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ABSTRACT

Towards Location Free Movement Recognition with Channel State Information

CHUNHAI FENG, Ph.D.

The University of Texas at Arlington, 2019

Supervising Professor: Yonghe Liu

Channel state information based movement recognition has gathered immense atten-

tion over recent years. Different from traditional systems which usually require wearable

sensors or surveillance cameras, many existing works achieved desirable performance with

only wireless signals in various applications, including healthcare, security and Internet of

Things, with different machine learning algorithms. However, it still remains many chal-

lenges to be solved. Particularly, the location dependent nature of channel state information

is one of the most significant challenges remaining. Firstly, many previous researchers de-

ploy and evaluate their systems with employing machine learning or deep neural networks.

Because of the aforementioned challenge, the models would need to be retrained with the

dataset collected from new locations. However, they usually fail to consider the availability

of enough samples to be trained. In other words, it generally requires a large number of

samples to train a robust model, which is challenging especially at the early stage of system

deployment. Therefore, it is significant to develop a system that is able to accommodate

the size of available samples in the profile. Secondly, as the location dependent features are

interleaved with movement dependent features, how to separate them effectively becomes
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the main challenge in order to correctly identify the activities at different locations without

training new models.

In order to address the first challenge, we propose a three-phase system Wi-multi

that targets at recognizing multiple human movements in a wireless environment. Different

system phases are applied according to the size of available collected samples. Specifically,

distance-based classification using Dynamic Time Warping is applied when there are few

samples in the profile. Then, Support Vector Machine is employed when representative

features can be extracted from training samples. Lastly, recurrent neural networks is ex-

ploited when a large number of samples are available. In addition, an effective movement

sample extraction algorithm is also proposed to identify the start and end points of multiple

subject movements. A diverse dataset of multiple human activities is also built in order to

evaluate the performance of this system. Extensive experiments results show that Wi-multi

achieves an accuracy of 96.1% on average. It is also able to achieve a desirable tradeoff

between accuracy and efficiency in different phases.

In order to solve the second challenge, a deep neural network system, consisted of

feature extraction, feature separation, gesture recognition and location identification mod-

ules. The key idea in designing this system is to separate movement dependent features

from location dependent features. Specifically, a feature extraction module that consisted

of three long short-term memory layers network is employed to select representative fea-

tures. Afterwards, the first half features are fed into the gesture recognition module while

the second half is passed to location identification module. During the training process, the

network will learn to cluster the first half features as gesture dependent features while the

second half as location dependent features by minimizing the total loss of gesture recogni-

tion and location identification modules. The system is evaluated with a dataset collected

from various subjects performing 4 different gestures in 2 rooms and 6 locations. The
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results show that the proposed location independent gesture recognition system is able to

achieve 85.42% accuracy on average in new locations.

Keyword: Channel State Information; Activity Recognition; Multiple Subjects;

Location Independent
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CHAPTER 1

Introduction

Given the ubiquitous presence of WiFi signals, numerous research efforts have been

devoted to fully unfold their potentials in real life applications. Among them, channel

state information (CSI) of WiFi signals have recently been extensively exploited in various

scenarios. These include indoor navigation [1], gesture recognition [2], and human body

activity identification [3]. For instance, house monitoring in case of an intrusion and emer-

gency care for elders are very common contexts of use in modern society. Obviously, many

traditional approaches with carry-on sensors [4] or cameras [5] have achieved desirable

performance in movement recognition. However, it is now considered as inconvenience

to ask users to wear sensors all the time because of the battery charge issues. Besides,

it also raises many privacy security concerns on camera based systems. On the contrary,

CSI can be extracted from commercial wireless devices instead of requiring extra costs of

equipments as in traditional approaches. Therefore, it has attracted broad interests in recent

years.

Because of the multipath propagation phenomenon, human presence or body move-

ment around the wireless devices can affect the strength quality of Wi-Fi signal [6, 7]. CSI

can record this detailed physical layer information from different subcarriers of the chan-

nel. By modifying the driver of Intel 5300 network interface card (NIC) [8], many existing

papers proposed various systems to detect human activities, such as keystroke [9], gestures

[10] and breathing [11]. However, it is well known [12, 13, 14, 15] that different move-

ments can lead to diverse CSI variations. Owing to the effects of multipath propagation,

movements performed in different locations can also cause different reflections on differ-
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ent signal paths. As a result, CSI fluctuations introduced by the same movements can show

very distinct patterns in different locations, even though it is due to the same movement

performed by the same subject. On one hand, many existing works would require to train

new models with dataset collected from new locations. They usually assume that enough

samples can be provided for model training [16, 17]. However, it is generally unlikely

to have hundreds or even more samples in reality, especially at the early stage of system

deployment. Since machine learning or deep neural networks usually require adequate

samples, it becomes infeasible to apply them in activity detection if there are few samples

available. In addition, signal processing methodologies[9, 18, 19] take longer time if size

of dataset increases. Therefore, it is crucial to design a system that is able to accommodate

the size of available samples in the profile. One the other hand, it is evident that raw CSI

data contains both movement and location dependent features. For identifying movements

in different locations without training new models, the main challenge becomes effectively

separating movement dependent features from location dependent features.

In the first part of this paper, we propose a three-phase system that targets at multiple

human activity recognition according to the size of available samples in the profile. In the

first phase, PCA that reduces dimensions of features and Dynamic Time Warping (DTW)

that calculates the distance between various length signals so as to measure similarities are

employed at the beginning stage of building the system when limited training samples are

available. In the second phase, when more samples are available, support vector machine

(SVM) is exploited for model training and testing where a number of representative fea-

tures can be extracted from both time and frequency domain. In this case, a model can be

pre-trained and hence it is not necessary to compare the similarities among all samples as in

the first phase of the system, which may largely reduce time cost as sample size increases.

In the third phase, we propose a deep learning system structure based on Long Short Term

Memory (LSTM) unit if a large number of samples are available in the profile. LSTM,
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as one type of recurrent neural network (RNN) units, is capable of remembering and fil-

tering the past information in the input sequence during training process. The proposed

deep learning network is able to automatically select high level features without any pre-

processing modules. The evaluation results demonstrate that our proposed system achieves

a desirable tradeoff performance between accuracy and efficiency in different phases. In

general, Wi-multi can achieve 96.1% accuracy on average.

Before activity classification, we also have developed an effective activity sample ex-

traction algorithm to identify the start and end points of multiple subject activities. Firstly,

we apply outlier filtering and differential algorithms to the variance of CSI values among

different subcarriers. Secondly, we calculate the largest eigenvalues from both amplitude

and calibrated phase correlation matrices so as to eliminate potential false detection. The

extracted samples are then presented to different system phases for further analysis. It is

shown that our algorithm can extract activity samples in both noisy and non-noisy environ-

ments with multiple subjects.

The key contributions of this part about three phase multiple human activity recog-

nition system can be summarized as following.

• We propose a three-phase system that can recognize multiple human activities, where

each phase is designed according to the size of available dataset in the profile during

different stages of a system deployment.

• We evaluate the system in terms of various aspects. Extensive results show that Wi-

multi is able to achieve desirable tradeoff between accuracy and efficiency in different

phases.

• We propose a novel activity extraction algorithm that is able to identify the start and

end point of an activity even in noisy environment with multiple subjects.

In the second part of this paper, we develop a location independent gesture detection

system by taking advantage of channel state information from commercially available WiFi
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devices. Unlike previous works that require training new machine learning models for dif-

ferent locations, our system is able to recognize gestures performed in new locations with

no data therein being trained. We propose a deep learning network that is capable of ex-

tracting gesture and location dependent features simultaneously and separating them from

each other during the training process, which lead to the location independent recognition

capability. Specifically, the designed network contains four components, which are feature

extraction, feature separation, gesture recognition and location identification modules. Fea-

ture extraction that consists of three long short-term memory (LSTM) layers is employed to

select high level representative features. Afterwards, the first half extracted features are fed

into the gesture recognition module while the second half is passed to the location identifi-

cation module. Both gesture recognition and location identification modules are composed

of two fully connected layers in order to map the features to latent space for classification.

By minimizing the total loss of the gesture recognition and location identification modules

during the training process, the network is able to gradually cluster the first half extracted

features as highly gesture dependent representations while the second half as intensively

location dependent representations. The result is a system that can successfully separate

gesture and location related features and address the challenge as discussed above.

In order to evaluate our proposed methodology, we collect CSI data by asking various

subjects to perform 4 different gestures (boxing, swipe, punch and handwave) at 6 different

locations in 2 rooms. Experiments show that our system is able to achieve an average of

85.42% accuracy of gesture detection in new locations.

The key contributions of this part about location independent gesture detection can

be summarized as following.

• We propose a location free gesture detection system that is able to recognize gestures

performed in different locations without training new models.
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• We design a multi-layers neural network structure that can extract both gesture related

and location related features independently.

• We separate gesture related features from location related features by reducing the overall

loss of both gesture recognition and location identification module.

• We will evaluate our system with extensive experiments in different locations.

In the remaining sections, we briefly introduce the related works in Chapter 2, and

presents channel state information in the Chapter 3. Chapter 4 introduces the design of

activity extraction algorithm, different system phases for multiple human activity recogni-

tion and evaluation results. Chapter 5 presents the system overview of location free gesture

identification. The conclusion is made in Chapter 6.
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CHAPTER 2

Related Works

In this section, we briefly describe recent works on movement recognition. They can

generally be divided into two categories, traditional and WiFi based approaches. Tradi-

tional systems are usually based on carry-on sensors or computer vision, which may raise

concerns on inconvenience or privacy. With the availability of channel state information

from commercial wireless devices, many recent works developed movement recognition

systems by analyzing the correlations of CSI and movement. However, many of these ap-

proaches fail to consider the efficiency of collecting large number of samples for training

with machine learning alorithms in each new location. Instead, the first part of our proposed

systems is able to accommodate different sizes of available samples in the profile.

Traditional Approaches: Before channel state information becomes available, tra-

ditional movement recognition systems are usually designed with wearable sensors or com-

puter vision methods. For example, the author in [20] proposed a system to detect human

eating and drinking gestures with dedicated sensors. Besides, a framework designed by

Zhang [21] employed a three-axis accelerometer and multichannel electromyography sen-

sors to detect sign language hand gestures. In [22], the authors developed a system to

distinguish among various hand shapes and orientations by taking advantage of the infor-

mation provided by depth sensors. Moreover, recent smart devices like Apple Watch [23]

and Fitbit [24] are able to detect different arm movements for healthcare purposes.

In addition, many works achieved desirable performance using various computer vi-

sion algorithms. For instance, TAFFI in [25] designed a robust algorithm to detect pinch

gestures with camera images. Besides, the authors in [26] utilizes multiclass support vector
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machine to build a model with dedicated features for real-time hand gesture identification.

Another system in [27] exploited principal component analysis to recognize various ges-

tures with a webcam. Similarly, [28] designed a two level approach to address the chal-

lenges of real-time hand gesture recognition with Haar-like features.

Wi-Fi based Approaches: Since CSI can be obtained from off-the-shelf network

interface card [8], it has been exploited in a variety of applications. There are usually

two types of activity identification, coarse-grained and fine-grained, with channel state

information.

Coarse-grained activity usually refers to activities performed at macro levels. For

example, many previous works [29, 18, 30, 31, 32] focus on daily activity recognition (in-

cluding walking and running) and achieve desirable performance in both Line-of-Sight and

Non-Line-of-Sight circumstances by the support of two mathematical model in [31]. Both

WiFall [33, 34] and RT-Fall [35] build an alarm system to detect human falls in realtime.

The authors in [36] develop a Smokey system that can detect the smokers behavior without

deploying special devices. Moreover, the authors in [14] are able to detect different humans

based on the features of their behaviors. However, many of these works only target at sin-

gle subject environment. This limits the potentials of applications according to a national

survey [37], which indicates that there are usually around 2 to 3 people in each household

in 2015.

Fine-grained activity refers to activities performed at micro levels. For instance, the

authors in [38] employ CSI to detect the breath rate and monitor sleep quality with pre-

deployed antennas and transceivers. Besides, keystroke systems implemented on either

laptop [9] or smartphone [39] yield desirable accuracy in keystroke recognition. In addi-

tion, WiHear in [40] can analyze and detect people speech based on the disturbance of CSI

caused by lip movement. Furthermore, many recent works have developed gesture recog-

nition systems [10, 41, 42, 43, 44] based on channel state information (CSI) from commer-
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cially available Wi-Fi devices. For example, WiFinger [12] captures the subtle movement

of fingers and recognizes fine-grained finger gestures with wireless devices. The authors in

[45] utilized deep learning approaches to extract dedicated features and employed support

vector machine for classification. Moreover, researchers in [46, 47] have tried to investigate

the impact of gesture position and orientation on CSI. Indeed, the authors in [48] designed

a neural network structure and tried to eliminate location correlated information with ad-

versarial learning. However, their system has quite low accuracy when small number of

locations data are used for training. Moreover, their system requires to preprocess raw CSI

data and also has several empirical parameters, which makes it difficult to deploy in differ-

ent scenarios. The biggest difference between our proposed system and their system is that

our system is able to separate gesture dependent features from location dependent features.
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CHAPTER 3

Channel State Information

WiFi signals arriving at a receiver usually come from different paths [49]. This mul-

tipath effect often causes interference, phase shifting and fading of the signal. Compared

with the environment with only one person, multiple humans can cause even more distur-

bances in wireless channels.

There are usually two ways to evaluate the channel condition without chip level ac-

cess. On one hand, Radio Signal Strength Indicator (RSSI) is the most common way be-

cause of its accessibility. However, it only provides limited amplitude information due to its

low resolution. On the other hand, CSI, which represents the channel frequency response

(CFR), can capture both the amplitude and phase variance for each OFDM subcarrier.

By modifying the driver of Intel 5300 NIC in 802.11n network [8], we are able to

get CSI values of 30 subcarriers between one pair of transmit-receive antennas. Let T and

R represent the WiFi signals in the frequency domain from the transmitter and receiver

respectively. The wireless channel model can be modeled as

R = H × T +No, (3.1)

where H represents the CSI estimation of channel frequency response. Note that H can

then be approximated as

Ĥ =
R

T
, (3.2)

assuming noiseNo follows zero mean complex normal distribution of circularly-symmetric,

i.e., No ∼ Nc(0,Γ).
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Ĥ is a matrix consisted of channel state information from all subcarriers. ĥ, CSI of

one subcarrier, can also be represented as

ĥ = ||ĥ||ej∠ĥ, (3.3)

where ||ĥ|| and ∠ĥ represent the amplitude and phase information respectively.
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CHAPTER 4

Three Phase System for Multiple Human Activity Recognition

4.1 Activity Extraction

In order to extract the activity sample, it is necessary to detect the period of time

where activity occurs. We firstly observe that the variances of CSI amplitudes among

different subcarriers can be used as an indicator for activity presence. An example of CSI

amplitude variance among 30 subcarriers can be found in Fig.4.1a. It can be easily observed

that variance when no activity presents is much more stable than that when activities occur.

In this section, we design a two-step algorithm to extract the start and end points of each

activity. Note that only one CSI stream of 30 subcarriers is required for activity extraction.

4.1.1 Step one: Differential Threshold Estimation

As shown in Fig. 4.1a, the outliers caused by the internal hardware errors improve

the difficulty for activity extraction. In order to address this challenge, we compare the CSI

value at the mth time point with a threshold defined as δv = λ|V (m + 1) − V (m − 1)|,

where λ is an empirical coefficient. Assume the amplitude variance of 30 subcarriers is V ,

then we remove the outlier by setting it as the average of the values at prior and posterior

packets.

V (m) =

 (V (m− 1) + V (m+ 1))/2, if V (m) > δv

V (m), otherwise
(4.1)

Next, we split the signal into even slots in time domain and determine if there is

activity presence in each slot. Here we assume that the length of the activity is longer than
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Figure 4.1: Performance of activity extraction algorithm in non-noisy and noisy environ-
ment

one time slot. In our case, we set the length of each time slot as 1 second. It can be changed

to larger or smaller values according to different scenarios. We then consider continuous

time slots with activity presence as one activity sample.

Denote the sampling rate of CSI as Rs , the variances of CSI values in the ith slot

can then be described as V (j), where j = 1, 2, ..., Rs. In ascending order, they can be

12



represented as V ′(1) < V ′(2) < ... < V ′(Rs). We then compute the difference between

the sum of largest half values and the sum of smallest half values as

Di =

Rs/2∑
j=1

(V ′(j +Rs/2)− V ′(j)). (4.2)

Fig.4.1b depicts the corresponding results of Fig.4.1a. By comparing Di with a self

adaptive threshold δD, we can obtain an initial result that determines whether there is an

activity in this slot.

Ii =

 1 if Di > δD

0 otherwise
(4.3)

Here I is the indicator of the presence of activity, δD = (
∑L/Rs

i=1 Di)/(L/Rs) and L here

represents the total length of the signal. Afterwards, we consider continuous time slots

where Ii is 1 as one activity sample. In non-noisy environment, it can usually detect the

boundary of activity correctly as shown in Fig.4.1b. However, it may also result in detection

errors in some cases, especially in extremely noisy environments or/and multiple subjects

activities. Fig.4.1c and Fig. 4.1d show an example that the first step algorithm misdetects

an activity. In order to address this challenge, our algorithm uses a second step to double

check the results and remove potential, although rare, misdetections.

4.1.2 Step two: Eigenvalues Comparison

As discussed above, the CSI values in stationary environment tends to be more stable

than that with human presence. Therefore, the correlation between consecutive CSI values

can be much higher in stationary environment. In this case, we build the correlation matri-

ces of both amplitude and calibrated phase [29] within a time window. Assume the size of

window is W , the CSI measurements in this window can be described as

H(i) = [H1(i), H2(i), ..., HK(i)]
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where i = 1, 2, . . . ,W and K is the total number of subcarriers. Thus the covariance

matrices of amplitude and phase can be computed as

A =


cov(|H(1)|, |H(1)|) · · · cov(|H(1)|, |H(W )|)

... . . . ...

cov(|H(W )|, |H(1)|) · · · cov(|H(W )|, |H(W )|)


and

P =


cov(∠H̃(1),∠H̃(1)) · · · cov(∠H̃(1),∠H̃(W ))

... . . . ...

cov(∠H̃(W ),∠H̃(1)) · · · cov(∠H̃(W ),∠H̃(W ))

 .
Afterwards, the largest normalized eigenvalues of A and P can be computed as

αA = max(norm(eigen(A)))

and

αP = max(norm(eigen(P)))

respectively. After conducting several experiments, we observe that αA and αP tend to be

larger in stationary environment. As depicted in Fig. 4.2, scenarios with activities can be

easily separated from stationary scenarios. Moreover, this threshold is independent from

different environmental background since eigenvalues are power independent. As shown in

Fig. 4.1d, the misdetection shown in the result of step one can then be removed. Therefore,

step two can further improve the accuracy based step one result.

4.2 Three-phase System Design

In this section, we describe the system structure of Wi-multi based on a three phase

design, corresponding to different phases of system deployment. Phase one is applied

when only few samples are available in the profile. Phase two is employed only when
14
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Figure 4.2: Eigenvalues comparison between stationary and dynamic cases

the effective features can be extracted and trained with SVM. Lastly, phase three based on

LSTM is employed when there are a large number of samples for deep learning networks.

An overview of the system structure is shown in Fig. 4.3.

Before applying phase one and phase two, we first apply interpolation to the raw data

as data points can be missing because of errors in the system or the collecting tool [11].

Afterwards, we also apply a low pass Butterworth filter and phase calibration on amplitude

and phase in order to remove outliers and random noises [29]. Note that phase three does

not need any preprocessing as it can automatically extract representative features.

4.2.1 Phase One

In this phase, we assume very limited availability of samples in the profile, i.e.,

at the early stage of system deployment. Firstly, PCA is exploited to remove correlated

information and reduce feature dimensions among the 30 subcarriers. Secondly, DWT is
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Figure 4.3: Three-phase system overview

employed in order to compress the length of signal data without losing much representative

information. Lastly, a distance based method is applied to identify the label of activity.

4.2.1.1 Principal Component Analysis

As discussed earlier, PCA is used to remove correlated information among 30 sub-

carriers. The detailed PCA implementation is as following.

Training Samples Combination: Denote CSI matrix of each training sample as Hi,

and the size of each matrix is Li × 30, where i = 1, 2, ..., N . Thus the combined matrix of

training data can be represented as H , whose size is
∑N

i Li × 30.

Static Component Removal: In this step, the static component is calculated by the

average of the signal in each subcarrier. Denote it as avgj , where j = 1, 2, ..., 30 represents

subcarrier index. By subtracting avgj from each column ofH , we can get a centered matrix

HD.

Covariance Matrix Computation: The covariance matrix is then computed as

HT
D ×HD.
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Eigenvectors Calculation: The eigenvectors corresponding to the covariance matrix

can be calculated as q1, q2, ...qn respectively.

Training Samples Projection: In order to project training samples to the eigenspace,

the first k components can then be computed as [c1, c2, ...ck] = HD × [q1, q2, ..., qk], where

ci represents the ith component.

Testing Samples Projection: Similarly, denote the centered CSI matrix of the test-

ing samples as TD, then the first k components of the testing data can be calculated as

Z = TD × [q1, q2, ..., qk] by projecting testing samples to eigenspace towards the same

direction as training data.

Matrix Separation: Let C = [c1, c2, ...ck], whose size is
∑N

i Li× k. Therefore, the

first k components of each training sample can be obtained by splitting it into N separate

matrices. Similar separation process is applied to matrix Z computed in the last step.

Note that this approach requires the computation of the eigenvectors only once,

meaning that both the training data and testing data are projected to the eigenspace in

the same direction. A flow chart of PCA implementations is presented in Fig.4.4.
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4.2.1.2 Discrete Wavelet Transform

Because of the high computation cost often associated with longer sample activity

data, we further employ discrete wavelet transform (DWT) to compress the signal. It is able

to reduce the length of the signal without losing much representative information. Denote

the measured discrete signal as

s[n] =
1√
M

∑
i

α[j0, i]φj0,i[n] +
1√
M

∞∑
j=j0

∑
i

β[j, i]ψj,i[n], (4.4)

where M is the length of the signal. φj0,i[n] and ψj,i[n] are defined as orthogonal to each

other and they represent scaling functions and wavelet functions respectively. Similarly,

α[j0, i] and β[j, i] are termed as approximation coefficients and detail coefficients respec-

tively. They can be modeled as

α[j0, i] =< s[n], φj0+1,i[n] >=
1√
M

∑
n

s[n]φj0+1,i[n] (4.5)

β[j, i] =< s[n], ψj+1,i[n] >=
1√
M

∑
n

s[n]ψj+1,i[n] (4.6)

in the jth level.

In this paper, we adopt approximation coefficients in order to reduce computation

cost. Note that different levels of computation of DWT will lead to various compression

lengths of the signal. The higher level of DWT, the shorter length the signal can be com-

pressed. We will discuss the impact of different DWT levels in the next section.

4.2.1.3 Distance-based classification

In order to compare the similarities of different waveforms, DTW is employed to cal-

culate the Euclidean distances between signals. By aligning the waveforms, DTW yields

the addition of Euclidean distances between their corresponding points. Smaller distance
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usually represents higher similarity of waveforms. After the construction of different pro-

files, the label of the new test sample is predicted by comparing its distances from different

activities.

Denote the Euclidean distances between a test sample and each sample in the profile

as Di, where i = 1, 2, ..., N represents N different activity samples in the profile. Denote

the increasingly ordered K distances for test sample as D′i, where D′1 < D′2 < ... < D′K

and K is chosen empirically. Assume that there are n kinds of different activities in the

profile and the corresponding label of sample that is associated with D′i is Bi. The final

predicted label of the test sample can be presented as

F =



1 if
K∑
i=1

(Bi == 1) ≥
K∑
i=1

(Bi 6= 1)

2 if
K∑
i=1

(Bi == 2) ≥
K∑
i=1

(Bi 6= 2)

...

n if
K∑
i=1

(Bi == n) ≥
K∑
i=1

(Bi 6= n)

(4.7)

Note that our scheme predicts labels based on the similarity between test signal and

sample signals in the profile. Therefore, it still works well even if only a few number

samples are available in the profile.

4.2.2 Phase Two

When more samples become available as time progresses, it may become difficult

to still use the system of phase one for activity recognition. Distance-based classification

requires calculation with every activity sample in the dataset for each test data. It leads to

inefficiency especially with longer signals and larger sample sizes. In this case, we firstly

extract representative features from time and frequency domain, then utilize SVM to train a
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model for classification. Since the model can be pre-trained, it can achieve higher efficiency

with larger sample size as compared with phase one.

4.2.2.1 Feature Extraction

We manually select representative features from both time and frequency domains.

As stated in [29], CFR power can be considered as an indicator of the speed of paths length

change caused by multiple human activities. Therefore, we employ six different features,

including the standard deviation, median absolute deviation, max, mean, first and third

quartile of the filtered CFR power respectively. Besides, same features from calibrated

phase [17] are also extracted. In addition, we also select six frequency domain features

from different energy levels of DWT [31] which indicate the intensity of movement in each

speed range. In general, we can get a group of 18 features for each sample in total.

4.2.2.2 Support Vector Machine

Let xi = {f1, f2, . . . , fNf
} be the ith sample and yi be the corresponding label in

feature space, where Nf is the number of extracted features. In other words, the training

dataset can be expressed as T = (xi, yi) with uncertain distribution. By applying Gaussian

kernel, it converts features to a higher-dimensional feature space where classifier hyper-

plane can be computed by solving quadratic function as following.

q(c1, c2, . . . , cn)
maximum

=
n∑

i=1

ci −
1

2

n∑
i=1

n∑
j=1

yicik(xi, xj)yjcj (4.8)

subject to

n∑
i=1

ciyi = 0, and 0 ≤ ci ≤
1

2nλ
(4.9)

Here, k(xi, xj) represents kernel function that satisfies k(xi, xj) = ϕ(xi)ϕ(xj). The wights

ω and bias b can then be calculated as ω =
∑n

i=1 ciyiϕ(xi) and b = ωϕ̇(xi)−yi respectively.
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In this phase, all subcarriers are used independently for classification since they show

similar fluctuations for the same activity [29]. In other words, we can get predicted labels

from each subcarrier CSI series. Assume the predicted result of one activity sample is g =

[g(1), g(2), . . . , g(30×Ns)], where Ns is the number of CSI streams used for recognition.

The final predicted label can be computed with majority voting as following:

L = max
j∈[1,2,...,n]

(

∑30×Ns

i=1 (g(i) == j)

30
). (4.10)

4.2.3 Phase Three

As abundant samples are available in the profile, we propose a deep learning network

structure based on LSTM for activity recognition. It is able to automatically extract effec-

tive features from raw signals rather than manually selecting as in phase two, which can

potentially be subjective in choosing different features [18].

4.2.3.1 Long Short Term Model

LSTM, as one type of recurrent neural network (RNN) units, is able to remember

and filter the past information in the input sequence during training process. It is proposed

to solve the problem of exploding and vanishing gradient during learning long-term de-

pendencies with back propagation in traditional RNNs. Therefore, it becomes one of the

most popular system structure in many areas, including speech identification and sequence

classification.

An LSTM block consists of three gates that can be configured to control information

through the cell state. The first one is termed forget gate, which decides to how much

previous information is removed from the memory. The forget gate vector can be denoted

as

ft = σg(Wfxt + Ufht−1 + bf ), (4.11)
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where σg is a sigmoid function, W and U are input and forget weight matrixes, xt is input

vector, ht−1 is output vector, and b is bias vector. The black block in the figure represents

time delay of the self-loop. Besides, input gate decides the amount of new information

allowed to flow into the memory. Input vector can be presented as

it = σg(Wixt + Uiht−1 + bi). (4.12)

In addition, output gate decides how much information is filtered to produce the output.

Similarly the output gate vector is

ot = σg(Woxt + Uoht−1 + bo). (4.13)

Then the cell state vector is computed by

ct = ftct−1 + itσc(Wcxt + Ucht−1 + bc). (4.14)

Therefore, output vector can be derived as

ht = otσh(ct), (4.15)

where both σc and σh are hyperbolic tangents.

4.2.3.2 Deep Learning Structure

Based on the LSTM unit as discussed above, we propose to obtain representative

features from recorded CSI samples by a multi-layers neural network. As shown on the

right side of in Fig.4.3, it is composed of three LSTM hidden layers and one fully connected

dense layer. During training process, each LSTM layer learns to filter the information from

CSI input samples or the output from last layer. Denote the input CSI sample as X , the

output of three LSTM layers can be represented as

Y1 = LSTM(X,Ω1), (4.16)
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Y2 = LSTM(Y1,Ω2), (4.17)

Y3 = LSTM(Y2,Ω3), (4.18)

where Ω1, Ω2, and Ω3 are set of LSTM parameters in different layers. In this paper, the

number of LSTM cells are configured as 128, 64 and 32 in three layers. In this case,

the shape of Y1 and Y2 will be (timesteps) × 128 and (timesteps) × 64 respectively,

where timesteps indicate the length of an activity sample. Differently, the output of the

third LSTM layer is the hidden states of the last timestep, which length will be 32. By

concatenating the LSTM layers one by one together, the network is capable of learning

representatively high level features from collected CSI samples. In order to project the

extracted features from the third LSTM layer into activity label probability distribution,

a fully connected layer with softmax activation function is added as the output layer as

follows.:

Ŷ = Softmax(WlY3 + bl), (4.19)

where Wl and bl are trainable parameters. The predicted label is computed as the corre-

sponding index with the largest probability.

Similar as in phase two, each CSI series from different subcarriers are considered as

independent samples in order to enlarge the dataset for training purpose. It is reasonable

as we observe that CSI on different subcarriers show similar fluctuation patterns after nor-

malization [29, 32]. Besides, majority voting is applied afterwards the same as depicted in

Equation (13).
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4.3 Experiments and Evaluation

In this section, we evaluate the performance of the proposed three phase design,

namely Wi-multi, from a variety of aspects. In order to collect CSI of different activities,

we deployed two off-the-shelf wireless devices in our lab, which size is around 6 × 8 me-

ters. We use a Linksys EA4500 router equipped with 3 antennas as transmitter and a Sony

laptop equipped with 2 antennas as receiver. By installing the tool on the Intel 5300 NIC on

the laptop, we are able to record 6 CSI streams between different pair of transmit-receive

antennas. Considering that the frequency of most human activities is below 10HZ[50], we

configure the CSI sampling rate as 80pkts/s. Afterwards, we ask 10 volunteers, with dif-

ferent body shape, age and sex, to perform different activities in the lab. Different number

of people, from 1 to 3, may be asked to perform activities at the same time. In summary,

we collect 936 samples in total. They are composed of 9 different combinations, including

Walk (W), Run( R) , Hand Movement (H), W&R, W&W, W&H, W&W&W, W&W&H

and W&R&H. Unless otherwise specifically mentioned, half of the samples are used for

training and the other half for testing. The detailed experimental results are shown as below.

4.3.1 Evaluation of Phase One

Firstly, we compare the accuracies of activity recognition using different numbers of

streams. As shown in Fig.4.5a, 1 to 6 streams CSI are exploited to evaluate the impact on

accuracies. It is observed that all activities achieve an accuracy above 90% even with only

one stream employed. Besides, it is also found that the accuracy slightly increases with

more number of streams. For example, the average accuracy rises from 97.43% at 1 stream

to 99.23% at 6 streams. This is reasonable since the space diversity of different antennas

can provide more diverse information.

Secondly, we evaluate the impact of different DWT levels on recognition accuracy

and efficiency. As shown in Fig.4.5b, the overall accuracy has a slight fall with larger DWT
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Figure 4.5: Evaluation of phase one

levels. We can also observe from Fig.4.5c that the time cost of predicting new samples

dramatically decreases with larger DWT levels. This is reasonable since DWT can reduce

the length of the signal while keeping most of the features and thus reducing time needed

for DTW computation. Indeed, the time for predicting new sample is more than 20s without

DWT compression, making it nearly impossible for real time applications. On the contrary,

the time is dramatically reduced to as low as 0.14s with a 4 level DWT. To achieve a tradeoff

between accuracy and efficiency, DWT level 3 seems to be the ideal choice as it achieves
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an average accuracy of 97.5% while the time needed for predicting a new sample is only

around 0.38s with one stream CSI.

Thirdly, we evaluate the impact of training sample size (each activity) on recognition

accuracy. As shown in Fig.4.5d, our scheme achieves desirable accuracy even with only a

few number of samples available in the profile. Here the training size refers to the number

of samples of each activity in the profile and the result is achieved with 3 level of DWT. As

shown in this figure, it achieves an average accuracy of around 85% with only 10 training

samples and 1 CSI stream. Moreover, the corresponding prediction time drops to as low

0.078s with the decreasing DWT computation cost. Therefore, we conclude that phase one

is able to achieve desirable performance without requiring a large number of training sam-

ples. It is suitable at the beginning stage of establishing a system when only few samples

can be provided in the profile.

4.3.2 Evaluation of Phase Two

As presented earlier, it is impractical to apply phase one system when there are more

samples (say 200 in total) available in the profile, since the computation time cost is over

1s for predicting test data even with one CSI stream. In this case, phase two design can be

employed. Since the SVM model can be pre-trained with representative features, the time

cost for predicting test samples is usually constant. We evaluate the system of phase two

from following aspects.

Firstly, we evaluate the impact of features numbers. In this paper, we compare the

results of 6, 12, and 18 features respectively. These amplitude features include standard de-

viation, median absolute deviation, max, mean, first and third quartile of the filtered CFR

power with different cut-off frequencies. As shown in Fig. 4.6a, it demonstrates the accu-

racy results under different number of features. For instance, the accuracy of recognizing

W&H rises from 65% to 80.42% when the number of features increases from 6 to 18. In

26



H R W WW WR WH WWH WRH WWW
Activities

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Ac

cu
ra

cy

6 Features

12 Features

18 Features

(a) Impact of features numbers on accuracy

H R W WW WR WH WWH WRH WWW
Activities

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ac
cu

ra
cy

1 Stream
3 Streams
6 Streams

(b) Impact of stream numbers on accuracy

H R W WW WR WH WWH WRH WWW
Activities

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ac
cu

ra
cy

Frequency features

Amplitude features

Phase features

(c) Impact of feature metrics on accuracy

Figure 4.6: Evaluation of phase two

general, the average accuracy increases from 79.19% with 6 amplitude features to 82.87%

with 18 amplitude features. Because of the limited space of this paper, we only present the

result using one CSI stream here. Similar results can be observed with more CSI streams.

Secondly, we evaluate the impact of CSI stream numbers. As shown in Fig.4.6b, we

compare the results of activity recognition accuracy with different number of CSI streams.

Similar as shown in Section 4.3.1, it is observed that more CSI streams can be utilized

in order to achieve higher accuracy. For example, the accuracy of recognizing W&R&H

climbs from 46.67% to 93.33% when the number of CSI streams increases from 1 to 6. Be-
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sides, the average accuracy of all activities is 79.19% with 1 CSI stream, which is 14.31%

less than the average accuracy with 6 CSI streams. As we discussed in Section 3, each

CSI stream is collected from 30 subcarriers between one pair of transmit-receive anten-

nas. Since different pairs of antennas provide spatial diversities, it is reasonable that higher

accuracy can be achieved with more CSI streams.

Thirdly, we evaluate the impact of different feature metrics. As discussed in Sec-

tion 4.2.2, we select 6 different features from amplitude, phase and frequency domains

respectively. As shown in Fig.4.6c, it compares the accuracy results achieved by different

feature metrics. Besides, we observe that results are similar using different number of CSI

streams. Because of space limitation, we only present the results using 6 CSI streams in

this paper. It is shown from Fig.4.6c that the accuracies achieved by frequency domain fea-

tures are much lower than the other two. For instance, the accuracy of recognizing W&R

using frequency domain features is 23.75%, which is much lower compared with 77.92%

of amplitude features and 97.08% of phase features. In general, the average accuracy with

frequency domain features is 63.13%, which is 30.27% and 34.99% less than accuracy with

amplitude and phase features respectively. This is reasonable considering that some activi-

ties (such as W&R and W&R&H) may have similar intensity of movement, which results

in alike patterns of DWT energy level.

4.3.3 Evaluation of Phase Three

As depicted in Section 4.3.2, it can be subjective to select different features. With

increasing numbers of samples in the profile, phase three based on deep learning network

is exploited by automatically extracting representative features. The experimental results

are shown as below.

Firstly, we evaluate the impact of different stream numbers. Similar as shown in Sec-

tion 4.3.1 and Section 4.3.2, we observe that the accuracies with more number of streams
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Figure 4.7: Evaluation of deep learning system

are much higher. As shown in Fig.4.7a, the accuracy of recognizing W&W with 6 CSI

streams is 98.08%, which is 16.35% and 5.98% higher than accuracy with 1 CSI stream

and 3 CSI streams respectively. Overall, the average accuracy increases from 88.36% to

97.22% when the number of CSI streams increases from 1 to 6.

Secondly, we evaluate the impact of epoch numbers. Because of the limitation of

hardware, the input training samples are usually divided into small batches, which go

through the network one by one. One epoch is the process of passing the entire train-

ing dataset (all batches) once through the neural network. It is known that different num-
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ber of epochs may cause overfitting and underfitting of the trained model. As shown in

Fig.4.7b, we compare the classification accuracies of models trained with different number

of epochs. It is observed that the accuracy increases with more epochs and becomes stable

after 35 epochs. This is reasonable since it requires enough epochs to update the network

parameters and train a robust model.

Lastly, we present the detailed evaluation result of phase three in Fig.4.7c. We con-

figure the number of CSI streams as 6, the number of epochs as 35 and the batch size as

64. From this confusion matrix, it is observed that the overall accuracy of phase three is

96.1%, which is higher than 95.18% of phase one and 93.4% of phase two. Compared with

phase one, it requires no additional time cost when more training samples are available in

the profile. This is because the model can be pre-trained and does not require to compute

similarities between test sample and all training samples. Moreover, compared with phase

two, it is able to automatically extract effective features. In conclusion, phase three of deep

learning networks achieves better performance when abundant samples are collected.

4.4 Discussion

Targeting at multiple human activity recognition, in this Chapter we propose Wi-

multi, a three-phase system using channel state information. At the initial stage of system

deployment, it is infeasible to apply machine learning algorithms as there are usually few

samples available in the profile. In this case, our designed phase one of the system that

utilizes distance-based classification is exploited. As more samples become available for

training, phase two of our design that employs SVM with representative features from

both time and frequency domain is applied. It dramatically reduces computation costs as

compared with phase one which requires computing similarities between the test sample

and all samples in the profile. Finally, when we have enough samples for deep learning
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networks, phase three based on LSTM is proposed. It can achieve higher accuracy and

efficiency since it can automatically choose representative features and pre-train the model.

Given the availability of samples, each phase of our design achieves a desirable tradeoff

between accuracy and efficiency.
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CHAPTER 5

Location Independent Gesture Identification

5.1 Challenges
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Figure 5.1: CSI of push gesture in different locations

Due to multipath phenomenon, gestures performed in different locations can lead to

distinct reflections on various paths. As shown in Fig. 5.1, we present the comparison of

one CSI stream (30 subcarriers) between one pair of transmit-receive antennas. It can be

observed that the same push gesture in two locations exhibits significantly different CSI

fluctuation patterns. This presents significantly challenges to apply the machine learning

model trained with gestures performed in one location to different locations.

Existing works have achieved desirable performance for gesture detection if the sub-

ject remain at the same location [12, 10]. It indicates that CSI of the same gesture show

similar patterns at the same location, showing that the collected CSI contains gesture de-
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pendent features. At the same time, as we discussed earlier, gestures performed at different

locations can exhibit distinct CSI fluctuations, showing that raw CSI also contains loca-

tion dependent features. As the location dependent features are interleaved with gesture

dependent features, the challenge becomes separating them effectively in order to correctly

identify the gestures at different locations. Different from traditional deep learning systems

that extract high level mixed representative features for gesture recognition, we propose a

deep learning network that can extract both gesture and location dependent features, while

capable of separating them effectively and independently by applying gesture recognition

and location identification modules simultaneously.

5.2 System Overview

In this paper, our goal is to separate gesture dependent features from location de-

pendent features. In other words, the system should be able to extract gesture dependent

features only at a new location. Towards this goal, we propose a system that consists of five

modules, including CSI collection, feature extraction, feature separation, gesture recogni-

tion and location identification. Fig. 5.2 depicts the overview of the system structure.
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CSI Collection: As discussed earlier, CSI is affected by both gesture movements and

the locations. In order to cluster these two kinds of features separately, the proposed deep

learning network requires adequate samples for training purpose. Therefore, we collect

CSI of various gestures from different locations by leveraging tools on wireless devices [8]

so as to feed them into the network.

Feature Extraction: In this component, a three LSTM layers network is designed

to obtain high level feature representations. The input of this component is the collected

CSI samples from various gestures performed by different subjects at multiple locations

(not necessarily at the targeted location). Besides, the extracted features from the hidden

states of last timestep at the last layer contain both gesture and location dependent feature

representations.

Feature Separation: After obtaining the extracted features, we divide them into

two halves and feed them into the gesture recognition and location identification module

respectively.

Gesture Recognition: In order to recognize gestures based on the first half extracted

features, we employ two fully connected layers to map feature representations to a new

latent space for classification. By minimizing the loss of this module, the first half features

will be gradually clustered as gesture dependent.

Location Identification: Similarly, two fully connected layers are utilized to map

the second half extracted features to a new space for location classification. During the

training process, the network will cluster the second half feature representations as location

dependent.

In general, the overall loss function used for training is computed as the sum of the

losses of gesture recognition and location identification. By decreasing the overall loss, the

proposed network system will learn to gradually separate the first half features as gesture

dependent and the second half as location dependent.
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5.2.1 CSI Collection

In oder to provide enough samples for system training, CSI of various gestures per-

formed by different subjects are collected from multiple locations. Denote the input CSI

sample as Xi ∈ {X1,X2, . . . ,XN}, where N is the number of collected CSI samples.

Each CSI sample is associated with a gesture label and a location label. The corresponding

gesture label can be represented as Lg
i ∈ {0, . . . , n− 1}, where n is the number of gesture

types. The corresponding location label can be represented as Ll
i ∈ {0, 1, . . . ,m − 1},

where m is the number of locations. During the training process, CSI samples with cor-

responding gesture and location labels are then fed into the deep learning network. After

the model is trained, CSI samples with ground truth gesture labels from new locations are

provided to evaluate the performance.

5.2.2 Feature Extraction

5.2.2.1 Long short-term memory

LSTM [51] is one of the recurrent neural network (RNN) structures that is widely

employed in time series data classification and prediction. It has the ability to remember

and filter information over time through three gates. The first gate, known as forget gate,

is designed to filter past information. It determines the amount of information kept in the

cell state. The second gate, known as input gate, controls rgw amount of new information

from current timestep to be added into the cell state. The third gate, known as output gate,

determines the amount of information used for output. In addition, LSTM also solves the

long-term dependency problem [52], where gradient usually either explodes or vanishes in

conventional RNNs.
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In this paper, we endeavor to recognize gestures performed at different locations with

CSI. As CSI is highly correlated time series signal, we employ LSTM to extract represen-

tative features.

5.2.2.2 Three LSTM layers network

Fig. 5.3 depicts the three LSTM layers network structure used to extract feature

representations in this paper. Denote the size of each CSI sample as T × S, where T is the

length of CSI and S = (P ∗30), where P is the number of antenna pairs used to collect CSI

and 30 is the number of subcarriers in each stream. In the first LSTM layer, there are one

cell for states initialization and T other cells, each of which is corresponding to a timestep

CSI data. Each cell delivers its current cell states and hidden states to the next cell while

also outputs the hidden states at every timestep. Similarly, the second and third LSTM

layers are also equipped with T + 1 cells, each of which takes the corresponding output

from the previous layer as input. Let Ci be the size of hidden states in each cell at the ith
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layer. The size of the output at the last LSTM layer can be described as T×C3. Afterwards,

we employ the hidden states in the last timestep as the extracted feature representations.

Given the input CSI asXi, the corresponding extracted features can be represented as

Fi = LSTM3(LSTM2(LSTM1(Xi, ζ))), (5.1)

where ζ denotes the parameters of the LSTM network.

5.2.3 Feature Separation

After the feature representations are extracted from the LSTM network, we try to

separate the gesture dependent features from location dependent features. In order to

achieve this, we divide the extracted features into two halves. Assume that the extracted

features are F = [f1, f2, . . . , fC3 ]. The first half of the features can be denoted as F g =

[f1, f2, . . . , fC3/2] while the second half can be represented asF l = [f(C3/2+1), f(C3/2+2), . . . , fC3 ].

The first half features are delivered to the gesture recognition module for classification

while the second half is fed into the location identification module.

5.2.4 Gesture Recognition

As shown in Fig. 5.4, we employ two fully connected layers in order to classify

different gestures and gradually cluster the first half extracted features as gesture dependent.

Specifically, the first layer followed by an activation function is used to forward and map the

first half features into a new feature space. Given the CSI input asXi and the corresponding

first half features as F g
i , the output can then be represented as

Ri = softplus(WgF
g
i + bg), (5.2)

where softplus is the activation function and Wg and bg are the weights and bias respec-

tively.
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Assuming that there are n types of gestures, we map Ri into an n dimensional space

for classification by introducing another fully connected layer. Therefore, the output can

be described as

L̃g
i = softmax(WhRi + bh), (5.3)

where softmax is an activation function that computes the probability distribution for each

class andWh and bh are the weights and bias respectively. The final predict label is usually

the index whose corresponding probability is the largest in L̃g
i .

In addition, cross entropy is used as the loss function in this module. It can be

computed as

Lossg = − 1

N

N∑
i=1

n−1∑
j=0

Lg
ijlog(L̃g

ij), (5.4)

where N is the number of CSI samples and n is the number of gesture types. By reducing

Lossg during the training process, the network will gradually learn to cluster the first half

features as gesture related.
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5.2.5 Location Identifcation

Similar to 5.2.4, two fully connected layers are exploited so as to classify locations

and cluster the second half extracted features as location dependent. Provided that the

second half extracted features corresponding to input CSI Xi is F l
i , the outputs of the first

and second layer can be computed as

Oi = softplus(WlF
l
i + bl), (5.5)

L̃l
i = softmax(WzRi + bz), (5.6)

where Wl and bl are weights and bias in the first layer, Wl and bl are weights and bias in

the second layer respectively.

Assuming there are m locations, the cross entropy loss function in this module can

be defined as

Lossl = − 1

N

N∑
i=1

m−1∑
j=0

Ll
ijlog(L̃l

ij). (5.7)

By decreasingLossl during the training process, the network will learn to cluster the second

half features as highly location related.

5.2.6 Loss Optimization

Overall, our goal is to separate gesture dependent features from location dependent

features. Based on equations 5.4 and 5.7, we define the overall loss as

Loss = Lossg + λLossl, (5.8)

where λ is the coefficient that controls the balance between gesture recognition and lo-

cation identification losses. By optimizing Loss, the proposed deep learning network will

learn to classify gestures and locations simultaneously with different halves of the extracted
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Figure 5.5: Layout of experiment environments

features. On one hand, in order to classify gestures, the first half features will be gradu-

ally clustered as gesture dependent features. On the other hand, the second half extracted

features will be clustered as location dependent so as to classify locations. As a result, the

system will be able to learn to separate gesture dependent features from location dependent

features by reducing the overall loss function.

5.3 Experiments and Evaluation

We have implemented our system on commercially available devices. CSI of dif-

ferent gestures performed by various subjects in different locations are collected. We then

implement the proposed deep learning network with Tensorflow [53] on Google Cloud

Platform [54]. The details of the system implementation and results are described below.

5.3.1 Data Collection

We collect CSI samples from off-the-shelf Wi-Fi devices. One router that acts as the

transmitter and one laptop that acts as the receiver are deployed in different environments.
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Table 5.1: Number of samples collected

Locations

Gestures
Bounce Handwave Push Swipe

A 251 298 242 292
B 239 298 346 288
C 249 246 286 261
D 265 275 245 250
E 287 298 241 253
F 272 289 262 262

The router is equipped with 3 antennas while the laptop has 1 antenna. By implementing

the tool [8] on Intel 5300 NIC, we can obtain 3 ∗ 30 CSI values at each time point. We

ask multiple subjects to perform gestures in 6 different locations that are in 2 rooms with

different layouts and furniture decorations. Fig 5.5 depicts the layout of the two rooms and

different CSI collection locations. Each subject is asked to perform 4 gestures, including

bounce, handwave, push and swipe, at each location. Each gesture sample lasts 4 seconds

and the CSI sampling rate is set to 200 packets/second, thus each CSI gesture sample has

90× 800 values in total. In summary, we collect 6495 CSI samples from various locations.

Detailed number of collected samples can be found in Table 5.1.

5.3.2 Evaluation

5.3.2.1 Accuracy using CSIs from all locations for training

We first present the results achieved by using data from all locations for training. In

other words, we split the collected samples from all locations into two halves, one of which

is used for training while the other is used for evaluation. During the training process,

each provided CSI gesture sample is associated with one gesture label and one location

label. Note that we only evaluate the performance of gesture recognition. As shown in

Fig. 5.6, the system achieves 95.11% accuracy on average. Specifically, it achieves an
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Figure 5.6: Accuracy using all location samples for training

accuracy of 90.99%, 90.00%, 93.99%, 99.50%, 95.50% and 99.00% at locations from A to

F respectively. In general, it achieves above 90.00% accuracy at all locations. In addition,

as shown in Fig. 5.7, the testing loss of gesture recognition show similar patterns as the

training losses of gesture recognition and location identification. As a result, our system

is able to achieve desirable performance in recognizing gestures performed at different

locations.

5.3.2.2 Accuracy using different locations for training

Here, we evaluate the proposed system’s performance for identifying gestures in

locations with no training data employed a prior. Fig. 5.8 shows that the gesture recognition

accuracy in each location when CSI samples from other locations are used for training.

Note that the CSI samples from the targeted location are never used for training. For
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example, the results for location A denotes the accuracy when the model is trained using

CSI samples from the other 5 locations.

As shown in the figure, the system achieves desirable average accuracy in different

locations. For instance, it achieves 79.20% accuracy on average for location A. Specifically,

it achieves 52.08% accuracy in recognizing bounce, 100.00% in recognizing handwave,

66.94% in recognizing push and 100.00% in recognizing swipe. The average accuracy for

location B is higher as illustrated in Fig. 5.8. It is able to recognize bounce with an accuracy

of 72.12%, handwave with an accuracy of 100%, push with an accuracy of 91.29% and

swipe with an accuracy of 100.00% while the overall average accuracy is 90.38%. Similar

results can be found for identifying the gestures performed in the other room. For example,

the system achieves 84.67% accuracy on average in location D while the average accuracy

in location E is around 87.39%. Similar results can also be observed for other locations.
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In summary, our proposed system is able to recognize gestures performed in new locations

without training new models.

5.3.2.3 Different number of locations used for training

Here, we randomly select k ∈ {2, 3, 4, 5} locations from collected CSI samples for

training and use the rest for evaluation. Fig.5.9 illustrates the average accuracy with dif-

ferent number of locations used for training. Each average accuracy corresponding to one

k value is obtained by 5-fold cross validation. It is observed, from Fig.5.9, that higher

average accuracy can be achieved with more location data used for training. Specifically,

the average accuracy increases from 58.67% with 2 training locations to 85.42% with 5

training locations. The average accuracy using 3 and 4 locations for training are 67.84%

and 75.09% respectively. This is reasonable as more training locations can provide more

diversities to the network and consequently gain better evaluation performance. It is also
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observed that the accuracy is undesirable in some cases, where we use samples collected in

one room for training and samples of the other room for testing. Therefore, our proposed

system will benefit from training at more locations in order to achieve desirable perfor-

mance.

5.4 Discussion

Although many existing works have achieved desirable performance in gesture recog-

nition with channel state information, they generally cannot be directly used to recognize

gestures performed in new locations without training new models. In order to address this,

we design a deep learning neural network that can achieve location independent gesture

recognition. The system includes feature extraction, feature separation, gesture recognition

and location identification modules. Specifically, a three LSTM layers network is designed
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to extract both gesture and location dependent features. Afterwards, we split them into two

halves where the first half is delivered to gesture recognition module and the second half is

passed to the location identification module. By optimizing the total loss of both modules,

the network will learn to gradually cluster and separate these features as gesture dependent

and location dependent. We evaluate the proposed system by collecting the CSI samples

from various subjects who are asked to perform 4 gestures in 6 locations of 2 rooms. The

proposed system achieves 85.42% accuracy on average in recognizing gestures performed

in new locations.

While our proposed network can achieve desirable performance, the following chal-

lenges remain and we consider them our future work. It is well known that current off-

the-shelf WiFi devices can cover more than 3000 square feet in an indoor environment. It

is likely, in practice, that people in the same environment other than the subject can also

potentially affect the multipath propagations. It will be significantly helpful if one can

eliminate the effects owing to other people while identifying the gestures performed by the

targeted subject. Related, it will be ideal to be able to recognize multiple human gestures

performed at the same locations at the same time and identify individual gesture embedded

therein. Indeed, the authors in [43] attempt to address this by creating virtual combina-

tion samples from a single user. However, it still unclear on how to identify each of the

individuals from the combined gestures.
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CHAPTER 6

Conclusion

Many challenges in movement recognition with channel state information remain

unsolved, although it has attracted large attentions in recent years and many existing works

have achieved desirable performance in different applications. Specifically, previous re-

searches generally ignore the fact of location dependent nature of channel state informa-

tion. Therefore, many existing systems trained with machine learning algorithms would

require to be retrained in each new location. However, they usually fail to consider the

availability of enough samples, especially at the early stage of system deployment in new

locations. Additionally, since location dependent features and movement dependent fea-

tures are interleaved with each other in CSI, how to effectively separate them becomes

the main challenge in order to recognize activities correctly at different locations without

training new models.

In this paper, we firstly propose a three phase system that targets at multiple human

activity recognition with channel state information. At the early stage of system deploy-

ment where only few samples are available in the profile, our designed phase one of the

system that utilizes distance-based classification is exploited. As more samples become

available for training, phase two of our design that employs SVM with representative fea-

tures from both time and frequency domain is applied. It dramatically reduces computation

costs as compared with phase one which requires computing similarities between the test

sample and all samples in the profile. Finally, when we have enough samples for deep

learning networks, phase three based on LSTM is proposed. It can achieve higher accuracy

and efficiency since it can automatically choose representative features and pre-train the
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model. Given the availability of samples, the experiments results illustrate that each phase

of our design achieves a desirable tradeoff between accuracy and efficiency. In general,

Wi-multi can achieve 96.1% accuracy on average.

In addition, we also propose a neural network that can recognize gestures performed

in new locations without traning new models. In other words, the proposed system is able

to separate gesture relevant features from location relevant features. The system consists

of four modules, including feature extraction, feature separation, gesture recognition and

location identification. In details, feature extraction selects representative features by taking

advantage of a three layers LSTM network. Next, the feature separation moudle delivers

half of the features to gesture recognition and the other half to location identification. By

minimizing the overall loss of the gesture recognition and location identification modules

during the training process, the network learns to cluster the first half extracted features as

highly gesture related representations while the second half as intensively location related

representations. Our evalutions show that the proposed system achieves an average of

85.42% accuracy of gesture recognition in new locations.
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