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ABSTRACT

DYNAMICS OF A PULSE DETONATION ENGINE DRIVEN

LINEAR POWER GENERATOR

Umang Umeshkumar Dighe, Ph.D.

The University of Texas at Arlington, 2019

Supervising Professor: Frank K. Lu

The dynamics of a pulse detonation engine driven linear power generator were

studied. For an ideal pulse detonation engine, the thrust generated is in the form of

a piecewise function given by the Endo–Fujiwara model. Nonlinear electromagnetic

damping is also introduced in the system due to the rare earth permanent mag-

nets present in the linear generator architecture. Various linear generator topologies

were studied using static magnetic analysis. Two configurations of a single degree-

of-freedom oscillator system, one with a linear spring restoring force and another

with geometric nonlinear spring restoring force, were investigated to study any po-

tential advantages of using nonlinear spring restoring force. The governing equations

for the coupled system in both cases are nonsmooth, nonautonomous, and nonlinear.

As closed-form solutions for the governing equations do not exist, numerical simula-

tions are required to understand the dynamics and power generation characteristics

of the system. Special treatment is needed in the neighborhood of the discontinuity

hypersurface to locate the discontinuity and continue the integration of the governing

equations.
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The governing equations for two configurations of the coupled pulse detonation

engine and linear generator were numerically integrated using adaptive Runge–Kutta

method. The power generated using the geometric nonlinear spring was consider-

ably higher compared to the configuration with linear springs for low values of non-

dimensional parameter β.

The study of the stability of the coupled system under unsteady and intermit-

tent loading is carried out using a Poincaré map and its Jacobians. As the dynamical

system is characterized by a multi-segment problem, a Poincaré map attached to

each discontinuity surface is first generated. Then, using the notions of embedding

and projection, a composite differentiable Poincaré map is generated and its Jacobian

is used to determine the stability characteristics of the coupled system. The results of

stability analysis are verified using Lyapunov exponents derived from the time-series

simulation data. For all the configurations studied, the maximal Lyapunov exponent

approached a value of zero, indicating a critically stable system.

In lieu of carrying out numerical simulations for each set of parameter values,

bifurcation analysis enables the study of the persistence of periodic solutions un-

der variation of parameters. Using the Poincaré maps, Jacobians and continuation

methods, a bifurcation analysis was carried out. In all the cases studied, period dou-

bling and Neimark–Sacker bifurcations were observed. Tangent bifurcation was not

observed in any of the cases studied.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

In recent decades, energy shortage has increasingly become a major challenge.

New and innovative technologies to generate electricity are being researched by scien-

tists all over the world. Even though the world is transitioning to a renewable energy

future, the majority of power generation in the world still relies on conventional fossil

fuel sources. Natural gas and coal still remain the biggest fuel sources for power plants

around the world. In this scenario, any improvement in the efficiency of converting

these fossil fuels to electricity will have a global impact on the availability of total

power and also on the carbon footprints of power plants.

Conventional power plants around the world use a process known as deflagration

to convert the chemical energy stored in the fossil fuels to heat and then- converting

to electricity. Although deflagration has been pivotal in the development of human

civilization, it is theoretically not the most efficient way to convert chemical energy

to other forms of energy. A different form of combustion, namely, detonation, has

been studied extensively since the late 19th century. The early interest in detonations

revolved around mining and in military applications. In the past few decades, the

possibility of using detonation to generate electricity has been explored by many

researchers. Several patents have also been issued for concepts that involve coupling

a detonation-based engine with different systems to drive a generator to produce

electricity. [8–10]

1



Braun et al. [11] investigated the possibility of converting the kinetic energy

of propagating detonation waves to electricity and experimentally studied a coupled

detonation engine–linear generator concept. In preliminary studies, the pulse deto-

nation engine (PDE) thrust was modeled using the Friedlander equation [12] and

the system damping did not account for the electromagnetic damping arising from

the linear generator. In the current study, the PDE thrust is modeled using the

Endo–Fujiwara model [4], which represents the PDE thrust more accurately. The

electromagnetic damping from the linear generator is also modeled into the governing

equations for the coupled PDE–LPG system. As a result, the coupled system is mod-

eled as a mass-spring-damper system with electromagnetic damping and a piecewise

continuous excitation force.

The various possible configurations of the mass-spring-damper system, the in-

termittent and thrust generated by the PDE and the time-varying electromagnetic

damping of the linear generator make this an interesting and challenging research

topic. In the nonlinear configuration with a piecewise continuous external loading,

the numerical simulation of the governing equation of the coupled system requires

careful treatment of the discontinuity and is capable of highlighting interesting dy-

namics that may affect the power generation and stability of the system.

The first step towards properly understanding the energy conversion setup is

to understand the phenomenon of detonation. Therefore, a brief description of the

detonation phenomenon is given below. The subsequent chapters discuss the pulse

detonation engine, the linear generator, the coupled system, and its dynamics.
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1.2 Fundamentals of Detonations

1.2.1 What is Detonation?

The possibility of utilizing a train of detonation waves in a propulsion device or

for energy conversion has attracted significant attention over the past few decades [13].

A pulse detonation engine (PDE) is an example of a practical application of using

detonation waves. PDEs have higher theoretical efficiencies, have fewer moving parts

and are easy to manufacture and maintain than conventional turbomachinery-based

engines.

In general, there are two types of self-propagating combustion waves, namely,

deflagration and detonation. While deflagration is the commonly known subsonic

combustion, detonation is a supersonic form of combustion which involves a react-

ing shock wave. After the ignition of the reactant mixture, a combustion wave forms

and propagates away from the ignition source. As the combustion wave propagates,

it burns the reactant mixture. The combustion wave produces burned products at

drastically different pressure, temperature, and velocity depending on whether a de-

flagration or detonation wave transformed the combustible mixture. The formation

of a deflagration wave or a detonation wave in the combustible mixture is governed

by the initial mixture composition, ignition source, and boundary conditions, i.e., the

manner of confinement of the reactant mixture [14]. Hence, it is useful to understand

the conditions that lead to each type of combustion wave.

The mechanisms governing the propagation of deflagration and detonation waves

through a reactant mixture is described by Glassman and Yetter [6]. In a long tube

with both ends open, if the reactant mixture is ignited, a self-propagating deflagration

wave traveling with a relatively low subsonic velocity will be observed. As deflagra-

tion is an expansion wave, the pressure drops in the reaction zone and the combustion

3



products accelerate away in the direction that is opposite to the deflagration wave

propagation.

A detonation wave can be initiated in a long tube with one of its ends closed. If

the fuel-oxidizer mixture is ignited near the closed end, a self-propagating detonation

wave will start traveling towards the open end. In general, the initiation of a deto-

nation wave is not immediately achieved after ignition. In the presence of a strong

ignition source near the closed end, a detonation wave can be initiated. In such a case,

burned products will expand behind a wave traveling inside the tube. The expansion

wave generates disturbances that coalesce and form fast traveling compression waves.

These compression waves are sustained by rapid heat release and form a detonation

wave. This type of detonation wave initiation is known as deflagration–to–detonation

transition (DDT). The transition from deflagration to detonation can be facilitated

using devices such as Shchelkin spiral, grooves, etc. Another method to instantly form

a detonation wave is to introduce a shock wave or a detonation wave from a secondary

device and transmit it to the reactant mixture. This method is known as a shock- or

detonation-induced detonation.

As the detonation wave is supersonic in nature and propagates at speeds on

the order of thousands of meters per second, the reactants ahead of the detonation

wave are not affected prior to the arrival of the wave and maintain their initial state.

As the reacting shock wave propagates, the reactants are compressed, heated and

ignited. This results in a propagating shock with a combustion zone attached to the

shock. The combined shock wave and combustion zone can be considered as a single

discontinuity surface acting as the boundary between the burned and unburned gases.

This discontinuity surface is known as the detonation wave. While deflagration is the

common type of combustion that propagates with a velocity of less than O(10 m/s),
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detonations propagate at supersonic velocities and are a rare class of combustion.

Table 1.1 shows the qualitative differences between detonations and deflagrations.

Table 1.1: Qualitative difference between detonations and deflagrations in gases [6]

Parameter Detonation Deflagration

u1/c1 5-10 0.0001-0.03
u2/u1 0.4-0.7 4-16
p2/p1 13-55 0.98-0.976
T2/T1 8-21 4-16
ρ2/ρ1 1.4-2.6 0.06-0.25

Subscripts 1 and 2 for the properties represent the initial state of the reactants and

final state of the products respectively. In Table 1.1, u is the velocity of the wave, c

is the speed of sound, p is the pressure, T is the temperature and ρ is the density.

1.2.2 Thermodynamics of Detonation

Detonations were first scientifically studied in the late 19th century by Berth-

elot, Vieille and Le Chatelier [15, 16]. There are two well-known theories that are

currently used to describe detonations. The first one is known as Chapman–Jouguet

(CJ) theory, which was proposed separately by Chapman [17] and Jouguet [18]. The

second theory was proposed in the early 1940s and was the result of individual works

by Zel’dovich [19], von Neumann [20] and Doering [21]. The theory is thus known

as the Zel’dovich–von Neumann–Doering (ZND) theory that describes a shock wave

sustained and driven by heat addition. A brief discussion of detonation waves using

CJ theory is presented in this section to help understand the dynamics of detonation

and to understand the potential use of detonation waves in applications such as thrust

generation. Figure 1.1 shows a schematic of a steadily propagating, one-dimensional
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combustion wave. The subscripts 1 and 2 for the parameters represent the initial state

of the reactants and final state of the products respectively.

(1)(2)

u1u2 u1

h2

u2

h1

ρ1ρ2

Figure 1.1: Chapman-Jouguet detonation wave schematic.

The conservation of mass, momentum and energy equations, along with the equation

of state for one-dimensional combustion wave shown in Fig. 1.1 are given by

ρ1u1 = ρ2u2 (1.1)

p1 + ρ1u
2
1 = p2 + ρ2u

2
2 (1.2)

cp,1T1 +
1

2
u21 + q = cp,2T2 +

1

2
u22 (1.3)

p1 = ρ1R1T1 (1.4)

p2 = ρ2R2T2 (1.5)

It is assumed that all combustion events have coalesced into a discontinuity. The

initial condition of the gas is assumed to be known and q in Eq. 1.3 represents the

heat added due to the release of chemical energy. The unknown properties u1, u2, ρ2,

p2 and T2 can be obtained using the equations given above.
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The total enthalpy, which constitutes both the sensible and chemical enthalpies,

is defined as h = cpT +h0 with h0 being the specific heat of formation in the standard

state. The heat added via energy release in the energy equation can be given by

q = h01 − h02. Using the conservation of mass equation, Eq. 1.1, the expression for u2

can be substituted into the momentum equation, Eq. 1.2, and expression for u1 as a

function of pressure and density can be derived as

u21 =
1

ρ21

[
(p2 − p1)

/(
1

ρ1
− 1

ρ2

)]
(1.6)

In a similar manner, Eq. 1.6 can be substituted back into the mass conservation

equation to obtain

u22 =
1

ρ22

[
(p2 − p1)

/(
1

ρ1
− 1

ρ2

)]
(1.7)

Subtracting Eq. 1.7 from Eq. 1.6 yields

u21 − u22 =

[
(p2 − p1)

(
1

ρ1
+

1

ρ2

)]
(1.8)

Similarly, Eq. 1.8 can be substituted into the energy equation to yield

cp,2T2 − cp,1T1 = q +
1

2

[
(p2 − p1)

(
1

ρ1
+

1

ρ2

)]
(1.9)

Lastly, substituting back into Eq. 1.3 results in

q =
γ

γ − 1

(
p2
ρ2
− p1
ρ1

)
− 1

2

[
(p2 − p1)

(
1

ρ1
+

1

ρ2

)]
(1.10)

Equation 1.10 is valid for a shock wave when q = 0. Equations 1.8 and 1.10 can

be used to obtain the inert Hugoniots for an inert gas with constant specific heat.

Similarly, Equations 1.8 and 1.9 can be solved iteratively to determine all the possible
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combinations of pressure and specific volume for a valid Hugoniot curve as shown in

Fig. 1.2. For a reactive mixture, two curves can be obtained representing states of

before and after heat release.

Shock
Hugoniot

von Neumann Peak

`

Subsonic
Rayleigh 
Line

Supersonic
Rayleigh 
Line

Initial
Condition

Hugoniot

Upper Chapman- Jouguet Point

Lower Chapman- Jouguet Point

Typical Deflagration

Constant Pressure Combustion

Constant Volume Combustion

Forbidden Zone 
No Steady state Solution

1.0

1.0

P/P1

ρ-1/ ρ-1
1

Figure 1.2: Hugoniot curve, adapted from [1].

Figure 1.3 shows the real gas Hugoniot curve for a stoichiometric H2–air mixture. α

is the shape factor and can be defined as

tanα =
p2 − p1

1/ρ1 − 1/ρ2
(1.11)

The shock Hugoniot curve represents a series of solutions for shock and expansion

waves without combustion under the adiabatic flow assumption. When combustion

takes place, the heat addition due to combustion effectively pushes the Hugoniot

curve to the right, and the attainable points on the detonation Hugoniot must be

found with respect to the initial state of the mixture. From Fig. 1.3, the two tan-
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gency points created through α are known as upper CJ and lower CJ points. The

upper CJ point is a high-speed compression wave, and the lower point is a low-speed

expansion wave. Chapman showed that the upper point corresponds to a condition

for P2 > P1 and ρ2 > ρ1 and represents a detonation. On the other hand, the lower

point corresponds to a deflagration wave.

Figure 1.3: Hugoniot curve for stoichiometric H2–air combustion [2].

The horizontal, vertical and tangent lines from the initial condition point divide

the Hugoniot curve into five regions, as shown by Roman numerals I-V in Fig. 1.3.

Region I corresponds to a strong detonation. The gas velocity before the detonation

wave is supersonic, while the velocity is subsonic after the wave. Region II is the weak

detonation zone with the gas velocities being supersonic both before and after the

wave. In region III, the wave velocity calculated using the governing equations results

in a negative velocity, which is not a feasible solution. This is shown with a dashed

line. In region IV, the gas flow stays subsonic before and after the wave and this

corresponds to a weak deflagration. The solution in region V predicts an increasing

gas velocity from subsonic to supersonic regime indicating a strong deflagration. This
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condition is physically impossible. The von Neumann peak represents the state of

the gas which has been compressed using a shock wave and heat addition has taken

place. A stable detonation is possible only when the final conditions of the products

correspond to the upper CJ point. This implies that the velocity of the wave is

equal to the speed of the combustion products plus their mass velocity resulting in a

self-sustained detonation wave. The dashed blue and red lines in Fig. 1.4 show inert

Hugoniot and the detonation Hugoniot respectively. The corresponding von Neumann

peak and upper CJ point for this case are also shown. The ideal pulse detonation

engine cycle is shown using the solid blue line. In the cycle, the path between points

0 and 3 represents compression via a shock. Heat addition due to chemical energy

released from combustion takes place during the path between points 3 and 4. Path 4

to 10 represents the isentropic expansion which is followed by path 10 to 0 representing

heat rejection. The area enclosed by the PDE cycle in the p − v diagram represents

the work output of the engine and the area enclosed in the T − s diagram represents

the heat release of the engine.

Having discussed the concept of detonation, the next step in understanding the

Figure 1.4: A p−v diagram of a pulse detonation engine operating with a hydrogen-air
mixture [2].
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Figure 1.5: A T − s diagram of the pulse detonation engine cycle [2].

process would be to understand the ideal properties of detonation waves at the upper

CJ state for a variety of conditions. Recall from the solution of the Hugoniot equation

that the gas moves with a compression wave. Since the reactants at the closed end

of the tube must be stationary, the gas in the tube must be decelerating from the

detonation front to the wall in a rarefaction wave. This rarefaction wave is known

as Taylor expansion wave [22]. Endo and Fujiwara incorporated these properties to

develop a model for the performance of an ideal pulse detonation engine [4].

The variation of the detonation properties as a function of the equivalence ratio exhibit

interesting trends. Figures 1.6 and 1.7 show that the CJ state does not correspond

to the maximum pressure and temperature ratios. Figures 1.8 and 1.9 also show that

fuel-rich mixtures generally have higher property ratios as compared to the CJ states.
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Figure 1.6: Variation of Chapman–Jouguet pressure ratio as a function of equivalence
ratio for initial T = 298 K and p = 1 bar.
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Figure 1.7: Variation of Chapman–Jouguet temperature ratio as a function of equiv-
alence ratio for initial T = 298 K and p = 1 bar.
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Figure 1.8: Variation of Chapman–Jouguet Mach number as a function of equivalence
ratio for initial T = 298 K and p = 1 bar.
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Figure 1.9: Variation of Chapman–Jouguet velocity ratio as a function of equivalence
ratio for initial T = 298 K and p = 1 bar.
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The plots above show that the detonation wave properties change in a smooth

and continuous manner based on the initial conditions. However, achieving these

results is not an easy task in practice. The theoretical results for CJ pressure and

velocity for a given initial reactant mixture may not always match experimental results

under certain conditions [13]. For the purpose of the current study, it is assumed

that a detonation wave is achieved and operates under ideal conditions such that

theoretical and experimental results match. In order to get any useful work from

detonation waves, a well designed, stable and reliable detonation engine is required.

Any analytical study using the thrust of a PDE would also require a good theoretical

model and experimental method to accurately measure the unsteady thrust generated

by a PDE [2]. In the following chapter, a brief discussion on the operation of a PDE

is provided and the governing equations for an ideal cycle of PDE given by the Endo–

Fujiwara model [4] are discussed.
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CHAPTER 2

Building Blocks of a Linear Power Generation System

2.1 Power Generation Using Reciprocating Devices

The possibility of generating electrical power using reciprocating devices has

been studied for almost 100 years now. Researchers and inventors have proposed var-

ious configurations of reciprocating devices to harvest electrical power from a variety

of sources. The earliest patents for such devices were awarded beginning in the early

1920s and used internal combustion engines to drive the generators (Figs. 2.1 and

2.2). Over the years, the designs and the power sources for reciprocating devices have

seen major evolution. In addition to internal combustion engines, energy sources like

wave energy, human motion, and detonation engines have been proposed. The de-

tailed design features of the linear generator vary and need to be optimized based on

the application and available energy that can be harvested.

This research focuses on utilizing detonations for power generation. The pre-

vious chapter introduced the concept of detonation and distinguished clearly the

differences between the common combustion phenomena of deflagration and the rare

type of combustion called detonation. The current chapter introduces a device known

as a pulse detonation engine (PDE) which uses detonation waves for propulsion and

power generation applications. A detailed description of the linear power generator is

also provided. Later, two possible configurations of a system that couples a PDE and

linear generator are presented.
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Figure 2.1: Linear generator patent by
Jordon (1923).

Figure 2.2: Linear generator patent by
Pontus (1943).

2.2 Pulse Detonation Engine

The pulse detonation engine (PDE) is a device that uses intermittent detona-

tions to generate thrust. The feasibility of using detonations for propulsion has been

explored for the past 50 years. Unlike existing rocket and airbreathing engines that use

the constant pressure, deflagrative mode of combustion, the PDE uses the pressure

gain mode of combustion called detonation. The use of detonation waves reduces or

eliminates the need for any mechanical compression and the associated turbomachin-

ery. Additionally, the use of detonation minimizes the entropy gain during the heat

addition process, which leads to a higher theoretical thermal efficiency as compared to

conventional engines. These advantages make PDEs attractive for use in propulsion

and power generation applications. In general, a simple PDE configuration consists

of a straight, constant area tube that acts as the thrust chamber. The tube is closed
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at the head end, and open at the other. The head end houses a series of fuel and

oxidizer injection ports and an ignition source for providing the required energy to

achieve a weak deflagration.

2.2.1 PDE Operating Cycle

Figure 2.3 shows a schematic of a typical PDE system and corresponding de-

tails of the operating cycle. The PDE cycle usually consists of several phases, which

typically include propellant fill, ignition, gas dynamic blowdown, and purge.

1
Reactant mix fill

2
Ignition 
Initiation

3
Deflagration to
Detonation 

4
Detonation
Propagation

5
Exhaust

6
Purge

Detonation
Wave

Figure 2.3: Typical pulse detonation engine operation cycle, adapted from [3].

During phase 1, the tube, initially at ambient conditions, is filled with a re-

active gaseous mixture. In phase 2, as the reactants approach the open end of the

tube, the igniter is activated from the closed end and a weak deflagration wave is

initiated. The deflagration wave rapidly accelerates away from the closed end until
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abruptly transitioning into a self-propagating detonation wave, which accounts for

phase 3 of the PDE cycle. In phase 4, the detonation wave propagates through the

remaining length of the PDE thrust chamber while converting all the reactants into

burned products. Once the detonation wave exits the chamber, an expansion wave

travels back into the thrust chamber from the open end towards the closed end. The

expansion wave reduces the pressure in the thrust chamber to ambient conditions

and concludes phase 5. The last phase of operation consists of purging any remaining

burned products at elevated temperatures from the thrust chamber with a colder in-

ert purge gas so that refilling with a fresh reactive mixture can begin. Consequently,

the PDE is an unsteady thrust producing propulsion system and the cyclic operation

of a PDE requires consideration of length and time scales [23].

2.2.2 Endo–Fujiwara Model of Ideal PDE Cycle

The cycle of an ideal PDE was analyzed by Endo and Fujiwara [4]. The model

assumes that the detonation wave is initiated at the closed end of the tube and

propagates to the open end. When the wave reaches the open end, a rarefaction wave

starts to propagate from the open end to the closed end, known as the thrust wall.

The period 0 ≤ t ≤ tpl in Fig. 2.4 corresponds to the combustion phase. The entire

detonation process takes place during this time and the detonation wave reaches the

open end of the tube at tpl. At this time, a rarefaction wave starts to propagate into

the tube from the open end towards the closed end. Through this rarefaction wave,

the burned gases are exhausted from the tube and decay in pressure is observed. The

exhaust process lasts until t = tex. After this time, the tube is refilled with a fresh

detonable mixture. At t = tcy, the refill process is complete and a new detonation

wave is initiated.
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Figure 2.4: Thrust history of pulse detonation engine by Endo-Fujiwara model [4].

The analytical model starts with the introduction of some PDE parameters that are

dependent on specific heat ratios and are given by

kI =
γ2 + 1

2γ2
(2.1a)

kII =
γ2 − 1

2γ2
(2.1b)

kIII =
kI
kII

=
γ2 + 1

γ2 − 1
(2.1c)

kIV =
2[(γ2k1)

kIII − 1]

γ2kII
(2.1d)

kV = 2kI
−kIII/2 (2.1e)

The time for the detonation wave to reach the CJ state is given by

tcj =
L

Dcj

(2.2)
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where Dcj is the Chapman–Jouguet detonation speed. The time at which the pressure

plateau ends and the expansion wave initiates a pressure decay is given by

tpl = kV tcj (2.3)

Using the above equations, a new set of parameters was introduced by Endo and

Fujiwara, which are given by

KI = kIV

[(
γ1
2γ2

)kII

kkII M
2kII
cj − 1

]
+ kV (2.4a)

KII = kV +
kIV
kIII

[
1−

(
K1 − kV
kIV

+ 1

)−kIII]
(2.4b)

KIII =

KII

(
KI − kV
kIV

+ 1

)1/kII

−KI(
KI − kV
kIV

+ 1

)1/kII

− 1

(2.4c)

KIV =
KIII

γ1M
2
cj

[(
KI − kV
kIV

+ 1

)1/kII

− 1

]
(2.4d)

The time at which the pressure at the thrust wall is the same as the initial pressure

is known as the exhaust time and can be determined by

tex = tcjKI (2.5)
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Endo and Fujiwara obtained a functional form of the thrust–density history, showing

a plateau followed by decay as given by

pw =


p3 if 0 ≤ t ≤ tpl

p3

[
kIV tcj

(t− tpl) + kIV tcj

]−kII
if tpl ≤ t ≤ tex

(2.6)

In the above equation,

p3 =
γ1
γ2
k
kIII/2
I M2

cjp1 (2.7)

The thrust generated by the PDE is used to drive the LPG to convert the chemical

energy of the fuel–oxidizer mixture to electricity. The parameters such as Dcj can

be calculated for a given reactant mixture and initial conditions using NASA CEA

applet [24].

2.3 Linear Power Generator

A linear generator is an electromagnetic device that converts the mechanical

energy of linear reciprocating motion to electrical energy. Topologically, linear gen-

erators are equivalent to the ‘unfolded’ version of their rotary counterparts. Since

linear generators come in a variety of designs, many different methods of classify-

ing linear generators exist in literature [25, 26]. Figure 2.5 shows the classification of

linear generators based on the mode of excitation. The first type of linear generator

uses electrostatic properties to move the translator of the generator. The second type

uses the electromagnetic behavior of reciprocating machines to generate power. The

last two types use piezoelectric and magnetostrictive properties to interact with a

mover. The piezoelectric generator works under an electric field and is typically used

in smaller devices. Also, the stroke length for both the piezoelectric and magnetostric-
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tive generators are smaller compared to electrostatic and electromagnetic generators.
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Figure 2.5: Classification of linear generators based on mode of excitation.

Electromagnetic linear generators can further be divided into three main classes,

namely, induction generators, synchronous generators, and DC generators. The exci-

tation in synchronous and DC generators is produced using magnets, while induction

generators have a self-induced excitation mode. The most commonly used type of

linear generator is the synchronous machine with permanent magnets.

Another method of classifying linear generators is based on construction ge-

ometry. Broadly, linear generators can be classified as flat or tubular type linear
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generators on the base of their geometries. Each of these types can also be designed

as a single-sided or a double-sided machine.

A linear generator can also be categorized in one of the following types

(i) Moving coil type

(ii) Moving magnet type

(iii) Moving iron type

These are shown in Figs. 2.6, 2.7 and 2.8 respectively.
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Figure 2.6: Moving coil linear generator.
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Figure 2.7: Moving magnet linear generator.
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Figure 2.8: Moving iron linear generator.

Each type of linear generator mentioned above has its set of advantages and disadvan-

tages. The moving coil generator uses flexible leads. A major drawback of this feature

is that the leads tend to regularly wear out in high-power machines. This makes

moving coil generators unsuitable for any significant power generation application.

The moving magnet linear generators also suffer from issues such as large magnet

leakage fields, continuous vibration exposure to the permanent magnets that leads

to demagnetization, limitations on power conversion due to stroke length and mag-

net dimensions dictated by the airgap. Despite many advantages and being rugged,

moving iron generators tend to be relatively heavier. Due to their practicality in the

application, only moving magnet generators were studied for this research.

The manner of arrangement of permanent magnets in a linear generator can also

be used as a classification criterion. The arrangement of the permanents plays a critical

role in determining the excitation flux in the air gap. The magnets can be mounted

on the translator or be buried in the translator or combined to form a Halbach array.

These three families of permanent magnet arrangements are shown in Fig. 2.9. All

three of these arrangements can also be used in a double-sided arrangement as shown

in Fig. 2.9(b), (d), (f) and Fig. 2.10 and 2.11.
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(a) Single sided Halbach array

(b) Double sided Halbach array

(c) Single sided buried magnets

(d) Double sided buried magnets

(e) Single sided surface mounted magnets

(f) Double sided surface mounted magnets

Figure 2.9: Various arrangements of permanent magnets in a linear generator.

Typically, the buried magnet topology, as shown in Fig. 2.9(c), consists of a

longitudinal magnetization path, while the surface-mounted topology gives rise to a

transverse magnetization path. On the other hand, the Halbach array uses a particular

arrangement of magnets that results in the magnetic flux being enhanced on one

side (strong side) and canceled on the other side. The most common type of linear

generator used currently is the toothed permanent magnet synchronous generator as

shown in Fig. 2.12.
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Figure 2.10: Surface mounted
tubular topology.

Figure 2.11: Buried magnet tubu-
lar toplogy.

Armature

Slot

MagnetYoke

Figure 2.12: A toothed single-sided synchronous generator.

The flat type generator can be further improved by adding many sides, forming

an enclosed structure. This leads to a minimization of normal force on the machine,

which can be harmful to routine operations. In theory, the tubular type machine

has inherently zero radial force between the stator and the translator but they can

be more complex to manufacture. One reason why double-sided machines are used

in the flat configuration is to reduce the normal forces between the stator and the

translator. Another reason to use double-sided design is better utilization of magnetic

material and space, resulting in enhanced flux linkage.
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The following sections review Maxwell’s theory and the magnetic properties of

permanent magnets. A good understanding of these theories is critical for perform-

ing electromagnetic simulations, which can be used to determine a suitable linear

generator for the current application.

2.3.1 Review of Maxwell’s Theory

The well-known Maxwell’s equations for electromagnetic coupling and induction

form the basis of the field-based approach of modeling a generator.

∇.D = ρc (2.8)

∇.B = 0 (2.9)

∇×E = −∂B
∂t

(2.10)

∇×H = j +
∂D

∂t
(2.11)

In the above equations, B is the magnetic flux density, D refers to the displacement

field, E is the electric field and H is the magnetizing field. On the right-hand side,

ρc is the charge density and j is the free current density. To obtain a field model

of a generator, a magnetic circuit is required. This magnetic circuit can originate

from electromagnets or permanent magnets mounted on the translator. For rotary

generators, a two-dimensional geometry is frequently chosen with a cross-section nor-

mal to the axis of rotation. An error is later introduced to model the losses in the

end windings. The simulations of the generator are based on mathematical models of

magnetic fields. Usually, three main simplifications are made in simulating the gener-

ator. First, the displacement field ∂D/∂t is neglected for low frequencies of less than

100 Hz. Next, the magnetic field is solved for a two-dimensional section. The last
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simplification relates to the end effects of the stator windings, which are modeled as

impedances in an electric circuit. Based on these simplifications, Maxwell’s equations

can be combined into Eq. 2.12

σ
∂Az
∂t
−∇.

(
1

µ
∇Az

)
= −σ∇V (2.12)

The finite element method (FEM) can be used to solve the above equation to study the

performance of the generator. Figure 2.13 shows a four-sided topology. The stator side

closest to the viewer is hidden in this view for clarity. The magnets are mounted on

the surface of the translator with alternating polarity. ANSYS Maxwell ® was used

to study the static magnetic characteristics of the linear generator. The materials

used in the simulation are typical materials used in the construction of such electrical

machines.

Figure 2.13: A four-sided flat type linear generator.

To finalize a linear generator topology best suited to be used with a PDE, finite ele-

ment simulations of various topologies can provide crucial insights. The first step in
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using simulations for studying the characteristics of a particular topology is to un-

derstand the material properties. The following section introduces some of the useful

properties of a hard nonlinear magnetic material known as rare earth neodymium-

iron-boron magnet.

2.3.2 Rare Earth NdFeB Magnets and Their Properties

The magnetic material used for generating the magnetic field in the current

study is sintered neodymium-iron-boron (NdFeB). NdFeB magnets are categorized

as hard nonlinear materials. Neodymium magnets were invented in the 1980s. They

are one of the strongest and most affordable rare earth magnets. NdFeB magnets are

available in various grades based on the strength of the magnetic field that can be

generated. Since magnetic material properties change with temperature, users of per-

manent magnets are often challenged to design machines that operate at acceptable

levels over a wide temperature range. Understanding how these properties change is,

therefore, a necessary requirement for sound design.

The relationship between magnetic flux density B, magnetic field H , and po-

larization J within magnets is given by

B = µ0H + J (2.13)

where µ0 = 4π × 10−7 H/m is the magnetic permeability of vacuum. The equation

shows that the magnetic flux density B within a magnetic material can be expressed

as a function of magnetic field H and polarization J of the magnetic body. Since the

magnetic field H is normally known, only the polarization J needs to be determined

in order to calculate magnetic flux density B. The magnitude of polarization J of

the magnetic material varies with the magnetic field.
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A plot showing this relationship is known as a J–H loop and is shown in Fig.

2.14. The value of the external magnetic field-, H-, applied to the material is plotted

on the abscissa and the magnitude of the polarization J is plotted on the ordinate.

Since the relationship between J and H depends on the path followed, the J–H plot

represents a hysteresis loop. When a magnetic field is applied to a permanent magnet

which is in the neutral state of J = 0, the polarization J increases with an increasing

magnetic field. After a sufficiently large magnetic field has been applied, the material

reaches a saturation point. The curve 0-a-b-c is called the initial magnetization curve

and creating a permanent magnet from a neutral state in this manner is known as

magnetizing. The magnitude of the polarization at the point c where the material is

completely magnetized and cannot be magnetized any further is called the saturation

magnetization Js.

J-H loop

H

J

0

a

b

c

de

f

Js

Jr

HcJ

Figure 2.14: J–H loop showing magnetization and demagnetization of magnetic ma-
terial.
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From the saturated state, a reduction in the magnetic field will result in a new

curve c-d that does not pass through the original curve as the polarization reduces

gradually. The magnitude of polarization at point d when the magnetic field is zero

is known as remanent magnetization Jr. If the magnetic field is further reduced,

meaning, increased in the opposite direction, the magnetization does not immediately

become zero. This is a feature of hard magnetic materials. When the magnetic field

is further reduced, the polarization traces the curve d-e-f . Point f corresponds to a

zero polarization state with a non-zero magnetic field. This magnetic field is known

as coercive force HcJ and the curve d-e-f is known as the demagnetization curve.

When evaluating the magnetic properties of a permanent magnet, the demagne-

tization curve (J–H curve) in an adequately magnetized state is used. On the other

hand, in the actual usage state for the magnetic material, in addition to the polariza-

tion J , the external magnetic field H is also taken into account and sometimes, it is

more appropriate to evaluate the B–H curve which shows the relationship between

the magnetic flux density B and the external magnetic field H . Figure 2.15 shows a

J–H loop and a B–H loop of a permanent magnet. As given by Eq. 2.13, the flux

density B is the constant multiple of the magnetic field H added to the polarization

J . Therefore, the B–H curve has a higher shoulder in the first quadrant.

In the demagnetization curve, left on the normal magnetic field H axis is posi-

tive. The value of magnetic flux density when the magnetic field is zero is known as

the remanent flux density, Br. This value is the same as the remanent polarization,

Jr. The magnitude of the magnetic field for which the magnetic flux density becomes

zero is called the coercive force. To distinguish the coercive force from the magnetic

field HcJ , the coercive force due to the magnetic flux density is labeled as HcB.
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Figure 2.15: The hysteresis loop for magnetic materials.

The magnitude of energy that can be taken out from a magnet is proportional to

the product of the magnetic flux density B and the magnetic field on the B–H curve.

The maximum value of this product of the magnetic flux density and the magnetic

field is called the maximum energy product (BH)max. A powerful magnet with a large

maximum energy product has a large value of remanent flux density Br and coercive

force HcB on the B–H curve must be large.
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Figure 2.16: Details of second quadrant of hysteresis loop.

Figure 2.17 shows the demagnetization curve for the N52 NdFeB magnet used in the

simulation of linear generator configurations for this research.

20°C

60°C

80°C

100°C

120°C

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

024681012141618202224262830

P
ol

ar
iz

at
io

n,
 

J 
Fl

ux
 D

en
si

ty
, 

B

Demagnetizing Field, H

0.1

0.3

0.5 10.75 21.5 3 5

0

0.2

0.4

0.6

0.8

1.0

1.2

kG Tesla

1.4

kOe

kA/m 1750 1275 1601430 1115 955 795 640 475 3202070 1910 15902230

Pc = B H

0

Figure 2.17: Demagnetization curve of N52 magnetic material shown in second quad-
rant, adapted from [5]

33



Table 2.1 lists the magnetic properties of the N52 magnet.

Table 2.1: Magnetic properties of N52 grade NdFeB magnet [5]

Parameter Units Minimum Nominal Maximum

Residual Induction, Br Gauss 14,200 14,500 14,800
T 1.42 1.45 1.48

Coercivity, Hc Oesterd 10,500 12,300 14,100
kA/m 836 979 1122

Intrinsic Coercivity, Hcj Oesterd 11,000 – –
kA/m 876 – –

Maximum Energy Product,
BHmax

MGOe 49 51 53

kJ/m3 390 406 422

The materials used for the construction of other parts of a linear generator are

generally made of alloys containing iron and either cobalt, nickel, or silicon. These

alloys are known as soft magnetic materials. The chosen material is used in the form of

lamination sheets to manufacture the stator and translator for the electrical machine.

After a geometry and materials are chosen, a simulation can be carried out

using one of the many commercially available software to determine the performance

characteristics of the designed machine. This is the focus of the discussion of the next

section.

2.3.3 Simulation Results: Static Magnetic Analysis

ANSYS® Maxwell TM is a commercially available software used for high-fidelity

simulations for the design and analysis of electrical machines. The software includes

solvers for magnetostatic and transient simulations. However, for transient simula-

tions with reciprocating motion, the solver can only be used for a sinusoidal external
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excitation force. Since the PDE thrust is not sinusoidal and continuous, the software

can only be used for static simulation and the results can then be used for further

analysis using other techniques.

The software was used to simulate a four-sided topology, a tubular topology,

and a double-sided topology. For the four-sided and tubular geometries, the mass

of the permanent magnets used in the design was kept constant. The unstructured

mesh in the air gap is refined to include a minimum of three elements between the

permanent magnets and the Iron alloy of the stator. An adaptive unstructured mesh

with tetrahedral elements was generated for all three topologies. A cross-section of

the mesh created for the four-sided topology is shown in Fig. 2.18.

Translator

Stator

Permanent
magnets

Copper
coils

Figure 2.18: Section of four-sided generator topology showing tetrahedral mesh.
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The results of the simulation showing magnetic flux density B for the four-

sided linear generator are shown in Fig. 2.19 and Fig. 2.20. In order to ensure normal

completion of simulation and accuracy of results, the software provides several checks.

The convergence criterion for simulation was set at an energy error percentage at 1%

or less. This was achieved after the second pass as the energy error dropped from

4.5% to just below one percent after two passes. Figure 2.21 shows the growth of the

number of tetrahedral elements due to the adaptive meshing passes as the energy

error falls below the set criterion of one percent.

Figure 2.19: Cross-section showing magnetic flux density inside a four-sided linear
generator.
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Figure 2.20: Cross-section showing magnetic flux density on the surface of a four-sided
linear generator.

Figure 2.21: Energy error percentage vs. number of tetrahedra in four-sided topology
linear generator.

The results for the static simulations for a tubular generator are shown in Fig. 2.22

and Fig. 2.23. Due to the geometry of the tubular generator, a cylindrical coordinate

system was used for the simulation and ring magnets were used. As seen in Fig.
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2.24, the criterion of energy error of 1% or less was satisfied with around 3 million

tetrahedral elements and it was achieved with 3 adaptive mesh refinement passes.

Figure 2.22: Cross-section showing magnetic flux density inside a tubular linear gen-
erator.

Figure 2.23: Cross-section showing magnetic flux density on the surface of a tubular
linear generator.
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Additional passes showed that reduction in energy error beyond 1% becomes com-

putationally expensive. For a small improvement in the energy error criterion, the

number of tetrahedra grew from approximately 3 million to about 4.4 million in one

pass, as seen in Fig. 2.24.

Figure 2.24: Energy error percentage vs. number of tetrahedra in tubular topology
linear generator.

For both the cases, the magnetic flux density inside and on the surface are

shown. The peak flux density in the four-sided generator was observed to be approx-

imately 2.8 T while it was approximately 3 T in the tubular section. This shows that

for the same mass of permanent magnets, neither of the compared geometries show

any distinct advantage over the other. However, due to the ease of manufacturing of a

four-sided generator over the tubular type, the four-sided generator may be preferred.

The third type of linear generator topology considered for this research is the

double-sided geometry. Static finite element simulations were carried out for the

double-sided geometry. The width of the double-sided and four-sided geometries was

kept constant. The magnetic flux density of a double-sided generator is shown in Fig.

2.25. Computationally, the cost of the double-sided linear generator simulation was
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similar compared to the other two topologies as shown in Fig. ?? and Fig. 2.26. For

the double-sided topology, only half of the geometry was simulated and symmetry

was used. In order to avoid the influence of the edge effects, symmetry was not used

in the four-sided and tubular topologies.

Figure 2.25: Cross-section showing magnetic flux density inside a double-sided linear
generator.

Figure 2.26: Energy error percentage vs. number of tetrahedra in double-sided topol-
ogy linear generator.
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2.3.4 Analytical Form of Electromagnetic Damping for Flat Double-Sided Generator

Electric power production using linear power generators has attracted signif-

icant attention in recent years. The most common application of linear generators

is in converting wave energy to electricity. A literature survey to study the perfor-

mance of linear generators resulted in an analytical form of the electromagnetic forces

for the flat double-sided generator. As far as the author knows, analytical forms for

four-sided and tubular topologies do not exist. Thorburn [27,28] provided a simplified

analytical model to determine the induced EMF based on the geometry and magnetic

properties of a flat double-sided linear generator. Zheng et al. [29] used the simplified

model proposed by Thorburn and analyzed the electromagnetic damping of a linear

generator. A brief discussion is provided below. This model will be used in the basic

study to determine the electromagnetic characteristics of the generator.

Consider a linear generator with permanent magnets mounted on the translator with

alternating polarity as shown in Fig. 2.27. The translator position and velocity are

given by z(t) and ż(t) respectively.

Stator

Winding
slots

Air
gap

Stator
windings

Translator

Permanent
magnets
with alternating
polarity

d wp

wt

Figure 2.27: Linear power generator details.
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If the pole pair width wp is defined as the distance from one north pole to the next,

then the angular frequency ω(t) is given by

ω(t) =
2π

wp
ż(t) (2.14)

The electric position θ(t) is determined from ω(t) as

θ(t) =

∫ t

0

ω(τ)dτ =
2π

wp
z(t) (2.15)

The magnetic flux Ψ(t) as a function of θ(t) is given by

Ψ(t) = k cos(θ(t)− δ) = k cos

(
2π

wp
z(t)− δ

)
(2.16)

where k is a proportionality constant and the angle δ is equal to the load angle, that

is, the amount the voltage shifts during full load with respect to the no-load condition.

The magnitude of the proportionality constant is given by

k = Bt wt d n q c (2.17)

where Bt is the magnetic field in the stator tooth, wt is stator tooth width, d is the

LPG stator side width, n is the total number of poles, q is the winding ratio and c

is the number of cables in LPG stator slot. According to Faraday’s law, the induced

electromotive force e(t) can be calculated as

e(t) = −dΨ(t)

dt
=

2π Bt wt d n q c

wp
sin

(
2π

wp
z(t)− δ

)
ż(t) (2.18)
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Using the equivalent circuit for a single-phase, the voltage at the terminals can be

written as

V (t) = e(t)−RI(t)− LdI(t)

dt
(2.19)

where R and L are the circuit resistance and inductance respectively. The current is

given by

I(t) =
V (t)

Rload

(2.20)

where Rload is the external load resistance. As reported by Zheng et al. [29], we assume

that the difference between V (t) and e(t) in this model is small and, therefore, the

voltage V (t) is approximated with e(t) in the subsequent analysis. Therefore,

I(t) =
e(t)

Rload

(2.21)

The output power of the linear generator is given by

P (t) = V (t) I(t) (2.22)

According to the above equations, the magnetic force for a single-phase generator can

be calculated as

Fem(t) =
V (t) I(t)

ż(t) µ
(2.23)

where µ is the generator efficiency. Researchers have reported a generator efficiency

as high as 95%. Similarly, the total electromagnetic force for a n-phase generator can

be expressed as

Fem,n =

n∑
i=1

Vi(t) Ii(t)

ż(t) µ
(2.24)
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Using the above equations, the electromagnetic force for a single phase generator can

be written as

Fem(t) =

(
2π Bt wt d n q c

wp

)2

Rload µ
sin2

(
2π

wp
z(t)− δ

)
ż(t) (2.25)

The electromagnetic force as calculated using Eq. 2.25 is the nonlinear damping force

used in the mass-spring-damper model for the coupled PDE–LPG system [29]. The

electrical damping thus calculated is crucial to optimize the power output of the

coupled PDE–LPG system.

2.4 Coupled PDE–LPG Setup

Braun et al. [11, 13] established a proof-of-concept to use a PDE to drive an LPG

and convert mechanical energy to electrical power. The preliminary work used the

Friedlander model [12] to model the thrust generated by a PDE and did not study

the effects of nonlinear damping on the performance of the energy conversion setup.

The current work builds on the findings of the preliminary work and takes into account

the nonlinear damping due to the architecture of the LPG. Since the Endo–Fujiwara

model [4] is a more accurate representation of the thrust generated by a PDE, the

current study uses the Endo-Fujiwara model. The proposed system to extract power

consists of two main components. The first component is the PDE itself while the

other component is the LPG fitted with the piston assembly. Both the subsystems

are described in the earlier sections.

Depending on the configuration of the PDE and LPG coupling mechanism, the

PDE thrust can generate many unique responses in the mass-spring-damper system.

The optimum energy harvesting in any of these configurations requires a proper tun-
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ing between the energy harvesting device and the PDE operating frequency. A slight

mistune can result in a large reduction in the power harvested. Depending on the

configuration of the mass-spring-damper system, the governing equations of the con-

figuration may not have a closed-form analytical solution. Therefore, it is not always

possible to know the proper tuning parameters a priori.

In the following sections, two configurations of the mass-spring-damper system

are introduced. The first configuration is a single degree-of-freedom vibration system

with linear spring stiffness. The second configuration studied for this research is a

vibration system with nonlinear softening spring stiffness. The merits and drawbacks

of each configuration are also discussed.

2.4.1 Oscillator Configuration with Linear Spring Stiffness

The most common vibration-based energy harvesting configuration involves a

resonant linear generator. Simple tuning and modeling methods make a linear con-

figuration an attractive choice. However, good performance of linear configurations

is limited to a narrow band of excitation frequency when the system operates at

optimum tuning with its natural frequency coinciding with the external excitation

frequency. The performance of the linear resonant oscillator drops off very rapidly

away from the optimum tuning.

The linear single degree-of-freedom system set up is shown in Fig. 2.28. The

piston is connected to the translator of the generator and is placed close to the

open end of the PDE. A detonation wave exiting the PDE tube impacts a small

area on the piston face and transfers energy to the piston, initiating reciprocating

motion. The springs provide the restoring force and the linear generator provides the

electromagnetic damping during the process of energy harvesting. The PDE is run
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at a predetermined frequency, such that the detonation waves transfer energy to the

piston in an intermittent and optimum manner.

PDE

Piston

Translator

Figure 2.28: Energy conversion setup using a pulse detonation engine and a linear
power generator.

The translator and piston assembly is constrained to move in a reciprocating manner

only in the horizontal direction and it is assumed that there is no misalignment that

can give rise to other degrees of freedom. Therefore, the system can be described as

a single degree-of-freedom vibration system using

mz̈(t) + (Cm + Cem(t))ż(t) + kz(t) = Fext(t) (2.26)

where Cm is the mechanical damping coefficient, Cem is the electromagnetic damping

coefficient and Fext(t) is the external force acting on the piston, which is given by

Fext(t) =


Ap3 if 0 ≤ t ≤ tpl

Ap3

[
kIV tcj

(t− tpl) + kIV tcj

]1/kII
if tpl ≤ t ≤ tex

(2.27)
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where A is the area of piston impinged by the PDE exhaust. In the current model,

it was assumed that the mechanical damping coefficient Cm was negligible compared

to the electromagnetic damping coefficient Cem calculated using Eq. 2.25. Therefore,

mechanical damping was not considered in analyzing the performance of the pro-

posed system. It is assumed that the only source of nonlinearity in the system is the

electromagnetic damping. The governing equation for the mass-spring-damper can

be derived using Eqs. 2.25, 2.26, and 2.29. This results in a nonlinear differential

equation with a piecewise continuous right-hand side. Since the governing equation

has nonsmooth characteristics, special numerical treatment is needed to simulate the

system. A review of the various numerical methods is the subject of the next chapter.

Once a proper numerical integration scheme is selected, the system can be accurately

simulated.

2.4.2 Oscillator Configuration with Nonlinear Softening Spring

Figure 2.29 shows a configuration of the mass-spring-damper system consisting

of two linear springs connected to a mass and a damper with an inclination of ±θ

to the line perpendicular to the motion of the oscillator mass. The spring restoring

force along the inclined axes is linear in nature but the arrangement results in a non-

linear restoring force in the direction of motion. This results in a softening nonlinear

spring stiffness and under certain circumstances, a steeper displacement-time curve

compared to the linear system.

Analysis of inclined springs : This section discusses the static analysis of the inclined

spring arrangement and the resulting softening nonlinear spring stiffness. Figure 2.30

shows the inclined springs attached to the mass.
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Figure 2.29: An arrangement of mass-spring-damper system leading to softening
spring stiffness.

The total axial force F is given by

F = 2Fs (2.28)

where Fs is the component of restoring force of each spring in x-direction. The total

restoring force in the axial direction is given by

F = 2k(
√
x2 + l2 − l0) sin θ (2.29)

where x is the displacement,
√
x2 + l2 is the length of the spring after deformation, l0

is the undeformed length of the spring and θ is the angle of inclination of the spring.

From Fig. 2.30,

sin θ =
x√

x2 + l2
(2.30)
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Figure 2.30: Spring arrangement and force acting on nonlinear oscillator with geo-
metric nonlinearity.

Using (2.29) and (2.30), the restoring force F can be calculated as

F = 2k

(
1− l0√

x2 + l2

)
x (2.31)

The restoring force in dimensionless form can be given by

F̂ =

(
1− 1√

x̂2 + β2

)
x̂ (2.32)

where F̂ =
F

2kl0
, x̂ =

x

l0
and β =

l

l0
. Figure 2.31 shows the dimensionless axial

restoring force F̂ for various values of the parameter β. The dimensionless stiffness of

the system, k̂ =
dF̂

dx̂
is

k̂ = 1− β2

(x̂2 + β2)
3
2

(2.33)
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Figure 2.31: Dimensionless force F̂ as a function of x̂.

The change in dimensionless stiffness k̂ of the system for various values of β is shown

in Fig. 2.32. It can be observed that the dimensionless stiffness can be negative for

certain values of β and x̂, therefore, this arrangement is also known as a negative

stiffness mass-spring-damper system.
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Figure 2.32: Dimensionless spring stiffness k̂ as a function of x̂.
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The total potential energy of the system, E, is given by

E = 2

[
1

2
k(
√
x2 + l2 − l0)2

]
(2.34)

This dimensionless form of the total potential energy can be given by

Ê = (
√
x̂2 + β2 − 1)2 (2.35)

where Ê =
E

kl20
. The variation of the dimensionless potential energy as a function of

dimensionless displacement x̂ is shown in Fig. 2.33.
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Figure 2.33: Dimensionless potential energy Ê as a function of x̂.

The three equilibrium positions, x̂1,2,3 of the systems are given by

x̂1,2 = ±
√

1− β2 and x̂3 = 0 (2.36)
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The two equilibrium positions x̂1,2 are stable with minimum potential energy while the

equilibrium position x̂3 is unstable with the maximum potential energy. The system

will undergo a reciprocating motion around one of the two stable equilibrium positions

for small-amplitude vibration. If the applied external force exceeds a critical value,

the system will jump from one of the stable equilibrium positions to the other stable

equilibrium position. The critical force required to enforce the snap-through is given

by

F̂c =
dF̂

dx̂
= (1− β

2
3 )

3
2 (2.37)

This shows that for smaller values of β, a larger force is required to change the

behavior of the system and to enforce the oscillation to jump from one equilibrium

position to the other. The position at which the jump occurs can be calculated by

substituting F̂c into Eq. 2.32 and is given by

x̂c = β
2
3

√
(1− β 2

3 )
3
2 (2.38)

The results shown in Figs. 2.31, 2.32, and 2.33 only provide plots for the dimensionless

force, dimensionless spring stiffness and dimensionless potential energy for a system

oscillating about the equilibrium position given by x̂ = +
√

1− β2. The results for

the equilibrium point x̂ = −
√

1− β2 would be symmetric about the vertical axis in

the plots and would only be possible if there is a jump between the stable equilibrium

positions.
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Using Eqs. 2.25, 2.31, and 2.29, the equation of motion for a single degree-of-

freedom nonlinear oscillator can be derived. Recall the nonlinear restoring force given

by

F = 2k

(
1− l0√

x2 + l2

)
x (2.39)

Using Taylor-series expansion to the third order, the nonlinear force can be

written as

F = k1x± k3x3 (2.40)

Although Eq. 2.40 only shows the first couple of odd powers of x, the use of Taylor-

series expansion permits the use of both odd and even powers of x in the description of

the restoring force. Use of even powers of x in the expansion leads to a non-symmetric

restoring force, which may be a desirable property in many cases. In practice, the sec-

ond term in the above equation, k3x
3, is always positive. A cubic term with a negative

sign leads to a trivial solution leading to all solutions of the governing equation ex-

ponentially tending to infinity.

Since both linear oscillator and the nonlinear oscillator governing equations

consist of a nonsmooth term, the numerical simulation needs careful treatment in

the neighborhood of the discontinuity. The following chapter introduces numerical

techniques capable of handling the discontinuity and presents the results of numerical

simulation for both types of oscillators.
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CHAPTER 3

Numerical Methods for Nonsmooth Dynamical Systems

Dynamical systems with nonsmooth governing equations occur naturally in the

description of physical processes. That is, the motion of such systems involves a

smooth evolution interrupted by instantaneous events. Due to the widespread appli-

cation of such systems to biological systems, control problems and bifurcation prob-

lems, nonsmooth dynamical systems are receiving a lot of attention. Brogliato [30],

Kunze [31] and Liene et al. [32] are a comprehensive collection of recent advances made

in the field of nonsmooth dynamics and bifurcation. The earlier studies of nonsmooth

dynamics appeared mostly in East European literature. The works of Andronov et

al. [33] on nonsmooth bifurcations, Feigin [34,35] on C-bifurcations, Peterka [36] and

Babitskii [37] on impact oscillators and Filippov [38] on sliding motion are notable.

From this and other literature, one finds that nonsmooth dynamical systems are

feature-rich and complex.

Only a small number of dynamical systems with nonlinear governing equations

have closed-form solutions. Therefore, their studies rely heavily on simulation. The

governing equations discussed in Ch. 2 are nonautonomous nonsmooth differential

equations. It is essential to understand the numerical methods that are available for

the proper treatment of the discontinuity in the governing equations. The work of

Acary and Brogliato [39] provides a detailed description of the numerical methods

for nonsmooth dynamical systems in mechanics and electronics. Dieci and Lopez [40]

provided a survey of numerical methods that can be used to numerically integrate

discontinuous differential equations.
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In the following sections, a brief overview of two numerical methods from Dieci

and Lopez is presented. These methods are evaluated for application to the system

being studied for this research. Later, the governing equations introduced in Chapter

2 are simulated and the results are presented.

3.1 Introduction

Consider a dynamical system defined by

ẋ = f(x), x(0) given (3.1)

where f : Rm 7→ Rm is a given m-dimensional vector field. When solving Eq. 3.1

numerically, the convergence analysis of any numerical method relies on the assump-

tion that the vector field f and the solution are sufficiently smooth. In the absence of

smoothness, most stepsize control techniques and their local truncation error analysis

fail to be valid locally in the neighborhood of the discontinuity. Therefore, a numer-

ical method can possibly become inaccurate or inefficient, or both, in the regions of

nonsmoothness in the solution or its derivatives.

Dieci and Lopez [40] compiled a survey of many numerical methods typically

used to numerically integrate differential equations with discontinuous right-hand

sides. One of the strategies to treat such discontinuities, known as time stepping

methods, simply ignores the nonsmoothness and relies on the local error estimation

to ensure that the error remains small and acceptable. Another strategy to treat

any nonsmooth characteristics is to locate the discontinuity using an event function

h : Rm 7→ R. The function h can be used to define the discontinuity surface, generally

represented by Σ = {x ∈ Rs|h(x) = 0} in the state space of the dynamical system.

This method requires the knowledge of h. Once the numerical solution reaches the dis-
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continuity hypersurface Σ, an event point is defined and the numerical integration can

restart from this point. Such methods are known as event-driven methods. Piiorrnen

et al. [41] presented an algorithm and a MATLAB routine to simulate Filippov-type

systems using event-driven methods. The third course of action is to regularize or

smoothing the dynamical system [42]. Regularization methods lead to simplification

in theory as the modified systems can be treated with the classical theory of ODEs

and the existence and uniqueness of solutions can be derived with well-established

procedures. However, numerical methods with smoothing require small integration

steps due to the large derivatives present in the system. This results in the regular-

ized system becoming quite stiff. Another drawback of regularizing is the possibility

of changing the dynamics of the original nonsmooth system [43]. Even in the pres-

ence of these shortcomings, regularization is a reasonable routine for conducting a

preliminary exploratory study of a problem. To understand the behavior of dynami-

cal systems with discontinuous right-hand side and their numerical treatment, let us

start with an example used by Stewart [44]. The problem describes a brick moving

on an inclined ramp as shown in Fig. 3.1.

v

F

mg
α

Figure 3.1: A block sliding down a ramp with Coulomb friction.

In this case, the two forces acting on the brick are gravity g and a friction force

F . These two forces act opposite to each other: gravity would make the brick slide
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down the ramp, while friction would oppose the sliding motion. Using Coulomb law,

the equation of motion for the brick becomes

mv̇(t) = mg sinα− µmg cosα sgn[v(t)] (3.2)

where “sgn” is the sign function defined as

sgn[v] =


1, v > 0,

0, v = 0,

−1, v < 0.

(3.3)

The system can show interesting behavior depending on whether it satisfies one of

the two following conditions

(i) sinα− µ cosα > 0

(ii) sinα− µ cosα < 0

In case (i), v(t) keeps increasing forever. This is the simpler of the two cases. However,

in case (ii), if v(0) > 0, v will decrease to 0 and if v(0) < 0, then v increases to 0.

what happens at v = 0 ? Mathematically, v̇ > 0, which would make v grow an become

positive. But it would have to immediately decrease back to 0. In the physical world,

we expect that the brick will stop and remain at v = 0 forever.

In the above example, the vector field becomes discontinuous at some point

and represents a classic case of a Filippov system [38,45,46]. The solution x remains
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continuous but its derivative ẋ will have a jump at the discontinuity. This results in

a model defined by

ẋ = f(x) =


f1(x) when h(x) < 0,

f2(x) when h(x) < 0.

(3.4)

where the event function h : Rm 7→ R is known, and the known initial condition

x(t0) = x0 such that h(x0) < 0. The state space Rm is divided into two regions R1

and R2 by the discontinuity hypersurface Σ as shown in Fig. 3.2.

R1

R2

n(x)

Txx

Σ R1

Σ

n(x)

xTx

R2

Figure 3.2: The surface, tangent plane and normal vector in 1D and 2D.

R1, R2 and Σ are defined by

R1 = {x ∈ Rm| h(x) < 0} (3.5)

R2 = {x ∈ Rm| h(x) > 0} (3.6)

Σ = {x ∈ Rm| h(x) = 0} (3.7)

such that Rm = R1 ∪Σ ∪R2. It is assumed that the gradient of h at x ∈ Σ is always

non-zero, i.e., hx(x) 6= 0 for all x ∈ Σ. This formalism also allows the possibility of

f1(x) 6= f2(x) for all x ∈ Σ.
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The numerical method used to accurately simulate any system defined by Eq.

3.4 is required to predict the behavior of the system in the neighborhood of the

hypersurface Σ. Broadly, the solution orbit can behave in three distinct manners in

the neighborhood of Σ as shown in Fig. 3.3 below:

h(t,y) = 0h(t,y)<0
h(t,y)>0

f_

f+

0

h(t,y) = 0h(t,y)<0
h(t,y)>0 f_

f+

0

(a) (b)

f h(t,y)<0
h(t,y)>0

f_

f+
0

(c)

f h(t,y) = 0

Figure 3.3: Discontinuity hypersurface and behavior of solution orbit in the neighbor-
hood of the hypersurface.

The solution x(t) can either reach the hypersurface and cross it transversally as

shown in Fig. 3.3(a) or it can stay on the hypersurface as shown in Figs. 3.3(b)

and (c). Once the solution starts sliding on the hypersurface, it can either stay on

the hypersurface indefinitely or leave the surface after some time. Many numerical

methods in the literature assume that the solution trajectories cross the hypersurface

Σ as they reach it [43]. For this reason, it is important to first define the transversality

condition. The transversality condition implies that any solution trajectory x(t) that

reaches the hypersurface Σ from above (or below) will cross the hypersurface without

sliding or undergoing a spontaneous jump on it. Mathematically, for x ∈ Σ, there

exists a δ > 0 such that

htx(x)f1(x) ≥ δ > 0, htx(x)f2(x) ≥ δ > 0 (3.8)
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Having defined the transversality condition, a discussion of various numerical methods

for the nonsmooth system can be undertaken.

3.2 Explicit Euler Method: Local Error Order Reduction

Consider the discontinuous differential system defined by Eq. 3.4 and assume

transversality as defined by Eq. 3.8. Let xk and xk+1 be the approximations of an

exact solution respectively at given times tk and tk+1 with the time step given by

τ = tk+1− tk. The condition h(xk)h(xk+1) < 0 indicates that an event has occurred in

the time interval (tk, tk+1). Let x(t;xk, tk) be the exact solution of the local system in

the time duration given by t ∈ (tk, tk+1), x(tk) = xk and let x̆(t) = xk + (t− tk)f1(xk)

be the continuous extension of the Euler method. Let ξ̃ ∈ (tk, tk+1) be a unique value

for which h(x̆(ξ̃)) = 0. Also assume that a unique ξ ∈ (tk, tk+1) exists, for which

h(x(ξ;xk, tk)) = 0.

The local truncation error is given by

ek+1 = x(tk+1;xk, tk)− xk+1 = x(tk+1;xk, tk)− xk − τf1(xk) (3.9)

Using Taylor’s expansion for the local exact solution gives

x(tk+1;xk, tk) = x(ξ;xk, tk) + (tk+1 − ξ)f2(x(ξ;xk, tk)) +O((tk+1 − ξ)2) (3.10)

x(ξ;xk, tk) = xk + (ξ − tk)f1(xk) +O((ξ − tk)2 (3.11)

From the above two equations,
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ek+1 = x(ξ;xk, tk) + (tk+1 − ξ)f2(x(ξ;xk, tk))− xk − τf1(xk)

+O((tk+1 − ξ)2)

= (ξ − tk)f1(xk) + (tk+1 − ξ)f2(x(ξ;xk, tk))− τf1(xk)

+O((ξ − tk)2) +O((ξ − tk+1)
2)

= (tk+1 − ξ)[f2(x(ξ;xk, tk))− f1(xk)] +O(τ 2)

(3.12)

Now rewriting,

f1(xk) = f1(x(ξ;xk, tk)) +Df1(x(ξ;xk, tk))(xk − x(ξ;xk, tk))

+ (||xk − xk(ξ;xk, tk)||2)

= f1(x(ξ;xk, tk)) +O(ξ − tk)

(3.13)

where Df1 is the Jacobian matrix of f1. The expression for local error becomes

ek+1 = (tk+1 − ξ)[f2(x(ξ;xk, tk))− f1(x(ξ;xk, tk))] +O(τ 2) (3.14)

from which

||ek+1|| ≤ τJ +O(τ 2) (3.15)

where

J = ||f2(x(ξ;xk, tk))− f1(x(ξ;xk, tk))|| (3.16)

is the jump in the vector field at the point of discontinuity.
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Using the local truncation error ek+1 in terms of the jump of the vector field,

two observations can be made:

(i) x(ξ;xk, tk) = xk + (ξ − tk)f1(xk) +O((ξ − tk)2),

(ii) x̆(ξ̃) = xk + (ξ̃ − tk)f1(xk),

Therefore,

x(ξ;xk, tk) = x̆(ξ̃) + (ξ − ξ̃)fx(xk) +O((ξ − tk)2) (3.17)

Thus,

ek+1 = (tk+1 − ξ̃)[f2(x̆(ξ̃))− f1(x̆(ξ̃))] + (ξ̃ − ξ)[f2(x̆(ξ̃))− f1(x̆(ξ̃))] +O(τ 2) (3.18)

= (tk+1 − ξ̃)[f2(x̆(ξ̃))− f1(x̆(ξ̃))] +O(τ 2) (3.19)

since ξ̃ − ξ = O(τ 2) (to be shown later),

||ek+1|| ≤ τJ1 +O(τ 2) (3.20)

where J1 = ||f2(x̆(ξ̃))− f1(x̆(ξ̃))||.

To verify ξ − ξ̃ = O(τ 2), Consider that

h(x̆(ξ̃)) = h(xk) + hTx (xk)(x̆(ξ̃)− xk) +O(||x̆(ξ̃ − xk||2) (3.21)

Now, since

h(x(ξ;xk, tk)) = 0 (3.22)
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and

x(ξ;xk, tk) = xk + (ξ − tk)f1(xk) +O((ξ − tk)2), (3.23)

Therefore,

0 = h(xk) + (ξ − tk)hTx (xk)f1(xk) +O((ξ̃ − tk)2). (3.24)

Comparing these expressions,

0 = (ξ − ξ̃)htx(xk)f1(xk) +O(τ 2) (3.25)

and therefore,

(ξ − ξ̃) = O(τ 2) (3.26)

because

hTx (xk)f1(xk) 6= 0 (3.27)

The explicit Euler method discussed here for the numerical solution of discon-

tinuous differential equations under the assumption of transversality has one or more

special step(s) with the local truncation error of first order instead of second order.

Nonetheless, this reduction in local order does not impact the error accumulation

negatively.
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3.3 Runge–Kutta Time-Stepping Methods

This section reviews the basics for the use of Runge–Kutta methods when the

discontinuities present in the governing equations of the dynamical system are lo-

cated by monitoring the local truncation errors. Several authors have proposed this

approach [47,48].

Consider the discontinuous system given by


x′ = f(x) = f1(x) when t < ξ

f2(x) when t ≥ ξ

(3.28)

Assume that the discontinuity time ξ is in [tk, tk+1] for both the exact solution and the

numerical method. Take an embedded pair of explicit s-stage Runge–Kutta methods

of order p and p̂. The usual case is when p̂ = p − 1 or p̂ = p + 1, given the Butcher

array A = aij ∈ Rs×s, c = (ci) ∈ Rs, b = (bi) ∈ Rs, b = (bi) ∈ Rs. Suppose that

[tk, tk+1] is the interval where discontinuity occurs, that x(tk) − xk = O(τ p
∗
), where

p∗ = max{p, p̂} and the transversality condition holds. Then, on a successive step,

the solution is advanced with the higher-order method:

xk+1 = xk + τ

s∑
i=1

bif(Xki), (3.29)

where Xki = xk + τ

i−1∑
j=1

aijf(Xkj), i = 1, ..., s (3.30)

Assume that a nonempty subset I1 of the index set {1, ..., s} exists such that f(Xkj) =

f1(Xkj) when j ∈ I1. This means Xkj with j ∈ I1 is the approximation of the solution

at a value of t ∈ (tk, ξ). Similarly, there is a nonempty subset I2 = {1, ..., s}− I1 such
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that f(Xkj) = f2(Xkj) when j ∈ I2 is the approximation of the solution at a value

of t ∈ (ξ, tk+1). An estimate of the local truncation error (LEE) may be computed as

the difference of the solutions of orders p and p̂:

LEE = τ
s∑
i=1

(bi − bif(Xki) (3.31)

The error estimate LEE is compared to the accuracy level ε which is derived from a

user prescribed accuracy parameter tol by a mixture of relative and absolute criterion:

ε = tol max{1, ‖x‖∞} (3.32)

If the error estimate is smaller than the prescribed level ε, that is, if LEE < ε, then

the numerical solution is advanced using the time step τ . Otherwise the step size is

reduced according to the criterion :

τnew = C

∣∣∣∣∣ ε

‖LEE‖

∣∣∣∣∣
1/p∗

τold (3.33)

where 0 < C < 1 is some constant to ensure a cautious step size choice. A new

estimate of LEE is computed and tested. For smooth systems, the quantity

LEE

τ
=

s∑
i=1

(bi − bi)f(Xki) (3.34)

approaches 0 when τ → 0, while for discontinuous systems, this quantity approaches

the jump of the vector field f at the discontinuity point. Thus the algorithm can only

pass the accuracy test of LEE < ε when the step size τ is decreased to

τpass =
ε

J
, J = lim

τ→0

LEE

τ
(3.35)
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In addition to the two methods described here, many other methods such as

the work presented by Mannshardt [49], the Gear- østerby method [50], the event

location method and the numerical method for Filippov systems [38] exist for studying

nonsmooth systems. The choice of method for studying any system generally depends

on the form of the governing equation of the system. For the current system, a fourth-

order Runge–Kutta method was used with local error estimate tolerance of 1e−6.

3.4 Results of Numerical Simulations

The governing equations for the coupled PDE–LPG oscillator system were in-

troduced in Ch. 2. The governing nonsmooth, nonautonomous differential equations

require special treatment in the neighborhood of the discontinuity to accurately sim-

ulate the system. Since transversality is assumed, a numerical method dealing with

sliding on the discontinuity hypersurface is not required. For the linear oscillator, a

fourth-order Runge–Kutta method was used to simulate the system. Table 3.1 shows

the system parameters used in the simulation.

Table 3.1: Parameters of PDE–LPG coupled system for linear oscillator model

Parameter Symbol Value Unit

Magnetic field in tooth Bt 1.2 T
Number of cables in slot c 50 –

Width of stator sides d 0.2 m
Spring stiffness k 25 kN/m

Mass of translator m 45 kg
Number of poles n 6 –
Winding ratio q 1 –

Load resistance Rload 30 Ω
Pole width wp 0.05 m

Tooth width wt 0.01 m
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Figure 3.4 shows the displacement, the velocity, the electromagnetic force and

the power generated by the coupled system with linear spring stiffness. The displace-

ment curve in the plot is a smooth sinusoidal curve while the velocity curve shows

an abrupt jump. Since the PDE operating frequency is one-third of the undamped

natural frequency of the system, the piston completes three cycles before the next

detonation wave impinges on it. The maximum velocity achieved is at the instant

of detonation wave impinging on the piston. The electromagnetic force and output

power are a function of the piston velocity. Therefore, they also exhibit a peak value

at peak velocity.
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Figure 3.4: System performance of linear oscillator for PDE operating frequency of
1.25 Hz.
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Figure 3.5 shows the results of the simulation for a system with linear spring

stiffness operating at 1:1 resonance with PDE operating frequency. For a coupled

PDE–LPG oscillator system with linear spring stiffness, a 1:1 resonance operation

produced the maximum amount of power. However, the power generation drops off

very rapidly away from the resonance frequency as seen in Fig. 3.7.
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Figure 3.5: System performance of linear oscillator for PDE operating frequency of
3.75 Hz.

Figure 3.6 shows the results of the simulation for the PDE operating frequency

of 11.25 Hz. At this operating frequency, the piston-translator assembly cannot com-

plete cycles of oscillations before a new detonation wave impinging on the piston. This

results in a sub-optimal performance due to the canceling of motion of the piston by

successive detonation pulses.
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Figure 3.6: System performance of linear oscillator for PDE operating frequency of
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Phase portraits are plots of a system position versus velocity. Using the sim-

ulation data, phase portraits of the oscillator system with linear spring stiffness are

shown in Fig. 3.8. The plot shows the phase portraits of the system operating at 1.25

Hz, 1.875 Hz, 3.75 Hz, and 11.25 Hz. Note the enlarged scale in Fig 3.8(d).
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Figure 3.8: Limit cycles of linear oscillator operating at different PDE frequencies.
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The parameters used for simulating the system performance for the coupled

PDE–LPG system with geometric nonlinearity is shown in Table 3.2. The geometric

nonlinearity gives rise to a cubic spring stiffness. Based on the geometry, a parameter

β is defined as

β =
l

l0
(3.36)

The ratio of forcing frequency to the natural frequency of the system is also defined

as

Ω =
ω

ωn
(3.37)

Table 3.2: Parameters of PDE–LPG coupled system for nonlinear oscillator model

Parameter Symbol Value Unit

Magnetic field in tooth Bt 1.2 T
Number of cables in slot c 50 –

Width of stator sides d 0.2 m
Spring stiffness k 250 kN/m

Mass of translator m 32 kg
Number of poles p 6 –
Winding ratio q 1 –

Load resistance Rl 30 Ω
Pole width wp 0.05 m

Tooth width wt 0.01 m

Figure 3.9 shows the phase portrait of the oscillator with softening nonlinear

damping achieved using the geometric nonlinearity. The system was simulated for

β = 0.5 and 1:1 resonance condition. The phase portrait shows that the oscillator

starts in one of the two stable equilibrium positions, but due to the PDE thrust,

jumps to the second equilibrium point and oscillates about this equilibrium.
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Figure 3.9: Phase portrait of mass-spring-damper system with softening nonlinear
spring stiffness.

Figure 3.10(a) shows the power generated by the coupled system with linear

spring stiffness. Since there is no geometric nonlinearity involved in this case, the

three plots, in the clockwise direction, show the power extracted at Ω = 0.25, 0.5,

and 1. Parts (b) and (c) of Fig. 3.10 show the power generated by system with

geometric nonlinearity and β = 0.1 and 0.5 respectively.

Comparing the power generated by the coupled system with linear spring stiff-

ness and that by the system with geometric nonlinearity shows that a system with

softening nonlinear spring generates more power for low values of β for all values of Ω.

As the β value increases, any potential advantage of using a more complex geometry

with nonlinear spring stiffness is lost. The maximum power extracted was observed

in a system with β = 0.1 operating at 1:1 resonance.
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Figure 3.10: Comparison of linear oscillator performance with nonlinear oscillator for
different values of β and Ω.
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Understanding the conditions related to the stability of any dynamical system

plays a critical role in studying the long-term behavior of the dynamical system. As

long-term stability can have serious implications on the operation of any system, a

proper understanding of stability is imperative. One of the commonly used methods to

study the long term stability of a dynamical system is by using Lyapunov exponents.

The following section introduces the concept of Lyapunov exponent and how it can

be used to study the stability of a dynamical system. Later, the concept is applied

to the coupled system with linear spring stiffness and to the system with geometric

nonlinear stiffness.

3.5 Lyapunov Exponent and Stability of Dynamical Systems

Lyapunov exponents describe the exponential rate of divergence or convergence

of nearby trajectories and are a key component of chaotic dynamics. Consider two

trajectories defined by x(t) = f(x0) and x(t)+δx(t) = f(x0 +δx0) that start out very

close to each other and separate or collapse exponentially with time. The sensitivity

to initial conditions can be given by

||δx(t)|| ≈ eλt||δx0|| (3.38)

where λ is the mean rate of separation of trajectories of the system and is called the

Lyapunov exponent.

The mean growth rate of the distance between neighboring trajectories is given

by the Lyapunov exponent and can be calculated as

λ w
1

t
ln
||δx(t)||
||δx(0)||

(3.39)
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x0 + δx

f(x0)

x(t)

Figure 3.11: Evolution of a swarm of initial points in an infinitesimal spherical neigh-
borhood over time.

The above equation can be used to determine the Lyapunov exponent as follows.

First, take two nearby trajectories that are separated by δx0 and track the distance

between them until the separation ||δx(t1)|| gets significantly big. Next, record t1λ1 =

ln(||δx(t1)||/||δx0||). The next step is to rescale δx(t1) by a factor of δx0/δx(t1) and

keep repeating for a large number(∼ 10,000) times. The leading Lyapunov exponent

is then given by

λ = lim
t→∞

1

t

∑
i

tiλi, t =
∑
i

ti (3.40)

For autonomous dynamical systems, the maximum Lyapunov exponent is cal-

culated using the solution of variational equations of the systems. However, for many

dynamical systems, the task of formulating and solving variational equations is a

difficult task. As a result, many different algorithms have been formulated by many

researchers to provide alternate procedures to calculate Lyapunov exponents. Geist

et al. [51] and Tancredi et al. [52] provided a comparison of various methods for

computing Lyapunov exponents. Wolf et al. [53] provided an algorithm to compute

Lyapunov exponents from a time series. Since the simulations carried out to study the

coupled system generate a time series data of position and velocity, Wolf’s algorithm

to determine the maximum Lyapunov exponent is the most suitable and can be easily

implemented.
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Figure 3.12 shows the maximum Lyapunov exponent of a linear oscillator, a

nonlinear oscillator with β = 0.1, β = 0.5, and the Rossler chaotic attractor [54]. The

maximum Lyapunov exponent for both the linear oscillator and nonlinear oscillator

tend to a value of zero as the number of iterations increase.

Figure 3.12: Maximum Lyapunov exponent of various configurations of mass-spring-
damper system.

Since the governing equations defined in the previous chapters do not have a

closed-form solution, study of the coupled system relies on numerical simulations.

However, this also means that every set of parameter values will yield a different

result and the simulation will have to be carried out for individual cases. This is

a brute force method and somewhat tedious if a large number of simulations have

to be carried out. The qualitative study of nonlinear systems and their bifurcation

analysis provide a solution to this problem. Therefore, the next chapter introduces

the concepts required to study the nonlinear systems qualitatively.
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CHAPTER 4

Qualitative Theory of Dynamcial Systems

This chapter provides an overview of the basic theory of dynamical systems. A detailed

description of the qualitative theory of dynamical systems was presented by Bernardo

et al. [55]. The relevant parts of the qualitative theory are produced here. First, a

description is provided for autonomous systems. Autonomous systems are further

classified into smooth and nonsmooth systems. Nonautonomous systems can similarly

be classified as smooth and nonsmooth systems. For autonomous systems, both the

continuous time and discrete time representations of a dynamical system are also

provided. The discussion presented in this chapter builds the foundation for studying

the bifurcation of dynamical systems.

4.1 Smooth Autonomous Dynamical Systems

An autonomous ordinary differential equation is given by

ẋ
.
=
dx

dt
= f(x) (4.1)

where f : Rd → Rd is assumed to be continuous. A continuously differentiable function

x : I → Rd, where I ⊂ R is an interval, is said to solve Eq. 4.1. The combination of

Eq. 4.1 with an initial condition x(t0) = x0 is called an initial value problem, and a

solution x of Eq. 4.1 is said to solve this initial value problem if x(t0) = x0. Assuming

global existence and uniqueness of solutions, the solutions form a mapping

(t, t0, x0) 7→ x(t, t0, x0) ∈ Rd for all (t, t0, x0) ∈ R× R× Rd (4.2)
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This mapping is called the general solution of the differential equation. The solution

only depends on the elapsed time t−t0 since starting and not separately on the actual

time t and the starting time t0. This can be restated as the solutions being translation

invariant in time.

4.1.1 Smooth Dynamical Systems

Consider an n–dimensional state space (or phase space) X ⊂ Rn and an evolution

operator φ that takes elements x0 of the phase space and evolves them through a

‘time’ t to a state xt

φt : X → X, xt = φt(x0) (4.3)

The time t takes values in an index set T , which is usually considered to be either

discrete (the integers Z) or continuous (the real numbers R).

(Definition) A state space X, index set T and evolution operator φt are said to define

a dynamical system if

φ0(x) = x, for all x ∈ X (4.4)

and,

φt+s(x) = φs(φt(x)) for all x ∈ X, t, s ∈ T (4.5)

The set of all points φt(x) for all t ∈ T is called the trajectory or orbit through the

point x. The phase portrait of the dynamical system is the partitioning of the state

space into orbits. A dynamical system satisfying Eq. 4.4 and Eq. 4.5 is said to be

smooth of index r, or Cr, if the first r derivatives of φ with respect to x exist and are

continuous at every point x ∈ R.

An invariant set of a dynamical system is a subset Λ ⊂ X such that x0 ∈ Λ

implies φt(x0) ∈ Λ for all t ∈ T . A system of ODEs can exhibit the following kinds of
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invariant sets as shown in Fig. 4.1

Equilibria: The simplest form of an invariant set of an ODE is an equilibrium solution

x∗ which satisfies f(x∗) = 0. These are also sometimes called stationary points of the

flow.

Limit cycles : The next most complex kind of invariant set is a periodic orbit, which

is determined by an initial condition xp and a period T . Here, T is defined as the

smallest time T > 0 for which φ(xp, T ) = xp. Periodic orbits form closed curves in

phase space. A periodic orbit that is isolated (does not have any other periodic orbits

in its neighborhood) is called a limit cycle.

Invariant tori : Invariant tori are the nonlinear equivalent of two–frequency motion.

Flow on a torus may be genuinely quasi-periodic in that it contains no periodic

orbits, or it may be phase locked into containing a stable and an unstable periodic

orbit, which wind a given number of times around the torus.

(a) (b) (c)

(d) (e)

Figure 4.1: Phase portrait of invariant sets of smooth flows : (a) Equilibrium, (b)
Limit cycle, (c) Invariant torus, (d) Homoclinic orbit, (e) Heteroclinic orbit.
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Homoclinic and Heteroclinic orbits : Another important class of invariant sets

are connecting orbits, which tend to other invariant sets as time asymptotes to +∞

and to −∞. Consider, for example, orbits that connect equilibria. A homoclinic orbit

is a trajectory x(t) that connects and equilibrium x∗ to itself; x(t)→ x∗ as t→ ±∞.

A heteroclinic orbit connects two different equiliria x∗1 and x∗2; x(t)→ x∗1 as t→ −∞

and x(t)→ x∗2 as t→ +∞.

4.1.2 Iterated Maps

Given a map defined by the rule

x 7→ f(x), x ∈ D ⊂ Rn (4.6)

then T = Z; that is, ‘time’ is integer-valued, and the operator φ is just f . Evolving

through time m > 0 involves taking the mth iterate of the map;

φm(x0) = xm = f(xm−1) = f(f(xm−2)) = ...
.
= f (m)(x0) (4.7)

where a superscript m means m-fold composition

f (m)(x0) =

m times︷ ︸︸ ︷
f ◦ f ◦ ... ◦ f(x0) (4.8)

A mapping is said to be invertible for x ∈ D ⊂ Rn if given any x1 ∈ D such that

x1 = f(x0). In such a case, an inverse mapping f−1 can be defined by x0 = f−1(x1)

for all points x1 in f(D).

The smoothness of the dynamical system in the case of maps is given by the smooth-

ness of the function f . Smooth invertible maps, with smooth inverses are known as

diffeomorphisms.
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Similar to dynamical systems, maps have invariant sets as defined below and shown

in Fig. 4.2

(a) (b)
Π Π

Figure 4.2: Poincare section through phase space mapping Π → Π (a) Fixed point
and period–T limit cycle; (b) Period–m points and higher–period limit cycles.

Fixed points : The simplest kind of invariant set of a map is a fixed point, which is

a point x∗ such that f(x∗) = x∗. Fixed points of maps have a close connection to

periodic orbits, through the induced (Poincaré) map.

Periodic points : Periodic points satisfy fm(x∗) = x∗ for some (least value of) m > 0.

Such a point is referred to as a period–m orbit of the map and its orbit as a period–m

orbit.

There exists an important connection between ODEs (flows) and maps. Peri-

odic solutions of ODEs provide a natural way to transform between flows and maps.

Consider a limit cycle solution x(t) = p(t) to an ODE of period T > 0; that is,

p(t + T ) = p(t). To study the dynamics near such a cycle, we construct a Poincaré
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section, which is an (n − 1) dimensional surface Π that contains a point xp = p(t∗)

on the limit cycle and is transverse to the flow at xp. Introducing a notation that

Π = {x ∈ Rn : π(x) = 0} (4.9)

for some smooth scalar function π. Then the transversality condition is that the

normal vector πx(xp) to Π at xp has a non–zero component in the direction of the

φt(xp, 0) = f(xp). Here a subscript x or t means differentiation with respect to that

variable. That is, we require

πx(xp)f(xp) 6= 0 (4.10)

where a subscript x or t means a partial differentiation with respect to that variable,

so that πx(xp) is the normal vector to Π at x = xp.

Now, we can use the flow φ to define a map P from Π to Π, called the Poincaré map,

which is defined for x sufficiently close to xp via

P (x) = φ(x, τ(x)) (4.11)

where τ(x) is defined implicitly as the time closed to T for which

π(φ(x, τ(x))) = 0 (4.12)

We can define the Poincaré map as a smooth projection S of the time-T map φ(·, T )

for all x ∈ Π

P (x) = S(φ(x, T ), x) S(y, x) = φ(y, τ(x)− T ) (4.13)

Thus, xp becomes a fixed point of the map P. The stability and bifurcations of the

periodic solutions can be studied by the linearization Px of the Poincaré map at xp.
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A benefit of studying Poincaré maps rather than flows is that they drop by one

dimension of the sets we need to consider. This results in a significant simplification

as only the discrete points on the Poincaré map need to be tracked instead of tracking

the evolution of the system continuously. Thus, limit cycles of flows correspond to

isolated fixed points of Poincaré maps; invariant tori correspond to closed curves of

the map; and chaotic invariant sets decrease their fractal dimension by one.

4.2 Nonsmooth Autonomous Dynamical Systems

This section begins the systematic study of the dynamics of nonsmooth systems.

Three different classes of piecewise-smooth systems: maps, flows and hybrid systems

will be introduced. A complete theory for existence and uniqueness of solutions does

not exist for these broad classes of system.

4.2.1 Piecewise-Smooth Dynamical Systems

A piecewise-smooth flow is given by a finite set of ODEs

ẋ = Fi(x, µ), for x ∈ Si (4.14)

where ∪iSi = D ⊂ Rn and each Si has a non-empty interior. The intersection Σij :=

(Si ∩ Sj) is either an R(n−1)-dimensional manifold included in the boundaries ∂Sj

and ∂Si, or is the empty set. Each vector field Fi is smooth in both the state x and

the parameter µ, and defines a smooth flow Φi(x, t) within any open set U ⊃ Si. In

particular, each flow Φi is well defined on both sides of the boundary ∂Sj.

A non-empty border between the two regions Σij will be called a discontinuity

set, discontinuity boundary, or sometimes, a switching manifold. The definition of

a piecewise-smooth flow does not uniquely specify a rule for the evolution of the
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dynamics within a discontinuity set. One possibility is to assign each Σij as belonging

to a single region Si only. That is, Fi rather than Fj applies on Σij. In fact, such

notions make little difference except in the case where the flow becomes confined to

the boundary.

The degree of smoothness at a point x0 in a switching set Σij of a piecewise-

smooth ODE is the highest order r such that the Taylor series expansion of Φi(x0, t)

and Φj(x0, t) with respect to t, evaluated at t = 0, agree up to terms of O(tr−1). That

is, the first non-zero partial derivative with respect to t of the difference [Φi(x0, t)−

Φj(x0, t)]|t=0 is of the order r. Unlike order of singularity for piecewise-smooth maps,

the degree of smoothness cannot be a non-integer.

4.2.2 Piecewise-Smooth Maps

A piecewise-smooth map is described by a finite set of smooth maps

x 7→ Fi(x, µ), for x ∈ Si (4.15)

where ∪iSi = D ⊂ Rn and each Si has a non–empty interior. The intersection Σij

between the closure (set plus its boundary) of the sets Si and Sj that is Σij := Si∩Sj

is either an R(n−1)-dimensional manifold included in the boundaries ∂Sj and ∂Si, or

is the empty set. Each function Fi is smooth in both the state x and the parameter

µ for any open subset U of Si.

A set Σij for a piecewise-smooth map is usually termed a border or discontinuity

boundary that separates the regions of phase space where different smooth maps apply.

The above definition allows for the possibility for one of the component maps Fi may

itself be nonsmooth at the boundary Σij. Cases that have Fi 6= Fj along Σij, so

that the map has a jump in the state are known as dicontinuous piecewise-smooth
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S1 S2

Σ12

(a) (b)

Figure 4.3: Schematic illustrating trajectories of: (a) Piecewise-smooth flow (b)
Piecewise-smooth map.

maps and are also included. In this case, a number of choices can be made about

the value of the map for points in Σij; for example, taking the average of Fi and

Fj; or allowing the map to be set valued at this point, taking all possible convex

combinations {Fi + λ(Fj − Fi) : 0 ≤ λ ≤ 1}. In practice, such choices make little

practical difference to the dynamics of the map, since they describe what happens to

a set of points of zero measure.

The order of singularity of a point x̂ ∈ Σij of a continuous piecewise-smooth

map is the order of the first non-zero term in the formal power-series expansion of

F1(x)− F2(x) about x = x̂. The order of singularity for a piecewise-smooth map can

be non-integer. Figure 4.3 shows the difference between the trajectories of a piecewise-

smooth flow and a piecewise-smooth map.

4.3 Nonautonomous Dynamical Systems

Consider an initial value prolem in Rd,

ẋ = f(t, x), x(t0) = x0 (4.16)
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In contrast to the autonomous case, the solutions may now depend separately on the

actual time t and the starting time t0 rather than only on the elapsed time t− t0 since

starting. Assuming global existence and uniqueness of solutions in forward time, the

solutions form a continuous mapping (t, t0, x0) 7→ x(t, t0, x0) ∈ Rd for t ≥ t0 with

t, t0 ∈ R and x0 ∈ Rd fulfilling the initial value and evolution properties

� x(t, t0, x0) = x0 for all t0 ∈ R and x0 ∈ Rd

� x(t2, t0, x0) = x(t2, t1, x(t1, t0, x0)) for all t0 ≤ t1 ≤ t2 and x0 ∈ Rd

The evolution property is a consequence of the causality principle that the solutions

are determined uniquely by their initial values for the given differential equation.

Figure 4.4 shows the phase space of a periodically forced dynamical system.

x1

x
3

x
2

x1

x
3

x
2

2�

 ω

Figure 4.4: Schematic description of cylindrical phase space associated with periodi-
cally forced system.

The concepts introduced in this chapter form the foundation for studying dynamical

systems and their bifurcations. The next chapter discusses the concept of bifurcation

and how the concept differs for autonomous system and nonautonomous systems.

Later, the equations required to study bifurcations are derived and the implementa-

tion of the algorithm for the derived equations in MATLAB is discussed.
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CHAPTER 5

BIFURCATION ANALYSIS OF NONLINEAR DYNAMICAL SYSTEMS

Most dynamical systems can be described using ordinary differential equations.

In general, these systems have nonlinear characteristics and include many parameters.

Small changes in the values of these parameters can sometimes result in large qual-

itative changes in the system performance. Therefore, determining a way to analyze

such systems is critical. As is well known, the solution to most nonlinear dynamical

systems cannot be obtained analytically [56,57]. This means we must conduct multi-

ple numerical simulations using the different fixed sets of parameter values and initial

conditions. However, each of these simulations can only provide information about

one stable solution at a time, and they tend to take a long time to reach a solution.

This approach is not very suitable for studying the dynamical system for a large range

of parameter values.

The topological properties of the solutions of a dynamical system may change

when a parameter of the system changes slightly. This process is known as bifurcation.

Examples of bifurcation phenomena include a transition from a stable equilibrium

state to an oscillating motion or from a regular oscillation to a chaotic state. Bifur-

cation analysis enables us to identify the range of a parameter over which a system

behaves in a stable manner, the total behavior of the solution in general, and the

transition mechanism of the dynamic responses. A set of parameter values that cause

bifurcations is called a bifurcation set, and a graph of these sets is called a bifurcation

diagram.
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5.1 Basic Theory of Bifurcation Analysis

Consider the following autonomous system

dx

dt
= fa(x, λ) (5.1)

and its forced system, that is, a nonautonomous system

dx

dt
= f(t, x, λ) (5.2)

where t ∈ R denotes time, x ∈ Rn is a vector consisting of state variables, and λ ∈ Rl

denotes the system parameters. Assume that both fa and f from above equations are

sufficiently differentiable, i.e., C∞-class functions. In addition, also assume that the

function f is periodic in τp so that f(t + τp, x, λ) = f(t, x, λ), for all t. We shall also

assume that a solution to Eq. 5.1 or 5.2 with the initial condition x = x0 at t = t0 is

described by x(t) = ϕ(t, x0), for all t, or x(t) = ϕ(t, λ; to, x0).

5.1.1 Equilibrium Point and Variational Equation in Autonomous System

Autonomous systems were introduced in Chapter 4. Let us briefly review the case of

autonomous systems following Eq. 5.1. By imposing the condition

fa(x, λ) = 0 (5.3)

one can compute the locations of equilibrium points in the system. Any point x∗

satisfying Eq. 5.3 is known as an equilibrium point.
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The Taylor expansion of fa in Eq. 5.1 about the equilibrium point by setting x = x∗+ξ

can be described by

d(x∗ + ξ)

dt
= fa(x

∗ + ξ) = fa(x
∗) +

∂fa(x)

dx

∣∣∣∣∣
x=x∗

ξ + ..., (5.4)

where ξ is a small perturbation. By subtracting this equation from Eq. 5.1, we obtain

a variational equation with respect to ξ:

dξ

dt
=
∂fa(x)

dx

∣∣∣∣∣
x=x∗

ξ =
∂fa(x

∗)

dx
ξ ≡ Jcξ (5.5)

Suppose that the eigenvalues µi, i=1,2,....,n, are the roots of the characteristic equa-

tion for this n×n Jacobian matrix Jc, and they determine the stability of the equilib-

rium point. For simplicity, assume that all eigenvalues are real and distinct, and the

correspoinding eigenvectors, vi, for i=1,2,...,n, can be obtained. The general solution

of the variational equation can be written as

ξ(t) =
n∑
i=1

cie
µitvi (5.6)

where ci is a constant related to the inital values of the state variables. We know that

this general solution is stable if and only if all the eigenvalues are negative. Thus, the

eigenvalues of the Jacobian matrix, Jc present a stability index for the given equi-

librium point in a continuous-time autonomous system in the neighborhood of the

equilibrium point. Here, x∗ is known as a hyperbolic equilibrium point, if the real

parts of all eigenvalues are non-zero. A bifurcation occurs when an equilibrium point

loses its hyperbolicity as a result of variation of the system parameters.
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Typical bifurcations of the equilibrium point are

� Hopf bifurcation: A couple of complex conjugate eigenvalues of the characteristic

equation become pure imaginary numbers. An oscillatory solution appears as a

result of changing the value of a parameter.

� Saddle-node bifurcation: One of the eigenvalues is zero. A pair of equilibrium

points appear when the value of a parameter is changed.

If a very small perturbation is added to an autonomous system, a periodic solution

will appear around the equilibrium point, and it will inherit the stability of the equi-

librium. Mathematically, adding a small perturbation to an autonomous system leads

to the disappearance of all equilibrium points since dx/dt 6= 0 for all t.

5.1.2 Periodic Solutions and Fixed Points of a Nonautonomous System

The periodic solutions of a nonautonomous system such as one described by Eq. 5.2

can be qualitatively studied by using a Poincaré map.

5.1.2.1 Poincaré Mapping and Fixed Points

Assume that the solution to Eq. 5.2 starting from x = x0 at t = 0 is given by

x(t) = ϕ(t, λ; t0, x0) (5.7)

Thus, the solution is also periodic in τp because of the periodicity of f in Eq. 5.2, i.e.,

ϕ(t+ τp, λ; t0, x0) = ϕ(t, λ; t0, x0). We can define the corresponding map:

Pλ : Rn → Rn

x0 7→ Pλ(x0) = ϕ(t+ τp, λ; t0, x0)

(5.8)
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This map is a sampling of the orbit every τp. Therefore, we get

x0, Pλ(x0), P
2
λ (x0), ..., P

m
λ (x0), ... (5.9)

We call this Pλ as the Poincaré mapping. Note that the system described using a

differential equation in Eq. 5.2 has been converted into a difference equation given by

x(k+1) = Pλ

(
x(k)
)

(5.10)

for k=0,1,2... If an initial state, x0 ∈ Rn, satisfies the following relationship

x0 = Pλ(x0) (5.11)

then this point is called a fixed point, Also, if for some m 6= 1,

x0 = Pm
λ (x0) (5.12)

and if all P k
λ (x0), k= 0, 1,..., m-1, are different, x0 is called an m-periodic point.

This results in a one–to–one correspondence between the periodic solution of the

nonautonomous differential equation and the fixed point of the Poincaré map Pλ.

The case for an m-periodic point can also be studied by replacing Pλ by Pm
λ , or the

mth iterate of Pλ. In general, only a limited number of continuous dynamical systems

have an explicit form of Pλ. However, it is relatively easier to obtain the Poincaré

mapping.
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5.2 Jacobian Matrix of the System Using Poincaré Sections

A Poincaré map is created by using the intersection of a periodic orbit in the

n-dimensional state space of the dynamical system with a n-1-dimensional subspace

called the Poincaré section. While considering a system with discontinuous char-

acteristics, the Poincaré sections are usually defined at the break points using the

condition of discontinuity. On the other hand, for smooth nonautonomous systems, a

Poincaré sections is defined using time since the periodicity of the solutions matches

the frequency of the external, applied force. For this study, the Poincaré section of

the nonsmooth, nonautonomous system is defined with time.

Consider the system defined earlier as described by nonautonomous differential equa-

tions

x = (x1, . . . , xn)> ∈ Rn, (5.13)

dx

dt
= fi(t,x), i = 0, . . . ,m− 1, (5.14)

where t ∈ S1 is the time with S1 = {t ∈ R mod τ}, τ ∈ R, which is 2π/ω and is

a parameter to determine the initial Poincaré section Π0, x ∈ Rn is the state of the

system and fi : Rn → Rn is a C∞ function. It is assumed that a periodic solution

of the dynamical system exists, the solution orbit crosses Πi in a transversal manner

and x0 = x(0) ∈ Π0. The solution of Eq. 5.14 is given by

x(t) = ϕ(t,x0) (5.15)

The solutions arising from each fi are given by ϕi(t,xi, ti). The initial time of the

solution is given by ti . The local sections Πi are defined as

Πi = {t ∈ S1,x ∈ Rn|αi(t,x, κi) = 0} (5.16)
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where αi is a differentiable function and κi is a parameter used to uniquely define the

positions of the Poincaré sections Πi. In addition, for a nonautonomous system,

Π0 = {t ∈ S1,x ∈ Rn|α0(t,x, τ) = t = 0} (5.17)

When a solution orbit dictated by fi arrives at Πi+1, the function that governs the

solution is reset to fi+1 as shown in Fig. 5.1(a). If the solution orbit crossing through

multiple Poincaré sections finally reaches the initial Π0 section again, then the sub

maps can be defined as

H0 : Π0 → Π1

x0 7→ x1 = ϕ0(t1,x0, t0 = 0)

H1 : Π1 → Π2

x1 7→ x2 = ϕ1(t2,x1, t1)

...

Hm−1 : Πm−1 → Π0

xm−1 7→ xm = ϕm−1(tm,xm−1, tm−1)

(5.18)

The above set of equations describe the m − 1 maps corresponding to Eq. 5.14. All

Hi ’s are the submaps from a given Poincaré section Πi to the next Poincaré section

Πi+1. Similarly, all xi 7→ xi+1 are maps from a given Poincaré section Πi to the

next Poincaré section Πi+1. All the solution orbits ϕi(ti+1,xi, ti) represent a solution

starting from (xi, ti) and ending at time ti+1. From Eq. 5.18, the composite Poincaré

map H can be defined as

H(x(k), τ, κ, ..., κm−1) = Hm−1 ◦ ... ◦H1 ◦H0 (5.19)
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Figure 5.1: Schematic describing how ∆x0 influences the collision time for non–
autonomous systems with breaks.

When the orbit starting from x0 ∈ Π0 returns to the initial point x0, the solution

results in a periodic orbit and the corresponding fixed point of the Poincaré map H

is written as follows

x0 = H(x0, τ, κ, ..., κm−1) (5.20)

The derivative with the initial value of the Poincaré map is given by

∂H

∂x0

=
m−1∏
i=0

∂Hm−1−i

∂xm−1−i

∣∣∣∣∣
tm−i

tm−1−i

(5.21)

However, for nonsmooth, nonautonomous systems, the Jacobian calculated by Eq.

5.21 is known to give incorrect numerical results [58]. To investigate the cause for this

error, Miino et al. studied the relation of the map H with the time t, and of the time

t with initial value x 0 for a nonsmooth, nonautonomous system. For an autonomous

system with nonsmooth characteristics, ∂H/∂x0 = (∂H1/∂x1) ·(∂H0/∂x0) is satisfied

because it is assumed that the map H1 is dependent on the initial value x 1 only.

Therefore, the map is defined as H1(x1) = x2.
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For nonautonomous systems, the initial time t1 also influences the map H1 as

shown in Eq. 5.18 and the map is defined as H1(t1,x1) = x2. In Fig. 5.1(b), ∆x0 is an

infinitesimal difference of x0, which causes infinitesimal differences ∆x1 and ∆t1 in

x1 and t1 on Π1 and so on. Hence, it is observed from Fig. 5.1(b) that an infinitesimal

difference of x0 affects x3 via affecting t1, x1, t2 and x2 and so on. To solve this

problem, Miino et al. [58] proposed a solution to regard the time t as a state variable

and define the system by

y = (x0, . . . , xn−1, t)
> ∈ Rn × S1, (5.22)

dy

dt
=

fi(t,x)

1

 = gi(y), i = 0, . . . ,m− 1, (5.23)

For the new system, each submap H ′ is defined as

H ′0 : Π′0 → Π′1

y0 7→ y1 = Φ0(t1,y0)

H ′1 : Π′1 → Π′2

y1 7→ y2 = Φ1(t2,y1)

...

H ′m−1 : Π′m−1 → Π′0

ym−1 7→ ym = Φm−1(tm,ym−1)

(5.24)

Define a coordinate system u ∈ Σ ⊂ Rn−1 by using a projection p and embedding

map p−1 as shown in Fig. 5.1(b) and described by:

p : Π0 → Σ p−1 : Σ→ Π0 (5.25)
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The Poincaré map on the local coordinate is a mapping defined by

Hl : Σ→ Σ

u 7→ p ◦H ◦ p−1(u)

(5.26)

Therefore,

p−1(u) = y = (x0, ..., xn−1, 0)> (5.27)

p(y) = u = (x0, ..., xn−1)
> (5.28)

∂p−1

∂u
=



1 0 . . . 0

0 1 . . . 0

...
. . .

...

0 0 . . . 1

0 0 . . . 0



∂p

∂y
=



1 0 . . . 0 0

0 1 . . . 0 0

...
. . .

...

0 0 . . . 1 0



(5.29)

From Eq. 5.24, the Poincaré map H can be described as

H(x(k), τ, κ, ..., κm−1) = p ◦H ′m−1 ◦ ... ◦H ′1 ◦H ′0 ◦ p−1 (5.30)
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Since each submap H ′i depends on the state y0 only as the state y0 includes the time

t, the Poincaré map can be used to calculate the correct Jacobian matrix at the initial

map point x0 and is given by

∂H(x0)

∂x0

=
∂p

∂y

(
m−1∏
i=0

∂H ′m−1−i
∂ym−1−i

)
∂p−1

∂u0

(5.31)

For the PDE–LPG coupled system with PDE thrust given by Eq. 2.6

∂H(x0)

∂x0

=
∂p

∂y
.
∂H ′2
∂y2

.
∂H ′1
∂y1

.
∂H ′0
∂y0

.
∂p−1

∂u0

(5.32)

To find the derivatives in Eq. 5.32, it is required to take into account the derivative of

the boundary colliding time [59]. For example, if the solution orbit reaches boundary

at time ε, then the derivative can be found as

∂H ′0
∂y0

=
∂y(ε)

∂y0
+
∂y

∂t

∂ε

∂y0
=
∂y(ε)

∂y0
+ g(y(ε))

∂ε

∂y0
(5.33)

The term ∂ε/∂y0 vanishes if the map H ′0 relies on time. Using the procedure shown

in [59,60] and Eq. 5.33, the Jacobian using Eq. 5.32 can be calculated.
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For the system parameters defined earlier and PDE operating frequency of 3.75 Hz,

∂p

∂y
=

1 0 0

0 1 0



∂H ′2
∂y2

=


0.2502 0.0064 0

14.6587 0.3736 0

0 0 1



∂H ′1
∂y1

=


0.8948 0.0078 0

−42.42 0.6426 0

0 0 1



∂H ′0
∂y0

=


1 0.0002 0

0.1893 0.9997 0

0 0 1



∂p−1

∂u0

=


1 0

0 1

0 0



(5.34)

Therefore,

∂H(x0)

∂x0

=

−0.04618 0.0060

−2.705 0.3526

 (5.35)
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Let λ be the eigenvalues of the Jacobian matrix as calculated using Eq. 5.32. For

a nonsingular Jacobian matrix of a dynamical system, all the eigenvalues will be

non–zero and Lyapunov exponents can be calculated using methods such as QR de-

composition. Lyapunov exponents can then be used to determine the stability of the

system. In case of a singular system, methods such as QR decomposition cannot be

used since the matrix will be non–invertible and the decomposition will not be unique.

However, a dynamical system with a singular Jacobian matrix represents a system

with non-hyperbolic equilibrium. Such systems are not structurally stable and small

perturbations can result in local bifurcations of the non-hyperbolic equilibrium. Such

equilibria are sometimes referred to as being critical. Their stability cannot be deter-

mined directly from the signs of the eigenvalues of the Jacobian matrix and depends

on the nonlinear term present in the differential equation describing the system. The

eigenvalues of the Jacobian matrix given by Eq. 5.35 are

λ3.75Hz =

 0

0.3064

 (5.36)

For the coupled PDE-LPG nonsmooth, nonautonomous system, it was observed that

for all PDE operating frequencies, one eigenvalue is always zero as shown in Fig. 5.2.

This results in a singular Jacobian matrix as calculated using a composite Poincaré

map.
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Figure 5.2: Eigenvalues of the Jacobian matrix at different PDE operating frequencies.

5.2.1 Stability of a Fixed Point in Difference Equation

Let us consider a stability index for difference equations. Equation 5.8 forms a discrete

dynamical system given by the difference equation

z(k+1) = W

(
z(k)
)
, k = 0, 1, 2, ... (5.37)

If ζ∗ is a fixed point for the discrete dynamical system,

ζ∗ −W (ζ∗) = 0 (5.38)

As a similar discussion from the previous section, let η(k) ∈ Rn be a small perturbation

away from the fixed point ζ∗ satisfying Eq. 5.38. For a small ε, we can assume that

‖η(k)‖ < ε, where ‖ · ‖ is the Euclidean norm. If the variation around the fixed point

is defined as z(k) = ζ∗ + η(k), the difference equation of Eq. 5.37 is

z(k+1) = ζ∗ + η(k+1) = W

(
ζ∗ + η(k)

)
(5.39)
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A Taylor expansion gives

ζ∗ + η(k+1) = W (ζ∗) +
∂W

∂z

∣∣∣∣
z=ζ∗

η(k) + ... (5.40)

The following linear difference equation is obtained by neglecting the high–order terms

and subtracting Eq. 5.40 from Eq. 5.38

η(k+1) =
∂W

∂z

∣∣∣∣
z=ζ∗

η(k) =
∂W (ζ∗)

∂z
η(k) ≡ Jd η

(k) (5.41)

where Jd is an n× n Jacobian matrix and its elements are derivatives of the solution

with respect to the state variables. The eigenvalue problem for a difference equation

is formulated as

Jdvi = µivi (5.42)

for i=1, 2,..., n. In general, this equation has n–tuple non–zero vectors vi, i= 1, 2,

..., n. µi and the corresponding vi are known as a multiplier and eigenvector of the

difference equation given by Eq. 5.41, respectively. The multipliers are computed from

the following characteristic equation

det(Jd − µiI) = 0 (5.43)

The solution at time k to the linear difference equation given Eq. 5.41 can be expressed

as a linear combination of constants, multipliers, and eigenvectors as

η(k) =
n∑
i=1

ciµ
k
i vi

= c1µ
k
1v1 + c2µ

k
2v2 + ...+ cnµ

k
nvn

(5.44)
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To prevent an explosion in the magnitude of the vector η(k), all absolute values of µi

should be less than unity.

Let us go back to the Poincaré mapping Pλ. It generates a sequence given by

x(1) = Pλ(x0), x
(2) = Pλ(x

(1)), ..., x(k+1) = Pλ(x
(k)), ... (5.45)

From the linearity of variational equation defined earlier, the characteristic equation

can be written as

det

(
∂Pλ(x

∗)

∂x
− µiI

)
= 0 (5.46)

where x∗ is a fixed point. If all the absolute values of the multipliers are different from

unity, x∗ is known as a hyperbolic fixed point of Pλ. For a two–dimensional discrete

system, Table 5.1 shows the topological classification of hyperbolic fixed points.

Table 5.1: Topological classification based on characteristic multipliers [7].

Name Topological property Condition

sink completely stable |µ1| < 1, |µ2| < 1
source completely unstable |µ1| > 1, |µ2 > 1
saddle direct–type unstable 0 < µ1 < 1 < µ2

saddle inverse–type unstable µ1 < −1 < µ2 < 0

5.2.1.1 Bifurcation of Periodic Solution

There are three main kinds of local bifurcations of periodic solutions. Figure 5.3

shows the location of multipliers on the complex plane and their relation to the type

of bifurcation.

� Tangent bifurcation (or saddle–node bifurcation or fold bifurcation of periodic

solution): This type of bifurcation causes a pair of a node and a saddle to emerge
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Figure 5.3: Location of multipliers on the complex plane and types of bifurcations of
a periodic solution.

or disappear. At a particular parameter value λ = λ∗, one of the multipliers of

the characteristic equations satisfies the condition µi=1.

� Period–doubling bifurcation (or flip bifurcation): This type of bifurcation occurs

when a real multiplier passes through a point (-1,0) in the complex plane, i.e.,

µi = −1. If an inverse–type saddle takes this value of the multiplier, its stability

changes. As a side effect, two–periodic points are generated around the fixed

point. In general, the period doubles and none of the fixed points disappear.
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� Neimark–Sacker bifurcation (or Hopf bifurcation): Similar to Hopf bifurcation

of an equilibrium point, the fixed point becomes unstable, and an invariant

closed curve, which corresponds to quasi–periodic solution of the original pe-

riodic nonautonomous system, may appear in the Poincaré map. This type of

bifurcation occurs when a pair of multipliers pass transversely through points

of unit circle except for 0 and π.

5.3 Method of Numerical Computation

Newton’s method is used to accomplish the task of obtaining bifurcation sets and

to compute accurate locations of equilibrium point or fixed point. For an arbitrary

nonlinear function T (q), which satisfies T (q∗) = 0 with sufficient accuracy, the Taylor

expansion of the kth approximation of q(k) is

T (q) = T
(
q(k)
)

+DT
(
q(k)
)(
q(k+1) − q(k)

)
+ ... (5.47)

where q = (q0, q1, ..., qn)>, T = (T1, T2, ..., Tn)>, and (·)> represents the transpose

operation. DT
(
q(k)
)

= (∂Ti/∂qj) is the Jacobian matrix. A correction vector h =

q(k+1)−q(k) can be obtained by solving the following linear non–homogeneous equation

DT
(
q(k)
)
h = −T

(
q(k)
)

(5.48)

5.3.1 Tracking the Fixed Point

We perform Newton’s method on Eq. 5.11

F (x0) := x0 − Pλ(x0) = 0 (5.49)
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where x0 corresponds to a fixed point. The initial value in Eq. 5.2 is described as

x0 = (x01, x02, ...x0n)>. Also, assume that x
(k)
0 is the first guess of the fixed point.

Then, the algorithm to obtain a (k + 1)th order approximation is as follows

x
(k+1)
0 = x

(k)
0 + h

DF
(
x
(k)
0

)
h = −F

(
x
(k)
0

) (5.50)

where DF
(
x
(k)
0

)
is an n × n sized Jacobian matrix with respect to the initial value

x0 given by

DF
(
x
(k)
0

)
= I − ∂Pλ

∂x

(
x
(k)
0

)
(5.51)

where I is an n× n identity matrix and ∂Pλ/∂x is the following matrix

∂Pλ
∂x

(
x
(k)
0

)
=



∂ϕ1

∂x01

(
τp, x

(k)
0

)
∂ϕ1

∂x02

(
τp, x

(k)
0

)
· · · ∂ϕ1

∂x0n

(
τp, x

(k)
0

)
∂ϕ2

∂x01

(
τp, x

(k)
0

) . . .
...

...
. . . ∂ϕn−1

∂x0n

(
τp, x

(k)
0

)
∂ϕn

∂x01

(
τp, x

(k)
0

)
· · · · · · ∂ϕn

∂x0n

(
τp, x

(k)
0

)


(5.52)

The second equation of Eq. 5.50 must be solved for h by using a suitable method like

the Gauss elimination. F
(
x
(k)
0

)
is easily obtained from Eq. 5.49, but obtaining the

elements of the Jacobian matrix given by Eq. 5.52 requires more work.

Rewriting Eq. 5.2

dx

dt
= f(t, x, λ) (5.53)

where x = (x1, x2, ..., xn)>, f(t, x) = f1(t, x, λ), f2(t, x, λ), ..., fn(t, x, λ))>, and ϕ =

(ϕ1, ϕ2, ..., ϕn)>. The solution of Eq. 5.53 starting from x0 at t = t0 was defined

earlier as

x(t) = ϕ(t, λ; t0, x0) ≡ ϕ(t, x0) (5.54)
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Substituting the solution of this equation into Eq. 5.53, we get

dϕ(t, x0)

dt
= f(t, ϕ(t, x0)) (5.55)

Differentiating this equation by x0 yields

∂

∂x0

(
dϕ(t, x0)

dt

)
=

∂

∂x0
(f(t, ϕ(t, x0))) (5.56)

The order of differentiation on the left–hand side is commutative, and the following

equation is obtained from the right–hand side

d

dt

(
∂ϕ(t, x0)

∂x0

)
=
∂f(t, ϕ(t, x0), λ)

∂x

∂ϕ(t, x0)

∂x0
(5.57)

The above equation is of the form

dX

dt
=
∂f

∂x
X (5.58)

where X = ∂ϕ/∂x0 is the matrix solution of a variable coefficient linear differential

equation. Equation 5.57 is known as a variational equation for Eq. 5.53. Also,

∂ϕ(0, x0)

∂x0
= I (5.59)

Therefore, by setting Eq. 5.59 as the initial value, we can obtain all elements in

Eq. 5.52 by numerically integrating Eq. 5.57 ftom t = 0 to τ + p. This numerical

integration can be performed by using Runge–Kutta method. Once this is completed,

Newton’s method is ready to perform. The fixed point x0 can be accurately located

by iteration.
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5.3.2 Tracking Bifurcation Sets

Let us compute a bifurcation curve on a two–parameter plane. The algorithm adds one

more equation to Eq. 5.49, that is, the characteristic equation. Consider the following

simultaneous equation

FB :=

 x0 − Pλ(x0)

det(DPλ(x
∗
0)− µ∗I

 = 0 (5.60)

where DPλ(x
∗
0) denotes the derivative of the Poincaré map, Pλ, with respect to the

initial value, x0 i.e., DPλ(x
∗
0) = ∂Pλ(x0)/∂x0|x0=x∗0 .

Define FB ∈ Rn+1 as

FB(x0, λ) = [g1(x0, λ), g2(x0, λ), ..., gn(x0, λ), χ(x0, λ, µ
∗)> (5.61)

where χ(x0, λ, µ
∗) is the characteristic equation. Newton’s method can be used to

solve Eq. 5.60.

Rewriting Eq. 5.50 as

u(k+1) = u(k) + h

DFB
(
u(k)
)
h = −FB

(
u(k)
) (5.62)

where u = (x01, x02, ..., x0n, λ)>.
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The Jacobian matrix is given by

DFB
(
u(k)
)

=



∂g1
∂x01

∂g1
∂x02

· · · ∂g1
∂x0n

∂g1
∂λ

∂g2
∂x01

. . .
...

...

...
. . . ∂gn−1

∂x0n

∂gn−1

∂λ

∂gn
∂x01

· · · · · · ∂gn
∂x0n

∂gn
∂λ

∂χ
∂x01

· · · · · · ∂χ
∂x0n

∂χ
∂λ



=



1− ∂ϕ1

∂x01
− ∂ϕ1

∂x02
· · · − ∂ϕ1

∂x0n
−∂ϕ1

∂λ

− ∂ϕ2

∂x01

. . .
...

...

...
. . . −∂ϕn−1

∂x0n
−∂ϕn−1

∂λ

− ∂ϕn

∂x01
· · · · · · 1− ∂ϕn

∂x0n
−∂ϕn

∂λ

∂χ
∂x01

· · · · · · ∂χ
∂x0n

∂χ
∂λ



(5.63)

Calculating derivatives such as ∂ϕ/∂x0 is routine but obtaining remaining deriva-

tives such as ∂ϕi/∂λ and derivatives of the characteristic equation χ(x0, λ, µ
∗) with

respect to the initial value x0 and the parameter λ requires the following additional

steps. First, consider the derivative with respect to a parameter, ∂ϕi/∂λ. Assume the

solution of Eq. 5.53 including a parameter λ as

x(t) = ϕ(t, λ; t0, x0) (5.64)

Differentiating both sides of this equation with respect to λ results in

∂x

∂λ
=
∂ϕ

∂λ
(5.65)
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Substituting this into Eq. 5.53, we get a linear differential equation given by

d

dt

(
∂ϕ

∂λ

)
=
∂f

∂x

∂ϕ

∂λ
+
∂f

∂λ
(5.66)

This is the variational equation with respect to the parameter λ. Similar to the com-

putation of the variational equation Eq. 5.57, the solution can be obtained using a

suitable numerical integration method. Next, consider the derivatives of the charac-

teristic equation. The characteristic equation χ(x0, λ, µ
∗) is the determinant of the

following n× n matrix

S(x0) :=
∂Pλ
∂x0
− µ∗I =



∂ϕ1

∂x01
− µ∗ ∂ϕ1

∂x02
· · · ∂ϕ1

∂x0n

∂ϕ2

∂x01

. . .
...

...
. . . ∂ϕn−1

∂x0n

∂ϕn

∂x01
· · · · · · ∂ϕn

∂x0n
− µ∗


(5.67)

In Eq. 5.63, the derivatives of the characteristic equation with respect to the initial

value x0 can be obtained by using the equation given by

∂χ(x0, λ, µ
∗)

∂x0
=

n∑
i=1

det(Si) (5.68)

where Si are matrices that are differentiated from each element of the ith column of

S with regard to x0.
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For example, if the Eq. 5.53 has a state vector x = (x1, x2, x3)
> ∈ R3, the derivative

of the characteristic equation with respect to the element x01 in the initial value

x0 = (x01, x02, x03)
> is given by

∂χ(x0, λ, µ
∗)

∂x01
=

3∑
i=1

det(Si) =

∣∣∣∣∣∣∣∣∣∣
∂

∂x01

(
∂ϕ1

∂x01
− µ∗

)
∂

∂x01

∂ϕ1

∂x02
∂

∂x01

∂ϕ1

∂x03

∂ϕ2

∂x01

∂ϕ2

∂x02
− µ∗ ∂ϕ2

∂x03

∂ϕ3

∂x01

∂ϕ3

∂x02

∂ϕ3

∂x03
− µ∗

∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣
∂ϕ1

∂x01
− µ∗ ∂ϕ1

∂x02

∂ϕ1

∂x03

∂
∂x01

∂ϕ2

∂x01
∂

∂x01

(
∂ϕ2

∂x02
− µ∗

)
∂

∂x01

∂ϕ2

∂x03

∂ϕ3

∂x01

∂ϕ3

∂x02

∂ϕ3

∂x03
− µ∗

∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣
∂ϕ1

∂x01
− µ∗ ∂ϕ1

∂x02

∂ϕ1

∂x03

∂ϕ2

∂x01

∂ϕ2

∂x02
− µ∗ ∂ϕ2

∂x03

∂
∂x01

∂ϕ3

∂x01
∂

∂x01

∂ϕ3

∂x02
∂

∂x01

(
∂ϕ3

∂x03
− µ∗

)
∣∣∣∣∣∣∣∣∣∣

(5.69)

The derivatives of the characteristic equation related to the parameter λ are the same

as those in Eq. 5.68. Consequently, to calculate each element of the Jacobian matrix

of Eq. 5.63, it is necessary to obtain the second derivatives of the Poincaré map Pλ

for x0 given by

∂

∂x0j

(
∂Pλ
∂x0

)
=

∂

∂x0j

(
∂ϕ

∂x0

)
(5.70)

for j=1, 2, ..., n, where xoj denotes an element in the initial value x0. Differentiating

Eq. 5.57 with respect to x0 one more time

d

dt

{
∂

∂x0

(
∂ϕ

∂x0

)}
=

∂f

∂x0

∂

∂x0j

(
∂ϕ

∂x0

)
+

∂

∂x0j

(
∂f

∂x0

)(
∂ϕ

∂x0

)2

(5.71)
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for j = 1, 2, ... , n. This equation is also linear. The numerical solution of Eq. 5.57

can be substituted for ∂ϕ/∂x0. The underlined part is a tensor. Although it looks

complicated, it can be computed by using numerical integration.This equation is

known as the second variational equation. All the elements of the Jacobian matrix

given by Eq. 5.63 can now be computed.

5.3.2.1 Mathematical foundation

A nonsmooth dynamical system assumes the existence of a state space X of

dimension n, the vector-valued funtion fI : X 7→ X known as the vector field, param-

eterized by an index vector I. A smooth event function hI : X 7→ R and a smooth

state jump function gI : X 7→ X are associated with with index vector I. A solution

to the corresponding dynamical system is given by
{
xj : (tj−1, tj] → X

}m
j=1

of m

smooth curves and an associated sequence
{
Ij
}m
j=1

, such that

I(t) = Ij, t ∈ (tj−1, tj] (5.72)

and

(i) The corresponding tangent vector at xj(t) equals fI(xj(t)) is given by

d

dt
xj(t) = fIj(xj(t)) (5.73)

(ii) The j-th segment ends at an intersection with the event surface

{
x|hIj(x) = 0, hIj,x(x) · fIj(x) ≤ 0

}
(5.74)

i.e.,

hIj(xj(tj)) = 0 (5.75)
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(iii) The connectivity between the j-th and j+1 -th segments is given by a jump

function gIj, given by

gIj(x(tj)) = lim
t→tj+

xj+1(t) (5.76)

The auxiliary boundary condition corresponds to the connectivity condition

lim
t→t0+

x1(t)− gIm(xm(tm)) = 0 (5.77)

5.3.3 Collocation Methods for Solving Boundary-Value-Problems (BVP’s)

Collocation methods provide an accurate and adaptive procedure to compute

the solutions of differential equations with boundary value problems. The method

involves seeking an approximation of the form of piecewise polynomials of predeter-

mined order that satisfy the given differential equation at a discrete set of points in

the definition interval. This set of points is known as collocation points. The method is

considered as robust and has become a favored methods for solving difficult problems

in differential equations. consider a differential equation

dx

dt
= f(x) (5.78)

for some vector field f and the solution x(t) on the interval [0,T] for some T > 0. In

order to discretize the solution x(t), the time t is partitioned as

0 = t0<t1/m<...<t1<t1+1/m<...<t2<...<tN = T (5.79)

for integers N and m. Let

∆j = tj − tj−1 (5.80)

for all j = 1, ..., N .
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Figure 5.4: Mesh intervals, extended mesh intervals and the collocation points for a
solution trajectory.

For each interval given by [tj−1, tj], Lagrange polynomials are defined as

lj,i(t) =
m∏

k=0,k 6=i

t− tj−k/m
tj−i/m − tj−k/m

(5.81)

for i = 0, ...,m and j = 1, ..., N . The piecewise polynomial function p(t)

p(t) =
m∑
i=0

lj,i(t)x(tj−i/m) (5.82)

for t ∈ [tj−1, tj], interpolates the function x(t) at the points x(tj−i/m) for j =

1, ..., N, i = 0, ...,m. Now, consider the m-th order Legendre polynomial on the inter-

val [0,1] and its roots given by zi, i = 1, ...,m. For each interval [tj−1, tj], define zi,j

as

zi,j = tj−1 + zi∆j (5.83)
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Figure 5.5: Lagrange basis polynomials corresponding to the mesh points.

Then, an approximation to the solution for the orifinal differential equation is

obtained by seeking the n(N + 1) discrete values of the components of the unknown

function x(t) at tj−i/m for j = 1, ..., N, i = 1, ...,m and tN so that the piecewise

polynomial function p(t) satisfies the system of nmN equations

p′(zj,i)− f(p(zj,i) = 0 (5.84)

for j = 1, ..., N and i = 1, ...,m and associated n boundary conditions.

Let x0 denote an initial guess for the vector consisting of concatenation of the

unknown discretization values x(tj−i/m). An improved estimate for the solution vector

x can be obtained using a correction factor ∆x, where

J(x0).∆x = −F(x0) (5.85)

corresponding to a new iteration for Newton-Raphson method. Here, F(x0) is the

vector of residuals of the set of equations and J(x0) is the Jacobian matrix of the
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equations with respect to x evaluated at the point x0. The inversion of the linear

equation for ∆x is obtained using Gauss elimination. The process is repeated until

the residual is within the required tolerance limits.

5.3.4 Implementation of the Algorithm

The discussion from the previous section and derivation of variational equations

is an important step in the study of nonsmooth dynamical systems. However, the im-

plementation of the derived equation using computer algorithms is a challenge itself.

Although multiple algorithms and software are available for analyzing and tracking

the fixed points and bifurcation sets for smooth and autonomous dynamical systems,

there are no computational tools available to simulate nonsmooth nonautonomous

systems and track the bifurcation sets directly. Toolboxes such as MATCONT [61],

SLIDECONT [62], BunKi, etc. can be used to perform bifurcation analysis to study

dynamical systems. However, these toolboxes cannot be used to simulate systems with

state-space jumps. More recently, the toolbox developed by Thota [63] has added func-

tionality to previously existing toolboxes. However, due to extensive documentation

and use of many standard MATLAB functions, the implementation of the variational

equations derived for the system was found to be most suitable using COCO’s hspo

toolbox [64].

The mathematical methodology known as parameter continuation is the central

theme of all the toolboxes available for studying dynamical systems. The theoretical

concept is based on the observation that the solutions to parameterized mathematical

equations often belong to solution families, in turn parameterized by problem param-

eters. There are exceptions to this general idea, but that is a current field of research

in applied mathematics and is outside the scope of this work. Parameter continuation,

therefore, is a complementary tool as it enables the study of dynamical systems and
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to explore the character and persistence of solutions across parameter domains, even

in the absence of closed-form mathematical analysis.

The following section describes a dynamical system with multiple segments as

needed for encoding the governing equations of the system in COCO [64].

5.3.5 Multisegment Boundary Value Problem and Its Encoding

Consider a general multisegment boundary-value problem that applies to the

continuation of periodic orbits in hybrid dynamical systems. A sequence of M smooth

curves is defined and associated to a sequence of triplets {(mj, ej, rj)}Mj=1, referred to

as the orbit signature, so that

dy(j)

dt
= f

(
y(j), p;mj

)
(5.86)

and

h
(
y(j)(Tj), p; ej

)
= 0 (5.87)

for j = 0, ..., M,

g
(
y(j)(Tj), p; rj

)
= y(j+1)(0) (5.88)

for j = 0, ..., M-1, and

g
(
y(j)(TM), p; rM

)
= y(1)(0) (5.89)

for families of smooth functions f(·, ·,mj) : Rnj × Rq → Rnj and h(·, ·, ej) : Rnj ×

Rq → R for j = 1, ...,M , g(·, ·,mj) : Rnj × Rq → Rnj+1 for j = 1, ..,M − 1 and

g(·, ·,mM) : RnM × Rq → Rn1 parameterized by

(i) the sequence of mode identifiers {mj}Mj=1,

(ii) the sequence of event identifiers {ej}Mj=1, and

(iii) the sequence of reset identifiers {rj}Mj=1,
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Using the formulation given above, in the case of a multisegment trajectory,

each segment can be treated independently from other segment while formulating the

piecewise polynomial approximation and the associated differential equations. The

connectivity between consecutive segments is formulated as a boundary-value prob-

lem through the boundary conditions for each individual segment. Therefore, the

operations such as Gauss elimination can be applied to each individual segment inde-

pendently of other segments and the Jacobian of the individual segment trajectories

can be obtained. The details for encoding the hybrid dynamical system using COCO

can be found in [64].

5.4 Results and Discussion

The governing equations for the mass-spring-damper system were encoded in

the COCO toolbox using the variational equation derived earlier. The Jacobians for

the system, event function, and jump function with respect to the state variable and

with respect to the system parameters are derived using the variational equations.

These Jacobians are required to encode the system dynamics in COCO in order to

simulate the system numerically.

Figures 5.6 - 5.13 show the response of the the hybrid system with nonlinear

spring stiffness under parameter variation. To solve the continuation problem, the

COCO toolbox requires encoding of all parameters involved in the governing equa-

tions. Initially, all the parameters are considered as inactive. The user is then required

to pick a parameter that will be made active and varied in order to solve the continu-

ation problem. All parameters were normalized according to the discussion provided

in the introduction of governing equations. The figures 5.6 - 5.13 plot the response of

the system in x1−Ω plane, where x1 is the peak displacement and Ω is the normalized

frequency. The simulation is run for ten iterations initially and the transient dynam-
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ics are allowed to dissipate. Then, the simulation is continued. Since the process of

bifurcation is used to study the persistence of equilibrium points, fixed points, and

periodic cycles, a solid line represents the continuation of same qualitative behavior

of the system until a new bifurcation point is detected. For example, in Fig. 5.9, the

period response of the system continues between Ω = 0.8 and 1.3. At this point, a

bifurcation is detected and the qualitative behavior of the system changes. The new

behavior continues until the next bifurcation point is detected. In general, a new

branch may be detected at any bifurcation point and the continuation problem will

be required to run for all the branches. For Figs. 5.6 - 5.9, the peak pressure from the

detonation engine was varied. This is a possibility if the detonation engine misfires

and a proper CJ detonation is not achieved. For this case, a bifurcation from periodic

behavior transitioning to a Neimark-Sacker bifurcation when the peak pressure was

CJ pressure. For lower pressures, the periodic behavior continued and no branches or

transition to a new qualitative behavior was observed.

Figures 5.10 - 5.13 show the system response as the external load resistance

is varied. As the external load resistance is the an important factor in calculating

the electromagnetic damping in the system, it plays an important role in studying

the system dynamics. Noticeably, in addition to Neimark-Sacker bifurcations, period

doubling bifurcations were also observed.
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Figure 5.6: Response for
25% CJ pressure

Figure 5.7: Response for
50% CJ pressure

Figure 5.8: Response for
75% CJ pressure

NS bifurcation

Figure 5.9: Response for
100% CJ pressure
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Figure 5.10: External resistance
= 15 Ohms

Figure 5.11: External resistance
= 25 Ohms

Figure 5.12: External resistance
= 35 Ohms

Figure 5.13: External resistance
= 45 Ohms
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusion

The present research investigated the application of a pulse detonation engine

to drive a linear generator to produce electrical power. The previous studies by Braun

et al. [13] did not account for the electromagnetic damping due to the linear generator

architecture and used Friedlander equation to model the thrust generated by the pulse

detonation engine.

The Friedlander model [12] represents the pressure rise and the subsequent

decay of pressure in blast waves. Therefore, it is not an ideal model for the thrust

generate by a pulse detonation engine. The Endo-Fujiwara model [4] was created for

the analytical estimation of thrust by an ideal pulse detonation engine. The thrust

generated is given by a piecewise smooth function with a constant pressure zone,

followed by a decay. Therefore, the current research adopted the Endo-Fujiwara model

for an ideal pulse detonation engine thrust.

In order to expand the model used by Braun, the electromagnetic damping

introduced by the linear generator was also modeled into the governing equation

for the mass-spring-damper system. As various topologies for linear generators exist

in literature and real world applications, a comparative study of select topologies

was performed. When the magnetic field generated by the four-sided topology and

tubular topology is compared, neither type presents any distinct advantage over the

other. However, the ease of construction for a four-sided geometry was observed in

the literature. An attempt was made to use commercial simulation software to model
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the mass-spring-damper system and conduct high fidelity transient simulations using

pulse detonation engine thrust model. However, the available functionalities of the

commerical software did not allow a piecewise forcing function. Therefore, a double-

sided linear generator model was chosen to continue the research as an analytical

model for the damping generated by a double-sided topology was available and studies

could be carried out using numerical simulation.

Since the governing equations for the mass-spring-damper system are nons-

mooth and nonautonomous, a special treatment is required in the neighborhood of the

discontinuity. Various available numerical methods were studied and a time-stepping

method was used to simulate the system. The study was carried out for various sys-

tem parameter values and it was observed that performance of the system falls off

rapidly away from the tuned resonance frequency. To find a solution to this issue,

mass-spring-damper systems with nonlinear spring stiffness were also studied. A non-

linear hardening spring provided a bigger bandwidth but the power generated by the

system was very low and thus, a system with nonlinear hardening spring was not

pursued further. For a model with nonlinear softening spring, the power output for

the system was found to be appreciably higher under certain parameter values. In

the case when higher power output is the aim, a mass-spring-damper with nonlinear

softening spring presents an attractive option. In reality, a nonlinear softening spring

system can be achieved using a snap-through arrangement as discussed in the text.

The introduction of nonlinear spring stiffness adds a dimension to the study

of such systems. Due to the presence of nonlinear stiffness, the system can become

unstable under certain conditions. Therefore, a thorough understanding of the system

dynamics is essential. Two methods were used to study the stability of the system

analytically. A composite Poincaré map and its Jacobian was derived to analyze the

stability. It was observed that in the absence of energy storing elements in the linear
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resonator model, one of the eigenvalues of the Jacobian is always zero and the system

is critically stable. This was also confirmed using the maximum Lyapunov exponent

concept. For the system with nonlinear spring stiffness, the time-series output from

the numerical simulations were used to calculate the maximum Lyapunov exponent.

In this case also, the system was found to be stable for all parameter values tested.

As most nonlinear equations do not have a closed-form solution, any study of

systems governed by such equations relies heavily on numerical analysis. However,

this can be tedious in case a large number of cases need to be studied. Bifurcation

analysis becomes an extremely useful tool to study the dynamics of a system under

the variation of parameters. It allows a qualitative study of the system behavior as the

parameters governing the system change. This enables a study of a large number of

cases without the need to run simulations for individual cases. A bifurcation analysis

can help to choose the domain of system parameters for favorable operations.

In order to study the dynamics of the system using bifurcation tools, Jacobians

of the governing equations of the system with respect to the state variables and

system parameters were derived. The implementation of continuation algorithm was

carried out using the COCO toolbox and the Jacobians. It was observed that only

period doubling and Neimark-Sacker bifurcation show up in the bifurcation analysis.

No branch points or tangent bifurcations were observed.

6.2 Future Work

A major limitation on the current research was the lack of computational tools

to simulate a full mass-spring-damper model with a nonsmooth forcing function. Due

to this limitation, a double-sided linear generator topology was selected based on the

availability of an analytical model. As deriving detailed analytical models for other

topologies would be more suitable for electrical engineering domain, a possible path

123



forward would be to use system modeling and identification techniques in conjunction

with available commercial simulation tools to derive an analytical model for the four-

sided and tubular topologies. These analytical models can then be used in the mass-

spring-damper model and the power generation characteristics and stability of such

systems can be studied.

Another interesting path forward would be to conduct the bifurcation analysis

with three parameters. The current method only permits the bifurcation analysis with

two parameters. However, this path might be more suitable for applied mathematics

research.
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APPENDIX A

Linear Generator Topologies and Design Details
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APPENDIX B

Variational Equations for the Coupled System
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The variational equations for bifurcation analysis of nonlinear systems given by Tsumoto

et al. [65] are reproduced below.

B.1 The First Variational Equation

d

dt

∂ϕ1

∂x0
∂ϕ2

∂x0

 =


∂f1
∂x

∂f1
∂y

∂f2
∂x

∂f2
∂y


∂ϕ1

∂x0
∂ϕ2

∂x0

 ,

∂ϕ1

∂x0
∂ϕ2

∂x0


t=0

=

1

0

 (B.1)

d

dt


∂ϕ1

∂y0
∂ϕ2

∂y0

 =


∂f1
∂x

∂f1
∂y

∂f2
∂x

∂f2
∂y



∂ϕ1

∂y0
∂ϕ2

∂y0

 ,


∂ϕ1

∂y0
∂ϕ2

∂y0


t=0

=

0

1

 (B.2)

d

dt

∂ϕ1

∂λ
∂ϕ2

∂λ

 =


∂f1
∂x

∂f1
∂y

∂f2
∂x

∂f2
∂y


∂ϕ1

∂λ
∂ϕ2

∂λ

+

∂f1∂λ
∂f2
∂λ

 ,

∂ϕ1

∂λ
∂ϕ2

∂λ


t=0

=

0

0

 (B.3)

B.2 The Second Variational Equation

d

dt


∂2ϕ1

∂x20
∂2ϕ2

∂x20

 = Df


∂2ϕ1

∂x20
∂2ϕ2

∂x20

+

(
∂

∂xo
Df

)∂ϕ1

∂x0
∂ϕ2

∂x0

 (B.4)

d

dt


∂2ϕ1

∂y20
∂2ϕ2

∂y20

 = Df


∂2ϕ1

∂y20
∂2ϕ2

∂y20

+

(
∂

∂yo
Df

)
∂ϕ1

∂y0
∂ϕ2

∂y0

 (B.5)

d

dt


∂2ϕ1

∂x0∂y0
∂2ϕ2

∂x0∂y0

 = Df


∂2ϕ1

∂x0∂y0
∂2ϕ2

∂x0∂y0

+

(
∂

∂xo
Df

)
∂ϕ1

∂y0
∂ϕ2

∂y0

 (B.6)
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d

dt

 ∂2ϕ1

∂x0∂λ
∂2ϕ2

∂x0∂λ

 = Df

 ∂2ϕ1

∂x0∂λ
∂2ϕ2

∂x0∂λ

+

(
∂

∂xo
Df

)∂ϕ1

∂λ
∂ϕ2

∂λ

+

(
∂

∂x0
Dλf

)
(B.7)

d

dt


∂2ϕ1

∂y0∂λ
∂2ϕ2

∂y0∂λ

 = Df


∂2ϕ1

∂y0∂λ
∂2ϕ2

∂y0∂λ

+

(
∂

∂yo
Df

)∂ϕ1

∂λ
∂ϕ2

∂λ

+

(
∂

∂y0
Dλf
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x7 ẋ7 = x8 0

∂u
∂u0
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v x13 ẋ13 = x14 v1
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x18 ẋ18 = 0 0

∂v
∂u1
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x20 ẋ20 = −[ω2
n + 2c2c3cos(c3x13)sin(c3x13)x14]x19 − c2sin2(c3x13)x20 1

∂z
∂u1
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APPENDIX C

Sample Simulink Models for Calculating Jacobian of Composite Poincaré Map
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Figure C.4: Sample Simulink model for calculating a constant in a variational
equation.
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Figure C.5: Sample Simulink model for calculating one term in a variational
equation.
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Figure C.9: Sample Simulink model for calculating a constant in a variational
equation.
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