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ABSTRACT

KERNELS AND BEYOND FOR DATA SIMILARITY LEARNING IN DATA MINING

AKSHAY MALHOTRA, Ph. D.

The University of Texas at Arlington, 2019

Supervising Professor: Ioannis D. Schizas

This work discusses the problem of unsupervised clustering of signals/data vectors

based on their information content. A correlation based perspective to the clustering prob-

lem has been considered, thus relying on the high correlation between data vectors from

the same class rather than on the position of the vectors in the data space. In the past,

correlation based clustering has been formulated using a canonical correlation framework

or as a matrix factorization problem and has been solved with different variants of gra-

dient descent. This work focuses on improving the clustering performance by modifying

the framework to utilize non-linear associations or correlations. To this end, kernelized

variants for both the correlation based frameworks have been presented. We also propose

an unsupervised kernel learning framework that performs at par with the state of the art

supervised kernel learning methods. The proposed method uses a novel eigenvalue maxi-

mization framework to learn a convex combination of a dictionary of kernels that will be

most suited for the correlation based clustering approach. A joint non-negative matrix fac-

torization based clustering and kernel learning framework has also been proposed. Under

certain assumptions, the joint formulation is guaranteed to find the ideal combination of
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kernels for correlation based clustering. We also establish the convergence of the proposed

formulation to a stationary point.

Going beyond kernel based non-linear maps/associations, we propose two unsuper-

vised deep learning methods to map the data vectors from the data space to a feature space

wherein the within class vectors are highly correlated while the vectors across classes are

uncorrelated.

As part of this work we have utilized different optimization approaches like mixed

integer programming (MIP) and majorize-minimize (MM) algorithms towards solving the

resulting non-convex problems. The different methods developed as part of this research,

have been applied to a variety of datasets including data from wireless sensor networks

(WSN), remote sensing, human activity classification, etc., and the results have been com-

pared to the state of the art algorithms.
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CHAPTER 1

INTRODUCTION

With the advancements in sensor technology and increase in computational resources,

sensors in various forms (eg. mobile phones, cameras, satellites etc.) produce large amounts

of data every second. Analyzing the data and extracting representative information from

the data is of great importance, and the fields of machine learning, signal processing and

statistics have heavily contributed towards these tasks. From the data analysis stand point,

the objective of identifying meaningful groupings or relationships in the data have been

areas of high research activity in the past decades and they are more commonly referred to

as clustering in an unsupervised setting [7], and classification in a supervised setting [8].

Popular schemes like K-means [9] and support vector machines (SVM) [10] visual-

ize a position based perspective towards clustering and classification respectively. For these

methods, the position of the data vector in the RNs data space (where, Ns is the dimension-

ality of the vector) dictates the cluster/class they belong to. As can be inferred from the

example in Fig. 1.1, for the K-means approach, the clustering is dependent on the distance

between the cluster centroids and the data points. Similarly, for the SVM approach, the

position of the data vector with respect to the decision boundary decides the classification

for the vector. Thus, the clustering/classification of the data vector is dependent purely on

its position.

For clustering applications relating to sensors measurements where the objective re-

volves around clustering sensors (or sensor signals) based on the commonality in their

observations, a correlation perspective to clustering is more meaningful. Consider the ex-

ample of hyperspectral images obtained in a remote sensing setting over a field with multi-
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ple crops. A hyperspectral image is a 3D image block where each pixel represents a vector

containing values representing the energy in different visible, infrared or ultraviolet fre-

quency bands. These values are dependent on the material the pixel observes. Therefore,

the set of pixels observing the same crop, for instance wheat, will have similar signatures

along different spectral bands and thus will be correlated. Since these pixels (or sensors, in

a generic setting) are affected by the same source, second order statistics like correlation

or covariances can be used as a metric of similarity in identifying the cluster of pixels (or

sensors) that have similar information content or observe the same crop (or source).

In correlation based clustering approaches, the position of the data vector in the data

space has no bearing on the clustering, rather, the correlation between data vectors across

its dimensions is the measure of similarity. Consider an exaggerated example as seen in

Fig. 1.2. Here, 8 different 10 dimensional data vectors have been considered. In the

figure, the dimension index has been represented along the y-axis and the magnitude of

each dimension is represented along the x-axis. In Fig. 1.2(a), a position based method like

K-means has been used for clustering the 8 data vectors. As can be expected, the vectors

in red are clustered together as they will be close to each other in R10 space. Similarly,

the vectors in blue are clustered together too. In the correlation based clustering approach

seen in, Fig. 1.2(b), the 4 vectors in red, though far apart from a positional stand point, are

clustered together. This is because if the 4 vectors are closely observed, their magnitudes

change in a similar fashion across the dimensions and are essentially the slightly scaled and

displaced versions of each other but have a high correlation/covariance. The same can be

observed for the vectors in blue.
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(a) (b)

Figure 1.1. Example of position based classification and clustering approaches like K-
Means and SVM. The example uses the data from [1] .

1.1 Correlation Based Clustering

Clustering data vectors based on the underlying correlation or by utilizing different

similarity metrics (like cosine similarity, Gaussian similarity and many more) has been

extensively studied in the literature by modeling the clustering as different optimization

problems. In [11] the canonical correlation analysis (CCA) based clustering framework

was proposed and was solved in an online, distributed setting. The CCA based formulation

proposed in [11] was mainly suitable for linear data models, and was further extended to

convolution based data models in [12]. The work also proposed an alternating CCA-PCA

based clustering scheme with theoretical guarantees towards perfect clustering in linear and

convolution based data settings.

In addition to the CCA based frameworks, matrix factorization approaches have also

been extensively explored for clustering. The connection between clustering and non-

negative matrix factorization (NMF) was explicitly defined in [13, 14]. An augmented

Lagrangian approach towards solving an orthogonal NMF problem has been presented

3
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Figure 1.2. A model example showcasing the difference between position based and corre-
lation based clustering..

in [15]. In [16] an alternating approach based on the Procrustes rotation and projection

towards symmetric NMF has been proposed. From the correlation/covariance perspective,

the clustering problem was modeled as a matrix factorization problem and solved under

norm-1 sparsity constraints to estimate the support of the sparse covariance factors in [17].

A comprehensive review of different NMF algorithms can be found in [18, 19].

Standard NMF and CCA based methods depend on the data to be linearly sepa-

rable or linearly uncorrelated across different classes, many different formulations have

been proposed in the last decade to handle non-linear sensor-source relationships. A deep

NMF approach which factorizes the matrix into more than two factors and thus obtains low

dimensional models more suitable for clustering is presented in [20]. Kernelized or graph-

based approaches tackle non-linear data models by either mapping the data into a higher

dimensional space or by penalizing the cost function with graph regularizers. In Kernelized

CCA based clustering [21, 22], the data covariance matrix is replaced with a RBF kernel

covariance matrix. A graph based approach to utilize the non linear relationships in data

4



towards clustering are explored by graph based approaches like [23] where the standard

NMF cost function is supplemented by a graph regularizer thus supplementing the formu-

lation with a non-linear relations in the data. A similar regularizer has been used in [24]

to establish a graph perspective of the CCA framework. In [25] another approach towards

utilizing the graph information by having symmetric factors has been explored. A mixed

integer formulation for a kernelized NMF problem has been explored in [26]. Though some

of these techniques take into account the non linearity in the data correlation, a major chal-

lenge remains in identifying the correct kernel family and parameters to effectively extract

the non linear relationships in data. Majority of the kernel or graph based approaches still

depend upon supervised models or prior information for finding the appropriate kernels or

graphs.

1.2 Kernel Learning

There are various different families of kernels that can be employed, and each of

them have multiple tunable parameters that need to be carefully selected, to effectively ex-

press the non-linear relationship present within a particular dataset. Selection of the correct

parameters is usually referred to as ‘kernel learning’, and is a well-documented facet of

research being conducted at present. One popular method of supervised kernel learning is

Kernel Target Alignment (KTA) [27], wherein the suitable kernel matrices are identified

by finding the alignment or the normalized inner product between the kernel correlation

matrices and the correlation of the class labels. This has further been modified to make the

kernel matrices centered and applied towards the kernel learning problem [28]. A computa-

tionally efficient supervised kernel learning method for SVMs (Support Vector Machines)

has been presented in [29]. A different approach was considered in [30], where the genetic

algorithm [31] was used in tandem with SVM for kernel learning based classification. An

5



online kernel learning scheme using random features based estimation has been proposed

in [32], the scheme can also efficiently adapt the kernel in dynamic environments. A de-

tailed survey on supervised kernel learning methods has been given in [33]. All of the

aforementioned approaches require training data and they are not particularly suited for

unsupervised techniques.

There has been some research conducted in unsupervised methods on kernel learn-

ing as well. One such method seeks to use the distribution of the data to find the optimal

kernel, choosing a linear combination of a set of predefined kernels that will minimize the

distortion over the given data [34]. An unsupervised approach using principal component

analysis (PCA) to reconstruct the kernel matrix has been described in [35]. Another unsu-

pervised method attempts to find the best combination of kernels that minimizes the intra-

class variance among data points that are projected in a higher-dimensional space [36].

Finally, [37] reformulates the Maximum Margin Clustering [38] approach to find a sub-

optimal but computationally simpler solution using a linear combination of given kernels

in an unsupervised manner.

1.3 Contributions of This Work

As part of this work, different methods have been proposed to make the CCA and

NMF formulations more robust to variations in the data, i) to account for the non linearities

in data in an unsupervised manner and ii) to attain sparse factors that accurately indicate

the underlying data clustering. The contributions of the current work are as follows,

1. A kernelized variant of sparsity regularized canonical correlation analysis based clus-

tering framework has been proposed.
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2. The non convex, NMF based clustering problem is reformulated and posed as a

mixed integer linear programming (MILP) problem with sparsity imposed as a hard

constraint.

3. An unsupervised multiple kernel learning (MKL) scheme has been proposed that

requires no parameter tuning and performs at par with supervised schemes in many

datasets. The work presents a different perspective towards kernel learning using the

eigenvalues of kernel covariance matrices. It is shown that under certain assumptions

on the data, the proposed approach identifies the best linear combination of kernels

covariance matrices.

4. The objectives of multiple kernel learning and non negative matrix factorization

based clustering have been coupled into a joint robust formulation.

5. A new sparsity metric based on `1− `2 norm has been applied towards matrix factor-

ization.

6. The highly non-convex, joint MKL and NMF based clustering formulation is solved

using the difference-of-convex algorithm (DCA) which is based on the majorization-

minimization principle. A proof of convergence to a stationary point has also been

established.

7. The eignevalue based MKL scheme is extended to learn a deep neural network to

transform the data from the data space to a feature space to improve the efficiency of

correlation based clustering.

8. Another deep learning based transformation that works on linearizing the data using

an autoencoder type formulation has also been proposed.

The rest of the dissertation is organized as follows. Chapter 2 introduces the linear

CCA based clustering framework and the formulations is then extended to its kernelized

variant. In Chapter 3, the MILP reformulation of the NMF based clustering has been ex-

plained. Chapter 4 explores the unsupervised kernel learning scheme and details the differ-
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ence of convex reformulation to maximize a specific eigenvalue of a convex combination

of matrices. In Chapter 5 the joint MKL and NMF based clustering formulation has been

presented and the convergence results have been derived. Chapters 6 and 7 explore the un-

supervised deep learning based methods for mapping data into a feature space appropriate

for correlation based clustering. The last section provides the concluding remarks and the

scope for future work.
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CHAPTER 2

CANONICAL CORRELATIONS FOR CLUSTERING

The canonical correlation analysis (CCA) based clustering framework is an unsu-

pervised algorithm where the objective is to cluster together the data vectors that exhibit

high correlations. In this chapter the correlation based clustering problem is formally in-

troduced, we then explore the data observation model for which a CCA based scheme is

most suited for, and present the algorithm for CCA based clustering. Finally, we explore

the kernelized variants of CCA for applications to non-linearly related data.

2.1 Data Observation Model

Consider a set of P signals/data vectors xp(n) where p ∈ 1, ..., P is the signal/vector

index and n is the sample or the dimension index such that n ∈ 1, ..., Ns. These signals or

vectors can be considered to be the output of a sensor or a set of sensors that are observing

a field with Q stationary sources sq(n) such that q ∈ {1, ..., Q} and Q < P .

Such a sensor observation setting can potentially represent several different scenar-

ios. In a remote sensing setting, the signal xp(n) represents a pixel of an hyperspectral

image captured over agricultural fields with different crops [21, 22]. The image can be ob-

serving a field with Q varieties of crops with each pixel representing a part of the field with

a specific crop. In a human activity recognition application using data from smartphone

sensors, the signals xp(n) can be the time-series data received from accelerometer sensors

in the smartphones, and the Q groups may refer to the different activities done by the user

(e.g. walking, sleeping, climbing up stairs, etc.), see e.g., [4, 39]. Another potential exam-
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ple is with respect to a wireless sensor network (WSN) wherein P sensors can be assumed

to be monitoring a physical quantity in the environment with Q sources [12, 17, 40].

Each of the P sensors acquire local scalar measurements and they are assumed to

be affected by a single underlying source. Also, its is assumed that the underlying source

signals are uncorrelated. The objective here is to find signals which are affected by the

same source. The sensor observation model can thus be described as:

xp(n) =

Q∑
j=1

cpjf
p
j (sj(n)) + wpj (n) ∀p ∈ 1, ..., P (2.1)

where, fpj represents the transfer function affecting the measurement of the source

signal sj(n) and the p-th sensor and is considered to be unknown, while wpj (n) represents

the additive observation noise at sensor p. The variable cpj represents the class membership

of the p-th sensor. Since we assume that each signal/ data vector corresponds only to

a single class, the set {cp1, c
p
2, ..., c

p
Q} ∀p has only one non zero element. Therefore the

objective is essentially to identify this membership variable and cluster the P signals into

Q classes

Since we assume that the source signals sj(n)∀j ∈ {1, ..., Q} are uncorrelated to

each other, if the observation model fpj (·) is linear, the cross-correlation between signals

can be utilized to identify signals observing the same source.

2.2 CCA-based Clustering

The CCA based clustering framework aims at utilizing the correlations between data

vectors to identify data clusters without the need for any training data or any priors about

the data distribution. The only information required is the number of classes, Q, in which

the data should be segregated.
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Consider the P ×Ns data matrix, X, containing the data from all the P data vectors

stacked row wise. We split the rows in two non-overlapping groups of data vectors x ∈

RPx×Ns and y ∈ RP y×Ns where P x + P y = P . This formulation makes the following

underlying assumptions: 1) the number of classesQ, is lesser than the number data vectors,

Ns; and 2) each group of data vectors, x and y, have at least one representative vector from

each class. These assumptions are easily fulfilled for any real-world application, as the

number of data vectors considered for clustering are always much larger than Q. Also, for

forming the non-overlapping sets x and y, vectors/signals are alternatingly allocated to the

2 groups. Thus the cardinality of the two sets x and y, (i.e. P x and P y) is approximately

the same (≈ P/2).

To cluster the P data vectors/signals according to the underlying source signal (or

the class they represent), we make use of the statistical correlations that vectors in x and

y groups exhibit when representing the same activity. Using CCA we can identify the

entries of the two vectors, x, and y, that are maximally correlated and by imposing a `1

norm regularization, as shown in [11], we can utilize the CCA framework as a clustering

algorithm. The modified CCA framework with the `1 norm regularization is given as:

(Ê, D̂) = arg min
E,D

Ns
−1∑Ns

τ=1 ||yτ − EDxτ ||22

+
∑Q

ρ=1 λ
E
ρ ||E:ρ||1 +

∑Q
ρ=1 λ

D
ρ ||Dρ:||1, (2.2)

where the subscript τ indicates the time index/dimension of the vectors. xτ and yτ are

RPx×1 and RP y×1 dimensional vectors containing the τ -th column of the matrices x and y

respectively. Matrices D̂ ∈ RQ×Px and Ê ∈ RP y×Q are the sparse matrices indicating the

clustering. The sparsity is introduced as a result of the `1 norm regularization part in the

modified CCA framework. The support (non-zero entries) of each row of D in Eq. (2.2)

will indicate which entries in xτ contain information about the same activity. Note that

the rows of D are expected to be sparse since not all entries of xτ correspond to the same
11



activity. Thus, it is pertinent to impose sparsity across each row of D that represents a

different activity. This enables activity clustering among the entries of xτ . Similarly, the

columns of E can be forced to be sparse and their support will point to these entries of

yτ that represent the same physical activity. Ideally, the matrix D̂ should have a single

non-zero entry in each of the Nx columns and similarly for the matrix Ê there should be

only one non-zero entry in each of the Ny rows. However, in practice the row-entry with

the strongest amplitude is treated as the non-zero entry pointing to the activity, whereas

the entries of negligible amplitude are treated as zeros. The position of the strongest in

amplitude non-zero entry indicates which of the Q activities does the signal/data vector

relate to. It should be noted that xτ and yτ are not used to represent the signal /data vectors

but are a means to divide the entire set of vectors into two sets of vectors, which is required

for applying CCA. The operator ‖ · ‖1 refers to `1 norm, while the parameters λDρ and

λEρ correspond to sparsity controlling coefficients in D and E, respectively. Interestingly,

sparsity across rows for D (columns for E) can be viewed as sparsity across columns for

D (rows for E) after rearranging terms.

2.3 Regularized Kernel CCA

To improve the performance and to take into account any non-linearities in the vec-

tors, we will utilize a nonlinear kernel mapping in the formulation in (2.2). Such a formu-

lation offers more robustness to minor changes in the data while keeping the computation

cost under control by employing the kernel trick [10].

Thus, the non-linear mapping φ(·) (where, φ : RPx → RPx×F and F represents

the dimensionality of a higher dimensional feature space) is applied independently across

each dimension of the input vectors xτ → φ(xτ ) and yτ → φ(yτ ), respectively. Thus,
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φ(xτ ) = [φ̂(x1
τ ), ..., φ̂(xP

x

τ )]T , where φ̂ : R → RF . Therefore, the modified form of

equation (2.2) is given as

(Ê, D̂) = arg min
E,D

N−1s
∑Ns

τ=1 ||φ(yτ )− EDφ(xτ )||22

+
∑Q

ρ=1 λ
E
ρ ||E:ρ||1 +

∑Q
ρ=1 λ

D
ρ ||Dρ:||1. (2.3)

The cost function in (2.3) consists of two parts, the first one representing the CCA

framework (henceforth mentioned as Js(E,D)) and the second being the `1-norm regular-

ization part, denote as Jreg(E,D)). To minimize the cost in (2.3) we utilize the gradient

descent method to update the clustering matrices E and D. Since it is an iterative approach

the k-th iteration for the update is found by utilizing the following recursive update rule:

Êk = Êk−1 − c∇E
Êk−1,D̂k−1

J(E,D), (2.4a)

D̂k = D̂k−1 − c∇D
Êk−1,D̂k−1

J(E,D) (2.4b)

where c > 0 is the step-size. Note that ∇E
Êk−1,D̂k−1

J(E,D) and ∇D
Êk−1,D̂k−1

J(E,D) refer

to the partial derivatives of J(E,D) with respect to E and D, respectively. It should be

noted that since the update equations (2.4a) and (2.4b) are dependent on E and D, at the

k-th iteration we utilize the matrix values obtained for these matrices at the (k − 1)-th

iteration. Here we have utilized a Jacobi type update where the new value is dependent

only on the previous state. A Gauss-Seidel type update, where if Êk is evaluated first, then

for evaluating D̂k the current value of Êk can be used instead of using Êk−1. Nonetheless,

the performance was essentially the same for both types of updates.

For ease of notation we replace Êk−1 and D̂k−1 with E and D to get the following:

∇EJ(E,D) =
δJs(E,D)

δE
+
δJreg(E,D)

δE
, (2.5a)

∇DJ(E,D) =
δJs(E,D)

δD
+
δJreg(E,D)

δD
. (2.5b)
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The second term in eqs. (2.5a) and (2.5b) represent the sub-gradient of the `1 norm

regularization part of equation (2.3). The sub-gradients are given as:

δJreg(E,D)

δE
= sgn(E)diag(λE), (2.6a)

δJreg(E,D)

δD
= diag(λD)sgn(D). (2.6b)

where the matrices diag(λD) and diag(λE) are diagonal matrices whose ρ-th elements

are λDρ and λEρ , which are the sparsity controlling coefficients. The operator sgn(·) is the

element wise sign operator.

The first term in (2.5a) and (2.5b), Js(E,D) can be written as:

Js(E,D) = tr(Ĉy − 2·E·D·Ĉxy + E·D·Ĉx·DT ·ET ) (2.7)

and thus correspondingly we have the non linearly mapped expression:

Js(E,D) = tr(K̂y − 2·E·D·K̂xy + E·D·K̂x·DT ·ET ) (2.8)

where K̂x, K̂y, K̂xy denote the cross covariance matrix after the non-linear mapping xτ →

φ(xτ ) and yτ → φ(yτ ).

K̂y = Ns
−1

Ns∑
τ=1

φ(yτ )φ
T (yτ ), (2.9a)

K̂x = Ns
−1

Ns∑
τ=1

φ(xτ )φ
T (xτ ), (2.9b)

K̂xy = Ns
−1

Ns∑
τ=1

φ(xτ )φ
T (yτ ). (2.9c)

2.4 Kernel CCA Performance

In this section we test the performance of the proposed kernel regularized canonical

correlation analysis (CCA) based approach on two different datasets; 1) In a remote sensing
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setting where the objective is to classify the every pixel of a hyperspectral image based on

the material it observes and; 2) An activity classification problem where using the data from

the accelerometer of a phone placed on a human subject, the activity (walking, running,

climbing, etc.) being performed by the subject has to be identified.

2.4.1 Hyperspectral Images

The numerical tests are performed on a hyperspectral image gathered by an AVIRIS

sensor [41] over the Indian Pines test site in North-western Indiana and consists of 145×145

pixels and 224 spectral reflectance bands (Ns = 200 after removing the bands correspond-

ing to regions of water absorption) in the wavelength range of 0.4− 2.5× 10−6 meters. In

our test we cluster pixels randomly selected to contain information about Q = 4 materials

of interest, where px = py = 60. An equal number of pixels equal to 30 is selected to

represent each of the four materials of interest.

In the hyperspectral setting, we compare the clustering performance of our novel

approach with i) the supervised kernel SVM approach in [42] (K-SVM); and ii) K-means

clustering approach. The figure of merit used here will be the probability of correctly

clustering the hyperspectral pixels according to the material they observe.

When applying kernel CCA, the step-size is set as c = 10−4, whereas the λ param-

eters are set equal to 0.1 each. The gradient descent recursions for updating D and E are

run for a number of iterations until the updating error of the entries in these matrices drops

below 10−5. The variance for the Gaussian RBF kernels was chosen to be σ2 = 1000. Clus-

tering performance comparisons will be performed for different numbers of used spectral

bands per pixel varying from Ns = 140 to Ns = 200. In addition testing will be performed

for different percentages of dead pixels across Ns = 200 spectral bands. Dead pixels may

originate due to sensor malfunctioning at certain pixel intensities, thus some pixels may

have a magnitude of 0 for some frequency bands. This behavior is modeled by randomly
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placing dead pixels (according to a uniform distribution) in xτ and yτ for τ ∈ {1, ..., Ns}.

The probability of correct clustering in all tests is obtained by averaging the correct clus-

tering rates obtained on 100 independent trials in kernel CCA, K-SVM and K-Means each,

with random initialization in each trial. For kernel CCA, this implies random initialization

of the D and E sets, for K-SVM, this implies random selection of training pixels (equal to

12) from each source, and for K-means, this implies random selection of cluster centroids.

Fig. 1 (top) depicts the probability of correct clustering versus number of utilized

spectral bands without dead pixels (0% of dead pixels). As it can be seen, at Ns = 200

bands, the proposed kernel CCA scheme achieves a clustering accuracy close to 90%, near

the supervised K-SVM which achieves just over 90% accuracy and significantly better

than the unsupervised K-Means approach, which trails at near 75% accuracy. Kernel CCA

achieves clustering performance close to the one from K-SVM, without the need of training

pixels, when a sufficient number of bands in used.

Fig. 1 (bottom) displays the clustering performance of the aforementioned three

methods versus a varying percentage of dead pixels in xτ and yτ for τ ∈ {1, ..., Ns}. The

percentage varies from 0.1 to 10, while the probability of correct clustering was measured

using Fs = 200 spectral bands. Further, these results were averaged over 20 indepen-

dent different trials with a different set of pixels picked on every different trial. It can be

seen clearly, that for 0.1% up to 0.3% of dead pixels the supervised K-SVM will have a

marginal advantage over kernel CCA which does not utilize training data. However, further

introduction of dead pixels clearly can deteriorate the performance on both K-SVM and K-

Means, whereas kernel CCA exhibits robustness and outperforms the existing approaches.

The robustness and consistency of kernel CCA in the presence of faulty data acquisition is

evident. Note further that after 1.1% dead pixels and above, the faulty entries will inter-

fere with the training part of K-SVM to the point that it will even perform worse than the

unsupervised K-Means.
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Additionally, further tests revealed that dead pixels reaching even as high as 30%

give almost similar clustering accuracy, which deteriorates beyond that number. This is far

better than K-SVM and K-Means, which clearly suffer considerably even with dead pixels

as low as 1%.

2.4.2 Human activity

For the human activity classification application, we have presented the results on 3

different datasets: a) SBHAR [43], UniMiB [4] and Texas State datasets [39]. Here, the ob-

jective is to utilize the accelerometer signals from a smartphone (which is mounted on the

user) to identify the activity being performed by the user at different time periods. The sig-

nals are first pre-processed to split the time series accelerometer signals into frames/epochs

during which only a single activity is being performed.

Consider the signal in Fig. 2.2(a) corresponding to the accelerometer output of a

smartphone while the user is performing different activities. Fig. 2.3(a) and 2.3(b) show

the zoomed in versions of the signal where the user is walking and climbing-up the stairs,

respectively. As it can be seen, the data has repetitive patterns or epochs during each of

these activities which are distinctively different from the epochs corresponding to the other

activity. Lets say there are P frames of relevance. The signal can thus be considered as a

set of P vectors each having Ns dimensions/samples. Thus, we can utilize the statistical

correlation between these vectors corresponding to the same activity to identify the vectors

pertaining to the same activity.

More details on pre-processing the signal to obtain the individual frames/epochs can

be found in appendix A

A Gaussian kernel with a variance of σ2 = 10−1.5, 10−2 and 101 for the SBHAR [43],

UniMiB [4] and Texas State datasets, respectively, has been utilized. The λDi and λEi value

were kept fixed at 0.1 and a step size of c = 5 × 10−4 was used. The values should be
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appropriately selected such that each column of D and each row of E have at least one

non zero element, or the scheme suggested in [11] can also be used. The gradient descent

iterations were executed until the error drops below a factor of 10−6. For each trial of CCA,

the D and E clustering matrices are randomly initialized.

For the simulations, in the case of CCA, the algorithm is applied towards each user

signal separately and the results presented are averaged across all the users for each of the

data-sets being considered.

2.4.3 SBHAR dataset

The first data-set is the Smartphone-based Human Activity Recognition (SBHAR)

dataset [43]. The data-set contains a set of 3 major activities (walking, walking-up the stairs

and walking down the stairs). In addition to this, there is data for other stationary events

like standing, sitting and laying, which we don’t consider as events of interest for this study.

In our simulations we utilize the XYZ-axis of the accelerometer data to recognize the three

major activities in this data. The signals are recorded at a sampling frequency of 50Hz.

For a few of the data samples from this dataset the average value of the signal shifts

significantly with time and this interferes with the thresholds used by the pre-processing

stage, thus a few of the epochs were not picked up by the pre-processing stage and were

not used for the classification stage. The epoch structure in these signals is perfectly fine

and thus CCA based techniques suggested in this paper are still valid to these signals by

adapting the pre-processing part or by using a different scheme for epoch detection. The

files are around 6.4 minutes in length on an average. Thus a total of almost 5400 epochs

across all the signals have been considered. The confusion matrix for the CCA case is given

in Table 2.1.

Another parameter that impacts the performance of the algorithm is the epoch length

or the data vector length. As seen in Fig. 2.4, with the epoch length being small, the error
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Table 2.1. Confusion matrix for CCA using the SBHAR dataset. W=walking, U=Upstairs,
D=Downstairs.

Predicted
W U D PC RC F1C

A
ct

ua
l W 1649 355 352 90.1 70.0 78.8

U 59 975 77 60.2 87.8 71.4
D 123 289 1506 77.8 78.5 78.2

Accuracy: 76.7 76.0 78.7 76.1

is high since the correlations cannot be accurately observed. As the length of the epoch is

increased the accuracy increases. Once the epoch length is increased beyond a threshold,

in this case 210, the error starts to increase, as mentioned before this is due to the epoch

containing the samples from the neighboring epochs.

2.4.4 UniMiB dataset

The second data set is the University of Milano Bicocca Smartphone-based Human

Activity Recognition (UniMiB) dataset [4]. This set has data from 30 users performing a

much wider range of activities, a total of 17 activities including 9 daily activities like walk-

ing, running, climbing the stairs. The data is pre-split to represent the individual epochs

from each of the activities and thus no pre-processing has been done on this data. To show-

case the performance over a wider set of activities, we use data pertaining to all the 9 daily

activities for this data set. The signals are recorded at a sampling frequency of 50Hz and

the dataset for these 9 activities amounts to a total of 7565 epochs. The data from XYZ-axis

of the accelerometer is utilized towards classification.

For the CCA based unsupervised clustering approach, we have only presented the

clustering accuracies for 3 classes. We are currently improving the approach to reduce

computational complexity and enable data clustering in the presence of larger number of

clusters. The CCA based approach gives an overall accuracy and a MAA of 71.1% each.
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Table 2.2. Confusion matrix for CCA using the UniMiB data-set. W=walking, R=Running,
J=Jumping.

Predicted
W R J PC RC F1C

A
ct

ua
l W 515 46 99 64.0 78.0 70.4

R 144 446 70 79.6 67.6 73.1
J 145 68 447 72.6 67.7 70.1

Accuracy: 71.1 72.1 71.1 71.2

The accuracies for the CCA based scheme are given in the form of a confusion matrix in

Tables 2.2.

2.4.5 Texas State dataset

The third dataset that was used was collected by Dr. Vangelis Metsis and his team

at Texas State University. It is a relatively small data-set, including 3 users performing

5 activities (i.e. walking on a level surface, going downstairs, going upstairs, standing

and sitting). The user repeats the activity sequence five times. The total duration of each

run was about 2 minutes and 40 seconds. 3-dimensional acceleration data at a sampling

rate of 250 Hz were collected using a BioRadio device [44] mounted on the waist of each

subject (see figure in [39]). This data-set was mainly created to facilitate the development

stages of our methods. Nonetheless, our experimental results are illustrated here as an extra

evaluation resource. The accuracies for the CCA based scheme are given in the form of a

confusion matrix in Tables 2.3.
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Table 2.3. Confusion matrix for CCA using the Texas State data-set.

Predicted
W D U PC RC F1C

A
ct

ua
l W 460 134 190 93.9 58.7 72.2

D 18 132 44 44.6 68 53.9
U 12 30 126 35.0 75.0 47.7

Accuracy: 62.6 57.8 67.2 57.9
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Figure 2.1. Probability of correct clustering versus number of spectral bands used (top);
and percentage of missing (dead) pixel intensities (bottom)..
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Figure 2.2. Example of a sample acceleration signal over multiple activities. Fig. (a) shows
the signal from the three accelerometer channels (X, Y, Z) separately, Fig. (b) shows the
absolute value (magnitude) of the signal vector across the XYZ components.
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Figure 2.3. Example of a sample acceleration signal over multiple activities. Fig. (a)
zooms in on the portion of the Z-axis signal in 2.2 with walking as the activity, and Fig (b)
zooms in on the portion of the Z-axis signal with climbing up-stairs as the activity. The
repetitive epochs for the two activities can be clearly seen in the signal. The epochs from
the two activities have different structure, this structural differences are utilized by CCA
for classification.
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CHAPTER 3

NMF BASED CLUSTERING

Upto this point we have looked at posing the correlation based clustering problem

using the CCA framework. Another possibility is to pose the correlation based clustering

as a matrix factorization problem. From Chapter 2, we know that transfer function fpj (.),

can be linear in some scenarios and in such cases, the data covariance matrix can be directly

utilized for clustering data vectors. The data covariance matrix can be expressed as,

Cij = Ns
−1∑Ns

n=1 (xi(n)− x̄i)(xj(n)− x̄j) (3.1)

C = BDsB (3.2)

where, x̄i = Ns
−1∑Ns

n=1 xi(n) is the mean vector, C ∈ RP×P is the data covariance matrix,

the matrix Ds ∈ RQ×Q is the source covariance matrix. Since the sources are assumed to

be uncorrelated in nature, the matrix Ds will be a diagonal matrix. The entries of matrix

B ∈ RP×Q are such that Bpq 6= {0} if the p-th signal observes the q-th source and is

Bpq = {0} otherwise. Also, since the signals observing the same source are correlated

together and the ones observing different sources are uncorrelated, the covariance matrix

can be considered to be block diagonal under finite permutations of row and equivalent

column exchange operations. This is true since performing a row and column exchange

operation is equivalent to modifying the order of signals before finding the covariance

matrix. Thus, a block diagonal covariance matrix essentially appears when all the signals

belonging to the same class are ordered together.

Since the goal is to perform signal/data vector clustering according to the underlying

information, the problem can be reformulated to finding a factor M of the block diagonal
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covariance matrix C such that M = BD1/2. As we do not have access to the source signal

and the data model, but only the sensor measurements, we solve the matrix factorization

problem ||C −MMT ||F under sparsity constraints to recover M such that supp(M) =

supp(BD1/2), thus obtaining the underlying clustering. The support of columns of BD1/2

points to the signal’s class-membership information contained in the columns of B, since

the source covariance matrix Ds is diagonal.

3.1 Inducing Sparsity

There are infinite solutions to the ||C −MMT ||F factorization problem, thus to re-

cover a sparse M whose column’s support is indicative of the clustering within the acquired

signals, the optimization problem has to be supplemented with sparsity inducing norms.

Ideally we would want to impose a `0 penalty, but since `0 would be non convex and non

differentiable, a relaxed variant in the form of `1 penalty is most commonly used. The `1

regularization is pretty effective in the generic case, though it may not provide the sparsest

solution. Different sparsity inducing formulations have been proposed in the past, in [45]

a re-weighted `1 formulation has been explored. Regularization with `p where, 0 < p < 1

has also been explored in [46, 47].

The sparsity regularized matrix factorization problem can then be rewritten as,

||C−MMT ||2F + λ
(
Sparsity

)
s. to M ≥ 0 (3.3)

where, λ is the regularization parameter controlling the sparsity. M ≥ 0 are the entry-wise

nonnegativity constraints on M.

27



3.1.1 Kernelized Framework and Kernel Selection

As was discussed in the previous chapter, for most real world applications the source-

to-sensor relationship, fpj (·), is non-linear. Thus, linear correlations can not find mean-

ingful relationships between signals. To address this, the data can be mapped through a

non linear mapping, φ(·), to a higher dimensional space and the kernel trick maybe uti-

lized to efficiently compute the correlations [10]. The mapping can thus be represented

as, φ : RN → RNs×FH , where FH represents the dimensionality of a higher dimen-

sional feature space. The non linear mapping φ(·) is applied across each dimension of

the input vectors x as xn → φ(xn), where xn is the vector containing the n-th sam-

ple of the sensor measurements xi(n) across all i ∈ {1, ..., P} sensor signals. Thus,

φ(xn) = [φ̂(xi(n)), ..., φ̂(xN(n))]T , where φ̂ : R → RFH . The kernelized correlations

can then be stated as,

K̂x = N−1
∑N

n=1φ(xn)φT (xn), (3.4)

The objective of the optimization problem for the kernelized matrix factorization can be

stated as:

F (M) = ||K̂x −MMT ||2F+λ
(
Sparsity

)
s. to M ≥ 0 (3.5)

Several approaches have been proposed in the literature for solving similar NMF

based clustering problems, [16, 17, 19, 23]. The resultant sparse factors are then clustered

using K-means iterations or simply by imposing an argmax operation to assign the class

based on the dimension corresponding to the largest magnitude. Neither of the sparse for-

mulations impose hard clustering constraints and thus after solving with these techniques,

there is either more than one class with a non zero value or the weightage of the sparsity

related regularization parameters has to be tuned to achieve the required sparsity. In the
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following section we discuss a mixed integer linear programming (MILP) reformulation of

the matrix factorization based clustering problem. Here, sparsity is imposed as a hard con-

straint, thus the clustering obtained from the relaxed MILP formulation post convergence

has no ambiguity in the solution as every data vector is assigned only to a single class.

Also, no tuning of the regularization parameters is required.

3.2 Mixed Integer Reformulation of NMF

We modify the matrix factorization formulation explained above to model it as an

MILP. The problem described in (3.5) has a non linear objective w.r.t to M. This non

linearity in (3.5) is essentially due to three components; 1) the square of Frobenius norm,

||.||2F or essentially the square of the error of factorization; 2) the matrix factorization part,

which involves the matrix product MMT ; and 3) the sparsity inducing regularization. The

first cause of non linearity, ||.||2F , appears since the majority of the factorization procedures

in literature rely on different variants of gradient schemes to find a stationary point. Since

Frobenius norm is differentiable across its domain, it serves as the obvious choice. Since as

part of reformulating the problem into a MILP we are not dependent on the differentiability

of the cost, the ||K −MMT ||2F is replaced by ||K −MMT ||1. Further, the minimization

of `1 norm ||K−MMT ||1 can be replaced with its epigraph, see e.g., [48]:

arg min
M
||K−MMT ||1 = arg min

M,T

P∑
i=1

P∑
j=1

Tij

s.to T ≥ K−MMT ,

T ≥ −(K−MMT ). (3.6)

where, Tij is the element of matrix T from the i-th row and the j-th column.
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Next, we linearize the product of the matrix factors MMT . Consider W as the

product of matrices MMT , thus we have Wij =
∑Q

k=1Mik ∗Mjk where, the subscripts

ij represent the ith term of the jth column. Also, let us define Wijk = Mik ∗Mjk as

the product of the k th term. This product term can be linearized by applying the popular

approach of McCormick’s envelope [49] and adding constraints representing the convex

and concave envelopes on each of the product terms.

Since the kernel matrix K is normalized to unit magnitude, the entries of M can

have a maximum magnitude of 1. Thus for Wijk = Mik ∗Mjk where, 0 ≤ Mik,Mjk ≤

1 ∀i, j ∈ 1, ..., P , k ∈ 1, ..., Q, we have the reformulation as Wijk ≤ Mik,Wijk ≤

Mjk,Wijk ≥Mik + Mjk − 1.

The sparsity inducing parameter in (3.5) was mainly introduced to ensure that each

row of M has only one non zero entry, thus enforcing the set partitioning constraint ensures

that every sensor can observe only one source. Such a constraint can easily be enforced

by adding a linear constraint of the form
∑Q

k=1 Mik = 1|∀i ∈ {1, ..., P}. Applying the

aforementioned steps, the minimization problem in (3.5) can be reformulated as:

M̂, T̂,Ŵ, Û ∈ arg min
M,T,W,Q

P∑
i=1

P∑
j=1

Tij (3.7)

s.to

Wijk ≤Mik ∀ i, j ∈ {1, ..., P}, k ∈ {1, ..., Q}

Wijk ≤Mjk ∀ i, j ∈ {1, ..., P}, k ∈ {1, ..., Q}

Wijk ≥Mik + Mjk − 1 ∀ i, j ∈ {1, ..., P}, k ∈ {1, ..., Q}

Uij =

Q∑
k=1

Wijk ∀ i, j ∈ {1, ..., P}
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0 ≤ Uij ≤ 1 ∀ i, j ∈ {1, ..., P}

Tij ≥ Kij −Uij ∀ i, j ∈ {1, ..., P}

Tij ≥ Uij −Kij ∀ i, j ∈ {1, ..., P}
Q∑
k=1

Mik = 1 ∀ i ∈ {1, ..., P}

M ∈ BP×Q,W ∈ BP×P×Q

where, B indicates the set of binary numbers, {0, 1}.

For solving the mixed integer problem, a branch and bound method with cutting

planes has been used. We use the openly available Gurobi MILP solver [50] for this.

The Gurobi toolbox allows access to multiple parameters for solving the problem, two of

the main parameters for which we define the values are, ′Cuts′ and ′MIPFocus′. The

′MIPFocus′ controls the balance of effort between finding new solutions, and trying to

prove that the current solution is optimal. If the value is 1, it encourages the solver to find

feasible solutions quickly. ′Cuts′ controls the aggression of cuts. We set the value of this

variable to 1, which implies moderate cut generation. These parameters internally initialize

different branching and cutting plane methods and gave the best results in our simulations.

The solution obtained from the branch and bound method for the problem in (3.7) is

globally optimal as the solver has essentially explored all the nodes of the branching tree

where a solution with a lower objective value can exist. The solution though may not be

unique, for example the columns of M can be interchanged while resulting in the same ma-

trix MMT and thus the same cost. But both of these solutions result in the same clustering

accuracies. For further discussion on optimality in mixed integer problems, please refer

to [50, 51].

Next, we showcase the performance of the proposed approach on 2 different data-

sets, a hyperspectral image dataset, Salinas [2], and an image clustering dataset, COIL20
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[3]. We compare the performance of the proposed technique with four different schemes:

1) K-means, 2) kernel SVM with 25% of the data used for training, 3) standard NMF and

4) graph NMF (GNMF) [23]. For GNMF, in the case of Salinas, we have set the value of

the variable α to 1, since this gave better clustering accuracies than the suggested value of

100. In the case of COIL20 we have continued to use a value of 100.

3.2.1 Salinas Hyperspectral

For the hyperspectral dataset, the images captured by the AVIRIS sensing system [2]

over the Salinas valley in California, with a spatial resolution of 3.7m per pixel have been

considered. The dataset contains a total of 224 spectral reflectance bands for each pixel,

observing materials from 16 different classes.

The objective here is to consider each of the image pixels as an independent signal

and cluster the pixels pertaining to the same class or observing the same material together.

For our simulations, we randomly choose 4 materials out of these 16 and select 15 pixels

each from these randomly chosen materials. The experiment is repeated over a total of 100

random material and pixel selections.

On this data, the kernel trick was applied with a variance of 107. After applying the

kernel trick, 60x60 covariance matrices are obtained, pertaining to the covariances of the

spectral reflectance values for those 60 pixels. The covariance matrix should be appropri-

ately centered. Fig. 7.2 shows the clustering accuracies for the 5 schemes through a box

plot, the red line in the boxes indicates the median of the clustering accuracy across all tri-

als. The proposed scheme outperforms all the 4 methods, including the KSVM, which is a

supervised learning scheme. The average accuracy across all the trials has been given in Ta-

ble 3.1 in the row named Salinas60. The clustering accuracies are calculated as explained

in [39].
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Figure 3.1. Boxplot comparing the accuracies of 4 different schemes with the proposed
method for the Salinas hyperspectral image dataset [2]. The central red mark in the box
refers to the median accuracy, and the edges of the box mark 25th and 75th percentiles of
the accuracy across all trials.

Table 3.1. Mean clustering accuracy of the 5 schemes for the 2 datasets.

KSVM KMeans NMF GNMF Proposed
Salinas 60 82.8 81.9 83.0 87.9 93.6
COIL20 69.1 72.9 81.9 84.2 85.6

Salinas 300 95.3 84.4 82.0 88.5 93.3

3.2.2 COIL20 dataset

The second dataset is the COIL20 image dataset which contains images of objects

taken from 72 different angles. The objective here is to cluster the images based on the

object, thus in accordance with the problem description, the pixels of each image can be

considered as an independent signal irrespective of the common origin.

In this dataset, across each trial, 3 classes are randomly selected from the 20 available

classes, and then 15 images are randomly selected from each of the selected classes. The

kernel trick is applied with a variance of σ2 = 10−1. After applying the kernel trick, a
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Figure 3.2. Boxplot comparing the accuracies of 4 different schemes with the proposed
method for the COIL20 image clustering dataset [3].

45x45 covariance matrix is obtained, pertaining to the covariances of the 45 images. Before

calculating the covariance, the data was normalized as was done in the simulations for [23].

In Fig. 3.2 we present the performance of the clustering schemes for this dataset

through a box plot. The proposed scheme outperforms all the 4 methods. The mean or

average accuracy across all trials can be found in Table 3.1.

3.2.3 Scalability

As evident from the discussion above, the proposed approach gives high clustering

accuracy with both the datasets, but as a trade off, the MILP based algorithm scales poorly

when a larger chunk of the dataset is considered in a single iteration. In Fig. 3.3, the dotted

blue line shows the time taken by the Gurobi solver to cluster the pixels in Salinas dataset

for different number of pixels. As evident, the time increases super-linearly and thus be-

yond 60 pixels the time is outside the scope of the curve. Therefore the original formulation

in its raw form may not be feasible for larger number of data points. To overcome this, an

iterative solution can be considered.
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Figure 3.3. Comparison of the execution time as the complexity of the problem is increased
for the Salinas hyperspectral image dataset [2].

As a first step, instead of using all the P signals for generating the kernel covariance

matrix K, a fraction of the signal, Pf can be used for generating a Pf × Pf covariance ma-

trix. Lets denote this set of Pf signals as SP1. For this kernel covariance matrix, appropriate

factors M1 ∈ BPf×Q should be found by solving (3.7). In step-2, a kernel cross-covariance

matrix, K12 between signals SP1 and a new set of Pf signals (say SP2) from the remaining

P − Pf signals should be generated. This matrix K12 can then be factorized as M1M
T
2 ,

and as we already know M1 from step-1, evaluating M2 is trivial and can be evaluated ex-

tremely efficiently. Step-2 can be repeated with different sets of signals SP2 to achieve the

corresponding matrices M2 and thus the underlying clustering. The accuracies for Salinas

with a total of P = 300 pixels and Pf = 60 have been reported in Table 3.1 in the row

corresponding to Salinas300.

In Fig. 3.3, the yellow and the orange curves show the MILP processing times for

different values of Pf . As is evident from the figure, the cross covariance based modifi-

cation makes MILP scale linearly with an added constant value due to the factorization in
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step-1. For the NMF and GNMF algorithms the complexity increases linearly too and since

the codes are extremely well optimized the processing times are under 1 sec. The step-1

processing time in the MILP scheme can also be brought down significantly by optimizing

the way the Gurobi toolbox is queried, but the important aspect here is that with the cross

covariance based modification the dataset can be processed in small chunks (each of Pf

signals), and the time complexity becomes a linear function of the number of chunks and

thus the number of data points.
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CHAPTER 4

UNSUPERVISED KERNEL LEARNING

The family of the kernel function and the value of its parameters have a huge impact

on the clustering performance and thus kernel selection or kernel learning needs to be

performed properly to extract the correct data correlations. In the existing literature, the

kernel selection/learning task has predominantly been achieved in a supervised setting [27,

28, 32, 52, 53]. However, an important aspect of the CCA/NMF-based clustering methods

is that they do not require any training data. Thus in order to keep the entire clustering

process unsupervised, the kernel learning/selection objective has to be accomplished in an

unsupervised setting as well.

To accomplish this task in an unsupervised setting, we need to identify the properties

of a good kernel and leverage them for kernel selection/learning. In a linear setting, it is

trivial to show that if the underlying source signals are uncorrelated, the sensors observing

a common source will be correlated with each other and the sensors observing different

sources will be uncorrelated. Thus, the covariance matrix, under column and equivalent

row exchnage operations, will have a block diagonal structure. The column and row ex-

changes can be considered without any loss of generality since performing such operations

on the covariance matrix is equivalent to modifying the order of sensors before forming the

covariance matrix. Each diagonal block in the covariance matrix thus points to the sensors

observing a given common source. The presence of this block diagonal structure (owing to

the uncorrelated nature of the signals from different classes) is the factor that influences the

clustering accuracy of CCA/NMF based approaches. This is true since for a block diagonal

matrix with properly selected sparsity coefficients λDρ and λEρ , the correct clustering can be
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identified with CCA [11]. The same holds true in the NMF setting as well [17]. Therefore,

the main feature of an effective kernel for correlation based clustering is its capability to

produce a strong block diagonal covariance matrix.

Consider the family of Gaussian kernels, the parameter that controls the shape of a

kernel is its variance. To understand the impact of variance on the block diagonal behavior

of the kernel covariance, consider 20 pixels from a hyperspectral image from the Indian

Pines dataset [2], taken from 4 different classes. 5 pixels are taken from each of the classes

and have been arranged sequentially as per their class labels, such that each set of pixels

represents the same class. If we choose a kernel variance that is too small, we obtain a

kernel covariance matrix that has high magnitude along the diagonal, while the rest of the

entries are almost zero, Fig. 4.1(c). On the other hand, if we choose a very high variance

value, all the entries of the covariance matrix have a unit magnitude, Fig. 4.1(b).

However, if we choose a suitable value, then we get a covariance matrix like the

one shown in Fig. 4.1(a). The block diagonal structure of the matrix essentially points

to the set of highly correlated pixels observing the same material. The low magnitude in

the off block diagonal elements of the covariance matrix shows that they observe different

materials, and are thus uncorrelated. From Fig. 4.1(a) it is easy to observe that the set of

the rows corresponding to a given diagonal block are linearly independent to the rows from

a different diagonal block, while being similar and thus linearly dependent to each other

inside a block. Therefore, if we know that the data stems from Q classes, the objective is to

achieve a kernel covariance matrix with Q independent sets of rows or Q block diagonals

and thus a kernel covariance matrix with rank Q. A similar analogy will hold true even if

the pixels are not ordered before finding the covariance matrix, since the block diagonal

behavior can be achieved by row and column permutations. This is true even in the linear

setting where the signals from different classes are assumed to be uncorrelated and thus the

covariance has a rank Q. The same is emphasized by the following proposition.
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Proposition 1. In a linear setting as described by (2.1) and (3.1), each of the block diago-

nals in the correlation matrix representing the high correlations between the signals from

the same class can be considered to be rank-1 blocks and in a dataset with Q classes, there

are Q such rank-1 diagonal blocks.

Proof. From (3.2) we know that, BD
1/2
s is a factorization for the correlation matrix C.

Also, for a given class q let Gq be the ground truth set containing the indices p of all the

signals/data vectors from class q, i.e., {Bpq 6= 0|p ∈ Gq} from (3.2). We can then represent

the correlation matrix as,

C =
∑Q

q=1 dqB:,qB
T
:,q (4.1)

where dq is the q, q-th diagonal element of the matrix Ds. Without loss of generality we can

assume that the indices of vectors from each class have been ordered such that the members

of Gq are consecutive. Thus, for the block diagonal C, each block diagonal is essentially a

result of the matrix product B:,qB
T
:,q, and it has rank-1.

Therefore, in the data with Q possible classes, the objective for effective kernel

learning is towards finding kernels with underlying mapping φ(·) that can linearize the

correlations in the higher dimensional space such that there are Q rank-1 blocks along the

diagonal, and thus a kernel covariance matrix with a rank Q. The same analogy holds true

even when the signals haven’t been ordered based on the class labels.

4.1 Eigenvectors-Based Kernel Selection and Kernel Learning

For real world applications, the data is always corrupted by some noise, also the data

vectors are finite length and only an estimate of the actual covariance can be evaluated.

Thus, the covariance matrices evaluated in practice almost always have a rank greater than

Q. To impose rank Q constraints in practice, we can impose constraints on the magnitude

of the Q largest eigenvalues. But maximizing the sum of Q eigenvalues is insufficient as
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matrices of the form considered in Fig. 4.1(b) have a constant magnitude across all entries,

and will result in a feasible matrix which has less than Q strong eigenvalues (one in this

case). Thus, its important not just to maximize the sum of Q eigenvalues but also to ensure

that matrix has Q strong eigenvalues. To that end we propose maximizing the Q-th largest

eigenvalue which ensures that the matrix has a rank of at least Q.

For the kernel selection problem, where the objective is to select the most appro-

priate kernel for correlation based clustering, a proper K̂j?

x can be selected, from a set of

dictionary kernels, K̂j
x where j ∈ {1, ..., B} as follows,

j? ∈ argmax
j∈{1,...,B}

ΛQ(K̂j
x). (4.2)

where, the function Λi(.) : RP×P → R represents the i-th largest eigenvalue of the input

argument matrix and for a given matrix, K, it is defined as:

Q∑
i=1

Λi(K) = sup
V

VTKV

s. to VVT = IQ, (4.3)

where IQ is the identity matrix of size Q × Q and the columns of matrix V are the eigen-

vectors of K. V is a matrix of size P ×Q.

Given that the covariance matrices may be scaled differently for each of the ker-

nel parameters, it is essential to normalize these matrices appropriately before finding the

eigenvalues. Since the proposed method focuses on increasing the magnitude of the Q-th

eigenvalue, an appropriate normalizing strategy is to scale each matrix by its trace (or sum

of all its eigenvalues). Thus, post normalization, maximizing the Q-th eigenvalue is equiv-

alent to maximizing the percentage share of the Q-th eigenvalue with respect to (w.r.t.) the

sum of all the eigenvalues.
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From the multiple kernel leraning (MKL) perspective, the problem formulates to

finding a convex combination of kernels with the Q-th eignevalue maximized. Thus the

objective in (4.2) translates to,

ααα ∈ argmax
ααα

ΛQ(
B∑
j=1

αααjK̂
j
x)

s. to αααj ≥ 0,
∑B

j=1αααj = 1. (4.4)

Unlike, the kernel selection problem in (4.2), where a single kernel from a set of

B kernels (see [54]) has to be selected, the MKL problem mentioned above is highly non

convex and very hard to solve. A possible solution emerges by alternatively expressing

(4.4) as a difference of sum of eigenvalues,

ααα ∈ argmax
ααα

Q∑
i=1

Λi(
B∑
j=1

αααjK̂
j
x)−

Q−1∑
i=1

Λi(
B∑
j=1

αααjK̂
j
x)

s. to αααj ≥ 0,
∑B

j=1αααj = 1. (4.5)

The constraint
∑B

j=1αααj = 1 ensures that the weights for all the kernels sum to 1, and

αααj ≥ 0 is required to ensure that the sum
∑B

j=1αααjK̂
j
x is a valid positive semidefinite

kernel.

The sum of eigenvalues of a linear combination of matrices is a convex function since

all the eigenvalues are continuous functions and the supremum of continuous functions is

convex [55]. The problem appears since, the function to be minimized in (4.5) is non-

convex. Nonetheless, both the sum of Q − 1 eigenvalues, and the sum of Q eigenvalues

are individually convex in (4.5), resulting in a difference of two convex functions. This

enables tackling the problem in (4.5) by utilizing the difference of convex algorithm (DCA)

proposed in [56].
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4.2 Algorithm

4.2.1 Difference of Convex Formulation

The difference of convex functions algorithm [56] deals with objective functions of

the type F(X) = G(X) − H(X) where, G(X) and H(X) are convex functions. The

algorithm is a two step iterative approach, wherein at the k + 1-th iteration, the con-

cave part of the function [i.e., −H(X)] is approximated by an affine majorization of the〈
X,
{
∂−H(X)
∂X
|X=Xk

}〉
, where,

〈
·, ·
〉

represents the inner product of the two input argu-

ments. The majorization is used as a surrogate for minimizing the relaxed F(X). The

algorithm can then be represented as:

Yk ∈ ∂H(Xk)

Xk+1 ∈ argmin
X

G(X)− 〈X,Yk〉 (4.6)

where, ∂H(Xk) is the sub-gradient of H(X) at Xk. The superscript k represents the k-th

iterate of the DCA. For the eigenvalue problem in (4.5), this translates to determining

[α̃ααk]Q ∈ ∂
( Q∑

i=1

Λi(
B∑
j=1

αkj K̂
j
x)

)
. (4.7)

where, ∂(.) refers to the subgradient, which here is found for the sum of the Q eigenval-

ues and can be calculated based on the discussion about the subgradient of the maximum

eigenvalue [57]. Thus, a possible subgradient for the expression in (4.7) is

[α̃ααk]Q =



zk1
T
K̂1zk1 + zk2

T
K̂1zk2 + · · ·+ zkQ

T
K̂1zkQ

zk1
T
K̂2zk1 + zk2

T
K̂2zk2 + · · ·+ zkQ

T
K̂2zkQ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

zk1
T
K̂Bzk1 + zk2

T
K̂Bzk2 + · · ·+ zkQ

T
K̂BzkQ


(4.8)
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where, zki is the i-th eigenvector of matrix
∑B

j=1αααjK̂
j
x evaluated at ααα = αααk. Then,

the tresulting convex problem with the majorization approximation is given as,

αk+1 ∈ argmin
α

Q−1∑
i=1

Λi(
B∑
j=1

αjK̂
j
x)− 〈α, [α̃ααk]Q〉 (4.9)

s. to
∑B

j=1αj = 1, αj ≥ 0, ∀j ∈ {1, ..., B}

and can be minimized easily using either gradient descent or the interior point method.

These two steps are repeated until convergence , i.e. until αk+1 − αk < ε, with ε corre-

sponding to a small positive constant (this approach is guaranteed to converge to a station-

ary point. The proof for a more generic setting of joint NMF based clustering and kernel

leraning has been presented in the Appendix B. The proof for the kernel learning can be

easily inferred from the same by ignoring the discussions about the NMF related variables).

4.3 CASE STUDIES

In this section the performance of the proposed approaches are compared against two

supervised kernel selection/learning schemes relying on kernel alignment. For the analysis

presented in this section we acronymize the proposed eigenvalue based unsupervised kernel

selection scheme as EV and the unsupervised kernel learning scheme as EVKL. The kernel

target alignment based supervised kernel selection scheme [27] is acronymized as KTA

and the supervised kernel learning scheme [28] is acronymized as ALIGNF. To quantify

their performances we find the clustering accuracy with kernelized CCA (Sec. 2.3) on

two different data-sets, while using the kernels as calculated by the four schemes. The

comparative results have been presented as follows.
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4.3.1 UniMiB dataset

The first data set is the University of Milano Bicocca Smart-phone-based Human

Activity Recognition (UniMiB) dataset [4]. This set has data from 30 users performing a

wide range of activities, a total of 17 activities including 9 daily activities like walking,

running, climbing stairs. To showcase the performance of CCA, over a different set of

activities, we use data from 3 classes pertaining to climbing, running and walking. For this

data-set, the results are averaged out over signals from the 30 users in the data-set.

The accuracy of the four schemes for the UniMiB data-set are given in Table 4.1.

Here we show the detailed results for all the users and the averages for both, the first 5 sets

of users, as well as for all the 30 users have been provided. We can observe that EV is

able to achieve better accuracy in 7 out of 30 users, despite being unsupervised compared

to KTA, which is supervised. Similarly, EVKL performs better than ALIGNF in 11 out

of 30 cases. Even on an average, both of the unsupervised approaches perform reasonably

close to their supervised counterparts. The superior accuracy illustrates the capabilities of

the proposed unsupervised method, even when compared to a supervised scheme.

4.3.2 Hyperspectral dataset

For the second data set, tests are performed on hyperspectral images gathered by the

AVIRIS sensing system [2] over the Salinas valley in California, with a spatial resolution

of 3.7m per pixel. This dataset contains 224 spectral reflectance bands, encompassing 16

objects. Out of these 16 objects, five random combinations of 4 objects were chosen, and

30 pixels were randomly chosen from each object for five different trials. Salinas was

chosen because it is a large image with a massive number of pixels pertaining to each

object, thereby ensuring substantial variability in randomly choosing a set of pixels from

such large sample sizes. Thus, we had a total of 120 pixels from 4 objects with even

distribution.

44



EV KTA [27] EVKL ALIGNF [28]
1 55.55% 60.00% 86.66% 82.22%
2 49.33% 40.66% 46.66% 50.67%
3 57.14% 76.19% 60.00% 67.62%
4 58.09% 55.23% 56.19% 59.05%
5 64.44% 75.55% 77.03% 74.81%
6 65.71% 78.09% 79.04% 60.95%
7 50.00% 65.83% 44.16% 57.50%
8 60.00% 70.83% 65.83% 61.66%
9 55.83% 70.83% 45.00% 71.66%
10 65.55% 58.88% 73.33% 60.00%
11 89.33% 70.66% 64.00% 89.33%
12 52.59% 64.44% 45.92% 67.40%
13 60.00% 68.88% 65.55% 63.33%
14 54.28% 64.76% 50.47% 62.85%
15 45.18% 64.44% 46.66% 61.48%
16 59.25% 43.70% 74.07% 74.81%
17 61.66% 80.83% 82.50% 65.00%
18 73.33% 80.00% 66.66% 80.00%
19 89.33% 73.33% 77.33% 85.33%
20 47.61% 56.19% 59.04% 47.61%
21 80.00% 93.33% 80.00% 66.66%
22 42.66% 56.66% 52.66% 48.00%
23 52.38% 58.09% 54.28% 59.04%
24 45.00% 66.66% 69.16% 67.50%
25 46.66% 74.16% 43.33% 64.16%
26 63.70% 63.70% 65.18% 58.51%
27 55.83% 75.00% 55.83% 63.33%
28 47.61% 58.09% 50.47% 57.14%
29 53.33% 73.33% 48.57% 61.90%
30 49.62% 46.66% 42.96% 59.25%

Avg(5) 56.91% 61.53% 65.31% 66.87%
Avg(30) 58.37% 66.17% 60.96% 65.00%

Table 4.1. Clustering accuracies for CCA with four different kernel selection/learning
schemes on UniMib dataset.
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EV KTA [27] EVKL ALIGNF [28]
1 88.13% 88.13% 88.07% 87.27%
2 79.80% 79.80% 86.33% 88.47%
3 79.80% 79.80% 80.87% 85.80%
4 81.67% 81.67% 84.93% 83.40%
5 84.80% 84.80% 84.80% 90.07%

Avg(5) 82.84% 82.84% 85.00% 87.00%

Table 4.2. Clustering accuracies for CCA with four different kernel selection/learning
schemes on Salinas Hyperspectral dataset.

As before, the accuracy of all the four schemes for the Salinas dataset are provided

in Table 4.2. Each row represents the average of five different trials for each combina-

tion of four randomly selected objects, where each of the five trials is an average of five

separate instances of CCA being conducted with random initialization. Thus, each row is

essentially an average of 25 trials. For this dataset, both of the kernel selection schemes al-

ways select the same kernel and thus have same accuracies across each of the experiments.

This demonstrates the superior performance of the EV approach in selecting the correct

kernels, inspite of being unsupervised. Even among the kernel learning approaches, EVKL

and ALIGNF have similar accuracies for each of the experiments and thus, similar average

accuracies.
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Figure 4.1. Effect of selecting different kernel variance σ2 in the kernel covariance struc-
ture: (a) σ2 = 103.5, (b) σ2 = 1010, (c) σ2 = 10−5.
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CHAPTER 5

JOINT CLUSTERING AND KERNEL LEARNING

Kernel selection or multiple kernel learning methods discussed in the previous chap-

ter improve the performance of the correlation based clustering methods by identifying the

correct feature space in which the data correlations/covariance lends the maximum infor-

mation towards the clustering objective. In this chapter, the eigenvalue maximization based

kernel learning method is combined with the NMF based clustering approach into a joint

clustering and kernel learning framework. We prove that, under certain assumptions, the

joint formulation is guaranteed to select the best convex combination of kernels while si-

multaneously identifying the underlying clustering. The proof of convergence of the joint

formulation to a stationary point has also been established.

In Chapter 3 the NMF based clustering objective was introduced and solved un-

der hard clustering constraints using the branch and bound approach. The branch and

bound schemes scale poorly and thus a cross covariance based method was also presented.

The cross covariance approach though scales linearly but doesn’t utilize the information

from the entire dataset simultaneously and the performance is dependent on the accuracy

achieved in the first batch of factorization. To utilize a larger section (or the entire data), we

have to fall back on the original sparsity regularized formulation such that the framework

can be solved in reasonable time utilizing the gradient based approaches.

The problem in (3.5) can be relaxed to a biconvex objective, thus, the block diagonal

covariance matrix C is factorized as two factors M and N, such that M = N = BD
1/2
s .

Since we do not have access to the source signals and the data model, but only the sensor

measurements, we solve the matrix factorization problem ||C −MNT ||F under sparsity
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constraints to recover M and N as BD
1/2
s and thus obtain the underlying clustering. It

should be noted that we do not explicitly enforce constraints to make M = N since we

are not interested in recovering M and N exactly as BD
1/2
s but are interested in the sparse

solution wherein supp(M) = supp(N) = supp(BD
1/2
s ), where supp(·) is the support of

the columns of the input matrix argument. The support of the columns of BD
1/2
s points

to the signal’s class-membership information contained in columns of B, since the source

covariance matrix Ds is diagonal.

5.1 Inducing Sparsity

In [58, 59], the `1 − `2 penalty has been introduced and its advantages over many of

the other sparsity metrics have been discussed. Beyond giving a high degree of sparsity, it

has the added advantage of being Lipschitz continuous and can be effectively represented

by a difference of convex functions formulation. Thus, we utilize the `1− `2 regularization

for the non negative matrix factorization task discussed here (more details in [58]).

The sparsity regularized matrix factorization problem can then be rewritten as,

||C−MNT ||2F + λ
( P∑
i=1

||Mi,:||1 − ||Mi,:||2

+ ||Ni,:||1 − ||Ni,:||2
)

s. to M ≥ 0,N ≥ 0 (5.1)

where, || · ||1 and || · ||2 represent the `1 and `2 norms of a vector and λ is the regularization

parameter controlling the sparsity. Mi.: and Ni,:, refer to the i-th row of N and M matrices

respectively. M ≥ 0,N ≥ 0 are the entry-wise nonnegativity constraints on M and N.

It is important to note that beyond the sparsity properties of the `1 − `2 norm, it is

particularly well suited for the clustering problem because it can potentially enforce the

set partitioning or hard clustering constraint. If ||Mi,:||1 − ||Mi,:||2 = 0 is imposed as a
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constraint ∀i ∈ {1, ..., P}, the feasible set is reduced only to the points where each row

of M can have at most one non-zero entry. This subsequently conforms with our setting

wherein every signal belongs only to a single class. Thus, the formulation in (5.1), can also

be visualized as a Lagrangian relaxation of the matrix factorization problem under the set

partitioning constraint.

Combining the MKL problem with the NMF based matrix clustering discussed in

the previous chapter, the objective for the overall clustering problem can thus be stated as:

F (M,N,ααα) = ||
B∑
j=1

αααjK̂
j
x −MNT ||2F

+λ
( P∑
i=1

||Mi,:||1 − ||Mi,:||2 + ||Ni,:||1 − ||Ni,:||2
)

+µ
(Q−1∑
i=1

Λi(
B∑
j=1

αααjK̂
j
x)−

Q∑
i=1

Λi(
B∑
j=1

αααjK̂
j
x)
)

(5.2)

Proposition 2. If there exists a linear combination of the B dictionary kernels, such that the

overall kernel covariance matrix has a rank-Q (and equivalently Q- diagonal blocks), the

proposed formulation in the (5.2), at its minima achieves the desired solution.

Proof. The proof can be found in Appendix C.

5.1.1 Non-Convexity

The objective here is to minimize the cost function F (M,N,ααα), (5.2), w.r.t to M,

N and ααα. As is evident, the function in (5.2) is non-convex in all, M,N and ααα. The

non convexity in M is due to the square of the Frobenious norm of M ∗ NT , the term

||Mi,:||1−||Mi,:||2 and the eigenvalue maximization part. Consider the non convexity with

respect to M ∗ NT , this problem is biconvex in nature w.r.t the two variables N and M.

Thus, N and M can be updated alternatively while keeping the other fixed, making this part

of the problem convex with respect to any one of the two variables. The other source of
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non-convexity in M or N is due to the sparsity constraint, ||Mi,:||1−||Mi,:||2. The−||M||2

function is concave in nature and thus gradient descent applied directly to such a problem

will not find a stationary point. However, the `1 − `2 sparsity function can be minimized

using the difference of convex algorithm as described in section 4.2.

The other set of non convexities are with respect toααα. As explained earlier, maximiz-

ing the Q-th eigenvalue helps in selecting proper kernel matrices for clustering. Also, the

maximization of theQ-th eigenvalue can be expressed as minimizing
∑Q−1

i=1 Λi(
∑B

j=1αααjK̂
j
x)−∑Q

i=1 Λi(
∑B

j=1αααjK̂
j
x). The first half of this expression corresponds to the sum of Q −

1 eigenvalues, which is a convex function in ααα, but the second half corresponding to

−
∑Q

i=1 Λi(
∑B

j=1αααjK̂
j
x) is concave and similar to the−||Mi,:||2 part of the sparsity func-

tion, it cannot be solved with gradient descent iterations. To work around these challenges,

we resort to the difference of convex functions algorithm (DCA), explained in section 4.2.

As explained in section 4.2, for an objective function of the type F(X) = G(X) −

H(X) where, G(X) and H(X) are convex functions, the DCA algorithm iteratively com-

putes an affine majorization for the concave part of the function [i.e., −H(X)]. The con-

cave parts are replaced with their majorization to form a relaxed surrogate function which

can be minimized using standard gradient based methods.

Parts of the objective function in (5.2) can be expressed as difference of convex

functions. Thus comparing (5.2) to the G(X) −H(X) and the variable X being replaced

with M,N,ααα, we have that H(M,N,ααα) = λ||Mi,:||2+λ||Ni,:||2+µ
∑Q

i=1 Λi(
∑B

j=1αααjK̂
j
x)

and the affine majorization w.r.t ααα and M gives,

[α̃ααk]Q ∈ ∂
(∑Q

i=1 Λi(
∑B

j=1αααjK̂
j
x)
)
, M̃k

i,: ∈∂
(
||Mi,:||2

)
,

Ñk
i,: ∈ ∂

(
||Ni,:||2

)
(5.3)
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and the relaxed objective function then can be expressed as,

{Mk+1,Nk+1,αααk+1} ∈argmin
M,N,ααα

||
∑B

j=1αααjK̂
j
x −MNT ||2F

+µ

Q−1∑
i=1

Λi(
B∑
j=1

αααK̂j
x)+

∑P
i=1 λ(||Mi,:||1 + ||Ni,:||1)

−µ〈α, [α̃ααk]Q〉−
∑P

i=1 λ(〈Mi,:, M̃
k
i,:〉+ 〈Ni,:, Ñ

k
i,:〉).

s. to M ≥ 0,N ≥ 0 αααj ≥ 0,
∑B

j=1αααj = 1 (5.4)

The subgradient [α̃ααk]Q given in (5.3) corresponds to the derivative of the sum of eigenvalues

w.r.t ααα. The sub gradient can be evaluated based on the explanation in [57], where for a

matrix X and eigenvector vQ (which corresponds to the Q-th largest eigenvalue λQ of the

matrix X) the derivative of the eigenvalue λQ can be expressed as,

∂λQ = vTQ∂XvQ. (5.5)

Thus for [α̃ααk]Q we have,

[α̃ααk]Q =



zk1
T
K̂1zk1 + zk2

T
K̂1zk2 + · · ·+ zkQ

T
K̂1zkQ

zk1
T
K̂2zk1 + zk2

T
K̂2zk2 + · · ·+ zkQ

T
K̂2zkQ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

zk1
T
K̂Bzk1 + zk2

T
K̂Bzk2 + · · ·+ zkQ

T
K̂BzkQ


(5.6)

where, zki is the i-th eigenvector of matrix
∑B

j=1αααjK̂
j
x evaluated at ααα = αααk.

Index k is the outermost loop iteration index which counts the update of all the three

parameters M,N,ααα. Each iteration k consists of two update loops, 1) for updating M,ααα

while keeping N = Nk−1 constant; and 2) for updating N keeping M,ααα constant. The

inner loops are enumerated by an index p. During iteration p, the affine majorizers based

on (5.3) are evaluated. The relaxed or the surrogate problem with the majorization approx-

imation is then solved using simple subgradient descent or interior point based methods.
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The iterations for the sub gradient descent can further be represented by the index q. For

the projected subgradient descent case we have the subgradients with respect to M and ααα

as,

Mk,p,q+1 =
[
Mk,p,q − cq+1(−2Nk−1T (

B∑
j=1

αααk,p,qj K̂j
x

−Mk,p,qNk−1T ) + λ(sgn(Mk,p,q)− M̃k,p
]
+

αααk,p,q+1
j =

[
αααk,p,qj − cq+1

(
(K̂j

x)
T (

B∑
j=1

αααk,p,qj K̂j
x

−Mk,p,q+1Nk−1T ) + [α̃ααk,p,q]Q − [α̃ααk,p]Q−1

)]
S+
. (5.7)

where, [α̃ααk,p,q]Q = ∂
(
µ
∑Q

i=1 Λi(
∑B

j=1αααjK̂
j
x)
)
|ααα=αααk,p,q is the derivative of the sum of Q

eigenvalue functions. The operator [·]+ represents the component wise projection of the

input vector into the positive real space R+ and the operator [·]S+ represents the projection

of the vector onto the unit simplex, and can be evaluated as described in [60]. To ensure

convergence of the projected sub gradient descent method, the step size cq should adhere

to the following two conditions, 1)
∑∞

q=1(c
q)2 <∞, 2)

∑∞
q=1 c

q =∞, as noted in [61].

After the projected gradient descent iterations with index q have converged, |Mk,p,q∗−

Mk,p,q∗−1| ≤ thresh1 and |αααk,p,q∗j − αααk,p,q∗−1j | ≤ thresh1. Similar gradient descent itera-

tions are carried out to update N keeping M = Mk+1,p,q∗ . Post convergence, all variables

are updated as,

Mk,p+1 = Mk,p,q∗,Nk,p+1 = Nk,p,q∗,αααk,p+1
j = αααk,p,q∗j (5.8)

and the affine majorization in (5.3) is thus iteratively re-evaluated at the p + 1-th iteration.

The overall algorithm has been summarized in Algorithm 1.

53



5.1.2 Implementation Details

As part of the kernelized framework we use different kernel matrices derived from

the two most prominently used family of kernels, the Gaussian radial basis function (RBF)

kernels and the polynomial kernels. Although it should be noted that the algorithm is in no

way limited to the use of these two type of kernels. In fact the dictionary can be built from

different kernel families going beyond RBF and polynomials. The entries of the Gaussian

and the polynomial kernels are given as follows:

ki,jx (n, n′) = exp

(
−||xi(n)− xj(n

′)||2

2σ2

)
,

ki,jx (n, n′) = (xi(n)xj(n
′))d (5.9)

where xi(n) and xj(n
′) correspond to the i-th and the j-th entries of the vector xn and

xn′ , respectively. For the RBF kernel, the variance σ2 decides the spread upto which the

magnitude of difference, ||xi(n) − xj(n
′)||2, is relevant towards kernel covariance. In

the polynomial case, the degree d is the tunable factor controlling the kernel covariance

outcome.

An important step while computing kernel matrices is in centering the data by ac-

counting for the mean. While computing the covariance matrix in the linear case, Ĉx is

evaluated with zero mean data vectors. Similarly in the non linear case, after mapping

the data through the function φ(·) and obtaining φ(xn) and φ(yn), the average quantities

φ̄(x) := Ns
−1∑Ns

n=1φ(xn) and φ̄(y) := Ns
−1∑Ns

n=1φ(yn) are respectively subtracted

out, [62]. Since the values φ(xn) and φ(yn) are not explicitly available, the centering is

achieved as follows:

K̂x = Ns
−1∑Ns

n=1[φ(xn)− φ̄(x)][φ(xn)− φ̄(x)]T
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where the (i, j)th entry of K̂x, namely [K̂x]i,j can be written as [K̂x]i,j = Ns
−1∑Ns

n=1[K̂x(n)]i,j

with

[K̂x(n)]i,j : = [[φ(xn)− φ̄(x)]i] · [[φ(xn)− φ̄(x)]j]
T

= ki,jx (n, n)−Ns
−1∑Ns

n′=1 k
i,j
x (n, n′) (5.10)

−Ns
−1∑Ns

n′=1 k
j,i
x (n, n′) +Ns

−2∑Ns

n′=1

∑Ns

n′′=1 k
i,j
x (n′, n′′),

as evident from the above equation, ki,jx (n, n′) := [φ(xn)]i·φ(xn′)]j = φ̂(xi(n))·φ̂(xj(n
′)).

Also, since the kernel learning part of the cost function relies on maximizing the

Q-th eigenvalue, it is necessary that the eigenvalues are comparable across different kernel

matrices. Therefore, each of the kernels are normalized with respect to their trace. At

the first iteration ααα can be initialized giving equal weight-age to each of the kernels, thus

αααi = B−1 and M can be initialized randomly.

The nonzero entries in each row of M (and each column of N) are then used to

assign the corresponding input data vector/signal to the the corresponding cluster. Since

for a given row Mi,: there may exist more than one nonzero entries, the i-th data vec-

tor/signal is assigned to the cluster q̂ where, q̂ ∈ argmax
q∈{1,...,Q}

Mi,q. To further utilize the in-

formation from both M and N, the cluster for the i-th data vector/signal is selected as,

q̂ ∈ argmax
q∈{1,...,Q}

Mi,qNq,i.

5.1.3 Convergence Analysis

For the non smooth optimization function in (5.2), the convergence analysis for the

DCA based formulation in (5.3) and (5.4) is discussed in Appendix B. In line with the

analysis in [58], we have established the following results,

Proposition 3, For the proposed DCA based method, the following three results hold true:

1) The iterates at every iteration in Algorithm 1 are nonicreasing.

2) The objective function in (5.2) is lower bounded.
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Algorithm 1 DCA based approach
1: Initialize M randomly, and αααj = 1

B∀j ∈ 1, ..., B.

2: The kernel matrices, K̂j
x should be trace-normalized ∀j ∈ 1, ..., B.

3: while (|Mk −Mk−1| > thresh1) || (|Nk −Nk−1| > thresh1) do

4: while |Mk,p −Mk,p−1| > thresh1 do

5: N = Nk−1,p∗

6: Compute the majorizations for −||Mi,:||2,−
∑Q

i=1 Λi(
∑B

j=1αααjK̂
j
x) as given in (5.3) and

(5.6).

7: Update M and ααα using interior point or projected sub-gradient descent approach (5.7)

until convergence.

8: end while

9: while |Nk,p −Nk,p−1| > thresh1 do

10: M = Mk,p∗

11: Compute the majorizations for −||Ni.:||2 as given in (5.3).

12: Update N using interior point or projected sub-gradient descent approach (5.7) until con-

vergence.

13: end while

14: end while

3) At the limit point of the DCA based algorithm, M∗,N∗,ααα∗, the first order optimality

condition is satisfied.

Proof. The proof for these three results have been discussed in appendix B.1), B.2) and

B.3) respectively.

5.2 Results

In this section numerical results are presented in with multiple datasets to show the

efficacy of the proposed algorithm. First, to further build the intuition and to demonstrate
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the capability of the eigenvalue based procedure in learning the desired kernel a simulation

in a synthetic setting has been presented. Here we just examine the behavior of the ker-

nel learning scheme. We then look at the performance of the overall kernel learning and

clustering framework in 3 different settings, 1) In a hyperspectral image dataset, i.e. Sali-

nas [2]; 2) In a smartphone based human activity detection setting [4] and 3) In a document

classification setting [5].

We compare the performance of the proposed scheme against 4 different unsuper-

vised algorithms; 1) standard non negative matrix factorization (NMF); 2) Graph non neg-

ative matrix factorization (GNMF) [23]; 3) Deep NMF (DNMF) [20]; and 4) K-Means.

We also show the results with kernel support vector machines with 10% and 25% train-

ing data, just to give a perspective about the performance of supervised approaches under

similar simulation settings. For the GNMF and Deep NMF the simulations were repeated

for 200 different sets of parameters for each of the datasets. The results reported here are

with the best combination of parameters for each individual dataset. The parameter values

have been reported in the sections elaborating the experiments for each of the datasets. In

addition, to showcase the robustness of our algorithm to changes in the dataset, for the

proposed algorithm we have used the same value of parameters across all the datasets.

For the simulations of GNMF and Deep NMF the codes made available by the au-

thors of the respective papers were utilized. For the kernel SVM, the inbuilt implementation

in MATLAB with auto-scaling was used, wherein, the kernel parameters are automatically

selected using the training data. For K-Means too, MATLAB’s inbuilt implementation was

used.

The clustering accuracy is utilized as a metric for comparing the performance of the

methods. Since clusters obtained with unsupervised methods do not have an associated

class label, the accuracy is calculated by assigning each cluster with the class label in

accordance with the approach explained in [63,64]. Where essentially all combinations for
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cluster and label pairs are explored and the one that maximizes the accuracy w.r.t ground

truth is selected. Further details can be found in [63, 64]

5.2.1 Synthetic Kernel Selection

Here we consider a synthetic example to show the performance of the eigenvalue

based kernel learning scheme, discussed in Section 2. We consider the case with Q = 4

classes. A set of 15 vectors are present from each of the 4 classes, thus the kernel matrices

have a size of 60 × 60. The vectors from the same class are ordered/grouped together

while evaluating the kernel covariance. As can be seen from Fig. 5.1(a), a total of B = 6

artificially generated kernels have been considered. Starting from the top left in Fig. 5.1(a)

and going clock wise, the first kernel has all zero values. The next one has high covariance

for elements from class 1 and 3. The next one represents high covariance in data vectors

from class 2 only. The next two kernels represent unsuitable information as the diagonal

matrix essentially conveys that all data vectors are independent and a constant value kernel

represents that all data vectors are from the same class. These cases are similar to the ones

discussed in Fig. 4.1(b) and 4.1(c), representing the low and high variance RBF kernels.

The last kernel in Fig. 5.1(a) represents highly correlated vectors from class 4.

For this setting we would expect the kernel learning to have non-zero αj values for

kernel matrices 2,3 and 6 (numbered clockwise, starting from top left in Fig. 5.1(a)). From

the eigenvalue based approach we attain the α = {0, 0.5, 0.25, 0, 0, 0.25}. The resulting

kernel matrix
∑B

j=1 αjK̂
j
x is given in Fig. 5.1(b) which has the strong block diagonal

structure that is favorable for matrix factorization based clustering.

5.2.2 Activity Detection

The first data set is the University of Milano Bicocca Smartphone-based Human

Activity Recognition (UniMiB) dataset [4]. The dataset contains accelerometer readings
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Figure 5.1. A synthetic example of the kernel learning scheme. In (a), the 6 input kernels
have been showcased. In (b), the output of the kernel learning scheme obtained as a convex
combination of the input kernels can be seen.

from smartphones mounted on 30 different users while they perform a range of activities

including walking, running and climbing the stairs. The signals are pre-split into individual

epochs with each of them being 51 samples in length and centered around the peak of

the epoch. The signal is considered along each of the XYZ axis-es of the accelerometer

and thus the concatenated signal is 153 samples long. Each of these 153 length vectors

are associated with a single activity and thus the objective is to cluster the signals/vectors

based on the underlying source or the class of activity they represent. Further information

on the dataset can be found in [4, 39].

We consider the epochs from a set of 3 activities of walking, running and climbing

stairs. The results are averaged over all the 30 users and are presented in Fig. 5.2 as a box

plot. As can be inferred from the figure, our novel proposed framework outperforms each

of the six schemes, including the supervised SVM based approach. For the Deep NMF
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case, the configuration with 2 hidden layers with 50 and 4 features, respectively and for the

GNMF case an α = 1.2, yielded the best accuracy.
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Figure 5.2. Boxplot comparing the accuracies of 5 different schemes with the proposed
method for the UniMiB human activity classification dataset [4]. The central red mark
in the box refers to the median accuracy, and the edges of the box mark 25th and 75th

percentiles of the accuracy across all trials.

5.2.3 Hyperspectral Images

The hyperspectral image dataset represents the application of the proposed approach

in a remote sensing setting. The image considered here has been captured by an AVIRIS

sensing system over the Salinas valley, Callifornia [2]. Each pixel in the image is a 224

dimensional vector where each dimension represents the energy in a specific spectral re-

flectance band.

The Salinas image primarily consists of farmland where different crops/ materials

are present in different parts of the image. Each pixel observes a specific material and there

are a total of 16 different types of materials/crops. The objective is to consider each pixel

independently and cluster them based on the 224 dimension vector into different classes
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based on the material they observe. The underlying assumption is that the pixels observing

the same class will have similar spectral reflectance values. For our simulations, during

each iteration, we consider a set of Q = 4 different randomly selected materials and select

15 random pixels representing each of the 4 classes. The experiment is repeated over a total

of 100 random material and pixel selections.

The overall clustering accuracies can be seen in Fig. 7.2. The figure shows a boxplot

of the accuracies over the 100 trials, where the red mark inside the box indicates the median

and the edges of the box mark the 25 and 75 percentiles of the accuracy across trials. As can

be inferred from the figure, the GNMF and the proposed approach perform similar to each

other and both perform better than the deep NMF, K-Means and SVM with 10% training. It

is important to note that the accuracy for GNMF and Deep semi NMF depend significantly

on the value of the tuning parameters. For both the cases we searched over 200 different

sets of parameters and finally the accuracies with the best set have been presented in Fig.

7.2. In the GNMF case a value of α = 1 was used, whereas a value of α = 100 has been

suggested in [23] at which the GNMF accuracy was significantly lower.

5.2.4 Document Clustering

The third dataset is the la2 dataset which was compiled using from articles of the

Los Angeles Times and was used in TREC [5]. The dataset contains 3075 files from 6

classes, we consider files with at least a total of 100 words and thus the total number of

files considered reduces to 2030. For our evaluation we consider a set of 100 files from

4 different classes (25 randomly selected from each of the classes). Similar to the other

case studies, the objective here is to cluster the documents pertaining to the same class.

A document is represented by a vector where its dimensions represent the frequency of

occurrence of a particular word. The document to vectorization is done using the approach

in [65].
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Figure 5.3. Boxplot comparing the accuracies of 5 different schemes with the proposed
method for the Salinas hyperspectral image dataset [2]. The central red mark in the box
refers to the median accuracy, and the edges of the box mark 25th and 75th percentiles of
the accuracy across all trials..

The boxplot giving the clustering accuracies for the document dataset is in Fig. 5.4.

At convergence, the α values had significant weightage for kernel matrices corresponding

to RBF kernels with σ2 = 107, 106, 105 and the polynomial kernel with degree 2. For the

Deep NMF case, the configuration with 2 hidden layers with 200 and 4 features, respec-

tively and for the GNMF case an α = 0.05, yielded the best accuracy. For the proposed

scheme λ = 10−2 and µ = 10 were used.
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Figure 5.4. Boxplot comparing the accuracies of 5 different schemes with the proposed
method for the LA Times document clustering dataset [5]. The central red mark in the box
refers to the median accuracy, and the edges of the box mark 25th and 75th percentiles of
the accuracy across all trials.
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CHAPTER 6

UNSUPERVISED DEEP NEURAL NETWORKS FOR CORRELATION EXTRACTION

So far we have relied on using different kernels (like RBF/Gaussian kernels, polyno-

mial kernels) for computing the data correlations in a mapped feature space. In this chapter

we explore a deep neural network based approach to map the data from the data space to

the feature space. The method relies on the principle of block diagonalization of the corre-

lation matrix at the ouput of a deep neural network based mapping. The neural network is

learnt in an unsupervised setting using the eigenvalue maximization framework detailed in

Chapter 4 and is utilized towards improving the performance of the NMF based clustering

method.

As was discussed in the previous chapters, the kernel correlation/covariance matrix

most suitable for sparse factorization should ideally have a large magnitude for the Q-th

eigenvalue. Depending on the data and application, the RBF or polynomial kernels may not

be sufficient to linearize the source to sensor observation model. Thus instead of restricting

the search of the φ(·) to just these family of functions which have a closed form expression

for evaluating the correlations, we may build a more suitable mapping φ(·) by utilizing the

neural network like function estimators that could satisfy our eigenvalue criterion.

Consider a fully connected neural network as seen in Fig. 6.1. The objective is to

utilize the network to transform the data from the input space x to an output space φ(x)

such that the vectors from the same class are correlated and the ones from differing classes

are uncorrelated. In line with the earlier discussions, where this objective was achieved via

multiple kernel learning by maximizing the Q-th eigen value of the convex sum of kernel
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correlation matrices, the neural network (NN) is trained such that the Q-th eigen value of

the correlation matrix of the output layer of the NN is maximized.

To formalize the discussion, consider a fully connected network with H + 2 layers,

one input layer with Ns input nodes (where Ns is the dimension of the input data vector),

H hidden layers with the h-th layer having Nh nodes and 1 output layer with N o output

nodes. Since we consider a fully connected model, each node in the input or hidden layer is

connected to each node in the next corresponding layer, where each connection corresponds

to a weight. The weights of the connections between H-th hidden layer and the output

layer are given by the (NH + 1) × N o matrix W o, where the 1 in (NH + 1) corresponds

to the weight for the bias term. Similarly, the weights between the two consecutive hidden

layers h1 and h2 are given by the (Nh1 + 1) × Nh2 matrix W h2. The output of each

node of the hidden and the output layer is the weighted sum of the outputs of the previous

layer passed through an activation function. As part of this work we utilize ReLU (rectified

linear unit) [66] function as the activation function for our formulation, but it must be noted

that the same formulation can be easily extended to different activation functions too. The

ReLU function, σ(·), can be defined as σ(z) = max{0, z}.

Consider a simple case wherein the data mapping x→ φ(x) involves a two layer NN

(1 input layer and 1 output layer). Since we consider a fully connected model, each node in

the output layer is connected to all the input nodes. Thus, the output of the j-th node of the

output layer φj(x) = σ(wo
j
Tx), where, wo

j is the weight vector connecting the j-th node of

the output with all the nodes of the preceding layer (input layer in this case).

The correlation matrix entries for the data in the mapped space are then given as,

Ki1,i2 =
No∑
j=1

φj(xi1)φj(xi2) (6.1)
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where, the matrix K ∈ RP×P is the correlation matrix across the P data vectors after being

mapped through the neural network. The subscript i1, i2 represents the corresponding entry

of the associated matrix.

The weights wo
j are then to be updated in accordance with the objective of maximiz-

ing the Q-th eigenvalue of K. In the following section we elaborate on the weight update

procedure using a difference of convex formulation. We first develop the theory for the

simpler 2 layer case and then later extend it to the multi-layer case. We further discuss the

algorithmic and implementation details for achieving the data clustering objective using the

sparse matrix factorization of the output correlation matrix K.

Input Unit
ReLU Unit

𝑿𝑿𝒊𝒊

Input Data (𝑿𝑿𝒊𝒊) Correlation:
𝑿𝑿𝑿𝑿𝑻𝑻

Output Correlation
𝑲𝑲 = 𝝓𝝓𝝓𝝓𝑻𝑻

𝜙𝜙(𝑿𝑿𝒊𝒊)

Figure 6.1. Block diagram representation of the unsupervised training method to learn a
function mapping that maximizes the Q-th eigenvalue.

6.1 Algorithm

The difference of convex formulation introduced in section 4.2 for the multiple ker-

nel learning application can be further extended towards finding the weights of the neural
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network based model described here. For the two layer case, the correlation matrix of the

deep kernel can be formulated as:

Ki1,i2 =
No∑
j=1

φj(xi1)φj(xi2)

=
1

No

No∑
j=1

σ(wo
j
Txi1)σ(wo

j
Txi2)

=
1

No

No∑
j=1

σ(wo
j
Txi1)σ(wo

j
Txi2) (6.2)

where, wo
j represents the weights between the input layer and the j-th node of the output

layer and σ is the activation function, as defined earlier. Since we consider a ReLU acti-

vation function which essentially is a piece-wise linear function with the slope taking the

possible value of 1 or 0, the kernel matrix can be represented in a simplified form using

element wise dot product as given in,

Ki1,i2 =
1

No

No∑
j=1

(
Ji1j · (wo

j
Txi1)

)(
Ji2j · (wo

j
Txi2)

)

where, Ji1j =

 0 if (woT
j xi1) ≤ 0

1 if (woT
j xi1) > 0

(6.3)

The overall kernel matrix can then be defined as,

K =
1

No

(
J ◦ (WoTXT )

)(
J ◦ (XWo)

)
(6.4)

where, the operator ◦ represents element wise dot product. The matrices Wo and X repre-

sents the weights and the inputs, respectively. J is the matrix with its entries being either 0

or 1, as given by (6.3).
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The optimization problem to learn weights, Wo, to maximize the Q-th eigenvalue

can then be represented as,

Wo ∈argmax
Wo

ΛQ(K)

∈argmin
Wo

Q−1∑
i=1

Λi
((

J ◦ (WoTXT )
)(
J ◦ (XWo)

))
−

Q∑
i=1

Λi
((

J ◦ (WoTXT )
)(

(XWo) ◦ J
))

(6.5)

Since the optimization problem is not convex but rather a difference of two convex

functions (or equivalently, sum of a convex and a concave function). An iterative process

with two alternating steps, similar to the one explained in Section 4.2 is utilized. At each

iteration, the first step involves relaxing the the concave part of the optimization problem,

given by, H(Wo) = −
∑Q

i=1 Λi
((

J ◦ (WoTXT )
)(

(XWo) ◦ J
))

. The concave function

is replaced it by its linear majorizer, WoT ∂H(Wo)
∂Wo , where the operator ∂ represents the

subgradient of the function. Although the sum of eigenvalue function is convex, it is not

smooth across its range, thus subgradients are utilized for forming the majorizer. In line

with the discussions in [54, 57], for a matrix X with eigenvectors vQ, corresponding to the

Q-th largest eigenvalue λQ, the sub gradient of the eigenvalue λQ is given as,

∂λQ = vTQ∂XvQ. (6.6)

Correspondingly, for the matrix
((

J ◦ (WoTXT )
)(

(XWo) ◦ J
))

, the subgradient

∂H(Wo)
∂Wo is given as,
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∂H(Wo)

∂Wo
ij

=−
Q∑
i=1

∂

∂Wo
ij

zTi

((
J ◦ (WoTXT )

)(
(XWo) ◦ J

))
zi

= −
Q∑
i=1

zTi

((
J ◦ ∂

∂Wo
ij

(WoTXT )
)(

(XWo) ◦ J
)

+
(
J ◦ (WoTXT )

)( ∂

∂Wo
ij

(XWo) ◦ J
))

zi

= − 2

Q∑
i=1

zTi

((
J ◦ (WoTXT )

)(
(XÎi,j) ◦ J

))
zi (6.7)

where, zi is the eigenvector corresponding to the i-th largest eigenvalue of the matrix
((

J◦

(WoTXT )
)(

(XWo) ◦ J
))

. Also, ∂ XWo

∂Wo
ij

= XÎi,j where, Îi,j is a matrix with its i, j-th

element having a value of 1 and the rest of the elements being 0. Further explanation can

be found in [67].

Thus, at the k-th iteration, the overall optimization problem with the majorization

relaxation is given as,

Wok ∈argmin
Wo

Q−1∑
i=1

Λi
((

J ◦ (WoTXT )
)(

J ◦ (XWo)
))

−
〈
Wo,

∂H(Wo)

∂Wo
ij

|Wo=Wok−1

〉
(6.8)

where, the majorizer has been evaluated at Wok−1 (the value of Wo at the previous itera-

tion).

At the second step, a sub-gradient descent based scheme is utilized to solve the re-

laxed problem to a stationary point. Since the sub-gradient descent is an iterative process,

we introduce a second index l to indicate the iterations. Thus the weight update process

can be expressed as,

Wok,l+1
ij =Wok,l

ij − c

(
Q−1∑
i=1

2zTi

((
J ◦ (Wok,lTXT )

)
(
(XÎi,j) ◦ J

))
zi −

∂H(Wo)

∂Wo
ij

|Wo=Wok−1,0

)
(6.9)
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where, the eigenvectors zi are evaluated at for the the matrix
((

J◦(Wok,lTXT )
)(

(XWok,l)◦

J
))

. The inner loop for sub gradient descent (corresponding to the iteration index l) is

considered to have converged when |Wok,l −Wok,l+1|F ≤ ε, where ε is a user defined

threshold. Towards the next iterate, the majorizer is recalculated at the beginning of k + 1-

th iteration and the relaxed problem is solved to optimality. This process is carried until the

stopping criterion given by |Wok,0 −Wok+1,0|F ≤ ε is met.

6.1.1 Multilayer Case

In the multilayer case with H hidden layers, the gradients have to be propagated

from the output node to the input node, through the hidden layers. Thus the output of at the

j-th node of the output layer is given as σ(wo
j
TxhHi1 ), where wo indicates the weights of the

output layer and xhHi1 indicates the output of the H-th hidden layer for the input vector xi1.

Since the output of the hidden layer, xhHi1 is a function of the weights of the remaining

H − 1 hidden-layers, the output of the j-th node of the H-th hidden layer is given as,

xhHi1 j = σ(whH
j

T
x
hH−1

i1 ). (6.10)

Thus, the cost function in (6.5) can be expressed as,

{Wo,WhH , ...,Wh1} ∈

argmin
Wo,WhH ,...,Wh1

Q−1∑
i=1

Λi
((

J ◦ (WoTXhHT )
)(

(XhHWo) ◦ J
))

−
Q∑
i=1

Λi
((

J ◦ (WoTXhHT )
)(

(XhHWo) ◦ J
))
. (6.11)

The derivative of the cost function in (6.11) (say C), w.r.t WhH is then given as,

∂C

∂WhH
mn

=
∑
j

∂C

∂XhH
j

∂XhH
j

∂WhH
mn

(6.12)

where, C is the cost function in (6.11). The derivative ∂C

∂X
hH
j

can be evaluated using the

majorization approach used in (6.7) and (6.8).
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6.1.2 Reducing Dimensionality

The complexity of the gradient based update procedure in (6.7) and (6.8) is dependent

on the dimensionality of the correlation matrix K ( in (6.4)), where the matrix has a size

of P × P which depends on the number of data vectors being considered (P ). Since the

update procedure in (6.7) and (6.8) requires evaluating the eigenvectors zQ the complexity

of the update procedure is a cubic function of P . Thus with the increase in number of

vectors being used for evaluating φ(·), the computation costs can be very high.

Since we are interested only in maximizing theQ-th eigenvalue ofK, the correlations

can rather be evaluated across dimensions, thus the matrix can be represented as,

K̂ =
1

No

(
J ◦ (XW)

)(
J ◦ (WTXT )

)
. (6.13)

The eigenvalues of K̂ are same as the eigenvalues of K and thus the eigenvalue maximiza-

tion can be performed cost effectively over a matrix of fixed size, No ×No, irrespective of

the number of data vectors being considered. Thus if P > No, K can be replaced with K̂,

and the derivative in (6.7) is modified as,

∂H(W)

∂Wij

= −2

Q∑
i=1

ẑTi

((
(XÎi,j) ◦ J

)(
J ◦ (WTXT )

))
ẑi (6.14)

where, ẑQ represents the eigenvectors of the matrix K̂.

6.1.3 Sparse Matrix Factorization

Similar to the matrix factorization method proposed in the previous chapter, we uti-

lize the `1 − `2 penalty to recover sparse matrix factors. The sparsity regularized matrix

factorization problem can then be rewritten as,
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||C−MNT ||2F + λ
( P∑
i=1

||Mi,:||1 − ||Mi,:||2

+ ||Ni,:||1 − ||Ni,:||2
)

s. to M ≥ 0,N ≥ 0 (6.15)

where, || · ||1 and || · ||2 represent the `1 and `2 norms of a vector and λ is the regularization

parameter controlling the sparsity. Mi.: and Ni,:, refer to the i-th row of N and M matrices

respectively. M ≥ 0,N ≥ 0 are the entry-wise non-negativity constraints on M and N.

Similar to the discussions in Chapter 5, parts of the objective function in (6.15) can be

expressed as difference of convex functions. Thus comparing (6.15) to the G(X)−H(X)

and the variable X being replaced with M,N, we have that H(M,N) = λ||Mi,:||2 +

λ||Ni,:||2 and the affine majorization w.r.tM gives,

M̃k
i,: ∈∂

(
λ||Mi,:||2

)
,

Ñk
i,: ∈ ∂

(
λ||Ni,:||2

)
(6.16)

After applying the DCA based majorization, the relaxed objective function then can be

expressed as,

{Mk+1,Nk+1} ∈argmin
M,N

||Kx −MNT ||2F

+
∑P

i=1 λ(||Mi,:||1 + ||Ni,:||1)

−
∑P

i=1 λ(〈Mi,:, M̃
k
i,:〉+ 〈Ni,:, Ñ

k
i,:〉).

s. to M ≥ 0,N ≥ 0 (6.17)

where,

M̃k
i,: ∈ ∂

(
λ||Mi,:||2

)
, Ñk

i,: ∈ ∂
(
λ||Ni,:||2

)
(6.18)

The iterative gradient based approach used in the previous chapter can be utilized to

find the sparse matrix factors Mk+1 and Nk+1.
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6.2 Results

In this section we present results showing the performance of the proposed aprroach

(abbreviated as EVDL NMF) in the hand written digit image database MNIST [6].

We compare the performance of the proposed scheme against two other schemes.

1)the graph non negative matrix factorization (Graph NMF) [23] and 2) kernel learning

based NMF (KL NMF).

6.2.1 MNIST Digits Dataset

The MNIST dataset represents the application of the proposed scheme for handwrit-

ten digit recognition. The dataset contains images from 10 classes representing 0-9 digits.

Each image is gray-scale and has a size of 28x28 (or vectorized as a 784 dimensional vec-

tor). The objective here is to cluster images based on the digit each image represents. For

our simulations we consider the digits between 0 and 3, and thus Q = 4. The experiment

is repeated over a total of 100 times, during each iteration, a set of 250 randomly selected

images representing each of the 4 classes are utilized for the unsupervised training of the

network and 25 images from each class are utilized for the NMF based clustering. A box

plot representing the overall clustering accuracies can be seen in Fig. 6.2.
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Figure 6.2. Boxplot comparing the accuracies of the proposed eigenvalue based deep learn-
ing method with other NMF methods for the MNIST digit image database [6].
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CHAPTER 7

DEEP LINEARIZATION MAPPINGS FOR CANONICAL CORRELATION

CLUSTERING

In Chapter 2, we explored the CCA based clustering framework and presented its ker-

nelized variant which improved the clustering accuracies in contrast to the standard CCA

formulation. The use of kernels improves the performance of CCA based approaches on a

case by case basis but provides no guarantees about potentially being able to linearize data

or improve performance. Also, utilizing kernels heavily restricts the family of mappings

that may be used to only Gaussian and polynomial. Another drawback of kernel methods is

with regards to scalability as they scale quadratically with P as compared to a linear CCA

approach. This is mainly due to the usage of auto and cross kernel covariance matrices in

kernelized CCA, instead of directly using the data as in the standard CCA model in (2.2).

As we know, a linear observation model f ij(·) corresponds to a linear relationship

between the signal xi(n) and sj(n). Since each sensor’s observations are derived from

one of the Q source signals, the correlation matrix R = XXT has a rank equal to Q

(ignoring the effect of noise). Thus, performing a principal component analysis (PCA)

based optimization of the reconstruction MSE,
∑P

i=1 ‖Xi − BCXi‖2, the compression

matrix C and the decompression matrix B need only Q rows and Q columns, respectively.

Here, Xi ∈ RNs represents the i-th row of X

In the case where f ij(·) is non-linear, rank(R) > Q and equivalently there are more

thanQ principal components in the data. To improve the clustering performance in such ap-

plications, a possible solution is to map the signals/data through a non-linear mapping, say

φ(·) (where, φ : RNs → RF ), such that the signals/data vectors have linear relationships
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in the mapped feature space (Cover’s Theorem [68]), here F denotes the dimensionality of

the feature space. Thus, ensuring that in the mapped space, the data pertaining to the same

class are highly correlated.

Since our underlying assumption states that sensor data X is dependent on the Q

uncorrelated source signals, then the non-linear mapping φ(·), should linearize the data

such that the low-rank reconstruction MSE is minimized, i.e.,

argmin
φ(·),B∈RF×Q,C∈RQ×F

P∑
i=1

‖φ(Xi)−BCφ(Xi)‖22. (7.1)

Thus, instead of restricting the search of the φ(·) to just these family of functions

which have a closed form expression for evaluating the correlations, the potential of map-

ping φ(·) can be expanded by utilizing neural network based function estimators that could

satisfy our rank criterion.

7.1 Deep Linearization Mapping

Since the objective is to linearize the data, we consider a neural network with non-

linear activations to represent the mapping φ(·). The objective is to utilize the network to

transform the data from the input space Xi ∈ RNs to an output space φ(Xi) ∈ RF such

that the rank of the correlation matrix in the projected space is equal to Q.

While solving for (7.1), it is important to ensure that the mapping φ(·) is invertible

and preserves the original information of its argument. For example, if (7.1) is solved

unconstrained, a possible mapping that minimizes the cost is φ(Xi) = [0, 0, ..., 0] ∀i. To

avoid this, we have to impose additional constraints. Specifically we substitute (7.1) with

the following constrained formulation:

argmin
φ(·)

P∑
i=1

‖φ(Xi)−BCφ(Xi)‖2

s. to φ−1(φ(Xi)) = Xi, ∀i ∈ 1, ..., P . (7.2)
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Solving (7.2) is extremely hard due to the highly nonconvex equality constraint. Therefore,

the following relaxed reformulation which preserves the original information of the input

is adopted instead

argmin
φ(·)

P∑
i=1

∥∥∥∥Xi − φ−1
(
BCφ(Xi)

)∥∥∥∥
2

. (7.3)

The reformulated unconstrained optimization problem in (7.3) keenly resembels the

autoencoder neural network formulation [69] with an added linear transformation BC to

impose linear compression to a Q-dimensional space (with linear PCA applied in feature

space).

To formalize the discussion, consider an autoencoder type structure with a fully con-

nected network as seen in Fig. 7.1. The proposed structure can be divided into 3 parts.

1) The nonlinear mapping (encoding) stage, to transform the data as Xi → φ(Xi) from

RNs → RF , 2) the linear compression-decompression stage or the PCA stage, where

the data is compressed to Q components and decompressed to F components, and 3) the

nonlinear decoding or inverse mapping stage that remaps the data from RF → RNs .

At the first and third stage, any type of neural network layers may be utilized (eg.,

fully connected, convolutional neural networks and so on [70] ) and there is no inherent

restriction on the number or structure of these layers. As is common in autoencoder archi-

tectures, the encoding and decoding layers are usually selected as a mirror image of each

other (i.e. same architecture is utilized in the decoding as in encoding but the layers are

arranged in the reverse order). The second stage corresponding to the linear compression-

decompression (standard linear PCA) forms a linear bottleneck in the neural network archi-

tecture. As, C is a linear projection matrix of sizeQ×F , the data is essentially compressed

toQ principal components. Similarly, B ∈ RF×Q re-projects the data to the mapping space.

From an implementation perspective, B and C can be represented as weights between fully

connected layers with linear activation functions at nodes, as is seen in Fig. 7.1.
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Figure 7.1. Block diagram representation of the unsupervised training method to learn a
function mapping that compresses the data vector down to Q principal components.

A gradient descent approach in (7.3) is utilized to learn the weights of each layer,

namelyφ(·),φ−1(·) and B and C matrices. An important thing to remember here is that the

optimization process mentioned here to learn the mapping φ(·) is unsupervised and does

not require any training labels. Post convergenence, the output of the nonlinear mapping

φ(Xi) is utilized as the input for the CCA based clustering process discussed in Section

2.3 and [11].

7.2 Results

In this section we present results showing the performance of the proposed deep

linearization based CCA (abbreviated as Deep CCA) in two different settings, 1) In a hy-

perspectral image dataset, i.e. Salinas [2]; 2) In the hand written digit image database

MNIST [6].

We compare the performance of the proposed scheme against two other schemes. 1)

The standard CCA [11] and 2) the kernelized CCA (KCCA) [21, 22]. For the kernel CCA,
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the best kernel was selected from a group of 15 Gaussian and polynomial kernels using the

alignment based kernel selection scheme suggested in [27].

7.2.1 Hyperspectral Images

In this dataset we apply the proposed approach for clustering in a remote sensing

setting. The hyperspectral image has been captured by the AVIRIS sensing system over

the crop fields in Salinas valley, California [2], where different crops/ materials are present

in different parts of the image. The pixels in the image have 224 dimensions representing

the energy in a specific spectral reflectance band. Each pixel observes a specific crop

and there are a total of 16 different types of materials/crops. The objective is to cluster

pixels into different classes based on the material they observe while considering each

pixel independently. The underlying assumption is that the pixels observing the same class

will have similar spectral reflectance values. For our simulations, during each iteration, we

consider a set of Q = 4 different randomly selected materials and select 250 random pixels

representing each of the 4 classes. The experimental results are averaged over a total of

100 random materials and pixel selections.

We utilize fully connected layers to form the nonlinear compression stage in the au-

toencoder network. The 224 dimension vector is the input to two fully connected layers

with 256 nodes each. These two layers form the non linear mapping stage of the autoen-

coder. Rectified linear units (ReLU) [66] based nonlinear activation was employed. The

256 node output is constrained down to Q = 4 nodes (with linear activation) and scaled

back up to 256 nodes. This is followed by 2 more layers with nonlinear activation to pro-

duce the output. As the second fully connected layer in the nonlinear mapping stage has

256 nodes, the output dimension of the mapping is F = 256.

The overall clustering accuracies can be seen in Fig. 7.2. The figure shows a boxplot

of the accuracies over the 100 trials, where the red mark inside the box indicates the median
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and the edges of the box mark the 25 and 75 percentiles of the accuracy across trials. As

can be inferred from the figure, the proposed deep CCA approach performs better than both

of the existing schemes.

As was explained in the previous section, if the observation model f(·) is non linear,

the PCA reconstruction MSE cost into Q components
∑P

i=1 ‖Xi − BCXi‖2 will be high

and can be reduced by utilizing the mapping φ(·) . The same can be inferred from Fig. 7.3.

In Fig. 7.4 we explore the impact of the output vector length F of the mapping φ(·)

on the clustering accuracy. As the vector length is increased, the CCA accuracy increases

up to a point (256/512 in this case). Ideally, beyond this value, with increase in vector

length, the accuracy increase should flatten out and should remain constant. But as seen

from the figure, the accuracy slowly decreases as the vector length increases. This can be

attributed to poor generalization or over-fitting that may occur as increasing F essentially

results in increasing the number of weights/nodes in the network and hence increasing the

overall complexity of the network, while the number of input data vectors available for

learning is fixed to a total of P = 1000.

7.2.2 MNIST Digits Dataset

The MNIST dataset represents the application of the proposed scheme for handwrit-

ten digit recognition. The dataset contains images from 10 classes representing 0-9 digits.

Each image is gray-scale and has a size of 28x28 (or vectorized as a 784 dimensional vec-

tor). The objective here is to cluster images based on the digit each image represents. For

our simulations we consider the digits between 0 and 3, and thus Q = 4. The experiment

is repeated over a total of 100 times, during each iteration, a set of 250 randomly selected

images representing each of the 4 classes is considered. Similar to the hyperspectral case

the mapping φ(·) has 2 fully connected layers with 512 nodes each. A box plot representing

the overall clustering accuracies can be seen in Fig. 7.5.
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Figure 7.2. Boxplot comparing the accuracies of 3 different variants of CCA based cluster-
ing for the Salinas hyperspectral image dataset [2]. The central red mark in the box refers
to the median accuracy, and the edges of the box mark 25th and 75th percentiles of the
accuracy across all trials.
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Figure 7.3. Mean square reconstruction loss obtained by the standard PCA based approach
and as obtained by the proposed deep kernel linearized method for the Salinas hyperspectral
image dataset [2] have been presented.
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Figure 7.4. Comparison of accuracy plotted against the output dimension F of the mapping
φ(·).
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Figure 7.5. Boxplot comparing the accuracies of 3 different variants of CCA based cluster-
ing for the MNIST digit image database [6].
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CHAPTER 8

CONCLUSION

As part of this work we have explored different methods for improving the accu-

racies of conventional CCA and NMF based approaches towards the clustering objective.

Improvements were made across several different fronts, 1) By kernelizing the formulations

to account for non-linear correlations in the data; 2) Exploring a framework for unsuper-

vised kernel selection and multiple kernel learning; 3) Utilizing deep neural networks based

mappings for extracting correlations and linearizng the data in an unsupervised setting; 4)

And finally by reformulating the non-convex cost functions using the difference of convex

functions algorithm to ensure convergence to a stationary point.

To achieve sparse matrix factors, indicative of the clustering, sparsity inducing tech-

niques like `1 − `2 regularization have been explored. The non convex sparsity regulariza-

tion was also relaxed using the difference of convex functions approach. We also proposed

the MILP reformulation for the NMF based clustering, thus ensuring that the hard cluster-

ing constraints can be enforced. Extensive numerical tests have been conducted in varying

datasets to demonstrate the advantage of the novel unsupervised methods, whose cluster-

ing performance comes close to the one achieved by supervised alternatives that rely on

training data, while outperforming existing unsupervised techniques that rely heavily on

different forms of parameter fine-tuning.
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8.1 Future Directions

Although the proposed solutions achieve better accuracy than existing methods, scal-

ability remains a major bottleneck. Going forward we want to explore schemes to make

the solution linearly scalable while preserving the existing accuracy.

A big part of this work was dedicated towards constructing and utilizing the the Q-th

eigenvalue function, ΛQ(·). This function can essentially be understood to be as a distance

metric for a given input matrix. An important direction of work that we want to explore is

regarding the quality and shape of this metric compared to other standard distance metrics

like `p norms where, 0 ≤ p ≤ ∞, cosine distance and so on.
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APPENDIX A

Human Activity Classification Data : Pre-Processing
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The objective of the pre processing step is to find the frames representing the repeti-

tive structures or the epochs and use them as vectors for the CCA based classification. It is

important to understand that the epochs or the frames need to be synced along a common

reference point to effectively apply the correlation analysis-based algorithms. Since all the

epochs have a distinguishable peak, Fig. 2.3(a) and 2.3(b), we center the data around this

peak and select a set of samples around it. There are multiple schemes present in the lit-

erature (eg. [71, 72]) to isolate epochs. In this work, since our primary objective and the

contribution is not the epoch-based classification, we use a rather simplistic approach to

isolate the epochs to form the frames with a nominal accuracy and a rather low computa-

tional complexity.

The first step is to remove the parts of the signal which are devoid of any activity.

As seen in Fig. 2.2(a), the first 7000 samples consists of approximately constant valued

signals, corresponding to user standing or sitting states. During this period the variance of

the signal, computed over a window, is small in magnitude.

w̄(n) =

 w(n), if %2(w(n)) ≥ thresh1

0, otherwise
(A.1)

where, the function %2(.) represents the variance of the signal calculated over a time win-

dow [n−L/2, ..., n, ...n+L/2−1] with L being the window length and thresh1 indicating

a predetermined threshold.

Next, a simple peak detection algorithm is employed that finds the peaks and isolates

P samples around it to form the frame. The signal magnitude is first compared against a

predetermined threshold, thresh2. The parts of the signal that are greater than the threshold

are checked for local peaks (i.e neighboring samples have a magnitude lesser than the

current sample). Also, since epochs extend over at least a few samples, two consecutive

epochs (or two consecutive peaks) have to be separated by at least a certain number of
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samples, ϑ1. Thus, all the peaks which are under ϑ1 samples away are discarded. The value

of L used for evaluating the variance cannot be too small since it should be able to observe

the signal statistics over a period comparable to the epoch and again it cannot be too large

so that a large number of consecutive samples, devoid of any activity, get coupled with an

epoch and are considered for the analysis. Although many combinations of L and thresh1

may give reasonable results, we suggest the use of values in the range P/2 < L < 2P . The

frames starting at, or around, the peak of the epoch are then used as vectors for the CCA.

Thus the n-th frame is given by, ωn = {w̄(nt − P̂ + 1), ..., w̄(nt), ..., w̄(nt + (P − P̂ ))}T ,

where nt is the time instant corresponding to the peak of the t-th epoch and P̂ is an integer

such that P̂ ∈ [0, P − 1]. The above mentioned approach performs reasonably well. Since

the focus of the paper is not the epoch detection and frame construction algorithm, we

move our attention to the two classification approaches proposed here. The pre-processing

stage for vectorization can be easily replaced with any other approach from the literature

(like, [71, 72]) and can be used as an input to the algorithms presented later on.
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APPENDIX B

Convergence of the Joint Kernel Leraning and NMF Based Clustering Formulation
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In the following section we discuss the proof of convergence for the DCA based

algorithm. For the convergence proofs, we have used some properties of the functions

involved (and their derivatives) and we have also used some simplified notations. Before

starting the discussion about the proofs, we discuss some of these properties and notations.

Property 1:

(
αααk
)T

[α̃ααk]Q =



αααk1

αααk2

. . .

αααkB



T 

zk1K̂
1
xz

k
1 + · · ·+ zkQK̂

1
xz

k
Q

zk1K̂
2
xz

k
1 + · · ·+ zkQK̂

2
xz

k
Q

. . . . . . . . . . . . . . . . . . . . . . . .

zk1K̂
B
x z

k
1 + · · ·+ zkQK̂

B
x z

k
Q


=

Q∑
i=1

Λi(
B∑
j=1

αααkj K̂
j
x) (B.1)

where, [α̃ααk]Q is as defined in (5.6) and zki is the eigenvector corresponding to the i-th largest

eigenvalue of
∑B

j=1ααα
k
j K̂

j
x.

Property 2:

At any iteration k of the algorithm,

(Q−1∑
i=1

Λi(
B∑
j=1

αααkj K̂
j
x)−αααk

T
[α̃ααk]Q−1 ≥ 0⇔ (B.2)

(Q−1∑
i=1

Λi(
B∑
j=1

αααkj K̂
j
x)−αααk

T
∂

Q−1∑
i=1

Λi(
B∑
j=1

αααk+1
j K̂j

x)
)
≥ 0

Proof: By Property 1, we have:

(Q−1∑
i=1

Λi(
B∑
j=1

αααkj K̂
j
x)−αααk

T
∂

Q−1∑
i=1

Λi(
B∑
j=1

αααk+1
j K̂j

x)
)

(B.3)

=

Q−1∑
i=1

zki
T
( B∑
j=1

αααkj K̂
j
x

)
zki −

Q−1∑
i=1

zk+1
i

T
( B∑
j=1

αααkj K̂
j
x

)
zk+1
i

where, zki is the eigenvector corresponding to the αααkj term and zk+1
i is the eigenvector cor-

responding to αααk+1
j term. Consequently it is evident that

∑Q−1
i=1 zki

T
(∑B

j=1ααα
k
j K̂

j
x

)
zki ≥∑Q−1

i=1 zk+1
i

T
(∑B

j=1ααα
k
j K̂

j
x

)
zk+1
i since zki are eigenvectors of the kernel matrix combina-

tion related to αααkj , whereas zk+1
i are the eigenvectors for a different convex combination.
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Simplified Notation:

At the k-th iteration, without loss of generality we can consider the updates w.r.t M

and α, thus N is assumed to be constant. The function in (5.2) can then be written in a

simplified form as

F (X) = ||AX||22 + λ
P∑
i=1

(
||JiX||1 − ||JiX||2

)
+µ
(Q−1∑
i=1

Λi(
B∑
j=1

αααjK̂
j
x)−

Q∑
i=1

Λi(
B∑
j=1

αααjK̂
j
x)
)

(B.4)

where A = [C −N ] is a matrix of size P 2 × (B + PQ), X is of size (B + PQ)× 1 and

N is of size P 2 × PQ.

A =

[
C −N

]
,X =

 ααα

vec(MT)

C =

[
vec(K̂1

x) . . . vec(K̂B
x )

]
(B.5)

N =



N 0 . . . 0

0 N . . . 0

. . . . . . . . . . . . . .

0 0 . . . N


Ji =



0B×B 0

0Q(i−1)×Q(i−1)

IQ×Q

0 0Q(P−i)×Q(P−i)


For the rest of the section, we use the simplified notations discussed here and the

actual notations interchangeably.

B.0.1 Proposition:

At every iteration p, the DCA iterates monotonically decrease, i.e. F (Xk,p)−F (Xk,p+1) ≥

0.

Proof. From the simplified form of (5.2), as expressed in (B.4), let

h(X) = λ

P∑
i=1

||JiX||2 + µ

Q∑
i=1

Λi(
B∑
j=1

αααjK̂
j
x). (B.6)
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We can express the difference between the objective values between any two consecutive

iterations F (Xk,p)− F (Xk,p+1) as,

F (Xk,p)− F (Xk,p+1) = ||A(Xk,p −Xk,p+1)||22 + 〈2A(Xk,p −Xk,p+1,AXk,p+1)〉

+ λ
( P∑
i=1

||JiXk,p||1 − λ||JiXk,p+1||1
)

+ µ
(Q−1∑
i=1

Λi(
B∑
j=1

αααk,pj K̂j
x)−

Q−1∑
i=1

Λi(
B∑
j=1

αααk,p+1
j K̂j

x)
)

+
(
h(Xk,p+1)− h(Xk,p)

)
(B.7)

where, 〈·, ·〉 represents the inner product between the two input arguments. For simplicity

we drop k from the superscript of all the variables. Thus Xk,p is represented as Xp, and so

on.

Since Xp+1 is a stationary point of the relaxed objective in (5.4) (after applying the

majorization w.r.t concave terms of M and ααα and keeping N constant),

∂F (X)

∂X

∣∣∣∣∣
X=Xp+1

= 2AT (AXp+1) + λwp+1 + µvp+1 − yp = 0 (B.8)

where, vp+1 is a B + PQ dimensional vector, such that the first B components are given

by ∂
∑Q−1

i=1 Λi(
∑B

j=1ααα
p+1
j K̂j

x)
)

and the rest PQ components are 0. Similarly, the first B

components of the vector wp+1 are 0, and the rest PQ components are ∂||JiXp+1||1.

After multiplying (B.8) by (Xp −Xp+1)T we obtain

〈2A(Xp −Xp+1), (AXp+1)〉 − λ||JiXp+1||1 − µ
Q−1∑
i=1

Λi(
B∑
j=1

αααp+1
j K̂j

x)
)

+ λ〈wp+1,Xp〉+ µ〈vp+1,Xp〉+ 〈yp,Xp+1 −Xp〉 = 0 (B.9)

From (B.9) and (B.7), we have,

F (Xp)− F (Xp+1) = ||A(Xp −Xp+1)||22 + λ
(
||JiXp||1 − 〈wp+1,Xp〉

)
+ µ
(Q−1∑
i=1

Λi(
B∑
j=1

αααpjK̂
j
x)− 〈vp+1,Xp〉+

(
h(Xp+1)− h(Xp)

)
− 〈yp,Xp+1 −Xp〉

(B.10)
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Lets analyze each term of the above equation individually. The first term ||A(Xp −

Xp+1)||22 ≥ 0. The second term,
(
||JiXp||1 − 〈wp+1,Xp〉

)
, where, wp+1 is the ∂||JiXp||1

and thus is equivalent to sign(JiXp). Therefore,
(
||JiXp||1 − 〈wp+1,Xp〉

)
= 0.

The third term is positive by Property 2, since,

(Q−1∑
i=1

Λi(
B∑
j=1

αααpjK̂
j
x)− 〈vp+1,Xp〉

=
(Q−1∑
i=1

Λi(
B∑
j=1

αααpjK̂
j
x)−αααp

T∂

Q−1∑
i=1

Λi(
B∑
j=1

αααp+1
j K̂j

x)
)
. (B.11)

For the fourth term, by the definition of subgradient, h(Xp+1)−h(Xp) ≥ 〈yp,Xp+1−Xp〉

, where, yp ∈ ∂h(Xp). Thus it is positive and we conclude that the iterates Xp+1 lead to a

non-increasing cost function F (Xp+1).

Using similar arguments it can be shown that for the DCA iterations w.r.t update of N, the

function value goes down at every iteration.

B.0.2 Proposition:

The overall objective in (5.2) is lower bounded.

Proof. Examining (B.4) (which is the simplified form of (5.2)), it is evident that the first

part of the function, ||AX||22 ≥ 0 is lower bounded to 0. The next part of the function

corresponds to the `1 − `2 norm of the columns of M. As we know, ||Mi,:||1 ≥ ||Mi,:||2,

and the equality is achieved when at most one component of Mi,: is non-zero. Thus this

part of F (X) is lower bounded by zero too.

The third part of the function related to the difference of sum of eigenvalues,
(∑Q−1

i=1 Λi(
∑B

j=1αααjK̂
j
x)−∑Q

i=1 Λi(
∑B

j=1αααjK̂
j
x)
)
. Since we normalize all the kernel matrices K̂j

x to unit trace, the
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maximum value that ΛQ(
∑B

j=1αααjK̂
j
x) can achieve is 1

P
. Therfore,

∣∣∣(∑Q−1
i=1 Λi(

∑B
j=1αααjK̂

j
x)−∑Q

i=1 Λi(
∑B

j=1αααjK̂
j
x)
)∣∣∣ ≤ 1

P
and is also lower bounded.

B.0.3 Proposition:

As k →∞, the limit point {M∗,N∗,ααα∗} of the DCA method is a stationary point of

the cost in (5.2) and thus satisfies the following three first-order optimality conditions:

0 ∈ CT (Cααα∗ −M∗N∗T ) + µ
(
∂

Q−1∑
i=1

Λi(
B∑
j=1

ααα∗jK̂
j
x)− ∂

Q∑
i=1

Λi(
B∑
j=1

ααα∗jK̂
j
x)
)

0 ∈ (
B∑
j=1

ααα∗jK̂
j
x −M∗N∗T )M∗ + λ

( P∑
i=1

∂||M∗
i,:||1 − ∂||M∗

i,:||2
)

0 ∈ (
B∑
j=1

ααα∗jK̂
j
x −M∗N∗T )N∗ + λ

( P∑
i=1

∂||N∗i,:||1 − ∂||N∗i,:||2 (B.12)

Proof. 1) Consider the optimality condition w.r.t ααα. At the k-th iteration of the DCA based

algorithm, the optimality condition for the relaxed cost in (5.4) is given as,

0 ∈ CT (Cαααk −MkNk−1T ) + µ
(
∂

Q−1∑
i=1

Λi(
B∑
j=1

αααkj K̂
j
x)− ∂

Q∑
i=1

Λi(
B∑
j=1

αααk−1j K̂j
x)
)
. (B.13)

Considering this first order optimality condition under the limit limk→∞ and considering

only the eigenvalue related terms, we show next the existence of the following limit,

lim
k→∞

(
∂

Q−1∑
i=1

Λi(
B∑
j=1

αααkj K̂
j
x)− ∂

Q∑
i=1

Λi(
B∑
j=1

αααk−1j K̂j
x)
)

= lim
k→∞

(
∂

Q−1∑
i=1

Λi(
B∑
j=1

αααkj K̂
j
x)

− ∂
Q∑
i=1

Λi(
B∑
j=1

αααkj K̂
j
x) +

(
∂

Q∑
i=1

Λi(
B∑
j=1

αααkj K̂
j
x)− ∂

Q∑
i=1

Λi(
B∑
j=1

αααk−1j K̂j
x)
))

(B.14)

Since we have already proved that F (Xk)−F (Xk+1) ≥ 0 and since F (X) is lower bounded

and continuous, we have that as k → ∞, F (Xk) − F (Xk+1) → 0 and consequently

|αααk −αααk−1|2 → 0.

For a continuous matrix function Cf (ααα) with the i-th largest eigenvalue given by

ei(ααα), the eigenvalues are continuous functions in ααα if the eigenvalues have a multiplicity
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of 1 [73]. In such a case, the eigenvectors zi(ααα) corresponding to ei(ααα) are continuous in

ααα. If the multiplicity is not 1 then the eigenvectors can crossover and different eigenvectors

will correspond to a given ei(ααα) before and after the crossover point.

In the case of convex sum of kernel matrices as indicated by Cf (ααα) =
∑B

j=1ααα
k
j K̂

j
x,

the eigenvalues do not strictly have a multiplicity of 1 and thus eigenvectors may crossover,

resulting in a scenario where different eigenvectors correspond to a particular eigenvalue

for different values of ααα.

From, (5.6), we know that

∂

Q∑
i=1

Λi(
B∑
j=1

αααkj K̂
j
x) =



zk1
T
K̂1zk1 + · · ·+ zkQ

T
K̂1zkQ

zk1
T
K̂2zk1 + · · ·+ zkQ

T
K̂2zkQ

. . . . . . . . . . . . . . . . . . . . . . . . . . .

zk1
T
K̂Bzk1 + · · ·+ zkQ

T
K̂BzkQ


where, zki is the eigenvector corresponding to the i-th largest eigenvalue eki of the matrix∑B

j=1ααα
k
j K̂

j
x. Due to lack of guarantees for multiplicity to be 1 for all possible values ααα,

the eigenvectors crossover and zki maybe non-smooth.

Consider the update equation w.r.t ααα in (5.7). Here ααα is evaluated at a fixed value

of M,N so as to minimize, ||
∑B

j=1αααjK̂
j
x − MNT ||2F + µ

(∑Q−1
i=1 Λi(

∑B
j=1αααK̂

j
x) −

〈ααα, [α̃ααk]Q−1〉
)

. The first part corresponding to minimizing ||
∑B

j=1αααjK̂
j
x −MNT ||2F se-

lects an ααα such that, rank
(
Cf (ααα)

)
= rank

(∑B
j=1 ααα

k
j K̂

j
x

)
≤ Q as M and N have only

Q columns. The second part by maximizing the Q-th eigenvalue enforces the rank to be

Q. Thus, under the assumption that B is sufficiently large so as to ensure that there exists

a convex combination of the kernel matrices with rank Q, then by the ααα update in (5.7) as

k →∞, rank
(
Cf (α

kαkαk)
)

= Q.

Thus eki = 0 ∀i > Q. Since |αααk − αααk−1|2 → 0, eki = 0 ∀i > Q. Conse-

quently if eigenvector crossover happens between αααk and αααk−1, the eigenvectors will be
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exchanged only amongst the set of Q eigenvectors corresponding to {eki |i ≤ Q}. There-

fore,
∑Q

i=1 z
k
i
T
K̂jzki =

∑Q
i=1 z

k−1
i

T
K̂jzk−1j ∀j ∈ {1, ..., B} as k →∞.

Hence, |∂
∑Q

i=1 Λi(
∑B

j=1ααα
k
j K̂

j
x) − ∂

∑Q
i=1 Λi(

∑B
j=1ααα

k−1
j K̂j

x)|2 → 0 as k → ∞.

Therefore from (B.14) we have,

lim
k→∞

(
∂

Q−1∑
i=1

Λi(
B∑
j=1

αααkj K̂
j
x)− ∂

Q∑
i=1

Λi(
B∑
j=1

αααk−1j K̂j
x)
)

= lim
k→∞

(
∂

Q−1∑
i=1

Λi(
B∑
j=1

αααkj K̂
j
x)− ∂

Q∑
i=1

Λi(
B∑
j=1

αααkj K̂
j
x)
)

=
(
∂

Q−1∑
i=1

Λi(
B∑
j=1

ααα∗jK̂
j
x)− ∂

Q∑
i=1

Λi(
B∑
j=1

ααα∗jK̂
j
x)
)

(B.15)

Considering the rest of the terms,

lim
k→∞

CT (Cαααk −MkNk−1T ) (B.16)

Since the overall function (5.2) is monotonically non-increasing at every iteration and lower

bounded, then, as k → ∞, ||Nk −Nk−1||F → 0. Therefore, since the product MN is a

continuous function M and N, ||Mk+1Nk+1 −MkNk−1||F → 0. Thus we have,

lim
k→∞

CT (Cαααk −MkNk−1T ) = lim
k→∞

CT (Cαααk −MkNkT ) = CT (Cααα∗ −M∗N∗T )

(B.17)

and combining this with the eigenvalue terms considered before we get the overall first

order optimality condition in (B.12).

0 ∈CT (Cααα∗ −M∗N∗T ) + µ
(
∂
∑Q−1

i=1 Λi(
∑B

j=1ααα
∗
jK̂

j
x)− ∂

∑Q
i=1 Λi(

∑B
j=1ααα

∗
jK̂

j
x)
)

(B.18)

2) Consider the optimality condition w.r.t M. At k-th iteration of the DCA based algorithm,

the optimality condition for the relaxed cost in (5.4) is given as,

0 ∈ (
∑B

j=1ααα
k−1
j K̂j

x −MkNk−1T )Mk + λ
(∑P

i=1 ∂||Mk
i,:||1 − ∂||Mk−1

i,: ||2
)
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Based on a similar explanation as provided above for (B.16) and (B.17), the terms

corresponding to the matrix factorization go to the limit point as k → ∞. Next consider

the `1 term, since we solve for M under the non negativity constraint, M ≥ 0. The value

of each component of M is always positive or zero, therefore, the sub gradient, ∂||Mk
i,:||1

is a vector of ones for all values of k. Thus we have on the limk→∞,

0 ∈ (
∑B

j=1ααα
∗
jK̂

j
x−M∗N∗T )M∗ + λ

(∑P
i=1 ∂||M∗

i,:||1
)

− lim
k→∞

λ
(∑P

i=1 ∂||M
k−1
i,: ||2

)
. (B.19)

The last limit term in (B.19) gives,

λ lim
k→∞

(∑P
i=1

Mk−1
i,:

||Mk−1
i,: ||2

)
(B.20)

= λ lim
k→∞

(∑P
i=1

Mk
i,:

||Mk
i,:||2

)
+ λ
(∑P

i=1

Mk
i,:

||Mk
i,:||2
− Mk−1

i,:

||Mk−1
i,: ||2

)
= λ

(∑P
i=1

M∗i,:
||M∗i,:||2

)
where, || Mk

i,:

||Mk
i,:||2
− Mk−1

i,:

||Mk−1
i,: ||2

||2 → 0 as ||Mk
i,: −Mk−1

i,: ||2 → 0. Thus, overall we have that

0 ∈ (
∑B

j=1ααα
∗
jK̂

j
x −M∗N∗T )M∗ + λ

(∑P
i=1 ∂||M∗

i,:||1
)
− λ
(∑P

i=1

M∗i,:
||M∗i,:||2

)
. (B.21)

3) The proof for the third part (for the derivative w.r.t N) can be achieved in a similar

manner to the above proof for the second part.
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APPENDIX C

Selection of Optimal α
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Without loss of generality, we consider the case where the data vectors have been

ordered based on the class they belong to. Thus, the ideal kernel covariance matrix will

have a strong block diagonal structure.

Since we assume that the data sources representing different classes are independent,

the covariance between elements of different classes, i.e.,
∑

n s
j1(n)sj2(n) = 0. From [74]

we know that the covariance of any function of independent random variables is 0, therefore

for j1, j2 ∈ {1, ..., Q|j1 6= j2}

K̂j(xj1i1 , x
j2
i2

) =
∑

n φ̂(xj1i1 (n)),φ̂(xj2i2 (n)) = 0 ∀i1, i2. (C.1)

Thus, irrespective of the mapping φ̂(·), the off block diagonal elements of the kernel co-

variance matrix are zero.

As per the primary problem formulation in (5.2), we minimize the reconstruction

error ||
∑B

j=1 αjK̂
j
x −MMT ||2F . Since M has Q columns, max (rank(MMT )) = Q.

Therefore, to minimize the reconstruction error, only a linear combination of kernel matri-

ces with rank of at most Q will be selected.

On the other hand, maximizing the Q-th eigenvalue ensures a nonzero Q-th eigen-

value, thus removing the possibility of having a linear combination rank(
∑B

j=1 αjK̂
j
x) <

Q.

Thus, at optimality, the solution to (5.2) minimizes the reconstruction error while

maximizing the Q-th eigenvalue, thus ensuring that a kernel with a rank of exactly Q is

selected through the linear combination. Under the condition wherein there is more than

1 convex combination of kernels with a rank-Q, the solution which maximizes the Q-th

eigenvalue or that gives equal weightage to all the Q classes is selected.
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