
Mathematical Modeling of a Network of Neurons Regarding Glucose Transport

Deficiency Induced Epileptic Seizures

by

ARIEL N. LESLIE

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2019



Copyright c© by Ariel N. Leslie 2019

All Rights Reserved



To God and my family, you heard me even in my silence.

Thank you.

iii



ACKNOWLEDGEMENTS

First and foremost, I would like to thank God for His guidance and faithfulness.

I cannot go on without thanking the University of Texas at Arlington (UTA) Depart-

ment of Mathematics Graduate Assistance for Areas of National Need via the US

Department of Education for financially supporting my PhD education and research.

I must also thank the National Science Foundation (NSF) for funding my studies

through the Louis Stokes Alliance for Minority Participation Bridge to the Doctorate

Fellowship (Grant No. HRD-1026806). Extensive courses, projects, summer research

and dissertaation research all cumlminates to this very paper, a PhD level dissertation.

I would also like to thank Texas Southern University professors: Dr. Willie Taylor,

Dr. Roderick Holmes, Dr. A. Serpil Saydam, Dr. Joan Evans, and Dr. Robert Nehs

for their moral and mathematical support. I could never forget University of Houston

professor, Dr. Mark Tomforde for his many lessons of grit and determination.

Secondly, I would like to thank my advisor Dr. Juanzhong Su for all of his

guidance and expertise throughout my research and writing process. I would not be

able to navigate the PhD and thesis process without his support. His mathematical

knowledge has helped me in my graduate studies, academic career, in addition to

graduate level research. I’d also wish to thank my advising committee, Dr. Li Wang,

Dr. Hristo Kojouharov, and Dr. Ren-Cang Li for their help and support during

my academic career at UTA. In addition to the academic guidance through hard

times. To all of my mentors: Dr. Minerva Cordero, Dr. Kayunta Johnson-Winters,

iv



Dr. Tuncay Aktosun and the late Dr. Alisa Johnson for giving me advice or simply

lending a helping hand when I needed it most. Your assistance will never be forgotten.

You all have shaped my mathematical abilities in preparation for a great future.

Next, I want to express my unending gratitude to Lona, Libby, Laura, Zach,

Michael, Jasmine, and Angel for their time, advice, and assistance throughout the

program. I would not have been able to survive and thrive in graduate school without

my close friends Mayowa, Kimoi, Imelda, Iris, Talon, Dwight, John, Crystal, Sita,

Dillon, Anthony, Gul, and Emel. Thank you so much for your friendship. Your smiles

and positive affirmations are just what I needed.

Finally, to my family and close friends, thank you for praying for me. Thank

you to my parents for believing in me, no matter the situation. Thank you to my

sweet husband Charles who consistently pushed me to strive for better every day.

Thank you to my parents (Barron and Stephanie) and bonus parents (Mrs. Gabe and

Donna), sisters (Jordan, Milani, and Jameelah), grandmothers, grandfather, aunts

and uncles, and extended family for believing in me. I love and appreciate all of you.

November 13, 2019

v



ABSTRACT

Mathematical Modeling of a Network of Neurons Regarding Glucose Transport

Deficiency Induced Epileptic Seizures

Ariel N. Leslie, Ph.D.

The University of Texas at Arlington, 2019

Supervising Professor: Dr. Jianzhong Su

Epilepsy is a complex phenomena of a system of neurons simultaneously firing

that are highly intensive and synchronized. Seizures are a common and well known

physical feature for all types of epileptic disorders [8]. Epilepsy is known to be traced

back to spatial and temporal patterns working in sequence. The rhythms, patterns,

and oscillatory dynamics explain the mechanistic nature of neurons especially in

absence seizures [37]. An electroencephalogram device (EEG) monitors the electrical

activity within the brain using small electrodes, which measures voltage fluctuations

on the scalp. Previous models such as Wilson-Cowan (1972) [34], introduced a

model showing the dynamics of a network of neurons consisting of excitatory and

inhibitory neurons. Taylor et. al (2014) then adapted the Wilson-Cowan model to

epileptic seizures using a thalamo-cortical based theory. Fan et. al (2018) projects

that thalamic reticulus nuclei control spike wave discharges specifically in absence

seizures.G1D Transport Deficiency Epilepsy can be identified by the high number

of seizures during the infant stage which is usually rapid, irregular eye movement,

and small brain size. We want to identify brain activity specific to G1D by using
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EEG data. Additionally, we want to study the EEG patterns to identify the plausible

mechanism that causes G1D epileptic behavior. The goal is to find out how an

entirely connected brain network shows the neuronal functionality as a unit regarding

G1D. Our coupled thalamo-cortical model goes beyond a connection in a logical

unidirectional pattern shown by Fan (2018) or in a bidirectional small world pattern.

Our model is a network based on paired correlation of EEG signals more analogous

to realistic seizure activity. Using our model, we are able to study stability analysis

for equilibrium and periodic behavior, parameter values which cause synchronized

activity or more stable activity and identify a synchronization index, and sensitivity

analysis regarding parameters that directly affect Spike Wave Discharges and other

spiking behavior. We will show how our 32-unit network model reflects G1D seizure

dynamics and discuss the limitations of the model.
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CHAPTER 1

INTRODUCTION

In this work, we aim to produce a mathematical model of Glucose Transport

Deficiency induced Epilepsy, specifically, the model that depicts the intrinsic brain

activity seen from EEG before and after a seizure, thoroughly understand the unique

neuronal activity produced by this neurological disease and also study the biological

inferences gained from a mathematical analysis of a network of neurons with regards

to Glucose Transport Deficiency Epilepsy. The importance of this research study

lies in the wide range of severity of symptoms and in fact the patient population

itself. According to the National Organization for Rare Diseases, symptoms vary

drastically from patient to patient. Many times, individuals with mild symptoms

either go undiagnosed or misdiagnosed. Other times, these symptoms lead to very

serious and disabling complications.

Signs include one of five different types of seizures: most commonly known

tonic or clonic, myoclonic, atypical absence, atonic and unclassified.

In our case, we will study motifs of absence seizures. Absence seizures are also

known as petit mal seizures. This particular type of seizure starts on both sides

of the brain simultaneously. The duration of time for these seizures is very brief,

typically only a few seconds from onset to the end. A major reason for misdiagnosis

is, this seizure causes lapse in awareness, staring, daydreaming, and or glazed over

eyes, which are not common signs parents will find alarming.
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In a number of brain areas, neurons have been detected experimentally to enter

into specific rhythmic patterns. The behaviors are characterized as spiking behavior,

specifically spike wave discharges, spindles, and tonic spikes.

In all of these patterns, neuronal activity work in sequence to produce a large

amplitude, a smaller amplitude oscilation, then another large amplitude (generally

called bursting). Pressed between the alternating oscillations are distinct hyperpolar-

izations and depolarizations. This pattern continues until the seizure concludes which

can be observed by inactive or at rest phases. Whereas spindles and tonic bursts are

an extended sequence of alternating amplitudes.

The neuronal activity is from a multiple time scale drive-response mechanism

which we credit to the thalamo-cortical basis model. Our goal is to specifically study

a coupled Ordinary Differential Equation (ODE) thalamo-cortical model within a

non directed graph network of 31 electrodes. We begin our study of with a single

compartment model for frequency analysis, phase synchrony and then extend to

31-compartment model, along with sensitivity analysis for coupling coefficients and

comparison of our model and real data.

The epilepsy data is from published data in Zhang a historical patient data from

University of Texas Southwestern Medical Center. Infant patients in the neurology

unit that were diagnosed with Type I Glucose Transport Deficiency Syndrome.

Our goal is complete the following in the proceeding chapters:

• Chapter 2: Introduce background information about the brain, G1D epilepsy,

and general facts about EEG data.

• Chapter 3: A thorough study of thalamo-cortical modelling history, a brief

summary of 4 neurological models, and details of how our model was formulated.

• Chapter 4: Local stability analysis of single-unit model for equilibrium in

addition to identifying periodic behavior. Once acquiring the linearized system,
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we evaluate the Jacobian and critical points to find the stability or lack thereof

of each of the critical points. Our goal is further explore stability echange

between the four neuronal populations that are responsible for the oscillatory

behavior.

• Chapter 5: Sensativity analysis of coupled network regarding parameters values

that directly affect spiking behaviour (SWD & spindles), interference terms,

and phase synchrony. Specifically, a claim explaining the altered stability

and delayed bifurcation due to coupling. Comparison between single unit and

coupled units highlighting the specific values of correlation coefficents that are

needed for the neuronal behavior stated above.

• Chapter 6: Phase synchrony - parameter values which cause synchronized

activity or more stable activity (identify the synchronization index) in additon

to finding the degree of synchrony of full model. Stability analysis of the full 31

compartment model regarding a specific parameter, and give general discussion

• Chapter 7: Compilation of information learned in previous chapters, stating

highlights and limitations of our model built from data
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CHAPTER 2

Neuroscience Preliminaries

2.1 Neurons

Figure 2.1: Basic Neuron, Medical Dictionary

There are approximately 100 billion neurons or nerve cells within the human

brain. In addition to the neurons there are glia cells, which are also known as auxiliary

cells, numbering up to 100 billion.

Each neuron may be connected to up to 10,000 other neurons, passing signals

to each other via as many as 1,000 trillion synaptic connections. A classic example of

a network, a neuron network correlated and coupled in a very complex way.

A neuron can be activated through electro-chemical signalling. Through this

signalling, a neuron is able to communicate with up to several thousand neurons.
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In this manner, the neurons pass signals through synapses. There are trillions of

synaptic connections.

Before we begin a more global view of a neuron, it is useful to look locally first.

More specifically, the neuron has 3 parts:

• Soma- cell body

• Dendrite- input, how a neuron receives information

• Axon- output, how a neuron sends information

Neurons contain mostly fluid and are surrounded by fluid. Dissolved in this

water are ions such as sodium, potassium, chloride, and calcium. Each of these ions

have a particular electrical charge. The ions pass from the soma to exterior of the cell

through their perspective ion channel and then from the exterior to the soma. More

explcitly, sodium channels only allows sodium to pass form the interior to exterior or

exterior to interior. Additionally, this is true for chloride, potassium, and calcium.

The amount of ions in the extra cellular fluid is not exactly equal to the ion

concentration within the cell. This is due to the cell membrane, not all ions are

permeable and can pass through the membrane. Also, the cell membranes have

pumps such as the sodium-potassium pump which removes sodium from the interior

and adds in potassium to maintain equilibrium.

The difference between electrical potential within the cell and the exterior is

referred to membrane potential, v. Hyperpolarization occurs when v is lowered or

more negative and depolarization happens when v is increased and moves closer to 0.

The neurons responsible for hyperpolarization and depolarization are also known as

inhibitory and excitatory respectively, which we will often refer to throughout this

document.
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Figure 2.2: Synapse, Queensland Brain Institute

Back to the global view, a synapse is a junction by which a neuron sends

information to another synapse. The synapse is a communication pass point. As

stated above, neurons receive information when electrical and/or chemical signalling

is obtained. There are two types of synapses. Electrical synapses send information

by influx of ion channels, ions flow through the cell membranes. Where as chemical

synapses, after successful action potential, the presynaptic neuron will send out or

release neurotransmitters. Neurotransmitters are molecules, also known as chemical

messengers, which travel to the target neuron and will either aid in a successful

or unsuccessful action potential in the target neuron. Action potentials signify

communication is present between neurons. If this does not happen, there is a

breakdown at the synaptic level which is the basis of epilepsy.

2.2 Four types of Neuronal Populations

2.2.1 Pyramidal Neurons

Pyramidal neurons are commonly found in the cerebral cortex of every mammal.

The name stems from the shape of the soma or cell body, it has a teardrop shape or a

rounded pyramid form [9,12]. The physiological makeup consists of longer dendrites
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protruding from the top end of the soma in addition to bundles of dendrites come out

from the bottom end of the soma. Dendrites released from the top of the cell body

are commonly referred to as apical dendrites whereas the the bundle of dendrites

emerging from the bottom are called basal dendrites.

Pyramidal neurons are one of two dominant excitatory populations within

the cerebral cortex. Pyramidal neurons release the neurotransmitter glutamate and

number in size of about two-thirds of the total neuronal population in the cerebral

cortex [9,11]. Their genetic makeup includes long axons that have capabilities of

reaching as long as the spinal cord or outside of the brain. The importance of their

makeup is tied to vital cognitive processes. These long axons may fail and become

quite faulty which leads to brain disorders, epilepsy for example. Overly excessive

excitation in particular brain regions containing intertwined pyramidal neurons is a

clear marker for epilepsy.

2.2.2 Inhibitory Neurons

There are two main types of inhibitory neurons, Somatostatin and Parvalbu-

min, that work closely with excitatory neurons such as the pyramidal neurons by

communicating with target neurons in the thalamus.

Somatostatin inhibitory neurons make up 50% of the inhibitory neuronal popu-

lation in the cerebral cortex. Second most populous within the cortex. Somatostatin

is a peptide hormone consisting of intracellular protein responsible for signalling

more peptides and proteins. These neurons are present both in upper and deeper

levels of the cerebral cortex, moreso in the upper levels. A somatostatin neurons

axon can stretch horizontally over large regions. Their target neuron usually have

distal dendrites in order to instill a delayed response to the target stimuli, hence the

inhibitory name.
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On the other hand, the Parvalbumin, is a calcium binding protein known

to regulate ion channel flow. Parvalbumin inhibitory neurons makeup 40% of the

interneuron subpopulations of the cerebral cortex. Interneurons are ”middle man”

neurons, they assist in communication from neuronal region to another distant region.

Parvalbumin neurons are fast spiking neurons due to their extensive divisional skills.

The most important effects of Parvalbumin neurons on the neuronal network are

their short recovery time which leads to an increased rate of action potentials fired

and secondly, their received input from excitatory neurons located in the thalamus.

Input from the thalamus translates to a process called ”fast feed forward inhibition”

which is the inhibition of local excitatory neurons in a unidirectional manner [9].

Unidirectional inhibition is a process where excitatory neurons cannot excite the

Parvalbumin neuron in response to the inhibition.

2.2.3 Specific Relay Nuclei

Specific Relay Nuclei are one of three types of thalamic nuclei. Relay nuclei

receive very specific and defined input. The input is then projected as a signal to

precise areas of the cerebral cortex with special functionalities [21]. Specific Relay

Neuclei are mainly responsible for excitatory interaction with the cerebral cortex.

There are three varying types of nuclei. The first type are nuclei that relay

or project signals for primary sensations. These include the ventral posterolateral

nuclei that relay primary sensations known to represent majority of the primary

somatosensory portion of the brain. Whereas the ventral posteromedial responsible

for transferring sensory information from the face and oral cavities. Two other types

of nuclei include the medial geniculate and the lateral geniculate, both responsible for

attention spans (maintaining and directional) and main connection to optic nerves
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and occipital lobe within the brain [22]. All of these connections are vital to painting

the global picture of modality during an epileptic seizure.

The second type of nuclei give feedback from cerebellar signals, also known as

the ventral lateral. Ventral Lateral nuclei receive input from the cerebellum and send

signal to the primary motor cortex [23].

Lastly, the nuclei responsible for receiving feedback from the basal gangliar is

known as the ventral anterior nucleus. Ventral Anterior nuclei send signals to the

premotor cortex which allows for the establishment and follow through of movement

in the body [24,25].

2.2.4 Thalamic Reticular Nucleus

The thalamic reticular nucleus is a collection of nerve cells specifically located

in white matter of the thalamus, just between an internal capsule and external

medullary lamina. Its main functionality includes facilitating communication between

the thalamocortical and corticothalamic axons, the tie between the thalamus and

cerebral cortex. All axons passing from the thalamus or the cortex must pass through

this nucleus. The nucleus also receives GABA-ergic supplies from the axons passing

through. These GABA-ergic supplies come in the form of glutamatergic afferents

which are known to be excitatory [16].

According to much of the research literature related to rat brains similar to

human brains, there are three types or functional modalities of Thalamic Reticular

Necluei (TRN). Those modalities include: sensory, motor, and limbic. Sensory

functionality allows for one to sense touch, skin stimulation (somatosensory), hear

sounds (auditory), taste (gustatory), smell, have intellectual thoughts or emotions

(visceral), or to see (visual). Motor function include movement of the bone structure
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or skeletal system. Lastly, the limbic function modality stems from the thalamus and

is responsible for how one feels emotions, memories, and stimulation or arousal.

Physicality of these type of nuclei include large cell bodies and varying axon

lengths.

2.3 Epilepsy

Epilepsy is a neurological disorder where neuron activity is abnormal which

causes seizures. The abnormal behavior is classically considered to originate from

an ”imbalance between excitation and inhibition in a localized region, multiple brain

areas or the whole brain”[6]. Furthermore as described in animal models of epilepsy,

epilepsy can be caused by persistent long-term alterations in death of presynaptic

connections in addition to synaptic fluid-filled vacuole recycling.

For children, epileptic activity lies in the process of how the brain matures. A

brain that is not fully formed or matured has the tendency to skew towards increased

excitation, specifically mechanisms at the molecular level like the depolarization

(increasingly non-negative voltage) of GABA and overly expressive NDMA (N-methyl-

D-aspartate) receptors which are responsible for memory and learning impairments

both cause excitation within the neuronal network.

G1D Transport Deficiency Epilepsy, also known as the GLUT1 Deficiency

Syndrome, is a disorder which affects the nervous system. G1D is caused by mutations

in the SLC2A1 gene. This gene gives instructions to produce a protein which is the

glucose transporter protein type 1 (GLUT1). Most importantly, the GLUT1 protein

moves glucose between glia (cells within the brain), which protect and maintain

neurons. G1D can be identified by the high number of seizures during the infant stage

which is usually rapid and irregular eye movement. Most notable visually recognized

when and the point at which the size of the brain and skull both grow at a very
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slow rate. As a result, the patient usually has a smaller head size, otherwise known

as microcephaly. Due to microcephaly, G1D patients do experience developmental

delays and mental/intellectual incapabilities.

Common Neurological issues:

• muscle tenseness which causes stiffness

• ataxia or complications with correlating body movements

• dysarthria which is speech difficulties

• lethargy

• headaches

• muscle twitches mainly during times of fasting

• confusion

GLUT1 then transports sugar into the cells from the blood or other cells to use

as fuel. G1D is diagnosed through a blood test. GLUT1 is responsible for moving

glucose around as the brain’s main energy source, specifically within the blood-brain

barrier, which gravely affects developmental growth.

According to the National Institute of Health, G1D is a very rare disorder.

Only about 500 cases have been reported across the world since its discovery in 1991.

Many researchers believe that this means the disorder is under diagnosed due to its

similar symptoms to other neurological disorders.

2.4 Electroencephalogram (EEG)

According to Mayo Clinic, An electroencephalogram (EEG) is a test that detects

electrical activity in the brain using small, flat metal discs (electrodes) attached to the

scalp. Brain cells communicate via electrical impulses and remain active continuously,

even during sleep.
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The EEG measures voltage as neurons communicate through electrical impulses

for any and every action the body makes. EEG is preferred over other methods such

as functional magnetic emission imaging (fMRI) and positron emission tomography

(PET) due to its portable ease, minimal invasiveness to the brain, but mostly the

accurate temporal resolution. The exact time point of brain (neuronal) activity can

be depicted by an EEG. Downfall of the EEG is that it cannot measure the specific

neuron that is active at any particular time point nor can it provide a source activation

pattern. The EEG only measures an average of voltage change of neurons depending

on location of the electrode placed on the scalp, which is not precise enough to give

information about one specific neuron.

2.5 EEG Brain Map

There are several detector distributions which depend on the number of probes

of the EEG: 32 channels, 64 channels, 128 channels, 256 channels, etc. In this scenario,

all patient data were obtained from a 32-channel electrode brain map. A Mitsar 32

Channel EEG Amplifier with WinEEG Software was used to record the data from

G1D patients.

12



Figure 2.3: EEGLab 32 Electrode Map

2.6 Power Spectrum

The multi-step process of Power Spectrum strips away the noisy electrical

activity within a brain in order to initiate neurological diagnosis and assist in the de-

velopment of neurobiological instruments [40]. Many resarchers, biologists specifically,

use this process in order to conduct frequency analysis during which the patient is

asked to perform a visual task.

As stated before, EEG signals track the voltage fluctuations within the brain

of a patient while completing a task. This task could be touching an item, signalling

when a light has gone from off to on, writing, etc. For the purpose of this paper, we

look for the neurological activity from a patient suffering from an epileptic seizure.

This process begins with a 32-channel EEG, active brain data is retrieved. First

step is to remove unwanted noise signalling, a result of the EEG retrieving electrical

activity from the scalp which could be from background tasks such as breathing,

blinking, or other involuntary bodily movements. Frequency range during this step

lies between 0.1-60 Hz. Signal preprocessing continues with manual dismission or
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trimming of artifacts throughout the time length of the recorded signal. After the

removal of the power line and lower level frequency artifacts, the frequency range is

0.1-50 Hz.

The third step concludes with an assortment of components as a result of

Independent Component Analysis (ICA) of the 32 channels. Correlative information

between the channels seen after this step is used to build the mathematical model

seen in the next chapter. At this stage a wavelet transform or Fourier Analysis is

used to process the signal into the various frequency bands,

• delta: 0-4 Hz

• theta: 4-8 Hz

• alpha: 8-13 Hz

• beta: 13-30 Hz

High power levels are observed in the delta and beta frequencies. The goal is to take

the voltage trajectory into the frequency domain through Fourier Transforms and

plot this information in the frequency domain.

Specifically for our research we find that important mechanisms, spiking neurons,

are lost as a result of this transform. Our model has very rich nonlinear dynamics

within the system which is why we chose to waive the power spectrum process.

2.7 Spiking Neurons Classifications

There are several spiking neurons classes. Most examples of spiking behavior

are seen in healthy states or general resting state of a brain. First, we introduce

spiking or busrting behavior seen in non-seizure or healthy states within the cortical

region, also known as integrate and fire neurons[41]:

• Regular Spiking: Excitatory Neurons most commonly found in the cortex. In

the case of extended stimuli, these neurons fire a small amount of spikes, a short
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period in between spikes, followed by a continuous increase in period. This

process is commonly known as spike frequency adaptation [41].

• Intrinsically Bursting: These excitatory neurons fire a conventional burst of

spikes accompanied with continual singular spikes.

• Chattering: Excitatory neurons are capable of firing ceremonius bursts of tightly

spaced spikes.

• Fast Spiking (Tonic Spiking): Inhibitory neurons which are capable of firing

sequential periodical episodes of action potentials charateristically showing

exceedingly high frequency, most commonly without any spike frequency adap-

tation which is defined by a slowing of frequency.

• Resonator: Neurons have diminished or continued below threshold oscillations.

• Low-Threshold Spiking: Inhibitory neurons known to have low firing threshholds.

Conversely, these neurons also fire higher-frequency sequence of action potentials

along with spike frequency adaptation.

• Thalamo-Cortical Oscillations: These neurons have two characteristics, if begin-

ning at a resting state thalamo cortical neurons then exhibit a depolarization

followed by tonic spiking. Yet if these neurons are hyperpolarized then they

will fire or present a backlash emergence of action potentials.
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Figure 2.4: Eugene M. Izhikevich Model Spiking Neuron [41]

Spiking Neuron classification depends solely on the location of the neuron within

the brain. As for G1D Transport Deficiency Epilepsy, the seizures are characterized

closely to absence seizures. General seizures are indicated by specific spiking behavior.

In this section we will also show examples of this activity. Chapter 4 shows actual

behavior seen from our mathematical model. Disease state spiking behavior and

subjects of our future studies are listed below:

• Spindles: Commonly reffered to as sleep spindles which are seen in stage 2 of

non-REM (non- Rapid Eye Movement) sleep. Common indicator of onset of

sleep, characterized by the two-step process. First step is a lessening spindle

with a frequency 7-12 Hz followed by second step of periodic spindle episodes

with slower frequency of 0.1- 0.2 Hz.

• Spike Wave Discharges: Characteristic of absence seizures, commonly seen on

an EEG at a broad general frequency of 7-12 Hz. Researchers show that these

neurons are thalamocortical oscillations.
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• Slow Wave: An indicator of cerebral pathology or abnormal activity lying

within the brain region beneath the EEG electrode. Many researchers brand

this activity as ”breach rhythm” (American Epilepsy Society).
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Figure 2.5: (a) Tonic Spiking (b) Spike Frequency Adaptation (c) Rebound Spiking
(d) Accomadation (e) Spike Latency (f) Inhibition-influenced Spiking [41]
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Figure 2.6: Source: Historical Patient data from Zhang
[15], Slow Wave from Raw EEG signal output through
MNE-Python Interface

Figure 2.7: Sleep spindles seen from EEG signals of
Newborn Infants. Source: Bhattacharyya et. al, IEEE
2011 [43]

Figure 2.8: Spike Wave Discharges seen from an EEG of
rats clinically altered to have absence seizures. Source:
Pharmacologically Induced Animal Models of Absence
Seizures
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CHAPTER 3

Pre-Modeling the Neuronal Populations which Produce Epileptic Behavior of G1D

3.1 Thalamo-Cortical Modelling History

In this chapter, we will review the modelling history of thalamo-cortical based

theory for epilepsy models.

3.1.1 Wilson-Cowan Model

The abnormal brain activity, characteristic of Epilepsy, as stated above is

seen at the cellular level of brain rhythms through the use of an EEG. Just like

the common cold, there are multiple types of Epilepsy. Yet most commonly, past

literature has shown epileptic activity from the somatosensory or motor cortex.

Wilson-Cowan (1972) first introduced a model showing the dynamics of a network

of neurons consisting of excitatory and inhibitory neurons. A coupled nonlinear

differential equations model produced to show the voltage changes seen from spatially

localized excitatory and inhibitory neuronal populations.

Many, if not most, regions of the brain process large amounts of systematic

input. In order to truly understand and visually represent the activity, researchers

such as Ermentrout[31], found that tracking average firing rate within the neuronal

networks is a more accurate model. This is the apporach Wilson-Cowan also took

by using equations to mathematically model the cellular behavior of larger neuronal

networks with underlying statistical processes.

Wilson-Cowan first began with a space-clamped model which was a set of

integral equations particularly focused on the activity large network of tightly packed
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coupled neuron cells over a fixed time frame. Specifically, two cell populations

excitatory and inhibitory, ae(t) and ai(t) respectively. The duo found that these type

of neurons cause their neighbor to be less active. To represent this phenomena over

time, they used nonlinear activation functions, Fe and Fi. Depicted in the following

equations:

τe
dae
dt

= −ae(t) + [1− reae(t)]Fe(weeae(t)− weiai(t) + Ie(t))

τi
dai
dt

= −ai(t) + [1− riai(t)]Fi(wieae(t)− wiiai(t) + Ii(t))

The Wilson-Cowan Model is a first order kinetics model wtih two timescales, τe,i,

one for each neuronal population. Timescales have a direct proportional relationship

which allows for continual adaptations according to the response from each of the

various subpopulations. Usual practice is to have two nonlinearities, Fe, Fi, as

sigmoidal functions: Fe,i(x) = 1

1+e−γe,i(x−θe,i)
where γe,i is the gain or increase in

voltage from reaching action potential and θe,i represents the threshold necessary to

reach action potential for each population.

Argument x denotes a weighted sum of the ratio of active excitatory and

inhibitory cell populations. The term wjk ≥ 0 corresponds to the connection intensity

from cell k to cell j.

Whereas 1− rjaj(t) depicts the in between stage of action potentials, Kilpatrick

[33] referes to this time period as the refractory dynamics. This tracking function

helps to regularly resize or scale the parameters within the nonlinearity, Fj, where

j = e, i

Stability analysis of fixed points (ae(t), ai(t)) was done through phase plane

diagrams. Wilson-Cowan found that there were two specific modes of behavior. First,

coupling strength means intensity of the connection of the synapses between excitatory

cells. Secondly, a weakly concentrated connection between inhibitory cells leads to
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limit cycles. Limit cycle is biologically characterized by the clumping of a small set

of excitatory cells alongside other cells which then leads to increased occurances of

action potential. This behavior initiates the inhibitory cells to turn off or shut down

all other cells, creating a cyclic pattern.

As a result, many researchers found that producing models with mutually

inhibitory or mechanisms for oscillations within the neural populations, where each

population is seen as a separate stimulus, imperative to understanding the neural

mechanics of decision making and even perceptual rivalry.

Wilson-Cowan also produced a model with less assumptions, spacial structures

of the synapses and external or interference terms were not considered in the first

model. Which led them to produce:

τe
∂ae(x, t)

dt
= −ae(x, t) + [1− reae(x, t)]Fe(w∗eeae − w∗ieai + Ie(x, t))

τi
∂ai(x, t)

dt
= −ai(x, t) + [1− riai(x, t)]Fi(w∗eiae − w∗iiai + Ii(x, t))

where w∗jkak pertains to a convolution operator

w∗jkak =

∫
Ω

wjk(x− y)ak(y, t)dy (3.1)

which is a representation of the drive response mechanism often seen within neuronal

popultion. In this specific case, it is the drive from population k to population j at

location x.

The weight function

wjk(x− y) = kjke
−(x−y)2/σ2

k (3.2)

is an example of a Gaussian equation used to exemplify the decomposition of connec-

tions within the cortex as a result of distance. These functions are well known to

produce a bell shaped curve, in this case it is used to aide the drive-response between

excitatory and inhibitory cell populations over the Ω domain of discretionary size.
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3.1.2 Traub Model

Roger Traub and his colleagues set out to analyze a single column thalamo-

cortical theory based model demonstrating oscillatory behavior within the gamma

frequency, sleep spindles, and lastly bursts distinctive to epilepsy. Population dy-

namics related to specifc cells, assembled in the thalamocortical network, present

information from several compartmentalized neruons. The firing behavior all relates

back to Thalamocoritcal Relay cells, nucleus reticularis cells, and low threshold

spiking neurons equipped with long apical dendrites.

Traub et. al had an overarching goal to understand the behavior or large

networks of neurons which is how motor control, planning, language, sensory processes,

etc. are accomplished for humans. Previous models worked with small cell counts

whereas the Traub model works with several distict cell types and their perspective

firing behaviors such as Regular spiking, fast rhythmic bursting, and intrinsic bursting.

Due to the complexitiy of including the multiplicity of cell types, the Traub model

can be applied to a large set of behaviors[25].

Interneuron rate functions shown below were used to show the dynamics of gNa,

gK(DR), and a lower threshold calcium conductance gCa(T ) (often seen as a regulatory

current). These rate coefficients stem from various kinetics such as slower inactivation

in the Thalamocortical relay cell.

m∞ = 1.0/1.0 + exp[(−V − 52.0)/7.40]

h∞ = 1.0/1.0 + exp[(V + 80.0)/5.0]

τm = 1.0 + 0.33/exp[(V + 27.0)/10.0] + exp[(−V − 102.0)/15.0]

τh = 28.3 + 0.33/exp[(V + 48.0)/4.0] + exp[(−V − 407.0)/50.0]
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Figure 3.1: a) Traub Model: Resulting voltage with inactivation of two prevalent
ion channels: gNa and gK(DR)b) Voltage of the full system and varying membrane
potential for each ion channel (Sodium, Potassium, and Calcium) with increasing
time. c)In depth view from figure 2.2, of the voltage behavior closer to 0. d)In order
to undo the process that happens at 0 due to the gating variables only going from 0
to 1, voltage is then multiplied by a magnifiying constant.

Later, Traub and Miles [49] produced a reduced two-dimensional model which

numerically examines a transition in I, current, through a critiacal value Ic. The

Traub-Miles Model is based from Pyramidal Neuron in Rat Hippocamopus. Also

known as the Reduced Traub-Miles Model is pre model of more complex model of a

pyramidal excitatory cell in the rat hippocampus with respects to an Ermantrout

and Kopell model [48].
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dv

dt
= ḡNa(m∞(v))3(1− n)(vNa − v) + ḡKN

4(vK − v) + ḡL(vL − v) + I, (3.3)

dn

dt
=
n∞(v)− n
τn(v)

(3.4)

In conclusion, the Traub model was still a global view of the intracellular workings of

normal brain functionality. This model was a giant step forwad in the direction of

considering the complexities of adding more cell types to a network model.

3.1.3 Taylor Model

Taylor et. al (2014) [38] then adapted the Wilson-Cowan model to epileptic

seizures using a thalamo-cortical based theory. The Taylor model was produced

to show that specific stimulations to model electrodes produces neuronal behavior

called spike wave discharhges (SWD). Yielding SWD through two different paths, a

thalamocortical connection and a corticocortical connection. This information lead

to a Stochastic Differential Equation (SDE):

dPY (t)

dt
= τ1(hpy − PY + C1f [PY ]− C3f [IN ] + C9f [TC]) (3.5)

dIN(t)

dt
= τ2(hin − IN + C2f [PY ]) (3.6)

dTC(t)

dt
= τ3(htc − TC − C6(s[RE]) + C7f [PY ])dt (3.7)

dRE(t)

dt
= τ4(hre −RE − C4(s[RE]) + C5(s[TC]) + C8f [PY ]) (3.8)

Given that

f [u] = (1/(1 + ε−u)) (3.9)

and

s[u] = au+ b (3.10)

is a sigmoidal function desgnating the slant of the sigmoid with variable ε.

Where u = PY, IN, TC,RE where i, j = 1, 2, ...19.
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Symbol
PY Pyramidal neural populations
IN Inhibitory neural populations
C1,...,9 Connectivity parameters
A Adjacency matrix
TC excites PY populations
RE activated by the TC neural populations

Table 3.1: Neurological Classes and Parameters

Taylor’s main interest was to induce heterogeneaty into the system by incor-

porating behavior from various neuronal populations at distinct time steps but still

keeping homogeneity within the time scales, τ1,2,3,4 and commencement parameters

hpy,in,tc,re.

Due to the complexity of the system, the model solutions were computed with

the use of Matlab’s Euler-Maruyama solvers. Taylor then used a general Power

Spectrum algorithm to obtain patient data with minimized noise. The patient

data was then used to produce adjacent matrix A in the model above. Taylor et

al. performed Pierson’s Cross Correlation to gather information about associations

between electrode channels. From the correlation matrix,

Mi,j=
−Mij if Mij < 0

0 if Mij < λ

ω if i = j

the Adjacent matrix is then calculuated,

A =
1∑
jMi,j

Mij (3.11)
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3.1.4 Fan Model

Fan et al. [37] projects that thalamic reticulus nuclei control spike wave

discharges specifically in absence seizures. The model was further improved to

incorporate time delay and other features. In Fan model, there are two main ways

that the electrode units can be connected, in a straight line or a small world, connected

with neighbors and small probability with distant nodes. The drive and response

behavior can be seen in a unidirectional or bidirectional pattern.

Suczynski et al. (2004) [1] developed a computational model of thalamo-

cortical circuits based on relevant (patho) physiological data. It was revealed that

the interruption of the normal activity may be due to bistable dynamics consisting

of background state and seizure rhythm. Lytton et al. (1997) [2] mainly focused

on the thalamic TC-RE circuit in a computer network model of spike-and-wave

seizures and showed that dynamic interactions determine partial thalamic latency.

Taylor et al. (2014) [3] developed a thalamocortical neural field model, which

can successfully simulate the SWD dynamics. Epilepsy regions are thought to be

abnormally synchronized even between two remote seizure regions. However, these

works mentioned above didn’t model the distant cortical regions. In particular, they

did not provide any insight into the synchronization dynamics of epileptic seizures.

Therefore, based on the coupled thalamocortical models we reviewed the common

mechanisms for the complete, lag and anticipated synchronization control, which are

then tested for the efficacy of these mechanisms on the SWD synchronization. In

particular, we investigated the motif synchronous dynamics of SWD. Such information

provided insight for understanding how epileptic patients’ brain network structure

forms when the brain develops highly synchronous SWD during seizure.

Fan et al. discovered that in a two-compartment coupled thalamocortical model,

there is sufficient evidence of complete synchronization with bidirectional coupling
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where x(t) = y(t), lag synchronization when there is a time lag introduced into the

system x(t) = y(t + τ), lastly anticipated synchronization through active control

methods [5]. In conclusion, based on SWD patterns from patient EEG, one can select

relevant synchronization mechanism and network structure to model these brain

activities and their collective behavior.

The model seen below considers the coupling effect with use of a sigmoidal

function S, responsible for altering the mean membrane potential of the neuronal

population into a mean pulse density of action potentials fired by the neurons [37]:

X ′(t) = α + AX(t) + F (X(t)) +K1S(Y1(t)) (3.12)

Y ′(t) = α + AY (t) + F (Y (t)) +K1S(X1(t)) (3.13)

where X1, Y1 are firing rates of the two neuronal populations from the cortex,

X and thalamus, Y .

3.2 Problem Statement

In this current paper, our starting point is considering a real EEG taken from a

patient with Glucose Transport Deficiency Type I Epilepsy (G1D). G1D is a genetic

disorder where epilepsy is the main symptom along with microcephaly. G1D has a

specific type of epilepsy where the patients suffer from absence seizures. We developed

an ODE model adapted from the Taylor model mentioned above where we added in

correlation coefficients and coupling strength terms. Our goal to understand how we

can analyze G1D at a microscopic level from an EEG data set aiming to learn specific

identifying characteristics due to its rarity and high risk of misdiagnosis. Finding a

standard set of data patterns is quite complex. We strive to give the fundamental

characteristics of data seen from EEG electrodes of a patient with G1D.
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Clinically, researchers have found a way to produce imaging biomarkers of

spike-and-wave discharges from patients with G1D by using fMRI informed EEG data

(Vaudano et. al, 2016). In this case, with the use of EEG processing data, we extract

a correlation matrix and base our equations within the thalamocortical model to give

a visual of the neuronal behavior. Our model is bidirectional due to the correlation

coefficients.

We want to study the EEG patterns to identify synchronization mechanisms

of this brain disorder. Historically, all four neuronal populations communicate at

different time scales which we propose aids in the distinct spiking neurons classes.

nonlinearity. To verify our model, we will use EEG data from UT Southwestern to

compare SWD and swindle neuronal behavior within real patient data given that an

underdeveloped brain is reflected on EEG data. The motivation of this research is to

find out how a neuron functions as a single unit with no inter-nueronal population

coupling then simulate a small network of coupled electrodes with minimal coupling

parameters followed by large coupling parameter, and lastly the full network with

minimal and large coupling parameter. We will then use this information to analyze

the self-interference terms within the behavior of the larger 32-electrode neuronal

network.

3.3 Model Formulation

Building the mathematical model begins with the Taylor model as a basis

then an added term representing the patient data, a very large and dense data set.

We must first import patient data through an MNE-toolbox and Python interface,

explained in further detail in the next section. From the Python interface we can

produce a correlation matrix. Each network is built from previous knowledge of how
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the four neuronal populations are intertwined. Which then leads to a branch point

and node graph produced from common connections seen from correlation matrix.

From Chapter 2, we see how the neuronal activity continuously works within a

network from the cerebral network and thalamus. There are two types of networks

that we study, coupled and non-coupled in order to build a baseline of activity.

We propose that there is unseen behavior with intercoupling terms from the cortex

populations and thalamus populations in addition to separate intracoupling.

3.3.1 Pre-Seizure Data

Neuronal regions or electrodes will be used interchangeably as the electrodes

represent a spatially localized neuronal region and not individual neurons.

Neurons form a large yet complex network. Before developing the mathematical

model, we must first observe how the brain naturally communicates. Under the

assumption of a seizure free state. The goal is to visualize how each neuron signals

target specific areas elsewhere in the brain. A detection of activity is a pattern seen,

specific to a patients brain during the resting or non-seizure state.

In Figure 2.1, a correlation matrix is shown. The correlation matrix, A ∈ R31×31

matrix where each element of the matrix is calculated by the measure of their linear

dependence between the two values based from the Pearson Correlation equation.

ρ(X, Y ) =
1

N − 1

N∑
i=1

(
Xi − µX
σX

)(
Yi − µY
σY

) (3.14)

where X = (Xi) and Y = (Yi) The value indicates the strength of the relationship,

specifically a(i, j) is the correlation between vector i and vector j. In our case, each

vector represents average membrane voltage of a neuronal region recorded by the

electrode over a period of time.
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Symbol
ρ(X, Y ) the correlation coefficient of the relationship between the variables X and Y
Xi the values of the X-variable in column i
µX mean of the values of the X-variable
σX standard deviation of the values of the X-variable
Yi the values of the Y-variable in column i
µY mean of the values of the Y-variable
σY standard deviation of the values of the Y-variable
N number of elements in each column

Table 3.2: Symbols used in Pearson Correlation equation

Pre-Seizure Correlation Matrix
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Figure 3.2: Pre-Seizure Correlation Plot

From this correlation matrix, we are able to see how each electrode is positively

correlated by a value greater than 0 or negatively correlated, a value less than zero.

We then can produce a network, starting with a data structure graph. In Figure 2.2,

branch points and nodes diagram depicting how each electrode builds its network.

Each node represents an electrode or neuronal region. The branches form

between each node if the correlation value a(i, j) is greater than 0.6 or less than

−0.6, our assumption is that electride i is highly positively or negatively correlated

to electrode j, converse is true as well.
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(a) Positive Correlation Graph (b) Negative Correlation Graph

Figure 3.3: Pre-Seizure Data Graph

On average, each electrode connects with 9.5 other electrodes in an excitatory

fashion. On the other hand, an average of 5.8 inhibitory connections take place within

this patients brain pre-seizure EEG data.

Looking further, regarding the postive correlation graph, there are several

neuronal regions that are central to excitatory behavior:

Electrode: 11,25,13,15,7,31,10,30,6,24,26

In reality, electrodes 3, 4, 6, 8, 14, 20, 22, 24, 26, 27, 28, 29, 30, 31 are the 14 electrodes

whom have above average connections.

Wheras the graph for negative correlations is not as linear or uniform in pattern.

In this case, electrodes 1, 2, 3, 4, 5, 6, 11, 12, 13, 14, 21, 22, 25, 26, 27, 28, 29 are the 17

electrodes whom have above average connections. Furthermore, only 9 electrodes are

well above average, meaning their number of connection is greater than the variance

of the set of number of total connections. We use this information as a control. A

way to compare brain activity at resting state to disease state.

3.3.2 Seizure Data

Viewing and understanding nueronal activity requires a more indepth, cellular

exploration. Surface level brain activity patterns can be seen as a visual through an
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EEG. Furthermore, neuronal region connections viewed are particularly random, one

cannot accurately define an activation pattern from unpolished data.

Our overarching goal is to answer two questions:

1. What is phase synchrony?

2. Once a phase has been defined, how does one know that all channels are in

synch?

Seizures are characterized by highly synchronized neuronal activity across the

brain, in localized regions, or multiple spatially localized regions simultaneously

connecting with other regions.

In order to see how the neurons build up their seizure network, we produced

a correlation color plot. A spectral, visual representation of the correlation matrix.

Correlation is a mutual relationship or connection between two or more neuronal

regions. It shows the level of interdependence of variable quantities. In the figure

below, we see the correlation color plot for the patient’s seizure data.

Seizure Correlation Matrix
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Figure 3.4: A Seizure Correlation Plot between 31 electrodes. Blue implies a strong
negative correlation between two electrodes whereas yellow qualifies a strong positive
correlation.
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Two neuronal regions may work together to either inhibit or excite one another,

producing an inhibitory relationship or an excitatory relationship. Voltage quantities

for one region can increase otherwise known as depolarize and cause the other to

decrease in voltage or hyperpolarize.

Figure 3.5: Seizure Data Graph: a) Positive Correlation Graph of 31 electrodes with
connection strength rx,y ≥ 0.6. b)Negative Correlation Graph of 31 electrodes with
connection strength rx,y ≤ −0.6

Brain activity during a seizure is seen to produce a different pattern compared

to the pre-seizure graph. A general circular pattern is seen for the positive correlation

graph. A natural assumption would be that this is an exact replica of approximate

electrode locations on the scalp, yet this assumption is unrealistic.

On average each electrode connects with 7.2 other electrodes in an excitatory

fashion. On the other hand, an average of only 2 inhibitory connections within a

patients brain during a seizure. More specifically, regarding the postive correlation

graph, there are two main poles. These poles cause a group of electrodes to congregate.

This may indicate that these electrodes are more likely to cause excitatory behavior:

Left Hand Side Attractors: 7,8,9,10,15,19,20,23,29,31

Right Hand Side Attractors: 1,2,3,4,11,12,17,21,22,25
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There are approximately 14 electrodes with above average number of connections.

Electrodes: 3, 4, 6, 8, 14, 20, 22, 24, 26, 27, 28, 29, 30, 31 have more than 7 total connec-

tions.

Wheras the graph for negative correlations has more of a oval or oblong shape

with no attractors. Each electrodes appears to have similar connections in common.

In this case, electrodes 1, 2, 3, 4, 5, 6, 11, 12, 13, 14, 21, 22, 25, 26, 27, 28, 29 are the 17

electrodes with more than 2 connections. Which implies that the negative correlations

are much lower in number. In biological terms, less inhibitory connections across the

brain in an epileptic state. Looking even more in detail, only 9 electrodes are well

above average, meaning their number of connections is greater than the variance of

the number of total connections, which can be used as a threshold.

3.4 Summary of Results

In conclusion, we find that our graphs do give a useful visual as to how well the

brain is connected in a healthy or non seizure activity. Yet it may not give an effective

or accurate analysis of how synchronized various brain regions are connected before

and during a seizure. Numbering the electrodes gives the reader a guantitative view

of how the electrodes connect at one particular instant, in a healthy and unhealthy

state. We look for most electrodes to have above average connections yet our goal

would be to pinpoint more electrode connections made during a seizure. The reason

for this occurance is the one timepoint considered rather than a fixed time period.

We gave an in depth quantitative view of the electrodes to:

• Find motifs seen by G1D based on circular or linear connections

• Pinpoint if these connections are due to symmetric coupling coefficients

• Determine symmetry in number of connections much like the correlation matrix.

Why or why not does this symmetry replicate in the number of connections?
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• State if we can visable see how the source pattern is connected from a graph or

not.

The answers to these parenthetical thoughts and open ended questions will be found

in our analysis of the full network model seen in Chapter 4 and 5.
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CHAPTER 4

Modeling the Patterns of Epileptic Activity within a Network of Neurons Regarding

G1D Transport Deficiency Epilepsy Seizures

The populations considered in this model represent neurons from two different

parts of the human brain: Cerebral Cortex and Thalamus. We consider 4 specific

populations consisting of the pyramidal nuerons, PY, the inhibitory neurons, IN,

Specific relay neurons which represent the excitatory neurons in the Thalamus, SRN,

and the thalamic reticular neurons which are the inhibitory neuronal population,

TRN.

During an absence seizure, two parts of the brain, the cerebral cortex and the

thalamus, coincide to produce certain neurological behavior. In order to mathemat-

ically represent the study of these complex processes during an epileptic seizure,

various modeling assumptions will be instituted.

4.0.1 Modelling Assumptions

This model replicates a system of 31 electrodes from a 32-electrode EEG given a

central electrode is used as a reference hence j ∈ 1, 2, ..., 31. We assume that neuronal

activity never ceases. First, we begin with a single unit j = 1 then consider two-unit

model analysis, j = 1, 2. The full network is analyzed in the next chapter.

Most of our model parameters stem from the induced epileptic spike wave

discharge literature of Taylor et al. 2013, 2014, 2015; with adaptations from Fan et al.

2015; Wang et al. 2012 in addition to historical patient data. Much of the analytical
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biological literature review gives biological functionality of the inter-compartment

connections yet do not give exact parameter values.

We chose to analyze the coupled system across the thalamus and the cortex

due to the fact that Fan mainly focused on the intraspective view of coupling,

specifally looking at neurological activity of coupling within the cortex or within the

thalamus, not a perspective of dynamics that can be seen from interspective coupling.

Additionally, since we are modelling the coupling of nearby neuronal units or increased

clustering, we do not consider a system of time delayed differential equations.

Symbol
PY , IN , SRN , TRN Firing rates (voltage)

hp,i,t,r additive input constants
-0.35, -3.4, -2.0, -5

uj external control input into response module
-0.3/-0.01, -0.3/-0.01, 0, 0

κ1,2,3,4,5,6,7,8,9 connectivity strengths within different neuronal populations
listed below

sigPY,IN,SRN,TRN activation functions for the cortical and thalamic modules

1/(1 + 250000−(uj))

τ1,2,3,4 time scale parameters for each neuronal population
26, 1.25*26, 26*0.1, 26*0.1

A correlation matrix
s approximation function

Table 4.1: Symbols and parameter values within G1D Model

In addition, in order to mimic the effect of stimulus-induced SWD, we performed

a stimulus control ui(t) on the cortical variables, PY and IN, respectively, where

u1(t) and u2(t) take the values in Table 1, and (u3(t), u4(t)) = (0, 0). The control

parameters are the same as those used in Taylor et al. (2014). During the simulations,

k6 is the bifurcation parameter which varies in the physiologically reasonable range,

while the other parameter values are kept the same as the Taylor model.
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dPYj
dt

= (hp − PYj + κ1sig(PYj)− κ2sig(INj) + κ3sig(TRNj))τ1 + λ1A(i, j)

(4.1)

dINj

dt
= (hi − INj + κ4sig(PYj))τ2 (4.2)

dSRNj

dt
= (ht − SRNj + κ5sig(PYj)−

κ6

2
(sTRNj))τ3 + λ2A(i, j) (4.3)

dTRNj

dt
= (hr − TRNj + κ7sig(PYj) +

κ8

2
(sSRNj)−

κ9

2
(sTRNj))τ4 (4.4)

Where:

Parameter Origin Target Area Value
κ1 PY PY 1.8
κ2 IN PY 1.5
κ3 SRN PY 1
κ4 PY IN 4
κ5 PY SRN 3
κ6 TRN SRN varying
κ7 PY TRN 3
κ8 SRN TRN 10.5
κ9 TRN TRN 0.2

Table 4.2: G1D Model Parameters [44]

We use sigmoidal (activation) functions to accurately simulate the action of

the synaptic connections.

4.1 Find Equilibria and Existence

Let us begin with the 1-compartment model which has been dimensionalized.

We see clearly that the trivial case of E0(0, 0, 0, 0) is not an equilibrium point due to

the fact that this implies the brain has no activity.
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Therefore, we have the relation:

E1(PY ∗, IN∗, SRN∗, TRN∗) =

E1([−0.96λ1
τ1
− (κ1+κ3)

2
+κ2

IN∗+100
200

−hp− κ3TRN∗

200
]( 200
κ1−200c1

), hi
c2
− κ4

c2
(PY

∗+100
200

), [−0.96λ1
τ3

+

ht+κ5(PY
∗+100
200

)−κ6(sTRN∗+ 1
2
)]( 1

c3
), (− 1

τ4(c4+
sκ9
2

)
)(hr +κ7(PY

∗

200
+ 1

2
)+ κ8

2
(sSRN∗)))

Which then becomes D · (PY ∗, IN∗, SRN∗, TRN∗)T = V , in matrix form as:

D =



(−c1 + κ1
200

)τ1 −κ2τ1
200

0 κ3τ1
200

κ4τ2
200

−c2τ2 0 0

κ5τ3
200

0 −c3τ3 −κ6s
τ3
2

κ7τ4
200

0 κ8s
τ4
2

(−c4 − κ9
s
2
)τ3


set equal to:

V =



(−hp − κ1
2

+ κ2
2
− κ3

2
)τ1 − a1λ1

−hiτ2 − κ4τ2
2

−ht − κ5τ3
2

−hr − κ7
2


We then apply Cramer’s Rule:

D1 =



(−hp − κ1
2

+ κ2
2
− κ3

2
)τ1 − a1λ1 −κ2τ1

200
0 κ3τ1

200

−hiτ2 − κ4τ2
2

−c2τ2 0 0

−ht − κ5τ3
2

0 −c3τ3 −κ6s
τ3
2

−hr − κ7
2

0 κ8s
τ4
2

(−c4 − κ9
s
2
)τ3



D2 =



(−c1 + κ1
200

)τ1 (−hp − κ1
2

+ κ2
2
− κ3

2
)τ1 − a1λ1 0 κ3τ1

200

κ4τ2
200

−hiτ2 − κ4τ2
2

0 0

κ5τ3
200

−ht − κ5τ3
2

−c3τ3 −κ6s
τ3
2

κ7τ4
200

−hr − κ7
2

κ8s
τ4
2

(−c4 − κ9
s
2
)τ3


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D3 =



(−c1 + κ1
200

)τ1 −κ2τ1
200

(−hp − κ1
2

+ κ2
2
− κ3

2
)τ1 − a1λ1

κ3τ1
200

κ4τ2
200

−c2τ2 −hiτ2 − κ4τ2
2

0

κ5τ3
200

0 −ht − κ5τ3
2

−κ6s
τ3
2

κ7τ4
200

0 −hr − κ7
2

(−c4 − κ9
s
2
)τ3



D4 =



(−c1 + κ1
200

)τ1 −κ2τ1
200

0 (−hp − κ1
2

+ κ2
2
− κ3

2
)τ1 − a1λ1

κ4τ2
200

−c2τ2 0 −hiτ2 − κ4τ2
2

κ5τ3
200

0 −c3τ3 −ht − κ5τ3
2

κ7τ4
200

0 κ8s
τ4
2

−hr − κ7
2


Through Cramer’s Rule, we find that the relation above leads to:

PY∗ = detD1

detD
, IN∗ = detD2

detD
, SRN∗ = detD3

detD
, TRN∗ = detD4

detD
1

Theorem 4.1.1. If Det(D) 6= 0, then there exists one unique equilibrium of the

linearized one-compartment Taylor Model.

4.2 Local Stability Analysis

4.2.1 Single Unit Analysis

The Jacobian matrix without correlation constant is

J =



(−c1 + κ1
200

)τ1 −κ2τ1
200

0 κ3τ1
200

κ4τ2
200

−c2τ2 0 0

κ5τ3
200

0 −c3τ3 −κ6sc4τ3

κ7τ4
200

0 −κ8sc3τ4 (−c4 − κ9sc4)τ4


We then evaluate the Jacobian at the single equilibrium point for the 1-

compartment model. The Jacobian evaluated at E1([−0.96λ1
τ1
− (κ1+κ3)

2
+ κ2

IN∗+100
200

−
1Equilibrium relation espression is available upon request
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hp − κ3TRN∗

200
]( 200
κ1−200c1

), hi
c2
− κ4

c2
(PY

∗+100
200

), [−0.96λ1
τ3

+ ht + κ5(
PY ∗+100

200
) − κ6(sTRN

∗ +

1
2
)]( 1

c3
), (− 1

τ4(c4+
sκ9
2

)
)(hr + κ7(PY

∗

200
+ 1

2
) + κ8

2
(sSRN∗))) is

J(E1) =



(−c1 + κ1
200

)τ1 −κ2τ1
200

0 κ3τ1
200

κ4τ2
200

−c2τ2 0 0

κ5τ3
200

0 −c3τ3 −κ6sc4τ3

κ7τ4
200

0 −κ8sc3τ4 (−c4 − κ9sc4)τ4


The Jacobian is unchanging due to the system being linear. Hence the char-

acteristic polynomial P (λ) = det(λI − J) can be calculated as P (λ) = λ4 + (c2τ2 +

c3t3 + c1τ1 − κ1τ1
200

+ c4τ4 + c4κ9sτ4)λ
3 + (κ4κ2τ2τ1

40000
+ c1c4τ1τ4 − c4κ1τ1τ4

200
− κ3κ7τ1τ4

40000
+

c1c4κ9sτ1τ4 − c4κ1κ9sτ1τ4
200

+ (c2τ2 + c2τ3)(c1τ1 − κ1τ1
200

+ c4τ4 + c4κ9sτ4) + c2c3t2t3 +

(κ8c3sτ4)(c4κ6sτ3))λ2 +((κ4κ2τ2τ1
40000

)(c3τ3 +c4t4 +κ9sc4τ4)+(c2c3τ2τ4)(c1τ1− κ1τ1
200

+c4τ4 +

c4κ9sτ4) + (κ8c3sτ4)(−κ3κ5τ1τ2
40000

+ c1c4κ6sτ1τ3− c4κ1κ6sτ1τ3
200

) + (c2τ2κ8c3sτ4)(c4κ6sτ3))λ+

(κ2κ4τ1τ2
40000

)(c3τ3c4τ4 + c3τ3κ9sc4τ4 + κ8s
2c3τ4κ6c4τ3) + (c2c3τ2τ3)(c1c4τ1τ4 − c4κ1κ6sτ1τ3

200
) +

(c2c3κ8sτ2τ4)(−κ2κ4τ1τ2
40000

+ c1c4κ6sτ1τ3 − c4κ1κ6sτ1τ3
200

). To solve this fourth order charac-

teristic polynomial, it is simpler to solve in terms of c1, c2, c3, c4, the inference terms.

We then consider 4 cases:

Case 1: Let c1 = c2 = c3 = c4 = 0. The eigenvalues are λ1 = 0, λ2 = 0,

λ3 = 117−
√

668759
1000

< 0, λ4 =
√

668759+117
1000

> 0

Case 2: Let c1 = c2 = c3 = c4 = 1. The eigenvalues are λ1 = −3.3267+25.8285i,

λ2 = −3.3267− 25.8285i, λ3 = −24.6472 + 0.000i, λ4 = −33.6214 + 0.000i

Case 3: Let c1 = c3 = 0 and c2 = c4 = 1. The eigenvalues are λ1 = 0,

λ2 = −32.1793, λ3 = −4.1388, λ4 = −0.0039

42



Case 4: Let c1 = c3 = 1 and c2 = c4 = 0. The eigenvalues are λ1 = 0,

λ2 = −28.3561, λ3 = −0.404, λ4 = 0.3941

Hence E1 is Locally Asymptotically Stable only in Case 4 where c1 = c2 = c3 = c4 = 1.

For general stability we the considered the 4D Routh-Hurwitz Criterion: a0 > 0,

a1 > 0, a1a2 − a0a3 > 0, a1a2a3 − a2
1a4 − a0a

2
3 > 0, and a4 > 0 for P (λ) = a0λ

4 +

a1λ
3 + a2λ

2 + a3λ+ a4 = 0.2 We primarily consider the stability with respects to ci

to support a claim stated in the next chapter.

Considering actual values used in simulations for each of the parameters as

listed in Table 4.2, our Jacobian Matrix then simplified to:

J =



(−26(0.009 + c1) −0.195 0 13
100

0.65 −32.5c2 0 0

0.039 0 −2.6c3 −8.6268c4

0.039 0 76.44c3 −4.056c4


which then lead to the following characteristic equation:

P (λ) = 2.6c3λ
3 +(0.7352+84.5c2c3−67.6c1c3−10.53c3c4)λ2 +(0.3296c3 +345.7138c4 +

2197c1c2c3−274.1856c1c4−19.773c2c3+659.3714c3c4)λ+8911.032c1c2c3c4−69.3875c3c4−

80.1993c4 + 17145.2474c1c3c4 − 0.3876c3

Theorem 4.2.1 (Routh-Hurwitz). The roots of the auxiliary equation have negative

real parts if and only if all the principal diagonal minors of the Hurwitz matrix are

positive provided that a0 > 0 : δ1 > 0, δ2 > 0, ..., δn > 0. As δn = anδn−1, the last

inequality can be written as an > 0.

2see Appendix A for Routh Hurwitz stability criterion of single compartment without correlation

constant and eigenvalues.
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Using Routh-Hurwitz, stability criterion can be determined by, given the

characteristic polynomial with degree n = 3 of form, P (λ) = λ3 + a1λ
2 + a2λ + a3,

where a1 > 0, a3 > 0, and a1a2 > a3 implies stability.

4.2.2 Plotting Stability Regions

We then used this criterion to find the 3 specific instances and the overlapping

parameter space,

• a1 > 0 yields 0.7352−67.6c1c3
−2.6c3

> 0,

• a3 > 0 yields a3 = 0.14907692 > 0,

• a1a2 > a3 yields −0.12676923(0.7352−67.6c1c3)
−2.6c3

> 0.149077.

These criterion came as a result of assuming the interference term coefficient is

either on or off. Explcicitly stating, c2 and c4 were set equal to 0 so that we could

interpret brain activity from the two most active brain areas, pyramidal nuerons and

thalamic reticular nuclei neurons - our main dimensionalization tool.

We see in Figure 3.1, that the overlapping parameter space coincides with where

a3 > 0, labelled as data 3 in Figure 3.1.

4.3 Summary of Results

In this chapter, a full G1D model with correlation constants and coupling terms

stemming from patient data has been presented. We considered plausible dynamics

without explicit values for patient data and arbitrary coupling strenght values. This

model was formulated to gain a better understanding of how self-interference terms,

ci, inhibitory in nature to its perspective neuronal population, alter stability. Stability

analysis has shown that as the values of ci range from 0 to 1, instability occurs in

all scenarios. Two cases representing the dulling of inhibitory relations from the

larger excitatory neuronal populations, pyramidal neurons and specific relay nuclei.
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Figure 4.1: Single Unit Parameter Space

Whereas the other two cases denote a muting of excitatory dealings from the inhibitory

populations, inhibitory neurons and thalamic reticular nucleus. Only in case 2 did

we find a local asymptotically stable critical point. Furthermore, it can be seen that

altering the values of self-interference terms leads to instability. This result would

arguably lead to interesting dynamics in simulations, which is further explored in

chapter 4.
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CHAPTER 5

Coupled Network Simulations and Results

In the previous two chapters, we discussed stability regarding interference terms,

patient data, and coupling coefficents of a one unit model. This chapter will continue

to provide analysis for coupled two-unit model.

We use MATLAB ODE45 solver to nuerically solve and plot the solutions to

the system of ODEs. ODE45 is an efficient way to solve non-stiff equations with

medium accuracy in less than 1 minute.

5.1 Reasoning for Hopf Bifurcation and Assumptions

First, we begin wtih concretely explaining why there are spiking behavior

changes in addition to a time delayed bifurcation between the single compartment

and two-unit model as a result of increasing coupling strength. Our claim is that this

will be a plausible way of behavior modulation in the fully coupled 31-unit system.

We first study how 2 coupled units change stability.

Our claim:

Claim: Assume the self interference terms in each of the four neuronal populations,

c1, c2, c3, c4, are arbitrary. We express each unit (PYj, INj, SRNj, TRNj)
T = X1 and

(PYi, INi, SRNi, TRNi)
T = X2.
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dPYj
dt

= (hp − c1PYj + κ1sig(PYj)− κ2sig(INj) + κ3sig(TCj))τ1 + λ1α1SRNi + α2TRNi

dINj

dt
= (hi − c2INj + κ4sig(PYj))τ2 (?)

dSRNj

dt
= (ht − c3SRNj + κ5sig(PYj)−

κ6

2
(sTRNi))τ3 + λ2α3PYi + α4INi

dTRNj

dt
= (hr − c4TRNj + κ7sig(PYj) +

κ8

2
(sSRNj)−

κ9

2
(sTRNj))τ4

Proof: Given two correlation matrices, G and M , which are square symmetric matrices,

representing coupling coefficients within units and between units respectively (*) with

x1 = X1 −X∗1 , x2 = X2 −X∗2 , by difference away from equilibrium. Therefore the

homogenous system can be represented as:

x′1 = Gx1 +Mx2 (5.1)

x′2 = Gx2 +Mx1 (5.2)

Equations 5.1-2 then yield the following coefficient matrix:

A =

 G M

M G

 .
To find the eigenvalues we then compute |A− λI|

det(A− λI) =

 G− λI M

M G− λI

 .

It is given that for non-singular A1

det

 A1 B1

B1 A1

 = det


 A1 0

0 I


 A−1

1 0

0 I


 A1 B1

B1 A1




= det


 A1 0

0 I


 I A−1

1 B1

B1 A1


 ,
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and if A = XY Z then detA = detXdetY detZ.

Without loss of generality: G− λI M

M G− λI

 =

 G− λI 0

0 I


 (G− λI)−1 0

0 I


 G− λI M

M G− λI


By Gaussian elimination,

detA = det(G− λI) · det

∣∣∣∣∣∣∣
I (G− λI)−1M

M G− λI

∣∣∣∣∣∣∣
= det(G− λI) · det

∣∣∣∣∣∣∣
I (G− λI)−1M

0 (G− λI)−M−1(G− λI)−1M

∣∣∣∣∣∣∣
= det(G− λI) · det((G− λI)−M−1(G− λI)−1M)

= det((G− λI)2 − (G− λI)M−1(G− λI)−1M)

Assume here M = γI as a special case and a± ib are eigenvalues of G then

detA = ((λ− a) + ib)2((λ− a)− ib)2 − γ2.

5.2 Effect of Coupling on Stability and Delayed Bifurcation

We assume for now M = µI where I is the Identity matrix and µ represents

coupling strength and consider G is near a Hopf-Bifurcation point at k6 = kB. There

exists Q(k6) nonsingular matrix such that

Q−1GQ = det

 λ− (a+ ib) 0

0 λ− (a− ib)


for the projection to the largetst two eigenvectors and eigenvalues.
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Hence,

det((G− λI)2 − µ2I) = det(Q−1((G− λI)2 − µ2I)Q)

= ((λ− a)2 + b2)2 − µ2

At, k6 = kB (bifurcation point),

Re(a± ib) = a(k6)
∣∣∣
k6=kB

= 0

Im(a± ib) = b(k6)
∣∣∣
k6=kB

6= 0

for the original Taylor Model.

As for the Two-unit coupled Model, the eigenvalues are

λ1,2 = a± ib− µ,

λ3,4 = a± ib+ µ.

We observe the stability change prior to k6 = kB due to λ3,4 becomes positive before

k6 = kB. We then investigate further the stability change due to coupling in the next

section.

5.2.1 Impact on Stability by Coupling

Without coupling, the steady state changes from stable to unstable as real part

of eigenvalues in the following way:

a(k6) < 0 for k6 < kB

a(k6) > 0 for k6 > kB

However, with coupling, Re(λ3,4) becomes positive when a(k6) + µ > 0. Depending

on the strenght of couplint, the stability exchange occurs before the bifurcation point

kB.
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5.2.2 Impact on Delayed Stability by Coupling

For many neuronal systems discussed earlier in chapter 2, passage through

delayed Hopf-bifurcation is an important rythmetic feature, as seen in many papers

existing in literature.

In summary, as the parameter k6 = k6i + εt where k6i is the initial parameter,

is slowly increasing, and if the solution

(PYj, INj, SRNj, TRNj)
∣∣∣
t=0

= (PY ∗, IN∗, SRN∗, TRN∗)

then Equations 4.1-4.4 bifurcates at a point beyond the original Hopf-bifurcation

point at k∗6 which satisfies ∫ k∗6
k6i
Reλ1,2(τ) =

∫ k∗6
k6i
a(τ)dτ = 0

where k∗6 > kB is beyond the Hopf-bifurcation point.

We consider the goverening Equations 5.1-5.4 and with coupling, the concerned

eigenvalue condition will be∫ k∗∗6
k6i

Reλ3,4(τ) =
∫ k∗∗6
k6i

(a(τ) + σ)dτ = 0

and we expect an early bifurcation point than k∗∗6. When σ is small but greater

than 0, then k∗∗6 − k∗6 = O(σ). We observed this important change of dynamics in

our coupled system, as shown in the examples below.

5.3 Stability Analysis Regarding Parameter k6

Through extensive simulations and data analysis, Fan [38,39], projects that k6 is

the key parameter that alters stability for a model of this sort. We completed stability

analysis with the use of MATLAB and also found that within the full network system,

k6 is still a key parameter even with the addition of patient data and a coupling

strength term. We solve our system of ODEs based from EEG data with MATLAB
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ODE45 which then simulates the brain rhythms during an epileptic seizure within

four minutes.

In this section, a comparison of the single compartment model to the two-coupled

units model with increasing k6 is computed. Figures below show the difference in

behavior as k6 increases from 4 to 5, moving through a suspected bifurcation point at

k6 = 4.1.
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Figure 5.1: Hopf-bifurcation point beginning at k6 = 4 and increasing to k6 = 5 and
t = 0− 12s. A comparison of one unit model (left) to two-unit coupling model (right)
showing small oscillatory spiking in the single compartment model versus little to no
activity in the coupling model.

51



24 26 28 30 32 34 36

Time (s)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4
M

e
a
n
 E

,I

24 26 28 30 32 34

Time (s)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

M
e
a
n
 E

,I

Figure 5.2: Hopf-bifurcation point beginning at k6 = 4 and increasing to k6 = 5 with
t = 24 − 36s. A comparison of one unit model (left) to two-unit coupling model
(right) displaying a shift in slight bursting in the single compartment model versus
inceasing bursting changing into bursting spikes followed by tonic spiking in the
coupling model. The change in k6 = 4 shows that the Hopf-Bifurcation has been
shifted back or delayed.
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Figure 5.3: Hopf-bifurcation point beginning at k6 = 4 and increasing to k6 = 5 with
t = 70−84s. A comparison of one unit model (left) to two-unit coupling model (right)
displaying slight bursting in the single compartment model versus initial bursting
followed by tonic spiking in the coupling model. An effect of coupling seen over time.
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Figure 5.4: Hopf-bifurcation point beginning at k6 = 4 and increasing to k6 = 5 with
t = 86−92s. A comparison of one unit model (left) to two-unit coupling model (right)
displaying slight bursting in the single compartment model versus tonic spiking in
the coupling model. Increasing coupling strength affects the spiking behavior over
the entire time span.

It is evident that as k6 increases, the thalamo-cortical oscillations are delayed.

Indicative of delayed instability at time t = 60s then at point t = 69s Hopf-bifurcation

occurs, evident by the large amplitude oscillatory behavior.

5.4 Summary of Results

In thalamic sleep rhythms and other neuronal systems in the brain [9-11,21,29,34,47-

48,62], neurons have been observed experimentally to engage in a rhythmic pattern

of behavior referred to as bursting. In bursting, neuronal activity alternates between

active phases, characterized by large amplitude oscillations, and quiescent phases,

associated with oscillations of much smaller amplitudes (see Figures 3.5-3.12 above).

In this case, an absence seizure which also stems from the thalamus augments the

burst a bit by adding noise to the onset of a burst causing small and large oscillatory

behavior.
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Mathematically, the complications involved in busting are related to a dynamical

phenomenon known as delayed bifurcation or delay of stability loss, defined by Arnold

[2]. Very similar activity is seen regarding the G1D model. Solutions are different

at each time step. In figure 4.1-4.4, we see Thalamo-Cortical oscillations whereas

no spike in the coupled unit model. Whereas, as k6 grows larger, the coupled unit

model exhibits very large oscilatory behavior and the single-unit model continues

with periodic fast and low-threshold spiking. The averages between the inhibitory

and excitatory populations tend to stay close to a steady state as time increases,

then spiking begins at t = 59s. Subsequently, after a substantial time delay, solutions

jump away from steady state.
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CHAPTER 6

Full System Dynamics and Degree of Synchrony

6.1 Mathematical Model for Full 31-Node Network

The full network:

dPYj
dt

= (hp − PYj + κ1sig(PYj)− κ2sig(INj) + κ3sig(TRNj))τ1 + λ1Σi,jA(i, j)(SRNi + α2TRNi)

dINj

dt
= (hi − INj + κ4sig(PYj))τ2

dSRNj

dt
= (ht − SRNj + κ5sig(PYj)−

κ6

2
(sTRNi))τ3 + λ2Σi,jA(i, j)(PYi + INi)

dTRNj

dt
= (hr − TRNj + κ7sig(PYj) +

κ8

2
(sSRNj)−

κ9

2
(sTRNj))τ4

6.2 Simulations

The large network consists of 31 units with 4 neuronal populations each with

coupled terms to connect the total 124 equations. In order to analyze a system of this

size, we used MATLAB function ODE45 to solve the system of ordinary differential

equations and Mathematica NDSolve function to detect changes in nueronal activity.

With MATLAB, the behavior is simulated within two minutes for 100 seconds of a

neuronal process.Through many simulations and parameter sensitivity analysis, we

have substantiated the fact that k6 is the altering parameter as seen in the Taylor

model. There is consistency or dormant periods followed by small oscillatory spikes

in many of the simulations.

We then show activity before and after the Hopf bifurcation point in order to

highlight the major differences in behavior. A comparison from non-seizure data to

seizure data is shown below.
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6.2.1 Varying Coupling Strength

In this section, we study how the neuronal spiking behavior changes as a

result of parameter k6. This particular parameter represents the relationship betwen

Thalamic Reticular Nuclei and Specific Relay Nuclei, both populations of neurons

located in the thalamus. Our goal is to not only find exact parameter values which

drive these changes seen when adjusting the coupling strength but also to identify

the induced transitions. The value of the k6 parameter is augmented at each time

step, k6 = k6i+ εt in order to highlight the varying spiking behavior that could occur.

Secondly, changing the strength of the coupling coefficient over the duration of the

simulation in addition to the varying coupling strength. In this section, we investigate

the specific range of parameter values that lead to transitions of one phase to other

firing rates that may be induced from inhibitory synaptic coupling strength from

TRN onto SRN.

For reference,

Parameter Origin Target Area Value
κ1 PY PY 1.8
κ2 IN PY 1.5
κ3 SRN PY 1
κ4 PY IN 4
κ5 PY SRN 3
κ6 TRN SRN varying
κ7 PY TRN 3
κ8 SRN TRN 10.5
κ9 TRN TRN 0.2

Table 6.1: Table of Parameter Origins and Values. Reference from Chapter 3.
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dPYj
dt

= (hp − PYj + κ1sig(PYj)− κ2sig(INj) + κ3sig(TRNj))τ1 + λ1Σi,jA(i, j)(SRNi + α2TRNi)

dINj

dt
= (hi − INj + κ4sig(PYj))τ2

dSRNj

dt
= (ht − SRNj + κ5sig(PYj)−

κ6

2
(sTRNj))τ3 + λ2Σi,jA(i, j)(PYi + INi)

dTRNj

dt
= (hr − TRNj + κ7sig(PYj) +

κ8

2
(sSRNj)−

κ9

2
(sTRNj))τ4

Symbol Coupling Coefficient Initial Value Coupling Coefficient Final Value Increment Size
λ1 0.2 1.2 0.01
λ2 0.005 0.105 0.001

Table 6.2: Coupling Coefficient values for the full 31-network system

6.3 Numerical Results

In figures 5.1-5.3, we depict the average value of (PYj + INj)/2, where j =

1, ..., 31 when λ1, λ2 are increases slowly according to the time t and k6 = 4 is below

the Hopf-bifurcation point. We observe as the coupling strength λ1, λ2 increase, the

behavior of PYj, INj reduces their oscillation frequence and converges to steady

states.
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Figure 6.1: Fixed Coupling strength terms λ1, λ2 at 0.2 and 0.005 respectively.
Spiking activity changes as Hopf-Birfurcation parameter increases from k6 = 4 over
time. Changes viewed as the coupling is hightened between the cortex and thalamus
neuronal populations. Spiking behavior interchanges bewteen tonic, tonic bursts,
spikes and lastly no activity.

6.3.1 Adding Periodic Perturbation

We then studied the changes seen when adding periodic perturbation while

keeping the coupling coefficient at a fixed value then varying the coupling coefficient

along with the periodic perturbation as seen in section 5, based from adaptive

resonance theory for brain processing information.
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dPYj
dt

= (hp − PYj + κ1sig(PYj)− κ2sig(INj) + κ3sig(TCj))τ1 (6.1)

+ λ1Σi,jA(i, j)(SRNi + α2TRNi) + εsin(
πt

freq
) (6.2)

dINj

dt
= (hi − INj + κ4sigpy)τ2 (6.3)

dSRNj

dt
= (ht − SRNj + κ5sig(PYj)−

κ6

2
(sTRNi))τ3 + λ2Σi,jA(i, j)(PYi + INi) + εsin(

πt

freq
)

(6.4)

dTRNj

dt
= (hr − TRNj + κ7sig(PYj) +

κ8

2
(sSRNi)−

κ9

2
(sTRNi))τ4 (6.5)

6.3.2 Results
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Figure 6.2: λ1 = 0.2 and λ2 = 0.005 with periodic perturbation increasing over time
in the form of rising frequency term. Hopf-bifurcation parameter is fixed at k6 = 4.
The frequency term changes with ongoing frequency of the model, increasing from
31.7 Hz to 62 Hz. In addition to shifting from tonic spiking behavior. to elliptic
bursting
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Periodic perturbation noise stems from resonance theory. In chemistry, reso-

nance is defined by a molecule bouncing between various valence bond structures.

Within neuronal networks, the simulation of resonance is the spiking behavior altering

from steady state to small oscillations, large oscillations, bursting, and tonic behavior.

In Figure 6.4 we see little to no activity for the first 30 seconds then a sudden change

occurs just before time t = 48. Solving equations 6.1-6.4 shows the solution exhibiting

continuous tonic behavior.

6.3.3 Adding Noise

Secondly, we observed the changes to the system as white Gaussian noise was

added. The coupling coefficients were held constant, fixed at λ1 = 0.2 and λ2 = 0.005,

as seen in Table 6.2, in order to view the spiking changes or lack thereof without

varying the coupling strengths.

dPYj
dt

= (hp − PYj + κ1sig(PYj)− κ2sig(INj) + κ3sig(TCj))τ1 (6.6)

+ λ1ΣA(i, j)(SRNi + α2TRNi) + awgn(t) (6.7)

dINj

dt
= (hi − INj + κ4sig(PYj))τ2 (6.8)

dSRNj

dt
= (ht − SRNj + κ5sig(PYj)−

κ6

2
(sTRNi))τ3 + λ2ΣA(i, j)(PYi + INi) + awgn(t)

(6.9)

dTRNj

dt
= (hr − TRNj + κ7sig(PYj) +

κ8

2
(sSRNi)−

κ9

2
(sTRNi))τ4 (6.10)

When noise is added, numerical computations [3, 65] and asymptotic methods

[28-29] suggest that the amount of delay is significantly reduced. When noise is

introduced into a bursting system [29], depending on the amplitude of the noise, it
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was found that there are regular patterns of alternations between a long active phase

and a long silent phase, regular patterns of alternations between short active and

silent phases, as well as irregular patterns of alternations of phases with various time

durations. When the noise amplitude is set to be extremely close to zero, the irregular

patterns give way to a pattern that strongly resembles deterministic bursting. But

even with a noise of quite small magnitude, the irregularity is significant. Kuske

and Baer [28-29] determine that this irregularity follows from random variation in

the delay of stability loss, based on an asymptotic approximation of the probability

density function for the state of the system in the silent phase and an asymptotic

analysis of the effect of noise on transitions out of the active phase.

6.4 Frequency Analysis

We assume from the numerical solutions shown in previous chapters that there is

a more effective way to show how well the neuronal populations synchronize. Dijkstra

and Heiberg [42,43] both pose the idea of the importance of accurate models that

show an appropriate response from the stimulus as seen in spiking neurons listed in

chapter 1. This implies a drive response mechanism which is a result of synchronized

brain activity commonly seen during an epileptic seizure [6,8]. Given that we are

continually processing signals from EEG data, we must communicate vital information

such as frequency, phase synchrony, general degree of synchrony and instantaneous

amplitude, frequency relation to gain insight of seizure mechanism. The first section

show explicitly how we evaluate frequency analysis and later define phase synchrony

and degree of synchrony.

The interest of frequency analysis of EEG data has become increasingly popular,

as a result various methods have been developed to evaluate amplitude and phase

assessments in comparison to the various Fourier Transforms. Frequency domains
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have assumptions regarding tasks and physical state of the matter involved. Various

oscillations can be visualized when considering different parts of the brain. A particular

task can be viewed in change in frequency.

For the full network without any changes to the model, we evaluated the

frequency by counting the number of spikes over a fixed duration of time as a control.

The resulting frequency was used in simulations regarding periodic perturbation.

This process was repeated for the 31-unit model with noise, increasing coupling

strength, and a combination of both noise and coupling strength. Our main focus is

before and during the suspected point of bifurction.
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Figure 6.3: Resulting frequency of full 31-unit network model for increasing noise
levels, before and after Hopf-Bifurcation. The Hopf-Bifurcation is a result of k6

increasing from 3.5 to 4.5. A comparison between the model based from healthy (left)
and then G1D (right) data.
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Figure 6.4: Resulting frequency of full 31-unit network model for increasing coupling
strength as in Table 6.2, before and after Hopf-Bifurcation. The Hopf-Bifurcation
is a result of k6 increasing from 3.5 to 4.5. A comparison between the model based
from healthy (left) and then G1D (right) data.
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Figure 6.5: Resulting frequency of full 31-unit network model for increasing coupling
strength as in Table 6.2, in addition to rising noise levels before and after Hopf-
Bifurcation. The Hopf-Bifurcation is a result of k6 increasing from 3.5 to 4.5. A
comparison between the model based from healthy (left) and then G1D (right) data.

6.5 Phase Synchrony vs. Degree of Synchrony

Phase Synchrony is process commonly used due to its adaptability to time

resolution. It is a three-step technique used to give further neurophysiological
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information aside from frequency analysis about a patients brain rhythms. The

overarching goal is to interrelate the results to cognitive processes, neurological

connections, attentiveness, and much more.

The three-step process:

(1) Hilbert Transform:

H[x1(t)] = 1
π
P.V.

∫∞
−∞

x1(τ)
t−τ dτ

Where P.V. is the Cauchy Principal Value, a method used to assign a value to

divergent integrals with odd or even integrands (or neither) and nonsymmetric

intervals, under the assumption that the limit converges at the same rate.

(2) Instantaneous Phase

φ1(t) = arctan H[x1(t)]
x1(t)

(3) Mean Phase Coherence

Computed in the complex plane λ = 1
N
|ΣN

t=1e
j[φ1(t)−φ2(t)]|

An averaging over the membrane potential, V between two electode (signals)

at time t, measuring the oscillatory populations disposition to develop total

synchrony [48].

A common practive in analyzing neurologically based models is to find the

value of the level of synchrony of a network of neurons or a comprehensive grouping

of neurons within a network, a neuronal synchrony measure. The value of neuronal

synchrony lies between 0 and 1. To truly understand the level of synchrony, one

must define synchrony in terms of neurons. A group of neruons are in synch when

all neurons fire action potential simultaneously, gaining a level of synchrony of 1.

Conversely, 0 corresponds to asynchronization of action potentials.

Degree of synchrony is a very similar term in that pertains to a large grouping

of neurons or network but incorporates the signalling process. Locally found by

evaluating two signals based on the direction of their trajectory at time t. Some
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researchers use a geometrical approach to evaluate the angular trajectory using cosine

and sine waves while others define a measure χ(x,N) to calculate spatially decaying

relationships between electrodes. In our case, due to the narrow yet long data matrix,

using the method of comparing singular values was most suitable.

We did so by completing the following steps with the use of MATLAB:

• Average all four neuronal populations from the 31-unit network, then the

separate excitatory and inhibitory populations, for a full 10 seconds.

• Find the singular value matrix, left singular matrix, and right singular matrix

• For each ms, the top 2 singular values we placed into a general singular value

matrix, resulting in 200 singular values along the diagonal of the S matrix

• Evaluate a ratio of the singular values from the 31 electrodes for every ms

Explicit ratio formula for degree of synchrony (DOS) is:

DOS = (M/(M − 1))(L(31)/sum(L(1)− 1/M) (6.11)

where M is the number of electrodes and L is the list of singular values found

along the diagonal of matrix S.The resulting value lies between 0 and 1, with 1

representing fully synchronized versus 0 meaning no synchrony between the channels

in question.1 We have found that multiple pathways of connection lead to various

phases of synchronizations between the network of neurons, including the degree of

synchronization with specific parameters.

6.5.1 Degree of Synchrony with Increased Coupling Strength

In this section, we will compare seizure data to nonseizure data within the same

model in order to show the gradual differences in spiking neuronal behavior. Over

1Full MATLAB code is available upon request.
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time we have kept the κi parameters constant and allowed the value of λi for i = 1, 2

to increase as seen in Table 4.1.

First, we computed a comparison of the 2-unit model with seizure and nonseizure

data as the control. Then we used the same code to produce a comparison of the

31-unit model with seizure and nonseizure data.

Over time, we observed the 2-unit model to have grave impact from the increased

coupling strength of λ1,2 on the degree of synchrony of the system. As coupling

strength increases, we see that the dregree of synchrony also increased. Considering,

the 2-unit model has only 2 electrodes involved, the average excitatory and inhibitory

action is much less compuationally expensive to evaluate. In additon to the fact that

naturally the mean activity will never be as robust as a larger network.

In conclusion, we found that our model has much more synchronization regarding

seizure data. Mathematically, larger models assume more averaging of the neuronal

populations involved. In order to view the increased synchrony, we consider the

degree of synchrony between arbitrary samples of the 31 units.
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Figure 6.6: Degree of Synchrony within the 2-unit model with coupling based on
non-seizure and seizure data as a result of increased coupling strength.
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Figure 6.7: Degree of Synchrony from a sampling of 10 electrodes within the 31-unit
model with coupling based on non-seizure and seizure data as a result of increased
coupling strength followed by increasing coupling strength and noise level.
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6.5.2 Degree of Synchrony with Increased Periodic Perturbation

Considering the full 31-unit model, we alter the periodic perturbation term and

visualize the resulting degree of synchrony. The noise term is based from a periodic

perturbation or resonance phenomena based theory. To do so, we calculated frequency

with increasing time. Based from parameter interval for κ6 value, 4 < κ6 < 5. As

seen below, the increased noise in addition to augmented k6 value, the degree of

synchrony goes through a phase of toggling between very gradual incline and relatively

steep decline then an abrupt increase that continues until the end of the time stamp.

In some cases, a sudden decrease occurs as t > 0.85, indicates the end of seizure

recording.
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Figure 6.8: Degree of Synchrony within the 31-unit model with coupling based on
seizure data with level of periodic perturbation set at (a) 0.1 (b) 0.5 (c) 0.01 (d) 0.05
(e) 0.001 (f) 0.005 (g) 0.0001 (h) 0.0005.
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6.5.3 Degree of Synchrony with Increased Periodic Perturbation and Coupling

Strength

0 10 20 30 40 50 60 70 80 90 100

Time (s)

-1

-0.5

0

0.5

1

1.5

2

M
e
a
n
 E

,I

Coupling - 31 electrodes

0 2 4 6 8 10

Time (ms)

0.48

0.5

0.52

0.54

0.56

0.58

D
e

g
re

e
 o

f 
S

y
n

c
h

ro
n

y

Degree of Synchrony vs. Increasing Coupling Strength and Periodic Perturbation

0 10 20 30 40 50 60 70 80 90 100

Time (s)

-1

0

1

2

3

4

5

6

M
e
a
n
 E

,I

Coupling - 31 electrodes

Figure 6.9: Degree of Synchrony within the 31-unit model with coupling based on
non-seizure (top) and seizure (bottom) data as a result of increased coupling strength
and periodic perturbation.

6.6 Summary of Results

De Vries and Sherman [7] both studied the electrical behavior of coupled

pancreatic β-cells with a focus on the beneficial influence of noise. However, small

random perturbations may have dramatic effects on dynamical systems and lead to

the emergence of new dynamical behaviors [8]. Stochastic resonance is a well-known

[9, 10] example. The term stochastic resonance is given to a phenomenon that is
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manifest in nonlinear systems whereby generally feeble input information (such as a

weak signal) can be amplified and optimized by the assistance of noise [9].

It was suggested previously that stochastic fluctuations of ion channels in the

plasma membrane are responsible for disrupting bursting behavior and transforming

isolated cells to spikers, but that the effective sharing of channels by electrically coupled

cells averages the noise and lets the bursting phenomena appear [16]. This was later

analyzed in [17, 18] using mathematical modeling. In [19], the work of Pedersen and

Sorensen supports previous investigations of the channel sharing hypothesis by the

application of two recent methods, which allow an analytic treatment of stochastic

effects on the location of the saddle-node and homoclinic bifurcations that are relevant

to bursting activity. The work of Su et al. [20] also analytically characterizes the

influence of noise on phase switching, in the case of elliptic bursting dynamics.

Neurons show significant variation in the presence and timing of action potentials

across stimulus trials, a phenomenon whose function and significance has been the

subject of great interest. Cortical activity is characterized by highly irregular interspike

intervals.

From our simulations, we are able to find specific parameter ranges that which

cause a class or classes of diseased state spiking neuron. t = 0 − 27, t = 28 − 45,

t = 46 − 54, and t = 54 − 77 all signify a change in spiking neuron characterized

as tonic bursting, thalmaocortical oscillations, and spindles. One positive effect on

noise and bifurcation is they have modified the synchronization of the network, both

through delayed bifurcation and noise, as a result of coupling.

The setting of the mathematical results are very general, the mechanism is

working for a large class of equations. However, we were able to see a comparison of

preseizure and seizure network in this chapter, concluding that the seizure is highly

synchronized as coupling strength increases and the addition of noise. Th
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CHAPTER 7

Conclusion and Future Work

Several computational neurological models have been developed over the last 40

years for small and large neuronal networks, cellular models for ion channel dynamics,

and mathematical models to visualize the effect of neuronal connections between the

cortex and thalamus. In order to retrieve a full picture of patterns seen in EEG data,

it has been proven in literature that a thalamocortical coupled model is best.

In chapter two, we found that our graphs do give a useful visual as to how

well the brain is connected in a healthy or non seizure activity. Yet it may not

give an effective or accurate analysis of how synchronized various brain regions are

connected before and during a seizure. The correlation plot will only give an average

at just one timepoint considered rather than a fixed time period so incorporating this

information within the model was imperative. In chapter 3, we more closely studied

the single compartment and two-unit coupled model. It was found that an absence

seizure augments the elliptic burst a bit by adding noise to the onset of an elliptic

burst. Consequently, after a substantial time delay, solutions jump away from steady

state. In chapter 4, it was shown using matrix operations that coupling strength

and self-interference terms impact stability of the system in addition to delaying the

Hopf-bifurcation. Lastly, in chapter 5, after a comparison of preseizure and seizure

network, we found that the seizure data causes the system to be highly synchronized

as coupling strength increases and the addition of noise.

In this study, we produced a ODE model comprised of four neuronal popula-

tions that are most active in Glucose Transport Deficiency Type 1 Epilepsy. We
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characterized spiking behavior changes seen as a result of varying coupling strength

and noise. Overall, our research has given a better picture of the dynamical properties

seen from this form of epilepsy. This model described the spiking neuronal activity

seen an epileptic induced seizure network through. By dissecting the correlation

association of neuronal units or electrodes, the subpopulations of the cortex and

thalamus in seizure data, certain patterns were classified. Our model is versatile in

the manner in which simulations can be produced with a change in coupling and the

addition of coupling strengths. The model is built to highlight the connections in the

network derived from data.

We plan to continue our work by closely studying sensitivity analysis regarding

parameters that directly affect SWD and spindles using Partial Rank Correlation

Coefficient. We would also consider neurological sensitivities with respects to the self-

interference terms represented by ci values in our model. Our large model could be

more accurate with an increased data based model comparison to more G1D patients.

Lastly, analyzing a visual representation of sparsity within the larger spatial inverse

problem yielded from the source patterns.
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A.1 Equilibrium Relation from Single-compartment Model

A.1.1 Routh Hurwitz Criterion

a0 > 0, a1 > 0, a1a2 − a0a3 > 0, a1a2a3 − a2
1a4 − a0a

2
3 > 0, and a4 > 0

• a0 > 0 yields 1 > 0

• a1 > 0 yields (c2τ2 + c3t3 + c1τ1 − κ1τ1
200

+ c4τ4 + c4κ9sτ4) > 0

• a1a2−a0a3 > 0 yields (c2τ2+c3t3+c1τ1− κ1τ1
200

+c4τ4+c4κ9sτ4)(κ4κ2τ2τ1
40000

+c1c4τ1τ4−
c4κ1τ1τ4

200
− κ3κ7τ1τ4

40000
+ c1c4κ9sτ1τ4 − c4κ1κ9sτ1τ4

200
+ (c2τ2 + c2τ3)(c1τ1 − κ1τ1

200
+ c4τ4 +

c4κ9sτ4) + c2c3t2t3 + (κ8c3sτ4)(c4κ6sτ3)) − ((κ4κ2τ2τ1
40000

)(c3τ3 + c4t4 + κ9sc4τ4) +

(c2c3τ2τ4)(c1τ1 − κ1τ1
200

+ c4τ4 + c4κ9sτ4) + (κ8c3sτ4)(−κ3κ5τ1τ2
40000

+ c1c4κ6sτ1τ3 −
c4κ1κ6sτ1τ3

200
) + (c2τ2κ8c3sτ4)(c4κ6sτ3)) > 0

• a1a2a3−a2
1a4−a0a

2
3 > 0 yields (c2τ2 +c3t3 +c1τ1− κ1τ1

200
+c4τ4 +c4κ9sτ4)(κ4κ2τ2τ1

40000
+

c1c4τ1τ4− c4κ1τ1τ4
200

− κ3κ7τ1τ4
40000

+c1c4κ9sτ1τ4− c4κ1κ9sτ1τ4
200

+(c2τ2 +c2τ3)(c1τ1− κ1τ1
200

+

c4τ4 + c4κ9sτ4) + c2c3t2t3 + (κ8c3sτ4)(c4κ6sτ3))((κ4κ2τ2τ1
40000

)(c3τ3 + c4t4 +κ9sc4τ4) +

(c2c3τ2τ4)(c1τ1 − κ1τ1
200

+ c4τ4 + c4κ9sτ4) + (κ8c3sτ4)(−κ3κ5τ1τ2
40000

+ c1c4κ6sτ1τ3 −
c4κ1κ6sτ1τ3

200
)+(c2τ2κ8c3sτ4)(c4κ6sτ3))−((κ4κ2τ2τ1

40000
)(c3τ3+c4t4+κ9sc4τ4)+(c2c3τ2τ4)(c1τ1−

κ1τ1
200

+c4τ4+c4κ9sτ4)+(κ8c3sτ4)(−κ3κ5τ1τ2
40000

+c1c4κ6sτ1τ3− c4κ1κ6sτ1τ3
200

)+(c2τ2κ8c3sτ4)(c4κ6sτ3))2 >

0

• a4 > 0 yields (κ2κ4τ1τ2
40000

)(c3τ3c4τ4+c3τ3κ9sc4τ4+κ8s
2c3τ4κ6c4τ3)+(c2c3τ2τ3)(c1c4τ1τ4−

c4κ1κ6sτ1τ3
200

) + (c2c3κ8sτ2τ4)(−κ2κ4τ1τ2
40000

+ c1c4κ6sτ1τ3 − c4κ1κ6sτ1τ3
200

) > 0

A.1.2 Finding Equilibria of 1-D model, used before Cramers Rule

First, we approximate sigNP by a linear approximation NP
200

+ 1
2
, where NP is

the neuronal population. Then, we assume PY ∗ 6= 0, τ1 6= 0, and set (4.1) equal to

zero to obtain

0 = (hp − c1PY
∗ + κ1(

PY ∗

200
+

1

2
)− κ2(

IN∗

200
+

1

2
) + κ3(

TRN∗

200
+

1

2
))τ1 + a1λ1
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−a1λ1

τ1

= hp − c1PY
∗ + κ1(

PY ∗

200
+

1

2
)− κ2(

IN∗

200
+

1

2
) + κ3 ∗ (

TRN∗

200
+

1

2
)

PY ∗(
κ1 − 200c1

200
) = −a1λ1

τ1

− (κ1 + κ3)

2
+ κ2

IN∗ + 100

200
− hp −

κ3TRN
∗

200

Therefore,

PY ∗ = (a1λ1
τ1
− (κ1+κ3)

2
+ κ2

IN∗+100
200

− hp − κ3TRN∗

200
)( 200
κ1−200c1

)

We choose to place ci along with the state variables because the amount of

inference from neighboring populations, which we will see later in section 2, does

affect stability.

Secondly, we set (4.2) equal to zero. Under the assumption, IN∗ 6= 0 and

τ2 6== 0,

(hi − c2IN
∗ + κ4(

PY ∗

200
+

1

2
))τ2 = 0

IN∗ =
hi
c2

− κ4

c2

(
PY ∗ + 100

200
)

Now, set (4.3) equal to zero to get

0 = (hr − c3SRN
∗ + κ5(

PY ∗

200
+

1

2
)− κ6

2
(sTRN∗))τ3

SRN∗ = [−0.96λ1

τ3

+ hr + κ5(
PY ∗ + 100

200
)− κ6(sTRN∗ +

1

2
)](

1

c3

)

Hence,

SRN∗ = [−0.96λ1
τ3

+ hr + κ5(PY
∗+100
200

)− κ6(sTRN∗ + 1
2
)]( 1

c3
).

Lastly, we set (4.4) equal to zero to get

0 = (ht − c4TRN
∗ + κ7(

PY ∗

200
+

1

2
) +

κ8

2
(sSRN∗)− κ9

2
(sTRN∗))τ4

(−τ4(c4 +
sκ9

2
))TRN∗ = (ht + κ7(

PY ∗

200
+

1

2
) +

κ8

2
(sSRN∗))τ4
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Thus,

TRN∗ = (− 1
τ4(c4+

sκ9
2

)
)(ht + κ7(PY

∗

200
+ 1

2
) + κ8

2
(sSRN∗))

A.2 Proof of 4 cases in Section 4.1

Let λ = uc1 + wc3, where c1 and c3, self-interference terms for pyramidal and

specific relay neurons. We then consider four cases:

1 u,w are both real and positive or negative

2 u,w are both real and either positive or negative

3 u,w are both complex with positive real parts

4 u,w are both complex with negative real parts

Then solve detA = 0 to find all eigenvalues.1 Case 1: Let u,w ∈ R+ then

(uc1 + wc3 − (a+ ib))2 − γ2 = [(uc1 + wc3 − a)− ib]2 − γ2

= ((uc1 + wc3 − a)2 − (ib)2) + 2i((−ib)(uc1 + wc3 − a))− γ2

= ((uc1 + wc3 − a)2 − (ib)2) + 2((b)(uc1 + wc3 − a))− γ2

= (uc1 + 2wc3 − 2a− 2ib)uc1 + (wc3 − 2a− 2ib)wc3 + a2 − b2 + 2ib− γ2

If 2a > uc1 + 2wc3 and 2a > wc3 then λ is stable.

Second eigenvalue:

(uc1 + wc3 + (a+ ib))2 − γ2 = [(uc1 + wc3 + a) + ib]2 − γ2

= ((uc1 + wc3 + a)2 + (ib)2) + 2i((ib)(uc1 + wc3 + a))− γ2

= ((uc1 + wc3 + a)2 − (ib)2) + 2((b)(uc1 + wc3 + a))− γ2

= (uc1 + 2wc3 + 2a− 2ib)uc1 + (wc3 + 2a+ 2ib)wc3 + a2 − b2 + 2ib− γ2

If uc1 + 2wc3 < 2a and wc3 + 2a < 0 then λ is stable.

1Poof of all cases shown in Appendix A
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Case 2: Let u ∈ R+ and w ∈ R− then part (a) of Case 1 will yield

(uc1+wc3−(a+ib))2−γ2 = (uc1+2wc3−2a−2ib)uc1+(wc3−2a−2ib)wc3+a2−b2+2ib−γ2

(A.1)

Implying that if (uc1 + 2wc3 − 2a)uc1 + (wc3 − 2a)wc3 + a2 − b2 < 0 then λ is stable.

Similar stability statement for u ∈ R− and w ∈ R+.

Case 3: Let u,w ∈ with positive real parts where u,w 6= 0 then

((uc1 + wc3)− (a+ ib))2 − γ2 = ((u1c1 + w1c3 − a) + i(u2c1 + w2c3 − b))2 − γ2

= (u1c1 + w1c3 − a)2 + 2i(u1c1 + w1c3 − a)(u2c1 + w2c3 − b)

− (u2c1 + w2c3 − b)2 − γ2

Case 4: Let u,w ∈ with negative real parts where u,w 6= 0 then the proof is

similar to that of Case 3. In both cases, the eigenvalues will be complex, stability

will hold if the real part of λ is negative. �
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