by

GIULIA IRENE MARIA PASQUESI

Presented to the Faculty of the Graduate School of The University of Texas at Arlington in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON
DECEMBER 2019

Supervising Committee:
Todd A. Castoe, Supervising professor
Esther Betran
Jeff P. Demuth
Matt K. Fujita
Matt R. Walsh

Copyright © by Giulia Irene Maria Pasquesi 2019
All Rights Reserved

Acknowledgements

The last five years of my life have often been challenging, and yet they represented a positive growth experience. For this, I am thankful to a number of people that welcomed me in their lives. First, thank you to the friends and lab mates in the Castoe Lab, older and newer - Daren Card, Drew Schield, Rich Adams, Blair Perry, Nicky Hales, Andrew Corbin, Aundrea Westfall, Ricky Orton, Zack Nikolakis, in no specific order because each and every one of you contributed to who I am today. You guys have been an inspiration, a joy to work with, and unvaluable companions in the field, at parties, and at conferences. Thank you to Drs. Robert Ruggiero, Steve Mackessy, and Mike Vandewege. Thank you to all of the friends and colleagues in the UTA biology department, especially to Danielle Rivera, Shannon Beston, Kathleen Curie, TJ Firneno, and Will Budnick. A particular mention to Dr. Corey Roelke, for the blunt honesty and reminding me that it is not worth to take myslef so seriously. Thank you to my committee members, Drs. Esther Betran, Jeff Demuth, Matt Fujita, and Matt Walsh, for your support, knowledge, and ideas for improving my research. And thank you to the peers in your labs for sharing ideas and providing unique perspectives. A huge thank you to the biology department staff - to Rachel Wostl, Linda Taylor, Ashley Priest, and Mal Roelke, thank you for putting up with me! I am especially grateful for the unconditionalu and unceasing support of my family (dad, mom, grandmas, cousins and aunties/uncles), Micol and her family (Amelia and Giu), Marta Gazzana, Elisabetta Villa, Sandro Pratesi and the Pratesi family, Alexandra Farber (and the TBT, for reminding me that there is still so much beauty), my dance family (without whom I could have not burned out the crazy), Mike (again), and Jill Castoe. Lastly, thank you to my advisor, Todd Castoe, for being an outstanding mentor, for the patience, and for teaching me to always check before sitting down - there is always the chance of a pillow case with a deadly snake inside.

Dedication

This dissertation is dedicated to all my loved ones. Especially to my parents, Cristina Vescia and Carlo Pasquesi. For showing me the beauty and the diversity of the World, allowing me to make my decisions, knowing that I would always have your back. And for supporting me, realistically and unconditionally. And to Micol. For understanding that I needed to go; there are no words to describe what we share, if not that you are family that I chose. And to Mike and Alexandra, without whom I do not know if I would have made it so far.

Abstract
 LEVERAGING THE DYNAMIC REPEAT ELEMENT LANDSCAPE OF SQUAMATE REPTILE GENOMES TO UNDERSTAND BROAD PATTERNS OF VERTEBRATE GENOME EVOLUTION AND TRANSPOSABLE ELEMENT BIOLOGY

Giulia I. M. Pasquesi, PhD

The University of Texas at Arlington, 2019

Supervising Professor: Todd A. Castoe

Vertebrate genomes are mostly composed of transposable elements (TE), mobile DNA sequences that have shaped genome structure and evolution by promoting positive (e.g., regulatory network rewiring, embryo development) and negative (e.g., ectopic recombination, disease) genomic processes. Leveraging genomic and transcriptomic data from diverse vertebrate species, I present novel lines of evidence that underscore the unique value of squamate reptile genomes for investigating properties of TE landscape evolution. This dissertation demonstrates that squamate genomes defy paradigms of amniote repeat element evolution set by mammals and birds, in particular: that greater variability in TE content is found between major lineages, that genome size correlates to genomic TE content, and that effective population size relates to features of the TE landscape (i.e., full-length insertions and TE abundance). Squamates are also unique among amniotes for having a broad diversity of TE types and families that appear similarly prevalent in the genome and simultaneously active, whereas patterns of negative regulation of TEs in germline tissues are consistent with those of other vertebrate species (with the exception of mammals). The detailed investigation of the prairie rattlesnake genome further shows that TEs have been involved in sex chromosome evolution, gene duplication and isochore structure, demonstrating that the distinct evolutionary dynamics of squamate TE landscapes may be linked to more unique and variable aspects of squamate genome function and evolution compared to other amniote species.

Table of Contents

Acknowledgements iii
Dedication iv
Abstract v
Chapter 1 - Introduction 1
Chapter 2 - Squamate reptiles challenge paradigms of genomic repeat element evolution set by birds and mammals 4
Supplementary Note 1 36
Supplementary Figures 37
Chapter 3 - The origins and evolution of chromosomes, dosage compensation, and mechanisms underlying venom regulation in snakes. 59
Supplementary Methods 90
Supplementary Figures 117
Chapter 4 - Vertebrate lineages exhibit diverse patterns of transposable element regulation and expression across tissues 137
Supplementary Methods 163
Supplementary Figures 167
Appendix
A. Chapter 2 supplementary data 189
B. Chapter 3 supplementary data 210
C. Chapter 4 supplementary data 222
References 249

Chapter 1

Introduction

Most of the DNA in vertebrate genomes is composed of repetitive sequences, largely transposable elements (TEs) but also simple repeats (i.e., microsatellites). Most TEs within a genome represent relics of past activity, and only a considerably smaller fraction still retain the capabality to mobilize and spread into the host genome by intra-genomic copy number amplification and/or inter-genomic horizontal transfer. In the aftermath of their re-discovery in Drosophila hybrid-dysgenesis systems in the late '70s, TEs were considered little more than "selfish elements"; genomic translocation and accumulation of TEs can lead to an increase genome size, and negatively affect the fitness of the host directly through insertional mutagenesis in functional regions and indirectly by favoring ectopic recombination and genomic rearrangements. The advent of the age of genomics, however, forced researchers to re-evaluate the presence of TEs in a genome. The past two decades of TE research have brought additional support for the insertional mutagenic role played by TEs, and the formulation of a general model that translocation is recovered when mechanisms of negative TE regulation become ineffective, leading to both inheritable and non-inheritable diseases. However, TEs have also been reappreciated as pivotal agents of narrow and large-scale genome evolution. By inserting in the proximity of a gene, TEs can modulate its expression, favoring the evolution of diverse cell types. Addiotionally, in virtue of their repetitive nature, TEs have been coopted as binding sites for transcription factors - allowing for the rewiring of regulatory networks and the emergence of novel phenotypes.

It is undeniable that thanks to massive technique and computational advancemens we are achieving a finer-scale knowledge of the complex relationships between host genomes and the TEs they harbor. Yet a noticeable trend in genomic research is an increase in focus, which brings remarkable sampling biases in terms of lineages, organisms, and systems (i.e., cell population or type of cancer) analyzed, while more integrated comparative perspectives are mostly left unevaluated. As a result, current paradigms of TE biology and its interplay with the host genome are mostly derived from in-depth studies on few model organisms: mammals in particular, and to some extent birds and fishes among vertebrates. Snakes and squamate reptiles have been greatly neglected in the genomic era. Yet from the little that was known, it emerged that squamate genomes represent a valuable system to study genome evolution, from sex chromosomes to the emergence of novel complex phenotypes (e.g., venom), isochore structure and recombination hotspots. As for repeat element landscapes, squamates appeared to challenge prevalent models set by mammals and birds, in particular the proposed paradigms of little within-clade variability in TE content and composition, and the correlation of genome size and TE content.

The main focus of my dissertation has been to evaluate whether widely accepted broad models of TE and host genome evolution set by intensive studies focused on mammals and birds still apply when a diverse group (squamates) is included. Specifically, I tested whether effective population size, which relates to how effective purifying selection is at removing mildly deleterious mutations, can explain the variance in features of the TE ladscape across species (Chapter 2), and analyzed whether differences exist in how TEs are regulated and expressed across somatic and germline vertebrate tissues, and if generalizable patterns can be detected (Chapter 4). By participating in the assembly and annotation of the first chromosome-level genome for a snake, the prairie rattlesnake, I was also able to evaluate chromosomal distribution patterns of repeat
elements, in particular on the Z sex chromosome, and corroborate previous hypotheses of isochore structure re-acquisition in snakes (Chapter 3).

Ultimately, this dissertation provides novel characterizations of the TE content and composition, TE regulatory mechanisms, and TE expression at broad phylogenetic scales, underscoring the potential shortcomings of broad assumptios that diverse vertebrate model systems share common biological features and evolutionary dynamics. Hopefully, it will also represent an additional reference in support of the tremendous potential that squamate reptiles, and snakes in particular, hold as a system for studying the impact of TEs in genome biology, function and structure.

Chapter 2

Squamate reptiles challenge paradigms of genomic repeat element evolution set by birds and mammals

Giulia I.M. Pasquesi ${ }^{1}$, Richard H. Adams ${ }^{1}$, Daren C. Card ${ }^{1}$, Drew R. Schield ${ }^{1}$, Andrew B. Corbin ${ }^{1}$, Blair W. Perry ${ }^{1}$, Jacobo Reyes-Velasco ${ }^{1,2}$, Robert P. Ruggiero ${ }^{2}$, Michael W. Vandewege ${ }^{3}$, Jonathan A. Shortt ${ }^{4}$ and Todd A. Castoe ${ }^{1, \ddagger}$
${ }^{1}$ Department of Biology, 501 S. Nedderman Dr., University of Texas at Arlington, Arlington, TX 76019 USA
${ }^{2}$ Department of Biology, New York University Abu Dhabi, Saadiyat Island, United Arab Emirates
${ }^{3}$ Department of Biology, Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania, 19122 USA
${ }^{4}$ Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045 USA

Abstract

Broad paradigms of vertebrate genomic repeat element evolution have been largely shaped by analyses of mammalian and avian genomes. Here, based on analyses of genomes sequenced from over 60 squamate reptiles (lizards and snakes), we show that patterns of genomic repeat landscape evolution in squamates challenge such paradigms. Despite low variance in genome size, squamate genomes exhibit surprisingly high variation among species in abundance (ca. 25% -73% of the genome) and composition of identifiable repeat elements. We also demonstrate that snake genomes have experienced microsatellite seeding by transposable elements at a scale unparalleled among eukaryotes, leading to some snake genomes containing the highest microsatellite content of any known eukaryote. Our analyses of transposable element evolution across squamates also suggest that lineage-specific variation in mechanisms of transposable element activity and silencing, rather than variation in species-specific demography, may play a dominant role in driving variation in repeat element landscapes across squamate phylogeny.

Introduction

Transposable elements (TEs) and other repetitive sequences represent a major fraction of vertebrate genomes - in most mammals, repeat elements comprise 28-58\% of the genome (Smit et al. 2015-2019; Platt et al. 2018), and may comprise more than two thirds of the human genome (de Koning et al. 2011). Several decades of genome research has led to the prevailing view that genome size and genome repeat content are tightly linked, such that shifts in genomic repeat content are expected to result in proportional shifts in vertebrate genome sizes (Chalopin et al. 2015; Elliott and Gregory 2015; Canapa et al. 2016). Recently, this correlation has come into question in favor of alternative hypotheses, such as the "accordion" model of co-variation between genomic DNA gained by repeat element expansion and genomic DNA lost through deletion (Kapusta et al. 2017). It has also been demonstrated that the relationship between genome size and repeat content may vary between vertebrate lineages (Agren and Wright 2011; Elliott and Gregory 2015; Canapa et al. 2016), with some lineages adhering more or less to a particular model or pattern (Blass et al. 2012; Chalopin et al. 2015; Elliott and Gregory 2015; Kapusta et al. 2017), underscoring the value of comparative analyses across diverse lineages.

Within vertebrates, our understanding of genome and repeat element evolution is largely biased towards mammals and archosaurian reptiles (mainly birds). The emerging pattern from studies of these groups is that large differences in the repeat element landscape exist among major amniote vertebrate lineages, yet fairly little variation in repeat content and diversity are observed within major amniote groups. For example, estimates based on de novo annotation of TEs in mammal and bird species suggest 1.7-fold and 2.2-fold variation in TE content across species for each group, respectively (Smit et al. 2015-2019; Kapusta et al. 2017). Although squamate reptiles
(lizards and snakes) represent a major portion of the amniote tree with over 10,000 species spanning more than 200 million years of evolution (Murphy et al. 2007), variation in genomic repeat content across squamate reptiles has remained poorly studied. From the few studies to date, genome size appears to be highly conserved in squamate reptiles (Gregory 2017), yet the little that we know about repeat element variation suggests that squamate reptile genomes vary greatly in repeat element content (Castoe et al. 2011; Castoe et al. 2013).

Motivated to assess whether squamate reptile genomic repeat element landscapes adhere to patterns observed in birds and mammals, we analyzed genomic repeat landscapes across 66 squamate species using low-coverage random whole genome shotgun sample sequencing data (Castoe et al. 2011; Castoe et al. 2013) and draft genome assemblies. We find that squamate reptile genomes indeed challenge the paradigm that genome size and repeat content are tightly linked, and the view that major differences in repeat element content occur only between lineages of amniotes. In addition to contributions from TEs, snake genome repeat content variation is further increased by the largest known instance of microsatellite seeding by long interspersed nuclear elements (LINEs) observed in any living organism. We also find evidence that multiple independent horizontal transfer events and highly idiosyncratic patterns of transposable element proliferation across squamates have further contributed to extreme variation in genome repeat content in this lineage. We further tested a demographic explanation for variation in repeat content, whereby fluctuations in the effective population size $\left(N_{e}\right)$ of species impact the efficacy of selection against repetitive element insertion (Lynch and Conery 2003). We find no evidence that N_{e} explains the distribution and variation in characteristics of the repeat landscape in squamate reptiles, which indicates instead that variation in molecular mechanisms of TE proliferation, silencing, removal and truncation may underlie the extreme
repeat variation observed across squamates. Collectively, our findings challenge existing views related to repeat element and genome size co-evolution, and provide new evidence for unappreciated variation in genomic repeat content within and among major amniote lineages.

Results

Comparison of sampled and assembled genome data

Our analyses of genomic repeat content were based on the assemblies of 12 squamate genomes (including 1 new and 11 published assemblies), and low-coverage, unassembled genomic shotgun read datasets obtained from 54 squamate species (Supplementary Data 1; Castoe et al. 2013). Previous studies have shown that genomic repeat content estimated from unassembled shotgun genomic datasets are similar to estimates derived from assembled genomes (Castoe et al. 2011; Castoe et al. 2013). We confirmed this by comparing repeat annotations from assembled and unassembled genome data from the same species (Supplementary Fig. 1), and also confirmed that repeat estimates derived from unassembled genomic shotgun datasets are effectively independent of the amount of sequence data obtained (Supplementary Fig. 1).

Genome size and repeat content in major amniote groups

Squamate reptile genomes challenge the commonly accepted paradigm that genome size and repeat content are tightly linked (Chalopin et al. 2015; Elliott and Gregory 2015; Canapa et al. 2016), and also challenge the prevailing view that large variation in repeat content tends to be characteristic of major clades, rather than highly dynamic within clades (Smit et al. 2015-2019; Fig. 1). For example, mammalian genome sizes tend to be more highly variable (2.2-6.0 Gbp (Gregory 2017); Supplementary Data 2) in comparison with squamate and bird genomes, yet genomic TE estimates demonstrate only moderate levels of clade-specific variation (33.4-56.3\%,
mean $=44.5 \%$; Fig. 1a, Supplementary Data 3 and Supplementary Note 1). In contrast, birds have smaller genomes and higher conservation of genome sizes (1.0-2.1 Gbp (Gregory 2017); Supplementary Data 2), with relatively low levels of TE content (4.6-10.4\%, mean $=7.8 \%$, with the only notable exception being the downy woodpecker with an extremely high genomic TE content of 22.5%, which we excluded as an outlier from analyses here; Fig. 1b, Supplementary Data 3 and Supplementary Note 1).

With highly conserved genome sizes (1.3-2.8 Gbp) yet extensive variation in genomic content of readily detectable TEs (23.7-56.3\%, mean $=41.8 \%$; Fig. 1c), we find that squamate reptiles do not adhere to either of these trends. The relatively high degree of variation in genomic repeat content across remarkably short evolutionary time scales in squamates presents the greatest contrast with birds and mammals. Unlike the clade-specific pattern observed in mammals, the genomic repeat content variation of squamate reptiles exhibits a high degree of variation even between species within the same genus (e.g., within the genera Ophisaurus (44.8-48.9\%), Coniophanes (59.4-73\%), and Crotalus (35.3-47.3\%); Fig. 1c, Supplementary Figs. 2 and 3, Supplementary Data 4). Across the 66 squamate species sampled, total genomic repeat element content varied from 24.4% to 73.0% (3-fold variation; Fig. 1c). Collectively, our analyses highlight the remarkable finding that the comparatively small genomes of squamates, similar to those of birds, can contain large and highly variable amounts of repeat elements, exceeding the range reported for mammals.

Genomic TE composition across squamate reptiles

The content and evolutionary dynamics of TEs in squamate genomes are unique in many ways when compared to that of mammals and birds, yet squamate genomes also share several key
features with both lineages. All three groups have TE landscapes largely dominated by non-longterminal repeat (non-LTR) retrotransposons. However, unlike mammalian genomes in which L1 LINEs and associated short interspersed nuclear elements (SINEs) are the most dominant and active elements (de Koning et al. 2011; Huang et al. 2012), squamate genomes tend to contain three similarly-abundant and active LINE families (CR1, BovB, and L2 LINEs; Fig. 1, Supplementary Fig. 2, and Supplementary Data 4). While CR1 LINEs are ubiquitous across amniote genomes, CR1s are particularly abundant and recently active in squamate genomes (5.1%, compared to $\sim 3.5 \%$ in birds and $<1 \%$ in mammals; Smit et al. 2015-2019), as they tend to be in other non-avian reptiles (i.e., $\sim 10 \%$ in crocodilians; Suh et al. 2015). In addition to nonLTR elements, DNA elements are also highly variable and particularly abundant in multiple divergent squamate lineages (Fig. 1). For example, Tc1-Mariner elements have experienced a 2.4 fold expansion in colubroid snakes compared to lizards (mean genomic abundance $=4.23 \%$ in colubroid snakes and 1.7\% in lizards; Fig. 1, Supplementary Fig. 2 and Supplementary Data 4). The most striking contrast between squamate versus bird and mammal genomes is that squamate genomes contain an unusually broad diversity of types, subtypes, and families of TEs that appear simultaneously active (Alfoldi et al. 2011; Castoe et al. 2011; Tollis and Boissinot 2013; Suh et al. 2015; Yin et al. 2016; see also below, Fig. 4 and Supplementary Fig. 3), whereas genomes of mammals and birds tend to have a very small number of active elements (e.g., L1 LINEs and Alu SINEs in mammals, and endogenous retroviruses (ERVs) in birds; Brouha et al. 2003; Huang et al. 2012; Zhang et al. 2014; Chalopin et al. 2015).

GC content is known to play an important role in genome and repeat element evolution (Boissinot et al. 2001; Rizzon et al. 2002; Fryxell and Moon 2005; Hellen and Brookfield 2013; Georges et al. 2015). We found evidence of significant relationships between GC content and
total TE content, as well as GC and total microsatellite (or simple sequence repeat; SSR) content, in lizards and colubroid snakes (Supplementary Fig. 4). In contrast, we found no correlation between genomic GC content and any aspect of the genomic repeat element landscape in noncolubroid snake genomes (Supplementary Fig. 4). Consistent with previous studies (Castoe et al. 2013), our analyses highlight the surprisingly variable nature of GC content across squamate genomes, which tends to be higher in lizards than in snakes, yet highest in the colubroid snake Coniophanes fissidens ($\mathrm{GC}=47.8 \%$; Fig. 1c). These findings are also broadly consistent with previously reported shifts in GC isochore structure in squamate genomes (Alfoldi et al. 2011; Georges et al. 2015), including the absence of isochore structure in lizard species, and intermediate structure in snakes that appears to represent isochore reacquisition after isochore loss in a squamate ancestor (Castoe et al. 2013).

Unparalleled microsatellite abundance in squamate genomes

Our analyses revealed that some squamate genomes contain astonishingly high levels of SSRs, and that genomic SSR content in some snake species is the highest of any previously studied vertebrate (e.g., 14\% according to RepeatMasker estimates in Coniophanes fissidens; Supplementary Data 4 and 5; Supplementary Fig. 5). While previous studies have suggested that the highest variation in SSR content tends to exist among major vertebrate lineages (Neff and Gross 2001), with fish, squamate reptiles, and mammalian genomes having similarly high genomic content (Alfoldi et al. 2011; Castoe et al. 2011; Castoe et al. 2013; Adams et al. 2016), our results provide new evidence that the highest variation known in genomic SSR content exists within lineages - squamates and snakes, specifically. We found up to 10.9 -fold variation in the genomic density of SSR loci (262-2,845 loci/Mbp) and 16.6-fold variation in SSR-occupied bases per Mbp (4.08-67.94 $\mathrm{Kbp} / \mathrm{Mbp}$) among squamates overall, with non-colubroid snakes
tending to have the lowest genomic SSR abundance, and colubroid snakes having the highest (Supplementary Data 5; Fig. 2 and Supplementary Figs 5, 6). This extreme variation in the genomic SSR content of squamate reptiles exceeds the previous high benchmark set by fish genomes (8.2-fold loci/Mbp and 18.0-fold $\mathrm{bp} / \mathrm{Mbp}$ variation), and dwarfs that of mammals (5.8fold loci/ Mbp and $5.4 \mathrm{bp} / \mathrm{Mbp}$) and bird genomes (1.8-fold loci/Mbp and $2.8 \mathrm{bp} / \mathrm{Mbp}$; Alfoldi et al. 2011; Castoe et al. 2011; Castoe et al. 2013; Adams et al. 2016).

Largest instance of microsatellite seeding among vertebrates

A peculiar feature of SSR evolutionary dynamics in squamate genomes is the significant shifts in 4 mer and 5mer abundances across the squamate tree, including extreme expansion of specific 4mer and 5mer SSRs motifs in colubroid snake genomes (Kruskal-Wallis test p-value <0.001, Supplementary Fig. 6 and Supplementary Data 6). Two specific SSR sequence motifs, ATAG and AATAG, account for most of the microsatellite expansion in colubroid snakes, representing a 7.4-fold increase in ATAG (bp/Mbp) and an 87.7-fold increase in AATAG (bp/Mbp) compared to the averages of other squamate genomes (Supplementary Figs 7, 8). The extremely high genomic representation of these two similar SSR sequence motifs in snake genomes suggests a motif-specific mechanism has driven their expansion. Previous studies (Castoe et al. 2011; Castoe et al. 2013) have suggested that LINE retrotransposons that contain microsatellites on their 3' end in snakes might lead to SSR genomic expansion through a process called "microsatellite seeding".

To test the hypothesis that microsatellite seeding is responsible for the expansion of particular SSR sequence motifs, we surveyed the regions adjacent to the two most highly expanded SSR motifs (AATAG and ATAG) in 8 complete reptile genome assemblies. Consistent with the
expectations of microsatellite seeding, we found strong statistical support that CR1-L3 LINEs tend to be immediately adjacent to AATAG loci in colubroid genomes (Fisher's exact test pvalue $<2.2 \mathrm{e}^{-16}$), as well as strong statistical enrichment of AATAG loci at the 3^{\prime} end tail of Rex LINEs (p -value $<2.2 \mathrm{e}^{-16}$) in all squamate genomes sampled, suggesting that both CR1/CR1-L3 and Rex LINEs contribute to microsatellite seeding in squamate genomes (Fig.2b; Supplementary Data 7). In contrast to elements adjacent to AATAG repeats, we found no evidence of enrichment in adjacency for any particular TE for the second most expanded SSR motif (ATAG) compared to randomly sampled genomic regions; this suggests that the expansion of this motif is not directly driven by microsatellite seeding, although its similarity to AATAG suggests it might be indirectly related. To further identify the specific LINE element that is responsible for microsatellite seeding of AATAG SSR loci, we calculated the conditional probability of TE-SSR co-occurrence in a genome-wide context compared to the AATAGadjacent context. Conditional probabilities of AATAG loci and CR1-like LINEs genomic cooccurrence are noticeably different only for CR1-L3 LINEs between colubroid snakes and other squamates (Fig. 2c), and are only barely detectable for Rex LINEs. Additionally, CR1 LINEs are a major contributor to the genomic TE landscape of squamates (particularly colubroid snakes), whereas Rex elements represent a very small fraction. Taken together, our data indicate that microsatellite seeding may be a common ancestral feature of multiple families of squamate LINEs, yet the high activity and expansion of CR1-L3 LINEs has driven associated AATAG loci to extremely high frequencies in colubroid snakes, leading to an astounding 74.73-fold genomic AATAG loci/Mbp increase in this lineage, and the highest levels of genomic SSR content among vertebrates. The ramifications of such extreme levels of homologous SSRs in colubroid snakes, in terms of genome function and evolution, remains uninvestigated. A potential role in mediating
increased ectopic recombination leading to gene duplication has been suggested by previous studies that have identified an enrichment of these repeats surrounding tandemly duplicated venom genes in snakes (Ikeda et al. 2010; Castoe et al. 2011; Dowell et al. 2016). Collectively, these findings imply the exciting possibility that LINE-SSR hybrid elements may have played key roles in the evolution of prominent phenotypes in snakes (i.e., venom evolution).

Multiple independent TE horizontal transfer events

Evidence for the horizontal transfer of BovB LINEs has been identified by previous studies (Kordis and Gubensek 1997, 1998; Kordis and Gubenšek 1998; Castoe et al. 2011; Walsh et al. 2013), and our analysis of squamate genomes provides new insight into the complexities of BovB horizontal transfer. Our phylogenetic reconstruction of BovB LINEs, including samples from our squamate genomes and other sequences from Genbank (Clark et al. 2016), highlights multiple horizontal transfer events, and supports ectoparasite-mediated transfers of BovB LINEs into and out of squamate reptile genomes (Fig. 3 and Supplementary Fig. 9a, Supplementary Data 9). We found BovB LINE sequences from squamate species clustering with other groups of metazoans in all branches of our phylogenetic tree, consistent with multiple horizontal transfer events of BovB from lizards to mammals and to other squamates, and from snakes to mammals and other squamates. Previous studies found support for virus-mediated transfer of TEs (Piskurek and Okada 2007), and suggested ectoparasites as potential transmission vectors (Silva et al. 2004; Gilbert et al. 2010; Novick et al. 2010; Walsh et al. 2013; Gilbert et al. 2014). Our analyses support the horizontal transfer of BovB from one reptile tick species (Amblyomma limbatum) to colubroid snakes (Supplementary Fig. 9a), and provide the first ever evidence for ectoparasite-mediated transfer from squamate genomes in the case of the reptile tick

Bothriocroton hydrosauri. Samples containing BovB elements sequenced from this tick species
are deeply nested among lizard-derived BovB sequences, yet are unique in containing a large internal deletion (1691nt) relative to all other lizard-derived BovB sequences in this clade. Collectively, our analyses of BovB LINE evolution showcase a dynamic history of horizontal transfer that encompasses essentially all forms of the process of transfer into and out of squamate genomes, implicating the role of ectoparasites in both directions of the transfer process.

Testing explanations of variation in genomic TE abundance

Multiple studies have suggested that purifying selection acting against TE insertions may manifest in correlations between effective population size $\left(N_{e}\right)$ and features of the genomic TE landscape. This prevailing demographic explanation for variation in repeat content has been invoked to describe patterns of genome complexity and evolution across the tree of life, and predicts that lineages with higher N_{e} should undergo more effective purifying selection and thus lower genomic accumulation of mutationally hazardous DNA (Lynch and Walsh 2007; Charlesworth 2009). Indeed, previous population (within-species) and phylogenetic (among species) studies have provided rationale and empirical evidence that transposable element insertion rates, fixation rates, and abundance may be correlated with effective population size (Lynch and Conery 2003; Petrov et al. 2003; Le Rouzic et al. 2007; Lynch and Walsh 2007; Blumenstiel et al. 2014). Relative insert length has also been linked to population size at the population-level by an ectopic recombination model in which element length is correlated with the strength of selection (Lynch and Conery 2003; Petrov et al. 2003; Song and Boissinot 2007; Petrov et al. 2011; Tollis and Boissinot 2013; Barron et al. 2014).

Using our phylogenetic-scale dataset, we tested if features of TE landscapes (i.e., genomic abundance, estimated age of activity, and degree truncation for BovB and CR1-L3 LINEs)
showed evidence of a correlation with estimates of effective population size consistent with a demographic model of TE landscape evolution. We first tested for a relationship between N_{e} and TE landscape characteristics using the median values of N_{e} estimates derived from PSMC analyses (Li and Durbin 2011) for 8 published squamate genomes (Fig. 4b-d, Supplementary Fig. 10). With this dataset, we found no evidence supporting a correlation between N_{e} and CR1-L3 and BovB length or genomic repeat element abundance (Fig. 4c-d, Supplementary Fig. 10c-e). Notably, we found that species with similar N_{e} estimates (Fig. 4b) showed different levels of truncation and of TE genomic abundance, and that even within a species TE truncation and abundance were poorly correlated (Fig. 4a, c-d; Supplementary Fig. 10 and 11). Second, to further test for correlations between N_{e} and element abundance or truncation using an approach that is independent of inferences of generation time and mutation rates, and independent of potential biases associated with coalescence-based estimates of N_{e} (i.e., population substructure, migration, selection; Nielsen and Beaumont 2009; Li and Durbin 2011; Mazet et al. 2016; Nadachowska-Brzyska et al. 2016; Orozco-TerWengel 2016; Schrider et al. 2016; Adams et al. 2018), we used adult body mass (Feldman et al. 2016) as a proxy for N_{e} for all species included in our study (as in Figuet et al. (2016); Supplementary Data 8). This approach has the added benefit of leveraging the much larger sample size of our entire dataset (compared to our PSMC analyses using 8 complete genomes). Similar to our PSMC-based analyses, we compared body mass to CR1-L3 and BovB genomic abundance, their degree of truncation, and total genomic repeat element and TE abundances. Consistent with our PSMC-based analyses, we failed to find a correlation between body mass and truncation (Fig. 4e and Supplementary Fig. 12b) that would support a demographic model of TE landscape evolution; the only correlative trend that we did find was a correlative trend that is opposite of that predicted by the demographic model between
N_{e} and genomic repeat element abundance instead (i.e., higher N_{e} was positively correlated with TE abundance; Supplementary Fig. 12d). Finally, to test more generally for evidence that selection acts on TE length at the phylogenetic scale, we tested for a link between TE truncation and TE age (Neafsey et al. 2004; Tollis and Boissinot 2013; Barron et al. 2014) using median pairwise divergence of TE copies from their subfamily consensus, π, as a proxy for age for CR1L3 and BovB families, and found no correlation (Fig. 4f, Supplementary Fig. 13 and detailed in Supplementary Figs 14-16). While we acknowledge the complexity of testing links between two highly dynamic evolutionary processes (e.g., N_{e} and TE abundance), and the limitations of methods used to make inferences about these processes (i.e., N_{e} estimation), all of our analyses fail to provide support for N_{e} as a strong determinant of variation in the composition and characteristics of the repeat element landscape at the phylogenetic level across squamate reptiles. Although our analyses cannot fully reject a demographic hypothesis that a relationship between N_{e} and TE characteristics exists (i.e., we can only fail to reject a lack of relationship), the apparently poor explanatory power of the demographic hypothesis in predicting squamate TE activity and abundance suggests that perhaps other factors, such as variation in molecular mechanisms of TE proliferation, silencing, and removal, may better explain the majority of variation in TE abundance at the phylogenetic level in squamates.

Discussion

This broad glimpse into the diversity of repeat structure and composition of squamate reptile genomes suggests that this lineage possesses particularly distinct and often extreme repeat landscape characteristics compared to other amniotes. Our results provide evidence for surprisingly high variation in the content and composition of genomic repeat elements across
squamate lineages, including 3-fold variation in the identifiable genomic repeat element content. We also discovered that some snake genomes have experienced microsatellite expansion at unprecedented scales through the process of microsatellite-seeding by specific LINEs, leading to genomic microsatellite abundances that are the highest of any known vertebrate genome. Despite such extreme variation in genomic repeat element content, genome size across squamates is remarkably conserved (~ 0.2-fold variation), challenging the prevailing view that genomic repeat abundance and genome size tend to tightly co-evolve (Elliott and Gregory 2015). These findings provide some of the strongest evidence for a dynamic equilibrium or an "accordion" model, in which genomic DNA gain through TE expansion may be approximately balanced by genomic DNA loss through deletion (Petrov 2002; Neafsey et al. 2004; Kapusta et al. 2017). Overall, these results highlight extreme shifts in the structure of squamate reptile genomes, and further beg the question of whether particular aspects of squamate genome function and evolution are also more unique and variable compared to other vertebrates. These findings argue that squamates may represent a particularly powerful model system for testing hypotheses about genome structure, function, and evolution, and their interactions.

Many previous studies focused on population-level dynamics of TE evolution have shown that differences in N_{e} and the efficacy of purifying selection acting against TE proliferation has played a major role in structuring the repeat landscape of many eukaryote genomes (Charlesworth et al. 1994; Neafsey et al. 2004; Song and Boissinot 2007; Petrov et al. 2011; Blass et al. 2012; Le Rouzic et al. 2013; Tollis and Boissinot 2013; Barron et al. 2014; Ruggiero et al. 2017; Xue et al. 2018). Even in squamate species (e.g., Anolis lizards), variation in effective population sizes has been linked to TE insertion length and fixation probability (Tollis and Boissinot 2013; Ruggiero et al. 2017; Xue et al. 2018). Our phylogenetic-scale analyses
across squamate species, however, recovered no clear evidence linking genomic repeat abundance or activity with N_{e} estimates in squamates. Although coalescent-based estimates of N_{e} can be biased by a number of model violations (i.e., population substructure, selection), we also failed to find a significant relationship between genomic repeat characteristics and body mass - a known correlate of N_{e}. Population size is, however, likely to have influenced other aspects of genome evolution, such as fixation of deletions, that could contribute to the maintenance of nearly constant genome size in squamates.

Our results together with those from previous studies suggest that different evolutionary forces may dominate different evolutionary scales, and that while demographic processes (and purifying selection) may dominate population-level trends in TE evolution, phylogenetic-scale patterns in TE landscapes may be more strongly determined by other processes. Evidence for extreme variation in transcriptional levels of TE-derived transcripts across squamates (Castoe et al. 2011), together with evidence from this study of lineage-specific swings in repeat element proliferation, suggest that molecular mechanisms related to TE regulation may be particularly relevant at the phylogenetic-scale in squamates. Squamates may, therefore, represent a valuable system for studying the impacts of variation in molecular mechanisms of TE control, such PIWIInteracting RNA (piRNA) dynamics and efficacy, epigenetic silencing of TEs, lineage-specific TE activity, DNA repair mechanisms, and post-insertion 5^{\prime} removal of TEs. Further studies are needed to address the question of whether variation in molecular mechanisms of TE silencing and activity, as well as DNA repair, explain variation in squamate genomic TE content, and would provide fascinating insight into the factors that shape genomic repeat landscape variation.

Methods

Taxon sampling and library preparation

DNA extraction of 52 squamate samples (total $=45$ species) was performed using a Phenol-Chloroform-Isoamyl alcohol (PCI) extraction protocol. Random shotgun genome libraries were prepared by fragmenting DNA samples to an average length of 300-600bp using a M220 Covaris Ultrasonicator. The NEBNext Illumina DNA Library Prep Kit (New England Biolabs) was used following the manufacturer's protocol to perform fragment-end repair, poly-A tailing, adapter ligation, and library amplification. After library preparation, fragments were size-selected using a BluePippin (Sage Science) for a length of 350-450bp. Pooled multiplexed libraries were sequenced on an Illumina MiSeq with 300bp paired-end reads. Paired-reads were merged based on sequence overlap and were adapter and quality trimmed using CLC genomics workbench v.9.0.1. 454 shotgun sequencing data of 9 snake species from previous studies (Castoe et al. 2011; Castoe et al. 2013) and draft genome assemblies of 12 additional squamate species (Supplementary Data 1) were also included. Our final sampling included a total of 66 different squamate species.

For each species, mitochondrial reads were filtered out in CLC genomics workbench 9.0.1 using the complete mitochondrial genome of the most closely related species available on Genbank (Clark et al. 2016). Reads that mapped to the reference were used to assemble species-specific mitochondrial genomes. Reads that did not map to the reference (i.e., nuclear reads) were used for downstream repeat element annotation and analyses.

Simple sequence repeat (SSR) identification and analysis

We used Pal_finder v0.02.03 (Castoe et al. 2010) (Palfinder hereafter) to identify microsatellites. Default Parfinder parameters were used to identify perfect dinucleotide (2mer), trinucleotide (3mer) and tetranucleotide (4mer) that were tandemly repeated for a total length of at least 12 bp . Perfect pentanucleotide (5mer) and hexanucleotide (6mer) tandemly repeated motifs were annotated only if longer than 15 bp . Loci/Mbp and $\mathrm{bp} / \mathrm{Mbp}$ frequencies were calculated for all microsatellite motifs, length classes (2-6mers), and total content, and summarized per genome and major taxonomic group. Tests for multiple evolutionary rates of microsatellite abundance across lineages, ancestral state reconstruction of genomic microsatellite frequencies, and quantification of microsatellite landscape differentiation among species were performed using the R packages Phytools v.0.4-60 (Revell 2012) and APE v.3.3 (Paradis et al. 2004). For the multiple evolutionary rate analysis of microsatellite (and TE) abundance, we conducted censored rate tests using Phytools with 1000 simulations (to compute p-values) on 100 randomly sampled posterior trees using the restricted maximum likelihood technique (REML) to obtain unbiased estimates of the evolutionary rate parameter (σ) (Adams et al. 2016). We used the time-calibrated phylogeny and the pic function in R (provided by the APE package) to compute phylogenetic independent contrasts for tests of clade-specific differences in genomic microsatellite content. We performed the nonparametric Kruskal-Wallis H test in R after the data rejected normality (Shapiro-Wilks test; p-values <0.05 before and after log transformation) and homogeneity of variances (Bartlett's test; p-values <0.05 before and after log transformation). Between lineages variation was tested using a posthoc Dunn test for multiple comparisons using the BenjaminiHochberg correction method in R (Supplementary Data 6).

Transposable element identification and analysis

Squamate genomic repeat elements were annotated according to homology-based and de novo identification approaches. Because repeat element annotation can be highly dependent on the repeat library used, we built large multi-species (clade-specific) repeat libraries that we used to annotate repeats for all members of a clade. To build these clade-specific libraries, we first performed de novo repeat element annotation on each species (except where already published) using RepeatModeler v.1.0.9 (Smit and Hubley 2008-2017), followed by further repeat classification in CENSOR (Kohany et al. 2006). Second, we built clade-specific de novo repeat element libraries, one for all lizard species (33 species de novo reference library) and one for all snake species (de novo transposable element libraries for 21 species were combined, and merged with the reference library generated by Castoe et al. (2013). Each clade-specific library was then filtered to avoid redundancy of highly similar elements. We tested whether using a single squamate-specific library for all species would change the inferred relative TE content and overall amount of repeat identified; we found no detectable difference between the results of the two masking protocols (Supplementary Fig. 17), and therefore decided to use the two cladespecific libraries in order to reduce masking time by reducing the overall library size. Additional classification of unknown (unclassified) elements was achieved by comparing these unclassified elements to all elements that were classified using BLAST (Johnson et al. 2008). Additionally, we generated squamate-specific BovB and CR1-L3 LINEs reference sequence libraries for all 66 species included (additional information regarding library generation are provided in the following paragraph).

Repeat element analyses were performed in RepeatMasker v.4.0.6 (Smit et al. 2015-2019) with default parameter settings. To maximize element identification, we used a custom bash script to
specify the order of the four libraries used as references for the masking process: (i) BovB-L3 LINEs library, (ii) Tetrapoda RepBase library (version 20.11, 07 August 2015; Bao et al. 2015), (iii) classified elements from the clade specific library for either snakes or lizards, and (iv) unknown elements from the clade specific library. We used the BovB-L3 LINEs library first to control for limited sampling and low quality reference sequences of squamate reptile BovB and L3 LINEs in the tetrapoda library. RepeatMasker output files were post-processed using a custom-modified implementation of the ProcessRepeat script included in the RepeatMasker package. Specifically, we modified the output to include additional summary information in the .tab output file for TE subfamilies that are important and/or frequent in squamate reptiles (e.g., CR1-L3, L2 and Rex). Also, because the provided ProcessRepeat script still reflects old and outdated classification schemes of TEs (e.g., Penelope elements are inappropriately classified as LINEs), we made other modifications to the ProcessRepeat script to correct for such errors according to the classification reported in Chalopin et al. (2015).

Comparing sampled and assembled genomes

We tested whether genomic repeat content estimated from unassembled shotgun genomic datasets were similar to estimates derived from fully-assembled genomes. We compared RepeatMasker estimates of total TE genomic abundance between assembled genomes and unassembled shotgun genomic datasets for the same species (Python molurus, Boa constrictor, Thamnophis sirtalis, and Deinagkistrodon acutus) or for two closely related species belonging to the same genus (Gekko gecko vs. Gekko japonicus and Ophisaurus attenuatus vs. Ophisaurus gracilis). We also tested for potential biases due to unequal genomic sampling in the shotgun datasets. We extracted at random subsamples of $3 \mathrm{Mbp}, 5 \mathrm{Mbp}, 8 \mathrm{Mbp}, 10 \mathrm{Mbp}, 30 \mathrm{Mbp}, 50 \mathrm{Mbp}$, $100 \mathrm{Mbp}, 250 \mathrm{Mbp}$ from unassembled genomic shotgun datasets of 4 species (Python molurus,

Gekko gecko, Ophisaurus attenuatus, and Pantherophis emoryi), and compared RepeatMasker estimates of total TE genomic abundance for each. Read extraction was performed using the subsample_fasta.py script part of the QIIME pipeline (Caporaso et al. 2010). Finally, we compared RepeatMasker estimates of total TE genomic abundance in relation to the amount of sequence data obtained for all Illumina and 454 genomic shotgun datasets to test for biases related to sequencing technology, and for biases related to the amount of sequence data collected per individual, versus estimates of total TE genomic abundance.

CR1 and BovB LINEs phylogenetic and evolutionary analyses

Species-specific consensus sequences for both CR1-L3 and BovB LINE retrotransposons were generated in CLC genomic workbench 9.0.1 using default parameters, a linear gap cost, and the global alignment setting. Nuclear reads for each species were mapped to the consensus sequence of the LINE consensus sequence from the most closely related species available, which was used as initial reference (e.g., both CR1-L3 and BovB reference sequences for the Burmese python were generated by Castoe et al. (2013), and used as reference for building the consensus for the Mexican burrowing python). The first consensus generated was then used as a new reference for further rounds of re-mapping of nuclear reads until no additional mapping reads were recovered. Consensus sequences were determined by simple majority rule consensus, removing regions with coverage $<10 \mathrm{x}$ after the second mapping iteration, and $<20 \mathrm{x}$ in the final mapping. Consensus sequences were aligned in ClustalW (Larkin et al. 2007) with a gap open penalty of 50, and alignments were manually adjusted prior to downstream analyses (Supplementary Data 10, online). To the CR1 consensus sequences generated from our 66 squamate species, we added CR1-L3 and CR1-L2 vertebrate consensus sequences available in RepBase, for a total of 155 sequences (Supplementary Data 10, online). Squamate BovB consensus sequences we generated
from our 66 squamates were combined with other metazoan consensus sequences available in RepBase, for a total of 87 sequences (Supplementary Data 9, online). Bayesian phylogenetic tree reconstruction analyses of squamate CR1 and BovB LINEs were performed in BEAST2 (Bouckaert et al. 2014). Two independent analyses were run for 200 million generations each, following the Yule model of speciation and a relaxed log-normal clock model; MCMC chains were sampled every 1000 generations. The program Tracer v1.6 (Rambaut and Drummond 2007) was used to confirm that the MCMC chains had reached convergence. We conservatively discarded the first 25% of collected MCMC generations as burn-in, based on evidence that the likelihood and parameter values reached stationarity after approximately 15% of the sampling process.

CR1 and BovB LINEs coverage and age analyses

For each species, the species-specific CR1-L3 and BovB consensus sequence was used as a reference to estimate read coverage using the BWA mem alignment tool (Li and Durbin 2009), and the BEDTools2 (version 2.26.0) coverage tool (Quinlan and Hall 2010). Coverage counts were normalized by the total number of reads aligned to the full-length reference sequence. Read coverage was estimated for: (i) each 10bp sliding window, (ii) for the first and second half of the reference sequence, and (iii) for each third of the reference.

We used pairwise sequence divergence from the consensus (pairwise π) as a proxy to infer age and relative element level of activity through time. Pairwise distances values for each element and species were estimated following a custom pipeline starting from BWA alignments. An R (R Core Team) custom script built on the pegas (Paradis 2010) and stringr packages was used to calculate pairwise π estimates using multi-fasta pairwise alignments of reads to the reference.

Because we expected multiple TE subfamilies to exist, sequence divergence was estimated by excluding sites that define different CR1 and BovB subfamilies. For each species, we calculated the relative nucleotide frequency for each position in the multiple sequence alignment, and then calculated the mode of the frequency distribution (bins of 0.01) of the most frequent nucleotide at each position. Sites for which the most frequent nucleotide was in a bin more than 3 bins away from the mode were discarded as defining a separate subfamily.

Time calibrated phylogeny of 66 squamate reptiles

We estimated a time-calibrated phylogeny for the 66 squamate species in our study and an additional 8 outgroup vertebrates for comparative analyses of genomic repeat content. We downloaded and parsed 12 mitochondrial-encoded protein-coding genes for each species with a mitochondrial genome sequence available on Genbank. The same genes were parsed from $d e$ novo assembled mitochondrial genomes after genome annotation in MITOS (Bernt et al. 2013). We aligned the 12 protein coding genes encoded on the mitochondrial heavy strand using MUSCLE v.3.8.21 (Edgar 2004) and concatenated the sequences into a supermatrix alignment to be used for divergence dating ($10,479 \mathrm{bp}$). Prior to divergence dating, we estimated the best-fit partitioning scheme and associated models of nucleotide substitution using Bayesian Information Criterion and the heuristic search algorithm provided in PartitionFinder v. 1.1.1 (Lanfear et al. 2012). We provided a starting partitioning scheme that defined 36 partitions (splitting codon positions for each of the 12 genes). PartitionFinder identified the best-fit partitioning scheme comprising a single partition for each codon position (3 total) and a GTR + I + G model for each partition. We estimated divergence times using BEAST v.2.3.4 (Drummond and Rambaut 2007) with a calibrated Yule model of speciation and a log-normal relaxed clock model. We constrained the topology to that provided from previous studies of the squamate phylogeny and
diversification (Benton and Donoghue 2007; Pyron et al. 2013). We constrained a total of 7 nodes using fossil calibrations also provided in previous studies. Calibration points and associated prior distributions are given in Supplementary Data 11. Two independent MCMC runs were conducted for 100 million generations each, with MCMC chain sampling every 10,000 generations. We assessed convergence to the posterior based on likelihood and parameter stationarity (ESS > 200 for all parameters) using the program Tracer. We discarded the first 10% of generations as burn-in, based on the likelihood and parameter values exhibiting stationarity at around 10% of sampling.

AATAG microsatellite seeding by TE analyses

We performed adjacency analyses of AATAG and ATAG SSR loci on high-quality assembled genomes for seven snake species, and used the green anole lizard as an outgroup. To increase specificity, genomes were first masked only for simple repeats. We extracted coordinates of annotated AATAG and ATAG SSR loci from the .out RepeatMasker output files, and used these coordinates to extract target regions 400 bp upstream and downstream of each microsatellite locus. We then performed a second run of RepeatMasker to mask only TEs located in the extracted target regions that flank AATAG and ATAG loci. Following this strategy, we were able to annotate TEs located in close proximity to SSR loci, and to differentiate TEs that harbor microsatellite-like regions in their reference sequences. The composition of TEs physically associated with SSR loci regions was then compared to the average of five independent randomly generated genomic backgrounds matching in sample size the corresponding microsatellite landscape. For each species, genomic background reads were generated by using the random tool in the BEDTools2 v.2.26.0 package, in which we specified the number of sequences to be extracted and that their length was to match the SSR-adjacent genomic
subsample. The generation of random bed files was performed independently five times per species, the TE composition was averaged across these five genomic backgrounds, and then compared to SSR loci adjacent regions. Fisher's one-tailed exact tests were performed to evaluate the enrichment of TE families in SSR loci regions (at $\alpha=0.01$). Finally, to identify the specific element types involved in microsatellite seeding, we estimated genomic and SSRadjacent conditional probabilities of TE-SSR co-occurrences. We estimated the conditional probability of sampling an AATAG SSR with an adjacent CR1 LINE present within 400 bp , and compared this to the estimated joint probability of sampling an AATAG SSR locus and a CR1 LINE using the genome-wide frequencies. We also calculated the conditional and joint probabilities for Rex LINEs, and compared those to the conditional and joint probabilities of CR1 LINEs, respectively.

Effective population size $\left(N_{e}\right)$ estimation

Whole genomic Illumina pair-end reads for 8 squamate reptiles species were first preprocessed for quality using Trimmomatic (Bolger et al. 2014). Clean paired and unpaired reads were aligned to the respective reference genomes using BWA v.0.7.12, and SNPs were called with SAMtools (v.0.1.18) mpileup (Li et al. 2009). We applied the pairwise sequential Markovian coalescent model (PSMC; Li and Durbin 2011) using a generation time of 3 years across all 8 species (which represents the average of generation time approximations available from the literature; Supplementary Data 12) after verifying that the application of a single generation time yielded results consistent with estimates of average N_{e} produced by the application of generation times within the range reported in the literature. Multiple studies provided evidence of relatively similar mutation rates across lineages of squamates (Castoe et al. 2013; Green et al. 2014). Therefore, in our PSMC analyses we used the generalized squamate mutation rate reported in

Green et al. (2014) of $2.4 \times 10^{9} / \mathrm{year} /$ site (as estimated from 4fold degenerate sites between anole and python). To test the robustness of the returned population estimates, we conducted 100 bootstrap replicate analyses by splitting the scaffolds into smaller segments and randomly sampling the segments with replacement. Default outputs of the psmc_plot.pl script were used to graphically summarize N_{e} changes over time estimations per each bootstrapped sample (Supplementary Fig. 10b).

Coalescent approaches for estimating N_{e} and changes in N_{e} over time (like PSMC) have several intrinsic limitations. Importantly, they rely on explicit assumptions of a single population coalescent model (without subdivision, gene flow, or selection) to estimate the time since the most recent common ancestor of alleles at each locus, as well as an assumed generation time and substitution rate. Population structure has been identified as one major factor that can bias PSMC-based estimates of N_{e} (Nielsen and Beaumont 2009; Mazet et al. 2015; Boitard et al. 2016; Nadachowska-Brzyska et al. 2016). For example, the inferred trend in N_{e} variation of a structured population can portrait either a bottleneck or an expansion in population size whether the alleles were sampled from the same subpopulation or from different subpopulations, respectively (Mazet et al. 2016). Episodes of natural selection can also bias estimates of Ne obtained using PSMC, as selection can manipulate the rate of coalescence at specific loci that are directly or indirectly linked to targets of selection (Schrider et al. 2016; Adams et al. 2018). Given the nature of our data, we are not able to assess the presence and extent of population substructure or selection, and therefore cannot exclude that our PSMC estimates are immune to such biases. Additionally, PSMC has low power at recovering rapid changes in N_{e}, which may be incorrectly estimated to have occurred over a longer period of time, and cannot recover recent nor very ancient changes in N_{e} (e.g., younger than $\sim 10 \mathrm{kyBP}$ and older than $\sim 3 \mathrm{myBP}$ for humans;

Li and Durbin 2011; Mazet et al. 2016). Thus, we suggest caution when interpreting our PSMC estimates of N_{e} and N_{e} changes through time. However, we found low variance across bootstrapped N_{e} estimates once the most recent and most ancient time points are removed, and patterns of expansion and contraction of N_{e} are consistent with alternations of glacial and interglacial periods during the middle Miocene climate transition, the Pliocene and the Pleistocene (Zachos et al. 2001).

In an attempt to cope with biases associated with PSMC estimates of recent and ancient changes in N_{e}, median N_{e} values were calculated after removing the first and the last time points from each sample. We replicated each analysis (see below) after applying different filtering schemes to the standard PSMC outputs (e.g., removal of 10% and 25% of time point data, and inclusion of only time points between 20 kyBP and 10 myBP). Since all tests provided the same conclusions, we report only analyses performed using median N_{e} values that were calculated according to the original filtering scheme. Additionally, we replicated all of our analyses using adult body mass as a proxy for effective population size (Figuet et al. 2016) to avoid potential biases associated with our coalescence-based methods of N_{e} estimation (i.e., Fig. 4e). For each of the 66 squamate species, we obtained adult body mass measurements from the literature (Feldman et al. 2016) which were used to further test for a demographic explanation for variation in repeat content alongside coalescent-based estimates of N_{e}.

Testing demographic explanations of repeat content variation

We performed linear regression analyses to test for correlations between N_{e} and truncation, N_{e} and genomic abundance of BovB and CR1-L3 LINEs, truncation and genomic abundance of repeats, and between truncation and estimates of ages of repeat element activity. We used the pic function in APE and the time-calibrated phylogeny to compute phylogenetic independent
contrasts (PICs) to be used for all linear regressions. These analyses were conducted for both the coalescent-based estimates of N_{e} and adult body mass as a proxy for N_{e}. Since truncation values violated both assumption of normality and homogeneity of variance (Shapiro-Wilks test; p values <0.05 and Bartlett's test; p -values <0.05), we performed statistical analyses on logtransformed values (Shapiro-Wilks test; p-values >0.05 and Bartlett's test; p -values >0.05).

Data availability

New raw, unassembled shotgun sequencing data and new assembled genome data has been deposited at NCBI under the following accessions: PRJNA413172
(https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA413172) and PRJNA413201
(https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA413201). The authors declare that all data and scripts used in this study are available via public databases or available from the corresponding author upon request.

Acknowledgment

Support for this work was provided from startup funds from the University of Texas at Arlington to TAC. We acknowledge the Texas Advanced Computing Center (TACC) for providing access to computational resources.

Figures

Figure 1. Genomic transposable element (TE) abundance and genome size variation in mammals, birds, and squamate reptiles. Branches on the time-calibrated consensus phylogeny are colored according to the estimated rate of genomic TE evolution. Violin plots show distributions of flow cytometry-based genome size estimates for major groups of a mammals, \mathbf{b} birds, and \mathbf{c} squamate reptiles, and the associated heat maps reflect the total genomic TE content (\%) for each taxon. For squamate reptiles, additional heat maps show percent genomic repeat element content, percent genomic GC content, and percentages of major components contributing to the overall repeat element landscape.

Figure 2. Microsatellite seeding by transposable elements (TEs) in squamate reptiles. a Branches on the time-calibrated consensus phylogeny are colored according to estimated rates of genomic CR1-L3 LINE evolution. Heat maps show the total genomic content (\%) of LINE retrotransposon types involved in microsatellite seeding. Associated bar plots represent the total (left), 5mer (middle), and AATAG (right) microsatellite $\mathrm{bp} / \mathrm{Mbp}$ density frequencies for each genome sampled. Red lines to the right of the bar plots highlight pronounced seeding of 5 mer and AATAG microsatellites in colubroid snakes. \mathbf{b} The ratio between TE mapping at the 5^{\prime} tail of AATAG microsatellite loci (AATAG-adjacent) and TE content averaged over five independent, randomly simulated genomic backgrounds for each class of TEs (SINEs; CR1-L3, Rex, CR1-L2 and BovB LINEs; LTRs; and DNA transposons). Ratios are plotted on a log scale to highlight enriched elements flanking AATAG loci (ratio >1) in contrast to elements more abundant in the genomic background (ratio <1). c Histogram shows joint and conditional probabilities of associations between AATAG loci and CR1-L3 and Rex. Genomic joint probabilities are shown in orange and light blue for CR1-L3 and Rex, respectively. AATAG-adjacent conditional probabilities are shown in red and dark blue for CR1-L3 and Rex, respectively.

Figure 3. Evidence for ectoparasite-mediated horizontal transfer of BovB LINEs in squamate reptile genomes. A summarized Bayesian phylogenetic tree of full-length BovB LINE sequences for 87 metazoan species, including two reptile ticks. Branches have been collapsed and colored to represent major clades. Posterior probabilities are shown only at nodes that had posterior support <0.99

Figure 4. Relationships between truncation, effective population size, body mass, and divergence estimates for CR1-L3 and BovB LINE retrotransposons among squamates. a Branches on the timecalibrated consensus phylogenies are colored according to the calculated $3^{\prime}: 5^{\prime}$ read depth coverage ratio for CR1-L3 (left) and for BovB (right) LINEs. Heat maps show the genomic content of CR1-L3 LINEs, total repeats, and BovB LINE retrotransposons represented as percentages of the total genome. For each major clade, violin plots show the density distributions of divergence estimates (pairwise π) for all CR1L3 and BovB elements compared to the species-specific consensus sequence. b Variation in effective population size (N_{c}) over time for five snake species scaled by generation time and mutation rate (" g " and " u " on the x-axis). c Relationship between N_{c} and truncation of CR1-L3 (top) and of BovB (bottom)
LINEs for eight squamate species. d Relationship between total genomic abundance of CR1-L3 (top) and BovB (bottom) LINEs and $N_{\mathrm{c} .}$ e Relationship between adult body mass and degree of truncation across 66 squamate species for CR1-L3 (top) and BovB (bottom) LINEs. f Relationship between age (median pairwise π) and truncation for CR1-L3 (top) and BovB (bottom). Summary statistics from phylogenetically independent contrasts (PIC) are shown as insets for each plot in $\mathbf{c}-\mathbf{f}$. Statistical analyses were performed after \log transformation of truncation values in plots \mathbf{e} and \mathbf{f}.

Supplementary Note 1

Mammal and bird genome size and transposable elements analyses. Genome size estimates based on flow cytometry analyses were retrieved for all mammal, bird and squamate reptile species available on the Genome Size database (Gregory 2017 - last accessed on 05 August 2017; Supplementary Data 2) These estimates were used to calculate ranges of genome size for each lineage and for each major clade of mammals, birds and squamate reptiles (Fig. 1). For bird and mammal species, we reported estimates of the genomic TE content when de novo repeat annotation had previously been performed for each individual species if available. For mammal species, we report estimates available on the RepeatMasker online database (Smit et al. 20152019), and we used data available in Kapusta et al. (2017) for bird species (Supplementary Data 1).

Supplementary Figures

b

Supplementary Figure 1. Consistency of transposable element genomic content estimates across sequencing techniques, data assembly methods and proportion of genome sampled. a) Scatterplot shows estimates of genomic TE content in relation to the amount of genome sampled from unassembled shotgun sequencing data using Roche 454 (454) and Illumina MiSeq (IMS) sequencing technologies. b) Comparison of genomic TE content estimates across subsamples of the total amount of sequence data obtained. c) Comparison of TE estimates between unassembled genomic shotgun reads and assembled whole genomes for the same species or for closely related species belonging to the same genus (left); boxplot shows the distribution of genomic TE estimates for the same species, clustered according to major squamate reptile clades (right).

Supplementary Figure 2. Genomic repeat element landscape for 66 squamate reptile species. Branches on the time-calibrated consensus phylogeny (left) are colored according to the estimate rates of total genomic repeat elements masked (\%), allowing for an intuitive visualization of the extent of the variation in repeat element content across squamates (dark blue = lower values, red = higher values). Heat map (right) reflects variation in the relative abundance of repeat elements across 66 squamate species, and highlights both between and within clade significant differences. For example, Gypsy LTR and Tc1 DNA transposons are more abundant in the genomes of colubroid snakes than in other squamate genomes. Cells in the heat map are colored according to the color gradient: dark blue= low; yellow= high. From left to right: Short Interspersed Nuclear Elements (SINEs); Long Interspersed Nuclear Elements (LINEs); Penelope-Like Elements (PLEs); DIRS; Long Terminal Repeat (LTR) retrotransposons, and DNA transposons.

Supplementary Figure 3. Censored rate test results for lineage-specific rates of repeat elements evolution across seven major squamate clades. Box plots represent the rate parameter ($\sigma 2$) estimates obtained across 100 trees sampled from the posterior distribution inferred from BEAST for the 7 major clades: gekkota(3), scincoidea(7), lacertoidea(3), anguimorpha (5), iguania (15), non colubroid snakes (9), and colubroidea (24). The null hypothesis of a single rate of evolution for all branches was rejected for all 600 censored rate tests (100 tree for all major families of TEs and for the total repeat element and TE content; for all tests, p-values <0.01). Results confirm that, during squamate evolution, different lineages experienced differential rates of repeat element genomic accumulation (e.g., SINEs and LTRs in colubroidea and gekkota, or LINEs in colubroidea specifically). Results are shown for (a) total repeat element content, (b) total TE content, (c) Short INterspersed Elements (SINEs), (d) Long INterspersed Elements (LINEs), (e) Long Terminal Repeats (LTRs), and (f) DNA transposons genomic percentages.

Supplementary Figure 4. Relationship between genomic GC content (\%) and genomic TE, SSR and total repeat content (\%). Scatter plots reflect the relationship between average genomic GC content and genomic estimates of the major components of the repeat element landscape (\%) for each clade of squamate reptiles (lizards = blue; non colubroid snakes = yellow; colubroidea $=$ dark red). a) Analysis of the the genomic GC content and total TE content (\%). b) Analysis of the the genomic GC content and microsatellite (SSR) estimates performed in RepeatMasker. c) Analysis of the genomic GC content and total repeat element estimates. d) Phylogenetically independent contrasts (PICs) between genomic GC content, $\mathrm{TE} \%, \mathrm{SSR} \%$ and total repeats (RE) $\%$, for all squamates (top left) and for individual squamate lineages.

Supplementary Figure 5. Observed total microsatellite frequencies and their lineage-specific evolutionary rates across 66 squamate species. Horizontal bar plots represent the observed total microsatellite $\mathrm{bp} / \mathrm{Mbp}$ (top) and loci/Mbp (bottom) density frequencies for each squamate genome sample. Branches on the time-calibrated consensus phylogeny are colored according to the estimated rates of microsatellite evolution.

Supplementary Figure 6. Censored rate test results for lineage-specific rates of microsatellite evolution across seven major squamate clades. Box plots represent the rate parameter $\left(\sigma^{2}\right)$ estimates obtained across 100 trees sampled from the posterior distribution inferred from BEAST for the 7 major clades: gekkota(3), scincoidea(7), lacertoidea (3), anguimorpha (5), iguania (15), non colubroid snakes (9), and colubroid snakes (24). The null hypothesis of a single rate of evolution for all branches was rejected for all 600 censored rate tests (100 tree for total loci/Mbp microsatellite density estimates and for 2-6mer SSR loci/Mbp density estimates; for all tests, p -values <0.01). Results confirm that, during squamate evolution, there has been a significant expansion of all microsatellite types among the colubroidea branch specifically compared to all other squamates. Results are shown for (a) total microsatellite content, (b) 2 mer , (c) 3 mer , (d) 4 mer , (e) 5 mer , and (f) 6 mer loci/ Mbp density frequencies.

Supplementary Figure 7. Observed ATAG microsatellite loci frequencies and their lineage-specific evolutionary rates across 66 squamate species. Horizontal bar plots represent the observed ATAG 4mer microsatellite $\mathrm{bp} / \mathrm{Mbp}$ (top) and loci/ Mbp (bottom) density frequencies for each squamate genome sampled. Branches on the time-calibrated consensus phylogeny are colored according to the estimated rates of microsatellite evolution.

Supplementary Figure 8. Observed AATAG microsatellite loci frequencies and their lineage-specific evolutionary rates across 66 squamate species. Horizontal bar plots represent the observed AATAG 5mer microsatellite $\mathrm{bp} / \mathrm{Mbp}$ (top) and loci/Mbp (bottom) density frequencies for each squamate genome sampled. Branches on the time-calibrated consensus phylogeny are colored according to the estimated rates of microsatellite evolution.

Supplementary Figure 9a. Phylogenetic tree reconstruction of 87 metazoan BovB sequences. Bayesian phylogenetic tree was built using BEAST2. 141 metazoan sequences were initially aligned in Clustal W, then manually edited and curated (final alignment length of 3134 bp). For displaying purposes, we pruned the RTE-2 sequences of monotremata used as outgroup to root the tree. Posterior values are reported only for nodes with posterior support <0.99.

Supplementary Figure 9b. Phylogenetic tree reconstruction of 161 metazoan CR1-L3 LINE sequences. Bayesian phylogenetic tree of the full length CR1-L3 ORF was built using BEAST2. 161 vertebrate sequences were initially aligned in ClustalW, then manually edited and curated (final alignment length of 2967 bp). Posterior values are reported only for nodes with posterior support <0.99. For displaying purposes, we pruned L2 LINEs that were used as outgroup to root the tree and extremely divergent CR1 sequences of Xenopus tropicalis (Xt 1a and 1b), Danio rerio (Dr 29) and of Latimeria chalumnae (Lme $1)$.

Supplementary Figure 10a and b. Effective population size (N_{e}) changes over time. a) Box plot shows the distribution of effective population size over time inferred from each genome. The first and the last time points were excluded from the input dataset. b) PSMC estimates of the changes in N_{e} over time inferred from each genome applying a generation time of 3 years and a mutation rate of 0.2×10^{-8}. Plots were generated using all time points per bootstrapped sample using the psmc_plot.pl script.

Supplementary Figure 10c. Relationship between effective population size (N_{e}) and truncation. Scatter plots and associated phylogenetically independent contrasts (PICs) show a lack of a correlation between median PSMC estimates of N_{e} and truncation of CR1-L3 LINEs (left) and BovB LINEs (right). Adjusted R-squared values and p-values were calculated using raw, untransformed data.
d

e

- Ophisaurus gracilis (Og)	- Pogona vitticeps (Pv)
- Crotalus mitchellii (Cm)	Crotalus viridis (Cv)

- Python molurus (Pm) Boa constrictor (Bc)	
Deinagkistrodon acutus (Da)	Thamnophis sirtalis (Ts)

Supplementary Figure 10d and e. Relationship between effective population size $\left(N_{e}\right)$ and genomic repeat content. d) Scatter plots and associated PICs reflect a lack of correlation between PSMC median estimates of N_{e} and total genomic frequency of CR1-L3 LINEs (left), and a significant positive correlation opposite to what would be expected between median N_{e} and BovB genomic content (right). e) Scatter plots and associated PICs reflect a lack of correlation between PSMC median estimates of N_{e} and total repeat element genomic content (left), and total TE content (right).

Supplementary Figure 11. TE truncation and genomic content. Scatter plots and associated phylogenetically independent contrasts (PICs) reflect a lack of correlation between degree of truncation and total genomic content of CR1-L3 LINEs (a, left), and a weak, although significant, negative correlation between degree of truncation and total genomic content of BovB LINEs (a, right).
Additionally, we report a lack of correlation between total genomic TE content and the truncation level of BovB (b, right) across squamate reptile species. For CR1-L3, we report a positive correlation that contrast model expectations. Truncation values were log-transformed prior to perform statistical tests to meet the assumption of normality.

Supplementary Figure 12a and b. Relationship between adult body mass and truncation across 66 squamate species. a) Expected trends linking adult body mass (here used as proxy for effective population size) under a demographic explanation of the relationship between repeat element genomic abundance and TE copy length (truncation). b) Scatter plots and associated phylogenetically independent contrasts (PICs) show the lack of significant relationships between adult body mass and CR1-L3 (left) and BovB (right) truncation, which contrast with what would be expected under the demographic model. Truncation values were log-transformed prior to statistical tests to meet the assumption of normality.

Supplementary Figure 12c and d. Relationship between adult body mass, repeat and TE content across 66 squamate species. c) Expected trends linking adult body mass (here used as proxy for effective population size) according to a demographic explanation of repeat element genomic abundance. d) Scatter plots and associated phylogenetically independent contrasts (PICs) show a significant relationship between adult body mass, total genomic repeat element content (left) and TE content (right), a trend opposite to what would be expected according to the model.

Supplementary Figure 13. Relationship between median sequence divergence of CR1-L3 and BovB LINEs and their genomic abundance. Species-specific consensus sequences were used as reference to calculate estimates of nucleotide divergence (pairwise π) for all alignable CR1-L3 (left) and BovB (right) sequences. We excluded sites that appeared to define subfamilies prior to pairwise π estimation, and calculated relative frequency including only sequences with $\pi<0.2$. Scatter plots (top) and associated phylogenetically independent contrasts (PICs, bottom) show no correlation between the median pairwise nucleotide diversity (used as a proxy for element age) and genomic abundance of CR1-L3 and BovB LINEs. Truncation values were log-transformed prior to performing statistical analyses to meet the assumption of normality.
Typhlops reticulatus and Anilius scytale were not included in analyses of BovB LINEs (age data not retrievable).

Supplementary Figure 14a. Observed truncation patterns of CR1-L3 LINEs across 66 squamate species. Top: line graph shows the average relative coverage of mapped reads along the ORF2 of CR1-L3 LINE consensus sequences for each major squamate group. Position is reported relative to the 3 'end of the reference. Bottom: horizontal bar plot reports the extent of truncation for each squamate species sampled, calculated as the ratio of read depth coverage of reads mapping to the second half (3^{\prime}) and to the first half $\left.5^{\prime}\right)$ of the consensus. Branches on the time-calibrated phylogeny are colored accordingly the degree of truncation.
b

Supplementary Figure 14b. Observed truncation patterns of BovB LINEs and lineage-specific evolutionary rates across 66 squamate species. Top: line graph shows the average relative coverage of mapped reads along BovB consensus sequences for each major squamate group. Position is reported relative to the 3'end of the reference. Bottom: horizontal bar plot reports the extent of truncation for each squamate species sampled, calculated as the ratio of read depth coverage of reads mapping to the second half (3^{\prime}) and to the first half (5^{\prime}) of the consensus. Branches on the time-calibrated phylogeny are colored accordingly the degree of truncation.

Supplementary Figure 15. Estimated sequence divergence of CR1-L3 and BovB LINEs. Speciesspecific consensus sequences were used as reference to calculate estimates of divergence levels (pairwise π) for all alignable CR1-L3 (left) and BovB (right) sequences. We excluded sites that appeared to define subfamilies prior to pairwise π estimation, and calculated relative frequency including only sequences with $\pi<0.2$. Violin plots show the empirical distribution of sequence divergence from the consensus for each species according to a kernel density estimation (KDE). Species with higher frequency of copies on the leftmost side of the violin plot are characterized by more recent amplification of the TE subfamily. Data that satisfies the filtering parameters are missing for Typhlops reticulatus and Anilius scytale BovBs.

nucleotide diversity (pairwise π)
Supplementary Figure 16. Estimated sequence divergence of CR1-L3 and BovB LINEs. Speciesspecific consensus sequences were used as reference to calculate estimates of divergence levels (pairwise π) for all alignable CR1 (a) and BovB (b) sequences. We excluded sites that appeared to define subfamilies prior to pairwise π estimation, and calculated relative frequency including only sequences with $\pi<0.2$. Line graphs show the average sequence frequency distribution for each major squamate clade with detailed taxonomic organization of lizard species. Clades with higher relative frequency of copies on the leftmost side of the plot are characterized by a more recent amplification of the TE subfamily (e.g., Gekkota and Scincoidea for CR1-L3, and Anguimorpha for BovB).
a

Lepidophima mayae

Supplementary Figure 17. Masking strategy comparison for two squamate species. Pie charts report the repeat element genomic composition for (a) one lizard -Lepidophyma mayae- and (b) one snake Coniophanes fissidens- species (randomly chosen for the comparative analysis). Charts on the left report masking results performed in RepeatMasker using a lineage specific repeat element reference library, whereas charts on the right reflect data generated using a single squamate repeat element reference library. Given that the two strategies brought to no difference in the masking quality, we consistently used the first approach (lineage-specific library) for within lineage consistency and optimization of RepeatMasker running time.

Chapter 3

The origins and evolution of chromosomes, dosage compensation, and mechanisms underlying venom regulation in snakes

Drew R. Schield ${ }^{1}$, Daren C. Card ${ }^{1}$, Nicole R. Hales ${ }^{1}$, Blair W. Perry ${ }^{1}$, Giulia M. Pasquesi ${ }^{1}$, Heath Blackmon ${ }^{2}$, Richard H. Adams ${ }^{1}$, Andrew B. Corbin ${ }^{1}$, Cara F. Smith ${ }^{3}$, Balan Ramesh ${ }^{1}$, Jeffery P. Demuth ${ }^{1}$, Esther Betrán ${ }^{1}$, Marc Tollis ${ }^{4}$, Jesse M. Meik ${ }^{5}$, Stephen P. Mackessy ${ }^{3}$, and Todd A. Castoe ${ }^{1, \S}$

1. Department of Biology, University of Texas at Arlington, Arlington, TX, USA
2. Department of Biology, Texas A\&M University, College Station, TX, USA
3. School of Biological Sciences, University of Northern Colorado, Greeley, CO, USA
4. School of Life Sciences, Arizona State University, Tempe, AZ, USA
5. Department of Biological Sciences, Tarleton State University, Stephenville, TX, 76402 USA

Abstract

Here we use a chromosome-level genome assembly of a prairie rattlesnake (Crotalus viridis), together with Hi-C, RNA-seq, and whole genome resequencing data, to study key features of genome biology and evolution in reptiles. We identify the rattlesnake Z chromosome, including the recombining pseudoautosomal region, and find evidence for partial dosage compensation driven by an evolutionary accumulation of a female-biased upregulation mechanism. Comparative analyses with other amniotes provides new insight into the origins, structure, and function of reptile microchromosomes, which we demonstrate have markedly different structure and function compared to macrochromosomes. Snake microchromosomes are also enriched for venom genes, which we show have evolved through multiple tandem duplication events in multiple gene families. By overlaying chromatin structure information and gene expression data we find evidence for venom gene-specific chromatin contact domains, and identify how chromatin structure guides precise expression of multiple venom gene families. Further, we find evidence for venom gland-specific transcription factor activity, and characterize a complement of mechanisms underlying venom production and regulation. Our findings reveal novel and fundamental features of reptile genome biology, provide insight into the regulation of snake venom, and broadly highlight the biological insight enabled by chromosome-level genome assemblies.

Introduction

Squamate reptiles have become important models for a broad range of research, including studies on genome structure (Alfoldi et al. 2011), coevolution (Geffeney et al. 2002), development (Cohn and Tickle 1999), and regenerative biology (Secor and Diamond 1998). Among squamates, snakes represent an enriched system for studying a number of extreme or unique biological features. For example, snakes are an emerging model system for studying sex chromosome evolution, given their lack of apparent global dosage compensation (Vicoso et al. 2013), independent origins of ZW and XY sex determination systems (Gamble et al. 2017), and wide range of differentiation between sex chromosomes among lineages (Matsubara et al. 2006). Snakes also possess microchromosomes, which have been shown in birds to have intriguing and unique genome biology (Hillier et al. 2004; Backstrom et al. 2010), but are virtually uncharacterized in reptiles. Snake venom systems are the most intensely studied feature of snake biology due to their medical relevance (Mackessy 2010), and also because they provide a unique opportunity to study the evolution of a complex phenotype that required gene duplication, shifts in gene function and regulation, and numerous structural and physiological adaptations for venom storage and delivery. Although numerous studies have characterized the composition and activity of snake venoms, progress in understanding the genomic context for venom evolution and precise cellular and regulatory mechanisms underlying venom expression has been severely limited by the fragmentary nature of existing snake genome assemblies (Bradnam et al. 2013; Castoe et al. 2013; Vonk et al. 2013; Yin et al. 2016).

Here we leverage a chromosome-level assembly of the genome of the prairie rattlesnake (Crotalus viridis), assembled using a combination of second-generation sequencing and $\mathrm{Hi}-\mathrm{C}$ scaffolding (Lieberman-Aiden et al. 2009), to study key questions about reptile and snake genome biology that have been previously difficult to address due to the fragmentary genome assemblies available for reptile species. We trace patterns of chromosome-level synteny and composition across amniotes, specifically exploring synteny between reptile and avian genomes and testing hypotheses about the evolution of GC-isochore structure in reptiles. We further characterize genome-wide chromatin contacts using Hi-C data to demonstrate differences between classes of chromosomes, and distinctions from patterns observed in mammalian datasets. Rattlesnakes have highly-differentiated ZW sex chromosomes (Matsubara et al. 2006), and we use our genome and additional resequenced genomes to identify the Z chromosome, the pseudoautosomal region of Z and W chromosomes, and an evolutionary stratum in the process of degeneration. We further studied patterns of partial dosage compensation and used inferred ancestral genome-wide expression levels to characterize the evolution of dosage compensation in snakes. Lastly, we use a combination of $\mathrm{Hi}-\mathrm{C}$ chromatin contact data from the rattlesnake venom gland, RNA-seq data from diverse tissues, and the chromosomal locations of snake venom gene families to identify mechanisms of venom gene regulation in the venom gland.

Results

Genome assembly and annotation

We sequenced and assembled a rattlesnake reference genome from a male prairie rattlesnake (Crotalus viridis viridis) that was sequenced at 1,658-fold physical coverage using multiple approaches including the Dovetail Genomics HiRise sequencing and assembly method (Putnam
et al. 2016) that combines Chicago (Putnam et al. 2016; Rice et al. 2017) and Hi-C (LiebermanAiden et al. 2009) data, yielding a final scaffold length of 1.34 Gbp (Supplemental Fig. S1, Supplemental Tables S1, S2). Our annotation, which incorporated data from 24 RNA-seq libraries (Supplemental Table S3), included 17,352 protein-coding genes and an annotated repeat element content of 39.49% (Supplemental Tables S4, S5). Macrochromosomes were matched to scaffolds based on scaffold size and known chromosome-specific markers (Matsubara et al. 2006; Supplemental Table S6). Of six chromosomal markers from (Matsubara et al. 2006) that did not map to predicted chromosomes in our rattlesnake assembly, we were able to corroborate the accuracy of our assembly for five using multiple lines of evidence, including cross-species synteny with Anolis and local Hi-C contact frequencies (Supplemental Methods, Supplemental Table S7, Supplemental Fig. S2). We also identified the rattlesnake Z Chromosome using multiple lines of evidence, which we discuss below. In our preliminary assembly, microchromosomes were over-assembled into a single large scaffold, which we manually split based on multiple lines of evidence (see below and Supplementary Methods). The refined assembly had microchromosome scaffolds with lengths matching the predicted sizes of rattlesnake chromosomes (Baker et al. 1972). Our chromosome-level scaffolds include assembled telomeric and centromeric regions, with centromeres containing an abundant 164 bp monomer (Supplemental Fig. S3).

Synteny and chromosomal composition

The rattlesnake microchromosomes contain higher and more variable GC content than do the macrochromosomes, and have particularly high gene density (Welch's two-sample t-test on 100 kb windows, p-value <0.00001) and reduced repeat element content compared to
macrochromosomes (Welch's two-sample t-test, $p<0.00001$; Fig. 1A). These patterns are similar to those in the chicken (Supplemental Fig. S4). Rattlesnake chromosomes are highly syntenic with those from Anolis, except for fusion/separation of Anolis Chromosome 3 into rattlesnake Chromosomes 4 and 5 (Fig. 1B, Supplemental Fig. S5). Our synteny inferences also confirm that Anolis Chromosome 6 is homologous to the sex chromosomes of rattlesnakes (Srikulnath et al. 2009). Despite conservation of squamate microchromosome homology, patterns of chicken-squamate homology suggest that there were major shifts between macro- and microchromosome locations for large syntenic regions early in amniote evolution. We find evidence for multiple macrochromosomal shifts in synteny between the chicken and squamate reptiles, some of which appear quite complex. For example, the chicken Chromosomes 1 and 2 show synteny patterns that are scattered across multiple squamate macrochromosomes, including the rattlesnake Z Chromosome. Furthermore, only about half of chicken microchromosomes are syntenic with squamate microchromosomes (Fig. 1B), while the rest of chicken microchromosomes share synteny with squamate macrochromosomes. Despite independent origins of some avian and squamate microchromosomes, there are broad similarities among squamate and avian microchromosomes (e.g., GC content variation, gene density; Supplemental Fig. S4). Further, the presence of microchromosomes in most extant diapsids (Olmo 2005; Organ et al. 2008), the ancestral diapsid genome (O'Connor et al. 2018), amphibians (Voss et al. 2011), and fish (Braasch et al. 2016) broadly suggest that the majority of vertebrate evolution has been shaped by the distinctive, but poorly understood biology of microchromosomes.

GC-isochore and repeat element evolution

Squamate reptiles have become important models for studying the evolution of genomic GC content and isochore structure, due to the loss of GC isochores in Anolis yet the apparent reemergence of isochore structure in snakes (Fujita et al. 2011; Castoe et al. 2013). Comparisons of orthologous genomic regions across 12 squamates demonstrates that there have been two major transitions in genomic GC content, including a reduction in GC content from lizards to snakes, and a further reduction in GC content within the colubroid snake lineage that includes the rattlesnake and cobra (Fig. 1C). This suggests that higher genome-wide GC content was likely the ancestral squamate condition, and that snakes have evolved increased nucleotide composition variation through an increase in genomic AT content, rather than a buildup of GC-rich isochores. Based on studies of mammals (Duret and Galtier 2009), GC isochore structure is thought to be driven mainly by GC-biased gene conversion that results in GC-biased allele substitution in some genomic regions. The negative relationship between genomic GC content (Fig. 1C) and GC isochore structure (Fig. 1D; Supplemental Table S8) across squamate evolution indicates that this explanation may not apply to the apparent trends in snakes. Instead, GC content variation in snakes appears to be driven by AT-biased processes, including AT-biased substitution that was suggested by previous comparisons of lizard and snake genomes (Castoe et al. 2013). Similar to the patterns observed in GC content variation, genomic repeat element content has also undergone a major shift in colubroid snakes, which show substantial increases in transposable elements overall, and specific increases in hAT and Tc1 DNA elements, CR1-L3 LINES, and simple sequence repeats (SSRs; Fig. 1E, Supplemental Fig. S6). It remains an open question, however, if shifts in GC content and genomic repeat landscapes are related in colubroid snakes (see also Pasquesi et al. 2018).

Sex chromosome evolution

Snake sex chromosomes have evolved multiple times, apparently from different autosomal chromosomes (Gamble et al. 2017), and colubroid Z/W Chromosomes are homologous with Anolis Chromosome 6 (Srikulnath et al. 2009; Vicoso et al. 2013). We identified a single 114 Mb scaffold as the rattlesnake Z Chromosome that contains known Z-linked genes (Matsubara et al. 2006; Supplemental Table S6), and demonstrates roughly half female (ZW) versus male (ZZ) mapped genomic read coverage based on additional male and female samples we sequenced (Fig. 2A; Supplemental Fig. S7; Supplemental Table S9). We also identified the recombining pseudoautosomal region (PAR) of the Z Chromosome as the distal 7.2 Mb region that shows equal male-female genomic read coverage (Fig. 2A). The PAR is GC-rich relative to the genomic background and the remaining Z chromosome (42.9\%; Supplemental Fig. S8), similar to the PAR of the collard flycatcher (Smeds et al. 2014), suggesting that common processes may drive increased PAR GC content in independently evolved snake and avian sex chromosomes. The rattlesnake PAR also exhibits distinctive patterns of repeat element content (Supplemental Fig. S9) and a higher density of genes than the remaining Z Chromosome (Fisher's exact test: p $=4.46 \times 10^{-7}$; Supplemental Fig. S10). Adjacent to the PAR, we identified an evolutionary stratum ('Recent Stratum') that shows near-autosomal female genomic read coverage (Fig. 2A, top panel). We hypothesize that recombination was most recently suppressed in this region, and that substantial homology is retained between Z and W Chromosomes. Consistent with this hypothesis, we observe elevated nucleotide diversity (π) across this region specifically in females (Fig. 2A, Supplemental Fig. S11), likely due to reads mapping to divergent Z and W-linked gametologs. These results suggest that a number of W-linked gametologs have either been retained during Z / W divergence, or are still in the process of degeneration, as has been suggested
for birds (Bellott et al. 2017). To further understand the evolutionary origins of the Recent Stratum, we compared mappings of female and male resequencing data for the Prairie Rattlesnake with those from the Pygmy Rattlesnake (Sistrurus catenatus) and Five Pace Viper (Deinagkistrodon acutus). Both species exhibit similar patterns of intermediate female normalized coverage across the Recent Stratum (Supplemental Fig. S7), suggesting that this evolutionary stratum evolved prior to the divergence between the Prairie Rattlesnake and Five Pace Viper greater than 30 million years ago (Zheng and Wiens 2016). Collectively, the features of the Recent Stratum suggest that recombination suppression and degeneration are ongoing processes in pitvipers, despite the already high differentiation between Z and W Chromosomes (Matsubara et al. 2006).

Patterns of gene expression between heterogametic and homogametic sexes in organisms with differentiated sex chromosomes are of broad interest because of the diversity of mechanisms that can result in dosage compensation (Graves 2016). To investigate dosage compensation in the rattlesnake we compared female and male RNA-seq data from kidney and liver tissues across the rattlesnake Z Chromosome (Supplemental Table S9). We find evidence from both tissues for lower overall expression in the female (Fig. 2B, left panel; Supplemental Fig. S12), consistent with previous conclusions that female colubroids lack complete dosage compensation (Vicoso et al. 2013), but also that this ratio is higher than expected if there were no dosage compensation (i.e., $\log _{2}$ female/male expression >-1, Wilcoxon signed-rank tests, p -values $<2.2 \times 10^{-16}$). We also find that chromosome-wide gene expression is higher on the Z than on autosomes for males (Mann-Whitney U tests, p -values <0.0002), yet lower on the Z than on autosomes for females (p-values <0.02; Fig. 2B). Consistent with this, the Z is also enriched for male-biased genes, and
depauperate in female-biased genes, relative to autosomes (Supplemental Fig. S13; Fisher's exact tests, p -values $<2 \times 10^{-5}$).

To understand how patterns of gene expression on the Z have evolved, we compared current Z gene expression in our rattlesnake samples to inferred ancestral (i.e., proto-Z) expression, based on expression levels in autosomal orthologs of the rattlesnake Z genes in the anole and chicken (following Julien et al. 2012; Marin et al. 2017). We find that current male Z expression has not changed from the inferred male proto-Z expression level (Fig. 2C; Supplemental Fig. S12), but that current female Z expression is lower than ancestral female expression (Mann-Whitney U tests, p -values <0.005). This finding suggests that female Z expression diminished after the establishment of sex chromosomes in the rattlesnake. Combined with evidence that current male Z expression is higher than autosomes, these findings raise the question of whether ancestral expression levels predisposed the proto-Z (e.g., Anolis Chromosome 6) to become the rattlesnake Z. We addressed this by comparing inferred ancestral Z and autosomal expression (Fig. 2C), and find that the ancestor of the rattlesnake Z shows higher expression in both sexes than ancestral autosomes (Mann-Whitney U tests, p -values <0.02). These findings suggest that, due to the enrichment of male-specific function and the overall elevated level of expression, characteristics of the rattlesnake Z ancestor may have favored its transition from autosome to sex chromosome.

No mechanisms underlying partial dosage of genes or regions have been identified in snakes. The ratio of female/male gene expression is regionally variable across the rattlesnake Z , suggesting partial dosage compensation driven by regional or gene-specific mechanisms (Fig. 2 A , bottom panel). We hypothesized that an inherently female-biased regulatory mechanism, estrogen response elements (EREs), might explain dosage compensated regions, and tested for a
relationship between the ratio of female/male expression and the number of predicted EREs in 100 kb windows of the Z chromosome. There is a positive relationship between ERE density and female/male expression for rattlesnakes on the rattlesnake Z (Fig. 2D), yet we do not find this relationship for the analogous comparison of Anolis female/male expression and ERE density on Anolis Chromosome 6 (Supplemental Fig. S14). We also find that that the rattlesnake Z Chromosome has a much higher density of EREs than Anolis Chromosome 6 (two-sample Z test, p-value $<2.2 \times 10^{-16} ;$ Fig. 2D) and is enriched for EREs compared to the genomic background (Fisher's exact test, p-value $<2.2 \times 10^{-16}$), despite a much higher density of EREs in the Anolis genome overall. To further understand if ERE accumulation is a general feature of snake Z Chromosome evolution, we also analyzed Z Chromosome and autosomal sequences of the Five Pace Viper, and find consistent evidence for ERE enrichment on the Z Chromosome compared to Anolis Chromosome 6 (Supplemental Fig. S15; Fisher's exact test, p-value $=0.00016$) Our results illustrate that the evolution of the pitviper Z Chromosome has involved regional accumulation of EREs, which may be an important mechanism underlying regional dosage compensation.

Hi-C exposes unique microchromosome biology

Our analyses of the first chromatin contact data for a non-mammalian vertebrate (Fig. 3A) demonstrate broad similarities in chromatin structure across vertebrate macrochromosomes, yet unique features of snake microchromosomes. We find that patterns of intra- and interchromosomal chromatin contacts across rattlesnake macrochromosomes are consistent with patterns observed in mammals, such that when interchromosomal contact frequencies are normalized by chromosome length, they show a consistent negative linear relationship across
species (Fig. 3B). Rattlesnake microchromosomes deviate significantly from this macrochromosomal pattern, and share disproportionately high frequencies of contacts with other chromosomes, including other microchromosomes (Fig. 3A-B). Indeed, the initial over-assembly (Supplemental Fig. S16) of microchromosomes into a single scaffold was likely driven by these unexpected high contact frequencies among microchromosomes, which significantly exceed assumptions used for assembly that are based on mammalian macrochromosomes (t-test, $\mathrm{p}<$ 0.000001). These findings highlight the uniqueness of microchromosome interactions within the nucleus of the rattlesnake venom gland, and beg the question of whether distinctive chromatin contacts are a consistent feature of microchromosomes in other amniotes.

Venom evolution and regulation

While numerous studies have characterized the diversity of venom composition among snake species (e.g., Mackessy 2008; Casewell et al. 2009; Casewell et al. 2012; Rokyta et al. 2012), the chromosomal location of venom genes and mechanisms underlying the regulation of venom remain poorly understood. Our rattlesnake genome provides the genomic location and context for snake venom genes (Fig. 4A; Supplemental Fig. S17; Supplemental Tables S10, S11) and demonstrates that microchromosomes are enriched for these genes (i.e., 37% of all venom genes are found on microchromosomes which represent 10% of the genome; Fisher's exact test, $p=$ 0.0017; Fig. 4A). Moreover, microchromosome-linked venom gene families include three of the most abundant and well-characterized components of rattlesnake venom (Fig. 4A, snake venom metalloproteinases, $S V M P s$; snake venom serine proteinases, $S V S P s$; and type IIA phospholipases A2, PLA2s) - each of these families is located on a different microchromosome (Fig. 4A; Supplemental Fig. S17). The other major component of prairie rattlesnake venom,
myotoxin (crotamine), is located on Chromosome 1 (Fig. 4A). To identify patterns of venom gene family evolution we conducted phylogenetic estimates of each of the microchromosomelinked families listed above (including non-venom paralogs). We inferred that each venom family represents a distinct set of tandemly-duplicated genes derived from a single ancestral homolog that gave rise to a monophyletic cluster of venom paralogs (Supplemental Figs. S18, S19). While this has been proposed previously (Ikeda et al. 2010; Vonk et al. 2013), the contiguity of our genome provides new definitive evidence that this duplicative mechanism explains the origin of multiple unlinked snake venom gene clusters.

The depletion of venom is followed by the rapid expression, synthesis, and storage of proteins in the venom gland lumen over the course of several days. To investigate the regulation of venom production we compared gene expression between venom glands and body tissues, and identified a set of 12 transcription factors (TFs) with significantly higher expression in the venom gland (Fig. 4B; Supplemental Fig. S20; Supplemental Table S12). Many of these TFs were linked to the secretory demands of the venom gland (e.g., the unfolded protein response of the endoplasmic reticulum: $A T F 6$ and $C R E B 3 L 2$) or repair of the glandular epithelium (e.g., ELF5). While the potential involvement of these TFs in regulating venom production cannot be entirely ruled out, we did not find evidence of predicted binding sites that would suggest a role in directly regulating venom genes (Supplemental Table S12). Five transcription factors, however, stood out as candidates for regulating venom gene expression based on their known regulatory functions, links to established mechanisms of venom production, and the proximity of their predicted binding sites to venom genes (Fig. 4B).

Though neither TFs or transcriptional mechanisms regulating venom production have been precisely identified, there is evidence that following venom depletion, venom production is triggered by al-adrenoceptors that activate the ERK signaling pathway (Kerchove et al. 2008). One of the venom-gland upregulated TFs was GRHL1, which is known to function in epidermal barrier formation and repair (Ting et al. 2005), and is regulated directly by ERK (Kim and McGinnis 2011). We also identified a set of four Nuclear Factor 1 (NFI) TFs, all of which share the same predicted binding site and are classified as RNA polymerase II core promoter binding TFs. $N F I$ TFs are known to drive tissue-specific expression (Gronostajski 2000), and function in chromatin remodeling and transactivation (Fane et al. 2017). Predicted binding sites of GRHL1 tend to occur in close proximity to venom genes (average within 79 kb of a venom gene), and predicted $N F I$ binding sites are present in the promoter regions of a large proportion ($\sim 72 \%$) of venom genes (Fig. 4C; Supplemental Fig. S19; Supplemental Tables S12, S13). We also found that genes flanking venom clusters (and lacking venom-specific expression) lacked NFI binding sites and were on average further (86 kb) away from the nearest GRHL1 binding site; binding sites for either set of TFs were not, however, statistically enriched in venom gene regions compared to the genomic background (Supplemental Table S13, Supplementary Methods). The upregulation of GRHL1 and NFI TFs upon venom depletion and the presence of their predicted binding sites in venom gene clusters suggests these TFs may play a direct role in the regulation of venom, although the distribution of their binding sites does not entirely explain variation in venom gene expression (e.g., Fig. 4C), suggesting other TFs and potentially other mechanisms also contribute to venom regulation.

Because our results indicated that the specificity of venom gene expression is not fully explained by venom-specific TF activity, we tested for evidence that venom is also regulated by specific chromatin structure and organization. We performed Hi-C sequencing of a 1-day post-extraction venom gland, which enabled us to capture chromatin contacts associated with venom production. Genomic regions containing venom clusters show a specific structure within discrete highfrequency chromatin contact regions, representing venom-specific topologically-associated chromatin domains (TADs (Dixon et al. 2016); Fig. 4D; Supplemental Fig. S21). These 'venom TADs' are flanked by predicted binding sites of CTCF, which coordinates DNA looping and insulates transcriptional activity. Consistent with our chromatin data, we find that genes flanking venom TADs exhibit varied expression profiles across tissues, while genes within venom TADs show high venom gland specificity (Fig. 4C-D), indicating a strong insulating regulatory effect of TAD boundaries surrounding venom cluster regions. Collectively, these findings suggest that venom gene regulation is driven by synergistic interactions between tightly-regulated chromatin structure and highly expressed TFs that are responsive to venom depletion.

Discussion

Our results provide new perspectives on the structure and function of amniote genomes, mechanisms and evolution of dosage compensation, and the biology and regulation of snake venom. These findings further demonstrate the potential for a new generation of well-assembled genomes to facilitate advances in our understanding of the diversity of genome biology across otherwise poorly characterized lineages of the tree of life. Much of what is known about reptile genome biology comes from studies of lizards and birds (e.g., Hillier et al. 2004; Warren et al. 2010; Alfoldi et al. 2011), thus a primary motivation of this study was to use the highly
contiguous rattlesnake genome to compare and contrast aspects of snake genome biology with those of other reptiles and amniotes. For example, studies of bird genomes have shown that avian microchromosomes are gene-rich, and therefore functionally important. Despite the semiindependent origins of microchromosomes in squamate reptiles and birds, snake microchromosomes exhibit many of the same compositional patterns (i.e., gene density, GC and repeat content) as microchromosomes in birds (Fig. 1). Moreover, as the first species with microchromosomes to be examined using Hi-C, we find that rattlesnakes microchromosomes exhibit fundamentally different patterns of chromatin contact, with proportionally higher interchromosomal contact frequencies than macrochromosomes in snakes or mammals (LiebermanAiden et al. 2009; Rao et al. 2015; Darrow et al. 2016); Fig. 3). This discovery highlights the unique structure and function of microchromosomes, and raises the question of whether the uniqueness of snake microchromosome chromatin structure is a feature common to all amniote vertebrate microchromosomes. Future analyses using Hi-C or other data to compare microchromosome structure and nuclear contact patterns will be key to address the generality of links between microchromosome structure, organization, and function across vertebrate lineages.

A major goal of comparative genomics is to understand the patterns and mechanisms that lead to the observed variation in genome structure and function across species. Previous comparative analyses have demonstrated unique patterns of genome structure and content in squamate reptiles that are distinct from those observed in other major amniote lineages (i.e., birds and mammals; Alfoldi et al. 2011; Fujita et al. 2011; Pasquesi et al. 2018). Our comparative analyses of 12 squamate genomes provide new insight and context for understanding the evolution of unique genomic features of squamates (Fig. 1C-E). For example, our results indicate that snakes have
re-evolved genomic GC-isochore structure while also evolving reduced overall genomic GC content. These confluence of these patterns raise the intriguing possibility that snake isochore structure has evolved not through an accumulation of GC content (i.e., GC-biased gene conversion) as observed in mammals and birds (Duret and Galtier 2009; Weber et al. 2014), but through the accumulation of AT content via AT-biased substitutions (Castoe et al. 2013) or other mechanisms. This observation in snakes, together with the extremely varied GC landscapes across squamates (Fujita et al. 2011, Castoe et al. 2013; Fig. 1C-D), raise a number of questions, including whether mechanisms outside of GC-biased gene conversion contribute to GC isochore structure in vertebrates, and whether GC-biased gene conversion plays a major role in squamate genome evolution.

Due to the independent origins of distinct sex determination systems (Gamble et al. 2017) and variation in differentiation between sex chromosomes among lineages (Matsubara et al. 2006; Vicoso et al. 2013), snakes have become an important model system for investigating sex chromosome evolution. Through our analyses of the rattlesnake Z Chromosome, we identified the recombining pseudoautosomal region of the highly-differentiated Z and W Chromosomes, and an evolutionary stratum bearing the hallmarks of recombination suppression and degeneration on the W Chromosome. These findings indicate that even through the rattlesnake Z and W are highly differentiated, further differentiation and recombination suppression between the Z and W are ongoing (Fig. 2). Despite the independent origins of Z / W Chromosomes in rattlesnakes and birds, there are similarities in the patterns of GC-richness of the pseudoautosomal regions of sex chromosomes in both lineages, suggesting that common
processes may drive increased pseudoautosomal region GC content across divergent amniote lineages.

Although previous studies have found evidence of a lack of global dosage compensation on the Z Chromosome in females (Vicoso et al. 2013; Yin et al. 2016), the evolution of gene expression and incomplete dosage compensation as the snake Z Chromosome evolved has not be studied. Our comparison of female and male Z Chromosome expression with inferred ancestral expression provide new evidence that, in comparison to the ancestral proto- Z autosome, male expression has remained largely constant, while female expression has become reduced after the establishment of the sex chromosomes (Fig. 2C). We also found that chromosome-wide gene expression on the proto- Z was higher in both sexes than on other autosomes, raising the possibility that autosomes with these expression characteristics may be more likely (e.g., predisposed) to become sex chromosomes. We further demonstrated high gene-specific or regional variation in dosage compensation in the rattlesnake, and provide the first report that a female-biased transcriptional regulatory mechanism that modulates expression in other reptiles (Rice et al. 2017), estrogen response elements, does explain some of the variation in dosage compensation across the Z Chromosome. Specifically, we found that the density of estrogen response elements positively correlates with female gene expression across the Z Chromosome (Fig. 2D), and that these elements have accumulated on the Z Chromosome following its divergence from its autosomal homolog (Chromosome 6) in the anole lizard. Evidence for ERE accumulation on the Z chromosome of the rattlesnake and the Five Pace Viper further indicate that ERE accumulation occurred early in the evolution of the snake Z Chromosome, and provides evidence for the potential role of EREs in dosage compensation in ZW systems.

Despite venom representing the most intensively studied feature of snake biology, previous fragmentary snake genome assemblies have provided limited genomic context for snake venom evolution and regulation. Leveraging the first chromosome-level genome assembly for a snake, our precise chromosomal localization of genome genes revealed that numerous important components of snake venom (Mackessy 2008) are located on snake microchromosomes (Fig. 4A), further underscoring the functional importance of snake microchromosomes. Our integrated analysis of venom systems provides new evidence for a role of GRHL1 in venom gene regulation, thereby linking a transcriptional regulatory mechanism to a previously known regulatory stimulus (ERK signaling; Kim and McGinnis 2011) shown to trigger venom production (Kerchove et al. 2008). Analyses of Hi-C chromatin contact information from recently depleted venom glands provided new evidence for the tight regulation of chromatin in and around venom gene clusters, to the extent that venom genes occupy venom-specific topologically-associated domains (venom TADs) bounded by $C T C F$ binding sites, and genes within versus outside the boundaries of these venom TADs show distinct expression profiles (Fig. 4). Collectively, our results provide new evidence for the coordinated roles of chromatin organization and transcription factor activity in the process of venom gene regulation.

Methods

Genome assembly and annotation

Animal procedures were conducted with approved and registered IACUC protocols. Chicago and Hi-C libraries were constructed from genomic DNA from the liver and venom gland of a single male Crotalus viridis viridis, and assembly was performed using the Dovetail Genomics HiRise v2.1.3-59aldb48d61f assembler. A previous version of this assembler (Putnam et al. 2016) is
available as an open-source distribution at
https://github.com/DovetailGenomics/HiRise_July2015_GR), however, Dovetail Genomics has not made the HiRise version used on this assembly available as open source software at this time. Chicago and Hi-C data were used to improve an existing fragmentary assembly (CroVir2.0; NCBI accession SAMN07738522; Supplemental Tables S1-S2), which was constructed using multiple short-read sequencing libraries in combination with long-insert matepair libraries (Supplemental Table S1). Information about input assembly breaks and Chicago assembly scaffold joins can be found in Supplemental Material 2). Genomic DNA for these libraries was extracted from snap frozen liver tissue using standard phenol-chloroform-isoamyl DNA extraction methods. We generated 24 transcriptomic libraries from 16 different tissue types (Supplemental Table S3) to generate a de novo rattlesnake transcriptome, which we assembled using Trinity v.2014.07.17 (Grabherr et al. 2011) with default settings. De novo transcriptome assembly resulted in 801,342 transcripts, including 677,921 Trinity-annotated genes, with an average length of 559 bp and and N 50 length of 718 bp .

We annotated repeat elements present in the improved genome assembly using libraries from complete squamate genomes (Supplementary Methods) constructed using RepeatModeler v.1.0.9 (Smit and Hubley 2008-2017). De novo and homology-based predictions were then performed using RepeatMasker v.4.0.6 (Smit et al. 2015-2019). We used MAKER v.2.31.8 (Cantarel et al. 2008) to annotate protein-coding genes using empirical evidence for gene prediction from our de novo transcriptome assembly detailed above and protein datasets of all annotated protein-coding genes for Anolis carolinensis (Alfoldi et al. 2011), Python molurus bivittatus (Castoe et al. 2013), Thamnophis sirtalis (Perry et al. 2018), Ophiophagus Hannah (Vonk et al. 2013), and

Deinagkistrodon acutus (Yin et al. 2016). Prior to running MAKER, we used BUSCO v. 2.0.1 (Simao et al. 2015) and the full C. viridis genome assembly to iteratively train AUGUSTUS v. 3.2.3 (Stanke and Morgenstern 2005) HMM models based on 3,950 tetrapod vertebrate benchmarking universal single-copy orthologs (BUSCOs; Supplemental Table S4). The resulting annotation consisted of 17,486 genes and we ascribed gene IDs based on homology using reciprocal best-BLAST (with e-value thresholds of 1×10^{-5}) and stringent one-way BLAST (with an e-value threshold of 1×10^{-8}) searches against protein sequences from NCBI for Anolis, Python, and Thamnophis.

Hi-C sequencing analysis

We dissected the venom glands from the genome animal 1 day and 3 days after venom was initially extracted in order to track a time-series of venom production. A subsample of the 1-day venom gland was sent to Dovetail Genomics where DNA was extracted and replicate Hi-C sequencing libraries were prepared according to their protocol (see above). We also extracted total RNA from both 1-day and 3-day venom gland samples, along with tongue and pancreas tissue from the Hi-C genome animal. mRNA-seq libraries were generated and sequenced at Novogene on two separate lanes of the Illumina HiSeq 4000 platform using 150 bp paired-end reads (Supplemental Table S3).

Raw Illumina paired-end reads were mapped and processed using the Juicer pipeline (Durand et al. 2016) to produce $\mathrm{Hi}-\mathrm{C}$ maps binned at multiple resolutions, as low as 5 kb resolution, and for the annotation of contact domains. All contact matrices used for further analysis were KRnormalized in Juicer. Topologically-associated chromatin domains (TADs) were called using Juicer's Arrowhead algorithm for finding contact domains at various resolutions (5 kb, $10 \mathrm{~kb}, 25$
$\mathrm{kb}, 50 \mathrm{~kb}$ and 100 kb) with default settings (Durand et al. 2016). 175 TADs were identified at 5 kb resolution, 16 at $10 \mathrm{~kb}, 53$ at $25 \mathrm{~kb}, 175$ at 50 kb , and 126 at 100 kb . Additionally, TADs were annotated at 20 kb resolution using the HiCExplorer software (Ramirez et al. 2018). Raw reads were mapped and processed separately through HiCExplorer and 1,262 TADs were called at 20 kb resolution using the default settings with the p -value set to 0.05 . We further identified TADs by eye at finer scale (i.e., 5 kb) resolution.

We compared intra- and interchromosomal contact frequencies in the rattlesnake venom gland to the following mammalian Hi-C datasets: human lymphoblastoma cells (Rao et al. 2015) and human retinal epithelial cells, mouse kidney, and rhesus macaque tissue (Darrow et al. 2016).

Chromosome identification and synteny analysis

We determined the identity of chromosomes using a BLAST search of the chromosome-specific markers linked to snake chromosomes from Matsubara et al. (2006), downloaded from NCBI (accessions SAMN00177542 and SAMN00152474). We kept the best alignment per cDNA marker as its genomic location in the C. viridis genome, except when a marker hit two highsimilarity matches on different chromosomes. The vast majority of markers linked to a specific macrochromosome (i.e., Chromosomes 1-7; Supplemental Tables S6, S7) in Elaphe quadrivirgata mapped to a single genomic scaffold.

We identified a single 114 Mb scaffold corresponding to the Z Chromosome, as 10 out of 11 Z linked markers mapped to this scaffold. To further vet this as the Z-linked region of the genome, we mapped reads from male and female C. viridis (Supplemental Table S8) to the genome using BWA (Li and Durbin 2009) with default settings, quantified coverage in 100 kb windows, and
normalized windowed coverage by the median autosomal value per sex. The female exhibited roughly half the coverage of the male for much of the candidate Z Chromosome, and nowhere else in the genome (Supplemental Fig. S7).

To explore broad-scale structural evolution across reptiles, we used the rattlesnake genome to perform in silico painting of the chicken (Gallus gallus version 5) and green anole (Anolis carolinensis version 2) genomes. Briefly, we divided the rattlesnake genome into 2.02 million potential 100 bp markers. For each of these markers, we used BLAST to record the single best hit in the target genome requiring an alignment length of at least 50 bp . This resulted in 41,644 potential markers in Gallus and 103,801 potential markers in Anolis. We then processed markers on each chromosome by requiring at least five consecutive markers supporting homology to the same rattlesnake chromosome. We consolidated each group of five consecutive potential markers as one confirmed marker. We also performed a traditional gene-based synteny analysis for comparison (Supplemental Methods, Supplemental Fig. S5), which yielded results consistent with our k-mer based approach.

Sex chromosome analyses

The Z Chromosome was identified using the methods above and the pseudoautosomal region (PAR) was identified based on an equal ratio of female:male genomic read coverage. The 'Recent Stratum' was identified using a comparison of female and male nucleotide diversity (π). To quantify gene expression on the rattlesnake Z Chromosome and across the genome, we prepared RNA-seq libraries from liver and kidney tissue from two males and females and sequenced them on an Illumina HiSeq using 100bp paired-end reads (Supplemental Table S9). Per gene female-to-male (F/M) ratios of expression on the Z Chromosome were normalized by
taking the $\log _{2}$ of the ratio of female and male Z expression values, each scaled first to the median expression level of autosomal genes in female and male, respectively. To explore regional variation in the current F / M gene expression ratio across the Z Chromosome, we performed a sliding window analysis of the $\log _{2} \mathrm{~F} / \mathrm{M}$ expression ratio with a window size of 30 genes and a step size of 1 gene. Comparisons of current gene expression to inferred ancestral autosomal expression were performed using kidney and liver RNA-seq data from anole lizard and chicken males and females, following previously described methods (Julien et al. 2012; Marin et al. 2017). Additional details of these analyses are provided in the Supplementary Methods.

We predicted estrogen response elements (EREs; i.e., ESR1 binding sites) using the conserved ESR1 position weight matrix and binding site prediction using PoSSuM Search (Beckstette et al. 2006). We quantified the number of predicted EREs and the average current F / M gene expression ratio (see above) along the Z Chromosome in 100 kb windows, and tested for a relationship between these variables using a Pearson's correlation coefficient. We also quantified the number of predicted EREs in the entire genome, as well as the entire Anolis genome. We then compared the density of EREs (i.e., number of EREs divided by total scaffold length) between the rattlesnake and Anolis genomes, and between the rattlesnake Z Chromosome and Anolis Chromosome 6, specifically. We tested for ERE enrichment on the Z Chromosome compared to Anolis Chromosome 6 using a Fisher's exact test.

Venom analyses

Venom homologs in the rattlesnake genome were identified and annotated using representatives from 38 known venom gene families (Supplementary Methods; Supplemental Table S10). Three
venom gene families that are especially abundant, both in terms of presence in the venom proteome (Fig. 4a) and in copy number, in the venom of C. viridis are phospholipases A2 (PLA2s), snake venom metalloproteinases (SVMPs), and snake venom serine proteases (SVSPs). Rattlesnakes possess multiple members of each of these gene families, and the steps taken above appeared to underestimate the total number of copies in the C. viridis genome. Therefore, for each of these families, we performed an empirical annotation using the Fgenesh++ (Solovyev et al. 2006) protein similarity search.

To detect potential tandem duplication events in venom gene families, we used LASTZ (Harris 2007) to align the genomic regions containing PLA2, SVMP, and $S V S P$ genes to themselves. We used program defaults, with the exception of the 'hspthresh' command, which we set to 8,000 . This was done to only return very high similarity matches between compared sequences. We then performed Bayesian phylogenetic analyses to further evaluate evidence of tandem duplication and monophyly among members of the PLA2, SVMP, and SVSP venom gene families. We generated protein alignments of venom genes with their most similar homologs, which we identified using tBLASTx searches between venom genes and our whole gene set using MUSCLE (Edgar 2004) with default parameters, with minor manual edits to the alignment to remove any poorly aligned regions, and analyzed protein alignments using BEAST2 (Bouckaert et al. 2014).

Gene expression of annotated genes was compared between the venom gland and multiple body tissues. To test for significant expression differences between venom gland and body tissues, we performed pairwise comparisons between combined venom gland (i.e., 1 day venom gland, 3 day venom gland, and unextracted venom gland) and body (all other tissues, except for accessory
venom gland) tissue sets using an exact test of the binomial distribution estimated in edgeR, integrating tagwise dispersion (Robinson and Oshlack 2010). Genes with differential expression at an FDR value ≤ 0.05 were considered significant.

To identify candidate transcription factors regulating venom gene expression, we searched the genome annotation for all genes included on the UniProt (http://www.uniprot.org) reviewed human transcription factor database. 12 candidate transcription factors included in this list were found to be significantly upregulated in the venom gland (Supplemental Tables S12, S13). Because four transcription factors of the NFI family each showed evidence of venom glandspecificity, we tested that their binding motifs are also upstream of venom genes by quantifying the number of predicted NFI binding sites using predictive searches analogous to those used for ESR1 (detailed above) in the 1 kb upstream region of each venom gene. We also searched for proximity of GRHL1 binding sites to venom gene regions, as well as all non-venom genes. Here, we did not confine our search only to promoter regions. To test for enrichment of NFI binding sites in the upstream regions of venom genes, we divided the number of predicted binding sites upstream of venom genes by the total length of upstream regions and compared this value to the analogous proportion for upstream regions of all non-venom genes using a Fisher's exact test (Supplemental Table S13). We performed a similar analysis for GRHL1 at each interval size, again comparing the density of predicted GRHLI binding sites within intervals of venom genes to non-venom genes (Supplemental Table S13).

Venom gene contact domains were identified using contact frequency heatmaps from venom gland Hi-C, and CTCF binding sites were again predicted using the PoSSuM Search approach detailed above using the conserved vertebrate CTCF position weight matrix. Because each

PSSM has a different probability distribution based on the relative frequencies of observed binding and the length of the element, we pre-calculated the complete probability distribution for each PSSM using PoSSuMdist. We then used the resulting distribution in conjunction with relative base frequencies for the genome calculated using PoSSuMfreqs to identify putative binding sites exceeding a significance threshold. This threshold necessarily varied for different PSSMs, but was never higher than $p<1 \times 10^{-5}$.

Data access

The genome assembly has been deposited at DDBJ/ENA/Genbank under accession number PDHV02000000. The Chicago and Hi-C data generated in this study have been submitted to the NCBI BioProject database (http://www.ncbi.nlm.nih.gov/bioproject/) under accession number PRJNA413201. [This database also contains the previously published genome assembly (CroVir2.0) published in Pasquesi et al. (2018).] The genome resequencing data generated in this study have been submitted to the NCBI BioProject database
(http://www.ncbi.nlm.nih.gov/bioproject/) under accession number PRJNA476794. The RNAseq data generated in this study have been submitted to the NCBI BioProject database (http://www.ncbi.nlm.nih.gov/bioproject/) under accession number PRJNA477004.

Acknowledgments

Support for this work was provided by a National Science Foundation (NSF) grant DEB1655571 to TAC and SPM, an NSF grant IOS-655735 to TAC, a Research Dissemination and Faculty Development grant from the University of Northern Colorado to SPM, and NSF DDIG grants to DRS and TAC (DEB-1501886) and to DCC and TAC (DEB-1501747).

Figures

Figure 1. Structure and content of the rattlesnake genome. (A) Regional variation in GC content, genomic repeat content, and gene density (for 100 kb windows) are shown on to-scale chromosomes, with centromere locations represented by circles; values above the genome-wide median are red. GD is gene density, or the number of genes per 100 kb window; higher density shown in darker red. (B) Synteny between rattlesnake, chicken, and anole genomes. Colors on chicken and anole chromosomes correspond with homologous rattlesnake sequence. Numbers to the right of chromosomes in the microchromosome inset represent rattlesnake microchromosomes syntenic with a given chicken or anole chromosomes for greater than 80% of their length. Divergence times are shown in millions of years (mya). (C) Patterns of GC content from genome alignment of 12 squamate species, with tree branches colored according to genomic GC content. The heatmap to the right depicts GC content in 50 kb windows of aligned sequence, with macro- and microchromosome regions labeled below. (D) Genomic GC isochore structure measured by the standard deviation in GC content among 5, 20, and 80 kb windows. (E) Genomic repeat content among 12 squamate species, with tree branches colored by total genomic repeat content.

Figure 2. The Z Chromosome of the rattlesnake and the evolution of snake dosage compensation. (A) Normalized ($\log _{2}$) female/male genomic read coverage, female π, and windowed (30 gene) $\log _{2}$ normalized female/male gene expression. Known Z-linked markers (Matsubara et al. 2006) shown as blue blocks. In expression plot, red marks represent predicted estrogen response elements (EREs). On each plot, the pseudoautosomal region (PAR) and Recent Stratum are highlighted in grey and orange, respectively. (B) Normalized ($\log _{2}$) female/male kidney gene expression per gene (black dots) across the Z shown next to expression on Chromosome 5, a similarly sized autosome (left panels). The red dashed lines are the median ratios, and relative density is shown to the right of each panel. Gene expression $\left(\log _{2}\right.$ RPKM) distributions for male and female across macrochromosomes, Z Chromosome, the PAR, and microchromosomes (center and right panels). Asterisks depict significant differences between autosomal and Z Chromosome expression. (C) Density plots of current and inferred ancestral patterns of gene expression ($\log _{2}$ RPKM) in male and female kidney, respectively. Dashed lines represent the median of each distribution. (D) EREs drive partial dosage compensation. The correlation (red line) between predicted EREs and female/male gene expression ratios in 100 kb windows (top panel) is shown with evidence for accumulation of EREs on the rattlesnake Z (bottom panel). Each bar shows the density of EREs found in specific chromosomes (rattlesnake Z and Anolis 6 shown in green) and genome-wide (grey bars). The asterisk depicts a significantly greater density of EREs on the rattlesnake Z than Anolis Chromosome 6.

Figure 3. Genome-wide chromosomal contacts in the rattlesnake venom gland. (A) 2D heatmap of intrachromosomal (red) and interchromosomal (blue) contacts among rattlesnake chromosomes (top). Locations of interchromosomal contacts (bottom), where light blue lines are contacts between macrochromosomes, medium blue lines are micro-to-macrochromosome contacts, and dark blue lines are contacts between microchromosomes. (B) Comparison of interchromosomal contacts normalized by chromosome length versus chromosome length for different species from Hi-C datasets. Red lines depict negative linear relationships for macrochromosomes.

Figure 4. Genomic context for venom gene regulation and production. (A) Pie chart of the venom proteome with relative abundance of venom families (redrawn from Saviola et al. (2015). Chromosomal location of venom gene families (right); colored labels correspond to families from the proteome chart. (B) Gene expression across tissues of transcription factors (TFs) significantly upregulated in the venom gland. (C) Heatmaps of gene expression across tissues for venom genes in each of the three focal venom gene families, and the genes immediately flanking (i.e., outside of) each venom cluster (labeled in grey). Vertical lines above each gene represent their promoters, with predicted NFI binding sites shown in red. Predicted GRHL1 binding sites in venom clusters are shown as turquoise squares. (D) Hi-C heatmaps showing contact domains (black dashed boxes), for the SVMP, SVSP, and PLA2 venom genes (solid black boxes). Blue squares are predicted CTCF binding sites. Values to the left heatmaps are start and end coordinates (in Mb) of each region, visualized at 5 kb resolution.

Supplementary Methods

Prairie rattlesnake Genome Sequencing and Assembly

A male Prairie Rattlesnake (Crotalus viridis viridis) collected from a wild population in Colorado was used to generate the genome sequence. This specimen was collected and humanely euthanized according to University of Northern Colorado Institutional Animal Care and Use Committee protocols 0901C-SM-MLChick-12 and 1302D-SM-S-16. Colorado Parks and Wildlife scientific collecting license 12HP974 issued to S.P. Mackessy authorized collection of the animal. Genomic DNA was extracted using a standard Phenol-Chloroform-Isoamyl alcohol extraction from liver tissue that was snap frozen in liquid nitrogen. Multiple short-read sequencing libraries were prepared and sequenced on various platforms, including 50bp singleend and 150bp paired-end reads on an Illumina GAII, 100bp paired-end reads on an Illumina HiSeq, and 300bp paired-end reads on an Illumina MiSeq. Long insert libraries were also constructed by and sequenced on the PacBio platform. Finally, we constructed two sets of matepair libraries using an Illumina Nextera Mate Pair kit, with insert sizes of 3-5 kb and 6-8 kb, respectively. These were sequenced on two Illumina HiSeq lanes with 150 bp paired-end sequencing reads. Short and long read data were used to assemble the previous genome assembly version CroVir2.0 (NCBI accession SAMN07738522). Details of these sequencing libraries are in Supplemental Table S1. Prior to assembly, reads were adapter trimmed using BBmap (Bushnell 2014) and we quality trimmed all reads using Trimmomatic v0.32 (Bolger et al. 2014). We used Meraculous (Chapman et al. 2011) and all short-read Illumina data to generate a contig assembly of the Prairie Rattlesnake. We then performed a series of scaffolding and gap-filling steps. First, we used L_RNA_scaffolder (Xue et al. 2013) to scaffold contigs using the complete
transcriptome assembly (see below), SSPACE Standard (Boetzer et al. 2011) to scaffold contigs using mate-pair reads, and SSPACE Longread to scaffold using long PacBio reads. We then used GapFiller (Nadalin et al. 2012) to extend contigs and fill gaps using all short-read data cross five iterations. We merged the scaffolded assembly with a contig assembly generated using the $d e$ novo assembly tool in CLC Genomics Workbench (Qiagen Bioinformatics, Redwood City, CA, USA).

We improved the CroVir2.0 assembly using the Dovetail Genomics HiRise assembly v2.1.359a1db48d61f method (Putnam et al. 2016), leveraging both Chicago and Hi-C sequencing. This assembly method has been used to improve numerous draft genome assemblies (e.g.,Jiao et al. 2017; Rice et al. 2017). Chicago assembly requires large amounts of high molecular weight DNA from a very fresh tissue sample. We thus extracted high molecular weight genomic DNA from a liver of a closely related male to the CroVir2.0 animal (i.e., from the same den site). This animal was collected and humanely euthanized according to the Colorado Parks and Wildlife collecting license and UNC IACUC protocols detailed above. Hi-C sequencing data were derived from the venom gland of the same animal (see details below on venom gland $\mathrm{Hi}-\mathrm{C}$ and RNA-seq experimental design). The assembly was carried out using the existing CroVir2.0 draft genome assembly, short read data used in the previous assembly, Chicago, and Hi-C datasets. The HiRise assembly method then mapped Chicago and Hi-C datasets to the draft assembly and generated a model fit of the data based on insert size distributions (Supplemental Fig. S1; Supplemental Material 2). Models were generated with read pairs that mapped within the same scaffold and were used in successive join, break, and final join phases of the pipeline to perform
final scaffolding. Dovetail Genomics HiRise assembly resulted in a highly contiguous genome assembly (CroVir3.0) with a physical coverage of greater than $1,000 \times$ (Supplemental Table S2).

We estimated the size of the genome using k-mer frequency distributions (19, 23, and 27mers) quantified using Jellyfish (Marcais and Kingsford 2011). Raw Illumina 100bp paired-end reads (Supplemental Table S1) were quality trimmed using Trimmomatic (Bolger et al. 2014) using the settings LEADING:10, TRAILING:10, SLIDINGWINDOW:4:15, and MINLEN:36. The total number of output sequences and bases were $400,983,222$ and $38,471,185,282$, respectively. Quality trimmed reads were then used for Jellyfish k-mer counting, and the Jellyfish k-mer table output per k-mer was used to estimate genome size with GCE (Liu et al. 2013).

We generated transcriptomic libraries from RNA sequenced from 16 different tissues: two venom gland tissues; 1 day and 3 days post-venom extraction (see Hi-C and RNA sequencing of Venom Gland section below), one from pancreas, and one from tongue were taken from the $\mathrm{Hi}-\mathrm{C}$ sequenced genome animal. Additional samples from other individuals included a third venom gland sample from which venom had not been extracted ('unextracted venom gland'), three liver, three kidney, two pancreas, and one each of skin, lung, testis, accessory venom gland, shaker muscle, brain, stomach, ovaries, rictal gland, spleen, and blood tissues. Total RNA was extracted using Trizol, and we prepared RNAseq libraries using an NEB RNA-seq kit for each tissue, which were uniquely indexed and run on multiple HiSeq 2500 lanes using 100bp paired-end reads (Supplemental Table S3). We used Trinity v. 2014.07.17 (Grabherr et al. 2011) with default settings and the '--trimmomatic' setting to assemble transcriptome reads from all tissues. The resulting assembly contained 801,342 transcripts comprising 677,921 Trinity-annotated genes, with an average length of 559 bp and an N50 length of 718 bp .

Repeat Element Analysis

Annotation of repeat elements was performed using homology-based and de novo prediction approaches. Homology-based methods of transposable element identification (e.g., RepeatMasker) cannot recognize elements that are not in a reference database, and have low power to identify fragments of repeat elements belonging to even moderately diverged repeat families (Platt et al. 2016). Since the current release of the Tetrapoda RepBase library (v.20.11, August 2015; Bao et al. 2015) is unsuitable for detailed repeat element analyses of most squamate reptile genomes, we performed de novo identification of repeat elements on 6 snake genomes (Crotalus viridis, Crotalus mitchellii, Thamnophis sirtalis, Boa constrictor, Deinagkistrodon acutus, and Pantherophis guttatus) in RepeatModeler v.1.0.9 (Smit and Hubley 2008-2017) using default parameters. Consensus repeat sequences from multiple species were combined into a large joint snake repeat library that also includes previously identified elements from an additional 12 snake species (Castoe et al. 2013). All genomes were annotated with the same library with the exception of the green anole lizard, for which we used a lizard specific library that includes de novo repeat identification for Pogona vitticeps, Ophisaurus gracilis, and Gekko japonicus. To verify that only repeat elements were included in the custom reference library, all sequences were used as input in a BLASTx search against the SwissProt database (The UniProt Consortium 2018), and those clearly annotated as protein domains were removed. Finally, redundancy and possible chimeric artifacts were removed through clustering methods in CD-HIT (Li and Godzik 2006) using a threshold of 0.85 .

Homology-based repeat element annotation was performed in RepeatMasker v.4.0.6 (Smit et al. 2015-2019) using a PCR-validated BovB/CR1 LINE retrotransposon consensus library (Castoe
et al. 2013), the Tetrapoda RepBase library, and our custom library as references. Output files were post-processed using a modified implementation of the ProcessRepeat script (RepeatMasker package).

Gene Annotation

We used MAKER v. 2.31 .8 (Cantarel et al. 2008) to annotate protein-coding genes in an iterative fashion. Several sources of empirical evidence of protein-coding genes were used, including the full de novo C. viridis transcriptome assembly and protein datasets consisting of all annotated proteins from NCBI for Anolis carolinensis (Alfoldi et al. 2011), Python molurus bivittatus (Castoe et al. 2013), Thamnophis sirtalis (Perry et al. 2018), and Ophiophagus hannah (Vonk et al. 2013), and from GigaDB for Deinagkistrodon acutus (Yin et al. 2016). We also included 422 protein sequences for 24 known venom gene families that were used to infer Python venom gene homologs in a previous study (Reyes-Velasco et al. 2015). Prior to running MAKER, we used BUSCO v. 2.0.1 (Simao et al. 2015) and the full C. viridis genome assembly to iterative train AUGUSTUS v. 3.2.3 (Stanke and Morgenstern 2005) HMM models based on 3,950 tetrapod vertebrate benchmarking universal single-copy orthologs (BUSCOs). We also ran this analysis on the previous genome assembly (CroVir2.0) as a comparison, and provide the details of these analyses in Supplemental Table S4. We ran BUSCO in the 'genome' mode and specified the '-long' option to have BUSCO perform internal AUGUSTUS training. We ran MAKER with the 'est2genome $=0$ ' and 'protein2genome $=0$ ' options set to produce gene models using the AUGUSTUS gene predictions with hints supplied from the empirical transcript and protein sequence evidence. We provided the coordinates for all interspersed, complex repetitive elements for MAKER to perform hard masking before evidence mapping and prediction, and we
set the 'model_org' option to 'simple' to have MAKER soft mask simple repetitive elements. We used default settings for all other options, except 'max_dna_len' (set to 300,000) and 'split_hit' (set to 20,000). We iterated this approach an additional time and we manually compared the MAKER gene models with the transcript and protein evidence. We found very little difference between the two gene annotations and based on a slightly better annotation edit distance (AED) distribution in the first round of MAKER, we used our initial round as the final gene annotation. The resulting annotation consisted of 17,486 genes and we ascribed gene IDs based on homology using reciprocal best-BLAST (with e-value thresholds of 1×10^{-5}) and stringent one-way BLAST (with an e-value threshold of 1×10^{-8}) searches against protein sequences from NCBI for Anolis, Python, and Thamnophis.

Hi-C and RNA Sequencing of the Venom Gland

We dissected the venom glands from the Hi-C Crotalus viridis viridis 1 day and 3 days after venom was initially extracted in order to track a time-series of venom production. A subsample of the 1-day venom gland was sent to Dovetail Genomics where DNA was extracted and replicate $\mathrm{Hi}-\mathrm{C}$ sequencing libraries were prepared according to their protocol (see above). We also extracted total RNA from both 1-day and 3-day venom gland samples, along with tongue and pancreas tissue from the Hi-C genome animal (see Sequencing and Assembly and Annotation sections above). mRNA-seq libraries were generated and sequenced at Novogene on two separate lanes of the Illumina HiSeq 4000 platform using 150 bp paired-end reads (Supplemental Table S3).

Chromosome Identification and Synteny Analyses

Genome assembly resulted in several large, highly-contiguous scaffolds with a relative size distribution consistent with the karyotype of C. viridis (Baker et al. 1972), representing nearlycomplete chromosome sequences. We determined the identity of chromosomes using a BLAST search of the chromosome-specific markers linked to snake chromosomes from Matsubara et al. (2006), downloaded from NCBI (accessions SAMN00177542 and SAMN00152474). We kept the best alignment per cDNA marker as its genomic location in the Prairie Rattlesnake genome, except when a marker hit two high-similarity matches on different chromosomes. The vast majority of markers linked to a specific macrochromosome (i.e., Chromosomes 1-7;

Supplemental Table S6) in Elaphe quadrivirgata mapped to a single genomic scaffold; only six of 104 markers did not map to the predicted chromosome from E. quadrivirgata. Possible reasons for unmatched chromosomal locations for these markers in Elaphe and the Prairie Rattlesnake include 1) original localizations in Elaphe that are unique to the species or were localized in error, 2) translocations have occurred, leading to divergent locations in each genome, or 3) misassembly errors in the rattlesnake genome assembly. To distinguish between these possibilities, we first identified the chromosomal location of each marker in the Anole Lizard (Anolis carolinensis) genome (Alfoldi et al. 2011) to determine if their locations are expected based on Elaphe-Anolis synteny. Three markers mapped to unexpected chromosomes in Anolis (NOSIP, GNAI2, and P4HB), which instead matched syntenic locations in the rattlesnake (Supplemental Table S7). Anolis synteny for a fourth marker (UCHL1) suggested correct assembly in the rattlesnake, but was unclear because it mapped to Anolis Chromosome 5, which is syntenic with both snake Chromosomes 6 and 7 (Fig. 1). To determine if the two remaining markers (ZNF326 and KLF6) were placed on unexpected chromosomes due to misassembly, and
to identify further evidence that the other markers were assembled correctly, we leveraged our intrachromosomal $\mathrm{Hi}-\mathrm{C}$ data to deeply investigate contact patterns around these markers. Specifically, we plotted heatmaps of $\log _{10}$ normalized contact frequencies in 10 kb bins using R (R Core Team). Regional dropout in intrachromosomal contact frequencies in the focal regions would be expected if mismatched chromosome locations were due to misassembly in the rattlesnake. We focused our searches on genomic intervals around each of the six focal genes and the nearest confirmed marker from Supplemental Table S6. The genomic region around each gene showed intrachromosomal contact frequencies consistent with correct assembly for five of six markers (Supplemental Fig. S2). Only ZNF326 was adjacent to a region with intrachromosomal contact dropout that could have resulted from misassembly. All snake microchromosome markers mapped to a single 139 Mb scaffold, which was later broken into 10 microchromosome scaffolds (scaffold-mi1-10; see below).

We identified a single 114 Mb scaffold corresponding to the Z Chromosome, as 10 of 11 Z -linked markers mapped to this scaffold. To further vet this as the Z-linked region of the genome, we mapped reads from male and female C. viridis (Supplemental Table S9) to the genome using BWA (Li and Durbin 2009) using program defaults. Male and female resequencing libraries were prepared using an Illumina Nextera prep kit and sequenced on an Illumina HiSeq 2500 using 250 bp paired-end reads. Adapters were trimmed and low-quality reads were filtered using Trimmomatic (Bolger et al. 2014). After mapping, we filtered reads with low mapping scores and quantified per-base read depths using SAMtools (Li et al. 2009). We then totaled read depths for consecutive 100 kb windows and normalized windowed totals for female and male by dividing the value for each window by the median autosomal 100 kb window value for each sex,
then determined the normalized ratio of female to male coverage by calculating $\log _{2}$ (female normalized coverage/male normalized coverage) per window. Here, the expectation is that a hemizygous locus will show roughly half the normalized coverage, which we observe for females over the majority of the Z Chromosome scaffold length, and not elsewhere in the genome. To demonstrate Z Chromosome conservation among pit vipers and to further determine the identity of this scaffold, we mapped male and female Pygmy Rattlesnake (Sistrurus catenatus) reads from Vicoso et al. (2013) and female and male Five Pace Viper (Deinagkistrodon acutus) reads from Yin et al. (2016) to the genome using the same parameters detailed above (Supplemental Fig. S7). Anolis Chromosome 6 is homologous with snake sex chromsomes (Srikulnath et al. 2009), thus we aligned Anolis Chromosome 6 (Alfoldi et al. 2011) to the Prairie Rattlesnake genome using a chromosome painting technique described below. As expected, we found a large quantity of high-similarity hits to the rattlesnake Z Chromosome scaffold, specifically, which were organized in a sequential manner across the Z scaffold (Fig. 1B).

We used multiple sources of information to identify the best candidate breakpoints between microchromosomes within the 139 Mb fused microchromosome scaffold in the initial $\mathrm{Hi}-\mathrm{C}$ assembly. First, because Chicago scaffolds must be assembled from fragments that are physically linked (Rice et al. 2017), we used breakpoints between adjacent Chicago scaffolds on the microchromosome scaffold as candidate misjoins between microchromosomes, which identified 305 candidate break points. Second, intrachromosomal contact frequencies have been shown to be exponentially higher than contacts between chromosomes (Lieberman-Aiden et al. 2009), and we used shifts in intrachromosomal Hi-C data to further identify the nine most biologically
plausible candidate break points among microchromosomes (Supplemental Fig. S16). Here, we stress two things relevant to using Hi-C contact data for this purpose: 1) intrachromosomal contacts within candidate microchromosomes were far more frequent than contacts between candidate microchromosomes, as expected (Supplemental Fig. S16), and 2) the nine $\mathrm{Hi}-\mathrm{C}$ derived breakpoints overlapped consistently with breaks between Chicago scaffolds. Because reptile microchromosomes are highly syntenic (Alfoldi et al. 2011), we also aligned the microchromosome scaffold to microchromosome scaffolds from chicken (Hillier et al. 2004) and Anolis using LASTZ (Harris 2007) to determine if likely chromosomal breakpoints also had shifts in synteny. To retain only highly similar alignments per comparison, we set the 'hspthresh' option equal to 10,000 (default is 3,000). We also set a step size equal to 20 to reduce computational time per comparison. We further validated candidate break points using genomic features that consistently vary at the ends of chromosomes. Here, we specifically evaluated if candidate breakpoints exhibited regional shifts in GC content and repeat content, similar to the ends of macrochromosomes (Fig. 1). Finally, if no annotated genes spanned this junction, we considered it biologically plausible. There were nine candidate breakpoints that met each of these criteria, equaling the number of boundaries expected given ten microchromosomes (Supplemental Fig. S16).

To explore broad-scale structural evolution across reptiles, we used the rattlesnake genome to perform in silico painting of the chicken (Gallus gallus version 5) and green anole Anolis carolinensis (version 2) genomes. Briefly, we divided the rattlesnake genome into 2.02 million potential 100 bp markers. For each of these markers, we used BLAST to record the single best hit in the target genome requiring an alignment length of at least 50 bp . This resulted in 41,644
potential markers in Gallus and 103,801 potential markers in Anolis. We then processed markers on each chromosome by requiring at least five consecutive markers supporting homology to the same rattlesnake chromosome. We consolidated each group of five consecutive potential markers as one confirmed marker. In Gallus, we rejected 12.4% of potential markers and identified 7,291 confirmed merged markers. In Anolis, we rejected 39.7% of potential markers and identified 12,511 confirmed merged markers.

This approach demonstrates considerable stability at the chromosomal level despite 158 million years of divergence between Anolis and Crotalus (Fig. 1B, Supplemental Fig. S5), and between squamates and birds, despite 280 million years of divergence between Gallus and Crotalus (and between Gallus and Anolis). This stability is evident not only in the macrochromosomes but also in the microchromosomes. In fact, 7 of 10 Crotalus microchromosomes had greater than 80% of confirmed markers associated with a single chromosome in the chicken genome (Fig. 1B, microchromosome inset). Comparisons among the three genomes suggest that the Crotalus genome has not experienced some of the fusions found in Anolis. Specifically, we infer that Anolis Chromosome 3 is a fusion of Crotalus Chromosomes 4 and 5. Likewise, Anolis Chromosome 4 is a fusion of Crotalus Chromosome 6 and 7. Divergence time estimates discussed above and shown in Fig. 1B were taken from the median of estimates for divergence between Crotalus and Gallus and between Crotalus and Anolis from Timetree (www.timetree.org; Kumar et al. 2017).

To validate the genome-wide k-mer based approach used to identify homology among reptile chromosomes, we also performed a more traditional analysis using only protein-coding genes. We first identified 2,190 three-way reciprocal best BLAST hits among rattlesnake, anolis, and
chicken protein-coding genes that we used as markers. Both the chicken and Anolis genomes contain genes that have not been placed on chromosomes and remain in unmapped scaffold or contigs, which reduced the number of markers available to 2,105 in chicken and 2,135 in Anolis. Results from this approach indicate that the k-mer approach is consistent with this more traditional approach but provides approximately three times the density of markers (Fig. 1B, Supplemental Fig. S5).

Genomic Patterns of GC Content

We quantified GC content in sliding windows of 100 kb and 1 Mb across the genome using a custom Python script (https://github.com/drewschield/Comparative-GenomicsTools/blob/master/slidingwindow_gc_content.py). GC content in 100 kb windows is presented in Fig. 1 in the Main Text.

To determine if there is regional variation in nucleotide composition consistent with isochore structures across the rattlesnake genome, we quantified GC content and its variance within 5,10 , $20,40,80,160,240$, and 320 kb windows. The variation (standard deviation) in GC content is expected to decrease by half as window size increases four-fold if the genome is homogeneous (i.e., lacks isochore structures; Venter et al. 2001). By comparing the observed variances of GC content across spatial window scales to those from 11 other squamate genomes, including lizards (Anolis has been shown to lack isochore structure; Alfoldi et al. 2011), henophidian snakes, and colubroid snakes, we were able to determine the relative heterogeneity of nucleotide composition in the rattlesnake (Supplemental Table S8). To reduce potential biases from estimates from small scaffold sizes, we filtered to only retain scaffolds greater than the size of the window analyzed
(e.g., only scaffolds longer than 10 kb when looking at the standard deviation in GC content over 10 kb windows) and for which there was less than 20% of missing data.

To study patterns of molecular evolution across squamate evolution, we generated whole genome alignments of 12 squamates including the Green Anole (Anolis carolinensis v . anoCar2.0; Alfoldi et al. 2011), Australian Bearded Dragon (Pogona vitticeps v. pvi1.1; Georges et al. 2015), Crocodile Lizard (Shinisaurus crocodilurus GigaDb version; Gao et al. 2017), Glass Lizard (Ophisaurus gracilis v. O.gracilis.final; Song et al. 2015), Schlegel's Japanese Gecko (Gekko japonicus v. 1.1 ; Liu et al. 2015), Leopard Gecko (Eublepharis macularius v. 1.0; Xiong et al. 2016), Prairie Rattlesnake (Crotalus viridis v. CroVir3.0; current study), Five-pacer Viper (Deinagkistrodon acutus GigaDb version; Yin et al. 2016), Burmese Python (Python bivittatus v. Python_molurus_bivittatus-5.0.2; Castoe et al. 2013), Boa Constrictor (Boa constrictor v. 7C; Bradnam et al. 2013), Garter Snake (Thamnophis sirtalis NCBI version; Perry et al. 2018), and King Cobra (Ophiophagus Hannah v. OphHan1.0; Vonk et al. 2013). We obtained the repeat libraries for each species and softmasked each assembly. The repeat library was not available for Deinagkistrodon, so we annotated repeats in that assembly using RepeatMasker v4.0.5 (Smit et al. 2015-2019) with the vertebrate library from RepBase (Jurka et al. 2005). First, we generated pairwise syntenic alignments of each species as a query to the green anole genome (anoCar2.0) as a target using LASTZ v1.02 (Harris 2007) with the HoxD55 scoring matrix, followed by chaining to form gapless blocks and netting to rank the highest scoring chains (Kent et al. 2003) . The pairwise alignments were used to construct a multiple sequence alignment with MULTIZ v11.2 (Blanchette et al. 2004) with Green Anole as the reference species. We then filtered the multi-species whole genome alignment to retain only blocks for which information for all 12
species was available, and concatenated blocks according to their organization in the anole lizard genome. We then calculated GC content within consecutive 50 kb windows of this concatenated alignment using the 'slidingwindow_gc_content.py' script detailed above.

Comparative Microchromosome Genomics

To understand evolutionary shifts in microchromosome composition among amniotes, we compared measures of gene density, GC content, and repeat content of macro- and microchromosomes between the rattlesnake, anole (Alfoldi et al. 2011), bearded dragon (Georges et al. 2015; Deakin et al. 2016), chicken (Hillier et al. 2004), and zebra finch (Warren et al. 2010) genomes. These species were chosen because their scaffolds are ordered into chromosomes and because their karyotypes contain microchromosomes. For each species, we downloaded relevant data from Ensembl and quantified the total number of genes per chromosome, total number of $\mathrm{G}+\mathrm{C}$ bases, and total bases masked as repeats in RepeatMasker. We then normalized each measure by the total length of macrochromosome and microchromosome sequences in each genome, then calculated the ratio of microchromosome:macrochromosome proportions. We then used Fisher's exact tests determine if one chromosome set possessed a significantly greater proportion of each measure. We generated a phylogenetic tree (Supplemental Fig. S4) for the five species based on divergence time estimates from TimeTree (Kumar et al. 2017), and plotted the ratio values calculated above onto the tree tips for between-species comparisons.

Hi-C analysis

Raw Illumina paired-end reads were mapped and processed using the Juicer pipeline (Durand et al. 2016) to produce $\mathrm{Hi}-\mathrm{C}$ maps binned at multiple resolutions, as low as 5 kb resolution, and for
the annotation of contact domains. These data were aligned against the CroVir3.0 assembly. All contact matrices used for further analysis were KR-normalized in Juicer. TAD domains were called using Juicer's Arrowhead algorithm for finding contact domains at various resolutions (5 $\mathrm{kb}, 10 \mathrm{~kb}, 25 \mathrm{~kb}, 50 \mathrm{~kb}$ and 100 kb) using the default settings (Durand et al. 2016). 175 TADs were identified at 5 kb resolution, 16 at $10 \mathrm{~kb}, 53$ at $25 \mathrm{~kb}, 175$ at 50 kb , and 126 at 100 kb . Additionally, TADs were annotated at 20kb resolution using the HiCExplorer software (Ramirez et al. 2018). Raw reads were mapped and processed separately through HiCExplorer and 1,262 TADs were called at 20 kb resolution using the default settings with the p-value set to 0.05 . We further identified TADs by eye at finer scale (i.e., 5 kb) resolution.

We compared intra and interchromosomal contact frequencies between the rattlesnake venom gland and various tissues from mammals. To do this we quantified the total intra- and interchromosomal contacts between chromosome positions from the rattlesnake and the following Hi-C datasets: human lymphoblastoma cells (Rao et al. 2015) and human retinal epithelial cells, mouse kidney, and rhesus macaque tissue (Darrow et al. 2016). To investigate patterns of intra- and interchromosome contact frequency, we normalized contact frequencies by chromosome length. In the case of the mouse, we removed the Y chromosome due to its small size and relative lack of interchromosomal contacts. We then performed linear regressions of chromosome length and normalized intra- and interchromosomal contact frequencies (i.e., contact frequency/chromosome length). In all cases we observed a positive relationship between normalized intrachromosomal contacts and chromosome size and a negative relationship between normalized interchromosomal contacts and chromosome size (Fig. 3B). We also tested
for significant differences in intra- and interchromosomal contact between the rattlesnake and mammals using t-tests.

Sex Chromosome Analysis

We identified the Prairie Rattlesnake Z Chromosome using methods described in the 'Chromosome Identification and Synteny Analyses’ section above. We localized the candidate pseudoautosomal region (PAR) based on normalized female/male coverage (Fig. 2A; the PAR is the only region of the Z consistent with equal female and male coverage. We quantified gene content, GC content, and repeat content across the Z Chromosome and PAR (Supplemental Figs. S8, S9, and S10), and tested for gene enrichment in the PAR using a Fisher's exact test, where we compared the number of genes within each region to the total length of the region.

To compare nucleotide diversity (π) across the genome between male and female C. viridis, we called variants (i.e., heterozygous sites) from the male and female reads used in coverage analysis detailed above. With the mappings from coverage analysis, we used SAMtools (Li et al. 2009) to compile all mappings into pileup format, from which we called variant sites using BCFtools. We filtered sites to retain only biallelic variants using VCFtools (Danecek et al. 2011) and calculated the proportion of heterozygous sites using a custom pipeline of scripts. First, calcHet (https://github.com/darencard/RADpipe) outputs details of heterozygous site and window_heterozygosity.py (https://github.com/drewschield/Comparative-GenomicsTools/blob/master/window_heterozygosity.py) uses this output in conjunction with a windowed bed file generated using BEDtools 'make_windows' tool to calculate π within a given window size. We then normalized π for each genomic window in the female and male by the median value of π for female and male autosomes, respectively.

Evolutionary patterns of the Z Chromosome were also analyzed by examining transposable element age and composition along the whole chromosome, and between the PAR and the Z , specifically (see Main Text). Since the length of the PAR is significantly smaller than the length of the Z , to rule out potential biases due to unequal sample size we also independently analyzed fragments of the Z with lengths equal to the PAR (total of 15 7.18 Mbp fragments). Each region was analyzed in RepeatMasker using a single reference library that included the squamate fraction of the RepBase Tetrapoda library, and the snake specific library clustered at a threshold of 0.75. The age distribution of TE families was estimated by mean of the Kimura 2-parameter distance from the consensus sequence per element (CpG corrected) calculated from PostProcessed.align outputs (see 'Repeat Analysis' section above), and using a modified Perl script from (Kapusta et al. 2017). We then merged estimates of repeat content from each of these regions for comparison to the PAR region, specifically.

To quantify gene expression on the rattlesnake Z Chromosome and across the genome, we prepared RNA-seq libraries from liver and kidney tissue from two males and females and sequenced them on an Illumina HiSeq using 100bp paired-end reads (Supplemental Table S9). Samples and libraries were prepared following the previously described methods of (Andrew et al. 2017). After filtering and adapter trimming using Trimmomatic v. 0.32 (Bolger et al. 2014), we mapped RNA-seq reads to the C. viridis genome using STAR v. 2.5.2b (Dobin et al. 2013) and counts were determined using featureCounts (Liao et al. 2014). To be comparable to anole and chicken RNA-seq data described below, we analyzed the rattlesnake RNA-seq reads as single-end data by ignoring the second read of each read pair. We normalized read counts across tissues and samples using TMM normalization in edgeR (Robinson et al. 2010) to generate both
counts per million (CPM) for use in pairwise comparisons between males and females, and reads per kilobase million (RPKM) normalized counts for comparisons of chromosome-wide expression within samples. All subsequent analyses of gene expression included only genes with expression information in both the male and female (>1 average RPKM in each sex; average overall for female and male were roughly equal). Mann-Whitney U tests in R (R Core Team) were used to compare median expression level between chromosomes and/or chromosomal regions (i.e., the PAR) within males and females. Per gene female-to-male ratios of expression in the Z Chromosome were normalized by taking the $\log _{2}$ of the female and male Z expression values scaled to the median expression level of autosomal genes in female and male, respectively:

$$
\text { Current female } / \text { male } \mathrm{Z}=\log _{2}\left[\left(\frac{\text { female } Z}{\text { median female Auto }}\right) /\left(\frac{\text { male } Z}{\text { median male Auto }}\right)\right]
$$

To explore regional variation in the current female-to-male (F/M) gene expression ratio across the Z Chromosome, we performed a sliding window analysis of the $\log _{2} \mathrm{~F} / \mathrm{M}$ expression ratio with a window size of 30 genes and a step size of 1 gene.

To further investigate patterns of gene expression in females and males across the Z Chromosome, we compared current levels of female and male expression for Z-linked genes to inferred ancestral levels of expression using autosomal 1:1 orthologs in the anole lizard and the chicken. Comparisons of sex chromosome-linked genes to autosomal orthologs in outgroup species have been shown to provide robust information about global ancestral expression patterns in the 'proto-sex' chromosomes of the focal species (Julien et al. 2012; Marin et al. 2017), and can be used to determine if patterns of gene expression between sexes are consistent
with each other and with the evolution of dosage compensation mechanisms. We first filtered to retain only the 1,343 non-PAR genes on the rattlesnake Z Chromosome for comparison, and used reciprocal best BLAST searches to find putative 1:1 orthologs in the Ensembl anole (version 2) and chicken (version 5) cDNA datasets, respectively. This resulted in $6821: 1$ orthologs between the rattlesnake and the anole, and 291 between the rattlesnake and the chicken, and 260 shared orthologs among the three species (i.e., 'proto-Z' genes). All putative orthologs are located on autosomes in both the anole and chicken. We also identified 3,059 1:1 orthologs that are autosomal in all three species (i.e., 'proto-autosomal' genes). We then obtained RNA-seq data from (Marin et al. 2017) for female and male kidney and liver tissue for the chicken and anole (at least two replicates per tissue per sex) and performed filtering, mapping, and normalization of counts using the methods described above for the rattlesnake.

We used female and male expression levels from rattlesnake Z autosomal orthologs in the anole and chicken to infer ancestral (i.e., proto-Z) female and male expression levels. To do this, we first calculated the average expression value per proto-autosomal gene between the anole and chicken for each sex, and then calculated the median expression value from each of these distributions. We used these median values to normalize female and male expression in the anole and chicken 1:1 rattlesnake Z orthologs (proto- Z genes) to a common scale (these values are analogous to the median female or male autosomal denominators in the equations above for current female/male expression).

$$
\text { Proto- } Z \text { female }=\frac{\text { female proto }-Z \text { gene }}{\text { median female proto }- \text { autosomal }}
$$

$$
\text { Proto }-Z \text { male }=\frac{\text { male proto }-Z \text { gene }}{\text { median male proto }- \text { autosomal }}
$$

108

We then calculated a weighted average of female and male proto-Z expression per gene between the anole and chicken designed to account for the more recent divergence between the anole and rattlesnake, which was equal to the reciprocal of the sum of branch lengths based on the divergence times in millions of years between rattlesnake and anole and between rattlesnake and chicken:

$$
\begin{gathered}
\text { Branch length weight }=\frac{\text { branch length }(\text { rattlesnake to anole })=158}{\text { branch length }(\text { rattlesnake to chicken })=402}=0.393 \\
\text { Weighted Proto-Z female }=\log 2\left[\frac{[(\text { Proto }-Z \text { female anole } * 1)+(\text { Proto }-Z \text { female chicken } * 0.393)]}{1.393}\right] \\
\text { Weighted Proto-Z male }=\log 2\left[\frac{[(\text { Proto }-Z \text { male anole } * 1)+(\text { Proto }-Z \text { male chicken } * 0.393]}{1.393}\right]
\end{gathered}
$$

To further compare current and ancestral Z expression to the female and male distributions of proto-autosomal expression, we calculated the average expression between the anole and chicken per proto-autosomal gene, then normalized the averaged expression by the median of protoautosomal expression detailed above:

$$
\begin{aligned}
& \text { Proto-autosomal female }=\log 2\left[\frac{\text { female proto-autosomal gene }}{\text { median female proto-autosomal }}\right] \\
& \text { Proto-autosomal male }=\log 2\left[\frac{\text { male proto-autosomal gene }}{\text { median female proto }- \text { autosomal }}\right]
\end{aligned}
$$

We also calculated the distribution of current autosomal expression in the rattlesnake by normalizing the current female and male expression of rattlesnake autosomal genes by the median of female and male expression of all autosomal genes, respectively:

$$
\begin{aligned}
& \text { Current autosomal female }=\log _{2}\left[\frac{\text { female autosomal gene }}{\text { median female autosomal }}\right] \\
& \text { Current autosomal male }=\log _{2}\left[\frac{\text { male autosomal gene }}{\text { median female autosomal }}\right]
\end{aligned}
$$

We tested for enrichment of male and female-biased gene expression on chromosomes by first characterizing genes as male or female biased if their current $\log _{2}$ (female/male) expression ratio was less than -0.5 or greater than 0.5 , respectively. We then compared proportions of malebiased, female-biased, and unbiased between the Z Chromosome and autosomes using Fisher's exact tests to determine if the Z Chromosome is enriched or depleted for sex-biased gene expression.

A potential mechanism for upregulation of Z-linked genes in females is positive regulation through estrogen response elements (EREs), which can enable binding of enhancers and promote transcription of genes over long distances (Lin et al. 2007). Rice et al. (2017) identified that the binding domain of ESR1 is completely conserved among humans, chickens, and alligators, thus we obtained a position weight matrix for the ESR1 binding motif (ERE) of humans (Lin et al. 2007) from the CisBP database, and performed binding site prediction using PoSSuM Search (Beckstette et al. 2006). For more details on PoSSuM Search parameters, see the 'Transcription Factor Binding Site Prediction' section below. We quantified the number of predicted EREs and the average current female/male gene expression ratio (see above) along the Z Chromosome in 100 kb windows, and tested for a relationship between these variables using a Pearson's correlation coefficient in R.

We also quantified the number of predicted EREs in the entire genome, as well as the entire Anolis genome. We then compared the density of EREs (i.e., number of EREs divided by total scaffold length) between the rattlesnake Anolis genomes, and between the rattlesnake Z Chromosome and Anolis Chromosome 6, specifically. We tested for ERE enrichment on the Z Chromosome compared to Anolis 6 using a Fisher's exact test in R. To test more broadly for an expansion of EREs in snakes, we repeated this analysis using Z-linked and autosomal scaffolds from the five pace viper (Deinagkistron acutus; Yin et al. 2016).

Transcription Factor Binding Site Prediction

To identify putative transcription factor binding sites throughout the rattlesnake genome, we obtained the TRANSFAC position weight matrix (PSSM) for transcription factors of interest from the CIS-BP database (Weirauch et al. 2014). The focal transcription factors (e.g., CTCF, NFI, GRHL1, ESR1, and the remaining transcription factors on Supplemental Table S12) have conserved DNA binding domains among vertebrates, and where possible we obtained the chicken binding PSSM. In some cases there was no curated PSSM for chicken, and we used the PSSMs for human, and in the case of NCOA2 (Supplemental Table S12), there was no available PSSM for a close relative. We searched for putative binding sites throughout the genome using PoSSuM Search (Beckstette et al. 2006). Because each PSSM has a different probability distribution based on the relative frequencies of observed binding and the length of the element, we pre-calculated the complete probability distribution for each PSSM using PoSSuMdist. We then used the resulting distribution in conjunction with relative base frequencies for the genome calculated using PoSSuMfreqs to identify putative binding sites exceeding a significance
threshold. This threshold necessarily varied for different PSSMs, but was never higher than $p<1$ $\times 10^{-5}$.

Venom Gene Annotation and Analysis

We took a multi-step approach toward identifying venom gene homologs in the rattlesnake genome. We first obtained representative gene sequences for 38 venom gene families from GenBank (Supplemental Table S10), comprising known enzymatic and toxin components of snake venoms. We then searched our transcript set using the venom gene family query set using a tBLASTx search, defining a similarity cutoff e-value of 1×10^{-5}. For each candidate venom gene transcript identified in this way, we then performed a secondary tBLASTx search against the NCBI database to confirm its identity as a venom gene. In the case of several venom gene families, such as those known only from elapid snake venom, we did not find any candidate genes. Three venom gene families that are especially abundant, both in terms of presence in the venom proteome (Fig. 4a) and in copy number, in the venom of C. viridis are phospholipases A2 ($P L A 2 s$), snake venom metalloproteinases (SVMPs), and snake venom serine proteases (SVSPs). Rattlesnakes possess multiple members of each of these gene families (Mackessy 2008; Casewell et al. 2011; Dowell et al. 2016), and the steps taken above appeared to underestimate the total number of copies in the C. viridis genome. Therefore, for each of these families, we performed an empirical annotation using the Fgenesh++ (Solovyev et al. 2006) protein similarity search. We first extracted the genomic region annotated for each of these families above plus and minus a 100 kb flanking region. We used protein sequences from Uniprot (PLA2: APD70899.1; SVMP: Q90282.1; and SVSP: F8S114.1) to query the region and confirm the total number of copies per family. Each gene annotated in this way was again searched against NCBI to confirm its identity
and manual searches of aligned protein sequences (see phylogenetic analyses below) further confirmed their homology to each respective venom gene family. Genomic locations and details of annotated venom genes in the rattlesnake genome are provided in Table S9. We tested for venom gene enrichment on microchromosomes versus macrochromosomes using a Fisher's exact test, where numerator for each category was the number of venom genes located on each chromosome type, and the denominator in each category was the background number of genes, which allowed us to account for different levels of gene density on microchromosomes and macrochromosomes.

We used LASTZ (Harris 2007) to align the genomic regions containing PLA2, SVMP, and SVSP genes to themselves. We used program defaults, with the exception of the 'hspthresh' command, which we set to 8,000 . This was done to only return very high similarity matches between compared sequences. Here the expectation is that when alignments are plotted against one another, we will observe a diagonal line demonstrating perfect matches between each stretch of sequence and itself. In the case of segmental duplications, we also expect to see parallel and perpendicular (if in reverse orientation) segments adjacent to the diagonal 'self' axis. We plotted LASTZ results for each of the regions using the base plotting function in R (R Core Team).

We then performed Bayesian phylogenetic analyses to further evaluate evidence of tandem duplication and monophyly among members of the PLA2, SVMP, and SVSP venom gene families. We generated protein alignments of venom genes with their closest homologs, which we identified using tBLASTx searches between venom genes and our whole gene set) using MUSCLE (Edgar 2004) with default parameters, with minor manual edits to the alignment to remove any poorly aligned regions. We analyzed the protein alignments using BEAST2
(Bouckaert et al. 2014), setting the site model to 'WAG' for each analysis. We ran each analysis for a minimum of 1×10^{8} generations, and evaluated whether runs had reached stationarity using Tracer (Drummond and Rambaut 2007). After discarding the first 10% of samples as burnin, we generated consensus maximum clade credibility trees using TreeAnnotator (distributed with BEAST2).

Analyses of Venom Gland Gene Expression

To explore venom gland gene expression in comparison to other body tissues, raw Illumina RNA-seq reads from all tissues (Supplemental Table S3) were quality trimmed using Trimmomatic v. 0.36 (Bolger et al. 2014) with default settings. We used STAR (Dobin et al. 2013) to align reads to the genome. Raw expression counts were estimated by counting the number of reads that mapped uniquely to a particular annotated transcript using HTSeq-count (Anders et al. 2013). These raw counts were then normalized and filtered in edgeR using TMM normalization (Oshlack et al. 2010; Robinson et al. 2010), and all subsequent analyses were done using these normalized data. To test for significant expression differences between venom gland and body tissues, we performed pairwise comparisons between combined venom gland (i.e., 1 day venom gland, 3 day venom gland, and unextracted venom gland) and body (all other tissues, except for accessory venom gland) tissue sets using an exact test of the binomial distribution estimated in edgeR, integrating tagwise dispersion (Robinson and Oshlack 2010). Genes with differential expression at an FDR value ≤ 0.05 were considered significant. Heatmaps were generated in R using the heatmap function from the R Stats package (R Core Team).

To identify candidate transcription factors regulating venom gene expression, we searched the genome annotation for all genes included on the UniProt (http://www.uniprot.org) reviewed
human transcription factor database, by specifying species = 'Homo sapiens' and reviewed $=$ 'yes' in the advanced search terms. Using this list, we parsed our significant venom gland expressed gene results detailed above for candidate venom gland transcription factors, which showed a pattern of overall low body-wide expression and statistically significant evidence of higher expression in the venom gland, specifically. We identified 12 candidates using this approach, including four members of the CTF/NFI family of RNA polymerase II core promoterbinding transcription factors (NFIA, two isoforms of NFIB, and NFIX). NFI binding sites have been identified upstream of venom genes in several venomous snake taxa, including viperids, elapids, and colubrids (e.g., crotamine/myotoxin in Crotalus durissus (Radis-Baptista et al. 2003) and three finger toxins in Naja sputatrix (Lachumanan et al. 1998) and Boiga dendrophila (Pawlak et al. 2008)). NFI family members were also found to be expressed in the venom glands of several species in a previous study exploring putative venom gland transcription factors (Hargreaves et al. 2014), but information about whether they showed venom gland-specific expression was not provided. This set also included the grainyhead-like homolog 1 (GRHL1) transcription factor Other significantly up-regulated transcription factors in the venom gland appear to be involved in the unfolded protein stress response of the endoplasmic reticulum and in glandular epithelium development and maintenance (Fig. 4B; Supplemental Table S12). We quantified the distance between predicted binding sites of all transcription factors upregulated in the venom gland (Supplemental Table S12) from 1) venom genes and 2) non-venom genes and compared these distance distributions using t-tests.

Because four transcription factors of the NFI family each showed evidence of venom glandspecificity, we tested the hypothesis that their binding motifs are also upstream of venom genes
by quantifying the number of predicted NFI binding sites from PSSM analyses detailed above in the 1 kb upstream region of each venom gene. We also searched for proximity of GRHLI binding sites to venom gene regions, as well as all nonvenom genes, using BEDtools (Quinlan and Hall 2010) to calculate the number of predicted binding sites within $100 \mathrm{~kb}, 50 \mathrm{~kb}, 10 \mathrm{~kb}$, and 5 kb intervals up and downstream of each gene. Here, we did not confine our search only to promoter regions. To test for enrichment of NFI binding sites in the upstream regions of venom genes, we divided the number of predicted binding sites upstream of venom genes by the total length of upstream regions and compared this value to the analogous proportion for upstream regions of all nonvenom genes using a Fisher's exact test (Supplemental Table S13). We performed a similar analysis for GRHL1 at each interval size, again comparing the density of predicted GRHL1 binding sites within intervals of venom genes to nonvenom genes (Supplemental Table S13). We also used the Bedtools 'closest' function (Quinlan and Hall 2010) to calculate the distribution of distances between genes and predicted GRHL1 binding sites.

SUPPLEMENTARY FIGURES

Supplemental Figure S1. Insert size probability distributions used in the Dovetail Genomics HiRise assembly method from paired Chicago (A) and Hi-C (B) datasets.

Supplemental Figure S2. Heatmaps of $\log _{10}$ normalized intrachromosomal Hi-C contact frequencies around mapping locations for cDNA markers from Elaphe quadrivirgata (Matsubara et al. 2006) in the rattlesnake genome. For each of the six markers, panels showing the contact frequencies between the focal marker and its nearest confirmed marker (see Supplemental Methods), and panels zoomed to the region immediately around the focal marker are shown: NOSIP (A-B), ZNF326 (C-D), UCHL1 (E-F), GNAI2 (G-H), KLF6 (I-J), and P4HB (K-L). Marker locations are shown with white squares, and chromosomal coordinates for each panel are shown in the bottom right corner. The location of a potential misassembly error is shown in panel D.

Supplementary Figure S3. Centromeric tandem repeat motif characterized using tandem repeats finder. Analysis of high frequency tandem repeats identified a 164 -mer with high relative GC to the genomic background. The y-axis, tandem repeat mass, represents the relative abundance of tandem repeats of a given unit length and GC content.

Supplementary Figure S4. Evolutionary patterns of genomic features of microchromosomes among reptiles. Values at nodes on the phylogenetic tree represent the node age in millions of years, and were obtained using median estimates from TimeTree. The heatmap to the right represents the relative abundance of a given measure on microchromosomes versus macrochromosomes within each species (blue values represent greater abundance on macrochromosomes and red values represent greater abundance on microchromosomes). Values in each heatmap cell equal the ratio of each measure on microchromosomes:macrochromosomes, and values with asterisks represent significant differences between microchromosomes and macrochromosomes.

Supplemental Figure S5. Results of gene-based synteny analyses between the chicken (left), rattlesnake (center), and anole lizard (right). Chromosome numbers for each species are shown to the left of the chromosome ideograms, which are scaled by total length. Colors for chromosome paints are based on the rattlesnake genome.

Supplementary Figure S6. Genomic repeat element abundance at a range of relative age values. Age is measured using the Kimura substitution level of transposable elements when compared to a consensus sequence.

Supplemental Figure S7. $\log _{2}$ normalized female/male coverage ratio of pitviper species (Five Pace viper (Deinagkistrodon acutus), Pygmy Rattlesnake (Sistrurus catenatus), and Prairie Rattlesnake (Crotalus viridis), when mapped to the prairie rattlesnake reference genome. The dashed line at zero represents the normalized coverage expectation for diploid loci, and the dashed line at -1 represents the expectation of a hemizygous locus. Ratios are shown show values for each 100 kb window in a sliding window analysis of coverage. Colored backgrounds depict the major regions discussed in the Main Text.

Supplemental Figure S8. Density distributions of GC content across Prairie Rattlesnake chromosomes, showing specific distributions of macrochromosomes, microchromosomes, the Z Chromosome, and the pseudoautosomal region (PAR) of the sex chromosomes, specifically.

Supplemental Figure S9. Comparative age distributions of proportions of transposable elements (TEs) across the Z Chromosome (upper) and the pseudoautosomal region (PAR; lower) of the rattlesnake Z Chromosome. TE families contributing to proportions in each region at each age are shown at the right.

Supplementary Figure S10. 100 kb windowed scans of gene density (measured as number of genes per window) and GC content (i.e., proportion of GC bases within each window) across the Z Chromosome of the prairie rattlesnake. The regions on the Z correspond to those demarcated in Fig. 2 in the main text.

Supplemental Figure S11. 100 kb windowed scans of nucleotide diversity (π) for each sex across the Z Chromosome of the Prairie Rattlesnake. The regions on the Z correspond to those demarcated in Fig. 2 in the main text. Blue and red dashed lines correspond to median female and male values, respectively.

Supplemental Figure S12. Patterns of liver gene expression in females and males across the Z chromosome. (A) $\log _{2}$ normalized female/male gene expression per gene (black dots) across the Z . The red dashed line is the median ratio, and relative density is shown to the right. (B) Gene expression $\left(\log _{2}\right.$ RPKM) distributions for male and female across macrochromosomes, Z chromosome, the PAR, and microchromosomes. (C) Density plots of current and inferred ancestral patterns of gene expression ($\log _{2}$ RPKM) in male and female, respectively. Dashed lines represent the median of each distribution.

Supplemental Figure S13. Proportions of genes on the Z that exhibit female-biased (i.e., $\log _{2}$ female/male RPKM >0.5; green bars), unbiased (dark grey bars), and male-biased (i.e., $\log _{2}$ female $/ \mathrm{male}$ RPKM <-0.5; blue bars) expression in the kidney (A) and liver (C). Light grey bars in the background represent proportions of autosomal genes meeting the same criteria. Scatterplots of male versus female gene expression ($\log _{2}$ RPKM), with points showing expression of male-biased (blue), unbiased (grey), and female-biased (green) genes for kidney (B) and liver (D).

Supplemental Figure S14. Scatterplots of the number of predicted estrogen response elements versus the ratio of $\log _{2}$ (female/male) gene expression in 100 kb windows across the rattlesnake Z Chromosome (A) and Anolis Chromosome 6 (B). The significant positive correlation between variables on the rattlesnake Z is shown by the red line.

Supplemental Figure S15. Density of estrogen response elements (EREs) across the genomes of squamate species. Density in Z-linked regions of the Prairie Rattlesnake (Crotalus) and Five Pace Viper (Deinagkistrodon) and the syntenic Anole lizard (Anolis) Chromosome 6 regions are depicted in green, and the genomic background for each species is shown in grey bars. The black bar and asterisk depict that EREs are enriched on the pitviper Z Chromosome relative to the homologous autosome in Anolis (Chromosome 6).

Supplemental Figure S16. Schematic of the initial misassembled microchromosome scaffold. The heatmap panel at the top depicts the high frequency intrachromosomal contacts within individuals microchromosomes, and black triangles depict boundaries between microchromosomes. Breakpoints between Chicago scaffolds used as initial microchromosome breakpoint hypotheses are shown as red dashes below the Hi-C heatmap. The middle two panels show synteny alignments between rattlesnake, chicken, and anole microchromosomes. The bottom two panels show windowed GC and repeat content across microchromosomes. Blue dashed lines in the lower panels show breakpoints between individual microchromosomes.

Supplemental Figure S17. Chromosomal locations of snake venom gene families in the prairie rattlesnake. The pie chart in the center depicts the relative abundance of venom families in the prairie rattlesnake proteome. Chromosomal ideograms and windowed scans of GC content (\%) and repeat content (\%) correspond to those described in Fig. 1 in the main text).

Supplemental Figure S18. Regional self alignment of phospholipase A2 (PLA2), snake venom metalloproteinase (SVMP), and serine proteinase (SVSP) venom gene clusters (left). Parallel and perpendicular lines off of the central diagonal line indicate segmental duplications. Bayesian phylogenetic tree estimates for each of the three gene families constructed based on protein alignments (right), with venom gene paralogs shown in color, and non-venom paralogs in grey. Values at nodes represent posterior probabilities.

A sVMPregion

B svsp region

© PLA2 region

Supplemental Figure S19. Structure of annotated $\operatorname{SVMP}(A), \operatorname{SVSP}(B)$, and $P L A 2(C)$ venom gene clusters in the prairie rattlesnake genome. Strandedness (i.e., $+/-$) of genes is summarized by arrows in the center of each gene. The length of each cluster is shown at the bottom of each panel. Non-venom genes flanking each cluster are shown in grey. In the PLA2 region, PLA2gIIE (non-toxin) is depicted in dark grey. Predicted $N F I$ transcription factor binding sites within the 1 kb upstream region of venom genes are shown in red, and locations of predicted GRHL1 binding sites between genes are shown as turquoise squares.

Supplemental Figure S20. Gene expression across tissues of 12 transcription factors (TFs) significantly upregulated in the venom gland. Broad classifications of known TF functions are annotated at the top of each gene, where applicable.

Supplemental Figure S21. Zoomed out Hi-C heatmaps of the SVMP (A) and $\operatorname{SVSP}(B)$ venom gene regions at two scales (left and right) on microchromosomes, depicting chromatin contact domain structure. Inferred contact domains are represented by dashed black boxes, venom genes in each venom gene region are depicted by solid black boxes, and predicted CTCF binding sites are represented by blue squares. Zoomed in versions of these schematics are presented in Fig. 4 in the main text.

Chapter 4

Vertebrate lineages exhibit diverse patterns of transposable element regulation and expression across tissues

Giulia I.M. Pasquesi ${ }^{1}$, Blair W. Perry ${ }^{1}$, Mike W. Vandewege ${ }^{2}$, Drew R. Schield ${ }^{1}$, Robert P. Ruggiero ${ }^{1,3}$, and Todd A. Castoe ${ }^{1 \ddagger}$
${ }^{1}$ Department of Biology, 501 S. Nedderman Dr., University of Texas at Arlington, Arlington, TX 76019 USA
${ }^{2}$ Department of Biology, ENMU Station 33, 1500 S Ave K, Eastern New Mexico University, Portales, NM 88130 USA
${ }^{3}$ Department of Biology, One University Plaza, MS 6200, Southeast Missouri State University, Cape Girardeau, MO 63701 USA

Abstract

Transposable elements (TEs) comprise a major fraction of vertebrate genomes, yet little is known about their expression and regulation across tissues, and how this varies across major vertebrate lineages. We present the first comparative analysis integrating TE expression and TE regulatory pathway activity in somatic and gametic tissues for a diverse set of 12 vertebrates. We conduct simultaneous gene and TE expression analyses to characterize patterns of TE expression and TE regulation across vertebrates, and examine relationships between these features. We find remarkable variation in the expression of genes involved in TE negative regulation across tissues and species, yet consistently high expression in germline tissues, particularly in testes. Most vertebrates show comparably high levels of TE regulatory pathway activity across germline tissues, except for mammals which show reduced TE regulatory pathway activity in the ovary. We also find that all vertebrate lineages examined exhibit remarkably high levels of TE-derived transcripts in somatic and gametic tissues, with recently-active TE families showing higher expression in gametic tissues. Although most TE-derived transcripts originate from inactive TE families (and are likely incapable of transposition), such high levels of TE-derived RNA in the cytoplasm may have secondary, unappreciated biological relevance.

Introduction

Transposable elements (TEs) represent the largest identifiable fraction of vertebrate genomes (Smit et al. 2015-2019; Chalopin et al. 2015) despite the fact that they are fundamentally mutagens that propagate through the insertion of new copies. Though ubiquitous, the composition and abundance of TEs is highly variable across vertebrate genomes (Chalopin et al. 2015; Kapusta et al. 2017; Pasquesi et al. 2018; Platt et al. 2018). This variability is the result of complex processes acting at both the levels of TEs and the host genome, including population demography (Lynch and Conery 2003; Neafsey et al. 2004; Xue et al. 2018), the evolutionary history of TEs that have infected host genomes (Kordis and Gubensek 1998; Gilbert et al. 2012; Pasquesi et al. 2018), and the ability of the host to repress TE mobilization (Aravin et al. 2008; Ozata et al. 2019). TE insertions may negatively impact the fitness of their host (Boissinot et al. 2006; Lynch and Walsh 2007) and have been shown to disrupt open reading frames and regulatory regions, alter chromosome structure, and promote genomic rearrangements (Callinan and Batzer 2006; Gasior et al. 2006; Sen et al. 2006; Beck et al. 2011; Vogt et al. 2014; Burns 2017). Yet, increasing evidence for the roles of TEs in rewiring regulatory networks and driving evolutionary innovation (Agrawal et al. 1998; Bourque et al. 2008; Lynch et al. 2015; Chuong et al. 2016; Makałowski et al. 2017; Zeng et al. 2018) counterbalances a simplistic view that TEs are exclusively associated with deleterious impacts on host genomes.

Host genomes have evolved multiple mechanisms to negatively regulate TE activity (reviewed in Goodier 2016), with the primary mechanism being epigenetic modification to silence TEcontaining chromatin (Reik 2007; Slotkin and Martienssen 2007; Jacobs et al. 2014). Gonadal germ cell development, however, requires genome-wide erasure of methylation patterns in
primordial germ cells to establish cell potency (Surani et al. 2007). This leaves transposons temporarily unsuppressed by chromatin silencing and thus capable of generating heritable insertions until chromatin structure is reestablished (Hajkova et al. 2002; Kato et al. 2007; Molaro et al. 2014). Safeguarding of the genome against this TE propagation in the germline is primarily accomplished by the PIWI:piRNA (PIWI interacting RNAs) pathway (Aravin and Tuschl 2005; Lim and Kai 2015), a specific small RNA interference mechanism that limits TE proliferation at both the transcriptional level through de novo methylation of TE loci and the post-transcriptional level by targeting and degrading TE transcripts (Aravin et al. 2008; Siomi et al. 2011; Weick and Miska 2014).

Previous studies of TE expression and regulation have primarily focused on analyses of germline cell populations, and testes in particular (Shi et al. 2007; Handel and Schimenti 2010). Fewer studies have examined the extent of somatic TE activity (Faulkner et al. 2009; Soumillon et al. 2013; Garcia-Perez et al. 2016; Loreto and Pereira 2017; Faulkner and Billon 2018), although there is evidence for biologically-relevant levels of TE transposition in certain somatic tissues, such as the brain, and for elevated levels of TE activation in somatic tissues associated with ageing or disease (Callinan and Batzer 2006; De Cecco et al. 2013; Bedrosian et al. 2016; Anwar et al. 2017; Faulkner and Garcia-Perez 2017; Kreiling et al. 2017). Currently, our understanding of variation in TE expression and TE regulation across somatic and gametic tissues is based primarily on studies of mammal and bird species (Soumillon et al. 2013), and remarkably little is known about how TE expression and TE regulation may vary across the vertebrate tree of life.

Here, we examine patterns of TE expression and regulation in somatic and gametic tissues from 12 species that represent a sampling of all major vertebrate lineages (Supplementary file 1). We
leverage this sampling to (i) quantify the effects of conserved TE regulatory mechanisms on TE expression levels within and across vertebrate lineages; and (ii) evaluate whether nonmammalian vertebrate species follow mammalian patterns of TE regulation and expression. Our integrated analyses provide new evidence for the uniqueness of mammalian germline biology compared to that of other vertebrates, highlight many features of TE regulation shared across vertebrate lineages, and raise new questions about the biological significance of broad expression of TE-derived transcripts in somatic and gametic tissues that appears to be ubiquitous across vertebrates.

Results

TE regulatory mechanisms are active in somatic and gametic tissues across vertebrate lineages Our analysis of gene expression for a combined set of 77 genes known to be involved in different TE regulatory mechanisms (Supplementary file 2) demonstrates substantial variation in expression across tissues and species. We find that all categories of negative regulators (i.e., repressors of TE activity) are expressed in both somatic and germline vertebrate tissues at widely varying levels, with the germline tending to show higher average expression (about 2.5 times higher than somatic tissues; Figure 1A and Figure supplement 1). Of all regulatory pathways, the PIWI:piRNA pathway shows higher expression levels in the germline compared to both somatic tissues (i.e., average 16.85 -fold higher), and other regulatory gene sets in the germline (1.65-fold higher; Supplementary file 3). In contrast, genes involved in the siRNA pathway show consistently low expression in somatic and germline tissues, while genes involved in transcriptional and post-transcriptional regulation of TE activity show wide variation in expression across species and tissues (Figure 1A; Figure supplement 1). We also find that
negative transcriptional regulators of TE expression on average are expressed at levels similar to the PIWI pathway in the germline, with nine-fold higher expression than in somatic tissues; this is consistent with elevated levels of chromatin modification and the deposition of histone and DNA methylation markers in germline tissues.

Patterns of TE regulatory mechanism activation across tissues and vertebrate lineages

 To assess variation in expression patterns of TE regulatory pathways among tissues and across lineages, we used multivariate clustering methods to summarize and differentiate trends of expression. Within-species principal component analyses (PCAs) on gene expression of PIWI pathway genes show distinct, individual clustering of germline tissues in non-mammal species, such that expression patterns in testes and ovaries are distinct from each other and from somatic tissues. In contrast, only testes show a distinct profile in mammals, while PIWI pathway levels in mammalian ovarian tissues fall within the variance of somatic tissues (Figure 1B left panel; Figure supplement 2A). No clear tissue clustering patterns are observed in pathway-specific analyses of the siRNA, transcriptional, and post-transcriptional regulatory pathways (Figure supplement 2B-D), except for a consistent trend of tissue separation driven by the ovary among non-mammal species. Broadly, these other regulatory pathways show cross-tissue profiles similar to those of the PIWI pathway, but with greater variance among somatic tissues (Figure 1 B right panel). We further measured the contribution of each gene to the principal component determination, and find that the five genes with the highest contribution scores all belong to the PIWI pathway for the majority of species.To understand how vertebrate lineages may differ on the basis of how they regulate TEs in the germline, we directly compared variation in expression levels of TE regulatory pathways
between species in germline tissues, specifically. Phylogenetically-correct PCAs for the set of PIWI pathway genes, genes from the three other regulatory mechanisms (i.e., "other pathways"), and all mechanisms combined demonstrate distinct TE regulatory pathway expression patterns in mammals compared to non-mammalian species, largely driven by variation in TE regulatory activity in the ovaries (Figure supplement 4). Comparisons of the first principal components between the PIWI pathway and "other pathways" distinguish testes expression patterns in the alligator and snake species from all other vertebrates (Figure 1C above). In contrast, we find that ovary expression patterns in eutherian mammals cluster independently from other vertebrate species, with the distinction being driven mostly by variation in expression of genes in the PIWI pathway (Figure 1C below).

Between-lineage variation in gametic tissue expression of TE regulatory pathway genes

To further characterize variation in TE regulatory activity across lineages, we calculated Zscores of expression relative to the mean expression of all genes for a subset of TE regulatory genes with orthologs identified in at least 8 of 12 species (Figure 2). Hierarchical clustering of Zscores across tissues identified five distinct clusters: vertebrate testes, ovary of non-mammal species, vertebrate brain, mammalian ovary, and a mixed cluster of somatic tissues from diverse lineages (Figure 2). This is particularly evident in mammals, which exhibit the highest Z-scores in the testes. The brain is the only non-germline tissue to exhibit similar expression profiles of TE-silencing genes across all vertebrates. Finally, in contrast to the single testes germline cluster, we find two groups of TE regulatory expression profiles among vertebrate ovaries. The first group includes all non-mammal species, in which expression profiles resemble TE regulation profiles in the testes. The other group includes ovary profiles for mammalian species, in which
expression levels are more similar to somatic tissues. The only exception to this pattern is the human ovary profile, which is clustered with brain. Differences in relative gene expression levels in vertebrate ovaries are further supported by comparative analyses of differential gene expression (DE) between germline and somatic tissues. Multiple genes are significantly differentially expressed in the ovaries of non-mammal species while none are differentially expressed in the mouse or human, and few genes show significant differential expression in the platypus and opossum (Figure supplement 5).

TE-derived transcript abundance across tissues and vertebrate lineages.

To characterize TE transcription levels and composition across vertebrate tissues, we compared expression levels of total TE-derived transcripts (total-TE dataset; Figure supplement 6), as well as transcripts derived only from recently inserted TEs in the genome (recent-TE dataset; Figure supplement 7). Total-TE expression is substantial in both germline and somatic tissues across all species analyzed, although at variable levels within and between species (Figure supplement 6 and 8). For example, while the mean proportion of total-TE derived transcripts is 6.68% across vertebrate tissue transcriptomes, values ranged from 0.26% in the chicken muscle to 23.44% in the opossum spleen (Figure supplement 8; Supplementary file 4). Among sampled species, the chicken and human are characterized by the lowest total-TE average expression levels (2.66% and 2.93% of the total transcriptome, respectively), due mainly to the very low TE transcription levels in somatic tissues (1.52% and 2.36% of the transcriptome on average, respectively). The highest average levels of total TE expression are found in the two snake species, the prairie rattlesnake and boa constrictor (13.75% and 12.16% of the transcriptome, respectively).

Our analyses also show that germline tissues do not always exhibit higher average total-TE expression levels than somatic tissues in vertebrates. For example, the clawed frog, prairie rattlesnake, platypus, and opossum have higher average total-TE expression in somatic tissues compared to germline tissues. In the prairie rattlesnake, platypus, and opossum, this is driven by expression levels that are generally elevated in all or several somatic tissues. In the case of the clawed frog, this pattern is driven by the comparatively low expression levels of total TE transcripts in the germline (which are the lowest across all vertebrate species analyzed). Despite high variance in TE expression levels across tissues, several tissues have relatively consistent trends across species. For example, the testes exhibit greater than two-fold the expression level compared to the ovary (9.63% vs. 4.13%) in all species except the opossum, where expression in the ovaries is higher than in the testes. Additionally, the brain has consistently high total-TE transcription levels across species, which is notably higher than expression in testes (average of 10.05% versus 9.13% of the transcriptomes made up by TE-derived transcripts in the brain and testes, respectively). Conversely, muscle, liver and ovary exhibit consistently low total-TE expression (Figure supplement 8; Supplementary file 4).

Recent-TEs are expressed in both germline and somatic tissues across vertebrates, although at lower levels (0.14% of the transcriptome on average across tissues and species) compared to all TE-derived transcripts (Figure supplement 8-10; Supplementary file 4). Similar to trends in totalTE transcript levels, proportional expression levels of recent-TEs are variable across species and tissues, although lower overall (e.g., from 0.003% in boa muscle to 1.94% in zebrafish testes). In contrast to the total-TE transcript dataset, average recent-TE expression is highest in the testes $(0.24 \%$, although though this is driven primarily by high testes expression in the zebrafish),
followed by the small intestine and the brain (0.22% and 0.19%, respectively). We found multiple examples of divergent levels of recent TE transcript expression among species within major vertebrate lineages. For example, while the mouse shows among the highest average recent TE expression levels, the human has low average recent-TE expression levels (Supplementary file 4; Figure supplement 7C and 9).

Overall, our analyses demonstrate that recent and total TE expression levels in somatic tissues are also poor predictors of one another. For example, the small intestine has a relative higher fraction of the transcriptome made up by recent-TEs, while the brain and the spleen have higher fractions of the transcriptome made by TE-derived transcripts that originated from more ancient (and presumably non-mobilizing) TE families (Figure supplement 9; Supplementary file 4). Such differences in the germline tend to be clade-specific. In the testes, mammal and non-mammal species have similar average total-TE expression levels (8.41% vs. 10.24%, respectively), but remarkably different recent-TE expression levels (0.14% and 0.33% respectively). With the exception of the zebrafish, however, recent-TE expression levels are very similar (0.14% and 0.10%). In contrast, mammalian ovaries exhibit more than two-fold greater TE expression than non-mammal species (2.56-fold for recent-TEs and 2.16-fold for the total-TE dataset; Figure supplement 9 and 10, Supplementary file 4). Additionally, there is a positive relationship between the fold-change in TE expression levels (total-TE/recent-TE) between testes and ovaries at the phylogenetic scale (Figure supplement 11), and TE-family composition in testis and ovary is very similar for total-TE transcripts. Yet, analyses of recent-TE transcriptional levels highlight sexually dimorphic TE expression, with some specific TE families appearing to be exclusively expressed in either ovaries or testes (e.g., CR1-LINEs are expressed in the python ovary but not
in the testis, and the reverse pattern is observed in the platypus; Figure supplement 10). Despite tissue-specific expression of some TE families in the recent-TE transcriptome of testes and ovaries, there is a significant association between the relative TE composition of the two germline tissues for both total and recent expression for each species (Figure supplement 12).

Relationships between genome and transcriptome TE composition in germline tissues

To test whether a stochastic model of genome-wide transcription, which predicts that a vast majority of the genome is transcribed at some level (Encode Consortium 2012; Djebali et al. 2012; Hangauer et al. 2013), applies to TEs across vertebrate lineages, we compared relative expression levels of 16 major TE families in the germline and the relative TE composition of the genome for each species analyzed (Supplementary file 5). Our analyses illustrate that each vertebrate species is characterized by a strong significant linear relationship between gametic tissue total-TE expression and the relative genomic abundance of TEs for each respective genome (Figure 3; Figure supplement 13 and Supplementary file 6). We also observe similar trends in relative recent-TE transcriptome composition and relative abundance of recently inserted TE-copies in the genome (Supplementary file 6). However, regression coefficients are generally lower for recent-TEs than for total-TEs, and in some species we find a lack of support for the relationship between genome TE content and TE transcriptional levels in the recent-TE matched comparisons (e.g., chicken, anole, and mouse ovary). This likely stems from multiple instances of TE subfamilies being entirely absent in germline transcriptomes but detectable in the genomes of these species, a trend that is observed in particular in mammals and birds (Figure 3). Finally, comparisons of the relative total genomic TE composition to the relative abundance of recent-TEs in germline transcriptomes found no association in testes and ovaries for most
species. However, mammal species represent an exception to this general trend, as they do exhibit significant linear correlations between genomic TE composition and recent-TE expression in both tissues, although with low regression coefficients (Figure supplement 13; Supplementary file 6).

Relationships between recent TE expression and TE regulatory activity

 Considering multiple lines of evidence from our analyses of differential regulation of TE activity in germline tissues, we tested the relationships between the magnitudes of the host response against TEs (particularly the relative activation of the PIWI pathway) and recent-TE expression in germline and somatic tissues (Figure 4; Figure supplement 14A). Phylogenetically corrected (PIC) Spearman rank-order correlation analyses show no significant relationship across species, despite different but non-significant trends across tissues. When all vertebrate tissues are analyzed together, we find a positive association between recent-TE and PIWI pathway gene expression (correlation coefficient $\rho=0.27$; Figure supplement 14B), as well as positive trends in germline tissues ($\rho=0.51$; Figure supplement 14C). In contrast, somatic tissues are characterized by a negative correlative trend ($\rho=-0.47$; Figure supplement 14 C). The germline exhibits a general trend where, when PIWI pathway genes are expressed at similar levels in testes and ovaries (e.g., in non-avian reptiles), recent-TE expression in the ovaries is lower than in the testes. In the mammalian ovaries, the very low expression level of the PIWI pathway correlates with higher than average recent-TE expression levels (Figure 4; Figure supplement 14).We further analyzed relationships between recent TE expression and regulation in testes and ovaries across species using PIC linear regression and Spearman rank-order correlation analyses (Figure 5A; Figure supplement 14D and Supplementary file 7 and 8). In the testes we find
significant positive relationships between expression levels of recent-TEs and both PIWI pathway genes and the entire set of genes involved in TE regulation (p-value $=0.02$ and 0.004 , respectively). There are also weak positive relationships between recent-TE expression and activity of TE regulatory pathways, though these results were not statistically significant based on a Spearman correlation test ($\rho=0.12$ and 0.27 for the total regulatory gene set and the PIWI pathway; Figure supplement 14D). We also find no significant relationship between recent-TE expression and regulatory activity in ovaries when all species were analyzed or when mammalian species were excluded. Although not significant, we observe a weak negative trend between PIWI pathway activity and recent-TE expression ($\rho=-0.37$). Finally, we tested if the response of the PIWI pathway is proportional to recent-TE expression between testes and ovaries across species, but found no evidence for a significant relationship (Figure 5B).

Discussion

A vertebrate-wide perspective on TE expression and TE regulatory pathway activity To date, studies of TE expression have primarily focused on analysis of male germline and embryonic tissues in mammals (e.g., human and mouse) to understand the mechanisms that regulate TE activity during developmental windows associated with genome-wide DNA demethylation, which are critical for the vertical propagation of TEs (Hajkova et al. 2002; Surani et al. 2007; Ernst et al. 2017). Our integrated analyses of TE regulatory mechanisms and TE expression across germline and somatic tissues shed new light on the variation that exists in both TE expression and regulation among vertebrates, and highlight major differences between germline patterns in mammals compared to other vertebrate lineages. Our results also raise new questions about the relatively high, yet variable, levels of TE-derived transcripts across somatic
and gametic tissues in vertebrates, and underscore the poorly understood relationships between TE regulation and TE transcript expression.

Overlooked complexity of TE negative regulation in the vertebrate germline

Despite major differences in evolutionary history and genomic composition of vertebrate TEs, we find that active repression of TEs via multiple conserved regulatory pathways appears to be a shared feature of vertebrates in both somatic and gametic tissues. However, the activation of TE repression mechanisms is particularly variable in ovaries across vertebrate lineages compared to more conserved patterns of activation in the testes. Mammals in particular appear to regulate TE expression in the ovary at a low level comparable to that of somatic tissues, which directly contrasts the high regulation observed in the ovary of other vertebrates. This reduced level of TE regulation in mammalian ovaries may explain why polymorphic TE insertions that have developmental origins in the female early embryo and late germline exhibit the highest transmission rates in mice (Richardson et al. 2017).

These findings raise intriguing questions regarding the biological basis and selective drivers that underlie reduced ovarian TE regulation in mammals compared to other vertebrate lineages. One potential explanation may derive from differences in mitotic rates in mammals; previous studies of TE activity and repression have focused specifically on the male germline over the female germline due to higher mitotic and meiotic rates during spermatogenesis (Handel and Schimenti 2010), and other previous studies have indicated that TE activity positively correlates with tissue-specific cell mitotic rates (Navarro et al. 2019). Across animals, ovaries are characterized by a cell population in meiotic arrest (Sagata 1996), but differences likely exist in the frequency and magnitude of oocyte activation across lineages (Abrieu et al. 2001). Species characterized by
the deposition of numerous eggs (e.g., fish and amphibians) possess an ovarian germline stem cell (OGSCs) population in order to replenish the oocyte pool (Hanna and Hennebold 2014). Whether the presence of OGSCs is a shared feature among vertebrates is still controversial their presence in mammals is debated, and information for other vertebrate lineages is not available (Hanna and Hennebold 2014). Future studies that advance our understanding of the variation in key features of ovarian biology across vertebrates, including mitotic and meiotic rates as well as the presence of OGSCs, may prove valuable for examining links between variation in characteristics of ovarian biology and the activity of TE regulatory mechanisms across vertebrate lineages.

Few previous studies have focused on TE regulatory mechanism outside of the mammalian germline (Watanabe et al. 2008; Lim et al. 2013; Malki et al. 2014), which limits the context for comparison of our results across tissues in vertebrates. Our conclusion that PIWI pathway genes are expressed at similar levels in testes and ovaries is broadly consistent with previous studies in the zebrafish, clawed frog, and anole (Houwing et al. 2007; Kirino et al. 2009; Zhang et al. 2017), while expression of PIWI mRNAs or piRNAs have not been detected in previous studies of chicken ovaries (Sun et al. 2017). Interestingly, the zebrafish is also known to produce sexspecific piRNAs from distinct genomic TE loci (Zhou et al. 2010); if this mechanism exists in other vertebrates, it may provide an explanation for sexually dimorphic expression of recent-TEs in the germline.

TE regulatory pathways do not clearly demarcate somatic and gametic tissues

Our comparative analyses illustrate that expression of genes involved in the negative regulation of TEs is not limited to the germline, and we find evidence for the activation of many of these
pathways across somatic tissues in diverse vertebrate species. Among the four categories of TE regulatory mechanisms analyzed, only expression levels of the PIWI:piRNA pathway consistently discriminated at least one germline tissue from somatic tissues based on variation in across-tissue gene expression. In contrast, endogenous small interfering RNA (siRNA), transcriptional, and post-transcriptional pathways are all characterized by relatively consistent expression levels across germline and somatic tissues. Our analyses therefore support the canonical view of PIWI pathway genes and associated piRNAs are a hallmark of gametic tissues, and the vanguard of germline genome integrity.

TE expression and repression mechanisms have been extensively studied in somatic tissues, but mostly in association with cancer, aging, and other diseases (Kazazian 1998; Burns 2017; Kreiling et al. 2017). Those studies led to the collective view that, because of the threat TE mobilization poses to genome integrity and structure, their expression is severely restricted at both transcriptional and post-transcriptional levels. Subsequent studies found exceptions to this pattern in the central nervous system and in specific developmental stages, where expression of specific elements promotes cellular mosaicism and the correct execution of cell specification pathways, respectively (Baillie et al. 2011; Weissman and Gage 2016; Hackett et al. 2017). In brain tissues, we find a single, distinct profile of TE regulation common to all vertebrates characterized by relatively higher expression of transcriptional regulators (e.g., TRIM28 and methyltransferases). This finding suggests that a shared pattern of TE activity may exist in the central nervous system of all vertebrates. Broadly, our findings indicate that genes traditionally associated with the germline (e.g., genes that belong to the PIWI:piRNA pathway; Ponnusamy et al. 2017) are expressed in somatic tissues, although often at relatively low levels, and vice-versa
(e.g., genes in the siRNA pathway; Stein et al. 2015). These results further support the roles of TE regulation in somatic tissues, possibly through the evolution of compensatory or reinforcing mechanisms, or the cooption of existing mechanisms for TE regulation (Levine et al. 2016).

Interpretations of TE-derived transcript abundance and relationships to TE regulation Our analyses demonstrate that TE-derived transcripts comprise a notably large fraction of the transcriptomes of both germline and somatic tissues across vertebrate lineages. We expected that a large majority of TE-derived transcripts would originate from recent active TE families, but this is not what we found in any of the species analyzed. Instead, for each vertebrate analyzed, TE-derived transcripts originate from a variety of both recent and ancient TEs families. These findings, corroborated by the identification of similar relative composition of genomes and TE transcriptomes across species, support hypotheses from studies in mammalian systems evoking a stochastic transcription model, in which the majority of the genome is pervasively transcribed (Encode Consortium 2012; Hangauer et al. 2013). Although the majority of TE-derived transcripts may not have biological activity related to insertional mutagenesis or replication, it remains an open question whether this abundant pool of TE-derived cellular RNAs have other biologically relevant impacts in gene regulation (e.g., InRNAs and microRNAs), or unappreciated roles due to their sheer abundance (e.g., mass-effect competition for RNA catabolic processes, RNA metabolism, and interference with translation) or due to their cooption as regulatory elements (van de Lagemaat et al. 2003; Lippman et al. 2004; Cordaux and Batzer 2009; Chuong et al. 2016).

To focus on TE-derived transcripts that are more likely to be biologically relevant sources of mutation and transpositional activity, we restricted our analyses to transcripts that originated
only from recently-active TEs (i.e., recent-TEs). These recent and active TEs are likely to be more strongly targeted by negative regulatory mechanisms (Vandewege et al. 2016; Sun et al. 2017; Xue et al. 2018). We find that recent-TEs are expressed in both germline and somatic tissues across vertebrates, although at far lower levels (that average 0.14% of the transcriptome) compared to total TE-derived transcripts (that average 6.86\%). Recent-TE expression tends to be highest in the testes, followed by the small intestine and the brain. Our results also indicate that patterns of recent-TE expression in mammals are unique among vertebrates analyzed by having relatively higher levels of expression in the ovaries, such that mammalian ovaries and testes show similar expression levels. We also identified multiple examples of highly divergent levels of recent-TE transcript expression among species within major lineages, suggesting that substantial variation likely exists across species within major vertebrate lineages.

Our analyses of the relationships between recent-TE expression and TE regulatory pathway activity provide evidence for divergent patterns between gametic tissues across vertebrates. In the male germline, there is a positive relationship across vertebrates between expression levels of recent-TEs and TE regulatory pathway activity. This suggests that the relative activation levels of TE repressive mechanisms may be tuned to be proportional to the threat posed by TE activity, and is also consistent with the concept that higher TE activity elicits a stronger response in the host (Reznik et al. 2019). In contrast, this trend was non-significant and weakly negative across vertebrate ovarian tissues. These findings highlight further questions about the unique biology of ovaries, how this biology may vary across vertebrates, and how it might relate to differences in the potentially deleterious effects of TE activity.

Conclusions and future directions

Our comparative analyses of TE regulation and expression across vertebrate lineages suggests that active repression of TEs is accomplished by multiple conserved mechanisms, and represents a shared feature among germline and somatic vertebrate tissues. Our results also highlight highly unique sexually dimorphic TE-associated biology specific to gametic tissues. We find that patterns of TE regulation are remarkably distinct in mammalian ovarian tissues compared to other vertebrates, and that a shift towards decreased TE regulatory activity in ovaries occurred early in the evolution of the mammalian lineage. These findings, together with other differences in TE regulation and expression identified among vertebrate lineages underscore the importance of studies of diverse vertebrate lineages for understanding the uniqueness of mammalian biology, and demonstrate the potential shortcomings of broad assumptions that diverse vertebrate model systems share common biological features and regulatory mechanisms. Our findings also underscore challenges in understanding the relevance of TE-derived transcript abundance from analysis of RNAseq data alone, and argue for future integration of approaches that quantify transpositionally competent TE-derived transcripts (Deininger et al. 2017) and other functional data (Sun et al. 2017; Goubert et al. 2019; He et al. 2019).

Materials and Methods

We used previously published poly-A-selected RNAseq datasets to compare expression levels of TE-derived transcripts in testes, ovaries, and up to 6 somatic tissues (brain, heart, kidney, liver, muscle, spleen and small intestine) across 12 vertebrate species that included representatives of fish, amphibians, reptiles, and mammals (Supplementary file 1). Raw RNAseq data were first filtered for prokaryote and eukaryote rRNA transcripts using SortMeRNA v2.1 (Kopylova et al.
2012), and then quality and adapter trimmed in Trimmomatic 0.36 (Bolger et al. 2014). Detailed information for each analysis is provided in the supplemental methods. For each species, reads were mapped using STAR v2.7.0f (Dobin et al. 2013) to the latest genome version and annotation .gff files available on the NCBI Genome database (Sayers et al. 2019). STAR was run according to default parameters, allowing for a maximum of 100 mapped reads per locus.

Gene and TE-derived transcript expression levels were simultaneously estimated using TEtranscript (Jin et al. 2015). To assign mapped reads to a genomic locus, TEtranscript requires two annotation files that specify gene and repeat element coordinates, respectively. TE index structures were built from RepeatMasker .out files (Smit et al. 2015-2019), and gene index structures were built from the same gene annotation files used when running STAR (detailed information on the protocol used to build the input.$g t f$ files are provided in the supplemental methods). TEtranscript was run using default parameters, the -multi multi-mapper mode flag, and specifying whether transcriptome data was stranded or not. Expression levels of TE-derived reads that originated from recently active (and thus, potentially capable of transposition) TE copies were estimated in a second, separate analysis. In this case, we provided TEtranscript with a filtered.$g t f$ annotation file that contains only TE loci with less than 2\% Kimura 2-parameter distance consensus (we refer to this as the "recent-TE" dataset). For each species, normalization of TE-derived and gene-derived raw read counts across tissues was performed using the estimateSizeFactors-estimateDispersions-counts(normalized=TRUE) functions in DESeq 2 v 1.20 (Love et al. 2014) after removing elements with less than 10 mapped reads across samples.

To assess the relationships between TE expression levels and TE regulatory pathway gene levels, we compared recent-TE expression levels to 5 sets of TE regulatory genes: (i) genes participating
in the PIWI:piRNA pathway (Carbon et al. 2009; PIWI pathway hereafter); (ii) genes involved in the small RNA interference pathway (Carbon et al. 2009; siRNA pathway); (iii) genes involved in transcriptional regulation of TEs (e.g., responsible for de novo DNA or histone methylation; e.g., Hutchins and Pei 2015; Levine et al. 2016); (iv) other genes previously identified to negatively impact TE mobilization and/or insertion at the post-transcriptional level (e.g., Apobec; Goodier 2016); and (v) the combined magnitude all TE regulatory genes (which corresponds to all 77 conserved genes belonging the four previous sets).

Patterns of within-species variation in expression levels across tissues were assessed by performing principal component analyses (PCAs) on blind variance stabilizing transformed data (Anders and Huber 2010). Because of the heterogeneous nature of our data, between species comparisons were performed using percentages of the total transcriptome following normalization of read counts to limit biases due to different methods of tissue processing, library preparation, sequencing technology and dataset quality (Sudmant et al. 2015; Dunn et al. 2018). To investigate relationships in expression patters across vertebrates, we performed phylogenetic independent contrast (PIC) linear regressions and PCAs using the phytools package in R (Revell 2012). Additional methodological details for analyses performed in this study are provided in the supplemental methods.

Acknowledgements

Support was provided from startup funds from the University of Texas at Arlington to TAC and the Society for the Study of Evolution (to GIMP). We acknowledge the Texas Advanced Computing Center (TACC) for providing access to computational resources.

Figures

Figure 1. - Expression patterns of key genes involved in negative regulation of transposable element (TE) activity in germline and somatic vertebrate tissues. (A) For each species, heatmaps show log2transformed within-species normalized expression levels of main pathways involved in TE silencing. Warm colors (yellow) represent higher total expression levels of genes in the pathway across tissues. (B) Principal component analyses (PCA) for the PIWI:piRNA pathway (left) and all other regulatory pathways (siRNA pathway, transcriptional and post-transcriptional TE silencing mechanisms; right) reflect variance in gene expression profiles across tissues for each species. While non-mammal species show discrimination of both germline tissues (testis in green and ovary in maroon) form somatic tissues (empty grey circles) and from each other in respect to PIWI pathway genes, gene expression in the mammalian ovary falls within the variability of somatic tissues. (C) PCA for the testis (above) and ovary (below) show species clustering based on the principal component of the PIWI pathway (x axis) and all other regulatory pathways (y axis). Per each species, coordinates were extracted from the corresponding phylogenetically independent contrast (PIC) PCAs. Cold colors represent non-amniote vertebrates, warm colors reptiles, and magenta mammal species.

Figure 2. - Hierarchical clustering Z-score heatmap of TE regulatory genes in germline and somatic vertebrate tissues. Analysis of differential expression of key conserved genes involved in TE silencing suggests the existence of 5 main expression profiles across vertebrate tissues: vertebrate testis, characterized by the highest activation status of the PIWI:piRNA pathway and transcriptional regulators; ovary of non-mammal species, with expression patterns similar to the testis; mammalian ovary (to the exclusion of humans), which shows a sharp decreased expression of PIWI genes; other somatic tissues (average Z-scores across heart, kidney, liver, muscle, spleen and small intestine after individual tissue heatmap supported the existence of a single cluster); and vertebrate brain.

Figure 3. - Relationship between genomic and transcriptomic TE relative composition in the male germline. Area of the circles in the balloon plot reflects the percentage of major TE subfamilies (blue $=$ DNA transposons, green $=$ LTRs, grey $=$ PLE and DIRS, yellow $=$ LINEs, violet $=$ SINEs) relative to the total genomic TE content (top row, grey background) and to the total TE transcriptome (white background). In the box, the same relationship is displayed for recently inserted TE copies (with a Kimura distance $<2 \%$) and recent-TEs in the transcriptome. Values to the left report the real proportion of TEs (TE content \%) in the genomes and transcriptomes. We find support for high TE transcription in testis transcriptomes (up to 15%), which perfectly match the relative composition of the genome. In contrast, for recent-TEs some families are entirely missing in the transcriptome despite their presence in the genomic background. Balloon plot additionally highlights variability in TE landscapes across vertebrates.

Figure 4. - Expression levels of recent-TEs and their negative regulatory mechanisms in vertebrate somatic and germline tissues. Heatmap shows comparative expression levels of recent-TEs (top row), total regulatory pathways (PIWI:piRNA, siRNA, transcriptional and post-transcriptional), and details of the contribution of PIWI:piRNA pathway and all remaining silencing mechanism (bottom section) across vertebrate tissues. Comparative gene expression is reported as percentage of the transcriptome following within species normalization. Whereas human, xenopus and chicken show the lowest levels of recent-TE expression in both germline and somatic tissues, vertebrate tissues show moderate to high contribution of TEs to tissue transcriptomes, which is consistently highest in the testis, and reduced in non-mammal ovary.

Figure 5. - Relationship between expression levels of recent-TEs and their negative regulatory pathways. (A) Linear regressions and PICs support a significant positive relationship between recent-TE expression and host response (PIWI pathway and total response) in the testis, whereas in the ovary they suggest the opposite, although not significant, trend. (B) Patterns of species TE expression levels in the testis (x-axis) and ovary (y -axis). Recent-TE transcriptome percentages were corrected by the PIWI pathway to test for a correlation in expression levels. Mammal species show a consistent trend in the ovary where lower regulatory activity brings to increased TE transcription, matched by the testis although in favor of the PIWI pathway, compared to non-mammal species. In contrast, non-mammal species show a consistent host response proportional to TE activity in the ovary (constant TE:PIWI ratio), but higher variability in the testis, with some species that are more efficient at contrasting TEs.

Supplementary Methods

In this study we used previously published poly-A-selected RNAseq datasets that are available on the NCBI SRA archive database (Leinonen et al. 2011); supplementary table 1). Raw RNAseq data were first filtered for prokaryote and eukaryote rRNA transcripts using SortMeRNA v2.1 (Kopylova et al. 2012), and then quality and adapter trimmed in Trimmomatic 0.36 (Bolger et al. 2014). We used FastQC v0.11.8 (Andrews 2010) to assess quality of the processed reads. Since quality assessment passed analyses for all parameters without warnings, no further read filtering was performed. Forward and reverse paired reads from Trimmomatic filtering were then used as input for estimation of gene and transposable element (TE) expression levels.

For each species, we used STAR v2.7.0f (Dobin et al. 2013) to map reads to the latest genome version and annotation.$g f f$ files available on the NCBI Genome database (Sayers et al. 2019) at the time of analyses (Danio rerio: assembly GRCz11, Xenopus laevis: assembly

Xenopus_laevis_v2, Alligator mississippiensis: assembly ASM28112v4, Gallus gallus: assembly GRCg5, Anolis carolinensis: assembly AnoCar2.0, Boa constrictor: ERS218597, snake_7C available on GigaDB (Bradnam et al. 2013; Card et al. 2019), Python molurus: assembly Python_molurus_bivittatus-5.0.2, Crotalus viridis: assembly UTA_CroVir_3.0, Ornithorhynchus anatinus: mOrnAna1.p.v1, Monodelphis domestica: assembly MonDom5, Homo sapiens: assembly GRCh38.p12, Mus musculus: assembly GRCm38.p6). For human and mouse, primary genome assemblies and corresponding annotation files were used to avoid incorrect read alignment to loci on patches or alternative haplotype contigs as suggested by the authors (Dobin et al. 2013). STAR was run according to default parameters but using the variables -
winAnchorMultimapNmax 100 and -outFilterMultimapNmax 100, which allow for multiple alignments of maximum 100 reads, as specified in (Jin et al. 2015).

Expression levels were estimated using TEtranscript (Jin et al. 2015), a tool that allows for the simultaneous estimation of gene and TE expression levels. To assign mapped reads to a genomic locus, TEtranscript leverages two annotation files that specify gene and repeat element coordinates, respectively. We used the same gene annotation files provided as a reference when running $S T A R$ to build the gene index structure; to convert.$g f f$ files into the required.$g t f$ files we used the gff3ToGenePred and genePredToGtf modules available on the UCSC website (Casper et al. 2018). TE index structures were built from RepeatMasker (Smit et al. 2015-2019) runs; for all species, we used the standard tetrapoda library as reference, except for human and mouse for which we used the mammal library. For squamate species we used the same strategy described in (Schield et al. 2019) instead. We used the script makeTEgtf.pl available made available from the Hammell lab (http://labshare.cshl.edu/shares/mhammelllab/wwwdata/TEToolkit/TE_GTF/makeTEgtf.pl.gz) to convert RepeatMasker .out files into .gtf files. TEtranscript was run using default parameters, using the --multi flag and specifying whether transcriptome data was stranded or not. To further focus our analyses on TE-derived reads that originated from recently active (and thus, potentially capable of transposition) TE copies, in a second, separate analysis we provided TEtranscript with a.$g t f$ annotation file containing only TE loci that according to the RepeatMasker .out file had less than 2\% Kimura 2-parameter distance from the consensus (we refer to this as the "recent-TE" dataset).

For each species, raw read counts for the entire transcriptome (genes and TEs) were normalized across tissues in DESeq2 v1.20 (Love et al. 2014) after removing elements with less than 10
mapped reads across samples. Normalization was run independently on the total-TE dataset and on the recent-TE dataset; since gene expression estimates were the same in the two datasets, we consistently used the normalized counts coming from the recent-TE dataset when analyzing gene expression levels. To examine patterns of within-species variation in expression profiles across tissues, we first applied a blind variance stabilizing transformation (Anders and Huber 2010) to the entire count matrix, and used the resulting transformed data to calculate tissue-wise variance and evaluate patterns of expression using principal component analyses (PCAs).

To assess the relationships between expression levels of TEs and genes involved in TE negative regulatory mechanisms, we compared recent-TE expression levels to 5 sets of TE regulators: (i) genes participating in the PIWI:piRNA pathway (Carbon et al. 2009; PIWI pathway hereafter); (ii) genes involved in the small RNA interference pathway (Carbon et al. 2009; siRNA pathway); (iii) genes involved in transcriptional regulation of TEs (e.g., responsible for de novo DNA or histone methylation; e.g., Hutchins and Pei 2015; Wylie et al. 2016); (iv) other genes previously identified to negatively impact TE mobilization and/or insertion at the post-transcriptional level (e.g., Apobec; Goodier 2016); and (v) the combined magnitude of the host response against TEs (all genes involved in negative TE regulation). The final gene dataset included a total of 77 conserved genes, for which we recovered expression values of all annotated orthologues (Supplementary table 2).

Because of the heterogeneous nature of our data, we chose to perform between species comparisons using percentages of the total transcriptome following normalization of read counts to limit biases due to different methods of tissue processing, library preparation, sequencing technology and dataset quality (Sudmant et al. 2015; Dunn et al. 2018). To compare differences
in patterns of gene expression levels across species and tissues, we calculated Z-score values of gene expression for each species using the scale function on $\log 2$ transformed normalized data in R (R Core Team). Z-scores were also used to perform hierarchical tissue clustering across species as part of the heatmap data visualization step generated using the pheatmap R package (Kolde 2012) (distance method="euclidean"; hclust "complete" clustering). To assess differential gene expression in the testis and in the ovary compared to somatic tissues, we used $\log 2$ fold change values and corresponding adjusted p-values as calculated in DESeq2. Finally, to investigate relationships in TE and gene expression patters across vertebrates, we performed phylogenetic independent contrast (PIC) linear regressions and PCAs using the phytools package in R (Revell 2012). Spearman rank correlation analyses were performed using the rcorr function in the Hmisc v4.2-0 R package (Harrell 2019).

SUPPLEMENTARY FIGURES

Transcriptome \%
$0.00-0.00025$
$0.00025-0.0005$
$0.0005-0.001$
$0.001-0.005$
\square
$0.005-0.0075$
$\square 0.0075-0.01$
\square
\square

Figure supplement 1. Estimates of negative transposable element (TE) regulators expression levels in somatic and germline tissues across vertebrate species. Heatmap shows variation in expression levels of genes belonging to the PIWI:piRNA pathway (PIWI path.), small interfering RNA (siRNA path.), negative transcriptional and post-transcriptional (Post-Tr.) regulation of TEs. We used percentages of with-in-species normalized gene expression levels as estimates of gene expression to account for between species library variation.

Figure supplement 2A. Principal Component Analyses (PCA) for genes taking part in the PIWI-piRNA pathway of negative TE regulation across tissues in vertebrate species. PCA plots show tissue clustering based on variance stabilized transformation (vst) of gene expression estimates assessed in DeSeq2. Tissues are colored according to their contributions (cos2 = quality of the sample on the factor map). Arrows represent the eigen vectors for the 5 most contributing variables in the variables factor map. Noticeable is the discrimination of both germline tissues in non-mammal species, whereas only the testis is discriminated in mammals.

Figure supplement 2B. Principal Component Analyses (PCA) for genes taking part in the small interfering RNA (siRNA) pathway across tissues in vertebrate species. PCA plots show tissue clustering based on variance stabilized transformation (vst) of gene expression estimates assessed in DeSeq2. Tissues are colored according to their contributions ($\cos 2=$ quality of the sample on the factor map). Arrows represent the eigen vectors for the 5 most contributing variables in the variables factor map. In contrast to PIWI pathway gene PCAs, variance in gene expression levels between somatic tissues is greater than between germline and somatic tissues.

Figure supplement 2C. Principal Component Analyses (PCA) for genes taking part in negative transcriptional regulation across tissues in vertebrate species. PCA plots show tissue clustering based on variance stabilized transformation (vst) of gene expression estimates assessed in DeSeq2. Tissues are colored according to their contributions (cos2 = quality of the sample on the factor map). Arrows represent the eigen vectors for the 5 most contributing variables in the variables factor map. Whereas variance in gene expression levels between somatic tissues varies between species, the ovary is characterized by the highest variance in most vertebrates to the exception of eutheria mammals.

Figure supplement 2D. Principal Component Analyses (PCA) for genes taking part in negative post-transcriptional regulation across tissues in vertebrate species. PCA plots show tissue clustering based on variance stabilized transformation (vst) of gene expression estimates assessed in DeSeq2. Tissues are colored according to their contributions ($\cos 2=$ quality of the sample on the factor map). Arrows represent the eigen vectors for the 5 most contributing variables in the variables factor map.

Figure supplement 3. Principal Component Analyses (PCA) for genes taking part in negative TE regulation across tissues in vertebrate species. PCA plots show tissue clustering based on variance stabilized transformation (vst) of gene expression estimates assessed in DeSeq2. Tissues are colored according to their contributions ($\cos 2=$ quality of the sample on the factor map). Arrows represent the eigen vectors for the 5 most contributing variables in the variables factor map. The evolutionary transition to mammals is mirrored by a dicrease in variance and contribution of the ovary compared to other somatic tissues, whereas in non mammal species both germline tissues cluster independently with high support. Genes belonging to the PIWI:piRNA pathway (black) appear to be major factors driving tissue separation relatively to genes bleonging to the siRNA pathway (gray), trnascriptional (brown), and post-transcriptional mechanisms (light brown).

C
Remaining regulatory pathways

Figure supplement 4. Pylogenetic PCAs for expression levels of genes involved in negative regulation of TEs in germline tissues. A-C) Phylogenetic PCAs show clustering of vertebrate species according to variance in vst (variance-stabilized transormation) gene expression levels in the testis (left) and in the ovary (right). A) When all genes are considered, mammals (eutheria in particular) form a distinct cluster for the ovary, whereas clustering structure is less pronounced in the testis. A similar trend is observed for the genes involved in the PIWI:piRNA pathway (B), but exclusively for eutheria mammals in the ovary. C) Remaining regulatory pathways include genes that take part in the siRNA pathway and in transcriptional and post-transcriptional regulation of TEs. Clustering of mammals is present iin both germline tissues, but more evident in the male than in the female germline. Overall, squamates tend to cluster together in all PCAs, except for the chicken that, like the xenopus, tends to cluster individually in A and C. Results support our hypothesis of differential regulation of TE expression in germline tissues between mammals and other vertebrate species.

Figure supplement 5. Germline differential expression of genes involved in negative TE regulative pathways. Heatmap shows log fold changes (LFC) in expression levels of main negative TE regulators in germline tissues (testis on the left and ovary on the right) compared to their somatic expression. Warmer colors represent enrichment in the germline, and colder colors represent lower expression. Significant differential expression (DE) is reported as black cell outlines. DE analyses were performed in DEseq2. In agreement with the literature, we detected a significant enrichment for genes involved in the PIWI:piRNA pathway in the male germline across all vertebrate species, but mainly across non mammal species in the female germline.

Figure supplement 6A. Total-TE derived transcript expression across tissues. Heatmaps show individual TE expression levels across tissues for lower vertebrates and archosauria reptiles. Empty columns represent tissues with unavailable transcriptome data. Hearmaps also reflect the relative abundance in terms of number of individual elements belonging to each of the major TE classes. $\mathrm{T}=$ testis; $\mathrm{O}=$ ovary; $\mathrm{B}=$ brain; $\mathrm{H}=$ heart; $\mathrm{Li}=$ liver; $\mathrm{K}=$ kidney; $\mathrm{M}=$ muscle; $\mathrm{S}=$ spleen; $\mathrm{SI}=$ small intestine. LTR = Long Terminal Repeats; Other RT = other retrotransposons (PLE and DIRS); LINE = Long Interspersed Nuclear Elements; SINE = Short Interspersed Nuclear Elements. To the exception of the chicken, TE expression levels are consistent across tissues for the other vertbrate species.

Figure supplement 6B. Total-TE derived transcript expression across tissues. Heatmaps show little variability in individual TE expression levels across tissues in squamate reptile species, although some tissues like the ovary in the green anole lizard (Anolis carolinensis) and in the prairie rattlesnake (Crotalus viridis), and the muscle in Boa constrictor are characterized by overall lower expression levels.

Figure supplement 6C. Total-TE derived transcript expression across tissues. Heatmaps show that individual TE expression levels across tissues are more variable in mammal species compared to other vertebrates, and highlight how pervasive transcription of TEs represents a common feature of healthy tissue transcriptomes.

Figure supplement 7A. Potentially active TE-derived transcript expression across tissues. Heatmaps show individual TE expression levels across tissues for lower vertebrates and archosauria reptiles. Empty columns represent tissues with unavailable transcriptome data. Hearmaps also reflect the relative abundance in terms of number of individual elements belonging to each of the major TE classes. $\mathrm{T}=$ testis; $\mathrm{O}=$ ovary; $\mathrm{B}=$ brain; $\mathrm{H}=$ heart; $\mathrm{Li}=$ liver; K = kidney; M = muscle; S = spleen; SI = small intestine. LTR = Long Terminal Repeats; Other RT = other retrotransposons (PLE and DIRS); LINE = Long Interspersed Nuclear Elements; SINE = Short Interspersed Nuclear Elements. Across vertebrates, the zebrafish (Danio rerio) is one of the few species to have a remarkably high incidence of potentially active TEs ($n=728$; generated from genomic loci with a Kimura 2D distance from the consensus less than 2%) that include all major TE families, supporting high genomic turnover of TEs in the species. On the other hand, most vertebrate species are characgterized by a very small number of TEs capable of generating transcripts.

Figure supplement 7B. Recent-TE derived transcript expression across tissues in squamate reptiles. Heatmaps show individual TE expression levels across tissues of potentially active TEs that recently amplified in the genome across squamates. Among squamates, the two non-colubroid snake species (Boa constrictor and Python molurus) show only a small number of TEs (although belonging to several subfamilies) being capable of originating transcript, in contrast to the green anole lizard and the prairie rattlesnake that show more highly dynamic TE trasncriptomes.

Figure supplement 7C. Potentially active TE-derived transcript expression across tissues in mammals. Heatmaps show individual TE expression levels across tissues of potentially active TEs across the mammalian radiation. Compared to other vertebrate species, mammals are characterized by a compelling small number of families (mostly L1 and SINEs in theria, and L2 LINEs in the platypus, and ERV LTRs) capable to originate transcripts. Surprisingly, we found also few DNA elements in our selected subsample of young TE inserts, which might either reflect incorrect mapping/attribution, or the result of pervasive transcription.

Figure supplement 8. Contribution of transposable elements (TEs) to the transcriptome of germine and somatic tissues. Box plots depicit the variation across species in the percent of the transcriptome (following within species normalization across tissues) corresponding to annotated TE-derived transcripts (total-TE expression; top) and to transcripts derived from recently inserted TE copies (recent-TEs; bottom). Analysis of TE transcripts between tissues for 12 vertebrate species highlights remarkable variance in TE expression levels both across species and among tissues per species. However, we find variability to be much lower when only recent-TEs are analyzed, which suggests widespread transcription of TE relics in vertebrate tissues.

Figure supplement 9. Transcriptome estimates of total and recent TE expression levels. Radar plots show the percentage of the transcriptome (on a log10 scale) made up by total-TE transcripts (total-TEs; yellow) and by recently inserted TE copies (recent-TEs; blue) across somatic and germline tissues. We found abundant TE transcription to be a common physiological feature across all vertebrate tissues, whereas recent-TEs represent a marginal fraction of the transcriptomes.

Gallus gallus

Python molurus

Monodelphis domestica

Anolis carolinensis

Crotalus viridis

Boa constrictor

Ornithorhynchus anatinus

Homo sapiens

Mus musculus

Figure supplement 10. Expression level estimates of total and potentially transpositionally-competent major TE families expression levels in germline tissues. For each species, barplots show the difference between total (yellow) and recently inserted TE copies (blue) expression level estimates in ovary (left) and testis (right) transcriptomes. Expression levels are reported as transcriptome percent and plotted in logaritmic scale.

Non amniote		Reptiles		Mammals	
- $\mathrm{Dr}=$ D. rerio	- $A m=$ A. mississippiensis	$\triangle A c=A$. carolinensis	- BC $=B$. constrictor	- $\mathrm{Oa}=0$. anatinus	- $\mathrm{Hs}=\mathrm{H}$. sapiens
- $X I=X$. laevis	- G g $=$ G. gallus	-Pm $=$ P. molurus	- $C v=C$. viridis	- Md $=$ M. domestica	- $M m=$ M. musculus

Figure supplement 11. Relationships between total and recent TE expression levels. Scatterplot and phylogenetically independent contrast (PIC) show a positive exponential correlation between the fold change in percentages of total-TE transcripts and recent-TE transcripts between testis and ovary across vertebrate species.

Anolis carolinensis

Boa constrictor

Python molurus

Total-TE	Recent-TE
$R^{\wedge} 2=0.41$	$R^{\wedge} 2=0.85$
$p-$ val $=0.005$	$p-$ val $=5.43 E-07$

Monodelphis domestica

Crotalus viridis

Total-TE Recent-TE
 R^2 $=0.54$

p-val $=4.81 \mathrm{E}-04$
Homo sapiens

Ornithorhynchus anatinus

Mus musculus

-	Total-TEs	-	Recent-TEs	- DNA	- LTR	Other RT	INE	SINE

Figure supplement 12. Regression analyses of TE expression levels in germline tissues across vetrebrate species. Scatterplots show positive correlative trends of major TE subfamilies relative composition between the male and female germline in the total-TE (circles and solid lines) and recent-TE (triangles and dashed lines) datasets. Regression analyses were performed on transcriptome percent values. Scatterplots axes have been log2 transformed for display purposes. Reptile species display a stronger association (higher R^2 values) between germline tissue expression levels of TE subfamilies when only recent-TEs are considered compared to other vertebrate species, that show the opposite trend instead.

A

Python molurus

TE transcript dataset
Total-TEs $\quad \cdots$ Recent-TEs

DNA
TE families
Other RT LINE SINE

Figure supplement 13A. Regression analyses of TE expression levels and genomic TE content in germline tissues across vetrebrate species. A) Scatterplots show positive correlative trends of major TE families relative composition in the male germline between total transcriptome and genomic content (total-TEs; circles and solid lines), supporting a pervasive model of TE transcription. In contrast, linear regressions between relative composition of the total TE genomic content and recent-TE transcripts (triangles and dashed lines) show absence of a relationship in most non-mammal species, and a positive, although weaker correlation across mammals (and zebrafish and prairie rattlesnake). Regression analyses were performed on transcriptome percent and genomic percent values. Scatterplot axes have been log2 transformed for display purposes.
B

Boa constrictor

Total-TE	Recent-TE
$R^{\wedge} 2=0.91$	$R^{\wedge} 2=0.24$
$p-$ val $=7.44 \mathrm{E}-9$	$p-$ val $=0.032$

TE transcript dataset
Total-TEs $\underset{\sim}{\boldsymbol{\Delta}}$ Recent-TEs

- DNA
LTR
Other RT LINE SINE

Figure supplement 13B. Regression analyses of expression levels and genomic TE content in germline tissues across vetrebrate species. B) Scatterplots show positive correlative trends of major TE families relative composition in the female germline between total transcriptome and genomic content (total-TEs; circles and solid lines), supporting a pervasive model of TE transcription. In contrast, linear regressions between relative composition of the total TE genomic content and recent-TE transcripts (triangles and dashed lines) show absence of a relationship in most non-mammal species, and a positive, generally weaker, correlation across mammals (and prairie rattlesnake). Regression analyses were performed on transcriptome percent and genomic percent values. Scatterplot axes have been log2 transformed for display purposes.

APPENDIX A

CHAPTER 2 SUPPLEMENTARY DATA

Supplementary Data 1. Genomic transposable element (TE) content in bird and mammal genomes. Birds

Species	Common name	TE content	Source
Picoides pubescens	Downy woodpecker	22.55\%	Kapusta et al, 2017 ${ }^{1}$
Merops nubicus	Carmine bee-eater	8.48\%	Kapusta et al, 2017
Apaloderma vittatum	Bar-tailed trogon	9.02\%	Kapusta et al, 2017
Aptenodytes forsteri	Emperor penguin	6.16\%	Kapusta et al, 2017
Pygoscelis adeliae	Adelie penguin	6.76\%	Kapusta et al, 2017
Egretta garzetta	Little egret	7.69\%	Kapusta et al, 2017
Calypte anna	Anna's hummingbird	8.68\%	Kapusta et al, 2017
Chaetura pelagica	Chimney swift	9.60\%	Kapusta et al, 2017
Antrostomus carolinensis	Chuck-Will's-widow	8.65\%	Kapusta et al, 2017
Gallus gallus	Chicken	9.88\%	Kapusta et al, 2017
Tinamus guttatus	White-throated tinamou	4.64\%	Kapusta et al, 2017
Struthio camelus	Common ostrich	4.97\%	Kapusta et al, 2017
Geospiza fortis	Medium ground-finch	8.53\%	Kapusta et al, 2017
Corvus brachyrhynchos	American crow	8.72\%	Kapusta et al, 2017
Manacus vitellinus	Golden-collared manakin	7.29\%	Kapusta et al, 2017
Melopsittacus undulatus	Budgerigar	9.22\%	Kapusta et al, 2017
Nestor notabilis	Kea	7.40\%	Kapusta et al, 2017
Falco peregrinus	Peregrine falcon	6.05\%	Kapusta et al, 2017
Colius striatus	Speckled mousebird	9.77\%	Kapusta et al, 2017
Haliaeetus albicilla	White-tailed eagle	6.21\%	Kapusta et al, 2017
Cathartes aura	Turkey vulture	5.24\%	Kapusta et al, 2017
Chlamydotis macqueenii	MacQueen's bustard	6.86\%	Kapusta et al, 2017
Tauraco erythrolophus	Red-crested turaco	9.40\%	Kapusta et al, 2017
Cuculus canorus	Common cuckoo	10.04\%	Kapusta et al, 2017

WITHOUT WOODPECKER	TE content	WITH WOODPECKER	TE content
Min	4.64%	Min	4.64%
Max	10.04%	Max	22.55%
Avg	7.79%	Avg	8.41%
Fold-variation	2.16	Fold-variation	4.86

[^0] 190

Mammals

Species	Common name	TE content	Source
Homo sapiens	Humans	48.49%	RepMasker genome database
Pan troglodytes	Chimp	48.77%	RepMasker genome database
Gorilla gorilla	Gorilla	46.12%	RepMasker genome database
Pongo pygmaeus abelii	Orangutan	48.79%	Locke et al, 2011
Macaca mulatta	Macaca	47.33%	RepMasker genome database
Callithrix jacchus	Marmoset	47.57%	Worley et al, 2014
Tarsius syrichta	Tarsier	41.87%	Schmitz et al, 2016
Rattus norvegicus	Rat	39.18%	RepMasker genome database
Mus musculus	Mouse	41.73%	RepMasker genome database
Cavia porcellus	Guinea Pig	37.06%	RepMasker genome database
Oryctolagus cuniculus	Rabbit	43.13%	RepMasker genome database
Myotis lucifugus	Microbat	35.51%	RepMasker genome database
Pteropus vampyrus	Megabat	33.40%	RepMasker genome database
Equus caballus	Horse	46.00%	Wade et al, 2009
Bos taurus	Cow	47.98%	RepMasker genome database
Tursiops truncatus	Dolphin	41.24%	RepMasker genome database
Sus scrofa	Pig	43.10%	RepMasker genome database
Felis catus	Cat	41.48%	RepMasker genome database
Ailuropoda melanoleuca	Panda	39.20%	RepMasker genome database
Canis lupus familiaris	Dog	39.66%	RepMasker genome database
Erinaceus europeus	Hedgehog	42.84%	RepMasker genome database
Loxodonta africana	Elephant	56.38%	RepMasker genome database
Procavia capensis	Rock hyrax	50.53%	RepMasker genome database
Macropus eugenii	Tammar wallabi	52.80%	Renfree et al, 2011
Monodelphis domestica	Opossum	52.20%	Mikkelsen et al, 2007
Ornithorhynchus anatinus	Platypus	44.96%	Warren et al, 2008

ALL MAMMALS	TE content
Min	33.40%
Max	56.38%
Avg	44.51%
Fold-variation	1.69

[^1]Supplementary Data 2. Flow cytometry estimates of squamate, bird and mammal genome size (Cvalue). Dataset includes flow cytometry estimates for 86 squmate reptile, 170 mammal and 140 bird species or subspecies (Animal Genome Size database: http://www.genomesize.com)

Squamate

Family	Species	Common Name	C-value
Agamidae	Amphibolurus longirostris	Long-nosed water dragon	2.00
Agamidae	Laudakia bochariensis	Unknown	1.97
Agamidae	Laudakia caucasia	Rock agama	1.87
Agamidae	Laudakia himalayana	Rock agama	1.91
Agamidae	Phrynocephalus helioscopus	Toad-headed agama	2.08
Agamidae	Phrynocephalus versicolor	Toad-headed agama	1.95
Agamidae	Pogona vitticeps	Bearded dragon	1.81
Agamidae	Trapelus sanguinolentus	Steppe agama	1.72
Anguidae	Anguis fragilis	Slow worm	2.00
Anguidae	Pseudopus apodus	Armored glass lizard	1.90
Boidae	Eryx jaculus	Javelin sand boa	1.73
Boidae	Python curtus	Blood python	1.83
Colubridae	Chironius fuscus	N/A	2.24
Colubridae	Coluber najadum	Dahl's whip snake	1.77
Colubridae	Coluber nummifer	Desert whip snake	1.73
Colubridae	Coluber ravergieri	Ravergier's whip snake	1.71
Colubridae	Coluber schmidti	Whip snake	1.65
Colubridae	Eirenis collaris	Collared dwarf racer	1.80
Colubridae	Eirenis punctatolineatus	Dotted dwarf racer	1.86
Colubridae	Elaphe quatuorlineata	Bulgarian ratsnake	1.83
Colubridae	Liophis miliaris	Swampsnake	2.01
Colubridae	Natrix natrix	European grass snake	1.99
Colubridae	Natrix tessellata	Dice snake	1.91
Colubridae	Nerodia rhombifera	Broad-banded water snake	2.03
Colubridae	Nerodia sipedon	Northern water snake	1.90
Colubridae	Nerodia sipedon	Northern water snake	2.00
Colubridae	Oxyrhopus petola	Red-banded snake	1.54
Colubridae	Tantilla melanocephala	Black-headed snake	2.25
Colubridae	Telescopus fallax	Cat snake	1.87
Colubridae	Thamnophis sirtalis	Common garter snake	1.91
Elapidae	Furina ornata	Orange-naped snake	2.00
Elapidae	Micrurus lemniscatus	South American coral snake	1.85
Elapidae	Simoselaps anomalus	Eastern brown snake	1.81
Elapidae	Simoselaps fasciolatus	Narrow-banded snake	1.85
Elapidae	Simoselaps incinctus	Burowing snake	1.85
Eublepharidae	Coleonyx brevis	Texas banded gecko	2.01
Eublepharidae	Coleonyx elegans	Banded gecko	1.56
Eublepharidae	Coleonyx mitratus	Banded gecko	1.76
Eublepharidae	Coleonyx variegatus	Western banded gecko	1.92
Eublepharidae	Eublepharis angramainyu	Eyelid gecko	2.00
Eublepharidae	Eublepharis cf. fuscus	Eyelid gecko	1.88
Eublepharidae	Eublepharis macularius	Leopard gecko	1.86
Eublepharidae	Goniurosaurus araneus	Eyelid gecko	1.87
Eublepharidae	Goniurosaurus lichtenfelderi	Eyelid gecko	1.85
Eublepharidae	Goniurosaurus luii	Eyelid gecko	1.87
Eublepharidae	Hemitheconyx caudicinctus	Eyelid gecko	1.81
Eublepharidae	Holodactylus africanus	Eyelid gecko	1.76
Gekkonidae	Gekko sinensis	Gecko	2.83
Iguanidae	Cyclura cornuta	Horned ground iguana	1.80
Lacertidae	Eremias grammica	Reticulate racerunner	1.90
Lacertidae	Eremias multiocellata	Multi-cellated racerunner	1.73
Lacertidae	Lacerta agilis	Sand lizard	1.60
Lacertidae	Lacerta viridis	Green lacerta lizard	1.66
Lacertidae	Lacerta vivipara	European common lizard	1.64
Lacertidae	Ophisops elegans	Snake-eyed lizard	1.57
Lacertidae	Podarcis muralis	European wall lizard	1.70
Polychrotidae	Anolis carolinensis	Green anole	2.20
Polychrotidae	Anolis cf. nitens, sp. 1	Anole	2.29
Polychrotidae	Anolis cf. nitens, sp. 2	Anole	2.49
Scincidae	Asymblepharus alaicus	Skink	1.93
Scincidae	Carlia triacantha	Desert rainbow skink	1.41
Scincidae	Cryptoblepharus plagiocephalus	Snake-eyed skink	1.51
Scincidae	Ctenotus alacer	Skink	1.57
Scincidae	Ctenotus leonhardii	Leonhard's skink	1.65
Scincidae	Ctenotus quattuordecimlineatus	Fourteen-lined skink	1.59
Scincidae	Ctenotus saxatilis	Skink	1.50
Scincidae	Egernia inornata	Desert skink	1.69
Scincidae	Eremiascincus fasciolatus	Narrow-banded sand swimmer	1.61
Scincidae	Lerista desertorum	Skink	1.64
Scincidae	Lerista frosti	Skink	2.60
Scincidae	Lerista labialis	Southern sandslider	1.73
Scincidae	Mabuya mabouya	American shiny skink	1.27
Scincidae	Menetia greyii	Common dwarf skink	1.71
Scincidae	Morethia ruficauda	Southwestern mulch skink	1.64
Scincidae	Tiliqua scincoides	Eastern blue-tongued lizard	1.82
Teiidae	Kentropyx calcarata	N/A	1.55

Tropiduridae	Liolaemus sp.	Snow swift	2.05
Tropiduridae	Tropidurus umbra	Green tree climber	2.11
Typhlopidae	Ramphotyphlops braminus	Flowerpot blindsnake	2.98
Typhlopida	Typhhops vermicularis	European blindsnake	1.96
Varanidae	Varanus komodoensis	Komodo dragon	1.93
Varanidae	Varanus niloticus	Nile monitor	2.19
Varanidae	Varanus salvadorii	Crocodile monitor	2.29
Viperidae	Bothrops attox	Fer-delance	1.82
Viperidae	Crotalus horridus	Timber rattlesnake	1.75
Viperidae	Vipera berus	Adder	1.88
Viperidae	Vipera eriwanensis	Steppe adder	1.79

Mammals

Family	Species	Common Name	C-value
Bovidae	Addax nasomaculatus	Addax	3.98
Bovidae	Aepyceros melampus	Impala	4.69
Bovidae	Bos javanicus javanicus	Banteng	3.75
Bovidae	Bos taurus	Domestic cattle	3.60
Bovidae	Bos taurus	Domestic cattle	3.65
Bovidae	Bos taurus	Domestic cattle	3.70
Bovidae	Capra falconeri	Markhor	3.23
Bovidae	Gazella dama ruficollis	Dama gazelle	3.48
Bovidae	Gazella granti	Grant's gazelle	3.30
Bovidae	Litocranius walleri	Gerenuk	3.66
Bovidae	Ovis aries aries	Sheep	3.41
Bovidae	Tragelaphus angasii	Lowland nyala	3.94
Camelidae	Camelus bactrianus	Bactrian camel	2.41
Camelidae	Camelus dromedarius	Dromedary camel	2.62
Cervidae	Muntiacus muntjak	Barking deer	3.44
Cervidae	Muntiacus muntiak vaginalis	Indian muntjac	2.22
Cervidae	Muntiacus reevesi	Reeves's (Chinese) muntjac	2.85
Cervidae	Rangifer tarandus	Reindeer, caribou	3.41
Giraffidae	Giraffa camelopardalis	Giraffe	2.85
Giraffidae	Giraffa camelopardalis	Reticulated giraffe	2.69
Suidae	Sus scrofa domesticus	Domestic pig	2.99
Suidae	Sus scrofa domesticus	Domestic pig	3.00
Suidae	Sus scrofa domesticus	Domestic pig	3.21
Suidae	Sus scrofa scrofa	Vietnamese pot-bellied pig	2.81
Canidae	Canis familiaris	Domestic dog	2.80
Canidae	Canis familiaris	Domestic dog	2.85
Canidae	Canis familiaris	Domestic dog	2.88
Canidae	Canis latrans	Coyote	2.82
Canidae	Canis lupus	Timber wolf	2.81
Canidae	Canis rufus	Red wolf	3.04
Canidae	Lycaon pictus	African hunting dog	2.73
Canidae	Nyctereutes procyonoides procyonoides	Chinese raccoon dog	3.27
Canidae	Nyctereutes procyonoides viverrinus	Japanese raccoon dog	3.19
Canidae	Urocyon cinereoargenteus	Gray fox	3.07
Canidae	Vulpes vulpes	Red fox	2.85
Felidae	Felis catus	Domestic cat	2.91
Felidae	Felis catus	Domestic cat	3.10
Felidae	Felis lynx	Lynx	2.92
Felidae	Felis silvestris	Wildcat	2.92
Felidae	Felis silvestris	Wildcat	3.00
Felidae	Neofelis nebulosa	Clouded leopard	2.77
Felidae	Pantheraleo	African lion	2.95
Felidae	Panthera tigris	Tiger	2.71
Felidae	Panthera tigris tigris	Bengal tiger	2.90
Mustelidae	Mustela putorius	Domestic ferret	2.81
Otariidae	Zalophus californianus	California sea lion	3.15
Phocidae	Phoca largha	Spotted seal / Largha seal	2.94
Procyonidae	Procyon lotor	Raccoon	2.85
Ursidae	Ursus arctos	Brown bear	2.75
Ursidae	Ursus hibetanus	Himalayan black bear	2.75
Delphinidae	Sousa chinensis chinensis	Chinese white dolphin	3.46
Delphinidae	Tursiops truncatus	Bottlenose dolphin	3.27
Lipotidae	Lipotes vexillifer	Chinese river dolphin / Baiji	3.91
Monodontidae	Delphinapterus leucas	Beluga whale	3.29
Phocoenidae	Neophocaena phocaenoides asiaorientalis	Yangtze finless porpoise	3.46
Mormoopidae	Pteronotus parnellii	Parnell's moustached bat	2.67
Mormoopidae	Pteronotus personatus	Moustached bat	2.84
Noctilionidae	Noctilio leporinus	Greater bulldog bat	2.63
Phyllostomidae	Artibeus jamaicensis	Fruit bat	2.74
Phyllostomidae	Artibeus lituratus	Big fruit bat	2.70
Phyllostomidae	Carollia brevicauda	Short-tailed fruit bat	2.93
Phyllostomidae	Carollia perspicillata	Short-tailed fruit bat	3.06
Phyllostomidae	Dermanura phaeotis	Dwarf fruit bat	2.85
Phyllostomidae	Dermanura tolteca	Dwarf fruit bat	2.71
Phyllostomidae	Dermanura watsoni	Dwarf fruit bat	2.73
Phyllostomidae	Glossophaga soricina	Pallas's long-tongued bat	2.78
Phyllostomidae	Lonchorhina aurita	Tomes's sword-nosed bat	2.56
Phyllostomidae	Macrophyllum macrophylum	Long-legged bat	3.29
Phyllostomidae	Mimon cozumelae	Cozumel spear-nosed bat	2.47
Phyllostomidae	Phylloderma stenops	Peters's spear-nosed bat	2.45

Phyllostomidae	Phyllostomus discolor	Pale spear-nosed bat	2.52
Phyllostomidae	Sturnira lilium	Common yellow-shouldered bat	2.84
Phyllostomidae	Tonatia bidens	Round-eared bat	2.35
Phyllostomidae	Tonatia evotis	Davis's round-eared bat	2.51
Phyllostomidae	Trachops cirrhosus	Frog-eating bat	2.41
Phyllostomidae	Uroderma bilobatum	Tent-building bat	2.67
Phyllostomidae	Vampyressa pusilla	Yellow-eared bat	2.73
Phyllostomidae	Vampyrodes caraccioli	Great stripe-faced bat	2.49
Vespertilionidae	Eptesicus furinalis	Big brown bat	2.43
Vespertilionidae	Lasiuris borealis	Red bat	2.56
Vespertilionidae	Lasiuris ega	Yellow bat	2.93
Vespertilionidae	Lasiuris intermedius	Hairy-tailed bat	2.91
Vespertilionidae	Myotis keaysi	Little brown bat	2.65
Vespertilionidae	Rhogeessa tumida	Little yellow bat	2.80
Didelphidae	Didelphis virginiana	Virginia opossum	4.15
Macropodidae	Macropus parma	Parma wallaby	4.02
Macropodidae	Macropus rufogrigeus	Bennett's wallaby	5.58
Soricidae	Sorex araneus	Common shrew	2.91
Talpidae	Talpa occidentalis	Mole	2.50
Leporidae	Lepus timidus	Mountain hare	3.25
Leporidae	Oryctolagus cuniculus	Rabbit	3.26
Leporidae	Oryctolagus cuniculus	Rabbit	3.42
Equidae	Equus caballus	Horse	3.15
Equidae	Equus caballus	Horse	3.21
Rhinocerotidae	Diceros bicornis	Black rhinoceros	3.34
Tapiridae	Tapirus bairdii	Baird's tapir	2.54
Tapiridae	Tapirus indicus	Malayan tapir	2.75
Cercopithecidae	Chlorocebus sabaeus	Green monkey	4.04
Hominidae	Gorilla gorilla	Gorilla	4.16
Hominidae	Gorilla gorilla	Western lowland gorilla	3.52
Hominidae	Pan troglodytes	Chimpanzee	3.46
Hominidae	Pan troglodytes	Chimpanzee	3.76
Hominidae	Pongo pygmaeus	Orangutan	3.60
Lemuridae	Eulemur coronatus	Crowned lemur	3.47
Lemuridae	Eulemur coronatus x Eulemur macaco	Lemur (hybrid)	3.05
Lemuridae	Eulemur fulvus albocollaris	Brown lemur	2.73
Lemuridae	Eulemur fulvus mayottensis	Brown lemur	2.86
Lemuridae	Eulemur macaco	Black lemur	2.68
Lemuridae	Eulemur macaco	Black lemur	2.74
Lemuridae	Eulemur rubriventer	Red-bellied lemur	2.59
Elephantidae	Elephas maximus	Asian elephant	4.03
Elephantidae	Loxodonta africana	African elephant	4.11
Abrocomidae	Abrocoma bennetti	Chincilla rat	3.60
Bathyergidae	Bathyergus suillus	Cape dune mole-rat	2.90
Bathyergidae	Cryptomys damarensis	Damaraland mole-rat	3.60
Bathyergidae	Cryptomys hottentotus	African mole-rat	3.40
Bathyergidae	Georhychus capensis	African mole-rat	3.20
Bathyergidae	Heliophobius argenteocinereus	African silvery mole-rat	3.05
Bathyergidae	Heterocephalus glaber	Naked mole-rat	2.90
Caviidae	Cavia porcellus	Guinea pig	3.92
Caviidae	Cavia porcellus	Guinea pig	4.10
Caviidae	Cavia tschudii	Wild guinea pig	4.55
Caviidae	Dolichotis patagonum	Patagonian cavy	3.70
Caviidae	Dolichotis salinicola	Mara	3.85
Caviidae	Galea musteloides	Cui	3.95
Caviidae	Microcavia australis	Rock cavy	3.10
Chinchillidae	Lagostomus maximus	Plains viscacha	3.30
Ctenomyidae	Ctenomys boliviensis	Tuco-tuco	3.77
Ctenomyidae	Ctenomys boliviensis	Tuco-tuco	4.30
Ctenomyidae	Ctenomys conoveri	Tuco-tuco	3.90
Ctenomyidae	Ctenomys fochi	Tuco-tuco	4.55
Ctenomyidae	Ctenomys frater	Tuco-tuco	3.77
Ctenomyidae	Ctenomys leucodon	Tuco-tuco	3.88
Ctenomyidae	Ctenomys lewisi	Tuco-tuco	3.56
Ctenomyidae	Ctenomys mendocinus	Tuco-tuco	4.90
Ctenomyidae	Ctenomys opimus	Tuco-tuco	2.80
Ctenomyidae	Ctenomys opimus	Tuco-tuco	3.16
Ctenomyidae	Ctenomys opimus	Tuco-tuco	4.80
Ctenomyidae	Ctenomys porteousi	Tuco-tuco	3.20
Ctenomyidae	Ctenomys steinbachi	Tuco-tuco	3.73
Echimyidae	Proechimys semispinosus	Central American spiny rat	3.85
Geomyidae	Geomys attwateri	Eastern pocket gopher	3.31
Geomyidae	Geomys breviceps	Eastern pocket gopher	3.35
Geomyidae	Geomys bursarius major	Eastern pocket gopher	3.67
Geomyidae	Geomys knoxjonesi	Eastern pocket gopher	3.67
Geomyidae	Thomomys bottae actuosus	Western pocket gopher	4.21
Geomyidae	Thomomys bottae alienus	Western pocket gopher	4.71
Geomyidae	Thomomys bottae bottae	Western pocket gopher	5.30
Geomyidae	Thomomys bottae fulvus	Western pocket gopher	4.58
Geomyidae	Thomomys bottae grahamensis	Western pocket gopher	4.86
Geomyidae	Thomomys bottae ingens	Western pocket gopher	5.26
Geomyidae	Thomomys bottae internatus	Western pocket gopher	4.30
Geomyidae	Thomomys bottae laticeps	Western pocket gopher	5.01
Geomyidae	Thomomys bottae leucodon	Western pocket gopher	4.98
Geomyidae	Thomomys bottae mewa	Western pocket gopher	5.22
Geomyidae	Thomomys bottae minor	Western pocket gopher	5.19

Geomyidae	Thomomys bottae morulus	Western pocket gopher	4.38
Geomyidae	Thomomys bottae planorum	Western pocket gopher	5.37
Geomyidae	Thomomys bottae ruidosae	Western pocket gopher	4.67
Geomyidae	Thomomys bottae sylvifugus	Western pocket gopher	5.59
Geomyidae	Thomomys monticola	Western pocket gopher	2.17
Geomyidae	Thomomys talpoides fossor	Western pocket gopher	2.57
Geomyidae	Thomomys townsendii relictus	Western pocket gopher	5.20
Geomyidae	Thomomys townsendii similis	Western pocket gopher	5.38
Geomyidae	Thomomys townsendii townsendii	Western pocket gopher	5.60
Geomyidae	Thomomys umbrinus intermedius	Western pocket gopher	4.38
Hystricidae	Hystrix africaenaustralis	Short-tailed porcupine	2.90
Muridae	Apodemus sylvaticus	Wood mouse	3.29
Muridae	Calomyscus mystax	Mouse-like hamster	3.11
Muridae	Cricetus cricetus	Common hamster	3.57
Muridae	Graomys centralis	N/A	3.69
Muridae	Graomys griseoflavus	N/A	2.81
Muridae	Mesocricetus auratus	Golden hamster	3.43
Muridae	Mus musculus	House mouse	3.25
Muridae	Mus musculus	House mouse	3.26
Muridae	Mus musculus	House mouse	3.35
Muridae	Ondatra zibethicus	Muskrat	2.78
Muridae	Rattus norvegicus	Brown rat	3.05
Muridae	Rattus norvegicus	Brown rat	3.36
Muridae	Rattus rattus	Black rat	3.03
Myocastoridae	Myocastor coypus	Nutria, coypu	3.60
Octodontidae	Aconaemys fuscus	Viscacha rat	3.75
Octodontidae	Aconaemys porteri	Viscacha rat	3.70
Octodontidae	Aconaemys sagei	Viscacha rat	3.70
Octodontidae	Octodon bridgesi	Viscacha rat	3.85
Octodontidae	Octodon degus	Degu	4.30
Octodontidae	Octodon degus	Degu	4.32
Octodontidae	Octodon lunatus	Viscacha rat	4.40
Octodontidae	Octodontomys gliroides	Chozchoz	4.10
Octodontidae	Octomys mimax	Viscacha rat	3.80
Octodontidae	Octomys mimax	Viscacha rat	4.00
Octodontidae	Spalacopus cyanus	Coruro	3.54
Octodontidae	Spalacopus cyanus	Coruro	4.20
Octodontidae	Tympanoctomys barrerae	Red viscacha rat	8.40

Birds

Family	Species	Common Name	C-value
Anatidae	Anas capensis	Cape teal	1.41
Anatidae	Anas castanea	Chestnut-breasted teal	1.36
Anatidae	Anas platyrhynchos	Mallard	1.44
Anatidae	Anas platyrhynchos	Mallard	1.46
Anatidae	Anas platyrhynchos	Mallard	1.49
Anatidae	Anas platyrhynchos	Mallard	1.54
Anatidae	Anser rossii	Ross's goose	1.38
Anatidae	Cairina scutulata	White-winged wood duck	1.49
Anatidae	Cygnus atratus	Black swan	1.45
Anatidae	Cygmus buccinator	Trumpeter swan	1.54
Anatidae	Cygnus melanocoryphus	Black-necked swan	1.53
Anatidae	Cygnus olor	Mute swan	1.48
Anatidae	Dendrocygna viduata	White-faced whistling duck	1.37
Anatidae	Mergus cucullatus	Hooded merganser	1.23
Anatidae	Mergus cucullatus	Hooded merganser	1.28
Anatidae	Mergus merganser	American merganser	2.00
Anatidae	Netta rufina	Red-crested pochard	1.38
Dromaiidae	Dromaius novaehollandiae	Emu	1.63
Recurvirostridae	Recurvirostra avosetta	Pied avocet	1.59
Ciconiidae	Anastomus lamelligerus	African open-billed stork	1.62
Ciconiidae	Ciconia abdimii	Adbim's stork	1.53
Ciconiidae	Ciconia ciconia	White stork	1.58
Ciconiidae	Ciconia episcopus	Woolly-necked stork	1.61
Ciconiidae	Ciconia maguari	Maguari stork	1.54
Ciconiidae	Ciconia stormi	Storm's stork	1.68
Ciconiidae	Leptoptilos crumeniferus	Marabou stork	1.55
Phoenicopteridae	Phoenicopterus ruber	Greater flamingo	1.52
Columbidae	Caloenas nicobarica	Nicobar pigeon	1.54
Columbidae	Columba livia	Rock pigeon	1.46
Columbidae	Columba livia	Rock pigeon	1.59
Columbidae	Ducula bicolor	Pied imperial pigeon	1.60
Columbidae	Goura cristata	Western crowned pigeon	1.39
Columbidae	Goura victoria	Victoria crowned pigeon	1.38
Columbidae	Ptilinopus perlatus	Pink-spotted dove	1.48
Columbidae	Ptilinopus pulchellus	Crimson-capped fruit dove	1.47
Columbidae	Ptilinopus regina	Rose-crowned fruit dove	1.37
Columbidae	Trugon terrestris	Thick-billed ground pigeon	1.70
Bucerotidae	Bucorvus abyssinicus	Abyssinian ground hornbill	1.43
Accipitridae	Aegypius monachus gingintanus	Cinereous vulture	1.59
Accipitridae	Aguila chrysaetos	Golden eagle	1.48
Accipitridae	Buteo buteo	Eurasian buzzard	1.53
Accipitridae	Circus aeruginosus	Marsh harrier	1.43
Accipitridae	Circus cyaneus	Northern harrier	1.42

Accipitridae	Circus pygargus	Montagu's harrier	1.46
Accipitridae	Elanus caerulens	Black-winged kite	1.55
Accipitridae	Gyps bengalensis	Asian white-backed vulture	1.39
Accipitridae	Haliaeetus leucocephalus	Bald eagle	1.43
Accipitridae	Harpia harpyja	Harpy eagle	1.58
Accipitridae	Milvus migrans	Black kite	1.47
Accipitridae	Neophron percnopterus	Egyptian vulture	1.58
Accipitridae	Neophron percnopterus	Egyptian vulture	1.60
Accipitridae	Pernis apivorus	Honey buzzard	1.53
Falconidae	Falco peregrinus	Peregrine falcon	1.45
Falconidae	Falco sparverius	American kestrel	1.43
Falconidae	Falco tinnunculus	Eurasian kestrel	1.54
Falconidae	Falco vespertinus	Red-footed falcon	1.47
Phasianidae	Argusianus argus	Great argus	1.52
Phasianidae	Chrysolophus pictus	Golden pheasant	1.21
Phasianidae	Coturnix coturnix	Quail	1.35
Phasianidae	Coturnix japonica	Japanese quail	1.41
Phasianidae	Guttera edouardi	Crested (Kenyan) guineafowl	1.54
Phasianidae	Meleagris gallopavo	Turkey	1.31
Phasianidae	Numida meleagris	Guineafowl	1.31
Phasianidae	Pavo muticus	Green peafowl	1.34
Phasianidae	Phasianus colchicus	Common pheasant	1.26
Cariamidae	Cariama cristata	Red-legged seriema	1.50
Gruidae	Anthropoides paradisea	Stanley crane	1.52
Gruidae	Balearica pavonina	Black (W. African) crowned crane	1.48
Gruidae	Balearica pavonina	Black (W. African) crowned crane	1.52
Gruidae	Balearica regulorum	Gray (E. African) crowned crane	1.44
Gruidae	Balearica regulorum	Gray (E. African) crowned crane	1.51
Gruidae	Grus vipio	Japanese white-naped crane	1.63
Otididae	Ardeotis kori	Kori bustard	1.42
Rallidae	Gallinula chloropus	Moorhen	1.53
Rallidae	Gallirallus philippensis	Buff-banded rail	1.59
Corvidae	Aphelocoma coerulescens coerulescens	Florida scrub jay	1.56
Corvidae	Corvus corone	Carrion crow	1.46
Corvidae	Cyanocitta cristata	Blue jay	1.43
Emberizidae	Pipilo erythrophthalmus	Rufous-sided towhee	1.55
Emberizidae	Zonotrichia albicollis	White-throated sparrow	1.37
Estrildidae	Lonchura striata	White-backed munia	1.42
Estrildidae	Taeniopygia guttata	Zebra finch	1.25
Eurylaimidae	Calyptomena viridis	Green broadbill	1.31
Itteridae	Euphagus cyanocephalus	Brewer's blackbird	1.46
Icteridae	Passerina amoena	Lazuli bunting	1.39
Oriolidae	Oriolus chinensis	Black-naped oriole	1.43
Ploceidae	Passer domesticus	House sparrow	1.51
Ploceidae	Passer domesticus	House sparrow	1.57
Sturnidae	Streptocitta albicollis	White-collared mynah	1.58
Sylviidae	Regulus calendula	Ruby-crowned kinglet	1.31
Turdidae	Hylocichla mustelina	Wood thrush	1.38
Turdidae	Hylocichla mustelina	Wood thrush	1.50
Capitonidae	Psilopogon pyrolophus	Fire-tufted barbet	1.69
Ramphastidae	Megalaima mystacophanos	Red-throated barbet	2.02
Ramphastidae	Megalaima oorti	Black-browed barbet	1.63
Psittacidae	Agapornis personata	Masked lovebird	1.35
Psittacidae	Agapornis roseicollis	Peach-faced lovebird	1.31
Psittacidae	Amazona aestiva	Blue-fronted parrot	1.61
Psittacidae	Amazona albifrons	White-fronted parrot	1.47
Psittacidae	Amazona amazonica	Amazon parrot	1.60
Psittacidae	Amazona amazonica	Orange-winged parrot	1.41
Psittacidae	Amazona autumnalis	Red-lored parrot	1.52
Psittacidae	Amazona barbadensis	Yellow-shouldered parrot	1.60
Psittacidae	Amazona brasiliensis	Red-tailed parrot	1.62
Psittacidae	Amazona farinosa guatemalae	Mealy parrot	1.58
Psittacidae	Amazona leucocephala	Cuban parrot	1.58
Psittacidae	Amazona ochrocephala	Yellow-crowned parrot	1.90
Psittacidae	Amazona ochrocephala ochrocephala	Yellow-headed parrot	1.70
Psittacidae	Amazona ochrocephala oratrix	Yellow-headed parrot	1.74
Psittacidae	Amazona ochrocephala tresmariae	Yellow-headed parrot	2.08
Psittacidae	Amazona pretrei	Red-spectacled parrot	1.41
Psittacidae	Amazona tucumana	Tucuman parrot	1.49
Psittacidae	Amazona viridigenalis	Red-crowned parrot	1.54
Psittacidae	Anodorhynchus hyacinthinus	Hyacinth macaw	1.35
Psittacidae	Anodorhynchus hyacinthinus	Hyacinth macaw	1.43
Psittacidae	Ara ambigus	Great green macaw	1.37
Psittacidae	Ara ararauna	Blue-and-yellow macaw	1.40
Psittacidae	Ara ararauna	Blue-and-yellow macaw	1.45
Psittacidae	Ara ararauna	Blue-and-yellow macaw	1.48
Psittacidae	Ara caninde	Wagler's (Caninde) macaw	1.52
Psittacidae	Ara chloroptera	Green-winged macaw	1.48
Psittacidae	Ara chloroptera	Green-winged macaw	1.48
Psittacidae	Ara macao	Scarlet macaw	1.34
Psittacidae	Ara macao	Scarlet macaw	1.42
Psittacidae	Ara militaris	Military macaw	1.37
Psittacidae	Ara militaris	Military macaw	1.38
Psittacidae	Ara rubrogenys	Red-fronted macaw	1.39
Psittacidae	Ara rubrogenys	Red-fronted macaw	1.42
Psittacidae	Aratinga solstitalis	Sun conure	1.36

Psittacidae	Cacatua alba	White cockatoo
Psittacidae	Cacatua galerita	Sulpher-crested cockatoo
Psittacidae	Cacatua moluccensis	Salmon-crested cockatoo
Psittacidae	Cacatua moluccensis	Salmon-crested cockatoo
Psittacidae	Cacatua sanguinea	Little corella
Psittacidae	Cacatua sulphurea abbotti	Cockatoo
Psittacidae	Cacatua sulphurea citrinocristata	Citron-crested cockatoo
Psittacidae	Cacatua sulphurea sulphurea	Yellow-crested cockatoo
Psittacidae	Cyanolisens patagonus	Burrowing parakeet
Psittacidae	Deroptyus accitrinus	Hawk-headed parrot
Psittacidae	Eclectus roratus	Eclectus parrot
Psittacidae	Eclectus roratus	Eclectus parrot
Psittacidae	Enicognathus leptorhynchus	Slender-billed parakeet
Psittacidae	Eolophus roseicapilla	Galah
Psittacidae	Eolophus roseicapilla	Galah
Psittacidae	Lorius garrulus	Chattering lory
Psittacidae	Melopsittacus undulatus	Budgerigar
Psittacidae	Nymphicus hollandicus	Cockateil
Psittacidae	Nymphicus hollandicus	Cockateil
Psittacidae	Poicephalus senegalus	Senegal parrot
Psittacidae	Probosciger aterrimus	Palm cockatoo
Psittacidae	Psittacula krameri	Ring-necked parakeet
Psittacidae	Psittaculirostris edwardsii	Edward's fig parrot
Psittacidae	Psittacus erithacus	Gray parrot
Psittacidae	Psittacus erithacus	Grey parrot
Psittacidae	Trichoglossus haematodus	Rainbow lory
Spheniscidae	Spheniscus demersus	Jackass penguin
Strigidae	Athene noctua	Little owl
Strigidae	Bubo bubo	Northern eagle owl
Strigidae	Nyctea scandiaca	Snowy owl
Strigidae	Otus asio	Eastern screech owl
Strigidae	Otus asio	Eastern screech owl
Strigidae	Strix aluco	Tawny owl
Strigidae	Strix nebulosa	Great grey owl
Tytonidae	Tyto alba	Common barn owl
	1.59	

Supplementary Data 3. Genome sampling statistics for 66 squamate species.
Illumina MiSeq shotgun sequencing samples

Species	Common name	Totat Combined Reads	Total Raw bp	Total Nuclear bp	$\begin{aligned} & \text { GC content } \\ & \text { (\%) } \\ & \hline \end{aligned}$
Coleonyx elegans*	Yucatán banded gecko	3,479,532	869,883,000	661,966,988	45.64
Gekko gekko	Tokay gecko	2,074,340	518,585,000	399,222,362	46.57
Zonosaurus madagascariensis	Madagascar plated lizard	1,570,986	392,746,500	285,011,068	43.21
Platysaurus intermedius	Common flat lizard	3,498,226	1,084,450,060	713,972,746	44.22
Lepidophyma mayae	Mayan tropical Night Lizard	2,048,596	512,149,000	376,651,498	46.27
Lepidophyma flavimaculatum	Yellow-spotted night lizard	2,910,410	727,602,500	540,463,724	45.94
Plestiodon fasciatus	Five-lined skink	3,072,974	768,243,500	594,792,793	46.76
Tribolonotus gracilis	Red-eyed croc skink	2,604,866	807,508,460	579,616,674	46.07
Lamprolepis smaragdina	Emerald tree skink	2,808,668	870,687,080	376,649,200	43.9
Aspidoscelis scalaris	Plateau spotted whiptail	250,110	77,534,100	54,953,808	43.38
Proctoporus pachyurus	Tschudi's lightbulb lizard	1,504,862	466,507,220	333,261,942	40.2
Bipes canaliculauts*	Four-toed worm lizard	5,322,166	1,330,541,500	1,031,694,072	43.31
Varanus exanthematicus	Savannah monitor	2,905,680	900,760,800	642,548,170	44.41
Abronia graminea	Green arboreal alligator lizard	1,344,546	336,136,500	263,697,926	45.36
Abronia matudai	Matuda's arboreal Alligator Lizard	1,583,430	395,857,500	305,932,955	45.76
Ophisaurus attenuatus*	Slender glass lizard	3,307,234	823,808,500	619,395,214	45.41
Trioceros melleri	Meller's chameleon	2,343,340	726,435,400	504,624,342	44.18
Uromastyx geyri	Saharan spiny-tailed lizard	1,998,784	619,623,040	447,386,744	42.31
Dendragama boulengeri	Boulenger's tree agama	2,134,810	661,791,100	480,620,070	42.8
Lophocalotes ludekingi	Crested lizard	1,694,118	525,176,580	372,355,916	43.89
Gonocephalus grandis	Great anglehead lizard	2,037,934	631,759,540	325,284,517	43.75
Bronchocela jubata	Maned forest lizard	2,303,186	713,987,660	516,377,597	42.74
Calotes sp.		3,712,834	928,208,500	611,431,640	45.09
Sceloporus poinsettii	Crevice spiny lizard	2,523,062	630,765,500	403,601,134	42.95
Sceloporus teapensis	Teapa scaly lizard	2,446,190	611,547,500	465,440,852	42.91
Phrynosoma cornutum	Texas horned lizard	1,953,066	488,266,500	352,479,216	42.92
Crotaphytus collaris	Eastern collared lizard	2,839,282	709,820,500	560,017,110	42.72
Norops humillis	Ground anole lizard	2,365,870	591,467,500	420,458,457	45.04
Oplurus quadrimaculatus	Madagascar spiny-tailed iguana	3,392,902	848,225,500	658,997,359	40.57
Eryx jaculus	Javelin sand boa	2,310,286	577,571,500	410,158,507	42.9
Acrochordus granulatus	Little file snake	2,698,706	836,598,860	606,704,306	39.26
Pareas carinata	Keeled slug-eating snake	1,553,330	388,332,500	300,894,252	43.35
Sistrurus catenatus*	Massasauga	3,800,896	950,224,000	731,856,378	42.09
Bothriechis schlegelii	Eyelash viper	1,463,136	453,572,160	305,424,903	40.57
Cerrophidion godmani	Godman's montane pitviper	2,154,462	538,615,500	377,329,574	42.26
Bothrops asper	Terciopelo	4,029,527	1,020,000,000	673,181,829	44.9
Tropidolaemus subannulatus*	North Philippine temple pitviper	5,315,414	1,328,853,500	914,955,964	42.4
Cerastes cerastes*	Horned desert viper	5,176,826	1,294,206,500	921,873,870	42.26
Ahaetulla prasina	Asian vine snake	3,487,320	871,830,000	653,137,137	42.17
Thelotornis kirtlandii	Twig snake	2,416,080	604,020,000	456,106,084	43.21
Coluber constrictor	Black racer	2,382,600	595,650,000	323,175,136	41.57
Pantherophis emoryi	Great plains rat snake	2,860,290	715,072,500	496,928,698	44.04
Coniophanes piceivittis	Black striped snake	1,905,662	476,415,500	346,481,831	41.88
Coniophanes fissidens	Yellowbelly snake	1,431,564	357,891,000	259,876,691	47.81
Cerberus rhynchops	Dog-faced water snake	2,368,578	734,259,180	544,544,296	41.24

[^2]| 454 shotgun sequencing samples | Common name | Total number of reads | Total Raw bp | Total Nuclear bp | GC content (\%) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Leptotyphlops dulcis | Texas blind snake | 71,058 | 11,828,885 | 11,823,143 | 43.18 |
| Typhlops reticulatus | Reticulate worm snake | 50,087 | 6,741,155 | 6,720,475 | 46.13 |
| Anilius scytale | American pipe snake | 50,319 | 7,542,192 | 7,508,176 | 43.23 |
| Casarea dussumieri | Round island boa | 470,682 | 76,243,119 | 76,218,678 | 43.4 |
| Loxocemus bicolor | Mexican burrowing python | 40,583 | 6,172,347 | 6,163,619 | 42.59 |
| Crotalus atrox | Western diamondback rattlesnake | 63,094 | 19,098,306 | 18,965,550 | 38.79 |
| Agkistrodon contortryx | Copperhead | 280,303 | 60,344,580 | 60,175,941 | 42.49 |
| Sibon nebulatus | Slug-eating snake | 43,542 | 12,772,185 | 10,989,600 | 41.01 |
| Micrurus fulvius | Eastern coral snake | 26,831 | 7,735,311 | 6,769,294 | 39.35 |
| Whole assembled genomes | Common name | Number of Scaffolds | Total bp | Total unambiguous nt | GC content
 (\%) |
| Gekko japonicus | Schlegel's Japanese gecko | 335,469 | 2,490,274,461 | 2,402,030,469 | 45.47 |
| Ophisaurus gracilis | Burmese glass lizard | 6,715 | 1,781,357,942 | 1,729,274,821 | 43.71 |
| Pogona vitticeps | Central bearded dragon | 100,000 | 1,659,313,787 | 1,592,670,006 | 41.84 |
| Anolis carolinensis | Green anole lizard | 6,457 | 1,799,143,587 | 1,701,422,805 | 40.32 |
| Boa constrictor | Boa constrictor | 111,002 | 1,387,463,918 | 1,387,241,914 | 40.26 |
| Python molurus bivittatus | Burmese python | 39,112 | 1,435,034,535 | 1,385,275,938 | 39.61 |
| Crotalus mitchellii | Speckled rattlesnake | 478,598 | 1,139,346,324 | 1,129,318,242 | 38.65 |
| Crotalus viridis | Prairie rattlesnake | 56,243 | 1,213,434,727 | 1,191,577,356 | 38.61 |
| Deinagkistrodon acutus | Five-pacer viper | 162,571 | 1,506,308,921 | 1,417,468,057 | 39.82 |
| Pantherophis guttatus | Corn snake | 883,920 | 1,404,220,341 | 1,358,371,200 | 39.58 |
| Thamnophis sirtalis | Common garter snake | 7,930 | 1,424,897,867 | 1,122,631,552 | 39.92 |
| Ophiophagus hannah | King cobra | 296,399 | 1,594,076,454 | 1,379,208,606 | 39.51 |

Supplementary Data 4. Repeat element landscape composition for 66 sampled squamate genomes estimated using RepeatMasker.

	Total Repeats	$\begin{aligned} & \hline \text { Total } \\ & \text { SSRs } \end{aligned}$	$\begin{aligned} & \hline \text { Total } \\ & \text { TEs } \end{aligned}$	SINEs	LINEs					PLEs	DIRS	LTR	DNA transposons			Unclassified
Species					CR1-L3	L2	BovB	L1	Others				hAT	Tc1	Others	
Gekkota																
Coleonyx elegans	24.37	0.78	23.67	3.48	4.49	4.66	1.49	1.6	0.33	0.74	0.73	1.76	1.04	0.41	0.47	2.31
Gekko gekko	45.24	0.42	44.8	5.95	7.62	4.15	2.49	2.79	0.31	1.18	0.99	5.19	1.71	0.51	0.97	10.62
Gekko japonicus	42.12	1.07	41.27	6.9	6.38	3.48	2.29	2.62	0.28	0.69	1.98	3.31	1.76	0.52	0.69	10.53
Scincoidea																
Zonosaurus madagascariensis	36.66	1.98	34.3	2.1	4.92	4.86	2.18	0.98	0.38	0.79	0.24	1.74	4.61	0.72	2.36	8.71
Platysaurus intermedius	40.02	1.81	37.8	2.73	6.24	5.42	2.23	1.33	0.65	0.92	0.23	1.28	6.09	1.44	2.6	6.76
Lepidophyma flavimaculatum	44.2	0.92	44.01	1.92	7.55	6.22	1.38	1.42	0.48	2.04	0.92	4.11	3.97	1.72	2.72	9.55
Lepidophyma mayae	44.87	0.89	43.37	1.84	7.3	5.98	1.26	1.4	0.42	2.22	0.87	4.05	3.75	1.54	2.8	9.31
Lamprolepis smaragdina	35.03	1.19	34.66	3.24	4.02	3.16	2.29	0.79	0.79	0.25	0.42	2.17	5.77	1.62	3.31	4.36
Tribolonotus gracilis	36.97	2.27	34.3	1.73	4.8	2.8	0.4	1.39	0.48	0.26	0.3	2.05	9.97	1.71	2.96	5.55
Plestiodon fasciatus	36.15	0.17	34.74			1.14	1.15	0.68					13.58	1.71		7.45
Lacertoidea																
Aspidoscelis scalaris	36.72	3.15	32.84	2.57	5.31	3.39	0.82	1.17	1.43	0.26	0.33	1.84	4.28	1.07	1.4	8.97
Proctoporus pachyurus	33.31	3.27	29.41	3.71	4.31	2.85			1.16	0.02	0.58	1.5	2.52		2.31	6.74
Bipes canaliculauts						4.87										
Anguimorpha																
Abronia graminea	49.82	1.57	46.79	2.82	8.13	7.16	1.58	1.78	0.81	1.7	0.81	5.71	3.8	0.52	6.11	6.85
Abronia matudai	48.99	1.55	46.68	2.63	8.02	7.45	1.42	1.61	0.77	1.53	0.83	5.83	3.85	0.67	5.96	6.57
Ophisaurus attenuatus	48.9	1.11	34.27	3.05	6.63	4.77	5.63	1.76	0.79	0.61	0.22	2.02	3.4	0.79	2.04	6.41
Ophisaurus gracilis	44.78	1.89	42.26	2.21	5.59	6.54	0.43	1.16	1.31	0.77	0.54	6.49	5.66	0.14	5.59	6.34
Varanus exanthematicus	35.68	1.52	47.63	2.57	8.06	6.81	1.53	0.89	0.42	2.12		6.38	3.86	0.58	5.93	4.28
Iguania																
Bronchocela jubata	41.15	1.22	30.22	3.53	4.06	3.31	2.51	1.58	1.21	0.51	1.75	2	2.54	0.81	1.88	6
Gonocephalus grandis	41.56	1.11	31.57	3.38	2.63	2.73	5.32	1.29	1.08	0.62	1.98	2.23	3.08	1.79	1.55	5.38
Calotes sp.	41.98	1.55	39.76	4.55	1.9	3.59	4.33	1.32	1.07	2.25	0.83	4.2	5.09	1.4	1.95	5.19
Dendragama boulengeri	39.7	2.46	37.12	2.56	4.99	2.66	1.94	1.76	1.2	0.27	0.85	2.67	6.75	3.09	2.79	5.66
Lophocalotes ludekingi	42.94	2.6	39.66	2.44	5.73	2.71	1.79	2.03	1.12	0.73	0.79	3.74	6.94	2.79	2.76	6.2
Pogona vitticeps	32.4	2.57	39.05	2.49	5.34	5.28	2.04	0.86	1.32	0.67	0.83	3.32	5.74	2.98	2.66	4.32
Uromastyx geyri	31.35	2.41	38.87	2.55	4.81	5.14	1.91	1.31	0.98	0.57	0.83	3.34	5.74	3.68	2.73	5.33
Trioceros melleri	41.52	2.76	38.19	2.49	5.58	2.65	1.79	1.46	2.86	0.45	1.21	3.02	7.36	2.61	2.52	5.3
Crotaphytus collaris	37.3	2.1	42.95	3.89	5.14	5.77 5.99	2.7	1.86	0.36	1.73	2.01	2.72	3.82	2.63	4.06	2.65
Phrynosoma cornutum	49.56	1.89	43.39	4.05	5.42	5.99	2.85	1.71	0.46	1.47	2.03	2.84	3.83	2.7	4.1	6.98
Sceloporus poinsettii	45.49	1.81	35.41	2.66	6.31	3.94	4.55	1.61	0.54	1.26	1.18	2.37	2.94	2.14	2.79	6.1
Sceloporus teapensis	45.36	1.33	48.19	4.16	5.35	8.11	4.05	1.69	0.63	0.71	1.79	3.83	4.07	2.27	4.88	6.29
Anolis carolinensis	51.4	1.74	43.55	1.4	9.91	2.45	0.87	2	2.43	0.25	2.58	3.67	2.53	1.25	4.15	5.7
Norops humillis	57.6	3.32	53.55	3.74	3.97	9.24	3.32	2.15	1.61	0.86	0.75	5.89 5.83	5.58	2.84	6.43	9.17
Oplurus quadrimaculatus	45.3	2.26	43.55	5.13	3.72	4.43	2.46	3.73	0.83	0.46	2.08	5.83	6.1	5.17	6.33	10.22

	Total Repeats	$\begin{aligned} & \text { Total } \\ & \text { SSRs } \end{aligned}$	$\begin{aligned} & \text { Total } \\ & \text { TEs } \\ & \hline \end{aligned}$	SINEs	LINEs					PLEs	DIRS	LTR	DNA transposons			Unclassified
Species					CR1-L3	L2	BovB	L1	Others				hAT	Tc1	Others	
Non colubroid																
snakes																
Leptotyphlops dulcis	50.4	1.18	48.67	2.42	10.41	7.27	0.73	0.51	2.84	1.52	0. 10	3.35	3.2	2.31	2.31	11.7
Typhlops reticulatus	46.77	1.84	44.33	1.43	7.82	2.22	0.96	0.56	2.13	0.71	0.01	3.58	3.38	2.03	1.54	16.13
Anilius scytale	40.8	1.46	39.11	2.12	3.87	4.17	3.03	1.64	1.99	2.07	0.04	3.19	2.53	3.56	2.07	8.82
Boa constrictor	34.9	2.34	32.21	2.58	2.91	4.06	3.88	2.43	1.45	1.05	0.05	2.5	1.91	2.07	1.83	5.43
Eryx jaculus	44.44	2.1	42.11	3.53	2.74	6.29	4.93	2.35	2.62	1.13	0.19	3.61	2.8	3.19	2.27	6.41
Loxocemus bicolor	41.28	1.24	40.14	2.2	2.5	3.77	5.23	1.79	3.14	2.53	0.05	2.53	1.48	2.82	1.86	9.93
Python molurus	31.02	1.99	28.7	1.6	2.1	3.4	3.05	2.9	1.71	0.93	0.05	1.9	1.56	2.11	1.31	5.98
Casarea dussumieri	42.57	11.46	30.87	2.62	2.74	3.22	3.93	1.31	2.44	0.99	0.2	2.75	2.08	4.12	1.92	2.55
Acrochordus granulatus	43.75	1.13	42.29	3.22	1.44	4.01	12.42	2	2.62	1.99	0.06	1.81	2.69	4.36	1.47	3.38
Colubroidea																
Pareas carinata	53.37	4.08	48.19	2.15	3.04	7.87	1.33	3.77	3.16	1.11	0.18	5.21	2.65	3.45	1.47	12.84
Agkistrodon contortrix	55.25	4.8	49.64	2.28	9.81	1.69	2.38	3.01	2.19	2.3	2.21	7.43	7.45	4.27	2.59	1.89
Crotalus atrox	47.31	2.55	44.65	2.13	7.11	1.78	3.43	4.47	3.63	2.09	1.19	6.28	4.68	3.86	2.12	1.67
Crotalus mitchellii	35.27	2.03	32.98	2.42	4.41	1.92	2.13	2	1.63	1.61	0.86	3.44	3.78	4.22	1.87	2.5
Crotalus viridis	40.86	2.26	38.1	1.83	6.47	1.08	2.51	2.45	1.71	1.49	1.11	4.25	4.44	4.22	1.26	5.03
Sistrurus catenatus	48.09	4.29	42.91	2.23	8.61	1.9	3.05	1.71	3.88	1.48	1.21	5.19	4.07	3.54	1.96	3.9
Bothriechis schlegelli	51.1	4.27	46.31	2.34	7.05	2.88	2.61	4.25	2.17	2.41	1.81	6.92	5.28	3.86	2.52	1.98
Bothrops asper	60.74	6.44	53.09	2.54	7.66	6.51	2.35	3.47	2.02	2.07	2.19	5.99	7.76	4.34	2.79	3.48
Cerrophidion godmani	53.47	3.67	49.4	3.17	9.09	2.97	3.23	3.01	2.57	2.23	2	6.62	5.92	4.26	2.45	1.84
Tropidolaemus subannulatus	48.15	3.54	44.03	2.01	7.91	6.34	3.24	1.68	4.16	1.14	1.73	4.05	2.96	3.6	1.94	3.26
Deinagkistrodon acutus	48.86	4.33	43.51	2.13	8.18	2.26	2.52	2.31	3.64	1.53	1.95	4.34	5.02	4.64	1.54	3.44
Cerastes cerastes	54.43	2.54	51.13	5.02	3.86	1.86	6.6	4.09	8.33	1.65	0.34	6.71	4.23	4.53	2.07	1.88
Cerberus rhynchops	48.4	3.32	44.04	2.41	2.48	4.53	1.97	3.26	7.5	2.43	1.01	6.06	4	3.85	1.96	2.29
Ahaetulla prasina	58.38	6.5	51.39	3.97	5.1	3.65	1.93	3.42	9.97	1.73	0.51	4.54	5.08	4.25	2.11	4.94
Coluber constrictor	53.34	4.91	47.91	4.49	3.37	2.68	1.98	2.99	7	1.61	0.88	4.28	5.8	5.5	2.02	5.16
Pantherophis emoryi	58.28	4.75	52.67	4.8	4.97	7.4	2.11	3.39	2.88	1.64	1.04	5.61	6.49	5.43	2.36	4.47
Pantherophis guttatus	43.38	2.6	40.04	3.53	4.43	2.75	1.97	2.54	2.35	1.66	0.74	3.38	5.31	5.1	2.02	3.99
Thelotornis kirtlandii	57.19	4.6	51.97	5.89	2.64	5.17	1.7	3.08	8.24	1.49	1.06	4.37	5.91	4.45	2.1	6.01
Coniophanes fissidens	73.02	14.16	56.34	4.26	6.21	7.16	3.02	1.35	9.26	1.79	1.37	4.45	7.42	3.56	2.71	4.8
Coniophanes piceivittis	59.35	7.92	50.19	3.66	5.78	3.81	2.57	2.47	9.92	1.26	0.9	3.37	5.43	3.82	2.72	4.56
Sibon nebulatus	57.57	3.1	53.34	3.55	9.62	4.53	4.53	2.59	6.18	1.33	0.68	4.62	5.87	3.63	2.65	3.4
Thamnophis sirtalis	39.01	2.83	35.69	3.9	3.22	1.01	1.49	1.44	3.19	1.11	0.87	2.6	4.31	4.53	1.64	6.37
Micrurus fulvius	48.17	3.16	44.04	3.44	3.89	4.31	1.63	3.11	6.81	1.74	0.83	4.28	3.8	4	1.86	4.09
Ophiophagus hannah	41.32	2.99	37.87	3.09	5.05	2.78	1.46	2.43	2.31	1.46	0.6	2.79	3.2	4.5	1.14	6.74

Supplementary Data 5. Microsatellite density estimates across 66 squamate species. Loci/ Mbp density estimates for each species and averages for each major squamate lineages are reported for 2-6mer SSR loci and for the total microsatellite content as estimated in PAL-finder.

Family	Species	Loci/Mbp					
		2 mer	3 mer	4mer	5mer	6 mer	Total
Gekkota	Coleonyx elegans	60.74	74.26	101.78	16.99	8.03	261.81
	Gekko gecko	60.05	126.30	124.66	24.31	14.24	349.55
	Gekko japonicus	90.57	165.78	177.66	31.15	14.43	479.59
Scincoidea	Zonosaurus madagascariensis	127.90	119.72	237.00	53.94	13.69	552.26
	Platysaurus intermedius	117.33	118.62	240.50	44.73	24.33	545.51
	Lepidophyma mayae	73.98	93.79	158.52	17.91	8.42	352.62
	Lepidophyma flavimaculatum	67.68	94.62	147.62	20.85	14.73	345.51
	Plestiodon fasciatus	132.02	114.51	140.51	20.15	15.19	422.38
	Tribolonotus gracilis	92.73	68.03	410.13	17.38	6.00	594.27
	Lamprolepis smaragdina	90.93	58.62	129.30	15.96	5.77	300.57
Lacertoidea	Aspidoscelis scalaris	64.24	129.55	219.04	42.05	27.50	482.37
	Proctoporus pachyurus	131.82	289.99	420.64	41.18	39.82	923.45
	Bipes canaliculauts	72.19	153.76	160.87	21.77	9.90	418.49
Anguimorpha	Varanus exanthematicus	62.52	82.56	202.55	38.79	13.04	399.46
	Abronia graminea	153.52	132.45	193.16	32.89	13.55	525.57
	Abronia matudai	180.73	139.75	204.96	34.08	15.59	575.10
	Ophisaurus gracilis	226.01	217.15	273.37	49.39	14.83	780.74
	Ophisaurus attenuatus	158.55	139.50	196.17	34.13	14.52	542.86
Iguania	Trioceros melleri	96.03	133.95	207.10	44.01	16.38	497.47
	Uromastyx geyri	54.62	75.74	188.27	39.98	24.67	383.27
	Pogona vitticeps	128.42	118.32	262.22	43.20	16.20	568.36
	Dendragama boulengeri	170.73	133.56	323.78	68.98	27.46	724.50
	Lophocalotes ludekingi	247.77	136.06	311.22	66.56	38.82	800.42
	Gonocephalus grandis	159.05	149.36	331.85	92.62	26.01	758.90
	Bronchocela jubata	142.27	142.40	323.73	74.97	40.73	724.10
	Calotes sp.	163.70	135.20	282.73	69.74	72.78	724.15
	Sceloporus poinsettii	110.58	152.23	146.72	26.22	15.50	451.25
	Sceloporus teapensis	116.24	176.74	168.17	30.49	43.60	535.25
	Phrynosoma cornutum	91.00	151.78	135.07	37.53	25.55	440.93
	Crotaphytus collaris	106.82	108.04	142.68	27.81	52.23	437.58
	Norops humillis	120.45	147.18	390.59	21.78	106.67	786.66
	Oplurus quadrimaculatus	84.96	95.34	139.71	34.98	80.34	435.32
	Anolis carolinensis	98.73	262.53	198.52	28.87	12.55	601.20
Lizards	Avg	116.81	134.47	220.93	38.35	26.46	537.01
	$S D$	47.18	49.47	86.64	18.73	22.88	163.65
Scolecophidia	Typhlops reticulatus	87.04	123.61	202.43	89.22	19.79	522.10
	Leptotyphlops dulcis	91.95	78.11	209.03	38.49	9.29	426.87
Aniliidae	Anilius scytale	86.75	72.29	173.65	44.84	15.48	393.01
Bolyeriidae	Casarea dussumieri	69.15	83.15	158.52	32.66	20.20	363.69
Boidae	Boa constrictor	99.44	101.90	273.48	60.20	23.37	558.38
	Eryx jaculus	90.40	86.60	263.67	60.34	27.60	528.61
Pythonidae	Loxocemus bicolor	97.18	88.24	167.35	29.47	9.82	392.06
	Python molurus	104.56	98.35	265.60	56.50	20.26	545.28
Acrochordidae	Acrochordus granulatus	46.49	54.10	170.69	27.78	4.45	303.51
Non Colubroid Snakes	Avg	85.89	87.37	209.38	48.83	16.70	448.17
	SD	17.86	19.63	46.63	19.86	7.51	92.34
Pareatidae	Pareas carinata	119.13	82.34	250.90	56.98	254.72	764.08
Viperidae	Crotalus atrox	172.99	182.16	468.04	229.77	29.53	1,082.49
	Crotalus mitchellii	119.69	145.90	305.20	84.33	11.98	667.10
	Crotalus viridis	120.93	133.34	274.90	77.99	14.60	621.75
	Sistrurus catenatus	127.79	142.26	304.50	89.10	15.62	679.27
	Agkistrodon contortrix	114.42	119.77	290.91	83.51	20.86	629.47
	Bothriechis schlegelii	220.69	120.22	277.69	94.97	20.99	734.56
	Cerrophidion godmani	197.06	208.69	566.12	150.22	50.86	1,172.96
	Bothrops asper	145.99	129.41	300.70	92.16	24.31	692.59
	Tropidolaemus subannulatus	111.60	127.92	314.37	112.63	24.94	691.46
	Deinagkistrodon acutus	164.46	168.82	337.81	121.22	27.88	820.19
	Cerastes cerastes	113.28	116.80	221.45	83.48	79.64	614.65
Homalopsidae	Cerberus rhynchops	111.98	83.22	293.11	103.16	30.87	622.35
Colubridae	Ahaetulla prasina	109.48	93.44	605.35	299.73	40.96	1,148.96
	Thelotornis kirtlandii	104.86	87.67	315.11	114.07	34.92	656.63
	Coluber constrictor	117.05	102.27	345.94	118.46	95.00	778.71
	Pantherophis emoryi	119.35	101.06	321.05	98.40	28.27	668.14
	Pantherophis guttatus	262.82	97.05	457.04	96.51	33.56	946.96
	Coniophanes piceivittis	186.74	111.12	1,487.92	302.70	756.33	2,844.81
		202					

	Coniophanes fissidens	156.51	121.38	$1,034.89$	242.55	59.14	$1,614.47$
	Sibon nebulatus	141.50	158.88	342.60	126.30	38.85	808.13
Elapidae	Thamnophis sirtalis	157.18	104.55	346.69	89.36	44.19	741.96
	Micrurus fulvius	117.29	97.65	348.49	100.90	20.98	685.30
	Ophiophagus hannah	148.52	111.18	388.35	134.71	39.29	822.06
	Avg	144.22	122.80	424.96	129.30	74.93	896.21
	$S D$	40.07	32.01	281.44	68.07	153.11	476.79

$\mathrm{bp} / \mathrm{Mbp}$ density estimates for each species and averages for each major squamate lineages are reported for 2-6mer SSR loci and for the total microsatellite content as estimated in PAL-finder.

Family	Species	bp/Mbp					
		2mer	3mer	4mer	5mer	6 mer	Total
Gekkota	Coleonyx elegans	1,114.14	1,050.10	1,384.51	268.86	262.07	4,079.68
	Gekko gecko	1,019.60	2,096.10	2,037.50	445.64	391.78	5,990.62
	Gekko japonicus	1,605.92	2,860.14	2,851.52	528.24	293.13	8,138.95
Scincoidea	Zonosaurus madagascariensis	2,730.18	2,205.11	4,343.97	1,104.45	304.26	10,687.97
	Platysaurus intermedius	2,413.34	2,115.69	4,118.43	838.48	571.78	10,057.72
	Lepidophyma mayae	1,324.20	1,436.78	2,862.16	285.00	219.64	6,127.78
	Lepidophyma flavimaculatum	1,181.99	1,425.63	2,584.84	335.54	468.32	5,996.32
	Plestiodon fasciatus	3,106.69	1,798.60	2,062.05	319.51	408.29	7,695.14
	Tribolonotus gracilis	1,794.01	980.24	6,548.24	275.37	148.33	9,746.19
	Lamprolepis smaragdina	2,037.48	870.48	2,126.13	255.26	134.49	5,423.84
Lacertoidea	Aspidoscelis scalaris	1,064.75	2,435.32	4,438.56	824.42	682.94	9,445.99
	Proctoporus pachyurus	2,379.77	5,419.57	8,125.43	666.04	864.74	17,455.55
	Bipes canaliculauts	1,125.34	2,938.42	2,128.01	343.39	223.50	6,758.66
Anguimorpha	Varanus exanthematicus	1,170.44	1,195.59	3,399.05	786.41	324.79	6,876.28
	Abronia graminea	3,277.05	2,440.76	2,846.73	524.62	366.19	9,455.35
	Abronia matudai	4,100.37	2,657.95	3,053.95	546.49	442.53	10,801.29
	Ophisaurus gracilis	5,044.67	4,183.94	4,204.94	819.03	294.90	14,547.48
	Ophisaurus attenuatus	3,389.86	2,614.25	2,911.14	547.18	410.67	9,873.10
Iguania	Trioceros melleri	1,678.75	2,147.09	3,110.97	735.92	356.77	8,029.50
	Uromastyx geyri	927.47	1,242.06	3,908.75	735.26	500.60	7,314.14
	Pogona vitticeps	2,658.91	2,267.70	6,288.45	791.74	371.95	12,378.75
	Dendragama boulengeri	4,004.01	3,248.34	8,535.32	1,319.15	783.04	17,889.86
	Lophocalotes ludekingi	5,005.01	3,013.50	7,487.30	1,192.42	1,067.49	17,765.72
	Gonocephalus grandis	3,355.00	3,461.93	6,999.16	1,652.20	632.88	16,101.17
	Bronchocela jubata	2,870.52	3,513.88	8,099.10	1,481.35	1,262.89	17,227.74
	Calotes sp.	3,375.49	2,733.65	6,037.49	1,283.08	2,485.13	15,914.84
	Sceloporus poinsettii	2,073.60	2,595.75	2,331.35	427.40	385.69	7,813.79
	Sceloporus teapensis	2,166.43	2,992.91	2,766.99	506.99	1,148.50	9,581.82
	Phrynosoma cornutum	1,549.70	2,528.93	2,105.26	655.68	600.78	7,440.35
	Crotaphytus collaris	1,942.55	1,681.50	2,142.32	478.61	1,284.38	7,529.36
	Norops humillis	2,694.40	2,421.44	5,824.09	344.45	3,787.82	15,072.20
	Oplurus quadrimaculatus	1,626.74	1,663.24	2,448.39	684.41	1,936.76	8,359.54
	Anolis carolinensis	2,106.54	6,417.96	3,234.03	485.52	246.52	12,490.57
Lizards	Avg	2,361.06	2,504.68	4,040.79	681.46	717.08	10,305.07
	SD	1,125.08	1,189.03	2,092.09	368.77	755.53	4,043.20
Scolecophidia	Typhlops reticulatus	3,012.85	2,190.20	4,055.37	1,836.49	434.72	11,529.63
	Leptotyphlops dulcis	2,434.79	1,307.36	3,517.76	650.31	181.44	8,091.66
Aniliidae	Anilius scytale	3,636.21	1,260.51	3,081.53	949.29	425.87	9,353.41
Bolyeriidae	Casarea dussumieri	1,724.03	1,291.51	2,913.26	613.81	471.26	7,013.87
Boidae	Boa constrictor	1,796.65	1,734.44	4,997.37	1,505.89	599.08	10,633.43
	Eryx jaculus	1,699.63	1,602.77	5,004.01	1,336.99	702.94	10,346.34
Pythonidae	Loxocemus bicolor	2,444.30	1,273.02	2,771.64	598.18	236.82	7,323.96
	Python molurus	1,943.90	1,898.98	5,732.26	1,443.77	576.67	11,595.58
Acrochordidae	Acrochordus granulatus	676.54	710.77	2,719.06	479.13	111.16	4,696.66
Non Colubroid Snakes	Avg	2,152.10	1,474.40	3,865.81	1,045.98	415.55	8,953.84
	SD	854.67	434.10	1,132.00	494.20	201.62	2,340.41
Pareatidae	Pareas carinata	2,177.37	1,677.42	4,984.17	1,292.58	8,450.71	18,582.25
Viperidae	Crotalus atrox	3,624.36	3,976.01	11,194.38	7,920.39	778.91	27,494.04
	Crotalus mitchellii	2,993.67	3,238.20	5,129.87	2,015.72	251.14	13,628.59
	Crotalus viridis	2,127.67	2,031.70	4,049.18	1,355.21	278.24	9,842.00
	Sistrurus catenatus	2,433.35	2,416.90	5,362.27	1,914.18	306.33	12,433.02
	Agkistrodon contortrix	2,261.05	2,256.41	6,496.20	2,485.73	524.34	14,023.73
	Bothriechis schlegelii	3,988.82	2,291.48	5,492.52	2,507.65	451.06	14,731.54
	Cerrophidion godmani	3,926.70	4,362.98	12,309.03	4,088.25	1,292.33	25,979.28
	Bothrops asper	3,026.83	2,307.28	6,090.44	2,400.94	644.69	14,470.18
	Tropidolaemus subannulatus	2,101.76	2,501.76	6,089.14	2,756.60	634.61	14,083.88

Supplementary Data 6. Statistics of the microsatellite landscape across lineages of squamate reptiles.
$\mathrm{Bp} / \mathrm{Mbp}$ microsatellite density statistics

Taxonomic Group	2 mer $\mathrm{bp} / \mathrm{Mbp}$	3 mer bp/Mbp	4mer $\mathrm{bp} / \mathrm{Mbp}$	5 mer $\mathrm{bp} / \mathrm{Mbp}$	6 mer bp/Mbp	Tot SSR
Average						
Lizards Non Colubroid snakes Colubroid snakes	$\begin{aligned} & 2361.06 \\ & 2152.10 \\ & 2813.95 \end{aligned}$	$\begin{aligned} & 2504.68 \\ & 1474.40 \\ & 2261.08 \end{aligned}$	$\begin{aligned} & 4040.79 \\ & 3865.81 \\ & 8885.95 \end{aligned}$	$\begin{aligned} & 681.46 \\ & 1045.98 \\ & 3330.61 \end{aligned}$	$\begin{aligned} & 717.08 \\ & 415.55 \\ & 2129.31 \end{aligned}$	$\begin{aligned} & 10305.07 \\ & 8953.84 \\ & 19420.89 \end{aligned}$
Standard Deviation						
Lizards Non Colubroid snakes Colubroid snakes	$\begin{aligned} & 1125.08 \\ & 854.67 \\ & 774.93 \end{aligned}$	$\begin{aligned} & 1189.04 \\ & 434.10 \\ & 844.72 \end{aligned}$	$\begin{aligned} & 2092.09 \\ & 1132.00 \\ & 6815.44 \end{aligned}$	$\begin{aligned} & 368.77 \\ & 494.20 \\ & 2052.19 \end{aligned}$	$\begin{aligned} & 755.53 \\ & 201.62 \\ & 4590.44 \end{aligned}$	$\begin{aligned} & 4043.20 \\ & 2340.41 \\ & 12215.45 \end{aligned}$
Fold Difference						
Colubroidea-Lizard Colubroidea -Non Colubroid snakes Lizard-Non Colubroid snakes Colubroidea-other	$\begin{aligned} & 1.19 \\ & 1.31 \\ & 1.10 \\ & 1.21 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.90 \\ & 1.53 \\ & 1.70 \\ & 0.99 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.20 \\ & 2.30 \\ & 1.05 \\ & 2.22 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.89 \\ & 3.18 \\ & 0.65 \\ & 4.38 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.97 \\ & 5.12 \\ & 1.73 \\ & 3.26 \\ & \hline \end{aligned}$	$\begin{array}{r} 1.88 \\ 2.17 \\ 1.15 \\ 1.94 \\ \hline \end{array}$
Kruskal-Wallis test chi-squared p-val	$\begin{aligned} & 5.57 \\ & 0.062 \end{aligned}$	$\begin{aligned} & 9.64 \\ & 0.008 \end{aligned}$	$\begin{aligned} & 22.52 \\ & 1.29 \mathrm{E}-05 \end{aligned}$	$\begin{aligned} & 44.68 \\ & 1.99 \mathrm{E}-10 \end{aligned}$	$\begin{aligned} & 11.16 \\ & 0.004 \end{aligned}$	$\begin{aligned} & 25.23 \\ & 3.33 \mathrm{E}-06 \end{aligned}$

Dunn test for multiple comparisons (p -values adjusted with the Benjamini-Hochberg method)

Kruskal-Wallis test	2 mer	Z	P.unadj	P.adj	p-val
	Colubroidea - Lizard	2.12	0.03	0.102	0.019
	Colubroidea - Non colubroid snakes	1.79	0.07	0.109	
	Lizard - Non colubroid snakes	0.35	0.72	0.724	
	Colubroidea - Other squamates				
Kruskal-Wallis test	3 mer				0.894
	Colubroidea - Lizard	-0.80	0.42	0.421	
	Colubroidea - Non colubroid snakes	2.43	0.02	0.023	
	Lizard - Non colubroid snakes	3.10	0.00	0.006	
	Colubroidea - Other squamates				
Kruskal-Wallis test	4 mer				$2.08 \mathrm{E}-06$
	Colubroidea - Lizard	4.51	6.56E-06	$1.97 \mathrm{E}-05$	
	Colubroidea - Non colubroid snakes	3.15	0.002	0.002	
	Lizard - Non colubroid snakes	0.06	0.950	0.950	
	Colubroidea - Other squamates				
Kruskal-Wallis test	5 mer				6.51E-11
	Colubroidea - Lizard	6.66	$2.80 \mathrm{E}-11$	$8.41 \mathrm{E}-11$	
	Colubroidea - Non colubroid snakes	3.20	0.001	0.002	
	Lizard - Non colubroid snakes	-1.42	0.156	0.156	
	Colubroidea - Other squamates				
Kruskal-Wallis test	6 mer				0.001
	Colubroidea - Lizard	2.79	0.005	0.008	
	Colubroidea - Non colubroid snakes	2.80	0.005	0.015	
	Lizard - Non colubroid snakes	0.92	0.359	0.359	
	Colubroidea - Other squamates				
	Tot SSR				
	Colubroidea - Lizard	4.49	$7.13 \mathrm{E}-06$	$2.14 \mathrm{E}-05$	
	Colubroidea - Non colubroid snakes	3.85	$1.18 \mathrm{E}-04$	$1.77 \mathrm{E}-04$	
	Lizard - Non colubroid snakes	0.80	0.424	0.424	
Kruskal-Wallis test	Colubroidea - Other squamates				$7.10 \mathrm{E}-07$

Loci/Mbp microsatellite density statistics

Taxonomic Group	2 mer loci/Mbp	3 mer loci/Mbp	4mer loci/Mbp	5mer loci/Mbp	6mer loci/Mbp	Tot SSR
Average						
Lizards Non Colubroid snakes Colubroid snakes	$\begin{aligned} & 116.81 \\ & 85.88 \\ & 144.22 \end{aligned}$	$\begin{aligned} & 134.47 \\ & 87.37 \\ & 122.80 \end{aligned}$	$\begin{aligned} & 220.93 \\ & 209.38 \\ & 424.96 \end{aligned}$	$\begin{aligned} & 38.34 \\ & 48.83 \\ & 129.30 \end{aligned}$	$\begin{aligned} & 26.46 \\ & 16.69 \\ & 74.93 \end{aligned}$	$\begin{aligned} & 537.01 \\ & 448.17 \\ & 896.21 \end{aligned}$
Standard Deviation						
Lizards Non Colubroid snakes Colubroid snakes	$\begin{aligned} & 47.18 \\ & 17.86 \\ & 40.07 \end{aligned}$	$\begin{aligned} & 49.47 \\ & 19.63 \\ & 32.01 \end{aligned}$	$\begin{aligned} & 86.64 \\ & 46.63 \\ & 281.44 \end{aligned}$	$\begin{aligned} & 18.73 \\ & 19.86 \\ & 68.07 \end{aligned}$	$\begin{aligned} & 22.88 \\ & 7.51 \\ & 153.11 \end{aligned}$	$\begin{aligned} & 163.65 \\ & 92.35 \\ & 476.79 \end{aligned}$
Fold Difference						
Colubroidea-Lizard Colubroidea -Non Colubroid snakes Lizard-Non Colubroid snakes Colubroidea-other	$\begin{aligned} & 1.23 \\ & 1.68 \\ & 1.36 \\ & 1.31 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.91 \\ & 1.41 \\ & 1.54 \\ & 0.99 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.92 \\ & 2.03 \\ & 1.06 \\ & 1.95 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.37 \\ & 2.65 \\ & 0.79 \\ & 3.19 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.83 \\ & 4.49 \\ & 1.58 \\ & 3.08 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.67 \\ & 2.00 \\ & 1.20 \\ & 1.73 \\ & \hline \end{aligned}$
Kruskal-Wallis test chi-squared	16.442 $2.69 \mathrm{E}-4$	11.155 0.004	26.949 $1.41 \mathrm{E}-06$	42.67 $5.43 \mathrm{E}-10$	13.465 0.001	$\begin{aligned} & 29.65 \\ & 3.65 \mathrm{E}-07 \end{aligned}$
p-val						

Dunn test for multiple comparisons (p -values adjusted with the Benjamini-Hochberg method)

Kruskal-Wallis test	2 mer	Z	P.unadj	P.adj	p-val
	Colubroidea - Lizard	2.58	0.01	0.015	0.001
	Colubroidea - Non colubroid snakes	3.90	0.00	$2.93 \mathrm{E}-04$	
	Lizard - Non colubroid snakes	2.21	0.03	0.027	
	Colubroidea - Other squamates				
Kruskal-Wallis test	3 mer				0.894
	Colubroidea - Lizard	-0.88	0.38	0.381	
	Colubroidea - Non colubroid snakes	2.61	0.01	0.014	
	Lizard - Non colubroid snakes	3.34	0.00	0.003	
	Colubroidea - Other squamates				
Kruskal-Wallis test	4 mer				$2.16 \mathrm{E}-07$
	Colubroidea - Lizard	4.87	0.00	$3.32 \mathrm{E}-06$	
	Colubroidea - Non colubroid snakes	3.58	0.00	0.001	
	Lizard - Non colubroid snakes	0.25	0.80	0.804	
	Colubroidea - Other squamates				
Kruskal-Wallis test	5 mer				$1.11 \mathrm{E}-10$
	Colubroidea - Lizard	6.46	0.00	$3.12 \mathrm{E}-10$	
	Colubroidea - Non colubroid snakes	3.45	0.00	0.001	
	Lizard - Non colubroid snakes	-1.02	0.31	0.306	
	Colubroidea - Other squamates				
	6 mer				$4.12 \mathrm{E}-04$
Kruskal-Wallis test	Colubroidea - Lizard	3.07	0.00	0.006	
	Colubroidea - Non colubroid snakes	3.06	0.00	0.003	
	Lizard - Non colubroid snakes	0.99	0.32	0.320	
	Colubroidea - Other squamates				
	Tot SSR				
	Colubroidea - Lizard	4.61	0.00	$1.24 \mathrm{E}-05$	
	Colubroidea - Non colubroid snakes	4.50	0.00	$1.04 \mathrm{E}-05$	
	Lizard - Non colubroid snakes	1.39	0.17	0.165	
Kruskal-Wallis test	Colubroidea - Other squamates				1.40E-07

AATAG	Fold-change		ATAG	Fold-change	
	Bp/Mbp	Loci/Mbp		Bp/Mbp	Loci/Mbp
Colubroidea - Lizard	103.37	75.93		8.35	9.29
Colubroidea - Non colubroid snakes	56.35	70.65		5.29	6.04
Lizard - Non colubroid snakes	1.83	1.07		1.58	1.54
Colubroidea - Other squamates	87.69	74.73		7.43	8.33

Supplementary Data 7. Statistical analysis of AATAG microsatellite loci seeding by transposable elements for 8 squamate genomes.

	Anolis carolinensis	Boa constictor	Python molurus	Crotalus viridis	Crotalus mitchellii	Deinagkistrodon acutus	Thamnophis sirtalis	Ophiophagus hannah
SINEs	0.99	1.00	1.00	1.00	1.00	1.00	1.00	1.00
CR1/L3	$2 \mathrm{e}-03$	0.73	0.06	<2.2e-16	<2.2e-16	<2.2e-16	<2.2e-16	<2.2e-16
L2	0.19	0.86	0.37	1.00	1.00	1.00	1.00	1.00
Rex	<2.2e-16							
BovB	0.02	0.42	0.00	1.00	1.00	1.00	0.99	1.00
DIRS	1.00	0.32	0.98	1.00	<2.2e-16	1.00	1.00	0.89
PLEs	0.99	0.99	0.97	1.00	1.00	1.00	1.00	1.00
LTRs	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
DNA transposons	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Joint (Genomic AATAG-TE) and conditional (TE|AATAG) probabilities of co-occurrence of an AATAG locus and a transposable element (TE) in whole genome and AATAG adjacent context.

LOZ

Supplementary Data 8. Adult body mass measurements for 66 sampled squamate species as from Feldman et al., 2016 (Body sizes and diversification rates of lizards, snakes, amphisbaenians and the tuatara. Global Ecology and Biogeography).

Species	Adult Maximum Mass ($\log 10(\mathrm{~g})$)
Gekkota	
Coleonyx elegans	1.568
Gekko gekko	2.112
Gekko japonicus	1.083
Scincoidea	
Zonosaurus madagascariensis	1.838
Platysaurus intermedius	1.2
Lepidophyma mayae	1.863
Lepidophyma flavimaculatum	1.161
Plestiodon fasciatus	1.541
Tribolonotus gracilis	1.374
Lamprolepis smaragdina	1.121
Lacertoidea	
Aspidoscelis scalaris	1.774
Proctoporus pachyurus	0.645
Bipes canaliculauts	1.147
Anguimorpha	
Varanus exanthematicus	1.283
Abronia graminea	1.339
Abronia matudai	2.166
Ophisaurus gracilis	2.129
Ophisaurus attenuatus	4
Iguania	
Trioceros melleri	1.603
Uromastyx benti	2.354
Pogona vitticeps	2.071
Dendragama boulengeri	1.136
Lophocalotes ludekingi	1.412
Gonocephalus grandis	2.158
Bronchocela jubata	2.071
Calotes versicolor	2.594
Sceloporus poinsettii	1.794
Sceloporus teapensis	1.804
Phrynosoma cornutum	1.865
Crotaphytus collaris	1.084
Oplurus quadrimaculatus	0.942
Norops humillis	0.424
Anolis carolinensis	2.077
Non Colubroid Snakes	
Typhlops reticulatus	2.024
Leptotyphlops dulcis	0.687
Anilius scytale	2.532
Boa constrictor	4.548
Eryx jaculus	2.405
Loxocemus bicolor	3.196
Python molurus	5.079
Casarea dussumieri	3.171
Acrochordus granulatus	2.478
Colubroidea	
Pareas carinata	1.735
Agkistrodon contortrix	3.096
Crotalus atrox	3.79
Crotalus mitchellii	3.115
Crotalus viridis	3.35
Sistrurus catenatus	2.754
Bothriechis schlegelli	2.466
Bothrops asper	3.875
Cerrophidion godmani	2.469
Tropidolaemus subannulatus	2.669
Deinagkistrodon acutus	3.221
Cerastes cerastes	2.57
Cerberus rhynchops	3.199
Ahaetulla prasina	2.817
Coluber constrictor	2.783
Pantherophis emoryi	2.538
Pantherophis guttatus	2.735
Thelotornis kirtlandii	2.587
Coniophanes fissidens	1.974
Coniophanes piceivittis	1.608
Sibon nebulatus	2.241
Thamnophis sirtalis	2.936
Micrurus fulvius	2.607
Ophiophagus Hannah	4.249

Supplementary Data 11. BEAST 2 priors used to estimate divergence times. Clade ages for the Amniotes, Reptiles, Lepidosaurs, and Archosaurs were obtained from Benton and Donogue 2007, except for Alethinophidian snakes, Iguania, and Gekkota (Pyron et al. 2015).

Clade	Distribution	Mean	Sigma	Offset
Reptile-Mammal Split	Normal	321.3	4.64	0
Archosaur-Lepidosaur Split	Normal	277.8	11.2	0
Squamate-Rhynchocephalia	Log Normal	1	1	222.8
Crocodile-Avian Split	Gekkota	Normal	244.7	0.9
0				
Iguania	Normal	86.5	10	0
Alethinophidia	Normal	146.4	5	0
	Normal	102.75	4.625	0

Supplementary Data 12. Generation time assessments used for PSMC.

Species	Generation time	Source
Ophisaurus gracilis	2 years	Lindemann; Animal diversity web 2009
Pogona vitticeps	$1-2$ years	Pest risk assessment: Central bearded dragon (Pogona vitticeps). DPIPWE 2011
Boa constrictor	3 years	Lindemann; Animal diversity web 2009
Python molurus	$2-3$ years	Lindemann; Animal diversity web 2009
Crotalus mitchellii	3 years	Klauber; Rattlesnakes: Their Habits, Life Histories, and Influence on Mankind. University
Crotalus viridis	$2-3$ years	Lindemann; Animal diversity web 2009
Deinagkistrodon acutus	$3-4$ years	Lindemann; Animal diversity web 2009
Thamnophis sirtalis	$1-2$ years	Lindemann; Animal diversity web 2009

APPENDIX B

CHAPTER 3 SUPPLEMENTARY TABLES

Supplementary Table S1. Sequencing libraries used in the prairie rattlesnake genome assembly. Where noted, various libraries were used in the previous assembly (CroVir2.0), published in Pasquesi et al. (2018).

Library	Read Type	Number of Reads	Assembly Version
50bp short read	single end	$9,536,384$	CroVir2.0
100bp short read	paired end	449775645	CroVir2.0, CroVir3.0
150bp short read	paired end	$41,211,014$	CroVir2.0
150bp long insert mate pair (3-5Kb)	paired end	$188,532,564$	CroVir2.0
150bp long insert mate pair (6-8Kb)	paired end	$189,928,342$	CroVir2.0
PacBio long reads	-	$1,027,365$	CroVir2.0
Chicago long range proximity ligation library 1 (150bp)	paired end	$251,689,106$	CroVir3.0
Chicago long range proximity ligation library 2 (150bp)	paired end	$206,176,028$	CroVir3.0
Hi-C library 1 (150bp)	paired end	$230,083,402$	CroVir3.0
Hi-C library 2 (150bp)	paired end	$160,673,944$	CroVir3.0

Supplementary Table S2. Basic information about assembly versions for the prairie rattlesnake genome.

	Input Assembly (CroVir2.0)	Chicago Assembly	HiRise (Chicago + Hi-C) Assembly
Longest Scaffold (bp)	$1,184,546$	$11,576,738$	$311,712,589$
Number of Scaffolds	47,782	8,183	7,034
Number of Scaffolds > 1Kb	47,658	8,059	6,910
Contig N50 (Kb)	15.81	14.91	14.96
Scaffold N50 (Kb)	139	2,472	179,898
Number of Gaps	112,369	158,269	159,024
Percent of Genome in Gaps	5.84%	6.15%	6.16%

Supplemental Table S3. RNA-seq libraries used for transcriptome assembly. Raw reads for each library are available on the NCBI Short Read Archive, accession PRJNA477004.

Sample ID	Tissue	Raw Reads	Quality Trimmed Reads
CroVirPan	pancreas	$28,126,703$	$27,073,946$
CroVirTon	tongue	$24,451,116$	$23,561,349$
CroVirVG1	venom gland	$41,744,110$	$40,147,306$
CroVirVG3	venom gland	$29,216,664$	$28,035,353$
Cvv01	liver	$7,833,506$	$7,365,740$
Cvv02	liver	$7,451,792$	$7,064,234$
Cvv11	liver	$9,218,939$	$8,441,587$
Cvv20	kidney	$6,958,120$	$6,580,387$
Cvv22	kidney	$8,116,679$	$7,601,517$
Cvv23	kidney	$7,193,762$	$6,785,947$
Cvv25	skin	$7,849,895$	$7,303,441$
Cvv26	pancreas	$8,886,612$	$8,160,214$
Cvv27	venom gland	$3,098,151$	$2,928,974$
Cvv28	lung	$6,613,196$	$4,024,613$
Cvv29	testes	$5,055,189$	$3,053,375$
Cvv30	accessory venom gland	$3,261,326$	$3,996,274$
Cvv31	shaker muscle	$4,290,989$	$4,566,165$
Cvv32	pancreas	$4,836,715$	$3,569,113$
Cvv33	brain	$3,815,570$	$4,993,142$
Cvv34	stomach	$5,297,110$	$3,528,104$
Cvv35	ovaries	$3,737,870$	$6,070,883$
Cvv36	rictal gland	$6,654,626$	$6,975,210$
Cvv37	spleen	$7,776,020$	
Cvv38	blood	$2,550,433$	
		$2,34,162$	

Supplemental Table S4. BUSCO results for assembly versions of the prairie rattlesnake genome. Proportions of each category are in parentheses.

BUSCO category	CroVir2.0	CroVir3.0 (current)
Complete	$3,277(83.0 \%)$	$3,372(85.3 \%)$
Complete and single-copy	$3,253(82.4 \%)$	$3,347(84.7 \%)$
Complete and duplicated	$24(0.6 \%)$	$25(0.6 \%)$
Fragmented	$364(9.2 \%)$	$298(7.5 \%)$
Missing	$309(7.8 \%)$	$280(7.2 \%)$
Total searched	3,950	3,950

Supplementary Table S5. Genome-wide annotated repeat proportions identified using RepeatMasker.

	\# elements	length masked (bp)	\% of sequence	\% element masked
Total masked	2966274	489373735	38.91	100.00
Total interspersed repeats	2348232	463237605	36.83	79.16
Retroelements	1139213	295244109	22.81	38.41
SINEs	173332	22894322	1.82	5.84
Squam1/Sauria	19230	3376458	0.27	0.65
Other SINEs	126898	15602678	1.24	4.28
LINEs	621859	170275973	13.54	20.96
CR1-Like	359387	91177000	7.25	12.12
CR1/L3	288888	74285822	5.91	9.74
L2	53219	12036490	0.96	1.79
Rex	19032	5339363	0.42	0.64
R1/LOA/Jockey	3272	854611	0.07	0.11
R2/R4/NeSL	35256	9045775	0.72	1.19
RTE/Bov-B	101958	32795496	2.61	3.44
L1/CIN4	78926	28358227	2.25	2.66
Other LINEs	154019	16472232	0.64	5.19
Other nonLTR	10119	1572442	0.13	0.34
DIRS	28657	13553057	1.08	0.97
PLEs	120162	19278497	1.53	4.05
LTR elements	156427	54116761	4.30	5.27
BEL/Pao	4007	1927682	0.15	0.14
Ty1/Copia	9160	3340874	0.27	0.31
Gypsy	77793	35080772	2.79	2.62
Retroviral	16727	5393228	0.43	0.56
Other LTR	48740	8374205	0.67	1.64
DNA transposons	850487	125287793	9.96	28.67
hobo-Activator	428247	60243144	4.79	14.44
Tc1-IS630-Pogo	283367	48888185	3.89	9.55
En-Spm	12485	1964905	0.16	0.42
MuDR-IS905	1300	383077	0.03	0.04
PiggyBac	131	22504	0.00	0.00
Tourist/Harbinger	80904	7193605	0.57	2.73
P elements	155	45074	0.00	0.01
Rolling-circles	3736	635885	0.05	0.13
SPIN	253	26640	0.00	0.01
Other DNA	39909	5884774	0.47	1.35
Unclassified	358532	48493199	3.86	12.09
Total interspersed repeats	2348232	463237605	36.83	79.16
Small RNA	2054	174940	0.01	0.07
Satellites	4952	1104344	0.09	0.17
Simple repeats	540288	28572170	2.27	18.21
Low complexity	70748	4755565	0.38	2.39

Supplemental Table S6. Mapping of cDNA markers from Matsubara et al. 2006 to the Prairie Rattlesnake genome. Locations of best BLAST hits of each cDNA marker to the genome are reported. Markers that mapped with exceptional similarity to multiple locations in the genome are denoted with a ‘*, and markers that did not map to the chromosome as predicted by Matsubara et al. (2006) are denoted with a ${ }^{{ }^{*},}$. Details for these markers are provided in Supplemental Table S7 and Supplemental Fig. S2.

Marker	Accession	Chromosome	Scaffold	e-value	bit-score	Start Position	End Position
OMG	BW999947	1p	scaffold-ma1	$6.00 \mathrm{E}-115$	398	309337082	309336564
XABI	AU312353	1p	scaffold-ma1	$2.00 \mathrm{E}-46$	122	297437298	297437486
MGC15407	AU312344	1p	scaffold-ma1	$2.00 \mathrm{E}-65$	92.3	288097081	288097206
XPOI	AU312325	1 p	scaffold-ma1	$2.00 \mathrm{E}-113$	153	289547707	289547901
DEGS	AU312341	1p	scaffold-ma1	$5.00 \mathrm{E}-106$	356	269312409	269311948
KIAA0007	AU312332	1p	scaffold-ma1	$5.00 \mathrm{E}-50$	120	265943692	265943841
EPRS	AU312324	1p	scaffold-ma1	$2.00 \mathrm{E}-91$	174	270708945	270709160
ARID4B	AU312346	1 p	scaffold-ma1	$1.00 \mathrm{E}-129$	333	252059286	252059699
QKI	AU312356	1 p	scaffold-ma1	$5.00 \mathrm{E}-112$	124	246094729	246094887
MDNI	AU312339	1 p	scaffold-ma1	$7.00 \mathrm{E}-60$	109	211517498	211517349
AFTIPHILIN	AU312311	1 p	scaffold-mal	$5.00 \mathrm{E}-75$	112	170752748	170752888
SF3B1	AU312337	1q	scaffold-ma1	7.00E-95	215	150078848	150078576
CACNB4	BW999948	1q	scaffold-ma1	$1.00 \mathrm{E}-47$	102	127283965	127283819
ZFHXIB	BW999949	1q	scaffold-ma1	$6.00 \mathrm{E}-93$	204	123301385	123301101
UMPS	AU312331	1q	scaffold-ma1	$8.00 \mathrm{E}-95$	198	113761458	113761724
TCIRGI	BW999950	1q	scaffold-ma1	$2.00 \mathrm{E}-72$	164	102088882	102089094
TSG101	AU312316	1q	scaffold-ma1	$4.00 \mathrm{E}-76$	113	88358887	88359054
M11S1	AU312350	1q	scaffold-ma1	$4.00 \mathrm{E}-31$	94.5	70777673	70777560
GPHN	AU312327	1q	scaffold-ma1	$5.00 \mathrm{E}-68$	116	60249829	60249644
DNCHI	AU312310	1q	scaffold-ma1	$1.00 \mathrm{E}-71$	145	25060055	25059885
HSPCA	BW999951	1q	scaffold-mal	$2.00 \mathrm{E}-123$	149	25029984	25030184
ISYNAI	AU312338	1q	scaffold-ma1	$2.00 \mathrm{E}-89$	178	7770987	7771196
TUBGCP2	AU312343	1q	scaffold-ma1	$4.00 \mathrm{E}-74$	136	9697568	9697377
ZFR	AU312309	2p	scaffold-ma2	$8.00 \mathrm{E}-110$	208	222653709	222653461
PHAX	AU312322	2p	scaffold-ma2	$3.00 \mathrm{E}-99$	224	189308026	189307715
VPS13A	BW999952	2p	scaffold-ma2	$9.00 \mathrm{E}-70$	109	179725513	179725656
UBQLN1	BW999953	2p	scaffold-ma2	$2.00 \mathrm{E}-87$	132	182156077	182156238
C9orf72	AU312326	2 p	scaffold-ma2	$5.00 \mathrm{E}-91$	203	164760033	164760347
KIAA0368	BW999954	2p	scaffold-ma2	$1.00 \mathrm{E}-56$	116	161287251	161287397
TOPORS	BW999955	2p	scaffold-ma2	$8.00 \mathrm{E}-118$	410	162258381	162257809
FAM48A	BW999956	2cen	scaffold-ma2	$1.00 \mathrm{E}-45$	102	157286823	157286680
UNQ501	AU312305	2cen	scaffold-ma2	$6.00 \mathrm{E}-118$	284	142895238	142895636
DCTN2	AU312317	2 q	scaffold-ma2	$4.00 \mathrm{E}-80$	122	122527271	122527110
EXOC7	BW999957	2 q	scaffold-ma2	$3.00 \mathrm{E}-93$	121	92952368	92952526
DDX5	BW999958	2 q	scaffold-ma2	$7.00 \mathrm{E}-112$	144	108253948	108253775
CCNGI	AU312308	2 q	scaffold-ma2	$6.00 \mathrm{E}-70$	173	80553964	80553731
CPEB4	AU312333	2 q	scaffold-ma2	$3.00 \mathrm{E}-119$	250	72297563	72297874
FLJ22318	AU312329	2q	scaffold-ma2	$2.00 \mathrm{E}-105$	194	51908839	51908582
DCTN4	AU312349	2q	scaffold-ma2	$4.00 \mathrm{E}-50$	99.6	58962806	58962928
C5orf14	AU312304	2 q	scaffold-ma2	$4.00 \mathrm{E}-120$	329	64853582	64853127
NOSIP*	AU312303	2 q	scaffold-Z	$1.00 \mathrm{E}-51$	93.6	92988551	92988661
RBM5 ${ }^{\text {\# }}$	BW999960	2 q	scaffold-mi8	$6.00 \mathrm{E}-78$	90.4	9620291	9620181
RBM5 ${ }^{\text {\# }}$	BW999960	2 q	scaffold-ma2	$7.00 \mathrm{E}-13$	76.1	130725514	130725606
ITPRI	BW999961	2 q	scaffold-ma2	$9.00 \mathrm{E}-53$	135	23858424	23858585
ENPP2	BW999962	3 p	scaffold-ma3	$6.00 \mathrm{E}-90$	121	9756367	9756209
YWHAZ	BW999963	3 p	scaffold-ma3	2.00E-99	180	16759896	16760114
LRRCC1	BW999964	3 p	scaffold-ma3	$4.00 \mathrm{E}-83$	150	21993774	21993565
LYPLAI	BW999965	3 p	scaffold-ma3	$3.00 \mathrm{E}-107$	149	31673258	31673440
SS18	AU312302	3p	scaffold-ma3	$1.00 \mathrm{E}-83$	126	36811554	36811724
MBP	AU312318	3 p	scaffold-ma3	$7.00 \mathrm{E}-111$	179	49049170	49049382
EPB41L3	BW999966	3 p	scaffold-ma3	$3.00 \mathrm{E}-84$	141	40222999	40222808
TUBB2A	BW999967	3 p	scaffold-ma3	$8.00 \mathrm{E}-91$	155	59187732	59187532
LRRC16	BW999968	3 p	scaffold-ma3	$2.00 \mathrm{E}-100$	144	51025171	51025350
SERPINB6 ${ }^{\text {\# }}$	BW999969	3 p	scaffold-ma5	$5.00 \mathrm{E}-99$	130	36540937	36540755
SERPINB6 ${ }^{\text {\# }}$	BW999969	3 p	scaffold-ma3	$2.00 \mathrm{E}-76$	113	60484038	60483865
BPHL	BW999970	3 p	scaffold-ma3	$1.00 \mathrm{E}-87$	118	59199779	59199621

KIF13A	BW999971	3p	scaffold-ma3	$3.00 \mathrm{E}-78$	139	53681516	53681349
TPR	BW999972	3 q	scaffold-ma3	$6.00 \mathrm{E}-83$	122	93408800	93408636
AKR1AI	BW999973	3 q	scaffold-ma3	$9.00 \mathrm{E}-75$	153	133869419	133869619
ZNF326*	BW999974	3 q	scaffold-ma2	$2.00 \mathrm{E}-77$	120	224940437	224940586
YIPFI	BW999975	3 q	scaffold-ma3	$6.00 \mathrm{E}-52$	112	127724189	127724353
BCAS2	AU312354	3 q	scaffold-ma3	$3.00 \mathrm{E}-51$	141	151621402	151621229
KIAA1219	BW999976	3 q	scaffold-ma3	$4.00 \mathrm{E}-101$	158	155122635	155122844
STAUI	BW999977	3 q	scaffold-ma3	$2.00 \mathrm{E}-116$	169	165663812	165663594
RBM12	BW999978	3 q	scaffold-ma3	$2.00 \mathrm{E}-152$	406	154706304	154705780
TPT1	BW999979	4 p	scaffold-ma4	$2.00 \mathrm{E}-68$	148	1006155	1006349
EIF2S3	AU312306	4 p	scaffold-ma4	$1.00 \mathrm{E}-111$	126	49115724	49115885
SYAPI	AU312328	4 p	scaffold-ma4	$3.00 \mathrm{E}-96$	121	46147275	46147135
DSCR3	AU312319	4 q	scaffold-ma4	$1.00 \mathrm{E}-74$	119	60873037	60872873
DCAMKLI	BW999980	4 q	scaffold-ma4	$8.00 \mathrm{E}-49$	110	86291138	86291302
ELMODI	BW999981	4 q	scaffold-ma4	$1.00 \mathrm{E}-56$	147	93207704	93207522
BCCIP	AU312307	5q	scaffold-ma5	$1.00 \mathrm{E}-46$	148	32597249	32597061
SH3MD 1	AU312347	5q	scaffold-ma5	$2.00 \mathrm{E}-119$	378	45831798	45832379
PPPIR7	BW999982	5q	scaffold-ma5	$2.00 \mathrm{E}-92$	228	56956062	56955736
PDCDIO	AU312342	5q	scaffold-ma5	$4.00 \mathrm{E}-61$	143	74805371	74805547
TLOC1	AU312335	5 q	scaffold-ma5	$2.00 \mathrm{E}-45$	101	76109988	76110125
UCHLI*	BW999983	6 p	scaffold-ma7	$4.00 \mathrm{E}-89$	210	33298090	33298407
GNAI2*	BW999984	6p	scaffold-ma2	$2.00 \mathrm{E}-106$	126	49893686	49893841
P4HB ${ }^{*}$	BW999985	6p	scaffold-ma2	$2.00 \mathrm{E}-69$	100	97717890	97718012
FLJ12571	AU312352	6q	scaffold-ma6	$2.00 \mathrm{E}-46$	117	46698606	46698752
RANGAPI	AU312313	6q	scaffold-ma6	$7.00 \mathrm{E}-71$	95	47795604	47795500
LDHB	BW999986	6q	scaffold-ma6	$2.00 \mathrm{E}-60$	117	69268248	69268418
SEC3L1	AU312345	7 p	scaffold-ma7	$3.00 \mathrm{E}-58$	125	55644074	55643916
KIAA1109	AU312348	7 q	scaffold-ma7	$2.00 \mathrm{E}-60$	124	30398905	30398711
RAPIGDS1	AU312351	7 q	scaffold-ma7	$2.00 \mathrm{E}-91$	112	12141068	12140931
GAD2	BW999991	Zp	scaffold-Z	$1.00 \mathrm{E}-109$	136	17484512	17484336
WAC	AU312355	Zp	scaffold-Z	$3.00 \mathrm{E}-93$	209	16303681	16303947
KLF6*	BW999992	Zp	scaffold-ma2	$1.00 \mathrm{E}-99$	366	47130305	47130796
LOC90693*	BW999993	Zp	scaffold-ma7	$4.00 \mathrm{E}-127$	301	34444161	34444577
LOC90693*	BW999993	Zp	scaffold-Z	$1.00 \mathrm{E}-107$	291	34827559	34827182
TAXIBPI	AU312320	Zp	scaffold-Z	$1.00 \mathrm{E}-86$	141	36989995	36990174
RAB5A	BW999994	Zp	scaffold-Z	$9.00 \mathrm{E}-94$	166	40227424	40227215
CTNNB1	BW999995	Zcen	scaffold-Z	$3.00 \mathrm{E}-129$	275	49548885	49549226
AMPH	BW999996	Zcen	scaffold-Z	$1.00 \mathrm{E}-66$	101	55612836	55612955
TUBG1	BW999997	Zq	scaffold-Z	$5.00 \mathrm{E}-89$	116	17359265	17359113
GH1	BW999998	Zq	scaffold-Z	$2.00 \mathrm{E}-115$	179	77397011	77396727
MYST2	BW999999	Zq	scaffold-Z	$6.00 \mathrm{E}-122$	293	90785118	90784714
NEF3	BW999987	micro	scaffold-mi1	$1.00 \mathrm{E}-102$	352	13833430	13832942
ASB6	AU312340	micro	scaffold-mi7	$1.00 \mathrm{E}-95$	161	6270589	6270353
RPL12	BW999988	micro	scaffold-mi7	$6.00 \mathrm{E}-67$	95.5	7974658	7974542
FLJ25530	AU312336	micro	scaffold-mil	$4.00 \mathrm{E}-98$	255	8157147	8156806
HSPA8*	BW999989	micro	scaffold-ma1	$2.00 \mathrm{E}-124$	236	20422342	20422662
HSPA8 ${ }^{\text {\# }}$	BW999989	micro	scaffold-mi1	$3.00 \mathrm{E}-123$	259	2089357	2089025
GLCE	AU312330	micro	scaffold-mi10	$1.00 \mathrm{E}-79$	234	24861	24577
POLG	AU312315	micro	scaffold-mi3	$4.00 \mathrm{E}-97$	116	10042696	10042845
LOC283820	AU312323	micro	scaffold-mi5	$8.00 \mathrm{E}-71$	116	3659851	3659708
PARN	AU312312	micro	scaffold-mi7	$1.00 \mathrm{E}-66$	73.9	12029447	12029361
ATRX	BW999990	micro	scaffold-mi4	$3.00 \mathrm{E}-63$	102	1268001	1268126

Supplemental Table S7. Details of mismatched cDNA markers from Elaphe quadrivirgata (Matsubara et al. 2006), their locations in Crotalus and Anolis, and notes on likelihood of misassembly based on synteny and intrachromosomal $\mathrm{Hi}-\mathrm{C}$.

| Marker | Elaphe
 Chromosome | Crotalus Scaffold |
| :--- | :--- | :--- | :--- | :--- | | Anolis
 Scaffold |
| :--- |
| NOSIP |
| 2q |

Supplemental Table S8. GC variation in windows of various sizes for 12 squamate species. Values for each species are measured as the standard deviation (SD) of GC content in all sampled windows of a given size. Information for 5, 20, and 80 kb windows are also presented in Fig. 1c. Missing data (i.e., window sizes that were too large and contained greater than the threshold allowed missing data) are denoted with '-'.

Window Size (bp)	Gekko japonicus	Eublepharis macularius	Ophisaurus gracilis	Shinisaurus crocodilurus	Pogona vitticeps	Anolis carolinensis
5,000	0.039295606	0.037140406	0.037038224	0.03488877	0.03681681	0.032312269
20,000	0.028980944	0.027338004	0.029217483	0.027425317	0.030930264	0.021209
40,000	0.025219459	0.024838347	0.027141528	0.025322106	0.029367252	0.017608402
80,000	0.021385708	0.023326607	0.025558162	0.023843432	0.028238318	0.015121097
160,000	0.01811246	0.022646783	0.024536212	0.022632678	0.027330318	0.013089382
240,000	-	0.022203903	0.023356372	0.021943776	0.026943855	0.012088733
320,000	-	0.022121291	0.022899173	0.021312719	0.026617904	0.011287772
Window		Python	Ophiophagus	Thamnophis	Deinagkistrodo	Crotalus
Size (bp)	Boa constrictor	molurus	hannah	sirtalis	nacutus	viridis
5,000	0.043942864	0.042024505	0.040098669	0.047076022	0.047062019	0.041210929
20,000	0.034934365	0.035837726	0.031894398	0.037865804	0.03882085	0.032232558
40,000	0.030576918	0.033337717	0.028952912	0.03429097	0.036517713	0.029884634
80,000	0.023292703	0.030197592	0.026685436	0.031202717	0.034964163	0.0281043
160,000	0.014736549	0.02736241	0.024597185	0.02894796	0.033486765	0.026806291
240,000	-	0.024725646	0.023968494	0.026250057	0.032562166	0.02616041
320,000	-	0.023707617	0.023468328	0.024606171	0.031784231	0.025840409

Supplemental Table S9. Details of Illumina Nextera resequencing and RNAseq libraries used for comparative female/male read coverage across the rattlesnake genome and sex-specific gene expression analyses. Raw read data are available on NCBI under accession PRJNA476794.

Library Type	Read Length	Sample ID	Tissue	Sex	Number of Mapped Reads
Illumina Nextera	150 bp paired end	CV0007	Liver	Male	$20,279,801$
Illumina Nextera	150 bp paired end	CV0011	Liver	Female	$4,975,491$
RNAseq	100 bp paired end	Cv3	Liver	Female	$3,774,322$
RNAseq	100 bp paired end	Cv8	Liver	Female	$3,680,195$
RNAseq	100 bp paired end	Cv3	Kidney	Female	$3,256,208$
RNAseq	100 bp paired end	Cv3	Kidney	Female	$4,565,008$
RNAseq	100 bp paired end	Cv5	Liver	Male	$3,330,125$
RNAseq	100 bp paired end	Cv6	Liver	Male	$3,837,264$
RNAseq	100 bp paired end	Cv5	Kidney	Male	$3,729,811$
RNAseq	100 bp paired end	Cv6	Kidney	Male	$4,673,928$

Supplementary Table S10. Representative sequences for known snake venom gene families used to annotate venom genes in the rattlesnake genome.

Gene Family	Accession	Sequence Type	Species
5'Nucleotidase	AK291667.1	mRNA	Homo sapiens
Acetylcholinesterase	U54591.1	mRNA	Bungarus fasciatus
AVItoxin	EU195459.1	mRNA	Varanus komodoensis
C-type Lectin	JF895761.1	mRNA	Crotalus oreganus helleri
Cobra Venom Factor	U09969.2	mRNA	Naja kaouthia
CRISp (cysteine-rich secretory protein)	HQ414088.1	mRNA	Crotalus adamanteus
Cystatin	FJ411289.1	mRNA	Naja kaouthia
Extendin	EU790960.1	mRNA	Heloderma suspectum
Exonuclease	XM_015826835.1	mRNA	Protobothrops mucrosquamatus
Hyaluronidase	HQ414098.1	mRNA	Crotalus adamanteus
LAAO (L-amino acid oxidase)	HQ414099.1	mRNA	Crotalus adamanteus
SVMP I (class I snake venom metalloproteinase)	HM443635.1	mRNA	Bothrops neuwiedi
SVMP II (class II snake venom metalloproteinase)	HM443637.1	mRNA	Bothrops neuwiedi
SVMP III (class III snake venom metalloproteinase)	HM443632.1	mRNA	Bothrops neuwiedi
Nerve growth factor	AF306533.1	mRNA	Crotalus durissus terrificus
Phosphodiesterase	HQ414102.1	mRNA	Crotalus adamanteus
PLA2_I (vipers)	AF403134.1	mRNA	Crotalus viridis viridis
PLA2_II (elapids)	GU190815.1	mRNA	Bungarus flaviceps
Sarafotoxin	L07528.1	mRNA	Atractaspis engaddensis
Serine Proteinase	HQ414121.1	mRNA	Crotalus adamanteus
3FTX (Three-finger Toxin)	DQ273582.1	mRNA	Ophiophagus hannah
Veficolin	GU065323.1	mRNA	Cerberus rynchops
VEGF (Vascular Endothelial Growth Factor)	AB848141.1	mRNA	Protobothrops mucrosquamatus
Vespryn	EU401840.1	mRNA	Oxyuranus scutellatus
Waprin	EU401843.1	mRNA	Oxyuranus scutellatus
Kunitz (serine peptidase inhibitor, Kunitz type)	JU173666.1	mRNA	Crotalus adamanteus
Thrombin-like (thrombin-like venom gland enzyme)	AJ001209.1	mRNA	Deinagkistrodon acutus
Ficolin	GBUG01000048.1	mRNA	Echis coloratus
Disintegrin	AJ131345.1	mRNA	Deinagkistrodon acutus
FactorV (venom coagulation factor V)	XM_015815922.1	mRNA	Protobothrops mucrosquamatus
FactorX	XM_015819885.1	mRNA	Protobothrops mucrosquamatus
Prokineticin	XM_015822870.1	mRNA	Protobothrops mucrosquamatus
Ohanin (ohanin-like)	XM_015818414.1	mRNA	Protobothrops mucrosquamatus
Complement C3 (Cadam VF)	JU173742.1	mRNA	Crotalus adamanteus
Crotasin	AF250212.1	mRNA	Crotalus durissus terrificus
Endothelin	XM_015810852.1	mRNA	Protobothrops mucrosquamatus
Kallikrein	GALC01000005.1	mRNA	Crotalus oreganus helleri
Lynx1 (Ly6/neurotoxin 1)	XM_014066791.1	mRNA	Thamnophis sirtalis
Natriuretic Peptide (bradykinin potentiating peptide and C-type natriuretic peptide precursor isoform 2)	AF308594.2	mRNA	Crotalus durissus terrificus
$\mathrm{sPla} /$ ryanodine receptor	XM_015823102.1	mRNA	Protobothrops mucrosquamatus
WAP four-disulfide core domain protein 5 (Whey Acidic Protein/secretory leuki proteinase inhibitor)	XM_015822353.1	mRNA	Protobothrops mucrosquamatus
Myotoxin	HQ414100.1	mRNA	Crotalus adamanteus
PLA2	APD70899.1	protein	Crotalus atrox
SVMP	Q90282.1	protein	Crotalus atrox
Serine Proteinase	F8S114.1	protein	Crotalus adamanteus

Supplementary Table S11. Annotated venom gene homologs in the prairie rattlesnake genome. Genes were annotated using materials detailed in Supplementary Table 9.

Venom Gene Family	Rattlesnake Scaffold	Start Position (bp)	End Position (bp)
3-Finger toxin	scaffold-ma1	103004868	103021927
3-Finger toxin	scaffold-ma1	102999393	103000958
5' Nucleotidase	scaffold-ma5	46133017	46179118
5' Nucleotidase	scaffold-ma6	55711914	55732365
5' Nucleotidase	scaffold-mil	18004217	18021456
5' Nucleotidase	scaffold-ma2	45090212	45121335
5' Nucleotidase	scaffold-ma2	134237148	134264183
Acetylcholinesterase	scaffold-ma2	4047955	4053281
Acetylcholinesterase	scaffold-ma2	3948506	3952373
Acetylcholinesterase	scaffold-ma2	4016363	4018146
Acetylcholinesterase	scaffold-ma2	4026170	4045822
Acetylcholinesterase	scaffold-ma5	73971094	73976212
Acetylcholinesterase	scaffold-ma5	74015346	74036663
Acetylcholinesterase	scaffold-un210	16032	17552
Bradykinin potentiating and natriuretic peptide	scaffold-un187	22386	23524
C-type lectin	scaffold-mi5	3276042	3284747
C-type lectin	scaffold-mi5	11650747	11653723
C-type lectin	scaffold-Z	21883578	21895509
C-type lectin	scaffold-Z	21706900	21776775
C-type lectin	scaffold-Z	21786524	21797211
C-type lectin	scaffold-Z	108214710	108236532
Cysteine-rich secretory protein	scaffold-ma1	169434958	169437996
Cysteine-rich secretory protein	scaffold-mal	169423774	169434684
Cysteine-rich secretory protein	scaffold-ma3	25391938	25416947
Cysteine-rich secretory protein	scaffold-mi6	1021447	1040191
Exonuclease	scaffold-mi7	8097114	8103411
Exonuclease	scaffold-ma1	5804894	5842638
Exonuclease	scaffold-mi3	10271502	10274220
Exonuclease	scaffold-ma6	12590208	12591465
Factor V	scaffold-mi4	8493826	8518402
Factor V	scaffold-mi4	8479637	8493564
Factor V	scaffold-ma4	81074882	81113119
Glutaminyl cyclase	scaffold-ma1	256551622	256564040
Glutaminyl cyclase	scaffold-mi7	5091107	5094268
Hyaluronidase	scaffold-ma6	14952252	14955850
Hyaluronidase	scaffold-ma2	45901201	45920587
Hyaluronidase	scaffold-ma2	49137409	49145188
Hyaluronidase	scaffold-ma2	49106981	49118469
Kunitz peptide	scaffold-mi7	3590975	3597607
Kunitz peptide	scaffold-mi8	4992795	5002390
L-amino acid oxidase	scaffold-ma4	56914906	56948498
L-amino acid oxidase	scaffold-ma4	85461961	85468906
L-amino acid oxidase	scaffold-ma2	4658599	4661642
L-amino acid oxidase	scaffold-ma2	4654769	4658293
Myotoxin/crotamine	scaffold-mal	289328153	289328605
Nerve growth factor	scaffold-Z	93342025	93347811
Nerve growth factor	scaffold-mal	76711308	76727703
PLA2	scaffold-mi7	3019970	3021876
PLA2	scaffold-mi7	3027607	3029199
PLA2	scaffold-mi7	3031464	3033348
PLA2	scaffold-mi7	3037103	3038488
PLA2	scaffold-mi7	3042118	3043697

Serine Proteinase	scaffold-mi2	8569773	8575182
Serine Proteinase	scaffold-mi2	8588278	8593660
Serine Proteinase	scaffold-mi2	8628274	8636651
Serine Proteinase	scaffold-mi2	8664603	8670797
Serine Proteinase	scaffold-mi2	8739986	8745649
Serine Proteinase	scaffold-mi2	8752578	8759324
Serine Proteinase	scaffold-mi2	8864675	8879153
Serine Proteinase	scaffold-mi2	8937526	8947481
Serine Proteinase	scaffold-mi2	8960028	8980478
Snake venom metalloproteinase	scaffold-mil	13901629	14014239
Snake venom metalloproteinase	scaffold-mil	14022082	14075370
Snake venom metalloproteinase	scaffold-mil	14091987	14112667
Snake venom metalloproteinase	scaffold-mil	14147865	14170405
Snake venom metalloproteinase	scaffold-mi1	14174872	14190142
Snake venom metalloproteinase	scaffold-mil	14211673	14242249
Snake venom metalloproteinase	scaffold-mil	14248933	14272689
Snake venom metalloproteinase	scaffold-mil	14281564	14300774
Snake venom metalloproteinase	scaffold-mil	14368422	14393313
Snake venom metalloproteinase	scaffold-mil	14401627	14424637
Snake venom metalloproteinase	scaffold-mil	14310844	14338336
Veficolin/Ficolin	scaffold-mi7	5271880	5282014
Veficolin/Ficolin	scaffold-ma3	179788950	179790745
Veficolin/Ficolin	scaffold-ma1	232337083	232340714
Veficolin/Ficolin	scaffold-mal	232312034	232335439
Vascular endothelial growth factor	scaffold-ma7	40288572	40327884
Vascular endothelial growth factor	scaffold-mal	40733075	40747358
Vascular endothelial growth factor	scaffold-mal	260248287	260272500
Venom Factor	scaffold-Z	79798672	79803249
Venom Factor	scaffold-Z	79749464	79761456
Venom Factor	scaffold-ma2	1573588	1616446
Venom Factor	scaffold-ma2	137559964	137560374
Venom Factor	scaffold-ma2	137553669	137558461
Venom Factor	scaffold-ma2	137623562	137648584
Venom Factor	scaffold-ma2	137651285	137653877
Venom Factor	scaffold-ma2	137710627	137728987
Venom Factor	scaffold-ma2	137753804	137775039
Venom Factor	scaffold-ma2	137735629	137741352
Vespryn/Ohanin	scaffold-ma2	4377779	4385668
Vespryn/Ohanin	scaffold-ma2	109834300	109838076
Waprin	scaffold-ma1	204655764	204666466

Supplemental Table S12. Transcription factors significantly upregulated in the venom gland. Mean distances summarize the distribution of distances between gene venom genes and non-venom genes and the nearest predicted binding site of each transcription factor. No position weight matrix for NCOA2 was available for a close relative to the rattlesnake, and the NFI family transcription factors have a conserved binding motif, and are summarized together under NFIA. P-values are from t-test comparisons of distance distributions.

Gene ID	Rattlesnake Gene Detail	Mean Distance to	Mean Distance to	p-value
ATF6	augustus_masked-scaffold-ma3-processed-gene-300.3	$421,305.1$	$595,006.2$	0.002793
ELF5	maker-scaffold-ma1-augustus-gene-235.5	$1,121.3$	$1,203.9$	0.7953
FOXC2	augustus_masked-scaffold-mi6-processed-gene-2.1	$202,416.2$	$251,898.5$	0.02967
CREB3L2	maker-scaffold-ma6-augustus-gene-195.2	$32,227.9$	$29,708.3$	0.5558
GRHL1	maker-scaffold-ma1-augustus-gene-601.8	$78,954.0$	$86,147.0$	0.4343
NCOA2	maker-scaffold-ma3-augustus-gene-89.6	-	-	-
NFIA	maker-scaffold-ma3-augustus-gene-414.2	$336,765.8$	$328,556.3$	0.7968
NFIB	maker-scaffold-ma2-augustus-gene-569.3	-	-	-
NFIB	maker-scaffold-ma2-augustus-gene-569.2	-	-	-
NFIX	maker-scaffold-ma2-augustus-gene-473.3	-	-	-
NR4A2	maker-scaffold-ma1-augustus-gene-428.4	$100,375.5$	$92,292.3$	0.492
SREBF2	maker-scaffold-ma6-augustus-gene-158.15	$306,901.1$	$328,081.4$	0.4302

Supplemental Table S13. Density of predicted GRHL1 and NFI binding sites within given intervals of venom genes and all nonvenom genes. P-values are reported from Fisher's exact tests, which compared the number of predicted binding sites by the total length of sequenced searched between venom and nonvenom gene sets.

Transcription Factor	Interval (kb)	Venom Gene Density	Nonvenom Gene Density	p-value
$G R H L 1$	100 kb	$7.44 \mathrm{E}-06$	$8.03 \mathrm{E}-06$	0.4022
$G R H L 1$	50 kb	$1.49 \mathrm{E}-05$	$1.74 \mathrm{E}-05$	0.2127
$G R H L I$	10 kb	$3.00 \mathrm{E}-05$	$2.78 \mathrm{E}-05$	0.6875
$G R H L 1$	5 kb	$4.44 \mathrm{E}-05$	$3.97 \mathrm{E}-05$	0.554
$N F I$	Promoter (1kb)	$1.80 \mathrm{E}-03$	$1.43 \mathrm{E}-03$	0.1305

APPENDIX C

CHAPTER 4 SUPPLEMENTARY TABLES

Species	Acronym	Testis	Ovary	Brain	Heart	Kidney	Liver	Muscle	Spleen	Small Intestine
Danio rerio (zebrafish)	Dr	SRR2177445	SRR2177444	SRR1609735	SRR1609741	SRR1609747	SRR1609750	SRR1609753	SRR1609756	SRR1609744
Xenopus laevis (clawed frog)	Xl	SRR2515162	SRR2515157	SRR2515149	SRR2515151	SRR2515153	SRR2515154	SRR2515156	SRR2515160	SRR2515152
Alligator mississippiensis (alligator)	Am	SRR3208129	SRR3208147	SRR3208125	SRR3208141	SRR3208142	SRR3208143	SRR3208132	SRR3208127	-
Gallus gallus (chicken)	Gg	ERR348580	ERR348571	ERR348563	ERR348583	ERR348561	ERR348586	ERR348578	ERR348585	SRR3194327
Anolis carolinensis (anole)	$A c$	SRR5412173	SRR543710	SRR540258	SRR540257	SRR579557	SRR391653	SRR391658	-	-
Python molurus (python)	Pm	SRA pending	SRA pending	SRA pending	SRR5190732	SRR5190716	SRR5190690	SRA pending	SRA pending	SRR1746797
Boa constrictor (boa)	$B C$	SRR7206966	-	SRR7206967	-	SRR7206969; SRR7206968	SRR7206971	SRR7206975	SRR7206963	SRR7206973; SRR7206972
Crotalus viridis (prairie rattlesnake)	Cv	SRA pending	SRR7401997	SRR7401995	SRR7402006	SRA pending	SRR7402007	SRR7401993	SRR7401998	SRA pending
Ornithorhynchus anatinus (platypus)	Oa	SRR5412241	SRR5412238	SRR5412224	SRR5412229	SRR5412232	SRR5412237	-	-	-
Monodelphis domestica (opossum)	Md	SRR500909	SRR500917	SRR500906	SRR500923	SRR500900	SRR500896	SRR500916	SRR868947	-
Homo sapiens (human)	Hs	ERR315492	ERR579132	ERR315432	ERR315356; ERR315430	ERR315383	ERR315414	ERR579149	ERR315448	ERR315408; ERR315364
Mus musculus (mouse)	Mm	SRR5047953	SRR5047990	SRR5048040	SRR5047921	SRR5047925	SRR5047934	SRR1158599	SRR7207813	SRR5048001

Supplementary File 2A. Within-species normalized expression values of genes involved in the PIWI:piRNA pathway. NA $=$ missing, NiA $=$ gene present, but absent in the genome annotation available. Purple highlights represent duplicated genes. $\mathrm{T}=$ testis; $\mathrm{O}=\mathrm{ovary}$; $\mathrm{B}=\mathrm{brain} ; \mathrm{H}=\mathrm{heart}$; $\mathrm{K}=$ kidney; $\mathrm{L}=$ liver; $\mathrm{M}=$ muscle; $\mathrm{S}=$ spleen; $\mathrm{SI}=$ small intestine. Decimal values have been rounded to integers.

		piwill	pivil2	PIWIL3	piwil4	mybl	tdrd1	tdrd12	tdrd6	tord9	torkh	exdl	mael	pld6	Dnmt31	ddx 4	asz1	mov1011	kif17	prmt5	henmt1	depla	Tex 19	gpat2	btbd18
	T	9861	1656	NA	NA	562	1915	584	6304	2327	637	431	NA	1216	NA	5440	310	424	780	151	269	125	NA	1135	66
	o	754	741	NA	NA	9	1296	169	2091	686	577	660	NA	260	NA	1400	831	1435	6	341	441	465	NA	406	29
	B	2	3	NA	NA	27	0	4	10	3	231	7	NA	1	NA	0	7	15	4	73	20	433	NA	9	0
	H	5	3	NA	NA	17	3	3	10	4	109	1	NA	1	NA	1	6	16	1	52	8	150	NA	25	0
	к	22	26	NA	NA	66	30	9	55	24	64	10	NA	8	NA	30	20	120	27	163	12	86	NA	17	0
	L	0	12	NA	NA	6	18	0	18	18	23	0	NA	6	NA	12	6	18	12	198	0	82	NA	18	0
	M	485	146	NA	NA	50	98	35	245	135	96	33	NA	148	NA	290	33	44	31	81	22	122	NA	55	0
	s	125	39	NA	NA	18	61	5	81	43	71	12	NA	27	NA	106	16	27	3	78	9	121	NA	17	1
	si	1	21	NA	NA	16	1	0	19	0	32	1	NA	0	NA	2	3	1	25	143	3	46	NA	1	1

		$\begin{aligned} & \text { piwill } \\ & \text { LL } \end{aligned}$	$\begin{gathered} \text { piwi } \\ 111 . S \end{gathered}$	$\begin{aligned} & \begin{array}{l} \text { piwi i } \\ 12 \end{array} \end{aligned}$	$\begin{aligned} & \substack{\text { piwi } \\ 13 \\ \hline} \end{aligned}$	$\begin{aligned} & \text { piwi } \\ & 14 \end{aligned}$	mybll	tdrd1	tdrd6	tdrd9	tdrd12	tdrkh	exd1	mael	pld6	dnmt31	ddx 4	asz1	mov1011	kif17	prmt5	henmt1	dcp1	tex 19	gpat2	btbd18
	T	1666	7	8577	NA	997	${ }^{616}$	4342	1857	822	12	2720	1263	9219	2750	NA	3005	105	160	901	1581	146	775	NA	1705	NA
	o	5	297	878	NA	2	5	689	317	70	47	11584	510	2917	3378	NA	429	9	222	2576	4464	22	1844	NA	1348	NA
	B	0	1	3	NA	11	52	4	11	1	2	575	4	3	0	NA	74	0	21	622	621	5	190	NA	32	NA
	H	0	1	2	NA	2	38	1	2	2	4	288	0	4	0	NA	103	0	17	47	248	0	243	NA	8	NA
	K	1	48	70	NA	2	50	47	55	26	8	517	42	63	79	NA	190	0	86	188	454	5	201	NA	56	NA
	L	0	2	2	NA	0	18	5	7	0	2	900	0	0	7	NA	97	0	0	95	360	2	295	NA	5	NA
	M	2	0	0	NA	0	4	7	0	0	2	387	0	0	0	NA	399	0	121	59	288	2	169	NA	154	NA
	s	2	0	5	NA	0	28	21	3	2	0	402	2	2	1	NA	200	0	18	90	332	5	208	NA	14	NA
	SI	0	0	2	NA	1	27	3	20	0	1	306	32	0	0	NA	358	0	1	49	408	1	248	NA	11	NA

[^3]| I | ε | ${ }^{\text {N }}$ | г¢1 | ${ }_{0}$ | 92ε | 0 | 0 | ε | Is | 0 | г | I | sı | 0τ | ¢9 | ε | 6 | ε | ${ }_{6}$ | 0 | ${ }^{\text {n }}$ | r | \llcorner | IS | |
| :---: |
| 1 | ε | ${ }^{\text {v }}$ | 061 | 9ε | ャ6 | t | 62 | 0 | 6 | 0 | II | t | 4 | ± 8 | $9+$ | 0 | て | 0 | ız | 0 | ${ }^{v}$ | τ | $\llcorner\varepsilon$ | s | |
| ε | 0 | ${ }^{\text {n }}$ | ¢ ${ }^{\text {c }}$ | ${ }_{0}$ | 9151 | 0 | ε | 0 | ε | 0 | 0 | 0 | 0 | $\angle \tau$ | \llcorner | 0 | $\llcorner\varepsilon$ | 0 | $\varepsilon 1$ | 0 | v^{\prime} | 0 | ${ }^{1}$ | w | |
| \downarrow | 1 | ${ }^{\text {v }}$ | sı | ${ }^{0}$ | ¢ $\angle 1$ | г | 9 | 0 | osı | 0 | 1 | 0 | It | 12 | 1ε | 0 | ¢ | z | 81 | ¢8 | ${ }^{\text {v }}$ | г | \％ | 7 | |
| $\varepsilon \varepsilon$ | 92 | ${ }^{\text {b }}$ | sol | It | $\varepsilon 8 \tau$ | \dagger | $\varepsilon \downarrow$ | $\varepsilon 1$ | 66 | 0 | \llcorner | 8ε | $9{ }^{\text {d }}$ | os | 19 | sı | ¢01 | 09 | ${ }_{0}$ | It | ${ }^{\text {v }}$ | z¢ | Isı | x | |
| s | τ | ${ }^{\prime} N$ | £01 | 9ε | £91 | ¢ | 8 | r | 21 | 0 | 0 | 0 | г1 | 12 | 02 | 0 | 89 | 0 | $z z$ | 0 | VN | $2 z$ | ε | H | |
| | o | |
| ＋てı | Lعı | ${ }_{\text {VN }}$ | 09 | 601 | 91ε | $\varepsilon 1$ | LoE | 02 | LSt | 0 | 81 | $0<1$ | LOI | 091 | ¢ $\ddagger 1$ | $\angle 6 \mathrm{~L}$ | \＆It | 622 | 62 | $\varepsilon \angle 1$ | ${ }^{\prime} N$ | 801 | LES | ${ }^{\text {L }}$ | |
| 81 ¢99 | zıed ${ }^{\text {d }}$ | ${ }_{61 \times 21}$ | ${ }_{\text {eld }}$ dop | пишиэ | şlud | LIPY | ноулои | $\mathrm{I}_{\text {zse }}$ | txpp | เ¢ıuup | 9pld | реи | ıpxa | zIp．pp | чห．рィ | 6p．pl | 9p．pp | ¢p．pi | ıqя $^{\text {w }}$ | t！und | E！Mud | 2！M！d | I！Mud | | |
| | IS S | |
| 901 | ε | ${ }^{\text {a }}$ | 061 | 0¢ı | t96 | 0 | ε | 0 | sz | 0 | It | 0 | 129 | 9 | 9 | 0 | It | $\llcorner\varepsilon$ | $\llcorner\varepsilon$ | ε | ${ }^{\text {v }}$ | 0 | 0 | w | 咅 |
| ¢ | ${ }_{01}$ | ${ }^{\text {v }}$ | 812 | 0 | 18ε | 9 | st | 0 | £91 | 0 | 91 | 21 | $6{ }_{6}$ | 9 | 0 | 9 | ¢ | 9 | 88 | 0 | ${ }^{v}$ | 8 | ${ }^{1}$ | 1 | E |
| 09 | s | ${ }^{\text {V }}$ N | \＆6 | zz | 0 0ヶl | ${ }^{0}$ | 9 | τ | เั乙 | 0 | zz | 58 | 1ε | 62 | ε | 1 | 8 | $\varepsilon \tau$ | 8 | 0 | ${ }^{\text {v }}$ | ゅ乙 | ε | y | \％ |
| 11 | ε | v^{\prime} | t8\％ | z | 809 | 0 | s | τ | $\stackrel{+}{ }$ | 0 | ¢9 | 9 | 90τ | sı | ς | τ | \llcorner | ε | SL | \dagger | ${ }^{\text {v }}$ | 92 | $0 \sim$ | H | \％ |
| 901 | 8 | ${ }^{\text {v }}$ | \＆8¢ | 0 | osz | 12 | £1 | $\varepsilon 1$ | $\varepsilon 1$ | 0 | $\llcorner\varepsilon$ | 12 | 801 | 8ε | 9ε | \downarrow | 6ε | st | It | 4 | ${ }^{\text {V }}$ | 99 | z | g | |
| S88 | 66 | ${ }^{\text {N }}$ | 0＜1 | $\varepsilon \leftharpoonup$ | LL9 | ss | 916 | £ \％ | 8ε I | 8ε | III | L081 | ¢¢ | ${ }^{1} 01$ | 96 | ¢99 | £ $¢ 81$ | zz¢ | zع | oss | ${ }_{\text {VN }}$ | 1851 | s9zı | － | |
| $\varepsilon\llcorner\downarrow$ | ¢9 | ${ }_{\text {VN }}$ | 00s | $0+1$ | zltı | £911 | ¢szz | 1 18 | 9\＆Ls | ε | $6 \varepsilon \%$ | ¢061 | ¢99 | 8881 | S6 | 165 | ¢ $<$ ¢ | zos | ¢691 | Lotl | ${ }^{\text {N }}$ | 1801 | 859% | ${ }^{\text {L }}$ | |
| 81 1999 | $\mathrm{zrad}^{\mathrm{za}}$ | ${ }_{61 \times 31}$ | ${ }_{\text {eld }}{ }^{\text {dop }}$ | пишиә $^{\text {¢ }}$ | şlud | LIPY | ноьлои | $\mathrm{I}_{\text {zse }}$ | txpp | เघाuup | 9 pld | ррии | Ipxa | zIp．pl | чү＞р | 6p．pl | 9pppl | ［p．pi | тq\｛u | trund | घ！M！d | z！umd | ${ }_{\text {Lumed }}$ | | |
| |
| zL | $9<z$ | ${ }^{\text {V }}$ | ${ }^{6} 61$ | † | ${ }^{\text {VN }}$ | sz | zz | 0 | 0 | ${ }^{\text {V }}$ | $88+1$ | 981 | I | ${ }_{\text {¢ }}$ | zL | 81 | zz | \dagger | 62 | ${ }^{\text {N }}$ | ${ }^{\text {v }}$ | 0 | \llcorner | IS | |
| 29 | LII | ${ }^{\text {VN }}$ | ${ }_{6}$ | ヶг | vN | ${ }_{6}$ | « | 1 | ε | ${ }_{\text {VN }}$ | ${ }_{582}$ | ε | sı | 29 | 89 | ss | \llcorner | s | ${ }_{6}$ | ${ }^{\text {V }}$ | ${ }^{\text {V }}$ | tг | III | s | |
| ${ }^{+}$ | L | ${ }^{\text {N }}$ | $\varepsilon \tau$ | 81 | ${ }^{\text {N }}$ | ε | 0 | 0 | 0 | ${ }_{\text {N }}$ | tıl9 | τ | 91 | s | ${ }^{6} 1$ | 8 | s | τ | sı | ${ }_{\text {VN }}$ | ${ }_{\text {VN }}$ | s | 12 | w | |
| zL | 18 | ${ }^{\text {N }}$ | 12 | ， | ${ }^{\text {v }}$ | s | II | 0 | 0 | ${ }_{\text {N }}$ | $\llcorner 96$ | 9 s | \llcorner | τ | 12 | 9 | $6+5$ | τ | 0 | ${ }_{\text {VN }}$ | ${ }_{\text {VN }}$ | εL | sı | 1 | － |
| ss | εL | ${ }^{\text {v }}$ | 9 | 9 | ${ }^{\text {v }}$ | ε | s | It | $\stackrel{ }{ }$ | ${ }^{\text {d }}$ | ${ }_{6} 68$ | s | t | † | 6 | s | 8ε | 9 | ¢ | ${ }^{\text {VN}}$ | ${ }^{\text {v }}$ | 81 | 8201 | x | \％ |
| ts | tsı | v^{\prime} | 62 | s | $v^{\prime \prime}$ | τ | ε | 1 | 1 | ${ }^{\text {v }}$ | ¢6¢ | 8 | t | sı | st | $\varepsilon \varepsilon$ | ${ }_{6}$ | ε | 8 | ${ }^{\text {VN }}$ | ${ }^{\text {v }}$ | $9{ }^{9}$ | sı | H | E |
| ${ }_{0}$ | 89 | ${ }_{\text {v }}$ | \＆ı¢ | 21 | vN | 91 | 41 | ＋ | 0 | ${ }_{\text {V }}$ | ＋ E_{1} | 1ε | 82 | ｜\＆｜ | Lzع | 08 | 9 | ${ }^{1}$ | sı | ${ }^{\text {N }}$ | ${ }^{\text {v }}$ | It | zzz | g | |
| ${ }^{6}$ | Stz | ${ }^{\text {N }}$ | ＋ | Ls | ${ }_{\text {VN }}$ | $\varepsilon 1$ | 0 0ı | 95 | 85 | ${ }_{\text {v }}$ | 0¢z | ¢9t | $\varepsilon ⿺ 廴$ | ${ }^{+6}$ | £ $¢$ | ¢¢ะ | S80z | $6+1$ | 0st | ${ }_{\text {VN }}$ | ${ }^{\text {VN }}$ | $1+\varepsilon$ | $8<t$ | O | |
| L\＆ı | 012 | V_{N} | $1+1$ | £ $¢$ | V_{N} | 211 | $\angle 99$ | t6 | \＆ 02 | V_{N} | $6 s z$ | 968 | 161 | ヶг¢ | L061 | t911 | 10LE | 98 | 1062 | ${ }_{\text {VN }}$ | ${ }_{\text {v }}$ | $6+9$ | 1681 | L | |
| 8 1p919 | zud ${ }^{\text {d }}$ | ${ }_{61 \times 27}$ | ${ }_{\text {eldop }}$ | пишиу $^{\text {¢ }}$ | şuxd | LगPツ | ноолои | $\mathrm{I}_{\text {zse }}$ | txpp | เघuup | 9pd | ｜әеи | ipxa | zıp．pı | чห．рр | 6p．ph | 9p．pp | ［p．ph | ıqяu | trumd | Elmud | z！Mu！d | Iumid | | |

			$\underset{A}{A} \equiv \text { - a oooo- }$	旁	3 n － 0
咢					
$\frac{2}{2}$		而		\％	
年		年	さがかのコロのダ		年80N0m
	效的			等	
景		号			
言	への－000000	哑		E	
訔	2お	京			
离	－\％000000	㐍		8	
考		素	谷号 O O O O O		
馬	－	馬	-	第	
\％		$\stackrel{\circ}{2}$			\％\％§
豆		磁			
亏亏ً	₹ ごの	훙		\％	
䎂				䎂	
婂		童	$\text { 手 를 }=\infty \circ=$	童	
量	ズロna	资	禁	䎂	遃
皆	\％a a a oomba	－		－	気可可的荌感
豆	Z 1800000	或	2\％＝¢ a oma		眎亳的ます。
言	－0－0	言	$\text { 云 } \infty \text { + a o o n - }$		
$\stackrel{\text { 喜 }}{ }$	ㄴ․－ $000 \mathrm{C}=$	考	$\check{n}=-\infty \quad 0 \quad 0 \quad \text { - }$		gorino
年		管			
水	Finnoooomo	弪	RE+00000n		
咅		者	券A - No=n -		
			$\because \circ \infty \pm x \mu \Sigma \backsim \bar{\omega}$		－
	${\text { snımpou иоии } d_{d}}^{\text {d }}$		spp．un snlpoab		sпиирии sириитиюочийо

Supplementary File 2B. Within-species normalized expression values of genes involved in the siRNA pathway. $\mathrm{NA}=$ missing, $\mathrm{NiA}=$ gene present, but absent in the genome annotation available. $\mathrm{T}=$ testis; $\mathrm{O}=$ ovary; $\mathrm{B}=$ brain; $\mathrm{H}=$ heart; $\mathrm{K}=$ kidney; $\mathrm{L}=$ liver; $\mathrm{M}=$ muscle; $\mathrm{S}=$ spleen; $\mathrm{SI}=$ small intestine. Decimal values have been rounded to integers.

		Dicer1	Drosha	Mrpl44	Prkra	Tarbp2	Tert	Agol	Ago2	Ago3	Ago4
$\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	T	514	299	111	49	66	275	14	346	191	165
	O	198	856	363	205	478	188	10	55	142	139
	B	516	264	166	187	145	8	114	412	146	605
	H	240	115	265	77	157	21	51	639	59	337
	K	243	155	268	88	205	64	12	356	101	285
	L	449	76	864	128	216	18	23	263	99	181
	M	242	77	356	63	131	133	13	184	133	177
	S	247	105	261	66	138	33	39	419	58	289
	SI	219	99	279	68	281	69	15	218	109	277
	T	56	327	432	2041	409	3	40	124	NA	101
	O	22	528	4105	3818	1410	45	27	27	$N A$	231
	B	16	501	217	705	296	8	33	21	$N A$	315
	H	47	315	216	472	148	11	17	72	$N A$	221
	K	34	229	305	367	277	27	24	51	$N A$	242
	L	85	127	291	443	395	5	35	102	$N A$	233
	M	7	227	1097	1105	198	7	2	26	$N A$	103
	S	51	226	112	317	397	13	50	123	$N A$	587
	SI	87	158	167	177	555	39	26	46	NA	362
	T	49	25	74	NA	31	74	68	19	83	132
	O	39	35	46	$N A$	9	390	14	71	26	40
	B	171	27	32	$N A$	12	7	63	6	10	102
	H	61	39	132	$N A$	24	2	71	0	0	107
	K	95	15	87	$N A$	8	48	31	2	2	108
	L	62	17	183	$N A$	28	2	15	13	7	62
	M	89	20	83	$N A$	13	5	61	8	7	186
	S	38	23	84	$N A$	55	4	39	12	5	141
	SI										
	T	180	869	1420	NA	350	256	1312	NA	4974	5647
	O	316	1447	1188	$N A$	282	1272	335	NA	2041	1225
	B	336	415	378	$N A$	265	14	1389	NA	1276	1128
	H	95	246	2624	$N A$	476	5	938	NA	1739	1572
	K	250	1036	1819	$N A$	192	84	697	$N A$	1135	3921
	L	127	301	1770	$N A$	553	5	1004	NA	1416	2187
	M	360	481	2992	$N A$	741	0	2118	$N A$	2095	7554
	S	321	801	972	$N A$	191	80	1265	NA	1671	4770
	SI	143	165	882	$N A$	689	172	1151	NA	592	1535
	T	847	105	110	412	781	615	512	68	156	365
	O	348	502	567	920	336	869	445	100	117	295
	B	1070	199	199	1384	146	254	357	135	121	342
	H	496	230	390	1889	99	12	561	156	120	392
	K	317	230	870	718	210	62	255	35	24	352
	L	370	110	625	1064	165	258	71	22	16	126
	M	583	162	558	2610	147	34	256	165	165	306
	S										
	SI										
$\begin{aligned} & \text { oे } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	T	217	150	47	74	47	35	75	20	25	128
	O										
	B	209	110	25	93	42	217	49	19	8	236
	H										
	K	293	141	36	82	154	94	26	18	10	79
	L	371	71	46	123	146	92	29	19	5	65
	M	343	270	50	187	373	240	123	17	0	137
	S	279	151	54	88	49	33	46	181	49	294
	SI	276	96	75	95	85	97	38	16	23	87

		Dicer 1	Drosha	Mrpl44	Prkra	Tarbp2	Tert	Agol	Ago2	Ago3	Ago4
Python molurus	T	67	8	19	0	102	9	32	7	2	37
	O	67	15	190	0	5	26	62	6	9	28
	B	81	9	20	0	47	5	35	5	2	31
	H	165	13	13	0	87	10	133	55	22	127
	K	51	28	22	0	73	39	11	38	0	89
	L	90	29	45	0	29	0	16	8	4	82
	M	95	5	46	0	180	0	46	3	0	62
	S	81	5	26	0	56	3	30	5	1	63
	SI	231	34	0	0	62	31	0	60	10	56
Crtotalus viridis	T	131	72	31	27	61	46	10	5	13	119
	O	86	118	278	188	65	354	26	18	7	46
	B	142	58	34	96	193	6	28	3	6	45
	H	165	156	35	62	501	45	11	6	5	139
	K	67	101	84	33	567	10	13	6	13	27
	L	129	96	121	8	568	8	94	0	8	33
	M	78	89	168	34	324	0	11	0	6	45
	S	197	98	70	64	311	19	39	6	1	30
	SI	221	118	40	44	262	57	12	2	14	238
	T	4851	437	4385	7241	2086	205	378	688	783	NA
	O	3182	851	1475	4087	256	124	349	371	419	$N A$
	B	7331	1097	1279	11278	375	43	838	249	803	$N A$
	H	5790	1250	2900	36073	315	4	889	152	133	NA
	K	2622	948	1648	4769	286	28	355	137	107	NA
	L	3294	788	2931	1766	485	25	341	143	133	NA
	M										
	S										
	SI										
$\begin{aligned} & \text { a } \\ & \frac{0}{3} \\ & \frac{0}{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	T	331	489	98	648	$N A$	1500	471	68	148	834
	O	438	610	276	981	$N A$	32	414	694	21	370
	B	854	1292	201	1829	NA	53	1133	400	14	261
	H	668	360	708	4625	NA	29	332	422	19	845
	K	439	488	522	498	$N A$	31	254	335	33	368
	L	969	380	621	47	$N A$	11	275	512	40	529
	M	697	364	1481	32329	$N A$	4	214	637	6	4870
	S	726	470	342	79	$N A$	120	231	5025	268	925
	SI										
$$	T	1359	579	346	636	229	21	447	523	329	621
	O	1890	967	277	526	119	0	791	932	189	577
	B	1651	1045	309	548	69	0	1005	819	270	426
	H	1165	579	427	493	135	0	801	713	184	1041
	K	1514	722	565	404	190	0	944	353	192	290
	L	1959	576	681	433	222	0	395	211	143	482
	M	844	1015	964	2222	290	0	917	1271	154	1173
	S	1834	543	280	287	189	3	822	781	182	847
	SI	1188	599	336	388	159	47	749	583	125	597
	T	466	858	102	528	7300	145	336	865	408	489
	O	801	590	69	377	1078	656	1041	1531	295	76
	B	1367	1954	211	296	639	82	1434	1035	1163	339
	H	1148	820	512	289	1412	5	931	2000	628	352
	K	990	840	306	342	853	166	1387	1427	388	97
	L	1309	294	269	397	1207	1585	1467	1356	353	134
	M	846	1141	1100	328	1326	15	90	4389	317	64
	S	519	720	665	71	1177	13	104	1327	212	1
	SI	524	519	120	450	1748	168	804	2363	184	48

Supplementary File 2C. Within-species normalized expression values of genes involved in transcriptional regulation of TE expression. NA = missing, $\mathrm{NiA}=$ gene present, but absent in the genome annotation available. $\mathrm{T}=$ testis; $\mathrm{O}=$ ovary; $\mathrm{B}=$ brain; $\mathrm{H}=$ heart; $\mathrm{K}=$ kidney; $\mathrm{L}=$ liver; $\mathrm{M}=$ muscle; $\mathrm{S}=$ spleen; $\mathrm{SI}=$ small intestine. Decimal values have been rounded to integers. Prmts = sum of normalized expression values for prmtl, prmt2, prmt3, prmt6, prmt7, prmt8, prmt9 (when present).

Supplementary File 2D. Within-species normalized expression values of genes involved in posttranscriptional regulation of TEs. NA $=$ missing, $\mathrm{NiA}=$ gene present, but absent in the genome annotation available. $\mathrm{T}=$ testis; $\mathrm{O}=$ ovary; $\mathrm{B}=$ brain; $\mathrm{H}=$ heart; $\mathrm{K}=$ kidney; $\mathrm{L}=$ liver; $\mathrm{M}=$ muscle; $\mathrm{S}=$ spleen; $\mathrm{SI}=$ small intestine. Decimal values have been rounded to integers.

		apobec	aicda	atg5	atm	becn1	calcoco2	dcp1b	dcp2	dcps	hnrpl	rnasel	samhd1	trex1	zc3hav1	zfp36	zfp3611	zfp3612
$\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	T	19	1	346	508	41	72	174	177	125	502	$N A$	119	NA	$N A$	$N A$	686	65
	O	2	3	607	202	58	4	78	638	365	376	$N A$	313	$N A$	$N A$	$N A$	756	350
	B	9	0	301	137	263	36	55	752	125	509	$N A$	47	$N A$	$N A$	$N A$	902	306
	H	1013	1	179	117	102	190	179	577	67	436	$N A$	59	$N A$	$N A$	NA	2103	699
	K	5	3	239	197	59	142	105	353	108	562	$N A$	52	NA	NA	$N A$	4118	352
	L	0	0	303	163	82	146	228	193	93	537	$N A$	23	$N A$	$N A$	$N A$	5089	292
	M	2383	2	175	142	70	1476	142	338	52	452	$N A$	44	$N A$	NA	NA	1920	1350
	S	0	1	212	135	68	146	139	502	98	470	$N A$	34	$N A$	NA	$N A$	5794	319
	SI	0	9	271	180	86	388	192	209	125	663	NA	25	NA	$N A$	NA	3443	721
	T	2	1	411	910	88	350	3623	891	206	NA	910	501	866	$N A$	350	395	896
	O	0	0	543	121	31	458	3335	146	717	$N A$	1240	323	649	$N A$	38	23	17750
	B	35	0	72	261	81	1043	280	241	69	NA	583	314	104	NA	536	501	1138
	H	85	0	194	178	124	2222	109	114	50	$N A$	513	481	125	NA	5391	1638	3007
	K	37	1	134	203	89	1651	157	222	74	NA	556	274	166	NA	5447	2121	3041
	L	25	0	185	238	108	932	113	108	125	$N A$	321	330	194	NA	5969	2910	3039
	M	40	4	359	147	176	6159	7	75	35	$N A$	1112	317	269	NA	2810	720	3442
	S	38	4	149	485	147	2021	10	285	72	$N A$	590	1123	206	$N A$	4856	4581	4348
	SI	49	1	183	530	177	3873	18	161	62	NA	649	359	206	NA	3405	1231	3900
	T	1	1	51	198	118	109	56	21	28	182	28	61	NA	43	NiA	87	5
	O	0	0	77	100	58	86	154	32	14	79	2	12	$N A$	7	NiA	110	2
	B	7	4	34	114	29	47	25	22	14	87	18	108	$N A$	14	NiA	30	2
	H	314	0	31	60	69	327	9	20	42	93	6	124	$N A$	30	NiA	121	13
	K	0	0	19	66	29	183	36	23	60	132	13	98	$N A$	35	NiA	167	7
	L	0	2	50	54	44	166	37	27	32	90	12	127	$N A$	54	NiA	392	15
	M	25	1	50	66	47	86	42	29	43	109	8	132	NA	23	NiA	313	14
	S	0	8	32	24	36	122	86	5	50	347	12	117	$N A$	7	NiA	434	5
	SI																	
	T	58	18	285	332	364	159	375	133	425	1103	29	90	523	393	NA	944	209
	O	7	7	128	112	853	553	244	92	593	388	115	251	440	236	NA	2687	543
	B	0	0	577	499	1316	693	255	214	183	1824	143	252	360	323	NA	604	711
	H	0	2	75	311	1272	156	55	26	725	107	78	361	572	53	NA	6497	1716
	K	0	0	152	403	842	444	122	45	576	161	1063	100	404	81	$N A$	19725	901
	L	0	1	61	498	943	624	88	29	488	148	396	112	681	627	$N A$	15546	2348
	M	0	0	102	357	2013	748	352	46	103	767	21	182	223	31	$N A$	4732	4465
	S	1	32	85	499	717	415	221	112	920	283	315	553	1267	325	$N A$	21842	2493
	SI	0	4	430	369	384	1495	115	7	298	997	158	506	674	441	$N A$	3658	7036
s!suдu!loaps s!loū	T	185	57	502	168	1450	298	317	401	638	1535	21	358	10	NA	0	NiA	303
	O	1	0	676	44	753	230	163	573	337	1316	0	1152	22	NA	0	NiA	254
	B	45	3	436	108	442	441	80	309	152	1881	13	236	16	$N A$	1	NiA	199
	H	42	1	358	83	413	2132	126	207	85	1235	48	1470	170	$N A$	6	NiA	601
	K	53	0	184	66	394	474	146	40	80	2466	16	193	27	$N A$	2	NiA	1090
	L	20	10	279	171	409	1953	63	185	118	2143	53	718	362	$N A$	10	NiA	332
	M	41	3	605	56	1126	10173	94	112	50	1173	12	196	153	$N A$	0	NiA	337
	S																	
	SI																	
$\begin{aligned} & \text { o} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	T	71	0	32	150	79	236	58	163	37	1074	35	298	$N A$	NA	47	174	174
	O																	
	B	2	0	17	68	166	424	64	239	15	438	41	124	NA	$N A$	20	93	93
	H																	
	K	5	0	14	81	108	530	67	175	44	1595	25	145	$N A$	NA	107	158	158
	L	20	0	8	64	199	741	49	216	38	2295	44	191	$N A$	$N A$	1051	1343	1343
	M	13	0	0	67	93	910	213	180	60	633	10	137	$N A$	$N A$	93	47	47
	S	155	0	27	236	618	390	62	267	7	826	118	562	$N A$	$N A$	65	303	303
	SI	267	0	30	77	106	532	68	285	41	741	121	280	$N A$	$N A$	102	438	438

		apobec	aicda	atg 5	atm	becn1	calcoco2	dcp1b	dcp2	dcps	hnrpl	rnasel	samhd1	trex1	zc3hav1	zfp36	zfp3611	zfp3612
$\begin{aligned} & 2 \\ & 0 \end{aligned}$	T	12	0	75	91	55	54	24	19	102	474	79	279	NA	NA	16	159	98
	O	0	0	243	19	89	104	11	32	196	99	4	285	NA	NA	19	297	36
	B	1	0	42	61	103	182	20	23	30	317	135	63	NA	NA	297	139	38
	H	3	0	17	23	67	185	13	48	47	317	325	23	NA	NA	135	204	92
	K	0	0	58	72	35	50	27	42	4	344	183	11	NA	NA	12	312	63
	L	0	0	12	49	78	49	8	37	25	446	147	8	NA	NA	944	576	49
	M	0	0	90	33	121	332	10	10	59	185	62	8	NA	NA	136	64	111
	S	19	0	49	90	77	178	28	27	43	333	166	161	NA	NA	1316	909	155
	SI	0	0	8	54	191	174	5	67	16	114	607	37	NA	NA	30	365	82
$\begin{aligned} & \text { B } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	T	69	3	82	69	290	63	1296	60	48	468	20	99	NA	NA	NiA	148	188
	O	70	0	59	37	112	26	74	195	42	154	58	350	NA	NA	NiA	714	50
	B	7	1	142	37	213	57	49	58	72	345	49	57	NA	NA	NiA	211	90
	H	16	3	74	21	170	296	53	86	20	290	64	15	NA	NA	NiA	673	243
	K	5	0	119	11	159	136	49	38	27	287	55	10	NA	NA	NiA	382	92
	L	16	0	70	6	96	160	10	12	55	736	33	25	NA	NA	NiA	2433	82
	M	201	6	117	22	358	727	22	17	50	252	682	11	NA	NA	NiA	341	50
	S	12	32	174	69	109	55	38	25	44	594	272	13	NA	NA	NiA	1654	142
	SI	19	2	84	31	136	272	71	86	31	360	47	13	NA	NA	NiA	548	180
	T	2	0	877	233	2060	1873	479	911	NA	3017	71	1314	32	NA	20	857	28
	O	69	0	623	213	2148	3132	250	206	NA	2017	220	1077	146	NA	168	6318	124
	B	36	0	743	170	3009	2554	225	644	NA	2292	79	1965	60	NA	40	2051	24
	H	14	0	532	170	6639	5498	949	270	NA	2382	58	737	30	NA	275	2225	82
	K	16	0	530	$1{ }^{1} 66$	3507	3407	257	146	NA	2085	187	482	120	NA	239	4464	107
	L	18	0	753	164	3957	3766	175	191	NA	1622	193	543	24	NA	282	8361	33
	M S																	
	SI																	
	T	30	2	346	115	751	1510	424	145	120	1444	7	282	11	370	43	459	94
	O	28	10	275	295	384	1430	24	448	228	1176	90	556	28	1267	102	1950	450
	B	1	1	251	265	770	1365	42	404	181	1616	43	387	20	415	20	465	82
	H	1	1	231	216	681	2435	395	180	176	1051	58	623	48	467	315	1022	538
	K	0	1	391	206	524	2611	47	157	314	1098	74	334	38	577	183	1421	289
	L	0	0	553	307	440	2388	38	203	220	914	342	591	226	1020	273	3752	531
	M	0	0	375	103	954	3672	66	105	272	1053	49	827	51	264	570	924	311
	S	0	73	645	676	1006	1254	332	381	115	1095	502	766	2	1523	49	1089	1
	SI																	
$\begin{aligned} & \text { y } \\ & \text { 苞 } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	T	423	5	339	801	528	2048	587	526	190	2407	94	1017	109	516	564	1712	937
	O	468	0	586	219	650	2332	357	752	167	2295	586	1993	38	834	5523	7805	5976
	B	44	0	463	929	871	908	119	948	146	1902	229	621	87	537	444	2153	901
	H	84	0	370	100	952	2763	90	288	258	2128	235	1224	132	383	2912	2741	2370
	K	62	0	425	760	747	1568	201	587	240	2341	312	562	104	669	1194	3639	1725
	L	94	0	747	965	833	2818	124	674	706	2534	196	954	49	636	3951	10393	2881
	M	55	0	414	269	1975	3254	175	405	635	3075	90	746	209	149	708	1241	1006
	S	493	34	350	277	778	1921	214	107	279	2820	350	3667	254	1147	1951	4648	4474
	SI	125	20	740	841	994	1757	196	427	143	2620	408	1789	125	630	3423	2568	4065
	T	1429	1	101	244	1773	86	3721	248	766	3847	92	246	104	170	180	1260	350
	O	1049	8	150	98	859	13	720	211	583	3701	105	846	1406	1217	1293	7342	7151
	B	602	0	310	455	1316	1	482	940	244	3698	390	396	390	120	70	458	511
	H	953	1	299	367	737	0	210	544	389	3792	145	780	642	612	826	1594	689
	K	1092	0	366	260	863	0	344	389	511	3082	123	821	553	588	789	3138	1391
	L	290	0	118	153	896	0	151	387	111	3077	44	553	782	2136	3409	8650	1738
	M	275	0	702	264	1206	0	127	262	396	2839	388	415	235	512	372	2019	385
	S	9358	0	160	254	3580	0	329	442	133	5915	298	5661	1543	2725	2287	384	5551
	SI	881	8	287	51	1892	0	367	138	391	2754	588	1828	1623	1671	6508	3395	12122

Supplementary File 3. Total normalized expression values of genes involved in the PIWI pathway, the siRNA pathway and other genes that negatively regulate TE expression.

Total normalized expression values are reported for each tissue by species.

		Recent-TE \%	PIWI pth \%	siRNA pth \%	Transcription \%	Post-transcription \%	Total regulators \%
$\begin{aligned} & \text { O } \\ & \text { O } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	T	1.94	0.74	0.04	0.35	0.06	1.19
	O	0.08	0.18	0.04	0.40	0.05	0.67
	B	0.94	0.01	0.04	0.20	0.05	0.30
	H	0.47	0.00	0.02	0.11	0.06	0.19
	K	0.14	0.01	0.01	0.08	0.05	0.15
	L	0.04	0.00	0.00	0.02	0.01	0.03
	M	0.11	0.01	0.01	0.04	0.04	0.10
	S	0.34	0.01	0.02	0.09	0.08	0.19
	SI	0.28	0.00	0.01	0.08	0.06	0.16
	T	0.02	0.20	0.02	0.11	0.05	0.37
	O	0.01	0.14	0.04	0.31	0.12	0.61
	B	0.05	0.01	0.01	0.13	0.03	0.19
	H	0.03	0.00	0.01	0.06	0.05	0.11
	K	0.03	0.01	0.01	0.09	0.08	0.20
	L	0.02	0.00	0.00	0.04	0.03	0.08
	M	0.01	0.00	0.01	0.04	0.03	0.08
	S	0.05	0.01	0.01	0.12	0.11	0.25
	SI	0.03	0.01	0.01	0.07	0.06	0.14
	T	0.06	0.40	0.05	0.22	0.09	0.76
	O	0.01	0.21	0.06	0.28	0.06	0.61
	B	0.03	0.03	0.03	0.15	0.04	0.25
	H	0.02	0.01	0.01	0.07	0.04	0.13
	K	0.03	0.02	0.02	0.12	0.05	0.22
	L	0.02	0.01	0.01	0.05	0.03	0.11
	M	0.02	0.02	0.03	0.15	0.07	0.28
	S	0.03	0.02	0.03	0.21	0.09	0.35
	SI						
	T	0.05	0.05	0.05	0.12	0.02	0.23
	O	0.08	0.02	0.02	0.12	0.02	0.18
	B	0.01	0.01	0.02	0.07	0.03	0.12
	H	0.02	0.01	0.01	0.07	0.02	0.10
	K	0.02	0.00	0.01	0.04	0.03	0.08
	L	0.01	0.00	0.01	0.03	0.03	0.07
	M	0.00	0.00	0.01	0.03	0.01	0.05
	S	0.05	0.00	0.03	0.11	0.09	0.24
	SI	0.75	0.00	0.01	0.03	0.02	0.06
	T	0.25	0.13	0.02	0.07	0.03	0.25
	O	0.02	0.11	0.04	0.13	0.04	0.32
	B	0.23	0.01	0.02	0.06	0.03	0.12
	H	0.19	0.01	0.02	0.04	0.03	0.10
	K	0.23	0.01	0.01	0.04	0.02	0.09
	L	0.10	0.00	0.01	0.02	0.02	0.06
	M	0.07	0.00	0.01	0.01	0.02	0.05
	S						
	SI						
$\begin{aligned} & \text { ò } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	T	0.03	0.11	0.02	0.18	0.07	0.39
	O						
	B	0.02	0.01	0.02	0.07	0.03	0.12
	H						
	K	0.03	0.03	0.02	0.14	0.07	0.26
	L	0.03	0.01	0.01	0.07	0.09	0.18
	M	0.00	0.01	0.01	0.04	0.01	0.06
	S	0.05	0.02	0.03	0.11	0.09	0.24
	SI	0.01	0.01	0.02	0.12	0.06	0.21

Summary statics of TE regulators expression values by species (top) and for the whole dataset (bottom).

	PIWI		siRNA		Transcription		Post-Transcription		Total Regulators	
	Avg Germline	Avg Somatic								
Danio rerio	0.459	0.006	0.041	0.016	0.373	0.089	0.057	0.048	0.930	0.159
Xenopus laevis	0.167	0.007	0.030	0.008	0.210	0.078	0.082	0.057	0.489	0.150
Alligator mississippiensis	0.305	0.019	0.053	0.023	0.250	0.127	0.076	0.054	0.684	0.223
Gallus gallus	0.034	0.004	0.036	0.014	0.119	0.054	0.020	0.032	0.207	0.103
Anolis carolinensis	0.123	0.006	0.027	0.015	0.101	0.036	0.037	0.026	0.289	0.084
Boa constrictor	0.110	0.014	0.022	0.016	0.182	0.090	0.072	0.058	0.386	0.179
Python molurus	0.147	0.021	0.026	0.014	0.222	0.131	0.111	0.082	0.506	0.247
Crotalus viridis	0.224	0.011	0.048	0.030	0.300	0.250	0.125	0.076	0.686	0.366
Ornithorhynchus anatinus	0.353	0.019	0.068	0.061	0.173	0.108	0.077	0.056	0.671	0.245
Monodelphis domestica	0.144	0.011	0.053	0.072	0.215	0.112	0.105	0.071	0.518	0.266
Homo sapiens	0.127	0.013	0.051	0.032	0.240	0.114	0.197	0.112	0.615	0.270
Mus musculus	0.198	0.010	0.042	0.029	0.240	0.120	0.119	0.083	0.603	0.244

		Testis	Ovary	Germline	Somatic	Germline/Somatic
PIWI pth	Avg	0.295	0.103	0.195	0.012	16.85
	Avg $N M$	0.253	0.144	0.202	0.011	18.26
	Avg M	0.381	0.030	0.183	0.013	14.47
siRNA pth	Avg	0.038	0.047	0.040	0.026	1.54
	Avg $N M$	0.030	0.043	0.036	0.017	2.11
	Avg M	0.054	0.053	0.047	0.046	1.03
Transcription	Avg	0.182	0.230	0.197	0.105	1.87
	Avg $N M$	0.186	0.241	0.212	0.106	2.01
	Avg M	0.174	0.211	0.171	0.103	1.66
Post-Transcription	Avg	0.089	0.124	0.102	0.071	1.44
	Avg $N M$	0.077	0.089	0.082	0.059	1.40
	Avg M	0.114	0.187	0.134	0.096	1.39
Total Regulators	Avg	0.605	0.501	0.532	0.213	2.50
	Avg $N M$	0.546	0.514	0.531	0.193	2.76
	Avg M	0.723	0.479	0.535	0.257	2.08

Supplementary File 4. Proportion of TE-derived transcripts in vertebrate transcriptomes. Percentages of TE derived transcripts were calculated

$$
\begin{array}{ccc}
\hline \text { Tot Avg } & \text { Avg Somatic } & \text { Avg Germline } \\
\hline 4.62 & 4.48 & 5.13 \\
4.90 & 5.69 & 2.11 \\
8.45 & 7.82 & 10.36 \\
2.66 & 1.52 & 6.66 \\
4.94 & 5.17 & 4.39 \\
12.16 & 11.77 & - \\
5.81 & 5.81 & 5.79 \\
13.75 & 14.97 & 9.45 \\
9.47 & 9.86 & 8.68 \\
10.03 & 10.14 & 9.69 \\
2.93 & 2.36 & 4.93 \\
4.79 & 4.42 & 6.08 \\
\hline 6.86 & 6.82 & 7.00 \\
5.04 & 5.27 & 4.29 \\
\hline
\end{array}
$$

	Total-TE	Testis	Ovary	Brain	Heart	Kidney	Liver	Muscle	Spleen
SI									
Danio rerio	9.10	1.15	12.70	4.76	2.56	0.72	2.01	4.07	4.54
Xenopus laevis	2.85	1.37	9.16	5.59	5.92	3.00	3.07	7.84	5.27
Alligator mississippiensis	15.01	5.70	11.65	4.86	9.68	5.62	8.25	6.84	
Gallus gallus	11.33	2.00	1.20	1.14	0.91	0.96	0.26	4.24	1.92
Anolis carorinensis	7.68	1.10	7.89	5.33	6.02	4.35	2.25		
Boa constrictor	14.53		15.32		14.72	13.53	2.06	15.91	9.08
Python molurus	8.01	3.57	7.12	6.80	8.44	3.89	1.20	6.43	6.79
Crotalus viridis	13.41	5.49	16.60	18.30	10.17	11.79	9.59	17.06	21.32
Ornithorhynccuus anatinus	11.70	5.66	7.84	9.61	13.81	8.18			
Monodephis domestica	8.40	10.98	16.12	4.39	7.43	5.97	3.52	23.44	
Homo sapiens	5.71	4.14	2.17	1.54	1.75	1.61	1.12	4.88	3.42
Mus musculus	7.85	4.31	12.80	3.96	4.04	2.51	2.18	2.91	2.49
Avg	9.63	4.13	10.05	6.03	7.12	5.18	3.23	9.36	6.85
StDev	3.66	2.90	5.08	4.68	4.48	4.13	2.97	6.94	6.29

Recent-TE	Testis	Ovary	Brain	Heart	Kidney	Liver	Muscle	Spleen	SI
Danio rerio	1.94	0.08	0.94	0.47	0.14	0.04	0.11	0.34	0.28
Xenopus laevis	0.02	0.01	0.05	0.03	0.03	0.02	0.01	0.05	0.03
Alligator mississippiensis	0.06	0.01	0.03	0.02	0.03	0.02	0.02	0.03	
Galus gallus	0.05	0.08	0.01	0.02	0.02	0.01	0.00	0.05	0.75
Anolis carolinensis	0.25	0.02	0.23	0.19	0.23	0.10	0.07		
Boa constrictor	0.03		0.02		0.03	0.03	0.00	0.05	0.01
Python molurus	0.08	0.01	0.09	0.10	0.17	0.08	0.01	0.07	0.21
Crotalus viridis	0.21	0.06	0.26	0.27	0.14	0.17	0.15	0.25	0.34
Ornithorlynchus anatimus	0.19	0.06	0.07	0.11	0.27	0.09			
Monodephis domestica	0.10	0.16	0.21	0.05	0.10	0.09	0.04	0.25	
Homo sapiens	0.03	0.02	0.01	0.01	0.01	0.01	0.00	${ }_{0} 0.03$	0.02
Mus musculus	0.24	0.15	0.39	0.17	0.14	0.10	0.49	0.09	0.15
Avg	0.27	0.06	0.19	0.13	0.11	0.06	0.08	0.12	0.22
StDev	0.53	0.05	0.26	0.14	0.09	0.05	0.14	0.11	0.25

Tot Avg	Avg Somatic	Avg Germline
91.90	93.41	86.58
99.49	99.50	99.44
99.38	99.38	99.41
88.84	86.85	95.81
94.64	94.41	95.20
99.67	99.67	-
98.62	98.39	99.43
98.74	98.71	98.83
98.83	98.86	98.77
98.85	98.87	98.80
99.52	99.53	99.47
94.41	93.67	96.99
96.79	96.65	97.27
8.28	9.17	4.30

$\boldsymbol{\Delta}$ \% T TE mapping reads	Testis	Ovary	Brain	Heart	Kidney	Liver	Muscle	Spleen	SI
Danio rerio	80.25	92.92	93.46	90.60	94.49	94.66	94.57	91.99	94.12
Xenopus laevis	99.40	99.48	99.47	99.56	99.45	99.51	99.56	99.43	99.51
Alligator mississippiensis	99.24	99.58	99.48	99.37	99.42	99.28	99.43	99.28	
Gallus gallus	99.23	92.38	98.97	96.94	96.33	97.92	97.74	97.81	22.26
Anolis carolinensis	93.95	96.45	94.94	93.75	93.13	95.64	94.60		
Boa constrictor	99.70		99.75		99.65	99.65	99.73	99.50	99.75
Python molurus	99.12	99.75	98.86	98.64	98.17	98.08	99.00	98.96	97.05
Crotalus viridis	98.64	99.02	98.71	98.78	98.73	98.72	98.54	98.78	98.72
Ornithorhynchus anatinus	98.55	98.99	99.14	98.97	98.34	99.01			
Monodephis domestica	98.90	98.70	98.91	98.89	98.76	98.55	98.93	99.19	
Homo sapiens	99.46	99.47	99.60	99.66	99.44	99.48	99.55	99.44	99.54
Mus musculus	97.22	96.76	97.34	95.93	96.67	96.01	78.56	97.03	94.12
Avg	96.97	97.59	98.22	97.37	97.71	98.04	96.38	98.14	88.14
StDev	5.49	2.68	2.00	2.89	2.13	1.69	6.20	2.30	26.72

Genomic \%	Total	K2D<2	Genomic TE loci	Total	Recent-TE	\% Recent-TE
Danio rerio	49.76	3.08	Danio rerio	2930931	60145	2.05
Xenopus laevis	26.69	0.13	Xenopus laevis	3050695	15727	0.52
Alligator mississippiensis	37.04	0.31	Aligator mississippiensis	2438072	18564	0.76
Gallus gallus	8.31	0.30	Gallus gallus	346075	2312	0.67
Anolis carolinensis	35.28	4.70	Anolis carolinensis	2076314	48279	2.33
Boa constrictor	28.80	0.43	Boa constrictor	1716891	9026	0.53
Python molurus	22.09	0.26	Python molurus	1783137	17821	1.00
Crotalus viridis	35.83	1.32	Crotalus viridis	2004731	22485	1.12
Ornithorhynchus anatinus	53.55	3.20	Ornithorhynchus anatinus	4634624	47507	1.03
Monodephis domestica	54.28	2.95	Monodephis domestica	4398463	17915	0.41
Homo sapiens	49.91	1.68	Homo sapiens	4630459	10350	0.22
Mus musculus	41.89	5.53	Mus musculus	3688958	56683	1.54

Supplementary File 5A. Recently inserted TE copies abundance (recent-TEs) across somatic and germline tissues in vertebrates. Abundance of TE major families was calculated as percentage of the normalized transcriptome to the inclusion of Unknown elements.

		DNA transposons				LTRs			Other RT	LINEs					SINEs		
		Others	TcMar	hat	RC/Helitron	Other	ERV	Gypsy		Other	CR1-L3	L2	RTE	L1	Other	Alu-SVA	MIR
$\begin{aligned} & \text { O} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	T	0.6525	0.1252	0.0739	0.0999	0.0490	0.0740	0.5601	0.0307	0.0140	0	0.2271	0.0012	0.0059	0.0009	0	0
	O	0.0120	0.0028	0.0059	0.0079	0.0024	0.0075	0.0169	0.0077	0.0012	0	0.0169	0.0001	0.0005	0.0001	0	0
	B	0.1607	0.0389	0.0923	0.0020	0.0415	0.0405	0.1177	0.0369	0.0107	0	0.3790	0.0009	0.0101	0.0013	0	0
	H	0.0942	0.0266	0.0430	0.0012	0.0208	0.0229	0.0604	0.0119	0.0056	0	0.1678	0.0005	0.0038	0.0010	0	0
	K	0.0369	0.0100	0.0163	0.0035	0.0070	0.0088	0.0225	0.0067	0.0019	0	0.0287	0.0002	0.0011	0.0003	0	0
	L	0.0096	0.0025	0.0054	0.0004	0.0030	0.0026	0.0054	0.0025	0.0005	0	0.0057	0.0002	0.0004	0.0000	0	0
	M	0.0289	0.0128	0.0117	0.0015	0.0044	0.0046	0.0152	0.0062	0.0009	0	0.0234	0.0001	0.0005	0.0001	0	0
	S	0.0670	0.0143	0.0351	0.0011	0.0156	0.0267	0.0421	0.0104	0.0042	0	0.1133	0.0004	0.0017	0.0009	0	0
	SI	0.0660	0.0137	0.0307	0.0008	0.0132	0.0170	0.0338	0.0099	0.0035	0	0.0857	0.0004	0.0018	0.0003	0	0
	T	0.0039	0.0107	0.0019	0	0	0	0	0	0	0.0003	0	0	5.19E-05	0	0	0
	O	0.0009	0.0057	0.0002	0	0	0	0	$7.86 \mathrm{E}-06$	0	0.0002	0	0	7.86E-06	0	0	0
	B	0.0093	0.0274	0.0116	0.0001	$2.23 \mathrm{E}-05$	$4.02 \mathrm{E}-05$	8.93E-06	0.0001	0	0.0009	0	0	0.0001	0	0	0
	H	0.0042	0.0123	0.0072	0.0001	$1.62 \mathrm{E}-05$	$8.08 \mathrm{E}-06$	0.0001	$2.42 \mathrm{E}-05$	0	0.0005	0	0	$8.08 \mathrm{E}-05$	0	0	0
	K	0.0057	0.0193	0.0067	3.42E-05	$6.21 \mathrm{E}-06$	$3.42 \mathrm{E}-05$	3.11E-06	$9.94 \mathrm{E}-05$	0	0.0005	0	0	4.97E-05	0	0	0
	L	0.0022	0.0076	0.0045	0	$4.92 \mathrm{E}-06$	$4.92 \mathrm{E}-06$	$1.48 \mathrm{E}-05$	$3.45 \mathrm{E}-05$	0	0.0002	0	0	5.42E-05	0	0	0
	M	0.0025	0.0070	0.0021	0.0002	$3.53 \mathrm{E}-05$	0	0.0001	$1.06 \mathrm{E}-05$	0	0.0012	0	0	7.06E-06	0	0	0
	S	0.0090	0.0242	0.0122	0.0001	8.18E-06	5.72E-05	4.09E-06	0.0002	0	0.0007	0	0	0.0001	0	0	0
	SI	0.0061	0.0125	0.0065	$1.53 \mathrm{E}-05$	$6.11 \mathrm{E}-06$	0.0002	6.11E-06	$4.28 \mathrm{E}-05$	0	0.0004	0	0	$2.75 \mathrm{E}-05$	0	0	0
	T	0.0018	0.0017	0	0.0004	0.0005	0.0401	0.0047	0.0022	0	0.0113	0	0	0	0	0	0
	O	0.0003	0.0004	0	$7.5825 \mathrm{E}-05$	$3.79 \mathrm{E}-05$	0.0085	0.0006	0.0003	0	0.0016	0	0	0	0	0	0
	B	0.0004	0.0022	0	0.0004	0.0001	0.0112	0.0043	0.0024	0	0.0101	0	0	0	0	0	0
	H	0.0016	0.0009	0	0.0001	0.0001	0.0055	0.0011	0.0013	0	0.0047	0	0	0	0	0	0
	K	$6.20 \mathrm{E}-05$	0.0012	0	0.0001	0.0002	0.0126	0.0043	0.0019	0	0.0084	0	0	0	0	0	0
	L	4.79E-05	0.0007	0	4.79257E-05	4.79E-05	0.0129	0.0019	0.0009	0	0.0042	0	0	0	0	0	0
	M	0.0005	0.0005	0	0.0003	0	0.0083	0.0040	0.0019	0	0.0082	0	0	0	0	0	0
	S	0.0007	0.0009	0	0.0002	0	0.0154	0.0023	0.0008	0	0.0050	0	0	0	0	0	0
	SI																
$\begin{aligned} & \text { y } \\ & \text { s. } \\ & \text { 部 } \\ & \text { 心. } \end{aligned}$	T	0	0	0	0	0	0.0382	0	0	0	0.0107	0	0	0	0	0	0
	O	0	0	0	0	0	0.0767	0	0	0	0.0010	0	0	0	0	0	0
	B	0	0	0	0	0	0.0052	0	0	0	0.0011	0	0	0	0	0	0
	H	0	0	0	0	0	0.0162	0	0	0	0.0015	0	0	0	0	0	0
	K	0	0	0	0	0	0.0149	0	0	0	0.0020	0	0	0	0	0	0
	L	0	0	0	0	0	0.0076	0	0	0	0.0025	0	0	0	0	0	0
	M	0	0	0	0	0	0.0028	0	0	0	0.0002	0	0	0	0	0	0
	S	0	0	0	0	0	0.0441	0	0	0	0.0044	0	0	0	0	0	0
	SI	0	0	0	0	0	0.7491	0	0	0	0.0004	0	0	0	0	0	0

		DNA transposons				LTRs			Other RT	LINEs					SINEs		
		Others	TcMar	hat	RC／Helitron	Other	ERV	Gypsy		Other	CR1－L3	L2	RTE	L1	Other	Alu－SVA	MIR
电00000	T	0.0003	0.0080	0.0100	0.0285	0.0259	0.0039	0.0344	0.0203	0.0113	0.0264	0.0218	0.0095	0.0524	0.0002	0	0
	O	0.0003	0.0005	0.0011	0.0007	0.0022	0.0001	0.0022	0.0035	0.0006	0.0011	0.0021	0.0010	0.0043	$1.57 \mathrm{E}-05$	0	0
	B	0.0005	0.0097	0.0109	0.0236	0.0126	0.0013	0.0382	0.0223	0.0103	0.0337	0.0306	0.0092	0.0245	0.0006	0	0
	H	0.0006	0.0084	0.0095	0.0192	0.0141	0.0015	0.0308	0.0194	0.0089	0.0303	0.0203	0.0067	0.0232	0.0002	0	0
	K	0.0008	0.0067	0.0141	0.0169	0.0128	0.0035	0.0599	0.0250	0.0127	0.0402	0.0197	0.0075	0.0139	0.0004	0	0
	L	0.0003	0.0031	0.0050	0.0118	0.0051	0.0018	0.0091	0.0080	0.0047	0.0106	0.0220	0.0030	0.0182	4．51E－05	0	0
	M	0.0002	0.0022	0.0016	0.0067	0.0033	0.0003	0.0064	0.0052	0.0032	0.0085	0.0120	0.0018	0.0144	$2.03 \mathrm{E}-05$	0	0
	S SI																
	T	0.0002	0.0028	0.0017	0	0.0030	0	$3.20 \mathrm{E}-05$	0.0055	0.0009	$1.60 \mathrm{E}-05$	0	0.0091	0.0003	0.0003	0	0.0003
	O																
	B	0.0003	0.0021	0.0027	0	0.0008	0	5．71E－05	0.0039	$8.56 \mathrm{E}-05$	0.0002	0	0.0099	0.0002	0.0001	0	$8.56 \mathrm{E}-05$
	H	0.0002	0.0024	0.0031	0	0.0018	0	$2.02 \mathrm{E}-05$	0.0070	0.0050	4．05E－05	0	0.0081	0.0003	0.0006	0	$8.09 \mathrm{E}-05$
	L	$8.23 \mathrm{E}-05$	0.0019	0.0036	0	0.0011	0	0	0.0119	0.0014	$2.74 \mathrm{E}-05$	0	0.0058	0.0003	0.0001	0	$5.49 \mathrm{E}-05$
	M	$1.03 \mathrm{E}-05$	0.0003	0.0003	0	0.0002	0	0	0.0007	$7.24 \mathrm{E}-05$	0	0	0.0011	4．14E－05	4．14E－05	0	0
	S	0.0001	0.0048	0.0026	0	0.0017	0	$2.69 \mathrm{E}-05$	0.0055	0.0178	$1.34 \mathrm{E}-05$	0	0.0119	0.0002	$9.41 \mathrm{E}-05$	0	0.0005
	SI	$8.95 \mathrm{E}-05$	0.0017	0.0012	0	0.0009	0	$2.98 \mathrm{E}-05$	0.0032	0.0001	0	0	0.0036	$7.95 \mathrm{E}-05$	0.0003	0	8．95E－05
$\begin{aligned} & \text { y } \\ & \text { 合 } \\ & 0 \\ & 0 \end{aligned}$	T	0.0029	0.0142	0.0021	0	0.0066	0.0054	0.0019	0.0009	0.0002	0	0	0.0300	0	0	0	0
	O	0.0003	0.0010	0.0011	0	0.0001	0.0004	$3.48 \mathrm{E}-05$	$3.48 \mathrm{E}-05$	3．48E－05	0.0004	0	0.0036	0	0	0	0
	B	0.0032	0.0176	0.0047	0	0.0036	0.0047	0.0013	0.0007	0.0004	$2.93 \mathrm{E}-05$	0	0.0430	0	0	0	0
	H	0.0015	0.0193	0.0027	0	0.0038	0.0085	0.0005	0.0009	0.0006	0	0	0.0394	0	0	0	0
	K	0.0084	0.0394	0.0039	0	0.0006	0.0035	0.0011	0.0010	0.0007	0	0	0.1006	0	0	0	0
	L	0.0045	0.0146	0.0011	0	0.0025	0.0065	0.0009	0.0002	0.0002	0	0	0.0428	0	0	0	0
	M	0.0004	0.0024	0.0003	0	0.0003	0.0002	0	0.0001	$3.02 \mathrm{E}-05$	0	0	0.0056	0	0	0	0
	S	0.0027	0.0152	0.0046	0	0.0042	0.0033	0.0029	0.0002	0.0005	0.0015	0	0.0262	0	0	0	0
	SI	0.0049	0.0393	0.0015	0	0.0002	0.0018	9．24E－05	0.0010	4．62E－05	0	0	0.1566	0	0	0	0
$\begin{aligned} & \text { 令 } \\ & 0 \\ & 0 \end{aligned}$	T	0.0067	0.0056	0.0622	0.0002	0.0018	0.0011	0.0172	0.0230	0.0051	0.0249	0.0008	0.0593	0.0007	0	0	5．72E－05
	O	0.0047	0.0022	0.0203	0	0.0002	0.0003	0.0030	0.0062	0.0005	0.0111	0.0001	0.0076	$9.02 \mathrm{E}-05$	0	0	0
	B	0.0128	0.0080	0.1160	0.0001	0.0012	0.0012	0.0230	0.0184	0.0043	0.0257	0.0004	0.0443	0.0001	0	0	0.0003
	H	0.0137	0.0100	0.0875	0.0001	0.0021	0.0008	0.0264	0.0166	0.0091	0.0389	0.0011	0.0658	$7.21 \mathrm{E}-05$	0	0	$7.21 \mathrm{E}-05$
	K	0.0060	0.0060	0.0482	0	0.0006	0.0003	0.0150	0.0113	0.0016	0.0174	0.0002	0.0364	0.0002	0	0	$4.62 \mathrm{E}-05$
	L	0.0058	0.0049	0.0710	3．58E－05	0.0013	0.0006	0.0204	0.0177	0.0047	0.0140	0.0007	0.0286	0.0001	0	0	7．16E－05
	M	0.0059	0.0042	0.0494	0.0001	0.0007	0.0003	0.0143	0.0326	0.0034	0.0145	0.0001	0.0283	0	0	0	0
	S	0.0113	0.0089	0.1028	0	0.0011	0.0009	0.0351	0.0170	0.0014	0.0173	0.0002	0.0533	0.0001	0	0	0.0002
	SI	0.0142	0.0105	0.1123	0.0002	0.0035	0.0015	0.0333	0.0224	0.0115	0.0485	0.0015	0.0853	0.0002	0	0	0.0001
sпицрир sпчгитч．очриио	T	0	0	4．50E－05	0	0	0.0112	0	0	0	$8.44 \mathrm{E}-06$	0.1182	0	0	$3.94 \mathrm{E}-05$	0	0.0623
	O	0	0	$1.28 \mathrm{E}-05$	0	0	0.0036	0	0	0	0	0.0333	0	0	$9.57 \mathrm{E}-06$	0	0.0236
	B	0	0	$2.03 \mathrm{E}-05$	0	0	0.0005	0	0	0	3．38E－06	0.0424	0	0	$2.37 \mathrm{E}-05$	0	0.0303
	H	0	0	$1.12 \mathrm{E}-05$	0	0	0.0006	0	0	0	0	0.0592	0	0	$8.93 \mathrm{E}-05$	0	0.0493
	K	0	0	$3.76 \mathrm{E}-05$	0	0	0.0051	0	0	0	$2.35 \mathrm{E}-05$	0.2037	0	0	4．70E－06	0	0.0562
	L	0	0	$1.33 \mathrm{E}-05$	0	0	0.0003	0	0	0	7．96E－06	0.0505	0	0	$1.06 \mathrm{E}-05$	0	0.0372
	M																
	S SI																

		DNA transposons				LTRs			Other RT	LINEs					SINEs		
		Others	TcMar	hat	RC／Helitron	Other	ERV	Gypsy		Other	CR1－L3	L2	RTE	L1	Other	Alu－SVA	MIR
	T	0	0	0.0008	0	0	0.0704	0	0	0	0	0	0.0001	0.0259	$8.93 \mathrm{E}-05$	0	0.0019
	O	3．77E－05	0	0.0011	0	0	0.1184	0	0	0	0	$9.43 \mathrm{E}-06$	0.0002	0.0350	$2.83 \mathrm{E}-05$	0	0.0033
	B	0	0	0.0016	0	0	0.1305	0	0	0	0	3．38E－05	0.0002	0.0698	0.0001	0	0.0042
	H	7．50E－06	0	0.0007	0	0	0.0333	0	0	0	0	0	5．25E－05	0.0136	1．50E－05	0	0.0007
	K	1．68E－05	0	0.0014	0	0	0.0671	0	0	0	0	2．53E－05	$9.27 \mathrm{E}-05$	0.0286	5．90E－05	0	0.0015
	L	0	0	0.0005	0	0	0.0701	0	0	0	0	0	$3.58 \mathrm{E}-05$	0.0192	2．68E－05	0	0.0014
	M	0	0	0.0006	0	0	0.0267	0	0	0	0	9．03E－06	$4.52 \mathrm{E}-05$	0.0103	1．81E－05	0	0.0010
	S	1．46E－05	0	0.0053	0	0	0.1430	0	0	0	0	5．85E－05	0.0004	0.0928	0.0002	0	0.0042
	SI																
	T	0	0	$2.41 \mathrm{E}-05$	0	0	0.0091	0	0	0	0	0	0	0.0098	0	0.0135	0
	O	0	0	$3.59 \mathrm{E}-06$	0	0	0.0107	0	0	0	0	0	0	0.0064	0	0.0054	0
	B	0	0	$1.77 \mathrm{E}-05$	0	0	0.0010	0	0	0	0	0	0	0.0046	0	0.0030	0
	H	0	0	$3.84 \mathrm{E}-06$	0	0	0.0010	0	0	0	0	0	0	0.0022	0	0.0020	0
	K	0	0	0	0	0	0.0033	0	0	0	0	0	0	0.0037	0	0.0028	0
	L	0	0	0	0	0	0.0022	0	0	0	0	0	0	0.0029	0	0.0032	0
	M	0	0	$9.86 \mathrm{E}-06$	0	0	0.0004	0	0	0	0	0	0	0.0023	0	0.0022	0
	S	0	0	$1.79 \mathrm{E}-05$	0	0	0.0074	0	0	0	0	0	0	0.0069	0	0.0142	0
	SI	0	0	0	0	0	0.0048	0	0	0	0	0	0	0.0050	0	0.0062	0
$\begin{aligned} & \text { n } \\ & \\ & \end{aligned}$	T	0	0	$4.91 \mathrm{E}-05$	0	0	0.1043	0	0	0	0	0	0	0.1253	0.0030	0.0030	0
	O	0	0	0.0002	0	0	0.1076	0	0	0	0	0	0	0.0338	0.0017	0.0019	0
	B	0	0	$7.36 \mathrm{E}-05$	0	0	0.1286	0	$1.17 \mathrm{E}-05$	0	0	0	0	0.2464	0.0068	0.0055	0
	H	0	0	$4.90 \mathrm{E}-05$	0	0	0.1109	0	0	0	0	0	0	0.0531	0.0021	0.0014	0
	K	0	0	$1.33 \mathrm{E}-05$	0	0	0.0892	0	0	0	0	0	0	0.0463	0.0020	0.0023	0
	L	0	0	$1.85 \mathrm{E}-05$	0	0	0.0622	0	0	0	0	0	0	0.0380	0.0012	0.0009	0
	M	0	0	$4.93 \mathrm{E}-06$	0	0	0.0357	0	0	0	0	0	0	0.4391	0.0135	0.0058	0
	S	0	0	0	0	0	0.0638	0	0	0	0	0	0	0.0149	0.0073	0.0022	0
	SI	0	0	$6.11 \mathrm{E}-05$	0	0	0.0439	0	0	0	0	0	0	0.1040	0.0009	0.0009	0

		DNA transposons				LTRs			Other RT	LINEs					SINEs		
		Others	TcMar	hat	RC/Helitron	Other	ERV	Gypsy		Other	CR1-L3	L2	RTE	L1	Other	Alu-SVA	MIR
	T	0.6759	0.7878	1.0283	0.6457	0.2041	0.0649	0.5659	0.5162	0.3726	0.7952	1.0178	0.4667	0.4739	0.0649	0	0.0009
	O	0.2347	0.0642	0.2370	0.0310	0.0220	0.0041	0.0551	0.0652	0.0217	0.0970	0.1365	0.0402	0.0826	0.0059	0	0.0002
	B	1.0877	1.0432	1.4696	0.4610	0.1409	0.0334	0.4132	0.4081	0.3165	0.7776	0.8573	0.3063	0.5039	0.0668	0	0.0029
	H	0.6839	0.7573	0.8822	0.3347	0.1191	0.0540	0.3195	0.3038	0.2336	0.5292	0.5305	0.2189	0.3179	0.0405	0	0.0009
	K	0.7873	0.5194	1.0820	0.4372	0.1125	0.0590	0.6104	0.3489	0.3178	0.5889	0.6072	0.3261	0.1823	0.0355	0	0.0007
	L	0.5098	0.7703	0.7386	0.2325	0.0580	0.0475	0.2304	0.1289	0.4627	0.2704	0.5162	0.1319	0.2256	0.0210	0	0.0006
	M	0.3466	0.3001	0.4048	0.1267	0.0297	0.0178	0.0975	0.0928	0.1005	0.2562	0.2200	0.0907	0.1519	0.0168	0	0.0003
	S SI																
	T	0.9269	1.4428	1.9123	0.0314	0.9501	1.0124	0.4421	0.6558	0.2167	1.3600	1.3462	1.3531	0.9827	0.5076	0.0005	0.7057
	O																
	B	1.0850	1.7711	2.5058	0.0226	0.9026	0.1467	0.6313	0.5874	0.2385	1.3476	1.1092	1.7600	1.0125	0.5358	0.0003	0.8134
	H																
	K	0.9505	1.6641	1.9775	0.0221	0.8711	0.4268	0.4893	0.7115	0.2499	1.4459	1.3926	1.3685	1.0839	0.5286	0.0003	0.8146
	L	1.0037	1.6748	1.7512	0.0198	0.6932	0.1399	0.4344	0.7220	0.1896	1.3871	1.2568	1.1240	1.0817	0.4755	0.0002	0.8998
	M	0.1539	0.2498	0.3046	0.0054	0.0981	0.0273	0.0449	0.0865	0.0282	0.2416	0.1605	0.1729	0.1565	0.1093	0	0.1293
	S	0.9361	2.0644	2.0018	0.0346	0.9961	0.2485	0.4850	0.7761	0.2812	1.4869	1.6470	1.5443	1.0882	0.5609	0.0004	0.8743
	SI	0.6470	1.0842	1.2415	0.0217	0.7890	0.1334	0.2147	0.4357	0.1492	0.8045	0.8707	0.8091	0.6240	0.3144	0.0006	0.4841
$\begin{aligned} & \text { y } \\ & \text { n } \\ & \text { n } \\ & 0 \end{aligned}$	T	0.5096	0.7136	1.0243	0.0185	0.7842	0.9141	0.1349	0.2957	0.1312	0.5766	0.6663	0.5152	0.8246	0.2708	0	0.2399
	O	0.3870	0.1699	0.7240	0.0065	0.3111	0.0475	0.1714	0.1509	0.0319	0.3361	0.3553	0.2069	0.2678	0.1987	0	0.0760
	B	0.5602	0.8234	1.0267	0.0167	0.3668	0.1149	0.1083	0.3235	0.1546	0.5897	0.6757	0.6418	0.7985	0.2661	0	0.2599
	H	0.2952	0.5782	0.4781	0.0192	0.7242	0.1109	0.0777	0.2412	0.1967	0.4774	0.6411	0.7367	1.0811	0.6717	0	0.1297
	K	0.4731	1.0914	0.6789	0.0304	0.5211	0.1559	0.1291	0.4999	0.2622	0.7508	0.8002	0.9809	1.0551	0.2749	0	0.2825
	L	0.2449	0.5525	0.4204	0.0097	0.3990	0.0994	0.0657	0.1669	0.0878	0.2566	0.3372	0.3385	0.3029	0.2342	0	0.1513
	M	0.0904	0.1923	0.1947	0.0027	0.0606	0.0129	0.0171	0.0720	0.0241	0.0959	0.0950	0.0818	0.1172	0.0597	0	0.0355
	S	0.3903	0.7595	0.9215	0.0124	0.4697	0.3056	0.1023	0.2726	0.1618	0.4409	0.5577	0.4722	0.7303	0.2172	0	0.2691
	SI	0.4909	0.7233	0.5519	0.0284	0.4313	0.1212	0.0999	0.3918	0.2835	0.6155	0.6691	0.8131	0.7544	0.2286	0	0.2002
	T	0.6822	1.3564	2.2243	0.0184	0.2014	0.4197	0.7532	1.5577	0.4070	2.5032	0.6712	0.9157	1.1830	0.0797	0	0.4208
	O	0.6478	0.5227	0.7547	0.0096	0.0396	0.1013	0.1211	0.4436	0.1289	0.8941	0.1917	0.2343	1.2304	0.0244	0	0.1126
	B	1.5064	1.9242	3.2303	0.0414	0.1483	0.5195	0.5390	1.6398	0.3286	3.1865	0.7005	0.9932	1.1917	0.1187	0	0.5217
	H	0.9970	1.8001	3.1242	0.0253	0.7043	0.8089	0.9078	1.9534	0.3978	3.5274	0.7869	0.9715	1.6800	0.0893	0	0.4972
	K	0.7005	1.1342	2.1075	0.0144	0.1144	0.4276	0.4490	1.1550	0.1979	1.8374	0.3845	0.5046	0.7851	0.0499	0	0.2975
	L	0.6022	1.2020	2.2028	0.0205	0.1892	0.3980	0.5311	1.0138	0.2925	2.0201	0.4107	0.5650	1.9757	0.0619	0	0.2841
	M	0.6745	1.0401	1.5790	0.0130	0.0997	0.4286	0.3749	0.9119	0.3567	1.7706	0.4048	0.5540	1.0735	0.0546	0	0.2445
	S	1.2494	1.6580	2.9724	0.0148	0.2185	2.7385	0.4835	1.2724	0.3952	2.5144	0.5683	0.8460	1.6574	0.0773	0	0.3666
	SI	1.0957	2.1549	3.6146	0.0337	0.6329	1.1414	1.2216	2.1832	0.4669	4.3322	0.8626	1.1515	1.7271	0.1005	0	0.5668
	T	0.0288	0.1814	0.0870	0.0003	0.0415	0.2304	0.0121	0.0035	0.0047	0.2072	4.9455	0.2802	0.0065	0.1337	$6.23 \mathrm{E}-05$	5.5237
	O	0.0208	0.1279	0.0568	0.0003	0.0141	0.1606	0.0035	0.0019	0.0021	0.1149	2.1943	0.1256	0.0076	0.0678	0.0001	2.7566
	B	0.0315	0.1438	0.0602	0.0003	0.0008	0.0979	0.0034	0.0028	0.0017	0.1871	3.2082	0.1703	0.0054	0.1111	0.0005	3.8057
	H	0.0312	0.1380	0.0708	$1.41 \mathrm{E}-04$	0.0005	0.0721	0.0031	0.0019	0.0037	0.1603	3.7571	0.1303	0.0071	0.0847	$2.36 \mathrm{E}-05$	5.1355
	K	0.0255	0.2159	0.0726	$1.14 \mathrm{E}-04$	0.0047	0.2221	0.0055	0.0019	0.0036	0.2123	6.0289	0.2877	0.0051	0.1310	$2.84 \mathrm{E}-05$	6.5926
	L	0.0151	0.1242	0.0513	4.39E-05	0.0061	0.0568	0.0052	0.0011	0.0013	0.1412	3.2890	0.1184	0.0021	0.0877	$2.68 \mathrm{E}-05$	4.2797
	M																
	SI																

		DNA transposons				LTRs			Other RT	LINEs					SINEs		
		Others	TcMar	hat	RC/Helitron	Other	ERV	Gypsy		Other	CR1-L3	L2	RTE	L1	Other	Alu-SVA	MIR
	T	0.0061	0.1068	0.1927	0.0003	0.0128	1.8863	0.0089	0.0003	0.0004	0.4062	0.9771	0.2730	2.5529	0.2398	$6.39 \mathrm{E}-05$	1.7327
	O	0.0073	0.1492	0.2440	0.0004	0.0205	2.2605	0.0062	0.0005	0.0002	0.5159	1.2885	0.3067	3.1754	0.1353	9.29E-05	2.8659
	B	0.0192	0.2065	0.3482	0.0005	0.0190	2.2953	0.0117	0.0037	0.0006	0.7899	2.2415	0.3990	5.6226	0.1664	0.0003	3.9917
	H	0.0020	0.0548	0.1031	0.0010	0.0036	0.6128	0.0012	0.0002	$7.21 \mathrm{E}-05$	0.2093	0.5673	0.1339	1.1564	0.0531	$1.44 \mathrm{E}-05$	1.2870
	K	0.0044	0.0947	0.1736	0.0011	0.0057	1.2520	0.0031	0.0004	0.0002	0.3365	0.8960	0.1782	2.3155	0.0965	5.48E-05	2.0670
	L	0.0031	0.0636	0.1235	0.0006	0.0040	1.1371	0.0019	0.0001	$9.31 \mathrm{E}-05$	0.2358	0.6593	0.1389	1.7932	0.0719	$1.69 \mathrm{E}-05$	1.7349
	M	0.0022	0.0524	0.0851	0.0007	0.0023	0.4946	0.0008	0.0000	4.37E-05	0.1747	0.4724	0.1095	0.9429	0.0447	2.62E-05	1.1341
	S	0.0166	0.4186	0.6204	0.0007	0.0280	3.6841	0.0095	0.0009	0.0010	1.2497	2.9043	0.8874	7.2454	0.3302	0.0021	6.0366
	SI																
	T	0.0111	0.1893	0.3147	0.0014	0.0068	1.1687	0.0196	0.0006	0.0005	0.0727	0.5458	0.0249	1.3424	0.0131	1.4345	0.5605
	O	0.0080	0.1703	0.2750	0.0012	0.0049	0.6182	0.0097	0.0005	0.0007	0.0659	0.4520	0.0206	0.9571	0.0089	1.0552	0.4879
	B	0.0036	0.0886	0.1252	0.0007	0.0025	0.3920	0.0069	0.0003	0.0002	0.0290	0.2357	0.0086	0.6418	0.0046	0.4330	0.1986
	H	0.0028	0.0579	0.0966	0.0004	0.0018	0.2484	0.0054	$1.06 \mathrm{E}-04$	$8.74 \mathrm{E}-05$	0.0232	0.1660	0.0071	0.3173	0.0027	0.4267	0.1854
	K	0.0027	0.0634	0.1015	0.0006	0.0022	0.3274	0.0071	$1.46 \mathrm{E}-04$	0.0004	0.0226	0.1977	0.0068	0.4537	0.0025	0.3885	0.1747
	L	0.0020	0.0723	0.0948	0.0007	0.0018	0.2605	0.0058	0.0003	0.0002	0.0217	0.1616	0.0086	0.4669	0.0023	0.3411	0.1657
	M	0.0011	0.0383	0.0655	0.0003	0.0008	0.1712	0.0020	$6.87 \mathrm{E}-05$	5.89E-05	0.0153	0.1336	0.0033	0.1941	0.0014	0.3757	0.1182
	S	0.0073	0.1719	0.2835	0.0012	0.0042	0.6596	0.0103	0.0004	0.0003	0.0620	0.4979	0.0207	1.0387	0.0109	1.5845	0.5259
	SI	0.0063	0.1345	0.2145	0.0013	0.0036	0.5017	0.0095	0.0008	0.0004	0.0480	0.3472	0.0156	0.7932	0.0084	0.9378	0.3952
$\begin{aligned} & \text { n} \\ & \text { n } \\ & \text { n } \end{aligned}$	T	0.0042	0.0566	0.0020	0.0006	0.0026	2.7115	0.0032	3.50E-06	$9.79 \mathrm{E}-05$	0.0249	0.2121	0.0023	1.4456	1.8103	1.0724	0.2688
	O	0.0009	0.0270	0.0005	0.0002	0.0005	1.3816	0.0009	0	2.95E-05	0.0114	0.1086	0.0008	0.5858	1.2336	0.7000	0.1421
	B	0.0081	0.1336	0.0054	0.0011	0.0039	3.1699	0.0050	$1.76 \mathrm{E}-04$	0.0006	0.0485	0.3546	0.0055	3.0069	3.2594	1.9833	0.4763
	H	0.0013	0.0341	0.0008	0.0002	0.0009	1.1181	0.0014	$1.70 \mathrm{E}-05$	$3.73 \mathrm{E}-05$	0.0146	0.0911	0.0010	0.6260	1.1101	0.7138	0.1539
	K	0.0012	0.0278	0.0006	0.0003	0.0006	1.2360	0.0009	$1.29 \mathrm{E}-05$	1.61E-05	0.0126	0.0831	0.0009	0.6385	1.1342	0.6548	0.1399
	L	0.0004	0.0170	0.0002	0.0001	0.0002	0.7832	0.0005	$9.06 \mathrm{E}-06$	4.53E-06	0.0073	0.0430	0.0007	0.4181	0.7617	0.3441	0.0679
	M	0.0010	0.0185	0.0007	0.0003	0.0003	0.5461	0.0006	0	$1.39 \mathrm{E}-05$	0.0129	0.0401	0.0007	0.3661	0.6006	0.4196	0.0866
	S	0.0013	0.0236	0.0007	0.0006	0.0002	0.8512	0.0004	0	$1.68 \mathrm{E}-05$	0.0064	0.0422	0.0010	0.4369	0.7803	0.5855	0.0861
	SI	0.0005	0.0131	0.0003	0.0002	0.0002	0.7982	0.0005	0	7.46E-06	0.0119	0.0520	0.0004	0.4039	0.7186	0.3488	0.0756

Supplementary file 6. Linear model testing of a correlation between the fraction of TEs in germline tissue transcriptomes (after normalization) and genomic abundance of major TE subfamilies.

	Testis	
Total-TE transcripts vs total genomic abundance (\%)	Adjusted R-squared	p -value
Danio rerio	0.91	$2.12 \mathrm{E}-08$
Xenopus laevis	0.94	$2.54 \mathrm{E}-10$
Alligator mississippiensis	0.86	$1.40 \mathrm{E}-07$
Gallus gallus	0.97	$2.93 \mathrm{E}-10$
Anolis carolinensis	0.38	0.009
Boa constrictor	0.31	0.014
Python molurus	0.23	0.035
Crotalus viridis	0.92	$2.51 \mathrm{E}-09$
Ornithorhynchus anatinus	0.98	$2.69 \mathrm{E}-14$
Monodelphis domestica	0.95	$9.01 \mathrm{E}-11$
Homo sapiens	0.87	$6.97 \mathrm{E}-08$
Mus musculus	0.54	$6.81 \mathrm{E}-04$

Ovary	
Adjusted R-squared	p-value
0.88	$1.57 \mathrm{E}-07$
0.95	$1.46 \mathrm{E}-10$
0.83	$6.50 \mathrm{E}-07$
0.65	$5.68 \mathrm{E}-04$
0.21	0.048
0.16	0.066
0.44	0.003
0.96	$1.08 \mathrm{E}-11$
0.91	$7.44 \mathrm{E}-09$
0.84	$3.01 \mathrm{E}-07$
0.37	0.007

	Testis	
Recent-TE transcripts vs recent- TE genomic abudance (\%)	Adjusted R-squared	p-value
Danio rerio	0.57	0.001
Xenopus laevis	0.66	$1.32 \mathrm{E}-04$
Alligator mississippiensis	0.69	$3.99 \mathrm{E}-05$
Gallus gallus	0.64	0.010
Anolis carolinensis	0.24	0.036
Boa constrictor	0.93	$5.51 \mathrm{E}-09$
Python molurus	0.82	$2.51 \mathrm{E}-06$
Crotalus viridis	0.84	$1.07 \mathrm{E}-06$
Ornithorhynchus anatinus	0.99	$1.18 \mathrm{E}-11$
Monodelphis domestica	0.22	0.068
Homo sapiens	0.58	0.001
Mus musculus	0.77	$2.36 \mathrm{E}-04$

Ovary	
Adjusted R-squared	p-value
0.22	0.050
0.49	0.002
0.60	$2.74 \mathrm{E}-04$
0.33	0.078
0.04	0.228
0.71	$5.36 \mathrm{E}-05$
0.84	$1.17 \mathrm{E}-06$
0.94	$3.77 \mathrm{E}-08$
0.16	0.110
0.25	0.048
0.12	0.160

	Testis		
Recent-TE transcripts vs total genomic abudance (\%)	Adjusted R-squared	p-value	
Danio rerio	0.44	0.004	
Xenopus laevis	0.18	0.056	
Alligator mississippiensis	-0.05	0.590	
Gallus gallus	0.09	0.162	
Anolis carolinensis	-0.08	0.893	
Boa constrictor	0.05	0.194	
Python molurus	0.13	0.095	
Crotalus viridis	0.34	0.010	
Ornithorhynchus anatinus	0.92	$3.03 \mathrm{E}-09$	
Monodelphis domestica	0.29	0.018	
Homo sapiens	0.77	$5.69 \mathrm{E}-06$	
Mus musculus	0.92	$1.85 \mathrm{E}-09$	

Ovary	
Adjusted R-squared	p -value
0.05	0.212
0.02	0.284
-0.06	0.738
-0.06	0.605
-0.08	0.886
0.15	0.078
0.58	$3.81 \mathrm{E}-04$
0.97	$9.88 \mathrm{E}-13$
0.24	0.032
0.64	$1.32 \mathrm{E}-04$
0.44	0.003

Supplementary File 7. Relationship between recent-TE and silencing mechanism expression levels in the germline across vertebrate species. Percentages (left) were calculated after within-species RNAseq data normalization in DESeq2. Multiple linear regression analyses (right) were performed after testing that model assumptions (e.g., normality) where not violated; when necessary, data were log2-transformed to meet the model assumptions.

	Linear Model		PIC	
Testis	Adj. R^2	P-val	Adj. R^2	P-val
Total regulators	0.393	0.0173	0.571	0.0043
PIWI	0.409	0.0150	0.413	0.0196
siRNA	-0.088	0.7448	0.144	0.1357
Transcription	0.357	0.0238	0.389	0.0239
Post-Transcription	-0.056	0.5314	-0.111	0.9759

	Linear Model		PIC	
Ovary	Adj. R^2	P-val	Adj. R^2	P-val
Total regulators	-0.1041	0.8158	-0.117	0.8167
PIWI	0.08926	0.193	-0.1226	0.8998
siRNA	-0.08073	0.6271	-0.1206	0.8638
Transcription	-0.09962	0.7661	-0.0011	0.3489
Post-Transcription	-0.09589	0.7318	-0.05284	0.4802

Testis	TE	Total regulators	PIWI pathway	siRNA pathway	Transcriptional regulation	Post-transcriptional regulation
Danio rerio	1.9380	1.1932	0.7399	0.0439	0.3480	0.0613
Xenopus laevis	0.0175	0.3669	0.1958	0.0160	0.1080	0.0471
Alligator mississippiensis	0.0626	0.7607	0.3999	0.0509	0.2193	0.0906
Gallus gallus	0.0490	0.2318	0.0497	0.0476	0.1185	0.0173
Anolis carolinensis	0.2529	0.2550	0.1339	0.0183	0.0740	0.0288
Boa constrictor	0.0254	0.3864	0.1101	0.0223	0.1821	0.0718
Python molurus	0.0763	0.5384	0.1666	0.0209	0.2375	0.1133
Crotalus viridis	0.2087	0.6376	0.2245	0.0234	0.2575	0.1323
Ornithorhynchus anatinus	0.1918	0.9750	0.6780	0.0804	0.1635	0.0530
Monodelphis domestica	0.0993	0.5411	0.2341	0.0427	0.1973	0.0670
Homo sapiens	0.0324	0.6829	0.2323	0.0509	0.2717	0.1280
Mus musculus	0.2356	0.6950	0.3789	0.0424	0.2054	0.0619

Ovary	TE	Total regulators	PIWI pathway	siRNA pathway	Transcriptional regulation	Post-transcriptional regulation
Danio rerio	0.0820	0.6670	0.1785	0.0373	0.3981	0.0532
Xenopus laevis	0.0072	0.6105	0.1378	0.0445	0.3118	0.1164
Alligator mississippiensis	0.0118	0.6079	0.2106	0.0554	0.2813	0.0605
Gallus gallus	0.0777	0.1819	0.0179	0.0245	0.1202	0.0219
Anolis carolinensis	0.0198	0.3225	0.1128	0.0363	0.1289	0.0446
Boa constrictor	0.0093	0.4728	0.1272	0.0309	0.2059	0.1088
Python molurus	0.0563	0.7351	0.2235	0.0721	0.3433	0.1180
Crotalus viridis	0.0605	0.3662	0.0273	0.0548	0.1832	0.1009
Ornithorhynchus anatinus	0.1581	0.4940	0.0547	0.0628	0.2336	0.1430
Monodelphis domestica	0.0225	0.5466	0.0219	0.0511	0.2082	0.2654
Homo sapiens	0.1453	0.5103	0.0178	0.0422	0.2740	0.1757
Mus musculus	0.0820	0.6670	0.1785	0.0373	0.3981	0.0532

Supplementary File 8. Phylogenetically independent contrast Spearman rank-order correlation testing for correlations between recent-TE and TE regulatory mechanism proportional expression across vertebrate species.

Correlation coefficient (ρ)							
弟	All Tissues	TE	PIWI	siRNA	Transcription	Post-Transcription	Total regulators
	TE	X	0.27	0.02	0.14	-0.18	0.12
	PIWI	0.640	X	0.44	0.42	-0.20	0.51
	siRNA	0.960	0.340	X	0.19	0.19	0.38
	Transcription	0.737	0.344	0.682	X	0.62	0.97
	Post-Transcription	0.682	0.682	0.682	0.094	X	0.64
	Total regulators	0.746	0.230	0.399	1.26E-06	0.088	X

Correlation coefficient (ρ)

Germline Tissues	TE	PIWI	siRNA	Transcription	Post-Transcription	Total regulators
TE	X	0.51	0.04	0.30	-0.34	0.24
PIWI	0.223	X	0.55	0.54	-0.01	0.77
siRNA	0.975	0.202	X	0.27	0.03	0.60
Transcription	0.504	0.202	0.551	X	0.49	0.81
Post-Transcription	0.463	0.975	0.975	0.231	X	0.41
Total regulators	0.575	0.020	0.151	0.011	0.337	X

Correlation coefficient (ρ)

Somatic Tissues	TE	PIWI	siRNA	Transcription	Post-Transcription	Total regulators
TE	X	-0.47	0.00	0.09	-0.15	-0.01
PIWI	0.240	X	0.17	0.72	0.44	0.73
siRNA	0.993	0.762	X	0.17	0.23	0.33
Transcription	0.888	0.021	0.762	X	0.62	0.92
Post-Transcription	0.762	0.274	0.699	0.074	X	0.82
Total regulators	0.993	0.020	0.490	8.92E-05	0.004	X

Correlation coefficient (ρ)

Testis	TE	PIWI	siRNA	Transcription	Post-Transcription	Total regulators
TE	X	0.56	-0.02	0.22	-0.24	0.37
PIWI	0.112	X	0.61	0.34	0.03	0.90
siRNA	0.954	0.082	X	0.12	-0.05	0.62
Transcription	0.628	0.459	0.839	X	0.67	0.61
Post-Transcription	0.617	0.954	0.954	0.065	X	0.28
Total regulators	0.418	$2.75 \mathrm{E}-04$	0.082	0.082	0.556	X

Correlation coefficient (ρ)

Ovary	TE	PIWI	siRNA	Transcription	Post-Transcription	Total regulators
TE	X	-0.37	-0.20	0.20	-0.16	0.07
PIWI	0.420	X	0.34	0.39	-0.16	0.43
siRNA	0.667	0.428	X	0.44	0.56	0.62
Transcription	0.667	0.418	0.363	X	0.34	0.91
Post-Transcription	0.677	0.677	0.204	0.428	X	0.55
Total regulators	0.830	0.363	0.158	4.60E-04	0.204	X

REFERENCES

CLC Genomics Workbench 9.0.1. https://www.qiagenbioinformatics.com/
Abrieu, A., M. Doree, and D. Fisher. 2001. The interplay between cyclin-B-Cdc2 kinase (MPF) and MAP kinase during maturation of oocytes. Journal of Cell Science 114:257-267.
Adams, R. H., H. Blackmon, J. Reyes-Velasco, D. R. Schield, D. C. Card, A. L. Andrew, N. Waynewood, and T. A. Castoe. 2016. Microsatellite landscape evolutionary dynamics across 450 million years of vertebrate genome evolution. Genome 59:295-310.
Adams, R. H., D. R. Schield, D. C. Card, and T. A. Castoe. 2018. Assessing the impacts of positive selection on coalescent-based species tree estimation and species delimitation. Systematic Biology 67(6): 1076-1090.
Agrawal, A., Q. M. Eastman, and D. G. Schatz. 1998. Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system. Nature 394:744-751.
Agren, J. A. and S. I. Wright. 2011. Co-evolution between transposable elements and their hosts: a major factor in genome size evolution? Chromosome Research 19:777-786.
Alfoldi, J., F. Di Palma, M. Grabherr, C. Williams, L. S. Kong, E. Mauceli, P. Russell, C. B. Lowe, R. E. Glor, J. D. Jaffe, et al. 2011. The genome of the green anole lizard and a comparative analysis with birds and mammals. Nature 477:587-591.
Anders, S. and W. Huber. 2010. Differential expression analysis for sequence count data. Genome Biology 11.
Anders, S., D. J. McCarthy, Y. S. Chen, M. Okoniewski, G. K. Smyth, W. Huber, and M. D. Robinson. 2013. Count-based differential expression analysis of RNA sequencing data using R and Bioconductor. Nature Protocols 8:1765-1786.
Andrew, A. L., B. W. Perry, D. C. Card, D. R. Schield, R. P. Ruggiero, S. E. McGaugh, A. Choudhary, S. M. Secor, and T. A. Castoe. 2017. Growth and stress response mechanisms underlying post-feeding regenerative organ growth in the Burmese python. BMC Genomics 18:338.
Andrews, S. 2010. FastQC: a quality control tool for high throughput sequence data.
Anwar, S. L., W. Wulaningsih, and U. Lehmann. 2017. Transposable elements in human cancer: Causes and consequences of deregulation. International Journal of Molecular Sciences 18.

Aravin, A. and T. Tuschl. 2005. Identification and characterization of small RNAs involved in RNA silencing. FEBS Lett 579:5830-5840.
Aravin, A. A., R. Sachidanandam, D. Bourc'his, C. Schaefer, D. Pezic, K. F. Toth, T. Bestor, and G. J. Hannon. 2008. A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice. Molecular Cell 31:785-799.
Backstrom, N., W. Forstmeier, H. Schielzeth, H. Mellenius, K. Nam, E. Bolund, M. T. Webster, T. Ost, M. Schneider, B. Kempenaers, et al. 2010. The recombination landscape of the zebra finch Taeniopygia guttata genome. Genome Research 20:485-495.
Baillie, J. K., M. W. Barnett, K. R. Upton, D. J. Gerhardt, T. A. Richmond, F. De Sapio, P. M. Brennan, P. Rizzu, S. Smith, M. Fell, et al. 2011. Somatic retrotransposition alters the genetic landscape of the human brain. Nature 479:534-537.

Baker, R. J., J. J. Bull, and G. A. Mengden. 1972. Karyotypic studies of 38 species of NorthAmerican snakes. Copeia:257-265.
Bao, W., K. K. Kojima, and O. Kohany. 2015. Repbase Update, a database of repetitive elements in eukaryotic genomes. Mob DNA 6:11.
Barron, M. G., A. S. Fiston-Lavier, D. A. Petrov, and J. Gonzalez. 2014. Population genomics of transposable elements in drosophila. Annual Review of Genetics, Vol 48 48:561-581.
Beck, C. R., J. L. Garcia-Perez, R. M. Badge, and J. V. Moran. 2011. LINE-1 elements in structural variation and disease. Annual Review of Genomics and Human Genetics, Vol 12 12:187-215.
Beckstette, M., R. Homann, R. Giegerich, and S. Kurtz. 2006. Fast index based algorithms and software for matching position specific scoring matrices. BMC Bioinformatics 7.
Bedrosian, T. A., S. Linker, and F. H. Gage. 2016. Environment-driven somatic mosaicism in brain disorders. Genome Medicine 8.
Bellott, D. W., H. Skaletsky, T. J. Cho, L. Brown, D. Locke, N. Chen, S. Galkina, T. Pyntikova, N. Koutseva, T. Graves, et al. 2017. Avian W and mammalian Y chromosomes convergently retained dosage-sensitive regulators. Nature Genetics 49:387-394.
Benton, M. J. and P. C. J. Donoghue. 2007. Paleontological evidence to date the tree of life. Molecular Biology and Evolution 24:26-53.
Bernt, M., A. Donath, F. Juhling, F. Externbrink, C. Florentz, G. Fritzsch, J. Putz, M. Middendorf, and P. F. Stadler. 2013. MITOS: improved de novo metazoan mitochondrial genome annotation. Mol Phylogenet Evol 69:313-319.
Blanchette, M., W. J. Kent, C. Riemer, L. Elnitski, A. F. A. Smit, K. M. Roskin, R. Baertsch, K. Rosenbloom, H. Clawson, E. D. Green, et al. 2004. Aligning multiple genomic sequences with the threaded blockset aligner. Genome Research 14:708-715.
Blass, E., M. Bell, and S. Boissinot. 2012. Accumulation and rapid decay of Non-LTR retrotransposons in the genome of the three-spine stickleback. Genome Biology and Evolution 4:687-702.
Blumenstiel, J. P., X. Chen, M. M. He, and C. M. Bergman. 2014. An age-of-allele test of neutrality for transposable element insertions. Genetics 196:523-538.
Boetzer, M., C. V. Henkel, H. J. Jansen, D. Butler, and W. Pirovano. 2011. Scaffolding preassembled contigs using SSPACE. Bioinformatics 27:578-579.
Boissinot, S., J. Davis, A. Entezam, D. Petrov, and A. V. Furano. 2006. Fitness cost of LINE-1 (L1) activity in humans. PNAS 103:9590-9594.
Boissinot, S., A. Entezam, and A. V. Furano. 2001. Selection against deleterious LINE-1containing loci in the human lineage. Molecular Biology and Evolution 18:926-935.
Boitard, S., W. Rodriguez, F. Jay, S. Mona, and F. Austerlitz. 2016. Inferring population size history from large samples of genome-wide molecular data - an approximate Bayesian computation approach. Plos Genetics 12: 1005877.
Bolger, A. M., M. Lohse, and B. Usadel. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114-2120.
Bouckaert, R., J. Heled, D. Kuhnert, T. Vaughan, C. H. Wu, D. Xie, M. A. Suchard, A. Rambaut, and A. J. Drummond. 2014. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput Biol 10:e1003537.

Bourque, G., B. Leong, V. B. Vega, X. Chen, Y. L. Lee, K. G. Srinivasan, J. L. Chew, Y. Ruan, C. L. Wei, H. H. Ng, et al. 2008. Evolution of the mammalian transcription factor binding repertoire via transposable elements. Genome Research 18:1752-1762.
Braasch, I., A. R. Gehrke, J. J. Smith, K. Kawasaki, T. Manousaki, J. Pasquier, A. Amores, T. Desvignes, P. Batzel, J. Catchen, et al. 2016. The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons. Nature Genetics 48(4):427.
Bradnam, K. R., J. N. Fass, A. Alexandrov, P. Baranay, M. Bechner, I. Birol, S. Boisvert, J. A. Chapman, G. Chapuis, R. Chikhi, et al. 2013. Assemblathon 2: evaluating de novo methods of genome assembly in three vertebrate species. Gigascience 2:10.
Brouha, B., J. Schustak, R. M. Badge, S. Lutz-Prigge, A. H. Farley, J. V. Moran, and H. H. Kazazian, Jr. 2003. Hot L1s account for the bulk of retrotransposition in the human population. Proc Natl Acad Sci U S A 100:5280-5285.
Burns, K. H. 2017. Transposable elements in cancer. Nat Rev Cancer 17:415-424.
Bushnell, B. 2014. BBMap: a fast, accurate, splice-aware aligner. Lawrence Berkeley National Lab.(LBNL), Berkeley, CA (United States).
Callinan, P. A. and M. A. Batzer. 2006. Retrotransposable elements and human disease. Genome Dyn 1:104-115.
Canapa, A., M. Barucca, M. A. Biscotti, M. Forconi, and E. Olmo. 2016. Transposons, genome size, and evolutionary insights in animals. Cytogenetic and Genome Research 147:217239.

Cantarel, B. L., I. Korf, S. M. C. Robb, G. Parra, E. Ross, B. Moore, C. Holt, A. S. Alvarado, and M. Yandell. 2008. MAKER: An easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Research 18:188-196.
Caporaso, J. G., J. Kuczynski, J. Stombaugh, K. Bittinger, F. D. Bushman, E. K. Costello, N. Fierer, A. G. Pena, J. K. Goodrich, J. I. Gordon, et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335-336.
Carbon, S., A. Ireland, C. J. Mungall, S. Shu, B. Marshall, S. Lewis, G. O. H. Ami, and G. Web Presence Working. 2009. AmiGO: online access to ontology and annotation data. Bioinformatics 25:288-289.
Card, D. C., R. H. Adams, D. R. Schield, B. W. Perry, A. B. Corbin, G. I. Pasquesi, K. Row, M. J. Van Kleeck, J. M. Daza, and W. Booth. 2019. Genomic basis of convergent island phenotypes in boa constrictors. Genome Biology and Evolution.
Casewell, N. R., R. A. Harrison, W. Wuster, and S. C. Wagstaff. 2009. Comparative venom gland transcriptome surveys of the saw-scaled vipers (Viperidae: Echis) reveal substantial intra-family gene diversity and novel venom transcripts. BMC Genomics 10.
Casewell, N. R., G. A. Huttley, and W. Wuster. 2012. Dynamic evolution of venom proteins in squamate reptiles. Nature Communications 3.
Casewell, N. R., S. C. Wagstaff, R. A. Harrison, C. Renjifo, and W. Wuster. 2011. Domain loss facilitates accelerated evolution and neofunctionalization of duplicate snake venom metalloproteinase toxin genes. Molecular Biology and Evolution 28:2637-2649.
Casper, J., A. S. Zweig, C. Villarreal, C. Tyner, M. L. Speir, K. R. Rosenbloom, B. J. Raney, C. M. Lee, B. T. Lee, D. Karolchik, et al. 2018. The UCSC Genome Browser database: 2018 update. Nucleic Acids Res 46:D762-D769.

Castoe, T. A., A. P. J. de Koning, K. T. Hall, D. C. Card, D. R. Schield, M. K. Fujita, R. P. Ruggiero, J. F. Degner, J. M. Daza, W. J. Gu, et al. 2013. The Burmese python genome reveals the molecular basis for extreme adaptation in snakes. PNAS 110:20645-20650.
Castoe, T. A., K. T. Hall, M. L. G. Mboulas, W. J. Gu, A. P. J. de Koning, S. E. Fox, A. W. Poole, V. Vemulapalli, J. M. Daza, T. Mockler, et al. 2011. Discovery of highly divergent repeat landscapes in snake genomes using high-throughput sequencing. Genome Biology and Evolution 3:641-653.
Castoe, T. A., A. W. Poole, W. Gu, A. P. Jason de Koning, J. M. Daza, E. N. Smith, and D. D. Pollock. 2010. Rapid identification of thousands of copperhead snake (Agkistrodon contortrix) microsatellite loci from modest amounts of 454 shotgun genome sequence. Mol Ecol Resour 10:341-347.
Chalopin, D., M. Naville, F. Plard, D. Galiana, and J. N. Volff. 2015. Comparative analysis of transposable elements highlights mobilome diversity and evolution in vertebrates. Genome Biology and Evolution 7:567-580.
Chapman, J. A., I. Ho, S. Sunkara, S. J. Luo, G. P. Schroth, and D. S. Rokhsar. 2011. Meraculous: de novo genome assembly with short paired-end reads. PLoS One 6.
Charlesworth, B. 2009. Effective population size and patterns of molecular evolution and variation. Nature Reviews Genetics 10:195-205.
Charlesworth, B., P. Sniegowski, and W. Stephan. 1994. The evolutionary dynamics of repetitive DNA in Eukaryotes. Nature 371:215-220.
Chuong, E. B., N. C. Elde, and C. Feschotte. 2016. Regulatory activities of transposable elements: from conflicts to benefits. Nat Rev Genet.
Clark, K., I. Karsch-Mizrachi, D. J. Lipman, J. Ostell, and E. W. Sayers. 2016. GenBank. Nucleic Acids Res 44:D67-72.
Cohn, M. J. and C. Tickle. 1999. Developmental basis of limblessness and axial patterning in snakes. Nature 399:474-479.
Consortium, E. P. 2012. An integrated encyclopedia of DNA elements in the human genome. Nature 489:57-74.
Cordaux, R. and M. A. Batzer. 2009. The impact of retrotransposons on human genome evolution. Nat Rev Genet 10:691-703.
Danecek, P., A. Auton, G. Abecasis, C. A. Albers, E. Banks, M. A. DePristo, R. E. Handsaker, G. Lunter, G. T. Marth, S. T. Sherry, et al. 2011. The variant call format and VCFtools. Bioinformatics 27:2156-2158.
Darrow, E. M., M. H. Huntley, O. Dudchenko, E. K. Stamenova, N. C. Durand, Z. Sun, S. C. Huang, A. L. Sanborn, I. Machol, M. Shamim, et al. 2016. Deletion of DXZ4 on the human inactive X chromosome alters higher-order genome architecture. PNAS 113:E4504-E4512.
De Cecco, M., S. W. Criscione, A. L. Peterson, N. Neretti, J. M. Sedivy, and J. A. Kreiling. 2013. Transposable elements become active and mobile in the genomes of aging mammalian somatic tissues. Aging (Albany NY) 5:867-883.
de Koning, A. P. J., W. J. Gu, T. A. Castoe, M. A. Batzer, and D. D. Pollock. 2011. Repetitive elements may comprise over two-thirds of the human genome. Plos Genetics 7.
Deakin, J. E., M. J. Edwards, H. Patel, D. O'Meally, J. M. Lian, R. Stenhouse, S. Ryan, A. M. Livernois, B. Azad, C. E. Holleley, et al. 2016. Anchoring genome sequence to chromosomes of the central bearded dragon (Pogona vitticeps) enables reconstruction of
ancestral squamate macrochromosomes and identifies sequence content of the Z chromosome. BMC Genomics 17.
Deininger, P., M. E. Morales, T. B. White, M. Baddoo, D. J. Hedges, G. Servant, S. Srivastav, M. E. Smither, M. Concha, D. L. DeHaro, et al. 2017. A comprehensive approach to expression of L1 loci. Nucleic Acids Res 45:e31.
Dixon, J. R., D. U. Gorkin, and B. Ren. 2016. Chromatin domains: The unit of chromosome organization. Molecular Cell 62:668-680.
Djebali, S., C. A. Davis, A. Merkel, A. Dobin, T. Lassmann, A. Mortazavi, A. Tanzer, J. Lagarde, W. Lin, F. Schlesinger, et al. 2012. Landscape of transcription in human cells. Nature 489:101-108.
Dobin, A., C. A. Davis, F. Schlesinger, J. Drenkow, C. Zaleski, S. Jha, P. Batut, M. Chaisson, and T. R. Gingeras. 2013. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15-21.
Dowell, N. L., M. W. Giorgianni, V. A. Kassner, J. E. Selegue, E. E. Sanchez, and S. B. Carroll. 2016. The deep origin and recent loss of venom toxin genes in rattlesnakes. Current Biology 26:2434-2445.
Drummond, A. J. and A. Rambaut. 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214.
Dunn, C. W., F. Zapata, C. Munro, S. Siebert, and A. Hejnol. 2018. Pairwise comparisons across species are problematic when analyzing functional genomic data. PNAS 115:E409-E417.
Durand, N. C., M. S. Shamim, I. Machol, S. S. P. Rao, M. H. Huntley, E. S. Lander, and E. L. Aiden. 2016. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Systems 3:95-98.
Duret, L. and N. Galtier. 2009. Biased gene conversion and the evolution of mammalian genomic landscapes. Annual Review of Genomics and Human Genetics 10:285-311.
Edgar, R. C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792-1797.
Elliott, T. A. and T. R. Gregory. 2015. What's in a genome? The C-value enigma and the evolution of eukaryotic genome content. Philos Trans R Soc Lond B Biol Sci 370:20140331.
Ernst, C., D. T. Odom, and C. Kutter. 2017. The emergence of piRNAs against transposon invasion to preserve mammalian genome integrity. Nat Commun 8:1411.
Fane, M., L. Harris, A. G. Smith, and M. Piper. 2017. Nuclear factor one transcription factors as epigenetic regulators in cancer. International Journal of Cancer 140:2634-2641.
Faulkner, G. J. and V. Billon. 2018. L1 retrotransposition in the soma: a field jumping ahead. Mob DNA 9:22.
Faulkner, G. J. and J. L. Garcia-Perez. 2017. L1 mosaicism in mammals: Extent, effects, and evolution. TRENDS in Genetics 33:802-816.
Faulkner, G. J., Y. Kimura, C. O. Daub, S. Wani, C. Plessy, K. M. Irvine, K. Schroder, N. Cloonan, A. L. Steptoe, T. Lassmann, et al. 2009. The regulated retrotransposon transcriptome of mammalian cells. Nature Genetics 41:563-571.
Feldman, A., N. Sabath, R. A. Pyron, I. Mayrose, and S. Meiri. 2016. Body sizes and diversification rates of lizards, snakes, amphisbaenians and the tuatara. Global Ecology and Biogeography 25:187-197.

Figuet, E., B. Nabholz, M. Bonneau, E. M. Carrio, K. Nadachowska-Brzyska, H. Ellegren, and N. Galtier. 2016. Life history traits, protein evolution, and the nearly neutral theory in Amniotes. Molecular Biology and Evolution 33:1517-1527.
Fryxell, K. J. and W. J. Moon. 2005. CpG mutation rates in the human genome are highly dependent on local GC content. Molecular Biology and Evolution 22:650-658.
Fujita, M. K., S. V. Edwards, and C. P. Ponting. 2011. The Anolis lizard genome: an amniote genome without isochores. Genome Biology and Evolution 3:974-984.
Gamble, T., T. A. Castoe, S. V. Nielsen, J. L. Banks, D. C. Card, D. R. Schield, G. W. Schuett, and W. Booth. 2017. The discovery of XY sex chromosomes in a boa and python. Current Biology 27:2148-2153.
Gao, J., Q. Li, Z. Wang, Y. Zhou, P. Martelli, F. Li, Z. Xiong, J. Wang, H. Yang, and G. Zhang. 2017. Sequencing, de novo assembling, and annotating the genome of the endangered Chinese crocodile lizard Shinisaurus crocodilurus. Gigascience 6:gix041.
Garcia-Perez, J. L., T. J. Widmann, and I. R. Adams. 2016. The impact of transposable elements on mammalian development. Development 143:4101-4114.
Gasior, S. L., T. P. Wakeman, B. Xu, and P. L. Deininger. 2006. The human LINE-1 retrotransposon creates DNA double-strand breaks. Journal of Molecular Biology 357:1383-1393.
Geffeney, S., E. D. Brodie, P. C. Ruben, and E. D. Brodie. 2002. Mechanisms of adaptation in a predator-prey arms race: TTX-resistant sodium channels. Science 297:1336-1339.
Georges, A., Q. Li, J. Lian, D. O'Meally, J. Deakin, Z. Wang, P. Zhang, M. Fujita, H. R. Patel, C. E. Holleley, et al. 2015. High-coverage sequencing and annotated assembly of the genome of the Australian dragon lizard Pogona vitticeps. Gigascience 4:45.
Gilbert, C., S. S. Hernandez, J. Flores-Benabib, E. N. Smith, and C. Feschotte. 2012. Rampant horizontal transfer of SPIN transposons in squamate reptiles. Molecular Biology and Evolution 29:503-515.
Gilbert, C., J. M. Meik, D. Dashevsky, D. C. Card, T. A. Castoe, and S. Schaack. 2014. Endogenous hepadnaviruses, bornaviruses and circoviruses in snakes. Proceedings of the Royal Society B-Biological Sciences 281.
Gilbert, C., S. Schaack, J. K. Pace, 2nd, P. J. Brindley, and C. Feschotte. 2010. A role for hostparasite interactions in the horizontal transfer of transposons across phyla. Nature 464:1347-1350.
Goodier, J. L. 2016. Restricting retrotransposons: a review. Mob DNA 7:16.
Goubert, C., J. Thomas, L. M. Payer, J. M. Kidd, J. Feusier, W. S. Watkins, K. H. Burns, L. B. Jorde, and C. Feschotte. 2019. TypeTE: a tool to genotype mobile element insertions from whole genome resequencing data. bioRxiv: 791665.
Grabherr, M. G., B. J. Haas, M. Yassour, J. Z. Levin, D. A. Thompson, I. Amit, X. Adiconis, L. Fan, R. Raychowdhury, Q. D. Zeng, et al. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology 29:644-U130.
Graves, J. A. M. 2016. Evolution of vertebrate sex chromosomes and dosage compensation. Nature Reviews Genetics 17:33-46.
Green, R. E., E. L. Braun, J. Armstrong, D. Earl, N. Nguyen, G. Hickey, M. W. Vandewege, J. A. St John, S. Capella-Gutierrez, T. A. Castoe, et al. 2014. Three crocodilian genomes reveal ancestral patterns of evolution among archosaurs. Science 346:1254449.
Gregory, T. R. 2017. Animal Genome Size Database. http://www.genomesize.com

Gronostajski, R. M. 2000. Roles of the NFI/CTF gene family in transcription and development. Gene 249:31-45.
Hackett, J. A., T. Kobayashi, S. Dietmann, and M. A. Surani. 2017. Activation of lineage regulators and transposable elements across a pluripotent spectrum. Stem Cell Reports 8:1645-1658.
Hajkova, P., S. Erhardt, N. Lane, T. Haaf, O. El-Maarri, W. Reik, J. Walter, and M. A. Surani. 2002. Epigenetic reprogramming in mouse primordial germ cells. Mechanisms of Development 117:15-23.
Handel, M. A. and J. C. Schimenti. 2010. Genetics of mammalian meiosis: regulation, dynamics and impact on fertility. Nat Rev Genet 11:124-136.
Hangauer, M. J., I. W. Vaughn, and M. T. McManus. 2013. Pervasive transcription of the human genome produces thousands of previously unidentified long intergenic noncoding RNAs. Plos Genetics 9: 1003569.
Hanna, C. B. and J. D. Hennebold. 2014. Ovarian germline stem cells: an unlimited source of oocytes? Fertil Steril 101:20-30.
Hargreaves, A. D., M. T. Swain, M. J. Hegarty, D. W. Logan, and J. F. Mulley. 2014. Genomic and transcriptomic insights into the regulation of snake venom production. bioRxiv:008474.
Harrell, F. H. J. 2019. Hmisc V4.2-0.
Harris, R. S. 2007. Improved pairwise alignmnet of genomic DNA.
He, J., X. Fu, M. Zhang, F. He, W. Li, M. M. Abdul, J. Zhou, L. Sun, C. Chang, Y. Li, et al. 2019. Transposable elements are regulated by context-specific patterns of chromatin marks in mouse embryonic stem cells. Nat Coттии 10:34.
Hellen, E. H. and J. F. Brookfield. 2013. Alu elements in primates are preferentially lost from areas of high GC content. PeerJ 1:e78.
Hillier, L. W., W. Miller, E. Birney, W. Warren, R. C. Hardison, C. P. Ponting, P. Bork, D. W. Burt, M. A. M. Groenen, M. E. Delany, et al. 2004. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432:695-716.
Houwing, S., L. M. Kamminga, E. Berezikov, D. Cronembold, A. Girard, H. van den Elst, D. V. Filippov, H. Blaser, E. Raz, C. B. Moens, et al. 2007. A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in Zebrafish. Cell 129:69-82.
Huang, C. R. L., K. H. Burns, and J. D. Boeke. 2012. Active transposition in genomes. Annual Review of Genetics, Vol 46 46:651-675.
Hutchins, A. P. and D. Pei. 2015. Transposable elements at the center of the crossroads between embryogenesis, embryonic stem cells, reprogramming, and long non-coding RNAs. Sci Bull (Beijing) 60:1722-1733.
Ikeda, N., T. Chijiwa, K. Matsubara, N. Oda-Ueda, S. Hattori, Y. Matsuda, and M. Ohno. 2010. Unique structural characteristics and evolution of a cluster of venom phospholipase A2 isozyme genes of Protobothrops flavoviridis snake. Gene 461:15-25.
Jacobs, F. M. J., D. Greenberg, N. Nguyen, M. Haeussler, A. D. Ewing, S. Katzman, B. Paten, S. R. Salama, and D. Haussler. 2014. An evolutionary arms race between KRAB zinc-finger genes ZNF91/93 and SVA/L1 retrotransposons. Nature 516:242.
Jiao, W. B., G. G. Accinelli, B. Hartwig, C. Kiefer, D. Baker, E. Severing, E. M. Willing, M. Piednoel, S. Woetzel, E. Madrid-Herrero, et al. 2017. Improving and correcting the
contiguity of long-read genome assemblies of three plant species using optical mapping and chromosome conformation capture data. Genome Research 27:778-786.
Jin, Y., O. H. Tam, E. Paniagua, and M. Hammell. 2015. TEtranscripts: a package for including transposable elements in differential expression analysis of RNA-seq datasets. Bioinformatics 31:3593-3599.
Johnson, M., I. Zaretskaya, Y. Raytselis, Y. Merezhuk, S. McGinnis, and T. L. Madden. 2008. NCBI BLAST: a better web interface. Nucleic Acids Res 36:W5-9.
Julien, P., D. Brawand, M. Soumillon, A. Necsulea, A. Liechti, F. Schutz, T. Daish, F. Grutzner, and H. Kaessmann. 2012. Mechanisms and evolutionary patterns of mammalian and avian dosage compensation. Plos Biology 10:e1001328.
Jurka, J., V. V. Kapitonov, A. Pavlicek, P. Klonowski, O. Kohany, and J. Walichiewicz. 2005. Repbase update, a database of eukaryotic repetitive elements. Cytogenetic and Genome Research 110:462-467.
Kapusta, A., A. Suh, and C. Feschotte. 2017. Dynamics of genome size evolution in birds and mammals. PNAS 114:E1460-E1469.
Kato, Y., M. Kaneda, K. Hata, K. Kumaki, M. Hisano, Y. Kohara, M. Okano, E. Li, M. Nozaki, and H. Sasaki. 2007. Role of the Dnmt3 family in de novo methylation of imprinted and repetitive sequences during male germ cell development in the mouse. Human Molecular Genetics 16:2272-2280.
Kazazian, H. H. 1998. Mobile elements and disease. Current Opinion in Genetics \& Development 8:343-350.
Kent, W. J., R. Baertsch, A. Hinrichs, W. Miller, and D. Haussler. 2003. Evolution's cauldron: Duplication, deletion, and rearrangement in the mouse and human genomes. PNAS 100:11484-11489.
Kerchove, C. M., M. S. Luna, M. B. Zablith, M. F. Lazari, S. S. Smaili, and N. Yamanouye. 2008. $\alpha 1$-adrenoceptors trigger the snake venom production cycle in secretory cells by activating phosphatidylinositol 4, 5-bisphosphate hydrolysis and ERK signaling pathway. Comparative Biochemistry and Physiology Part A: Molecular \& Integrative Physiology 150:431-437.
Kim, M. and W. McGinnis. 2011. Phosphorylation of Grainy head by ERK is essential for wound-dependent regeneration but not for development of an epidermal barrier. PNAS 108:650-655.
Kirino, Y., N. Kim, M. de Planell-Saguer, E. Khandros, S. Chiorean, P. S. Klein, I. Rigoutsos, T. A. Jongens, and Z. Mourelatos. 2009. Arginine methylation of Piwi proteins catalysed by dPRMT5 is required for Ago3 and Aub stability. Nature Cell Biology 11:652-U478.
Kohany, O., A. J. Gentles, L. Hankus, and J. Jurka. 2006. Annotation, submission and screening of repetitive elements in Repbase: RepbaseSubmitter and Censor. BMC Bioinformatics 7:474.
Kolde, R. 2012. Pheatmap: pretty heatmaps. R package version 61:915.
Kopylova, E., L. Noe, and H. Touzet. 2012. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28:3211-3217.
Kordis, D. and F. Gubensek. 1997. Bov-B long interspersed repeated DNA (LINE) sequences are present in Vipera ammodytes phospholipase A2 genes and in genomes of Viperidae snakes. Eur J Biochem 246:772-779.

Kordis, D. and F. Gubensek. 1998. Unusual horizontal transfer of a long interspersed nuclear element between distant vertebrate classes. PNAS 95:10704-10709.
Kordis, D. and F. Gubenšek. 1998. The Bov-B lines found in Vipera ammodytes toxic PLA2 genes are widespread in snake genomes. Toxicon 36:1585-1590.
Kreiling, J. A., B. C. Jones, J. G. Wood, M. De Cecco, S. W. Criscione, N. Neretti, S. L. Helfand, and J. M. Sedivy. 2017. Contribution of retrotransposable elements to aging. Pp. 297-321. Human retrotransposons in health and disease. Springer.
Kumar, S., G. Stecher, M. Suleski, and S. B. Hedges. 2017. TimeTree: A resource for timelines, timetrees, and divergence times. Molecular Biology and Evolution 34:1812-1819.
Lachumanan, R., A. Armugam, C. H. Tan, and K. Jeyaseelan. 1998. Structure and organization of the cardiotoxin genes in Naja naja sputatrix. Febs Letters 433:119-124.
Lanfear, R., B. Calcott, S. Y. Ho, and S. Guindon. 2012. Partitionfinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution 29:1695-1701.
Larkin, M. A., G. Blackshields, N. P. Brown, R. Chenna, P. A. McGettigan, H. McWilliam, F. Valentin, I. M. Wallace, A. Wilm, R. Lopez, et al. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23:2947-2948.

Le Rouzic, A., T. S. Boutin, and P. Capy. 2007. Long-term evolution of transposable elements. PNAS 104:19375-19380.
Le Rouzic, A., T. Payen, and A. Hua-Van. 2013. Reconstructing the evolutionary history of transposable elements. Genome Biology and Evolution 5:77-86.
Leinonen, R., H. Sugawara, M. Shumway, and International Nucleotide Sequence Database Collaboration. 2011. The sequence read archive. Nucleic Acids Res 39:D19-21.
Levine, A. J., D. T. Ting, and B. D. Greenbaum. 2016. P53 and the defenses against genome instability caused by transposons and repetitive elements. Bioessays 38:508-513.
Li, H. and R. Durbin. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754-1760.
Li, H. and R. Durbin. 2011. Inference of human population history from individual wholegenome sequences. Nature 475:493-U484.
Li, H., B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis, R. Durbin, and 1000 Genome Project Data Processing Subgroup. 2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25:2078-2079.
Li, W. Z. and A. Godzik. 2006. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22:1658-1659.
Liao, Y., G. K. Smyth, and W. Shi. 2014. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30:923-930.
Lieberman-Aiden, E., N. L. van Berkum, L. Williams, M. Imakaev, T. Ragoczy, A. Telling, I. Amit, B. R. Lajoie, P. J. Sabo, M. O. Dorschner, et al. 2009. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326:289-293.
Lim, R. S. and T. Kai. 2015. A piece of the pi(e): The diverse roles of animal piRNAs and their PIWI partners. Semin Cell Dev Biol 47-48:17-31.
Lim, S. L., E. Tsend-Ayush, R. D. Kortschak, R. Jacob, C. Ricciardelli, M. K. Oehler, and F. Grutzner. 2013. Conservation and expression of PIWI-interacting RNA pathway genes in male and female adult gonad of amniotes. Biol Reprod 89:136.

Lin, C. Y., V. B. Vega, J. S. Thomsen, T. Zhang, S. L. Kong, M. Xie, K. P. Chiu, L. Lipovich, D. H. Barnett, F. Stossi, et al. 2007. Whole-genome cartography of estrogen receptor alpha binding sites. Plos Genetics 3:e87.
Lippman, Z., A. V. Gendrel, M. Black, M. W. Vaughn, N. Dedhia, W. R. McCombie, K. Lavine, V. Mittal, B. May, K. D. Kasschau, et al. 2004. Role of transposable elements in heterochromatin and epigenetic control. Nature 430:471-476.
Liu, B., Y. Shi, J. Yuan, X. Hu, H. Zhang, N. Li, Z. Li, Y. Chen, D. Mu, and W. Fan. 2013. Estimation of genomic characteristics by analyzing k-mer frequency in de novo genome projects. arXiv preprint arXiv:1308.2012.
Liu, Y., Q. Zhou, Y. Wang, L. Luo, J. Yang, L. Yang, M. Liu, Y. Li, T. Qian, Y. Zheng, et al. 2015. Gekko japonicus genome reveals evolution of adhesive toe pads and tail regeneration. Nat Commun 6:10033.
Loreto, E. L. S. and C. M. Pereira. 2017. Somatizing the transposons action. Mob Genet Elements 7:1-9.
Love, M. I., W. Huber, and S. Anders. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550.
Lynch, M. and J. S. Conery. 2003. The origins of genome complexity. Science 302:1401-1404.
Lynch, M. and B. Walsh. 2007. The origins of genome architecture. Sinauer Associates Sunderland.
Lynch, V. J., M. C. Nnamani, A. Kapusta, K. Brayer, S. L. Plaza, E. C. Mazur, D. Emera, S. Z. Sheikh, F. Grutzner, S. Bauersachs, et al. 2015. Ancient transposable elements transformed the uterine regulatory landscape and transcriptome during the evolution of mammalian pregnancy. Cell Rep 10:551-561.
Mackessy, S. 2008. Venom composition in rattlesnakes: trends and biological significance. The biology of rattlesnakes 495:510.
Mackessy, S. P. 2010. The field of reptile toxinology: snakes, lizards and their venoms. Handbook of Venoms and Toxins of Reptiles. CRC Press, Boca Raton.
Makałowski, W., T. Kischka, and I. Makałowska. 2017. Contribution of transposable elements to human proteins. eLS.
Malki, S., G. W. van der Heijden, K. A. O'Donnell, S. L. Martin, and A. Bortvin. 2014. A role for retrotransposon LINE-1 in fetal oocyte attrition in mice. Developmental Cell 29:521533.

Marcais, G. and C. Kingsford. 2011. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27:764-770.
Marin, R., D. Cortez, F. Lamanna, M. M. Pradeepa, E. Leushkin, P. Julien, A. Liechti, J. Halbert, T. Bruning, K. Mossinger, et al. 2017. Convergent origination of a Drosophila-like dosage compensation mechanism in a reptile lineage. Genome Research 27:1974-1987.
Matsubara, K., H. Tarui, M. Toriba, K. Yamada, C. Nishida-Umehara, K. Agata, and Y. Matsuda. 2006. Evidence for different origin of sex chromosomes in snakes, birds, and mammals and step-wise differentiation of snake sex chromosomes. PNAS 103:1819018195.

Mazet, O., W. Rodriguez, and L. Chikhi. 2015. Demographic inference using genetic data from a single individual: Separating population size variation from population structure. Theoretical Population Biology 104:46-58.

Mazet, O., W. Rodriguez, S. Grusea, S. Boitard, and L. Chikhi. 2016. On the importance of being structured: instantaneous coalescence rates and human evolution-lessons for ancestral population size inference? Heredity 116:362-371.
Molaro, A., I. Falciatori, E. Hodges, A. A. Aravin, K. Marran, S. Rafii, W. R. McCombie, A. D. Smith, and G. J. Hannon. 2014. Two waves of de novo methylation during mouse germ cell development. Genes \& Development 28:1544-1549.
Murphy, W. J., T. H. Pringle, T. A. Crider, M. S. Springer, and W. Miller. 2007. Using genomic data to unravel the root of the placental mammal phylogeny. Genome Research 17:413421.

Nadachowska-Brzyska, K., R. Burri, L. Smeds, and H. Ellegren. 2016. PSMC analysis of effective population sizes in molecular ecology and its application to black-and-white Ficedula flycatchers. Molecular Ecology 25:1058-1072.
Nadalin, F., F. Vezzi, and A. Policriti. 2012. GapFiller: a de novo assembly approach to fill the gap within paired reads. BMC Bioinformatics 13 .
Navarro, F., J. Hoops, L. Bellfy, E. Cerveira, Q. Zhu, C. Zhang, C. Lee, and M. Gerstein. 2019. TeXP: Deconvolving the effects of pervasive and autonomous transcription of transposable elements. bioRxiv:648667.
Neafsey, D. E., J. P. Blumenstiel, and D. L. Hartl. 2004. Different regulatory mechanisms underlie similar transposable element profiles in pufferfish and fruitflies. Molecular Biology and Evolution 21:2310-2318.
Neff, B. D. and M. R. Gross. 2001. Microsatellite evolution in vertebrates: Inference from AC dinucleotide repeats. Evolution 55:1717-1733.
Nielsen, R. and M. A. Beaumont. 2009. Statistical inferences in phylogeography. Molecular Ecology 18:1034-1047.
Novick, P., J. Smith, D. Ray, and S. Boissinot. 2010. Independent and parallel lateral transfer of DNA transposons in tetrapod genomes. Gene 449:85-94.
O'Connor, R. E., M. N. Romanov, L. G. Kiazim, P. M. Barrett, M. Farre, J. Damas, M. Ferguson-Smith, N. Valenzuela, D. M. Larkin, and D. K. Griffin. 2018. Reconstruction of the diapsid ancestral genome permits chromosome evolution tracing in avian and nonavian dinosaurs. Nature Communications 9.
Olmo, E. 2005. Rate of chromosome changes and speciation in reptiles. Genetica 125:185-203.
Organ, C. L., R. G. Moreno, and S. V. Edwards. 2008. Three tiers of genome evolution in reptiles. Integrative and Comparative Biology 48:494-504.
Orozco-TerWengel, P. 2016. The devil is in the details: the effect of population structure on demographic inference. Heredity 116:349-350.
Oshlack, A., M. D. Robinson, and M. D. Young. 2010. From RNA-seq reads to differential expression results. Genome Biology 11.
Ozata, D. M., I. Gainetdinov, A. Zoch, D. O'Carroll, and P. D. Zamore. 2019. PIWI-interacting RNAs: small RNAs with big functions. Nat Rev Genet 20:89-108.
Paradis, E. 2010. pegas: an R package for population genetics with an integrated-modular approach. Bioinformatics 26:419-420.
Paradis, E., J. Claude, and K. Strimmer. 2004. APE: Analyses of Phylogenetics and Evolution in R language. Bioinformatics 20:289-290.
Pasquesi, G. I. M., R. H. Adams, D. C. Card, D. R. Schield, A. B. Corbin, B. W. Perry, J. ReyesVelasco, R. P. Ruggiero, M. W. Vandewege, J. A. Shortt, et al. 2018. Squamate reptiles
challenge paradigms of genomic repeat element evolution set by birds and mammals. Nature Communications 9.
Perry, B. W., D. C. Card, J. W. McGlothlin, G. I. M. Pasquesi, R. H. Adams, D. R. Schield, N. R. Hales, A. B. Corbin, J. P. Demuth, F. G. Hoffmann, et al. 2018. Molecular adaptations for sensing and securing prey and insight into amniote genome diversity from the garter snake genome. Genome Biology and Evolution 10:2110-2129.
Petrov, D. A. 2002. Mutational equilibrium model of genome size evolution. Theoretical Population Biology 61:531-544.
Petrov, D. A., Y. T. Aminetzach, J. C. Davis, D. Bensasson, and A. E. Hirsh. 2003. Size matters: Non-LTR retrotransposable elements and ectopic recombination in Drosophila. Molecular Biology and Evolution 20:880-892.
Petrov, D. A., A. S. Fiston-Lavier, M. Lipatov, K. Lenkov, and J. Gonzalez. 2011. Population genomics of transposable elements in Drosophila melanogaster. Molecular Biology and Evolution 28:1633-1644.
Piskurek, O. and N. Okada. 2007. Poxviruses as possible vectors for horizontal transfer of retroposons from reptiles to mammals. PNAS 104:12046-12051.
Platt, R. N., S. F. Mangum, and D. A. Ray. 2016. Pinpointing the vesper bat transposon revolution using the Miniopterus natalensis genome. Mobile DNA 7.
Platt, R. N., M. W. Vandewege, and D. A. Ray. 2018. Mammalian transposable elements and their impacts on genome evolution. Chromosome Research 26:25-43.
Ponnusamy, M., K. W. Yan, C. Y. Liu, P. F. Li, and K. Wang. 2017. PIWI family emerging as a decisive factor of cell fate: An overview. European Journal of Cell Biology 96:746-757.
Putnam, N. H., B. L. O'Connell, J. C. Stites, B. J. Rice, M. Blanchette, R. Calef, C. J. Troll, A. Fields, P. D. Hartley, C. W. Sugnet, et al. 2016. Chromosome-scale shotgun assembly using an in vitro method for long-range linkage. Genome Research 26:342-350.
Pyron, R. A., F. T. Burbrink, and J. J. Wiens. 2013. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evol Biol 13:93.
Quinlan, A. R. and I. M. Hall. 2010. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841-842.
Radis-Baptista, G., T. Kubo, N. Oguiura, M. Svartman, T. M. B. Almeida, R. F. Batistic, E. B. Oliveira, A. M. Vianna-Morgante, and T. Yamane. 2003. Structure and chromosomal localization of the gene for crotamine, a toxin from the South American rattlesnake, Crotalus durissus terrificus. Toxicon 42:747-752.
Rambaut, A. and A. J. Drummond. 2007. Tracer v1. 4.
Ramirez, F., V. Bhardwaj, L. Arrigoni, K. C. Lam, B. A. Gruning, J. Villaveces, B. Habermann, A. Akhtar, and T. Manke. 2018. High-resolution TADs reveal DNA sequences underlying genome organization in flies. Nature Communications 9.
Rao, S. S. P., M. H. Huntley, N. C. Durand, E. K. Stamenova, I. D. Bochkov, J. T. Robinson, A. L. Sanborn, I. Machol, A. D. Omer, E. S. Lander, et al. 2015. A 3D Map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 162:687-688.
Reik, W. 2007. Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 447:425-432.
The UniProt Consortium. 2018. UniProt: the universal protein knowledgebase Nucleic Acids Research 46:2699-2699.

Revell, L. J. 2012. phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution 3:217-223.
Reyes-Velasco, J., D. C. Card, A. L. Andrew, K. J. Shaney, R. H. Adams, D. R. Schield, N. R. Casewell, S. P. Mackessy, and T. A. Castoe. 2015. Expression of venom gene homologs in diverse python tissues suggests a new model for the evolution of snake venom. Molecular Biology and Evolution 32:173-183.
Reznik, B., S. A. Cincotta, R. G. Jaszczak, L. J. Mateo, J. Shen, M. Cao, L. Baskin, P. Ye, W. An, and D. J. Laird. 2019. Heterogeneity of transposon expression and activation of the repressive network in human fetal germ cells. Development 146.
Rice, E. S., S. Kohno, J. St John, S. Pham, J. Howard, L. F. Lareau, B. L. O'Connell, G. Hickey, J. Armstrong, A. Deran, et al. 2017. Improved genome assembly of American alligator genome reveals conserved architecture of estrogen signaling. Genome Research 27:686696.

Richardson, S. R., P. Gerdes, D. J. Gerhardt, F. J. Sanchez-Luque, G. O. Bodea, M. MunozLopez, J. S. Jesuadian, M. H. C. Kempen, P. E. Carreira, J. A. Jeddeloh, et al. 2017. Heritable L1 retrotransposition in the mouse primordial germline and early embryo. Genome Res 27:1395-1405.
Rizzon, C., G. Marais, M. Gouy, and C. Biemont. 2002. Recombination rate and the distribution of transposable elements in the Drosophila melanogaster genome. Genome Res 12:400407.

Robinson, M. D., D. J. McCarthy, and G. K. Smyth. 2010. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139140.

Robinson, M. D. and A. Oshlack. 2010. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biology 11.
Rokyta, D. R., A. R. Lemmon, M. J. Margres, and K. Aronow. 2012. The venom-gland transcriptome of the eastern diamondback rattlesnake (Crotalus adamanteus). BMC Genomics 13.
Ruggiero, R. P., Y. Bourgeois, and S. Boissinot. 2017. LINE insertion polymorphisms are abundant but at low frequencies across populations of Anolis carolinensis. Frontiers in Genetics 8.
Sagata, N. 1996. Meiotic metaphase arrest in animal oocytes: Its mechanisms and biological significance. Trends in Cell Biology 6:22-28.
Sayers, E. W., R. Agarwala, E. E. Bolton, J. R. Brister, K. Canese, K. Clark, R. Connor, N. Fiorini, K. Funk, T. Hefferon, et al. 2019. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 47:D23-D28.
Schield, D. R., D. C. Card, N. R. Hales, B. W. Perry, G. I. M. Pasquesi, H. Blackmon, R. H. Adams, A. B. Corbin, C. F. Smith, B. Ramesh, et al. 2019. The origins and evolution of chromosomes, dosage compensation, and mechanisms underlying venom regulation in snakes. Genome Res 29(4):590-601.
Schrider, D. R., A. G. Shanku, and A. D. Kern. 2016. Effects of linked selective sweeps on demographic inference and model selection. Genetics 204:1207-1223.
Secor, S. M. and J. Diamond. 1998. A vertebrate model of extreme physiological regulation. Nature 395:659-662.

Sen, S. K., K. D. Han, J. X. Wang, J. Lee, H. Wang, P. A. Callinan, M. Dyer, R. Cordaux, P. Liang, and M. A. Batzer. 2006. Human genomic deletions mediated by recombination between Alu elements. American Journal of Human Genetics 79:41-53.
Shi, X., A. Seluanov, and V. Gorbunova. 2007. Cell divisions are required for L1 retrotransposition. Mol Cell Biol 27:1264-1270.
Silva, J. C., E. L. Loreto, and J. B. Clark. 2004. Factors that affect the horizontal transfer of transposable elements. Current Issues in Molecular Biology 6:57-71.
Simao, F. A., R. M. Waterhouse, P. Ioannidis, E. V. Kriventseva, and E. M. Zdobnov. 2015. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31:3210-3212.
Siomi, M. C., K. Sato, D. Pezic, and A. A. Aravin. 2011. PIWI-interacting small RNAs: the vanguard of genome defence. Nat Rev Mol Cell Biol 12:246-258.
Slotkin, R. K. and R. Martienssen. 2007. Transposable elements and the epigenetic regulation of the genome. Nature Reviews Genetics 8:272-285.
Smeds, L., T. Kawakami, R. Burri, P. Bolivar, A. Husby, A. Qvarnstrom, S. Uebbing, and H. Ellegren. 2014. Genomic identification and characterization of the pseudoautosomal region in highly differentiated avian sex chromosomes. Nature Communications 5.
Smit, A.F.A., R. Hubley, 2008-2017. RepeatModeler Open-1.0.9.
Smit, A.F.A., R. Hubley, P. Green. RepeatMasker Genomic Datasets (last accessed 2019).
Smit, A.F.A., R. Hubley, P. Green. 2015-2019. RepeatMasker Open-4.0.
Solovyev, V., P. Kosarev, I. Seledsov, and D. Vorobyev. 2006. Automatic annotation of eukaryotic genes, pseudogenes and promoters. Genome Biol 7 Suppl 1:S10 11-12.
Song, B., S. F. Cheng, Y. B. Sun, X. Zhong, J. Q. Jin, R. Guan, R. W. Murphy, J. Che, Y. P. Zhang, and X. Liu. 2015. A genome draft of the legless anguid lizard, Ophisaurus gracilis. Gigascience 4.
Song, M. Z. and S. Boissinot. 2007. Selection against LINE-1 retrotransposons results principally from their ability to mediate ectopic recombination. Gene 390:206-213.
Soumillon, M., A. Necsulea, M. Weier, D. Brawand, X. Zhang, H. Gu, P. Barthes, M. Kokkinaki, S. Nef, A. Gnirke, et al. 2013. Cellular source and mechanisms of high transcriptome complexity in the mammalian testis. Cell Rep 3:2179-2190.
Srikulnath, K., C. Nishida, K. Matsubara, Y. Uno, A. Thongpan, S. Suputtitada, S. Apisitwanich, and Y. Matsuda. 2009. Karyotypic evolution in squamate reptiles: comparative gene mapping revealed highly conserved linkage homology between the butterfly lizard (Leiolepis reevesii rubritaeniata, Agamidae, Lacertilia) and the Japanese four-striped rat snake (Elaphe quadrivirgata, Colubridae, Serpentes). Chromosome Research 17:975986.

Stanke, M. and B. Morgenstern. 2005. AUGUSTUS: a web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Research 33:W465-W467.
Stein, P., N. V. Rozhkov, F. Li, F. L. Cardenas, O. Davydenko, L. E. Vandivier, B. D. Gregory, G. J. Hannon, and R. M. Schultz. 2015. Essential role for endogenous siRNAs during meiosis in mouse oocytes. Plos Genetics 11:e1005013.
Sudmant, P. H., M. S. Alexis, and C. B. Burge. 2015. Meta-analysis of RNA-seq expression data across species, tissues and studies. Genome Biol 16:287.
Suh, A., G. Churakov, M. P. Ramakodi, R. N. Platt, J. Jurka, K. K. Kojima, J. Caballero, A. F. Smit, K. A. Vliet, F. G. Hoffmann, et al. 2015. Multiple lineages of ancient CR1
retroposons shaped the early genome evolution of Amniotes. Genome Biology and Evolution 7:205-217.
Sun, Y. H., L. H. Xie, X. Y. Zhuo, Q. A. Chen, D. L. Ghooneim, B. Zhang, J. Jagne, C. B. Yang, and X. Z. Li. 2017. Domestic chickens activate a piRNA defense against avian leukosis virus. Elife 6.
Surani, M. A., K. Hayashi, and P. Hajkova. 2007. Genetic and epigenetic regulators of pluripotency. Cell 128:747-762.
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2013.
Ting, S. B., J. Caddy, N. Hislop, T. Wilanowski, A. Auden, L. L. Zhao, S. Ellis, P. Kaur, Y. Uchida, W. M. Holleran, et al. 2005. A homolog of Drosophila grainy head is essential for epidermal integrity in mice. Science 308:411-413.
Tollis, M. and S. Boissinot. 2013. Lizards and LINEs: Selection and demography affect the fate of L1 Retrotransposons in the genome of the green anole (Anolis carolinensis). Genome Biology and Evolution 5:2019-2019.
van de Lagemaat, L. N., J. R. Landry, D. L. Mager, and P. Medstrand. 2003. Transposable elements in mammals promote regulatory variation and diversification of genes with specialized functions. TRENDS in Genetics 19:530-536.
Vandewege, M. W., R. N. Platt, D. A. Ray, and F. G. Hoffmann. 2016. Transposable element targeting by piRNAs in Laurasiatherians with distinct transposable element histories. Genome Biology and Evolution 8:1327-1337.
Venter, J. C., M. D. Adams, E. W. Myers, P. W. Li, R. J. Mural, G. G. Sutton, H. O. Smith, M. Yandell, C. A. Evans, R. A. Holt, et al. 2001. The sequence of the human genome. Science 291:1304-1351.
Vicoso, B., J. J. Emerson, Y. Zektser, S. Mahajan, and D. Bachtrog. 2013. Comparative sex chromosome genomics in snakes: Differentiation, evolutionary strata, and lack of global dosage compensation. Plos Biology 11.
Vogt, J., K. Bengesser, K. B. Claes, K. Wimmer, V. F. Mautner, R. van Minkelen, E. Legius, H. Brems, M. Upadhyaya, J. Hogel, et al. 2014. SVA retrotransposon insertion-associated deletion represents a novel mutational mechanism underlying large genomic copy number changes with non-recurrent breakpoints. Genome Biol 15:R80.
Vonk, F. J., N. R. Casewell, C. V. Henkel, A. M. Heimberg, H. J. Jansen, R. J. R. McCleary, H. M. E. Kerkkamp, R. A. Vos, I. Guerreiro, J. J. Calvete, et al. 2013. The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system. PNAS 110:20651-20656.
Voss, S. R., D. K. Kump, S. Putta, N. Pauly, A. Reynolds, R. J. Henry, S. Basa, J. A. Walker, and J. J. Smith. 2011. Origin of amphibian and avian chromosomes by fission, fusion, and retention of ancestral chromosomes. Genome Research 21:1306-1312.
Walsh, A. M., R. D. Kortschak, M. G. Gardner, T. Bertozzi, and D. L. Adelson. 2013. Widespread horizontal transfer of retrotransposons. PNAS 110:1012-1016.
Warren, W. C., D. F. Clayton, H. Ellegren, A. P. Arnold, L. W. Hillier, A. Kunstner, S. Searle, S. White, A. J. Vilella, S. Fairley, et al. 2010. The genome of a songbird. Nature 464:757762.

Watanabe, T., Y. Totoki, A. Toyoda, M. Kaneda, S. Kuramochi-Miyagawa, Y. Obata, H. Chiba, Y. Kohara, T. Kono, T. Nakano, et al. 2008. Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature 453:539-U539.
Weber, C. C., B. Boussau, J. Romiguier, E. D. Jarvis, and H. Ellegren. 2014. Evidence for GCbiased gene conversion as a driver of between-lineage differences in avian base composition. Genome Biology 15.
Weick, E. M. and E. A. Miska. 2014. piRNAs: from biogenesis to function. Development 141:3458-3471.
Weirauch, M. T., A. Yang, M. Albu, A. G. Cote, A. Montenegro-Montero, P. Drewe, H. S. Najafabadi, S. A. Lambert, I. Mann, K. Cook, et al. 2014. Determination and inference of eukaryotic transcription factor sequence specificity. Cell 158:1431-1443.
Weissman, I. L. and F. H. Gage. 2016. A mechanism for somatic brain mosaicism. Cell 164:593595.

Wylie, A., A. E. Jones, and J. M. Abrams. 2016. p53 in the game of transposons. Bioessays 38:1111-1116.
Xiong, Z. J., F. Li, Q. Y. Li, L. Zhou, T. Gamble, J. Zheng, L. Kui, C. Li, S. B. Li, H. M. Yang, et al. 2016. Draft genome of the leopard gecko, Eublepharis macularius. Gigascience 5.
Xue, A. T., R. P. Ruggiero, M. J. Hickerson, and S. Boissinot. 2018. Differential effect of selection against LINE retrotransposons among Vertebrates inferred from whole-genome data and demographic modeling. Genome Biology and Evolution.
Xue, W., J. T. Li, Y. P. Zhu, G. Y. Hou, X. F. Kong, Y. Y. Kuang, and X. W. Sun. 2013. L_RNA_scaffolder: scaffolding genomes with transcripts. BMC Genomics 14.
Yin, W., Z. J. Wang, Q. Y. Li, J. M. Lian, Y. Zhou, B. Z. Lu, L. J. Jin, P. X. Qiu, P. Zhang, W. B. Zhu, et al. 2016. Evolutionary trajectories of snake genes and genomes revealed by comparative analyses of five-pacer viper. Nat Comтии 7:13107.
Zachos, J., M. Pagani, L. Sloan, E. Thomas, and K. Billups. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686-693.
Zeng, L., S. M. Pederson, R. D. Kortschak, and D. L. Adelson. 2018. Transposable elements and gene expression during the evolution of amniotes. Mob DNA 9:17.
Zhang, B., Y. S. Mao, S. D. Diermeier, I. V. Novikova, E. P. Nawrocki, T. A. Jones, Z. Lazar, C. S. Tung, W. Luo, S. R. Eddy, et al. 2017. Identification and characterization of a class of MALAT1-like genomic loci. Cell Reports 19:1723-1738.
Zhang, G. J., C. Li, Q. Y. Li, B. Li, D. M. Larkin, C. Lee, J. F. Storz, A. Antunes, M. J. Greenwold, R. W. Meredith, et al. 2014. Comparative genomics reveals insights into avian genome evolution and adaptation. Science 346:1311-1320.
Zheng, Y. and J. J. Wiens. 2016. Combining phylogenomic and supermatrix approaches, and a time-calibrated phylogeny for squamate reptiles (lizards and snakes) based on 52 genes and 4162 species. Molecular phylogenetics and evolution 94:537-547.
Zhou, X., Z. Zuo, F. Zhou, W. Zhao, Y. Sakaguchi, T. Suzuki, T. Suzuki, H. Cheng, and R. Zhou. 2010. Profiling sex-specific piRNAs in zebrafish. Genetics 186:1175-1185.

[^0]: ${ }^{1}$ Kapusta A, Suh A, Feschotte C 2017. PNAS 114: E1460-E1469.

[^1]: ${ }^{2}$ Smit AFA, Hubley R, Green P. Last accessed 2017.
 http://www.repeatmasker.org/genomicDatasets/RMGenomicDatasets.html
 ${ }^{3}$ Locke DP, et al. 2011. Nature 469: 529-533. doi: 10.1038/nature09687
 ${ }^{4}$ Worley KC, et al. 2014. Nature Genetics 46: 850-857. doi: 10.1038/ng. 3042
 ${ }^{5}$ Schmitz J, et al. 2016. Nature Communications 7. doi: $10.1038 /$ ncomms 12997
 ${ }^{6}$ Wade CM, et al. 2009. Science 326: 865-867. doi: 10.1126/science. 1178158
 ${ }^{7}$ Renfree MB, et al. 2011. Genome Biology 12. doi: 10.1186/gb-2011-12-12-414
 ${ }^{8}$ Mikkelsen TS, et al. 2007. Nature 447: 167-U161. doi: 10.1038/nature05805
 ${ }^{9}$ Warren WC, et al. 2008. Nature 455: 256-256. doi: 10.1038/nature07253

[^2]: * $=$ merging of two independent replicates

[^3]:

