

vision techniques. This chapter presents parts of our previous publication

[55].

• In Chapter 4, we discuss brain-computer interfaces and show our system

that uses EEG data to monitor user’s engaged enjoyment. This chapter

presents parts of our previous publication [1].

• In Chapter 5, we discuss our novel multimodal cognitive and physical

assessment platform, called “9PM”, and how we utilized multimodal data

analysis in assessment.

• Finally, in Chapter 6 we show the concluding remarks and future direc-

tions of this dissertation.
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CHAPTER 2

ROBOT-ASSISTED ASSESSMENT AND REHABILITATION

2.1 Introduction

Shoulder dislocation, stroke, or traumatic brain injury (TBI) are a few of the

conditions that can be the result of an accident, or physiological or neurological

dysfunction. These cases can limit people from performing daily life activities

like tying shoes and going for a walk. Around 20 million people worldwide

suffer from strokes each year, and 795,000 of these cases happen in United States

[18, 78]. That costs the United States approximately 34 billion a year [38]. Five

million out of the 20 million people die because of stroke, and only 15 million

people survive. Third of the people who survive live with permanent after-

effect disabilities. That makes stroke one of the significant causes of death and

disability. Luckily, not all of these disabilities are permanent, and some of them

can be mitigated with physical rehabilitation exercises.

Conventional rehabilitation has proven to be very useful. It requires the pa-

tients to visit a rehabilitation center to see a therapist. However, that makes

rehabilitation labor-intensive and inconvenient to patients who have to travel

for long-distances. Many traditional rehabilitation exercises require the patients

to perform repetitive, simple activities such as stretching their arm and moving

it in circles. The repetitive nature of these exercises might make them less en-

gaging. Some of the research studies in the last decade have focused on resolv-

ing the issues related to conventional rehabilitation. For example, these studies

explore robotic and gamified rehabilitation to reduce the workload on the ther-

apists, allow for telerehabilitation, and make the rehabilitation procedure more
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fun and engaging [48, 112]. Gamified-rehabilitation and robotic-rehabilitation

generally utilize robots (e.g., robotic-arm, exoskeleton, etc.) to help the patients

perform exercises in a game-based, virtual-reality environment. This engage-

ment is essential to improve the patient’s condition as studies have shown that

patients who get engaged in the rehabilitation exercises have a better chance of

retaining the white matter integrity in their brain [13].

2.2 Background

This section provides brief background information about robot-assisted reha-

bilitation, gamified rehabilitation, and fatigue.

2.2.1 Robot-Assisted Rehabilitation

Robots are generally used to do tedious, repetitive tasks. That makes them suit-

able for rehabilitation exercises. As mentioned earlier, many of the rehabilita-

tion exercises require the patients to repeat them for long periods to improve

motor function. Having a robot to help the patient repeat these exercises could

reduce the rehabilitation cost and the workload on the medical staff, and allow

the patient to do the exercises remotely at home. Some robots nowadays have

embedded sensors that can record the patient’s performance. For instance, the

robot can accurately record the patient’s movement speed, and the amount of

the force the patient applies. It is very beneficial to record these metrics, observe

the patient’s progress over time, and evaluate the effectiveness of the rehabili-

tation plan.
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Various types of robots are used in healthcare applications. Surgical robots,

socially assistive robots, and rehabilitation robots are some of these robots. For

instance, surgical robots are used to perform remote surgeries and surgeries

requiring high precision (e.g., retinal detachment surgery). Socially assistive

robots interact with patients in a friendly way, and researchers usually utilize

them for cognitive assessment and training tasks [113]. On the other side, reha-

bilitation robots help patients gain their motor function and perform physical

exercises. For instance, multiple sclerosis (MS) patients in one of the studies

were asked to use an exoskeleton robot and a treadmill for gait rehabilitation

[10]. The study found this method significantly effective, and it could help pa-

tients with severe walking disabilities to improve their walking distance, ve-

locity, and knee-extensor strength. Another study compared the usefulness of

a 6-degrees of freedom (DOF) robot manipulator to conventional therapy tech-

niques in upper-limb physical rehabilitation [70]. The researchers found that

their post-stroke patients who performed robot-assisted rehabilitation had sig-

nificant improvement, in the first two months, in strength, reach, and an overall

decreased impairment.

2.2.2 Gamified Rehabilitation

Gamified rehabilitation uses rehabilitation exercises in the form of a game. It

makes rehabilitation fun, and it keeps the patients engaged in the rehabilita-

tion activities for more extended periods. [79] enrolled post-stroke patients in

a gamified rehabilitation program for two weeks. Their findings suggest that

their rehabilitation program was useful for upper limb rehabilitation. Among

the games used in rehabilitation are serious games. Serious games are usually
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computer games designed for purposes other than pure entertainment [101].

Such games have been tremendously useful in various fields, such as educa-

tion, military training, and healthcare.

2.2.3 Fatigue

Fatigue is a subjective phenomenon that is studied in many fields, such as

medicine, neurology, and psychology. Still, it does not have a universally ac-

cepted definition [115]. One of the fatigue’s popular definitions is by Jensen et.

al. [51], the definition states:

“Acute fatigue is most often caused by excessive physical or mental exertion

and can be relieved by rest. Normative fatigue may be influenced by circa-

dian rhythm and results from the activities of daily living, while chronic

fatigue is most often prolonged by stress or tension on the body and is less

likely to be relieved by rest alone.”

With that in mind, this section focuses on acute muscular fatigue. The fre-

quency of muscle exercise in physical rehabilitation leads to physical fatigue.

Physical fatigue could force the patients to alter the rehabilitation exercises

to avoid the pain, which could negatively impact the effectiveness of therapy

[88]. Fatigue is usually detected using subjective measures (e.g., self-reporting

[17, 114]) or objective measures (e.g., physiological responses [82]). For exam-

ple, [85] used EEG, heart rate variability, and blood biomarkers to detect fatigue

while driving. Section 2.4 discusses the use of EMG data to detect fatigue. Mean

and median frequencies of the EMG data are found to be effective in detecting

physical fatigue [22, 27].
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2.3 Multimodal Analysis of Serious Games for Cognitive and

Physiological Assessment

This section describes our robot-assisted rehabilitation system [20]. This sys-

tem utilizes serious games to gamify robot-assisted rehabilitation and make it

engaging and cognitively impactful. The users of the system complete challeng-

ing tasks using the Barrett WAM arm (see Figure 2.1), and the system records

their hand-eye coordination using the Eyetribe eye-tracker (see Figure 2.2).

Figure 2.1: Serious Games: Barrett WAM Arm.
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Figure 2.2: Serious Games: Eyetribe Eye-Tracker [34].

2.3.1 Tasks

There are four tasks in this study that the user needs to perform using the robotic

arm. In the first task (L1), the user should paint a virtual fence using the robotic

arm, see Figure 2.3-A. The fence is divided into ten sections, and each section

should be printed differently. There are five different paint buckets the user can

use. To figure out which paint color to apply for each section, the user must

read the instructions on the screen. The next instruction will not appear on the

screen until the user moves the robotic arm back to the center of the screen. The

instruction is the name of one of the five available paint colors. The font-color of

the instructions in this task is white. Then, the user goes shopping in a virtual

supermarket. In the second task (L2), the user is given a list of five items to

pick from a single aisle in the supermarket, see Figure 2.3-B. The user has three
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Figure 2.3: Serious Games: (A) Painting a Fence (L1) (B) Supermarket (L2)
(C) Cooking a Meal (L3) (D) Painting a Fence (L4) [20].

attempts to collect all the items. In the first attempt, the 5-items appear on the

screen for 15 seconds, and the user needs to memorize them. Then, the user

goes through the aisle and picks up the items by moving the robotic arm in the

3D environment. The user receives positive points for collecting the required

items and negative points for picking up the wrong items. If the user could

not pick up the 5-items in the first attempt, then he/she can go for a second

and a third attempt. In the second attempt, the remaining items are presented

for 5 seconds, and then the user goes through the aisle again. However, this

time, the shopping cart goes slower than before. The third attempt is similar to

the second attempt. There are visual cues (i.e., flashing items) on the shelves

to help the user recognize and pick up the correct items in the third attempt.

After that, the user uses the 5-items listed on L2 to cook a virtual meal in the

third task (L3), see Figure 2.3-C. The 5-items are available on a kitchen table,

and the user needs to pick them up using the robotic arm. After picking an
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item, the user needs to follow a predetermined 3D trajectory to move the item

to the cooking pot. The user repeats this procedure for all the items, and each

item has a different 3D trajectory. Then, the user goes back to paint the fence

in the fourth task (L4), see Figure 2.3-D. In L4, the font-color of the instructions

can be any one of 5-paint colors. The semantic meaning of the instructions and

their font-color might be different. The user should paint the fence based on the

font-color of the instruction rather than its semantic meaning.

L1 and L4 are two versions of the Stroop test, and they are used to test the

user’s inhibitory control and assess his/her cognitive ability [108]. The Stroop

test is discussed details in Section 5.2.2. L2 is based on a model from Baddeley

[7], and it is used to test the user’s working memory. We surmise that the num-

ber of attempts the users need to collect the 5-items represents their working

memory ability. The predetermined 3D trajectories in L3 make the rehabilita-

tion exercises more challenging and can indicate the user’s hand-eye coordina-

tion ability [65, 93].

Table 2.1: Serious Games: Participants Demographics [20].

Participant Demographics - N = 12 Participants

Age Range: 18-29

Gender: 6 Males, 6 Females

Handedness: 12 Right, 0 Left
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2.3.2 User Study and Experimental Procedure

Twelve people, between the age of 18 and 29 years old, participated in the study.

Table 2.1 summarizes the demographic information of the participants. The

study personnel provided the participants with verbal instructions and clarified

any questions they may have. Then, they read and signed the consent form.

The first phase of the study was the eye-tracker calibration process. Nine points

flashed on the screen, one at a time, and the user needed to follow them with

his/her eyes only. The calibration process has four values: perfect, good, moderate,

and poor. If the calibration value is moderate or poor, the participants need to

repeat the calibration process. However, if the calibration does not improve, the

participants need to continue the study, and their data would be excluded from

the analysis. Only 4 out of the 12 participants were able to have a perfect or

good calibration value. We suspect that the deviation in the participants’ facial

features is the reason for the inconsistency in the calibration process. Then, the

participants tried trials of the tasks. The trials are short versions of the tasks.

After that, the participants performed the tasks in order (i.e., L1, L2, L3, and

then L4). Figure 2.4 illustrates the experiment setup. Also, this online video 1

shows the eye-tracker calibration process, the trials, and the four tasks.

2.3.3 Results and Discussion

There were multiple issues with the eye-tracking device that affected the

recorded data. We found that the study environment should be controlled. For

example, the change in the room lighting condition affects the pupil dilation

1 https : //www.youtube.com/watch?v = 8T Pnaq f Vi8
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Figure 2.4: Serious Games: Experimental Setup and a participant [20].

of the participants. Therefore, we had to perform the study in a room without

windows to make sure that the lighting can be easily controlled. We also found

that the participant’s sudden movements and far distance from the eye-tracker

(over 60cm) affected the quality of the eye-tracker data. To allow the partici-

pants to be comfortable while performing the combined cognitive and physical

activities, we tried to limit the experiment restrictions and provide the partici-

pants with autonomous control. However, that was not favorable for the pupil

data acquisition. [75, 76] were able to get more reliable pupil data by limiting

the participants’ movement.

The results of the valid data from the four participants are listed in Table

2.2. Also, Figure 2.5 shows the eye-delay and move-delay data per participant.

The eye-delay is the time the participant takes to recognize a new instruction,

and the move-delay is the time the user undertakes to act (i.e., go to the paint

bucket). Using a Pearson’s r correlation, we found that there is a positive corre-
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Table 2.2: Serious Games: Results [20].

Participant Correctness(L1) Iterations(L2)
Eye-Hand Coordination

(Average)(L3)
Correctness(L4)

1 90% 2 83% 100%

2 100% 2 76% 90%

3 100% 3 78% 100%

4 100% 2 72.5% 90%

Figure 2.5: Serious Games: Average Move Delay for L1 and L4 [20].

lation between the participant’s eye-delay and move-delay, as shown in Figure

2.6. It is a strong, positive correlation with r(78) = 0.89, p ≤ 0.001. That shows

that the faster the participants’ eyes reacted to new instructions, the faster their

physical response was.

17



Figure 2.6: Serious Games: Pearson’s correlation between Move & Eye De-
lay [20].

2.4 Adaptive Robotic Rehabilitation using Muscle Fatigue as a

trigger

One way to reduce physical fatigue during robotic rehabilitation is by having

the robot assist the user to complete the exercise. For instance, [92] uses a robot

in human-robot co-manipulation tasks. The robot learns skills from human

demonstration. When the robot detects fatigue from EMG data, it completes

the task based on these skills to allow the user to rest and recover. Another way

to reduce fatigue during physical rehabilitation in real-time is by reducing the

forces a robot can exert on the user, which is the topic of this section. In this

section we describe our work [54]. In this work we designed a muscular fatigue

detection instrument that analyzes EMG data during robot-assisted rehabilita-

tion to detect fatigue. Initially, the robotic arm in the rehabilitation session exerts
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forces challenging the user. The robot does that by exerting forces in the oppo-

site direction to the arm’s movement. When the system recognizes fatigue from

the EMG data, the robotic arm starts assisting the user to complete the exercise,

instead of challenging him/her.

Figure 2.7: Adaptive Robotic Rehabilitation: Delsys EMG sensor (front
and back) [28].

2.4.1 Devices and Exercises

This robotic rehabilitation system has two primary devices: a robotic-arm ( Bar-

rett WAM arm, see Figure 2.1) and an EMG sensor (Delsys EMG sensor, see

Figure 2.7). The Barrett WAM arm is a 4-DOF robot with a spherical handle

that is used as an end-effector. The robot is programmed to restrict the user’s

movement to a specific trajectory that can be manually recorded before every

exercise. The ability to record different paths is advantageous as it allows the

system to be used with various exercises and with different users, with disre-

gard to their height and body structure. The robot can also exert forces on the
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user’s hand/arm, similar to the effect of holding weights in rehabilitation ex-

ercises. On the other hand, the Delsys EMG sensor is attached to the user’s

arm using a double-sided adhesive to collect EMG data from the major muscle

responsible for the movement.

There are multiple upper-limb rehabilitation exercises. In this study, we con-

sidered three exercises that the user can perform while sitting upright on a stool

and holding the robot’s end-effector. These exercises are Shoulder Flexion (SF),

Shoulder Abduction (SA), and Elbow Extension (EE) [52, 40, 33]. To induce

physical fatigue in a short time, the users performed the exercises with their

non-dominant hand. To do SF, the users raise their arm in front of them, to the

overhead level, and hold it straight. For SA, the users raise their arm by their

side, to the shoulder level, and keep it in place. During EE, the users extend

their arm backward, and then they lean forward. During SF and SA, the EMG

data is obtained from the deltoids of the non-dominant hand [53, 67], but it is

obtained from triceps during EE [58]. In these exercises, the users move the

robot’s end-effector from the start-point to the end-point and hold it in place at

the end-point. Figure 2.8 shows the three exercises. The start-points are marked

in green in the figure while the end-points are marked in red.

2.4.2 Preliminary and Evaluation Studies

In this project, two studies are conducted: a preliminary study and an evalu-

ation study. In the preliminary study, we collected the EMG data needed to

make a fatigue detection algorithm. The evaluation study was used to evaluate

the performance of the algorithm and the adaptive rehabilitation system.
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Figure 2.8: Adaptive Robotic Rehabilitation: A- Shoulder Flexion (SF) B-
Shoulder Abduction (SA) C- Elbow Extension (EE). The start-
points are marked in green while the end-points are marked in
red. [54].

The experiment workflow is very similar in both the studies. The partici-

pants start by watching a video demo 2 explaining the experiment and illustrat-

ing the three exercises. Then, they read and sign the consent form. The study

personnel is available to answer any questions the participants may have. This

procedure takes a few minutes, and it could help the participants relax and al-

leviate any physical stress or fatigue they were experiencing before the study.

After that, the participants perform the three exercises in order, SF, SA, and

EE, respectively. At the beginning of each exercise, participants hold the robot’s

end-effector and move it from the start-point to the end-point to record the exer-

cise path. The path recording confirms that the end-effector is within the partic-

ipant’s reach and that the participant can perform the exercise smoothly. It also

helps the robotic arm apply resistive forces to the participant arm movement.

The participant then takes the end-effector slowly back to start-point. When the

2 https : //youtu.be/bYiix8KGqY s
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participant reaches the start-point, the study personnel adds resistive forces to

the robotic arm equal to 20 newton. The resistive forces try to pull the partici-

pant’s hand down through the recorded path to the start-point. The participants

then are asked to try to move the end-effector to the end-point to check if they

feel comfortable. Based on that, the study personnel adjusts the resistive forces

to make sure that it is safe for the participant to perform the exercise. Then,

the study personnel helps the participants place the EMG sensor on their arm.

While the resistive forces are applied to the robotic arm, and the EMG data is

recorded from muscles, the participants do the exercises. They do the exercises

by moving the end-effector from the start-point to the end-point. They hold the

end-effector at the end-point, and they are instructed to immediately notify the

study personnel when they start feeling fatigued and not to wait until they can-

not hold the end-effector anymore. After every exercise, the participants relax

to relieve the fatigue and avoid its cascading effect.

Preliminary Study

Ten healthy participants participated in the preliminary study, and they per-

formed the three exercises. They held the end-effector at the end-point until they

felt fatigued. The study personnel marks that time the participants report the

fatigue, stops recording the EMG data and asks them to move the end-effector

back to the start-point slowly. The marked time is used as the ground truth of

subjective fatigue, and in conjunction with the EMG data, it is used to design the

muscular fatigue detection algorithm. The details of the algorithm are available

in [54]. The participants repeated the same procedure for all three exercises.
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Evaluation Study

The evaluation study included 20 participants (15 male, 5 female), with a mean

age of 25.65. Two of the participants are left-handed, and the others are right-

handed. The participants performed the three exercises on two systems (System

1 and System 2). The participants were asked to answer survey questions and

relax after every exercise. The order of the systems was random, and the partici-

pants were not notified about the difference between the systems. Both systems

use the fatigue detection algorithm; however, the participants are still required

to report when they feel fatigued. In this study, the participants are instructed

to keep holding the end-effector for another 30-seconds, if they can, after they

report fatigue. If the participants report fatigue before the algorithm detects

fatigue, this extra 30-seconds allows us to calculate the temporal error of our

fatigue detection algorithm. System 1 and System 2 use the fatigue detection

algorithm, as mentioned above. System 1 is used primarily to evaluate the per-

formance of the fatigue algorithm, and it does not provide any assistance to the

participant when the fatigue is detected. However, System 2 has an adaptive

element that changes the forces applied by the robot from resistive to assistive.

In other words, the robot applies forces towards the end-point to help the par-

ticipant hold the end-effector. The primary purpose of System 2 is to receive

feedback about the adaptive element of the system.

2.4.3 Data Analysis

The time of subjective fatigue and the time of fatigue detected by the al-

gorithm are analyzed to evaluate the accuracy of the fatigue detection algo-
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rithm. If the algorithm is accurate, then the difference between these time

points should be small. We used the Equivalence Test, Paired Two One-Sided

Tests (TOST), to check for that. The test analyzes the differences between the

means of the time points and checks if they are within a particular threshold.

MSystem Detection − MSubjective Fatigue is the equation used to calculate the differences

in the mean. TOST performs two tests. One test checks if the differences in the

mean are lower than the upper threshold. On the other hand, the second test

checks if the differences in the mean are higher than the lower threshold. Based

on our data, we chose a threshold of ±10 seconds. Early fatigue detection is sig-

nified by the lower threshold (-10 seconds) while late detection is signified by

the upper threshold (+10 seconds). Late fatigue detection in rehabilitation may

lead to a dangerous accidents; therefore, it is important to know if the system

recognizes fatigue late. Table 2.3 shows the TOST results, and it also includes

the Mean Absolute Error.

Both p-values for the SF results are significant (< 0.001 and 0.008). That

means the time difference between the subjective fatigue and the algorithm de-

tection for SF is significantly within ± 10 seconds. Also, the mean absolute time

error for SF is 9.444 seconds. For SA and EE, the results for the lower threshold

test are significant, but the rest of the results are not. That indicates that the

difference of the mean is significantly within the lower threshold (-10 seconds),

but it could be higher than the upper threshold (+10 seconds). In addition, the

mean absolute error is 12.646 seconds for SA, and 15.311 seconds for EE.
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Table 2.3: Adaptive Robotic Rehabilitation: Temporal Analysis [54]. Sig-
nificant results (P < 0.05) are marked in bold.

Exercise P Value Upper P Value Lower Mean Absolute Error (s)

SF <0.001 0.008 9.444 ± 7.803

SA 0.16 <0.001 12.646 ± 9.293

EE 0.709 <0.001 15.311 ± 9.134

2.5 Advantages, Limitations and General Observation

The solutions discussed in Section 2.3 and Section 2.4 aim to provide robot-

assisted rehabilitation to patients without the continuous presence of a thera-

pist. They are not designed to replace therapists, but to reduce the load on them.

These systems can provide patients who do not have access to rehabilitation

centers the opportunity to do rehabilitation exercises at home and provide the

therapists with the performance data needed to evaluate the patient’s progress

remotely. The main limitation of these systems is that the technologies they use

are still in the developing stages and are very expensive at this time. Hopefully,

such rehabilitation instruments become available for a larger portion of patients

in the future and have a reliable infrastructure that can easily connect patients

with therapists.
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CHAPTER 3

SLEEP QUALITY EFFECT ON WORK PERFORMANCE

3.1 Introduction

Sleeplessness is prevalent among professionals, and it has an association with

low performance, absenteeism, and accidents at work [111]. [111] examined

how work influences sleep in persons who are not at risk of sleep disorder and

also how sleep influences work. They found that longer working hours are as-

sociated with reduced sleep time and that decreased sleep time is associated

with more work impairments. Insomnia, obstructive sleep apnea, and shift

work sleep disorder are some of the sleep disorders that might affect occupa-

tional performance. This chapter focuses on a sleep disorder called sleep apnea.

[124] estimates that about 17% of adults suffer from mild to severe sleep-related

breathing disorders, and it is estimated that approximately $150B loss was in-

curred in the United States, in 2015, due to undiagnosed apnea [123]. Sleep

apnea is a sleep breathing disorder wherein the person’s breathing is reduced

or altogether stopped during sleep. Sleep apnea has three main types, Central

Sleep Apnea (CSA), Obstructive Sleep Apnea (OSA), and Mixed. CSA happens

due to dysfunction of the muscles responsible for breathing [8], whereas OSA

occurs when the upper airway closes due to excessive relaxation of soft pallets

in the airway [60]. Mixed sleep apnea is when both CSA and OSA occur at the

same time [43]. The Continuous Positive Airway Pressure machine (CPAP) is a

common way to treat OSA. CPAP passes high-pressure air through the upper

airway to prevent it from collapsing and causing an apnea event. Other options

include oral appliances, surgeries, behavioral, and positional therapy [107]. In
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particular, oral appliances adjust the position of the mandible or the tongue to

stop the upper airway from collapsing. Whereas, restorative surgery would

primarily target the soft palate in the airway. For instance, it would make the

airway wider by removing or repositioning the excess tissue in the airway [107].

Behavioral therapy would focus on encouraging the patients to work on reduc-

ing their weight and body mass index (BMI), and positional therapy would urge

the patients to sleep in a non-supine position.

3.2 Related Work

Polysomnography (PSG) is the gold standard for sleep apnea diagnosis [12]. It

is an expensive, overnight study that takes place in a sleep lab. Its technical

fees alone cost around $3500 (before insurance) [25]; however, that varies from

a place to another. During the study night, the patients sleep in the sleep lab

while a sleep-expert observes them. The study uses multiple sensors to col-

lect data from the patients while they are asleep, including ECG, EEG, EMG,

electrooculogram (EOG), oxygen saturation (SpO2), camera, and a microphone.

Since the patients need to sleep in an unfamiliar environment (i.e., sleep lab) and

be connected to multiple sensors, they might be uncomfortable in their sleep,

which would affect the quality of the recorded data and, in turn, underesti-

mate or overestimate the severity of apnea. On the other hand, there are some

commercial solutions to detect sleep apnea at home. Some of these solutions

are ARES by SleepMed [24], and ApneaLink Air by ResMed [23]. ARES uses a

headband with sensors recording SpO2, airflow, pulse rate, snoring, and head

movement and position. ApneaLink Air detects apnea by using a chest band

with a device recording pulse rate, oxygen saturation, nasal flow, snoring, and
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respiratory effort. Moreover, some research studies also investigate solutions to

diagnosis sleep apnea. For example, [14] uses a personal digital assistant (PDA)

and analyzes SpO2 data in real-time to detect apnea. Similarly, [4] uses a smart-

phone with other sensors for their sleep apnea detection system. They use an

oximeter to measure SaO2, an accelerometer to detect patient movements, and

a microphone to record respiratory activities. They tested their system on 15

participants. Some of these participants were known to have sleep apnea. Their

system’s accuracy was very promising. The system could correctly identify ap-

nea with 100% accuracy and the absence of apnea with 85.7% accuracy.

3.3 APSEN: Pre-Screening Tool for Sleep Apnea in a Home En-

vironment

This section focuses on our apnea detection system, discussed in [55]. The sys-

tem is called APSEN, and it stands for apnea sense. APSEN detects apnea and

postural apnea using readily available and inexpensive sensors. It is an apnea

pre-screening tool, and it is not a substitute for PSG. The user should consider

doing a full PSG test if APSEN detects sleep apnea condition. The system pro-

vides the user with a detailed history of all apnea events and sends real-time

notifications to the user in the case of severe apnea events. Also, APSEN users

are expected to use the system in the comfort of their own home, without the

need to visit a sleep lab.
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Figure 3.1: APSEN: Nonin Oximeter Sensor [87].

Figure 3.2: APSEN: Microsoft Band 2 Smartwatch [81].

The primary devices needed for APSEN are a Bluetooth oximeter (Nonin II

9560, see Figure 3.1), a smartwatch (Microsoft Band 2, see Figure 3.2), and an

IR camera (Kinect V2, see Figure 3.3). Figure 3.4 illustrates the system setup.

Also, an explanation of the system’s components and setup is available on an

online video 1. APSEN has two subsystems. The first subsystem is responsible

for the detection of apnea events using the oximeter, and it sends apnea noti-

fications to the smartwatch. The second subsystem detects the user’s sleeping

posture using the Kinect camera. By combining these subsystems, we can de-

termine postural apnea. That can be achieved by detecting apnea events and

1 https : //youtu.be/9pM8ZCS E8Eg
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Figure 3.3: APSEN: Microsoft Kinect V2 Camera [59].

Figure 3.4: APSEN: System Setup [55].

correlating them with the user’s sleeping position. These subsystems can also

be used independently. The apnea detection subsystem depends primarily on

the oximeter; thus, if the other devices are not available to the users, they still

can do apnea pre-screening at home. Figure 3.5 shows the system architecture.

The architecture shows that the smartwatch is also recording multimodal data.

The smartwatch data is for experimental purposes only, and it is primarily used
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Figure 3.5: APSEN: The APSEN System Architecture [55].

to receive apnea related notifications. The rest of this section focuses mainly

on the apnea detection subsystem while [55] provides the details of the posture

detection subsystem.

3.3.1 Apnea Detection

SpO2 is an indication of the oxygen level in the blood. The Nonin oximeter

records SpO2 from the user’s index finger, and it sends it via Bluetooth to the

main computer responsible for processing the data. Figure 3.6 shows the graph-

ical user interface (GUI) for the apnea detection subsystem. To use the system,

the users need to wear the oximeter on their left index finger and the smartwatch

on their right wrist. Then, they use the GUI to connect to these two devices be-

fore they go to bed. When the study is over, the users use the GUI to disconnect

these devices and see the summary of the sleep apnea results. The summary

includes information about the number of apnea events, the oxygen level, the
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Figure 3.6: APSEN: The Apnea Detection GUI [55].

oxygen desaturation, and the length of every apnea event. It also displays an es-

timation of the Apnea-Hypopnea Index (AHI), which states if the apnea status

is Normal, Mild, Moderate, or Severe. The AHI represents the average number of

apnea events per hour [116]. AHI < 5, 5 ≤AHI < 15, 15 ≤AHI < 30, AHI ≥ 30 in-

dicate Normal, Mild, Moderate, or Severe apnea condition, respectively. However,

our calculation of AHI is an estimation because it does not count for hypopnea

events.

Our apnea detection algorithm is similar to the algorithm developed in [4].

It checks if the SpO2 desaturates. The algorithm counts the desaturation event

as a possible apnea episode if it is 4% or more. If the event lasts for at least

10 seconds, the algorithm confirms that it is an apnea episode. The episode

ends when SpO2 saturates for 2 seconds or more. Figure 3.6 shows that the GUI

illustrates apnea episodes by highlighting them in red on the SpO2 graph. When
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the SpO2 level drops below 80%, the apnea episode is considered dangerous.

Thus, in this case, the GUI sends a notification (i.e., vibration alert) to the user’s

smartwatch to wake him/her up to breathe, which increases the oxygen level

in the blood back to its normal level. The GUI also makes a beeping sound for

a few seconds if the oximeter falls from the user’s finger (e.g., due to excessive

hand movement). Moreover, if the user has a family member observing the

apnea pre-screening, the observing person can use the GUI to see the apnea

events in real-time and also take notes about the user’s sleeping behavior (e.g.,

the user is snoring, and sleeping on the stomach, etc.).

3.3.2 Preliminary Study

To validate our apnea detection algorithm, we tested it on data from people

diagnosed with apnea and healthy people. The data is from the Apnea-ECG

database 2 and it is annotated by a sleep-expert [39, 91]. The database has mul-

tiple annotated recordings, but only 8 of them include SpO2 data, which we are

using in this preliminary study. Table 3.1 shows the classification of the record-

ings. The dataset has four Apnea recordings, one Borderline recording, and three

Control recordings. The dataset has one annotation per minute 3. If the apnea

episode is not happening during the start of the minute, then that minute is

not marked as having an apnea episode. This annotation is different from the

real-time method our algorithm uses. Therefore, we adjusted our algorithm to

provide two reportings for the evaluation purpose. The first reporting is a per-

minute reporting like in the database annotation, and the other reporting is the

real-time reporting.
2 https : //physionet.org/physiobank/database/apnea − ecg/
3 https : //physionet.org/physiobank/database/apnea − ecg/annotations.shtml
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Table 3.1: APSEN: Classification of Apnea Annotations in the Physionet
Apnea-ECG Database [39].

Class Description

Apnea
“Contain at least one hour with an apnea index of 10 or more,

and at least 100 minutes with apnea during the recording.”

Borderline
“Contain at least one hour with an apnea index of 5 or more,

and between 5 and 99 minutes with apnea during the recording.”

Control “Contain fewer than 5 minutes with apnea during the recording.”

Table 3.2 shows the results of our apnea detection algorithm using the two

reporting methods. The ‘A’, ‘B’, ‘C’ letters in the table header represent the ap-

nea classifications Apnea, Borderline, and Control, respectively. The accuracy of

the apnea algorithm is listed in Table 3.2, Row 8. The accuracy of the algorithm

is between 54.40% and 83.20% for the Apnea conditions, 95.70% for the Border-

line condition, and between 99.20% and 100% for the Control conditions. In the

Apnea condition, the algorithm does not have high accuracy. However, the al-

gorithm could still indicate that the patient has a high AHI (i.e., lowest AHI for

Apnea conditions in row 10 and 11 is 25.14), which indicates that the patient has

apnea and should consider doing the PSG test. The accuracy of the algorithm

in Borderline and Control is very high. These results may suggest that the algo-

rithm can determine the absence of apnea with very high accuracy, but it has

moderate accuracy in detecting severe apnea conditions.
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Table 3.2: APSEN: Apnea Detection Algorithm Accuracy on the Apnea-
ECG database [55].

Row Description A01 A02 A03 A04 B01 C01 C02 C03

1 Total no. of calculated apnea

episodes using our algorithm (mul-

tiple annotations per minute)

586 644 427 499 6 2 10 0

2 Total no. of annotated apnea

episodes from Physionet (1 annota-

tion per minute )

470 420 246 453 19 0 1 0

3 Total no. of calculated apnea

episodes using our algorithm (1 an-

notation per minute )

392 277 217 233 4 1 3 0

4 Total no. of apnea episodes matching

in both Physionet and our algorithm

(1 annotation per minute )

390

out

of

470

260

out

of

420

185

out

of

246

231

out

of

453

1 out

of 19

0 out

of 0

0 out

of 1

0 out

of 0

5 Total no. of ‘no apnea’ episodes from

Physionet (1 annotation per minute )

18 107 272 38 467 483 500 453

6 Total no. of calculated ‘no apnea’

episodes using our algorithm (1 an-

notation per minute )

96 250 301 258 482 482 498 453

7 Total no. of ‘no apnea’ episodes

matching in both Physionet and our

algorithm (1 annotation per minute )

16

out

of 18

90

out

of

107

240

out

of

272

36

out

of 38

464

out

of

467

482

out

of

483

497

out

of

500

453

out

of

453

8 Our algorithm accuracy (1 annota-

tion per minute)

83.20

%

66.41

%

82.05

%

54.40

%

95.70

%

99.80

%

99.20

%

100

%

9 Calculated AHI from Physionet anno-

tations (1 annotation per minute)

57.79 47.82 28.49 55.36 2.35 0.00 0.12 0.00

10 Calculated AHI from our algorithm

(1 annotation per minute)

48.20 31.54 25.14 28.47 0.49 0.12 0.36 0.00

11 Calculated AHI from our algorithm

(multiple annotations per minute)

72.05 73.32 49.46 60.98 0.74 0.25 1.20 0.00
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3.3.3 Overnight Study

Ten participants were recruited for the overnight study. The participants were

healthy male students and university staff between the age of 24 and 31 years

old. The study took place in a simulated apartment setup, as shown in Figure

3.4. The participants came to the study around their bedtime. They started the

study by signing the consent form and wearing the oximeter and the smart-

watch. Before they went to bed, they interacted with the GUI to connect the

sensors. The participants were instructed to not use a blanket because the blan-

ket would cover the participant’s body and affect the detection of sleep-posture.

However, the study was recorded in the dark since the posture detection algo-

rithm used IR images instead of color images. During the experiment, one of

the study personnel was available at the side of the room, using the GUI, to

take notes about the participant’s sleep behavior, mark the ground truth of the

sleep posture, and check if the oximeter is attached to participant’s finger. The

study produced 55 hours of data recordings. During the study, the participants

slept between 2.62 and 7.89 hours, with a mean of 5.5 hours. The estimated AHI

of the participants was between 0 and 1.88, with an average AHI of 0.29. That

confirms that the participants were healthy and had a normal condition, AHI <

5.

3.4 Advantages, Limitations and General Observation

This chapter discussed the relationship between sleep quality and work perfor-

mance briefly, and it presented our apnea pre-screen system. The system was

divided into an apnea detection subsystem using SpO2, and a posture detection
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subsystem using IR images. The results of the preliminary study showed that

the apnea detection algorithm produced moderate results. The main limitation

of the study is that participants are not allowed to use a blanket, which could

impact their sleep quality. Also, the relationship between apnea and BMI of

the participants was not investigated in this study. High BMI (i.e., obesity) is

viewed as a factor in the pathogenesis of sleep apnea [32]. We hope that the

system is evaluated in the future with people diagnosed with apnea and people

with various BMI.
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CHAPTER 4

BRAIN-COMPUTER INTERFACES TO UNDERSTAND MENTAL STATE

4.1 Introduction

Brain-Computer Interface (BCI) describes the neurofeedback interface that takes

brain data and processes into a different useful form. The focus of BCI appli-

cation has expanded widely in the last two decades. BCI expanded from ap-

plications diagnosing mental disorders to applications facilitating our daily life

activities. For example, BCI can help people meditate and relax, and it can also

offer people with disabilities an unconventional way to control augmentative

technologies. By having access to brain data, BCI can process these data to esti-

mate human feelings (e.g., sadness and happiness), improve human-computer

interaction, and make it adaptive [94].

EEG is a measure of the electrical activity resulted due to brain activity (i.e.,

cortical activity) throughout the scalp [1]. EEG patterns reflect various phe-

nomena that are investigated in various research fields. For instance, EEG has

been used in memory research [42] and sleep studies [15]. It is also used in

conjunction with other brain imaging techniques (e.g., functional magnetic res-

onance imaging, etc.) to study abnormal brain activities like seizures and stroke

[97, 102]. On the other hand, other studies use EEG to measure mood states.

Research studies usually segment the EEG signal into five frequencies. These

frequencies are delta (∆, 1-4 Hz), theta (Θ, 5-8 Hz), alpha (A, 9-13 Hz), beta (B,

12-30 Hz), and gamma (Γ, 30-50Hz) [97]. Studies have found that increased cor-

tical alpha and beta activity can be an indication of stress [5, 68, 69]. In addition,

frontal alpha activity and increased theta activity, but no change in frontal beta
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activity can reflect engaged enjoyment [46, 61, 95].

Conventional EEG devices used in laboratories usually have multiple elec-

trodes (i.e., 32 or more) that record data from many brain regions. The electrodes

are placed on the scalp using special get or paste, which provides reliable con-

nectivity and less noise. Therefore, EEG studies often take long-time to set up.

After the data is collected, the data analysis requires advanced techniques and

statistical knowledge. All of that makes EEG studies expensive and challeng-

ing to set up, limiting their use in daily life activities. In recent years, there are

have been several EEG devices that work on making EEG accessible to more

applications and users, leading to an expansion of EEG usage into everyday

life applications and outside of the laboratory use. For example, some of these

devices use fewer electrodes (i.e., 2 to 16 electrodes), focus on specific brain re-

gains, and use dry electrodes that are easier to use and clean. Some of them also

come with computer and or phone programs that have pre-made algorithms to

clean, process, and classify the EEG data (e.g., concentrated, engaged, relaxed,

etc.).

4.2 Lifestyle EEG Instruments and Applications

Nowadays, many compact EEG devices are available for regular consumers and

intended for use in daily life applications. Some of the companies that produce

such devices are InteraXon, Emotiv, Melon, NeuroSky, and Versus. Many of

these devices are affordable, wireless and easy to set up. Also, there are some

open-source platforms (e.g., OpenViBE, OpenEEG, BCI2000, and MuLES) that

remove some of the burden of using EEG. They make it easier for researchers to
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take advantage of the information EEG signals provide. Such efforts helped fa-

cilitate the usage of EEG in both novel and established fields [16]. For instance,

[62] has used open-source hardware to detect driver drowsiness from EEG data

and to alert the driver when it is unsafe for him/her to drive. In [57], the re-

searchers used Muse EEG headband to detect cold-induced pain. Similarly, [63]

analyzed EEG signals to measure concentration and relaxation. Another inter-

esting work mimicked the concept of “light bulb/idea” metaphor [73]. They

mounted a light bulb on a helmet and programmed it to turn on when the

EEG data reflect an increase in thinking and focus. Based on this new scope

of EEG applications, we have designed a system [1] that utilizes EEG data from

a consumer-grade device to measure user enjoyment.

4.3 Brain-EE: Brain Enjoyment Evaluation using Commercial

EEG Headband

This section focuses on our Brain-EE system [1]. Brain-EE analyzes EEG signals

to measure user’s engaged enjoyment and predicts their activity preference.

4.3.1 Equipment and Software

Hardware

Muse headband is the EEG device used in this study. It is a consumer-grade,

low-cost EEG headband. Multiple studies were able to achieve good results

with it [16, 36, 57, 63, 73]. It collects data from four channels, and it has three
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Figure 4.1: Brain-EE: Muse Headband [83].

reference electrodes. It also collects 3-axis accelerometer data. Figure 4.1 shows

the Muse device and highlights its main components. The data is collected from

the four EEG electrodes. Two of the electrodes are located on the forehead while

other two are located above the ears, as shown in blue in Figure 4.2. We collect

the Muse data via Bluetooth, and the data is sent to a computer for processing.

Also, we are using an Android tablet to play white-noise sound and to allow

the participants to play the games used for this study.

Software

In this study, we try to predict the user’s preference between two games. Specif-

ically, we used ‘Soccer 2016’ and ‘Piano Tiles 2’. The users play the games on

an Android tablet while we record their EEG data with the Muse headband. To

access the Muse data, we are using the Muse SDK. We designed a GUI using
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Figure 4.2: Brain-EE: Muse electrode locations by 10-20 International Stan-
dards [83].

MATLAB to record, filter, process, and analyze the EEG data. The GUI collects

EEG data in intervals of 120 seconds. It does that twice. In particular, the sys-

tem records EEG data for 2 minutes while the user is playing the first game, and

then it records another 2 minutes of data while the user is playing the second

game. After that, the system analyzes the data and predicts which game the

user preferred the most.

4.3.2 User Study

Fifteen people (13 males, 2 females) participated in the study. The participants

were between the age of 20 and 35 years old. The study personnel explained

the experiment protocol verbally to the participants and answered any question
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Figure 4.3: Brain-EE: System Overview [1].

they had. Figure 4.3 illustrates the experiment setup. The participants then

signed the consent form and started the study. First, the study personnel helped

the participants wear the Muse headband and made sure that all the electrodes

are connected well to the user’s skin. Then, the participants performed the three

stages of the study (i.e., ‘Relax’, ‘Game 1’ and ‘Game 2’). Each stage is 2 minutes

long. The first stage is the baseline stage, where the user listens to white-noise

sound and relaxes. In the next two phases, the participants play the games (i.e.,

‘Soccer 2016’ and ‘Piano Tiles 2’) for 120 seconds. The participants were asked

to answer a general mood survey after every game. This online video 1 explains

the experiment protocol in details.

1 https : //youtu.be/brFZ93Omq5U
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4.3.3 Results and Discussion

EEG signals vary from a person to another, which makes it challenging to find a

classification solution that uses EEG signals and can easily generalize to a large

population [57]. However, the goal of this study it to generalize our enjoyment

classifier to work with varies people and activities. Thus, we focused on com-

paring user’s data while doing two activities, rather than comparing the data

of two people. It is simpler to compare two datasets from the same source than

from two distinct sources. To achieve our goal, we used the t-test to check the

difference between the user’s two datasets, and we used the results of the t-

test into a machine learning algorithm for classification. This approach is much

simpler than some of other known methods. For instance, one of the common

methods (used in Chapter 5) extracts features from the signals and use these

features to train machine learning algorithms.

To prepare the data for the t-test, we averaged signal from the four channels.

This was done for all the 5 frequency bands. That resulted in 5 arrays of data

per stage (i.e., ‘Relax’, ‘Game 1’, and ‘Game 2’). Then, we used the t-test to

compare ‘Game 1’ data and ‘Relax’ data, and to compare ‘Game 2’ data and

‘Relax’ data. Then, we compared the differences between the results of the two t-

tests. After that, the t-test results were used to train a linear regression classifier.

We used the data of 10 participants for training and data of 5 participants for

testing. Equation 4.1 [1] shows the tuned linear regression equation. The y value

predicts the enjoyment level. Thus, the system predicts that the game resulting

in the higher y value is the game the user enjoyed the most. When the algorithm

was tested on the test data, it gave 100% accuracy. However, when algorithm

was used to detect enjoyment as a ‘Yes’ or ‘No’ problem, instead of which game
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was enjoyed more, the accuracy dropped to 60%.

y = −0.0651 − 0.0136∆ + 0.0256Θ − 0.0072A + 0.0009B − 0.0032Γ (4.1)

Table 4.1: Summary of the t-test averages across all the frequency bands
[1]. The coefficients belong to Eq.4.1.

t-test of Frequency ∆ Θ A B Γ

Coeff.(C) -0.0136 0.0256 -0.0072 0.0009 -0.0032

Enjoy (E) 34.49 60.97 29.33 64.01 23.01

No Enjoy (NE) 1.73 16.26 5.54 47.67 28.14

C × E -0.4691 1.5608 -0.2112 0.0576 -0.0736

C × NE -0.0235 0.4162 -0.0399 0.0429 -0.0900

We mentioned earlier that frontal alpha activity and increase in theta, but no

change in frontal beta activity, has been correlated with engaged enjoyment [46,

61, 95]. Interestingly, our findings partially agree with that. Table 4.1 presents

the coefficients of the linear regression classifier (i.e., Equation 4.1) and their

multiplication with the average t-test results of the enjoyed and not enjoyed

game (i.e., or less enjoyed game). We can see in Table 4.1 that theta is higher in

‘C × E’ (i.e., higher in the enjoyed game) than in ‘C × NE’ and its coefficient is

positive. That might be an indication that an increase in theta is a sign of more

enjoyment. On the other hand, alpha and delta values are similar in ‘C × E’ and

‘C × NE’, and have negative coefficients. That might indicate that alpha and

delta do not strongly correlate with enjoyment. However, we need to note that

these assumptions are made based on a small dataset. More data is required

to be able to draw a concrete conclusion. Also, [1] provides a more detailed
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explanation of the analysis.

4.4 Advantages, Limitations and General Observation

This chapter discussed briefly brain-computer interfaces and their uses in gen-

eral. It also focused on consumer-grade EEG devices, and how we utilized

Muse EEG head to detect engaged enjoyment. We mentioned that consumer-

grade EEG devices provide promising results, and they are easier to use and

set up compared to the traditional EEG devices used in extensive research stud-

ies. However, we need to clarify that EEG data in general, and from devices

with dry electrodes in particular, has a lot noise and require extensive data pro-

cessing. For example, body movement, jaw movement, and blinks are reflected

as noise in the EEG data. In addition, we noticed in several EEG studies that

the participants often feel irritated and uncomfortable after wearing the EEG

headset for a long time. Therefore, we believe there should be more research on

making EEG devices more comfortable, practical, and accurate.
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CHAPTER 5

9PM: A MULTIMODAL COGNITIVE AND PHYSICAL ASSESSMENT

PLATFORM

5.1 Introduction

Human impulsive behavior and physiological responses might tell a lot about

one’s cognitive and physical state and performance. To confirm that, we de-

signed a tool to detect the user’s physical and cognitive performance from their

task performance, behavioral, and physiological data. We also studied the cor-

relation between physical and cognitive performance. This project’s name is

‘9PM’, which stands for 9-Peg Moves. 9PM is a novel system that combines

cognitive and physical assessment in a single platform, and it utilizes statisti-

cal analysis, machine learning, and multimodal data for assessment. The tasks

used in this project are based on the principles of standard physical and cogni-

tive tests. 9PM combines a modified version of the 9-Hole Peg Test (9-HPT, a

manual dexterity test) [121] with cognitive tests. These cognitive tests are based

on principles of the Stroop Test [109], the Wisconsin Card Sorting Test (WCST)

[41], and the NIH Toolbox Picture Sequence Memory Test (PSMT) [30]. The

principles of these tests are used to create five tasks that users perform in ran-

dom order. The tasks are designed to allow the system to precisely record all

user moves and calculate the time and correctness of these moves.
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5.2 Physical and Cognitive Assessment

5.2.1 Physical Tasks

The 9-HPT is a quantitative, timed test that is considered as the gold-standard

test to assess manual dexterity [99]. This manual dexterity test is commonly

used in assessing children, adults, and patients with Multiple Sclerosis (MS)

and Parkinson’s disease [96, 74, 35, 31]. In the 9-HPT, users transfer nine pegs,

one at a time, from a shallow container to another container with nine holes, and

then back to the shallow container [84]. They do that twice with the dominant

hand and twice with the non-dominant hand while being timed with a stop-

watch. Figure 5.1 illustrates a 3D model of the original 9-HPT. [74] provides the

dimensions and more design details. For the 9PM system, we modified the 9-

HPT board, and we created a novel test board, called 9PM board. The 9PM board

is computerized and allows us to combine this physical test with cognitive tests,

and track user actions. It has three colored areas, and each area has nine holes,

as shown in Figure 5.2. The blue and red areas are the start areas, and the white

area is the destination area. The user is required to take action (i.e., move a peg

from the blue or red area) based on the instructions on the screen. These instruc-

tions are based on cognitive tests. In contrast to the original 9-HPT, 9PM users

receive an audio-feedback for correct/wrong moves.

5.2.2 Cognitive Tasks

The cognitive tasks used in 9PM are based on the Stroop test, WCST, and PSMT.

The Stroop test reflects on one’s cognitive capacity to maintain a specific course

48



Figure 5.1: 9PM: 3D Model of the Original 9-HPT

Figure 5.2: 9PM: 9PM Board, a Novel Modified Version of the 9-HPT
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of action in the presence of an interfering stimulus [26]. For example, the user

is required to name the font-color of a word rather than reading it. Based on the

Relative Speed of Processing theory, the process of reading words is faster than

calling their colors [72], as reading words is an automatic process that requires

much less attention than naming colors. That can mean when the user tries to

name the font-color of a word, the text of the word is processed faster by the

brain, and it interferes with the process of calling the font-color, which could

lead to a slower reaction.

9PM uses two variations of the Stroop test. In the first variation of the Stroop

test (Stroop-Text), the stimulus is displayed in black font-color (i.e., ‘Red’ or

‘Blue’), and the user needs to respond based on the semantic meaning of the

stimulus. This task can be an indication of the user’s cognitive processing speed

[29, 50]. In the second variation (Stroop-Color), the semantic meaning of the stim-

ulus and the font-color might be similar or conflicting (i.e., ‘Red’, ‘Red’, ‘Blue’,

or ‘Blue’), and the user is required to name the font-color. This variation can

give an insight into the user’s inhibitory control ability [104].

In WCST, the user needs to match cards based on the shape, color, or the

count of items drawn on the cards. However, the user is not told how to match

them and needs to figure it out initially based on trial and error, and the match-

ing rule changes randomly after a few rounds. So, the WCST assesses the user’s

abstract reasoning and task-shifting ability [9]. The 9PM version of the WCST

has two matching rules: the semantic meaning of the stimulus or its font-color.

Since the 9PM version of the WCST is similar to the WCST and the Stroop test,

we decided to call it Stroop-Shifting. The stimulus in Stroop-Shifting is either

‘Red’, ‘Red’, ‘Blue’, or ‘Blue’, and the user is required to shift between respond-
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ing to font-color and the text of stimulus. The requirement (text or font-color)

randomly changes after N moves, where N is a random number between 3 and

9. For instance, the user is provided with a stimulus ‘Red’ and is required to

determine whether he/she should respond to the font-color or the text of the

stimulus. The matching rule will stay the same for at least three moves. For ex-

ample, if the user acts based on the text of the stimulus, the system would pro-

vide audio-feedback to illustrate whether the selection was correct or wrong. If

the user hears the wrong-buzzer, he/she knows that in the next two moves, at

least, they should respond to the font-color of the stimulus rather than its text.

The PSMT is a cognitive test to examine episodic memory. Episodic memory

“is one of the most important cognitive domains that involves acquiring, storing

and recalling new information” [30]. In the PSMT, the user is presented with a

sequence of pictures and verbal descriptions, and the user should memorize

and recall the sequence. The 9PM version of the PSMT is called Color-Sequence.

Color-Sequence has been inspired by the PSMT and another task called Sequence

Learning [119]. Color-Sequence is a working memory and sequencing task where

the user is asked to remember and repeat a sequence of colors. The sequence

will have a combination of the stimuli ‘Red’ and ‘Blue’. An example of the

sequence is “Red Blue Blue Blue Red Red Blue Red Blue”. Each stimulus is

presented to the user for 3-seconds before it disappears and the next stimulus

appears. The user needs to memorize the 9-stimuli and recall them after that.

51



5.2.3 9PM Tasks

9PM utilized the above-mentioned physical and cognitive tasks to produce five

tasks. Table 5.1 summarizes these tasks. In all the tasks, the participants are

asked to use their dominant hand to move pegs on the 9PM board, one at a

time. Also, they are instructed to work as quickly as possible and to avoid

making any wrong moves. If they hear the wrong-buzzer audio-feedback, they

need to move on without making any corrections. To reduce the load on the

participants, they have the freedom to pick/place any of the 9-pegs in a certain

area without a specific order. For instance, if the participant is asked to move a

peg from the blue area to the white area, he/she can pick the middle peg from

the blue area and place it into the hole in the right-bottom corner in the white

area.

In Task 1 (T1), the participant uses the 9PM board to make 72 peg-moves

in a single round without a break. Right-handed participants are instructed to

move the pegs between blue (closer to the right-hand, see Figure 5.2) and the

white area. Similarly, left-handed participants are requested to move the pegs

between the red and the white area. To make the 72-moves, the participants

start with 9-peg moves from one of the start areas (i.e., either blue or red area)

to the white area (destination area). Then, they need to transfer them back to the

start area, which counts as another 9 moves. They need to repeat this process

four times to complete the 72 movements.

Task 2 (T2) combines the physical task of moving the pegs on the 9PM board

with the Stroop-Text task. The participant performs 4 rounds of this task, and

every round has 9 moves. Between the rounds, the participant answers a short

survey (Appendix A.1.2). As explained in Section 5.2.2, a stimulus (i.e., ‘Red’ or
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Table 5.1: 9PM: Tasks Summary

Task Measure

Physical

or

Cognitive

Description

Baseline Baseline None - Relax for 3-minutes with closed eyes.

T1 Hand

Movements

Physical - 1 Round (1 round = 72 moves). Move the

9-pegs one at a time from one start area to

the destination area. Then, move them back

one at a time to the start area. Repeat 4 times

without a break.

T2 Cognitive

Processing

Speed

Both - 4 Rounds (1 round = 9 Moves). Move the

9-pegs one at a time from the start areas to

the destination area based on the semantic

meaning of the stimuli.

T3 Inhibition

Control

Both - 4 Rounds (1 round = 9 Moves). Move the 9-

pegs one at a time from the start areas to the

destination area based on stimuli font-color.

T4 Cognitive

Shifting

Flexibility

Both - 4 Rounds (1 round = 9 Moves). Move the 9-

pegs one at a time from the start areas to the

destination area based on either the seman-

tic meaning or the font-color of the stimuli.

T5 Working

Memory

Both - 4 Rounds (1 round = 9 Moves). 9 stimuli

displayed on the screen for 3 seconds, one

at a time. Memorize the 9-stimuli, and then

move the 9-pegs one at a time from the start

areas to the destination area based on the

stimuli (semantic meaning agrees with font-

color).
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‘Blue’) is presented on the screen, and the participant is required to move one

peg based on the semantic meaning of the stimulus. For instance, the participant

would need to transfer a peg from the blue to the white area if the stimulus were

‘Blue’. The system provides audio-feedback (correct/wrong buzzer) when a

peg is picked-up and when it is placed-in. The next stimulus will be shown

immediately after the participant completes the transfer of the peg to the white

area. After the participant moves 9 pegs and finishes the round, the system

stops recording data, and the study personnel or the participant moves the pegs

back to the start areas.

Task 3 (T3) and Task 4 (T4) are very similar to T2, except that the stimuli

font-color is red or blue, and that the participant needs to respond to them dif-

ferently. T3 and T4 also have 4 rounds, with 9 moves per round. T3 combines

the physical task of moving the pegs on the 9PM board with the Stroop-Color

task. This time, the participant needs to act based on the font-color of the stim-

ulus, rather than its semantic meaning. For instance, if the stimulus were ‘Red’,

the participant would need to move one peg from the blue area to the white

area. That is because the font-color is blue. However, T4 combines the physi-

cal task of moving the pegs on the 9PM board with the Stroop-Shift task. For

the first stimulus, the participants do not know whether they have to follow

the semantic meaning or the font-color. They figure that out after they pick-up

a peg and hear the audio-feedback. The rule (semantic meaning or font-color)

changes every 3-9 moves, and it does not carry-on to the next round.

Task 5 (T5) also has 4 rounds (9 moves per round), but it has a different

structure. It combines the physical task with the Color-Sequence task. Thus, the

participants observe and memorize 9 stimuli before they start moving 9-pegs.

54



Each stimuli (i.e., ‘Red’ or ‘Blue’) appears in the middle of screen for 3-seconds

before it disappears and the next one is shown. After all the 9-stimuli have been

displayed, the participant then starts moving 9-pegs from the corresponding

areas to the white area.

Figure 5.3: 9PM: Physiological Devices: OpenBCI ULTRACORTEX
MARK IV sensor (left) [89], and Biosignalsplux Explorer unit
(right) [11].

5.3 Data Collection

Physiological, behavioral, and performance data are the three main types of

data collected in this project. Other related data, such as task name, user

surveys, and demographic details (i.e., age, gender, and handedness) are also

recorded.
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5.3.1 Physiological Data

EEG, EDA, and ECG are the three physiological data that are collected. EEG

data is obtained using the OpenBCI ULTRACORTEX MARK IV sensor [89],

whereas EDA and ECG data are collected using the Biosignalsplux Explorer

unit [11]. Figure 5.3 shows both of the devices.

5.3.2 Behavioral Data

The behavioral data collected are user surveys, hand movements, and facial

expressions. Subjective behavioral data such as mental and physical workload,

sleepiness, difficulty concentration, enjoyment, interest, distress, and attention

are gathered from user surveys. The user’s hand movement data is obtained

using an IMU sensor strapped on the wrist of the user’s dominant hand. The 9-

axis IMU sensor used is the MetaMotionR sensor from Mbient Lab [80], Figure

5.4. The pattern of hand movements might be a useful indicator of stress and

mental and physical workload. Also, a web-camera is used to record the user’s

facial expressions throughout the experiment; however, the web-camera data

was collected for experimental purposes, and it is not part of the analysis in this

dissertation.

5.3.3 Performance Data

The performance data include task-score, move-time, and reaction-time. The

task-score is the percentage of correct movements. The move-time is the elapsed

time from taking out a peg from the start area to placing it in the destination
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Figure 5.4: 9PM: Mbient Lab MetaMotionR 9-axis IMU Device [80].

area, which might reflect on the user’s physical ability and performance. The

reaction-time is the time the user takes to decide his/her next move, which can

reflect on the user’s cognitive strength and performance. In the tasks where the

user needs to observe the stimulus on the screen immediately before deciding

on the next move (i.e., T2, T3, and T4), the reaction-time is the elapsed time from

the appearance of the stimulus on the screen to the time the user picks up the

peg from the start area. In other tasks (i.e., T1 and T5), the user is given the

stimuli/stimulus in advance; thus, the reaction-time is calculated as the elapsed

time between placing the peg in the destination area and picking up the next

peg.

5.4 Experiment Setup

5.4.1 System Architecture

The system consists of 7 devices. The first device is the main computer that

stores all the data and provides audio feedback to the user. The main com-
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Figure 5.5: 9PM: System Architecture.

puter sends instructions through a virtual server to a specific public IP address.

This method allows the displaying device to be any device that can run a web

browser (e.g., smartphone, tablet, regular computer, etc.). The displaying device

in Figure 5.5 is a smartphone running Chrome web-browser and displaying the

instructions/stimuli on its screen. The user sees the instructions and responses

to them by moving the pegs. The holes in the 9PM board act like switches that

turn off or on when the user picks up or places the pegs. All the 27 holes are

connected to a Teensy 3.5 development board embedded inside the 9PM board.

The development board records all user moves and sends them in realtime via

a USB cable to the main computer. Meanwhile, OpenBCI EEG sensor, Biosig-

nalPlux (ECG and EDA) unit, the IMU device, and a web-camera are recording
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the user’s physiological and behavioral data and transmitting them to the main

computer. Figure 5.5 illustrates an overview of the system architecture. The

system is designed to be modular, and the devices can be replaced.

Figure 5.6: 9PM: Experiment Workflow.

5.4.2 Experiment Workflow

The study consists of a baseline data collection stage and a set of 5 tasks, as

illustrated in Table 5.1. Figure 5.6 summarizes the experiment workflow. At

the beginning of the experiment, the participant is asked to sit on a chair at the

experiment desk and watch a video1. This video is a brief demo on the exper-

imental procedure and on how to wear the sensors. After that, the participant

is asked to read and sign the consent form. During this process, the study per-

1 https : //youtu.be/1O5pmqFOFFQ
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sonnel is available to answer the participant’s questions, if any. Next, the par-

ticipant wears the sensors in private. The sensors that the participant wears are

Biosignalsplux Explorer unit, OpenBCI ULTRACORTEX MARK IV sensor, and

the MetaMotionR sensor, as explained in Section 5.3. Figure 5.7 shows the exper-

iment setup and sensors placement. After that, the study starts with a baseline

stage. In the baseline stage, the system records sensors data while the partic-

ipants are closing their eyes and relaxing on a chair for 3-minutes. Then, the

participants are asked to participate in a survey (Appendix A.1.1). The purpose

of this survey is to collect the participants’ baseline subjective data (e.g., they

feel sleepy and have difficulty concentrating before doing any of the 5-tasks).

Figure 5.7: 9PM: Experiment Setup (Left) and Sensors Placement (Right).

The participants then perform the 5-tasks. They start with T1, and then they

do the other tasks in random order (e.g., T1, T5, T2, T4, T3), with a 3-minutes

break between them. Performing the tasks in random order might limit the

cascading-effect of fatigue and experience effect, which could jeopardize the
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quality and reliability of the data. The cascading-effect of fatigue is when the

participants feel tired and perform poorly in the final stages. In contrast, the

experience-effect is when the participants get used to the task and perform

much better in the final stages. To make sure that the participants understand

the task rules fully, they are asked to do a trial before each task. T1 trial is just an

18-moves version of the task; however, the trial of the other tasks is the same as

a regular round. After every round/task, the participants are asked to fill out a

survey. They fill out a short survey (Appendix A.1.2) after each of the first three

rounds in T2, T3, T4, and T5. However, after T1 and the 4th round of the other

tasks, they fill out a lengthy survey (Appendix A.1.3). Finally, once they finish

all the tasks, they remove the sensors in private, and then they complete a final

feedback survey, Appendix A.1.4.

5.5 Research Questions and Hypotheses

This study focuses on answering three research questions about physical and

cognitive performance. Based on the design of the study, we have four hy-

potheses. Section 5.5.1 and 5.5.2 list the research questions and hypotheses, and

they are discussed in details in Section 5.7.

5.5.1 Research Questions

Q1: Can the user’s cognitive and physical performance be detected using:

physiological data, behavioral data, and or performance data?

Q2: Which data give a better indication of user’s cognitive and physical per-
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formance?

Q3: How cognitive and physical performance correlate?

5.5.2 Hypotheses

H1 : Difficulty would increase with the task level: Each task would be cog-

nitively more difficult and challenging than the previous task level. T1

would be the easiest, and T5 would be the most difficult. We assume that

each task level is more cognitively demanding than the task level before it;

thus, we expect the difficulty to increase and the performance to decrease.

H2 : There would be a significant difference in the reaction-time between

the tasks: We anticipate that the participant would not need a long-time

to react to easy tasks, so we expect the reaction-time to be significantly

shorter in easier tasks.

H3 : There would not be a significant difference in the move-time between

the tasks: Since the physical aspect of the tasks is the same in all them, we

expect that the move-time to be similar in all of them.

H4 : Participant’s physiological, behavior, and performance data would be

a good indicator of the participant’s cognitive and physical workload

and performance: We expect that we would be able to design machine

learning algorithms that can use participants’ data to detect their current

level of the physical and cognitive workload.
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5.6 User Study, Results and Analysis

To validate our hypotheses, we conducted a user study, and we analyzed the

data. The code and data used for this study can be found online 2. Section 5.6.1

explains the demographics of the participants and the number of rounds and

surveys they performed. The analysis of the data is divided into three parts. The

first part (discussed in Section 5.6.2) focuses on analyzing the subjective survey

data to show how the participants felt after the tasks. Then, Section 5.6.3 shows

the performance data analysis, which gives an insight into how the participants

performed in different tasks. For example, it looks into which aspect of perfor-

mance (physical, cognitive, or both) is effected in more challenging tasks. Fi-

nally, Section 5.6.4 discusses how we utilized machine learning and multimodal

data in assessing the participant’s mental and cognitive state/performance (e.g.,

physical tiredness, distress, sleepiness, etc.).

5.6.1 User Study

The user study included 63 healthy participants who are students and staff at

the University of Texas at Arlington. The majority of participants are male

(88.89%), right-handed (96.82%) participants. Table 5.2 summarizes the par-

ticipants demographics. Each participant performed the baseline stage and 17

rounds of tasks (a round of T1, and 4-rounds of T2, T3, T4 and T5), excluding the

trials. Also, they filled-out 18 surveys in total, a survey after the baseline stage

and after every task round. Each experiment lasted between 1.5 to 2 hours.

2https : //github.com/abu jelala/9PM
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Table 5.2: 9PM: Participants Demographics.

Participants Count Ages Gender handedness

63
18-40

(Average =25.11, SD = 4.39)

Male : 56

Female : 7

Right-Handed: 61

Left-Handed: 2

5.6.2 Surveys Results and Analysis

This section discusses 9PM survey results. The survey questionnaires are avail-

able in Appendix A.1. These questionnaires were inspired by well-know survey

questionnaires, such as: NASA Task Load Index (TLX) [44], Dundee Stress State

Questionnaire [77], Chalder Fatigue Scale[49], and Positive and Negative Affect

Schedule (PANAS) [122]. In addition, the participants provided feedback on

the system’s overall evaluation and the comfortability of the sensors. Their all

overall evaluation was 8.7 out of 10 on average. Regarding the sensors, 44 par-

ticipants found the EEG headset uncomfortable, 4 participants found the EDA

electrodes uncomfortable, 3 participants found the IMU sensor uncomfortable,

and only one participant found the ECG electrodes uncomfortable.

The 9PM surveys focus on 10 questions that ask about the participant’s men-

tal effort, physical effort, sleepiness/drowsiness, difficulty concentrating, task

difficulty, task enjoyment, interest in the task, physical tiredness, distress, and

attention. The statistical analysis of these survey questions is divided into two

parts: the correlation between survey answers per task, and the variance be-

tween the responses across the tasks.

64



Table 5.3: 9PM: Survey Answers - Pearson’s Correlation. The values repre-
sent Pearson’s Linear Correlation Coefficient Rho ρ and P value.
ρ (P value). Moderate positive correlations, with P value < 0.05,
are marked in bold.

Task 1 Task 2 Task 3 Task 4 Task 5

Mental Effort VS Physical Effort
0.5021

(<0.0001)

0.564

(<0.0001)

0.5457

(<0.0001)

0.5628

(<0.0001)

0.6509

(<0.0001)

Task Difficulty VS Mental Effort
0.5204

(<0.0001)

0.4445

(0.0003)

0.3678

(0.003)

0.4511

(0.0002)

0.2895

(0.0214)

Task Difficulty VS Physical Effort
0.3617

(0.0036)

0.2861

(0.023)

0.2421

(0.0559)

0.1829

(0.1512)

0.4138

(0.0007)

Physically Tired VS Physical Effort
0.2692

(0.0329)

0.2196

(0.0838)

0.1908

(0.1342)

0.2648

(0.036)

0.3324

(0.0078)

Feeling Attentive VS Physical Effort
0.0475

(0.7115)

0.2097

(0.0991)

0.0927

(0.4698)

0.2599

(0.0397)

0.1471

(0.2499)

Mental Effort VS Drowsy
-0.0437

(0.7337)

0.1776

(0.1638)

0.2011

(0.114)

-0.192

(0.1316)

-0.1129

(0.3783)

Task Enjoyment VS Mental Effort
0.2765

(0.0283)

0.2221

(0.0802)

0.1239

(0.3333)

0.1307

(0.3073)

0.2245

(0.0769)

Task Enjoyment VS Physical Effort
0.3147

(0.012)

0.2176

(0.0866)

0.2804

(0.026)

0.1633

(0.201)

0.1621

(0.2042)

Task Enjoyment VS Drowsy
-0.0745

(0.5615)

0.0499

(0.6976)

-0.1494

(0.2426)

-0.0739

(0.5646)

0.1333

(0.2978)

Task Enjoyment VS Task Difficulty
0.2478

(0.0503)

0.2056

(0.1059)

0.2055

(0.1061)

0.2867

(0.0227)

0.0041

(0.9748)

Correlation between Answers

There are 10 survey questions that we can investigate the correlations between

their answers. That would lead to 45 comparison pairs. For simplicity, we fo-

cused on 10-pairs only. The correlations were checked using Pearson’s correla-

tion, Kendall Rank Correlation, and Spearman’s Correlation. The three methods
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yielded similar results. Pearson’s correlation results are available in Table 5.3,

and the results of the other two methods are available in Appendix A.2.1. Gen-

erally, the results show that there is a moderate positive correlation (i.e., ρ or τ

between 0.3 and 0.7 [100]) between mental effort and physical effort, and also

between task difficulty and mental effort. In other words, when the participants

felt that a task was mentally challenging, they also thought that they exerted

more physical effort in the task. Thus, they marked the task as more difficult

than tasks they found less mentally challenging.

Variance in Answers

To check if there is any variance in the answers across the tasks, we use the re-

peated measures One-Way Analysis Of Variance (ANOVA) test. The test was

run on the answers of the 10 survey questions. Table 5.4 illustrates the sum-

marized results. ‘YES’ means that there is significant variance in the answers,

while ‘No’ refers to the lack of significant variance. The details of the ANOVA

tests are available in Appendix A.2.1. In addition, this appendix also shows bar

charts illustrating average survey responses, ± standard deviation (SD).

Table 5.4 shows that the significant variance in the answers is mainly limited

to the questions asking about mental effort, task difficulty, and task enjoyment.

Figures A.1 and A.2 show that the mental effort responses of T1 and T2 are sim-

ilar, and they are slightly higher in T3. Also, T4 and T5 mental efforts responses

are comparable, but they are significantly higher than the other tasks. Figures

A.3 and A.4 show that the physical effort is very similar in almost all the tasks,

with T1 requiring the highest physical effort. For task difficulty, T4 was reported

the most difficult, followed by T5, T3, T2, and T1 (see Figure A.10). However,
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the difficulty of T1 and T2, and the difficulty of T4 and T5 are not significantly

different (see Figure A.9). Task enjoyment responses were in ascending order,

with T1 being the least enjoyed and T5 being the most enjoyed task (see Figure

A.12). The details about the statistical analysis of variances are illustrated in

Figure A.11.

Table 5.4: 9PM: Summary of the ANOVA Test Results on the Survey An-
swers. ‘YES’ indicates answers are significantly different while
‘NO’ indicate the lack of significant differences between the an-
swers.

5.6.3 Performance Results and Analysis

As mentioned in Section 5.3.3, performance data include task-score, move-time,

and reaction-time. The participants were instructed to try to make as few mis-

takes as possible, and the task-scores reflect that. The average task-scores are

100%, 99.2%, 98.6%, 97.7% and 90.9% in T1, T2, T3, T4 and T5, respectively. In

T4, the move after the rule changes randomly is not included in the task-score,

since the participants would naturally make a mistake in this move. Also, incor-
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rect moves that occurred due to external issues (e.g., pegs slipping from sweaty

hands) are excluded from the performance analysis. This statistical analysis fo-

cuses on move-time and reaction time. Similar to Section 5.6.2, this analysis

has two parts: the correlation between move-time and reaction-time, and the

variance between the times.

Table 5.5: 9PM: Performance Analysis - Pearson’s correlation, Kendall
Rank Correlation, and Spearman’s Correlation between the
move-time and reaction-time in all the tasks. The values repre-
sent Correlation Coefficient Rho ρ (in case of Pearson and Spear-
man) or Tau τ (in case of Kendall) and the P value. ρ (P value) or
τ (P value). Moderate positive correlations, with P value < 0.05,
are marked in bold.

T1 T2 T3 T4 T5

Pearson
0.5824

(<0.0001)

0.5092

(<0.0001)

0.3591

(0.0038)

0.5938

(<0.0001)

0.555

(<0.0001)

Kendall
0.3917

(<0.0001)

0.3804

(<0.0001)

0.2207

(<0.0108)

0.3876

(<0.0001)

0.3743

(<0.0001)

Spearman
0.5486

(<0.0001)

0.5327

(<0.0001)

0.3402

(0.0066)

0.5483

(<0.0001)

0.5161

(<0.0001)

Correlation between Move-Time and Reaction-Time

The correlations in section are also checked using Pearson’s correlation, Kendall

Rank Correlation, and Spearman’s Correlation. Table 5.5 shows the correlations

between the move-time and reaction-time. We have a moderate positive corre-

lation in all the tasks, except in T3, it is a weak positive correlation when using

Kendall Rank Correlation. The positive correlation might suggest that when

reaction-time increases, the move-time also increases, and vice versa.
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Table 5.6: 9PM: ANOVA Test on Move-Time and Reaction-Time. The val-
ues represent the P value, and significant differences (P value <
0.05) are marked in bold.

Move-Time Reaction-Time

ANOVA <0.0001 <0.0001

T1 vs T2 0.0639 <0.0001

T1 vsT3 0.0290 <0.0001

T1 vsT4 <0.0001 <0.0001

T1 vsT5 <0.0001 <0.0001

T2 vs T3 0.6818 <0.0001

T2 vs T4 <0.0001 <0.0001

T2 vs T5 <0.0001 <0.0001

T3 vs T4 <0.0001 <0.0001

T3 vs T5 <0.001 <0.0001

T4 vs T5 0.1462 <0.0001

Variance in Time

To check if there is any variance in the times across the tasks, we use the repeated

measures One-Way ANOVA test. The test is used twice: on the move-times, and

the reaction-times. We also compared the reaction-time and move-time between

T1 and T5 and between T2, T3, and T4. The tasks are divided into two groups

because the reaction-time is calculated differently in these two groups, as ex-

plained in Section 5.3.3. Figures 5.7 and 5.8 show the comparison. The graphs

show that when the reaction-time increases, the move-time also increases. Ta-

ble 5.6 shows that there is a significant variance in the reaction-time across all

the tasks. However, the move-time is not significantly different across all the

tasks. In particular, the move-times between T1 and T2, T2 and T3, and T4 and
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T5 are not significantly different. This finding is interesting since it matches the

ANOVA test on mental effort responses; see Figure A.1. So, in the tasks where

mental effort responses are not significantly different, the move-times are also

not significantly different.

Table 5.7: 9PM: Boxplot showing the Reaction-Time and Move-Time in T1
and T5.

5.6.4 Machine Learning

We used Machine learning (ML) to utilize the user’s multimodal data to pre-

dict the task the participant is performing and his/her survey answers. Our

goal is to personalize the ML prediction based on the user’s data, not based on

the large bool of participants’ data. Hence, each participant’s data were nor-

malized separately. We also converted the prediction of the survey answers

into a classification problem, rather than a regression problem. In particular,

we try to predict if the participant’s response is higher than his/her average
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Table 5.8: 9PM: Boxplot showing the Reaction-Time and Move-Time in T2,
T3 and T4.

answers (e.g., exerted more than his/her average mental effort) or higher than

the baseline response (e.g., feel more sleepy than in the baseline). There are 11

outcomes that ML tries to predict. Mental effort, physical effort, task difficulty,

task enjoyment, task interesting are the 5-outcomes the ML tries to predict if the

participant’s response was higher than his/her average response. For exam-

ple, the physical effort has a scale from 1 to 10. If the participant’s lowest and

highest responses are 3 and 9, respectively, the ML algorithm tries to predict if

the participant’s response in a particular task is higher than 6, based on his/her

data. Sleepiness/drowsiness, difficulty concentrating, physical tiredness, dis-

tress, and attention are the 5-outcomes that we used ML to predict if they are

higher than the baseline (e.g., the participant is feeling more attentive than at

the beginning of the study). The final outcome to predict is the task number the

participant is performing.

The multimodal data used to train the ML algorithms are a combination of
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6 modalities. These modalities are ECG, EDA, EEG, IMU, performance metrics,

and the task number, which lead to 63 possible combinations. When we try

to predict the task number the participant is performing, the task number is

not used as an input/feature in the ML. Each participant produced 17 datasets

(one dataset per round), in addition to the baseline dataset. In T2, T3, T4, and

T5, we averaged the rounds of each task to produced another 4 datasets. So,

there are 21 datasets per participant presenting the tasks. All of these datasets

are used to train, test, and validate the ML algorithms, as shown in Table 5.9.

The data of 55 participants were used for training and validation using 5-folds

cross-validation, and the data of the other 8 participants were used for testing.

Table 5.9: 9PM: Division of Participants’ Datasets between ML Training,
Validation and Testing.

63 Participants

55 Participants (∼87.3%) 8 Participants (∼12.7%)

Training and Validation using Cross Validation (CV) with 5 Folds Testing

We used 12 ML algorithms for classification, and we only report the re-

sults of the best classifier. These classifiers are tuned using the Randomized

Grid-Search method provided by Scikit-Learn Library [105]. Randomized Grid-

Search tests multiple variations of the algorithms (e.g., the same algorithm with

various solvers and tuning methods), and it reports the effectiveness of each

variation. Table 5.10 shows the 12 ML algorithms and their main variations.

To get the best results, we tried to two methods of feature normalization and

two methods of feature selections. For normalization, we tried Min-Max Scaling

and Standard Scaling. For Feature selection, one time, we used all the features,

and the second time we used Principal Component Analysis (PCA) to select the

72



Table 5.10: 9PM: Machine Learning Classifiers.

Classifier Abbreviation Main Variations

Logistic Regression LR Solver: {lbfgs, liblinear, sag, saga}

K-Nearest Neighbors KNN Distance Metric: {euclidean, manhattan, minkowski}

Support Vector Machine SVM Kernel: {linear, poly, rbf, sigmoid}

Gradient Boosting GB

Extra Trees ET

Decision Tree DT Split Criterion: {gini, entropy}

Random Forest RF Split Criterion: {gini, entropy}

Neural Networks NN
Solver: {sgd, adam, lbfgs}

Activation: {identity, logistic, tanh, relu}

Naive Bayes NB

AdaBoost AB

Quadratic Discriminant

Analysis
QDA

Gaussian Process GP

features. For every method, we report the best classifier/algorithm, its F1-score

on the test data, its accuracy on the test data, and average validation accuracy

(average of the 5-folds). Since the labels are not equally distributed, we mainly

focus on the F1-score while deciding the best results. Table 5.11 summaries

the results of using the two scaling methods, with and without PCA. Also, it

shows that F1-score on test data for Physical Effort, Sleepy/Drowsy, Difficulty

Concentrating, and Physical Tiredness is below 70. This observation is expected

since the ML analysis is based on the survey answers, and the answers of the

participants for these questions were not significantly different, as shown in

Table 5.4. In addition, we report the best ML results using single modalities (see

Table 5.12) and combinations of modalities (see Appendix A.2.2).
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Table 5.11: 9PM: Classification Results Using Two Scaling Methods with
and without PCA. Best F1-scores are marked in bold.

Min-Max Scaling Standard Scaling

No PCA PCA No PCA PCA

Mental

Effort

AB 77.50 QDA 75.86 NB 75.45 NB 75.73

75.34 78.30 74.39 71.02 72.48 71.75 70.24 71.60

Physical

Effort

QDA 55.56 NB 43.84 QDA 57.61 NN 47.06

52.38 53.38 71.72 72.88 53.57 40.99 63.76 77.73

Sleepy

Drowsy

QDA 23.17 NB 26.67 QDA 26.42 NN 28.57

13.10 9.53 85.23 84.34 47.65 57.89 49.40 89.97

Difficulty

Concentrating

NB 48.98 QDA 55.00 QDA 49.54 QDA 48.65

70.24 63.89 75.34 69.67 66.67 60.77 74.50 67.68

Task

Difficulty

DT 85.71 AB 86.67 NB 82.35 NB 84.85

90.00 73.49 89.19 81.61 84.21 82.14 86.49 73.75

Task

Enjoyment

LR 83.33 SVM 84.21 NN 83.33 KNN 81.08

84.21 66.84 83.78 68.76 83.78 70.34 82.05 64.21

Task

Interesting

KNN 73.33 NB 76.92 DT 72.73 GP 75.00

78.95 67.34 77.50 52.75 76.32 61.28 74.36 52.17

Feeling

Physically Tired

QDA 50.00 QDA 46.15 GP 44.44 QDA 47.06

74.36 59.10 82.05 67.15 74.36 61.49 75.68 67.67

Feeling

Distressed

GP 68.97 GP 66.67 GB 66.67 ET 70.00

75.68 48.85 76.32 52.30 81.58 63.73 84.21 63.34

Feeling

Attentive

GB 58.33 AB 70.59 QDA 57.14 RF 62.50

74.36 62.04 86.84 61.00 75.68 50.30 84.62 57.78

Tasks
RF 79.88 NN 83.21 RF 80.62 LR 83.37

80.41 70.64 83.56 69.00 81.08 73.50 83.56 71.28

In every Label vs. Dimensionality Reduction (e.g., Mental Effort vs. Min-Max Scaling No PCA):

– Upper-left cell = Best Classifier (e.g., AB) – Upper-Right cell = Test F1 Score (e.g., 77.50)

– Lower-left cell = Test Accuracy (e.g., 75.34) – Lower-Right cell = CV avg. Validation Accuracy(e.g., 78.30)
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Table 5.12: 9PM: Classification Results from Single Modalities. Best F1-
scores are marked in bold.

ECG EDA EEG IMU Performance Tasks

Mental

Effort

SVM 68.53 DT 76.43 NB 64.89 NB 68.16 DT 65.56 NB 75.73

52.12 55.87 75.17 77.63 60.71 58.24 65.87 62.25 63.10 70.59 70.24 71.60

Physical

Effort

QDA 37.68 SVM 39.69 DT 49.33 NB 33.01 ET 25.35 AB 12.70

47.88 64.08 46.98 77.25 32.74 76.81 58.68 62.41 68.45 71.54 67.26 77.06

Sleepy

Drowsy

QDA 10.26 QDA 23.61 NN 28.57 GP 16.67 ET 6.06 QDA 18.69

78.79 81.69 26.17 52.12 49.40 89.97 76.05 79.89 81.55 86.77 48.21 78.43

Difficulty

Concentrating

NB 44.68 NB 38.10 GP 34.00 NB 41.43 ET 30.99 NB 44.83

68.48 62.16 56.38 58.29 60.71 53.62 50.90 50.18 70.83 68.14 61.90 60.35

Task

Difficulty

RF 64.52 ET 77.42 DT 76.92 NB 66.67 SVM 81.25 GP 75.00

71.79 58.90 81.58 86.66 77.50 69.08 67.50 69.35 85.00 77.83 80.00 90.55

Task

Enjoyment

NN 81.08 DT 75.00 RF 74.42 RF 76.19 AB 61.90 ET 74.42

82.05 63.30 78.95 60.43 72.50 60.41 75.00 62.05 60.00 64.40 72.50 73.51

Task

Interesting

NB 62.22 DT 72.73 NB 73.17 NB 68.00 ET 62.50 NB 69.77

56.41 52.00 76.32 61.28 72.50 52.77 60.00 50.37 70.00 56.38 67.50 63.32

Feeling

Physically Tired

QDA 38.46 NN 34.78 GP 44.44 NB 36.36 GB 40.00 DT 33.33

58.97 55.67 21.05 75.67 75.00 61.11 82.50 67.89 85.00 74.55 20.00 74.91

Feeling

Distressed

NB 51.43 GB 57.14 GP 58.06 ET 66.67 LR 60.87 NB 55.56

56.41 54.17 76.32 61.26 67.50 56.00 80.00 65.70 77.50 65.07 60.00 59.60

Feeling

Attentive

RF 62.50 KNN 47.06 QDA 48.00 GB 53.85 AB 45.45 KNN 38.46

84.62 57.78 76.32 61.24 67.50 56.42 70.00 63.11 70.00 62.53 60.00 62.18

Tasks
NN 45.66 NB 77.01 LR 69.04 ET 65.05 ET 68.10 N/A N/A

46.67 44.55 77.18 64.94 69.05 60.85 65.27 62.75 68.45 59.79 N/A N/A

In every Label vs. Single Modality Box (e.g., Mental Effort vs. ECG):

– Upper-left cell = Best Classifier (e.g., SVM) – Upper-Right cell = Test F1 Score (e.g., 68.53)

– Lower-left cell = Test Accuracy (e.g., 52.12) – Lower-Right cell = CV avg. Validation Accuracy(e.g., 55.87)
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5.7 Discussion and Conclusion

In this study, we were able to create the 9PM platform, a novel physical and

cognitive assessment platform. It was designed based on the principles of stan-

dardized physical tests and cognitive tests. The platform collects multimodal

data for analysis and assessment. We were able to analysis these multimodal

data, and use them for assessment and answer our research questions. Q1 and

Q2 ask if physiological, behavioral, and performance data be used in detection

user’s cognitive and physical performance, and which of these data is a bet-

ter indicator. Table 5.11 shows that these data can be used to detect a user’s

cognitive and physical performance, and Table 5.12 shows their accuracy when

the modalities are used separately. However, most of the time, these modali-

ties give a more accurate indication when they are combined. Appendix A.2.2

has the results of the best 10 combinations. To answer Q3, we looked at how

the reaction-time and move-time correlate. The reaction-time can be an indica-

tion of cognitive performance. We assume that a shorter reaction-time indicates

better cognitive performance, and a shorter move-time indicates a better phys-

ical performance. Theoretically, since the participant makes the same physical

action with disregard for the task, the move-time should not be significantly dif-

ferent from one task to another. However, that is not always the case, as shown

in Table 5.6. Also, Table 5.5 shows that there is a moderate positive correla-

tion between reaction-time and move-time. Base on that, we believe that there

is a moderate positive correlation between cognitive performance and physical

performance.

In our hypotheses, we expected that task difficulty would increase per task

level (H1) and that reaction-time would be significantly shorter in easier tasks
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(H2). We also anticipated that move-time would be similar in all the tasks (H3)

and that the collected data would be a good indicator of the participant’s per-

formance (H4). H1 did not hold fully true. Based on the survey responses (see

Figure A.10), T4 was the most difficult task, followed by T5, T3, T2, and T1.

ANOVA test (Figure A.9) shows that there was no significant difference in task

difficulty between T1 and T2 and between T4 and T5. T1 did not include a

cognitive task, and T2 had the easiest cognitive task. In T2, the participants

had only to follow what is displayed on the screen without having to pay extra

attention. Thus, the lack of cognitive element in T1 and the simplicity of the

cognitive element in T2 might be the reason why the participants did not find

a big difference in the difficulty between T1 and T2. From our previous work

[119], we noticed that participants usually have difficulty with sequence mem-

ory tasks consisting of 9 items. Thus, we expected that T5 would be the most

difficult task. However, in our previous work the sequence had 3 different op-

tions (‘A’, ‘B’, ‘C’), but this study has only 2 options (‘Blue’, ‘Red’). When the

participants were asked on how they memorized the 9-items sequence, some of

them mentioned that they only memorized the index of one color. For example,

“Red Blue Blue Blue Red Red Blue Red Blue” would be memorized as “1 5 6 8”

which represent the occurrence of ‘Red’ in the list. So the 9-items sequence is

simplified into a 4-items sequence in this example. This can explain the reason

why T5 was not the most difficult task as we expected.

H2 hypothesis held true. The reaction-time was significantly different across

the tasks (see Table 5.5) and it was shorter in easier tasks (see Figures 5.7, 5.8,

A.10). H3 did not hold fully true. Section 5.6.3 discussed how the move-time

was not significantly different in tasks that required similar mental effort, but

was significantly different otherwise. Finally, based on the results of Section
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5.6.4 and the above-mentioned discussion on Q3, we find that H4 did hold true;

however, detecting physical workload/effort had lower accuracy due to the fact

that the physical effort responses were not significantly different across most of

the tasks.
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CHAPTER 6

CONCLUDING REMARKS AND FUTURE DIRECTIONS

This dissertation explored a few HCI systems to monitor and assess human cog-

nitive and physical abilities. These systems utilize robots, sensors, and wearable

technologies.

In Chapter 1, we discussed the trends and challenges in human assessment,

and we presented related work showing some of the commonly used physical

and cognitive assessment tasks. Chapter 2 focused on robot-assisted assessment

and rehabilitation. In particular, it presented two robot-assisted rehabilitation

systems. The first system [20] uses a robotic arm for rehabilitation. The par-

ticipants used the robotic arm to perform game-based rehabilitation exercises.

This system also incorporates an eye-track to track user responses. Similarly,

the second system [54] uses the same robotic arm for rehabilitation. However,

this system analyzes EMG data from the participants to understand when they

are physically fatigued. This system is adaptive, and the robotic arm behavior

changes from resistive (challenging the participant) to assistive (helping the par-

ticipant) when it predicts that the participant is fatigued. Chapter 3 discussed

sleep-related studies briefly and focused on sleep-apnea. This chapter mainly

discusses the results of our apnea detecting system [55]. This system is a pre-

screening tool for apnea in a home environment. It analyzes the data from an

oximeter sensor to detect apnea events. Once apena events are detected, the

system sends notifications with an advise to the user’s smartwatch if the con-

dition is severe. In Chapter 4, we explore brain-computer interfaces and show

our system that uses EEG data to monitor user’s engaged enjoyment. The users

of this system play two games while they are wearing an EEG headset. The
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system then analyzes their EEG data to predict which game they like more. In

Chapter 5, we discuss our novel multimodal cognitive and physical assessment

platform, called ”9PM”. This system utilizes machine learning and multimodal

data to assess user’s performance.

This dissertation is one step towards our goal to design intelligent systems

that can monitor the user’s performance and provide personalized, adaptive

feedback. One of the main steps to create such advanced systems is to under-

stand the user’s current state. That is what our current systems illustrate in this

dissertation. The next step would be make these system personalized and adap-

tive. That means the systems need to understand the user’s current state and

provide feedback that would improve the user’s performance and life quality.

Finally, our systems provide successful proof of concepts. However, they

still need to be validated and tuned using more substantial diverse datasets. The

data used in this dissertation come from healthy participants in a controlled lab

environment. Thus, our systems still need to be tested and validated on data

that represent real-life scenarios.
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APPENDIX A

APPENDIX: 9PM STUDY MATERIALS

A.1 User Survey

A.1.1 9PM: Baseline Survey

1. Enter your age:

[e.g., 27]

2. Enter your gender:

[e.g., Male]

3. Are you right-handed or left-handed? Select one:

(a) Right-Handed

(b) Left-Handed

4. Do you feel sleepy or drowsy at the moment? Select one:

(a) Less than Usual

(b) No More than Usual

(c) More than Usual

(d) Much More than Usual

5. Do you have difficulties concentrating at the moment? Select one:

(a) Less than Usual

(b) No More than Usual
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(c) More than Usual

(d) Much More than Usual

6. Do you feel physically tired at the moment? Select one:

(a) Less than Usual

(b) No More than Usual

(c) More than Usual

(d) Much More than Usual

7. How distressed do you feel at the moment? Select one:

(a) Very Slightly or Not at All

(b) A Little

(c) Moderately

(d) Quite a Bit

(e) Extremely

8. How attentive do you feel at the moment? Select one:

(a) Very Slightly or Not at All

(b) A Little

(c) Moderately

(d) Quite a Bit

(e) Extremely
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A.1.2 9PM: Round Survey

1. How much mental effort did you spend on this task? Select a number from

1 (Very Low) to 10 (Very High):

[e.g., 7]

2. How much physical effort did you spend on this task? Select a number

from 1 (Very Low) to 10 (Very High):

[e.g., 7]

3. Did you feel sleepy or drowsy during the task? Select one:

(a) Less than Usual

(b) No More than Usual

(c) More than Usual

(d) Much More than Usual

4. Did you have difficulties concentrating during the task?? Select one:

(a) Less than Usual

(b) No More than Usual

(c) More than Usual

(d) Much More than Usual
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A.1.3 9PM: Task Survey

1. How much mental effort did you spend on this task? Select a number from

1 (Very Low) to 10 (Very High):

[e.g., 7]

2. How much physical effort did you spend on this task? Select a number

from 1 (Very Low) to 10 (Very High):

[e.g., 7]

3. Did you feel sleepy or drowsy during the task? Select one:

(a) Less than Usual

(b) No More than Usual

(c) More than Usual

(d) Much More than Usual

4. Did you have difficulties concentrating during the task?? Select one:

(a) Less than Usual

(b) No More than Usual

(c) More than Usual

(d) Much More than Usual

5. Did you feel physically tired during the task? Select one:

(a) Less than Usual

(b) No More than Usual

(c) More than Usual

(d) Much More than Usual
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6. How distressed did you feel during the task?? Select one:

(a) Very Slightly or Not at All

(b) A Little

(c) Moderately

(d) Quite a Bit

(e) Extremely

7. How interested were you in the task? Select one:

(a) Very Slightly or Not at All

(b) A Little

(c) Moderately

(d) Quite a Bit

(e) Extremely

8. How attentive were you during the task? Select one:

(a) Very Slightly or Not at All

(b) A Little

(c) Moderately

(d) Quite a Bit

(e) Extremely
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A.1.4 9PM: Experiment Feedback Survey

1. How difficult was Task 1? Select a number from 1 (Very Easy) to 10 (Very

Difficult):

[e.g., 7]

2. How difficult was Task 2? Select a number from 1 (Very Easy) to 10 (Very

Difficult):

[e.g., 7]

3. How difficult was Task 3? Select a number from 1 (Very Easy) to 10 (Very

Difficult):

[e.g., 7]

4. How difficult was Task 4? Select a number from 1 (Very Easy) to 10 (Very

Difficult):

[e.g., 7]

5. How difficult was Task 5? Select a number from 1 (Very Easy) to 10 (Very

Difficult):

[e.g., 7]

6. How much did you enjoy Task 1? Select a number from 1 (Not at All) to 10

(Very Much):

[e.g., 7]

7. How much did you enjoy Task 2? Select a number from 1 (Not at All) to 10

(Very Much):

[e.g., 7]

8. How much did you enjoy Task 3? Select a number from 1 (Not at All) to 10

(Very Much):

[e.g., 7]
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9. How much did you enjoy Task 4? Select a number from 1 (Not at All) to 10

(Very Much):

[e.g., 7]

10. How much did you enjoy Task 5? Select a number from 1 (Not at All) to 10

(Very Much):

[e.g., 7]

11. Which sensors were uncomfortable to wear? Please check all that apply.

You may check more than one option.

(a) EEG Headset

(b) ECG Sensor

(c) EDA Sensor

(d) IMU Sensor

(e) None of the above

12. What is your overall evaluation of the experiment? Select a number from

1 (Very Bad) to 10 (Very Good):

[e.g., 7]

13. Please write any other comments you may have:
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A.2 Results and Analysis

A.2.1 Survey Results

Correlation Analysis on Survey Answers

Table A.1: 9PM: Survey Answers - Kendall Correlation. The values rep-
resent Kendall’s Tau Coefficient τ and P − Value. τ (P-Value).
Strong and moderate positive correlations, with P−Value < 0.05,
are marked in bold letters.

Task 1 Task 2 Task 3 Task 4 Task 5

Mental Effort VS Physical Effort
0.4183

(<0.0001)

0.4636

(<0.0001)

0.4528

(<0.0001)

0.4129

(<0.0001)

0.4939

(<0.0001)

Task Difficulty VS Mental Effort
0.4343

(<0.0001)

0.3933

(<0.0001)

0.3156

(0.0008)

0.3521

(0.0002)

0.2408

(0.0093)

Task Difficulty VS Physical Effort
0.2518

(0.0141)

0.2447

(0.0123)

0.1897

(0.0458)

0.1368

(0.1549)

0.2918

(0.0019)

Physically Tired VS Physical Effort
0.1598

(0.1247)

0.227

(0.0278)

0.2176

(0.0337)

0.1894

(0.0633)

0.2157

(0.0348)

Feeling Attentive VS Physical Effort
0.089

(0.3928)

0.1297

(0.1976)

0.0505

(0.6125)

0.1821

(0.0684)

0.1015

(0.3018)

Mental Effort VS Drowsy
-0.0253

(0.8147)

0.1281

(0.1903)

0.1532

(0.1139)

-0.1234

(0.2029)

-0.0732

(0.4419)

Task Enjoyment VS Mental Effort
0.2078

(0.0315)

0.1588

(0.0902)

0.0503

(0.5954)

0.1136

(0.2236)

0.1786

(0.0548)

Task Enjoyment VS Physical Effort
0.1923

(0.0472)

0.1762

(0.0638)

0.1766

(0.0612)

0.0845

(0.3713)

0.0909

(0.3368)

Task Enjoyment VS Drowsy
-0.0746

(0.4782)

0.0594

(0.5564)

-0.1017

(0.3096)

-0.02

(0.8469)

0.0981

(0.3223)

Task Enjoyment VS Task Difficulty
0.2068

(0.0421)

0.1669

(0.0919)

0.1351

(0.1664)

0.2922

(0.0031)

0.0182

(0.8553)
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Table A.2: 9PM: Survey Answers - Spearman Correlation. The values rep-
resent Spearman’s Rho Coefficient ρ and P − Value. ρ (P-Value).
Strong and moderate positive correlations, with P−Value < 0.05,
are marked in bold letters.

Task 1 Task 2 Task 3 Task 4 Task 5

Mental Effort VS Physical Effort
0.5392

(<0.0001)

0.5909

(<0.0001)

0.5736

(<0.0001)

0.5192

(<0.0001)

0.6489

(<0.0001)

Task Difficulty VS Mental Effort
0.5282

(<0.0001)

0.504

(<0.0001)

0.412

(0.0008)

0.4471

(0.0002)

0.3129

(0.0125)

Task Difficulty VS Physical Effort
0.3022

(0.0161)

0.3185

(0.0109)

0.246

(0.052)

0.165

(0.1963)

0.3782

(0.0022)

Physically Tired VS Physical Effort
0.1976

(0.1205)

0.2793

(0.0266)

0.2535

(0.045)

0.2269

(0.0737)

0.2584

(0.0409)

Feeling Attentive VS Physical Effort
0.112

(0.3823)

0.1639

(0.1993)

0.0733

(0.5679)

0.2317

(0.0677)

0.1287

(0.3148)

Mental Effort VS Drowsy
-0.0297

(0.8173)

0.1617

(0.2054)

0.1895

(0.1368)

-0.1687

(0.1862)

-0.1006

(0.4326)

Task Enjoyment VS Mental Effort
0.2741

(0.0297)

0.2449

(0.0531)

0.0706

(0.5825)

0.1506

(0.2386)

0.2411

(0.057)

Task Enjoyment VS Physical Effort
0.2551

(0.0436)

0.2304

(0.0692)

0.2371

(0.0614)

0.1118

(0.383)

0.1264

(0.3234)

Task Enjoyment VS Drowsy
-0.0943

(0.4624)

0.064

(0.6184)

-0.1125

(0.3801)

-0.0168

(0.8958)

0.128

(0.3176)

Task Enjoyment VS Task Difficulty
0.2678

(0.0338)

0.2113

(0.0965)

0.1677

(0.1888)

0.3605

(0.0037)

0.0009

(0.9943)
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Significant Difference Analysis on Survey Answers

Mental Effort

Figure A.1: 9PM: Survey Answers - ANOVA Test on Mental Effort Re-
sponses.

Figure A.2: 9PM: Survey Answers - Average Mental Effort Responses.
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Physical Effort

Figure A.3: 9PM: Survey Answers - ANOVA Test on Physical Effort Re-
sponses.

Figure A.4: 9PM: Survey Answers - Average Physical Effort Responses.
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Sleepy / Drowsy

Figure A.5: 9PM: Survey Answers - ANOVA Test on Sleepy/Drowsy Re-
sponses.

Figure A.6: 9PM: Survey Answers - Average Sleepy/Drowsy Responses.
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Difficulty Concentrating

Figure A.7: 9PM: Survey Answers - ANOVA Test on Difficulty Concen-
trating Responses.

Figure A.8: 9PM: Survey Answers - Average Difficulty Concentrating Re-
sponses.
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Task Difficulty

Figure A.9: 9PM: Survey Answers - ANOVA Test on Task Difficulty Re-
sponses.

Figure A.10: 9PM: Survey Answers - Average Task Difficulty Responses.
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Task Enjoyment

Figure A.11: 9PM: Survey Answers - ANOVA Test on Task Enjoyment Re-
sponses.

Figure A.12: 9PM: Survey Answers - Average Task Enjoyment Responses.
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Task Interesting

Figure A.13: 9PM: Survey Answers - ANOVA Test on Task Interesting Re-
sponses.

Figure A.14: 9PM: Survey Answers - Average Task Interesting Responses.
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Physical Tiredness

Figure A.15: 9PM: Survey Answers - ANOVA Test on Physical Tiredness
Responses.

Figure A.16: 9PM: Survey Answers - Average Physical Tiredness Re-
sponses.

97



Distress

Figure A.17: 9PM: Survey Answers - ANOVA Test on Feeling Distressed
Responses.

Figure A.18: 9PM: Survey Answers - Average Distress Responses.
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Attention

Figure A.19: 9PM: Survey Answers - ANOVA Test on Attention Re-
sponses.

Figure A.20: 9PM: Survey Answers - Average Attention Responses.
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A.2.2 Machine Learning Results

Table A.3: 9PM: 10 Best Modalities for Mental Effort Classification.

Best 10 Modalities Best Classifier Test F1 Test Accuracy

CV Avg.

Validation

Accuracy ± SD

ECG+EDA+Performance AB 77.50 75.34 78.30 ± 3.92

EEG+EDA+Performance RF 76.92 75.84 77.97 ± 5.57

EDA+Performance AB 76.92 75.84 78.77 ± 4.92

EEG+EDA GB 76.62 75.84 75.50 ± 4.75

EEG+ECG+EDA+IMU+Performance RF 76.62 75.17 78.17 ± 5.43

EEG+EDA+IMU+Performance RF 76.62 75.68 77.79 ± 4.97

EEG+ECG+EDA+Performance GB 76.62 75.34 76.83 ± 4.62

EDA DT 76.43 75.17 77.63 ± 5.60

EEG+ECG+EDA DT 76.43 74.66 77.59 ± 5.89

ECG+EDA DT 76.43 74.66 77.63 ± 5.60

Table A.4: 9PM: 10 Best Modalities for Physical Effort Classification.

Best 10 Modalities Best Classifier Test F1 Test Accuracy

CV Avg.

Validation

Accuracy ± SD

Performance+Tasks QDA 57.61 53.57 40.99 ± 17.73

ECG+Tasks QDA 50.00 61.21 68.61 ± 3.84

EEG+IMU+Tasks QDA 49.76 37.13 22.68 ± 0.59

EEG+ECG+IMU+Performance+Tasks QDA 49.47 41.46 26.39 ± 7.01

EEG+Tasks DT 49.33 32.74 76.81 ± 0.09

EEG+Performance DT 49.33 32.74 76.81 ± 0.09

EEG+Performance+Tasks DT 49.33 32.74 76.81 ± 0.09

EEG DT 49.33 32.74 76.81 ± 0.09

EEG+ECG+IMU+Performance QDA 48.85 32.32 29.70 ± 10.58

EEG+ECG+IMU+Tasks QDA 48.85 32.32 28.48 ± 8.64
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Table A.5: 9PM: 10 Best Modalities for Sleepy/Drowsy Classification.

Best 10 Modalities Best Classifier Test F1 Test Accuracy

CV Avg.

Validation

Accuracy ± SD

EEG NN 28.57 49.40 89.97 ± 0.02

EEG+EDA+Tasks NB 26.67 85.23 84.34 ± 3.39

EEG+EDA+Performance+Tasks NB 26.67 77.85 79.49 ± 5.26

EEG+ECG+EDA NB 26.67 77.40 79.59 ± 4.90

EEG+EDA+Performance NB 26.67 77.85 79.68 ± 5.29

EEG+ECG+EDA+Tasks NB 26.67 77.40 79.30 ± 4.97

EDA+Performance QDA 26.42 47.65 57.89 ± 12.86

EEG+EDA NB 25.00 75.84 79.40 ± 5.24

EEG+ECG+IMU+Performance+Tasks NB 24.62 70.12 77.81 ± 2.56

EEG+ECG+IMU+Performance NB 24.62 70.12 77.98 ± 2.50

Table A.6: 9PM: 10 Best Modalities for Concentrating Difficulty Classifica-
tion.

Best 10 Modalities Best Classifier Test F1 Test Accuracy

CV Avg.

Validation

Accuracy ± SD

ECG+EDA+Tasks QDA 55.00 75.34 69.67 ± 2.66

ECG+EDA+IMU+Performance+Tasks NB 54.55 79.31 64.71 ± 3.33

EDA+Tasks QDA 54.55 76.51 68.63 ± 2.93

EDA+Performance+Tasks QDA 54.32 75.17 69.76 ± 3.08

ECG+EDA+Performance+Tasks QDA 54.29 78.08 71.09 ± 1.50

ECG+EDA+IMU QDA 53.16 74.48 59.56 ± 6.12

ECG+EDA+IMU+Performance QDA 51.95 74.48 59.66 ± 6.88

ECG+EDA+IMU+Tasks LR 50.91 81.38 66.70 ± 2.66

EDA+IMU QDA 50.63 73.65 59.76 ± 6.24

ECG+Performance+Tasks QDA 49.54 66.67 60.77 ± 2.25
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Table A.7: 9PM: 10 Best Modalities for Task Difficulty Classification.

Best 10 Modalities Best Classifier Test F1 Test Accuracy

CV Avg.

Validation

Accuracy ± SD

ECG+EDA+IMU+Tasks AB 86.67 89.19 81.61 ± 6.49

EEG+Performance DT 85.71 90.00 73.49 ± 5.91

ECG+EDA+Performance+Tasks NB 84.85 86.49 73.75 ± 4.99

ECG+EDA+IMU+Performance+Tasks GB 83.87 86.49 86.20 ± 6.97

ECG+IMU+Tasks QDA 83.87 87.18 67.88 ± 5.24

EDA+IMU+Tasks AB 83.87 86.84 83.58 ± 1.64

ECG+IMU+Performance+Tasks QDA 83.87 87.18 68.98 ± 5.40

ECG+Performance DT 83.87 87.18 78.56 ± 6.42

EEG+ECG+EDA+Tasks QDA 82.76 86.49 65.78 ± 2.04

ECG+EDA+Tasks GB 82.76 86.49 87.07 ± 4.19

Table A.8: 9PM: 10 Best Modalities for Task Enjoyment Classification.

Best 10 Modalities Best Classifier Test F1 Test Accuracy

CV Avg.

Validation

Accuracy ± SD

ECG+EDA+IMU+Performance+Tasks SVM 84.21 83.78 68.76 ± 7.84

EDA+IMU+Performance+Tasks LR 83.33 84.21 66.84 ± 5.55

EEG+EDA+IMU GB 83.33 84.21 63.80 ± 7.60

ECG+EDA+IMU+Tasks LR 83.33 83.78 65.72 ± 8.49

EDA+IMU+Tasks NN 83.33 84.21 66.07 ± 5.81

EDA+IMU LR 83.33 84.21 63.00 ± 4.45

EEG+ECG+EDA GB 83.33 83.78 59.70 ± 1.16

ECG+EDA+Performance+Tasks NN 83.33 83.78 70.34 ± 6.92

EEG+ECG+IMU+Performance+Tasks ET 82.93 82.05 66.47 ± 7.57

EEG+EDA+IMU+Tasks NN 82.35 84.21 66.00 ± 5.33
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Table A.9: 9PM: 10 Best Modalities for Task Interesting Classification.

Best 10 Modalities Best Classifier Test F1 Test Accuracy

CV Avg.

Validation

Accuracy ± SD

EEG+Performance+Tasks NB 76.92 77.50 52.75 ± 5.31

ECG+IMU+Performance GP 75.00 74.36 52.90 ± 4.97

ECG+IMU+Tasks GP 75.00 74.36 52.17 ± 4.74

ECG+IMU+Performance+Tasks GP 75.00 74.36 52.54 ± 4.90

ECG+IMU GP 75.00 74.36 52.17 ± 4.74

EEG+Tasks NB 73.91 70.00 54.61 ± 9.48

EEG+EDA+IMU+Performance+Tasks QDA 73.68 73.68 55.40 ± 6.80

EEG+EDA+IMU+Performance QDA 73.68 73.68 56.52 ± 5.79

EEG+EDA+IMU+Tasks QDA 73.68 73.68 55.77 ± 5.16

EDA+Tasks KNN 73.33 78.95 67.34 ± 3.23

Table A.10: 9PM: 10 Best Modalities for Physical Tiredness Classification.

Best 10 Modalities Best Classifier Test F1 Test Accuracy

CV Avg.

Validation

Accuracy ± SD

EEG+ECG+IMU QDA 50.00 74.36 59.10 ± 4.94

EEG+EDA+IMU+Tasks QDA 50.00 78.95 65.66 ± 4.01

EEG+IMU+Performance QDA 47.62 72.50 58.00 ± 4.32

EEG+IMU QDA 47.62 72.50 58.39 ± 1.44

EEG+ECG+EDA+Performance QDA 47.06 75.68 67.67 ± 2.13

EEG+ECG+EDA+Performance+Tasks QDA 47.06 75.68 67.67 ± 2.13

ECG+IMU+Performance+Tasks QDA 46.15 82.05 67.15 ± 5.28

IMU+Tasks QDA 46.15 82.50 62.75 ± 4.27

ECG+IMU+Tasks QDA 46.15 82.05 64.96 ± 5.36

EEG+ECG+IMU+Performance+Tasks QDA 45.45 69.23 59.86 ± 1.88
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Table A.11: 9PM: 10 Best Modalities for Distress Classification.

Best 10 Modalities Best Classifier Test F1 Test Accuracy

CV Avg.

Validation

Accuracy ± SD

EDA+IMU+Performance+Tasks ET 70.00 84.21 63.34 ± 3.90

EEG+ECG+EDA+IMU+Tasks GP 68.97 75.68 48.85 ± 2.81

EEG+EDA+IMU+Performance+Tasks GP 66.67 76.32 52.30 ± 5.04

IMU+Tasks RF 66.67 80.00 65.69 ± 5.81

EEG+EDA+IMU+Performance GP 66.67 73.68 54.99 ± 6.86

EEG+ECG+Performance KNN 66.67 79.49 64.39 ± 3.00

EEG+EDA+IMU+Tasks GP 66.67 73.68 54.60 ± 6.18

ECG+EDA+IMU+Performance ET 66.67 81.08 62.20 ± 4.71

IMU ET 66.67 80.00 65.70 ± 2.79

EEG+EDA+IMU GB 66.67 81.58 63.73 ± 2.22

Table A.12: 9PM: 10 Best Modalities for Attention Classification.

Best 10 Modalities Best Classifier Test F1 Test Accuracy

CV Avg.

Validation

Accuracy ± SD

EDA+IMU+Tasks AB 70.59 86.84 61.00 ± 7.41

ECG+EDA+IMU+Tasks AB 64.00 75.68 62.13 ± 6.27

ECG+EDA+IMU+Performance+Tasks AB 63.16 81.08 62.50 ± 7.74

ECG RF 62.50 84.62 57.78 ± 4.56

ECG+EDA+IMU AB 61.54 86.49 57.64 ± 6.61

ECG+IMU+Tasks NB 60.00 69.23 54.00 ± 7.19

EEG+ECG+IMU+Tasks KNN 58.82 82.05 63.84 ± 3.80

EEG+ECG+IMU+Performance KNN 58.82 82.05 63.12 ± 3.69

ECG+IMU+Performance GB 58.33 74.36 62.04 ± 6.22

ECG+EDA+IMU+Performance QDA 57.14 75.68 56.56 ± 7.77
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Table A.13: 9PM: 10 Best Modalities for Tasks Classification.

Best 10 Modalities Best Classifier Test F1 Test Accuracy

CV Avg.

Validation

Accuracy ± SD

ECG+EDA+Performance LR 83.37 83.56 71.28 ± 1.57

EEG+EDA+IMU+Performance RF 80.62 81.08 73.50 ± 1.16

EEG+Performance GB 80.36 80.36 71.23 ± 4.21

EEG+ECG+Performance GB 79.91 80.00 71.88 ± 3.78

EEG+EDA+Performance GB 79.89 79.87 74.27 ± 1.60

EEG+ECG+EDA+IMU+Performance RF 79.42 80.00 71.21 ± 1.77

EDA+Performance RF 79.23 79.87 72.89 ± 1.86

EEG+ECG+EDA+Performance GB 78.47 78.77 73.89 ± 1.73

EDA+IMU+Performance DT 78.42 79.05 72.98 ± 2.10

ECG+EDA+IMU+Performance DT 77.97 78.62 72.98 ± 2.10
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[78] Writing Group Members, Véronique L Roger, Alan S Go, Donald M

Lloyd-Jones, Emelia J Benjamin, Jarett D Berry, William B Borden,

Dawn M Bravata, Shifan Dai, Earl S Ford, et al. Executive summary: heart

disease and stroke statistics—2012 update: a report from the american

heart association. Circulation, 125(1):188–197, 2012.

[79] Alma S Merians, David Jack, Rares Boian, Marilyn Tremaine, Grigore C

Burdea, Sergei V Adamovich, Michael Recce, and Howard Poizner. Vir-

tual reality–augmented rehabilitation for patients following stroke. Phys-

ical therapy, 82(9):898–915, 2002.

[80] MetaMotionR - MbientLab.

[81] Microsoft band 2 features and functions.

[82] Maddalena Mugnosso, Francesca Marini, Matteo Gillardo, Pietro

Morasso, and Jacopo Zenzeri. A novel method for muscle fatigue as-

sessment during robot-based tracking tasks. In Rehabilitation Robotics

(ICORR), 2017 International Conference on, pages 84–89. IEEE, 2017.

[83] Eeg and biofeedback research from muse.

[84] 9-Hole Peg Test (9-HPT) : National Multiple Sclerosis Society.

120



[85] Bibhukalyan Prasad Nayak, Sibsambhu Kar, Aurobinda Routray, and

Akhaya Kumar Padhi. A biomedical approach to retrieve information on

driver’s fatigue by integrating eeg, ecg and blood biomarkers during sim-

ulated driving session. In Intelligent Human Computer Interaction (IHCI),

2012 4th International Conference on, pages 1–6. IEEE, 2012.

[86] Intro to NIH Toolbox.

[87] Pulse oximetry.

[88] Johanna Renny Octavia, Peter Feys, and Karin Coninx. Development of

activity-related muscle fatigue during robot-mediated upper limb reha-

bilitation training in persons with multiple sclerosis: a pilot trial. Multiple

sclerosis international, 2015, 2015.

[89] Ultracortex Mark IV — OpenBCI Documentation.

[90] Michalis Papakostas, Konstantinos Tsiakas, Maher Abujelala, Morris Bell,

and Fillia Makedon. v-cat: A cyberlearning framework for personalized

cognitive skill assessment and training. In Proceedings of the 11th PErva-

sive Technologies Related to Assistive Environments Conference, pages 570–

574. ACM, 2018.

[91] Thomas Penzel, George B Moody, Roger G Mark, Ary L Goldberger, and

J Hermann Peter. The apnea-ecg database. In Computers in Cardiology 2000.

Vol. 27 (Cat. 00CH37163), pages 255–258. IEEE, 2000.

[92] Luka Peternel, Nikos Tsagarakis, Darwin Caldwell, and Arash Ajoudani.

Robot adaptation to human physical fatigue in human–robot co-

manipulation. Autonomous Robots, pages 1–11, 2018.

121



[93] Scott Phan, Alexandros Lioulemes, Cyril Lutterodt, Fillia Makedon, and

Vangelis Metsis. Guided physical therapy through the use of the barrett

WAM robotic arm. In 2014 IEEE International Symposium on Haptic, Au-

dio and Visual Environments and Games, HAVE 2014, Richardson, TX, USA,

October 10-11, 2014, pages 24–28, 2014.

[94] Rosalind W Picard. Affective computing for hci. In HCI (1), pages 829–

833. Citeseer, 1999.

[95] A Plotnikov, N Stakheika, Alessandro De Gloria, Carlotta Schatten,

Francesco Bellotti, Riccardo Berta, C Fiorini, and Flavio Ansovini. Ex-

ploiting real-time eeg analysis for assessing flow in games. In 2012 IEEE

12th International Conference on Advanced Learning Technologies, pages 688–

689. IEEE, 2012.

[96] Janet L Poole, Patricia A Burtner, Theresa A Torres, Cheryl Kirk Mc-

Mullen, Amy Markham, Michelle Lee Marcum, Jennifer Bradley Ander-

son, and Clifford Qualls. Measuring dexterity in children using the nine-

hole peg test. Journal of Hand Therapy, 18(3):348–351, 2005.

[97] Gratianne Rabiller, Ji-Wei He, Yasuo Nishijima, Aaron Wong, and Jialing

Liu. Perturbation of brain oscillations after ischemic stroke: a potential

biomarker for post-stroke function and therapy. International journal of

molecular sciences, 16(10):25605–25640, 2015.

[98] Karthikeyan Rajamani, Adhavann Ramalingam, Srinivas Bavisetti, and

Maher Abujelala. Cbren: Computer brain entertainment system using

neural feedback cognitive enhancement. In Proceedings of the 10th Interna-

tional Conference on PErvasive Technologies Related to Assistive Environments,

pages 236–237. ACM, 2017.

122



[99] Akilesh Rajavenkatanarayanan, Varun Kanal, Konstantinos Tsiakas, Di-

ane Calderon, Michalis Papakostas, Maher Abujelala, Marnim Galib,

James C Ford, Glenn Wylie, and Fillia Makedon. A survey of assistive

technologies for assessment and rehabilitation of motor impairments in

multiple sclerosis. Multimodal Technologies and Interaction, 3(1):6, 2019.

[100] Bruce Ratner.

[101] Paula Rego, Pedro Miguel Moreira, and Luis Paulo Reis. Serious games

for rehabilitation: A survey and a classification towards a taxonomy. In

Information Systems and Technologies (CISTI), 2010 5th Iberian Conference on,

pages 1–6. IEEE, 2010.
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