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ABSTRACT 

POST-DISASTER CONSTRUCTION LABOR COST FLUCTUATIONS: 

MEASUREMENT AND MODELING 

 

Navid Ahmadi Esfahani, Ph.D. 

The University of Texas at Arlington, 2018 

 

Supervising Professor: Mohsen Shahandashti 

 

The United States has been one of the top five countries most frequently hit by 

natural disasters. The post-disaster survival of cities and communities depend on their 

capabilities to reconstruct and repair damages to buildings and other infrastructure 

systems. The significant increase in the repair costs following large-scale natural 

disasters, also called “demand surge,” slows down the repair process that impacts many 

lives touched by large-scale natural disasters. Previous studies showed that post-disaster 

construction labor cost escalation drives the total post-disaster construction cost 

escalation in the U.S. The ultimate goal of this research is to (1) measure post-disaster 

construction labor wage changes in different sub-sectors of the construction sector and 

compare the sub-sectors against each other to determine which construction sub-sectors 

are most vulnerable to disasters, (2) assess the role of pre-disaster construction market 

conditions in influencing post-disaster construction labor changes, and (3) create Spatial 

Panel Data Models (SPDM) to find the spatial interaction effects as well as time-specific 

effects in the existing cross-sectional demand surge models. The historical county-level 

data of five construction market indicators (establishment count, contribution level, 

average weekly wages, employment level, and building permits) prior to disasters along
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with disaster magnitudes (property damages) were collected for more than 35 of the 

largest weather-related disasters (floods, storms, and tornadoes) in the United States. 

These disasters affected more than 600 counties from 2007 to 2014. It is expected that 

the results of this study will help cost engineers to prepare more accurate bids in the 

volatile post-disaster construction markets and help capital planners and post-disaster 

risk-mitigation agencies to identify the more vulnerable construction markets. It is also 

expected that the results of this study will help demand surge modelers to create more 

accurate models. 
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CHAPTER 1: INTRODUCTION 

In the past few decades, a dramatic increase in the number and severity of 

catastrophes has been observed (Kunreuther and Michel-Kerjan, 2009). Moreover, 

climate change can lead to natural disasters that are more frequent and more severe. 

(Fenner et al, 2017). 

Socio-economic losses following natural disasters have risen dramatically 

(Munich-Re, 2007). The United States has been one of the top five countries in the world 

most frequently struck by natural disasters (Guha-Sapir et al., 2015). More than 90% of 

the natural disasters in the U.S. are weather-related (United Nations, 2017). The post-

disaster survival of cities and communities depends on their capabilities to reconstruct 

and repair damages to the buildings following large-scale natural disasters. The 

significant post-disaster increase in repair costs slows down the repair process. The 

socio-economic phenomenon of increased construction costs following large-scale 

natural disasters, also called “demand surge,” cripples our capabilities to recover from 

disasters effectively. 

Demand surge is broadly defined as a sudden increase in the costs of materials, 

services, and labor due to the increased demand following a catastrophe (Subcommittee 

on Ratemaking of the Casualty Committee, 2000). The increased costs to repair or rebuild 

after large-scale natural disasters is simply the percentage increase in construction costs 

due to the restricted supply of construction materials and labor following a natural disaster 

(Kuzak and Larsen, 2005). Demand surge for hurricane Katrina, for example, was 

assumed to lie in the range of 30% to 40%. Demand surge arises when the demand for 

products and services surpasses the regional capacity to efficiently supply them (Munich-
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Re, 2007). The additional costs for these products and services are directly passed on to 

the consumers and their insurers. The amount of demand surge is important to building 

owners, insurers, reinsurers, and cost engineers because it gives a better understanding 

of how the construction industry operates in the aftermath of a natural disaster. 

The construction sector plays an important role in the recovery phase of natural 

disasters (Lloyd-Jones, 2006; Jayaraj, 2006; Benson et al., 2007; Owen and Dumashie, 

2007; Amaratunga and Haigh, 2008; UN/ISDR, 2009; Hallegatte, 2014). Moreover, most 

indirect economic losses in the aftermath of natural disasters are construction-related 

losses (Hallegatte, 2014). The construction sector is comprised of establishments that 

have primarily been engaged in the construction of buildings or engineering projects and 

includes new work, additions, alterations, or maintenance and repairs (Bureau of Labor 

Statistics, 2017).  

Labor cost fluctuation following natural disasters is known to be a driving factor in 

demand surge measurement (Olsen and Porter, 2013). The ultimate goal of this research 

is to (1) measure post-disaster construction labor wage changes in different sub-sectors 

of the construction sector and compare the sub-sectors against each other to determine 

which construction sub-sectors are most vulnerable to disasters, (2) assess the role of 

pre-disaster construction market conditions in influencing post-disaster construction labor 

changes, and (3) create Spatial Panel Data Models (SPDM) to assess the spatial 

interaction effects as well as time-specific effects in the existing cross-sectional demand 

surge models. 
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CHAPTER 2: BACKGROUND 

Demand surge studies can be classified into two major categories: Quantitative 

and qualitative.  

2.1. Quantitative Studies  

Quantitative studies for measuring and modeling demand surge can be classified 

into three categories:  

2.1.1. Demand surge represented by economic loss models 

These models analyze the economic consequences of natural disasters to create 

regional economic loss models that predict economic losses following natural disasters. 

Economic loss in these models is the difference between economic output following a 

natural disaster and economic output if there were no disasters. These models consider 

the economic sectors and the interactions between them to estimate economic losses 

following natural disasters. Input-output models and computable general equilibrium 

models are the most common types of these models. Each model has its own pros and 

cons (Olsen and Porter, 2011). The input-output models are believed to be an upper 

bound on economic loss, while the computable general equilibrium models represent a 

lower bound on economic loss (Okuyama ,2007). For example, Hallegatte et al. (2008) 

modeled the economic losses in the aftermath of 2004–2005 Hurricane Katrina. They 

proposed an adaptive regional input-output model that was used to simulate the economic 

loss in Louisiana after Katrina. They considered forward and backward propagations 

within the economic system and introduced adaptive behavior. Although these models 

help estimate total economic losses in the affected regions following natural disasters, 

they do not characterize fine-grained construction cost changes.  
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2.1.2. Demand surge represented by ground-up loss in properties 

The second category focuses on demand surge as a ground-up loss at the 

individual-property level or portfolio level following a natural disaster in a region. Data, in 

this category, are collected from insurance companies to model ground-up losses in the 

affected properties. For example, after Hurricane Andrew in the Gulf and Atlantic coasts 

of the U.S, Olsen and Porter (2011) defined demand surge at the portfolio level using 

data from estimated replacement costs of properties, a damage factor, and environmental 

excitation (wind speeds).  Florida International University (2009) defined a demand surge 

model as a function of total state-wide property losses in Florida. Insurers and reinsurers 

use these models to estimate how much reinsurance they need in the aftermath of a 

natural disaster. Although these models are highly valuable for insurance companies, 

they do not characterize fine-grained construction cost changes. 

2.1.3. Demand surge represented by fine-grained cost changes 

These models focus on labor and material components and define the demand 

surge as the consequence of a boost in the costs of a sector`s labors and materials. For 

example, Mueller and Osgood (2009) investigated the impact of droughts on Brazilian 

agricultural labor markets and found that severity of losses varies depending on 

agricultural income. Belasen and Polachek (2009), using the quarterly wage data in 

Florida, concluded that in the aftermath of hurricanes in Florida, labor markets 

experienced faster earnings growth in the affected counties compared to workers in 

unaffected counties. Mueller and Quisumbing (2010) found that non-agricultural labor 

markets were more severely affected by the 1998 “flood of the century” in Bangladesh 

compared to agricultural labor markets. Olsen and Porter (2013) focused on the 
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construction sector and defined the demand surge as the cost increase over a 6-month 

period in local construction labor wages, material prices, and other specific costs following 

large-scale natural disasters. They considered nine hurricane seasons in the 

southeastern United States and concluded that the magnitude of the storm and the 

number of associated storms in a hurricane season could slightly affect the increase in 

residential construction labor wages. They also realized that construction material costs 

are not subject to recognizable fluctuations even after large-scale disasters. Döhrmann 

et al. (2013) defined demand surge as cumulative construction labor index changes in a 

two-year period following natural disasters using data from 2002 to 2009 in the U.S. They 

concluded that the total amount of repair work, alternative catastrophes in a region before 

and after the main disaster, and the amount of insurance claims per event—all may 

influence the amount of construction demand surge. Kirchberger (2017) studied the 

effects of earthquakes on local labor markets in Indonesia and found significant and long-

lasting wage premia for individuals employed in sectors producing non-tradable 

construction goods. Cost estimators in addition to capital planners and insurers, can take 

advantage of these studies. 

2.2. Qualitative Studies 

Qualitative studies with a focus on construction demand surge discuss the 

increased construction costs and factors impacting the increased construction costs 

throughout a few case studies. For example, the United Nations Development Program 

(UNDP) noted that the characteristics of good governance participation (responsiveness, 

transparency, equity, etc.) are crucial for sustainable development and disaster risk 

mitigation (UNDP, 2004). Lloyd-Jones (2006) underlined that construction professions 
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have key roles to play during all pre- and post-disaster phases. Coordination between 

construction professionals and other construction stakeholders is vital for post-disaster 

risk mitigation (Fard et al, 2016). Benson et al. (2007) mentioned that effective post-

disaster reconstruction may require the affected society to have access to a range of 

capacities such as organizations, well-developed disaster plans, and coping 

mechanisms. It is also important to include local community participation (unskilled 

workers) in the reconstruction process (Jayaraj, 2006; Owen and Dumashie, 2007), since 

construction workforce shortage has shown to be problematic in the U.S. construction 

market (Razkenari et al., 2018; Habibi and Kermanshachi, 2018). Capacity development 

is also known to be an important factor in post-disaster cost increase deduction 

(Amaratunga and Haigh, 2008; UN/ISDR, 2009). Chang-Richards, et al. (2017) studied 

the 2010-2011 earthquakes in New Zealand and highlighted the existing capacity gaps 

due to the heightened demand during reconstruction. Their survey recognized that the 

limited technical capability available nationally, shortage of temporary accommodation to 

house additional workers, time needed for trainees to become skilled workers, lack of 

information about reconstruction workloads, and lack of operational capacity within 

construction organizations were critical constraints for providing adequate resources for 

disaster recovery projects after earthquakes. Although the recommendations of 

qualitative studies help policymakers to better plan for their risk-mitigation strategies in 

the aftermath of natural disasters, they do not help predict post-disaster construction cost 

changes. 
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2.3. Gaps in Knowledge 

Although there have been several studies in the demand surge area, three major 

gaps have not been addressed: 

Gap 1. Despite the important role of the construction labor markets in construction 

cost fluctuations in the aftermath of weather-related disasters, it is not yet known which 

construction sub-sectors are most vulnerable to natural disasters. 

Gap 2. Despite the significant role of the construction market conditions in post-

disaster labor cost fluctuations, the existing construction demand surge models do not 

consider the relationships between pre-disaster regional construction market conditions 

and post-disaster construction labor cost changes. 

Gap 3. The current models are cross-sectional models. The three limitations of 

these cross-sectional models are: 1) these models do not consider the “spatial 

endogenous interaction effects” of post-disaster construction labor wage changes in the 

neighboring regions on the post-disaster construction labor wage changes in the region 

under study; 2) these models do not consider the spatial interaction effects among the 

error terms over the space; and 3) these models do not consider time-specific impacts of 

observed/unobserved variables in the models.  

2.4. Research Objectives 

The primary objectives of this research are to: 

(1) Measure post-disaster construction labor wage changes in different sub-

sectors of the construction sector and compare the sub-sectors against each other to 

determine which construction sub-sectors are most vulnerable to these disasters. 
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(2) Assess the role of pre-disaster construction market conditions in influencing 

post-disaster construction labor changes. 

(3) Find the spatial interaction effects as well as time-specific effects in the existing 

cross-sectional models to assess and measure the spatio-temporal autocorrelations 

among the variables in the cross-sectional models, using spatial panel data models. 

Ignoring these effects in the models will result in creation of biased models, when spatial 

and temporal autocorrelations exist in cross-sectional models (Elhorst, 2017).  
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CHAPTER 3: POST-DISASTER LABOR WAGE FLUCTUATIONS: A COMPARATIVE 

EMPIRICAL ANALYSIS AMONG DIFFERENT SUB-SECTORS OF THE U.S. 

CONSTRUCTION SECTOR 

The primary objectives of this chapter are to 1) highlight sub-sectors and industry 

groups of the construction sector that are most vulnerable to weather-related disasters 

(with highest labor wage escalation); and 2) analyze how immediate this labor wage 

escalation happens in different sub-sectors of the construction sector.  

3.1. Methodology 

The research methodology consists of three steps: (i) Integrating various data 

sources to enable measurement of the county-level labor wage changes following large-

scale weather-related disasters; (ii) Measuring post-disaster labor wage changes (LWC) 

at the county-level; and (iii) Comparing amount and timing of post-disaster labor wage 

changes among all sub-sectors (and industry groups) of the construction sector. I 

collected quarterly average weekly wage (AWW) data for more than 600 counties affected 

by weather-related disasters in the U.S. from 2007 to 2014. These county-level data were 

collected from one quarter before the event of a disaster up to three quarters after the 

event of the disaster for different sub-sectors (and industry groups) of the construction 

sector. Figure 3.1 summarizes the methodology implemented in this study. 
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Fig. 3.1: Methodology 
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3.1.1. Data integration 

The process of selecting the counties affected by weather-related disasters is as 

follows: 1) The U.S. natural disasters with total property damage of more than 100-million 

U.S. dollars, from 2007 to 2014, were obtained from Emergency Events Database (EM-

DAT). EM-DAT is an international disaster database that collects information such as 

“total property damages” and “affected regions” after disasters all around the world. 2) I 

obtained a list of the counties affected by these large-scale natural disasters along with 

the county-level property damages from the Federal Emergency Management Agency 

(FEMA). FEMA is an agency of the U.S. Department of Homeland Security (DHS) that 

declares a list of affected counties in the affected states where the governor of the state 

declared a state of emergency and officially requested for national or international 

assistance. The counties with property damage of one-million dollars or more remained 

in my database, and the rest were removed, since changes in labor wages in the low 

damaged counties are less likely to be the consequence of the disaster in those counties. 

3) Information on the types of natural disasters, at the county-level, were collected from 

the National Oceanic and Atmospheric Administration (NOAA) and the counties affected 

by weather-related disasters remained in my database. The weather-related disasters 

include high wind, tornado, thunderstorm wind, tropical storm, hurricane, ice storm, heavy 

rain, flash flood. These weather-related disasters encompass more than 90% of all types 

of natural disasters in the period from 2007 to 2014. My database comprises more than 

600 damaged counties. 

The Bureau of Labor Statistics of the U.S. Department of Labor measures labor 

market activities, working conditions, and price changes in the U.S. (BLS, 2017). BLS has 
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provided crucial economic information to support both private and public decision-making 

(BLS, 2017). BLS provides categorized quarterly labor wage data for all sub-sectors and 

industry groups of the construction sector. Figure 3.2 illustrates all sub-sectors, industry 

groups, and industries of the construction sector. 
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Fig. 3.2: Construction sectors, sub-sectors, and industry groups 

 

2
3

 C
o
n

stru
ctio

n
s 

2
3

6
 C

o
n

stru
ctio

n
 

o
f B

u
ild

in
g

s 

 

2
3

7
 H

eav
y

 an
d
 C

iv
il 

E
n
g

in
eerin

g
 C

o
n

stru
ctio

n
 

 

2
3

8
 S

p
ecialty

 

T
rad

e C
o
n

tracto
rs 

 

2
3

6
1
1

 

R
esid

en
tial 

B
u

ild
in

g
 

C
o

n
stru

ctio
n
 

 

2
3

6
2
1 

In
d

u
strial 

B
u

ild
in

g
 

C
o

n
stru

ctio
n 

 

2
3

6
2
2

 

C
o

m
m

ercial 

B
u

ild
in

g
 

C
o

n
stru

ctio
n
 

 

2
3

6
1
1

5
  

N
ew

 S
in

g
le-

fam
ily

 

G
en

eral 

C
o

n
tracto

rs 

 

2
3

6
1
1

6
 

 N
ew

 

M
u
ltifam

ily
 

G
en

eral 

C
o

n
tracto

rs 

 

2
3

6
1
1

7
  

N
ew

 

H
o

u
sin

g
 

F
o

r-sale 

B
u

ild
ers 

 

2
3

6
1
1

8
 

R
esid

en
tial 

R
em

o
d

elers 

 

2
3

7
1

  

U
tility

 

S
y
ste

m
 

C
o

n
stru

ctio
n
 

 

2
3

7
2
 

 L
an

d
 

S
u

b
d

iv
isio

n
 

 

2
3

7
3

 

H
ig

h
w

ay
, 

S
treet, an

d
 

B
rid

g
e 

C
o

n
stru

ctio
n
 

 

2
3

7
9

  

O
th

er H
eav

y
 

C
o

n
stru

ctio
n
 

 

2
3

8
1

 

B
u

ild
in

g
 

F
o

u
n

d
atio

n
 

an
d

 E
x

terio
r 

C
o

n
tracto

rs 

 

2
3

8
2

 

B
u

ild
in

g
 

E
q
u

ip
m

en
t 

C
o

n
tracto

rs 

 

2
3

8
3

 

B
u

ild
in

g
 

F
in

ish
in

g
 

C
o

n
tracto

rs 

 

2
3

8
9

  

O
th

er 

S
p

ecialty
 

T
rad

e 

C
o

n
tracto

rs 

 

2
3

7
1
1

  

W
ater an

d
 S

ew
er 

S
y
ste

m
 

C
o

n
stru

ctio
n
 

2
3

7
1
2

  

O
il an

d
 G

as 

P
ip

elin
e 

C
o

n
stru

ctio
n
 

2
3

7
1
3

  

P
o

w
er an

d
 

C
o

m
m

u
n

icatio
n

 

S
y
ste

m
 

C
o

n
stru

ctio
n
 

 

2
3

8
1
1

 P
o
u

red
 

C
o

n
crete 

S
tru

ctu
re 

C
o

n
tracto

rs 

 

2
3

8
1
2

  

S
teel an

d
 

P
recast C

o
n

crete 

C
o

n
tracto

rs 

 

2
3

8
1
3

 F
ram

in
g

 

C
o

n
tracto

rs 

 

2
3

8
1
4

 M
aso

n
ry

 

C
o

n
tracto

rs 

 

2
3

8
2
1

 

E
lectrical an

d
 

W
irin

g
 

C
o

n
tracto

rs 

 

2
3

8
2
2

 

P
lu

m
b

in
g

 an
d

 

H
V

A
C

 

C
o

n
tracto

rs 

 

2
3

8
2
9

 O
th

er 

B
u

ild
in

g
 

E
q
u

ip
m

en
t 

C
o

n
tracto

rs 

2
3

8
3
1

 

D
ry

w
all an

d
 

In
su

latio
n

 

C
o

n
tracto

rs 

 

2
3

8
3
2

 

P
ain

tin
g

 an
d

 

W
all 

C
o

v
erin

g
 

C
o

n
tracto

rs 

 

2
3

8
3
4

  

T
ile an

d
 

T
errazzo

 

C
o

n
tracto

rs 

 

2
3

8
9
1

 S
ite 

P
rep

aratio
n

 

C
o

n
tracto

rs 

 

2
3

8
9
9

 A
ll 

O
th

er 

S
p

ecialty
 

T
rad

e 

C
o

n
tracto

rs 

 

2
3

8
1
5
 

 G
lass an

d
 

G
lazin

g
 

C
o

n
tracto

rs 

 

2
3

8
1
6

 R
o

o
fin

g
 

C
o

n
tracto

rs 

 

2
3

8
3
5

 F
in

ish
 

C
arp

en
try

 

C
o

n
tracto

rs 

 

2
3

8
3
9

 O
th

er 

B
u

ild
in

g
 

F
in

ish
in

g
 

C
o

n
tracto

rs 

 

2
3

8
1
7

 S
id

in
g

 

C
o

n
tracto

rs 

 

2
3

8
1
9

 O
th

er 

B
u

ild
in

g
 E

x
terio

r 

C
o

n
tracto

rs 

 



14 
 

The construction sector is comprised of establishments that have primarily been 

engaged in the construction of buildings or engineering projects and includes new work, 

additions, alterations, or maintenance and repairs. The North American Industry 

Classification System (NAICS) is the standard used by Federal statistical agencies in 

classifying these establishments. The construction sector consists of three sub-sectors: 

Construction of Buildings sub-sector: NAICS 236; Heavy and Civil Engineering 

Construction sub-sector: NAICS 237; and Specialty Trade Contractors sub-sector: NAICS 

238 (BLS, 2017). 

The Construction of Buildings sub-sector is comprised of establishments that have 

primarily been engaged in the construction of buildings. The on-site assembly of precut, 

panelized, and prefabricated buildings and construction of temporary buildings are 

included in this sub-sector. The Construction of Buildings sub-sector consists of three 

industry groups: Residential Building Construction: NAICS 23611; Industrial Building 

Construction: NAICS 23621; and Commercial Building Construction: NAICS 2362 (BLS, 

2017). 

The Heavy and Civil Engineering Construction sub-sector comprises of 

establishments whose primary activity is the construction of entire engineering projects 

such as highways and dams. This sub-sector consists of four industry groups: Utility 

System Construction (NAICS 2371), Land Subdivision (NAICS 2372), Highway, Street, 

and Bridge Construction (NAICS 2373), and Other Heavy and Civil Engineering 

Construction (NAICS 2379) (BLS, 2017).  

  

https://www.bls.gov/iag/tgs/iag236.htm
https://www.bls.gov/iag/tgs/iag238.htm
https://www.bls.gov/iag/tgs/iag238.htm
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The Specialty Trade Contractors sub-sector comprises establishments whose 

primary activity is performing specific activities such as pouring concrete, site preparation, 

plumbing, and painting, and are involved in building construction or other activities that 

are similar for all types of construction, but that are not responsible for the entire project. 

This sub-sector consists of four industry groups: Foundation, Structure, and Building 

Exterior Contractors (NAICS 2381), Building Equipment Contractors (NAICS 2382), 

Building Finishing Contractors (NAICS 2383), and Other Specialty Trade Contractors 

(NAICS 2389) (BLS, 2017). 

3.1.2. Labor wage change measurement 

BLS provides wage data in both raw and location quotient (LQ) format. LQs are 

ratios that allow a county`s distribution of employment by sector to be compared with the 

United States' distribution. LQ data make the comparisons between the counties easier 

(BLS, 2017) since they are seasonally and locally adjusted. LQ is forced to be one for the 

U.S. at any time and LQs for the counties are calculated in comparison with the U.S. A 

county with an industry LQ greater (smaller) than one has a local industry greater 

(smaller) than the U.S. average. This study uses the pre- and post-disaster quarterly LQ 

average weekly wage data to measure changes in construction labor wages. 

The quarterly county-level LQ average weekly wage (LQ.AWW) data for all sub-

sectors (and industry groups) of the construction sector in the period starting from one 

quarter before a weather-related disaster up to three quarters after the event, were 

obtained from BLS website for the affected counties (for which data were available). The 

main reason that we selected three quarters following the disasters was to exclude the 

impact of disasters in the following year(s) on the data under analysis. To measure LWC, 
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the greatest value of LQ.AWW during the period starting from the quarter in which disaster 

occurred and the following three quarters was selected to be the LQ.AWWafter. This 

selection allows us to measure the greatest increase in labor wages in the almost one-

year period following a disaster compared to one quarter before the disaster: 

𝑳𝑾𝑪𝒊,𝒋 =
𝑳𝑸.𝑨𝑾𝑾𝒂𝒇𝒕𝒆𝒓,𝒊,𝒋− 𝑳𝑸.𝑨𝑾𝑾𝒃𝒆𝒇𝒐𝒓𝒆,𝒊,𝒋  

𝑳𝑸.𝑨𝑾𝑾𝒃𝒆𝒇𝒐𝒓𝒆,𝒊,𝒋
∗ 𝟏𝟎𝟎 (%) 

where LWCi,j is the calculated maximum percentage increase (or decrease) in labor 

wages following a weather-related disaster for sub-sector (industry group) j in county i;  

LQ.AWWafter,i,j is the maximum level of LQ.AWW for sub-sector (industry group) j in county 

i over four quarters after the weather- related disaster (including the quarter of disaster); 

and LQ.AWWbefore,i,j is the level of LQAWW in one quarter before the disaster for sub-

sector (industry group)  j in county i. LWCs for all sub-sectors (industry groups) of the 

construction sector were calculated for each of the damaged counties. 

A positive value of LWC shows that, at least in one of the four quarters following a 

weather-related disaster (including the quarter of disaster) labor wage in the construction 

sub-sector (industry group) in the county increased, and a negative value of LWC shows 

that labor wage decreased following the disaster over the four quarters. 

3.1.3. Comparative analysis of post-disaster labor wage changes 

To measure the central tendency of labor wage changes (LWC) of a specific sub-

sector (industry group), I measured mean, mode, and median values of labor wage 

changes among the affected counties for that sub-sector (industry group). I used Inter-

Quartile Ranges (IQR) as a measure of statistical dispersion. Box plots are presented 

under “Results” section to illustrate both central tendency and dispersion of the measured 

labor wage changes for each sub-sector (industry group). 
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To compare the sub-sectors (industry groups) against each other, the mean values 

of LWC for different sub-sectors (and industry groups) were compared against each other, 

using an unpaired two-sample t-test, to assess whether the average changes in labor 

wages in a sub-sector (industry group) is significantly greater than one another. The null 

hypothesis of this test is that the mean value of LWC in a sub-sector (industry group) is 

not greater than the mean of another sub-sector (industry group). Rejection of null 

hypothesis shows that the mean value of LWC in a sub-sector (industry group) is 

significantly greater than one another. Before conducting the t-test, I compared the 

variances of two samples using F-test. The null hypothesis of F-test is that the two 

variances are equal. Rejection of null hypothesis shows that the two variances are not 

equal, and thus, “unpooled” variances should be measured to conduct the t-test. 

Otherwise, pooled variances should be used. 

The distributions of the labor wage changes for each sub-sector (and industry 

group) are presented in the next section, and skewness and kurtosis of the distributions 

are discussed. Skewness is the third standardized moment of a dataset and is a measure 

of the asymmetry of a distribution (Joanes and Gill, 1998). Kurtosis is a measure of 

“tailedness” of a distribution and is the fourth standardized moment of a distribution. It is 

common to compare the kurtosis value of a distribution with that of a normal distribution. 

The kurtosis of a normal distribution is 3. Excess kurtosis is an adjusted version of 

Pearson`s kurtosis (Pearson, 1929) and is equal to kurtosis minus 3. Distributions with 

excess kurtosis greater than 0 are said to be leptokurtic, i.e. most of the mass of the data 

are in the central peak and the tails, and less mass is on the “shoulders”, compared to a 

normally distributed dataset (Joanes and Grill, 1998). 
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The quarter in which LWC was calculated (the quarter that faced a maximum 

increase in labor wages among the four quarters following the disaster) for each sub-

sector in a county was monitored. The comparisons are provided in the next section.  

Finally, the quarterly cumulative percent change of labor wages for each of the 

three sub-sectors in a county was calculated by comparing average county-level wages 

at each quarter with one quarter before. Then, the average of this value among the 

counties for each sub-sector was calculated. The results are presented in the last section 

of the “Results” section. 

3.2. Results 

Table 3.1 presents the summary statistics of LWC for the construction sector and 

its sub-sectors. The mean value of LWC for the construction sector is 9.3%; The mean 

values of LWC for the three sub-sectors of the construction sector (Construction of 

Buildings; Heavy and Civil Engineering Construction; and Specialty Trades Contractors) 

are 10.5%, 16.2%, and 8.8%, respectively. Table 3.2 presents the results of t-tests that 

were conducted to compare the mean values of LWC in different sub-sectors of the 

construction sector. The results show that the mean of LWC in Heavy and Civil 

Engineering Construction sub-sector is significantly greater than that of the Construction 

of Buildings sub-sector and the Specialty Trade Contractors sub-sector. Thus, the Heavy 

and Civil Engineering Construction sub-sector faces the highest average increase in labor 

wages following large-scale weather-related disasters. The value of Q1 (25th percentile) 

for the three sub-sectors are around zero which means that in almost 75% of the affected 

counties; labor wages increased (during at least one quarter) compared to one quarter 

before the disaster. 
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Table 3.1: Summary statistics of LWC for construction sector and its sub-sectors 
Sector Mean Std. Dev. Min Q1 Median Q3 Max 

23 Construction (%) 9.3 15.3 -61.6 0.0 4.9 11.3 92.7 

 236 Construction of Buildings (%) 10.5 17.6 -47.3 0.0 5.9 16.6 101.1 

 237 Heavy and Civil Engineering Constructions (%) 16.2 24.6 -51.9 1.2 9.1 22.6 141.7 

 238 Specialty Trade Contractors (%) 8.8 14.2 -52.2 1.0 5.9 13.4 110.0 

 
 
 

Table 3.2: Two-sample t-test results 

Null hypothesis 

F-statistics 

(equality of 

variances) 

T-statistics 

(Mean 

comparison) 

Mean of LWC in Heavy and Civil Engineering Construction is not greater than Construction of Buildings 1.95** 3.92** 

Mean of LWC in Heavy and Civil Engineering Construction is not greater than Specialty Trade Contractors 2.97** 5.04** 

Mean of LWC in Construction of Buildings is not greater than Construction of Buildings 1.53** 1.05 

Notes: * and ** represent rejection of null hypothesis at the 5%, and 1% significance level, respectively.  

 

Figure 3.3 shows the box plots of LWC for each of the construction sub-sectors. 

The difference between the 75th and 25th percentiles (Q3 and Q1), also referred to as the 

IQR, is a measure of statistical dispersion. The box plots for the three sub-sectors show 

that the Heavy and Civil Engineering sub-sector is also the most volatile sub-sector 

among the construction sub-sectors, since the IQR for this sub-sector is the greatest 

among them (21.4%) and the maximum expected value of LWC, measured as Q3 + 1.5 

IQR, is the highest at this sub-sector (54.7%). The lower value of mean and IQR for 

Specialty Trades Contractors makes this sub-sector the most resilient among the all. In 

fact, in 50% of cases, counties faced a maximum increase of somewhere between 1% to 

13.4% among Specialty Trade Contractors. The maximum expected value of LWC for 

Specialty Trade Contractors is 32%; however, in some rare cases, laborer experienced a 

higher increase in their wages. 
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Fig. 3.3:  Box plots of LWC for construction sub-sectors 

 

3.2.1. Construction of buildings sub-sector 

Table 3.3 presents the summary statistics of LWC for Construction of Buildings` 

industry groups and their industries. The mean values of LWC for the three industry 

groups of the Construction of Buildings sub-sector (Residential Building Constructions; 

Industrial Building Constructions; and Commercial Building Constructions) are 11.8%, 

22.3%, and 13.5%, respectively. The results of Table 3.4 show that the mean of LWC in 

Industrial Building Construction is significantly greater than Commercial Building 

Construction and Residential Building Construction. Hence, Industrial Building 

Construction labor wages face the highest average increase among the Construction of 

Buildings` industry groups. The 25th percentile of the three industry groups remain around 

zero which means in almost 75% of the affected counties, at least one quarter exhibition 

increase in labor wages compared to before the disaster. The summary statistics of the 

industries (e.g. New Single Family General Contractors, etc.) are also presented in Table 

3.3.  
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Table 3.3: Summary statistics of LWC for construction of buildings` industry groups 

Sector Mean 
Std. 

Dev. 
Min Q1 Median Q3 Max 

 236 Construction of Buildings (%) 10.5 17.6 -47.3 0.0 5.9 16.6 101.1 

  23611 Residential Building Constructions (%) 11.8 17.4 -46.3 2.2 8.2 18.3 132.0 

     236115 New Single-family General Contractors (%) 12.8 21.7 -33.8 1.1 8.8 18.7 144.7 

     236116 New Multifamily General Contractors (%) 15.4 33.7 -33.2 -6.0 6.3 26.7 124.4 

     236117 New Housing For-sale Builders (%) 12.5 26.5 -76.6 -5.8 6.3 21.7 75.3 

     236118 Residential Remodelers (%) 9.9 20.0 -39.7 -0.8 7.0 14.7 134.1 

  23621 Industrial Building Constructions (%) 22.3 33.1 -53.7 3.3 19.0 37.8 128.1 

  23622 Commercial Building Constructions (%) 13.5 23.4 -16.3 0.0 8.3 13.1 88.5 

 

 

Table 3.4: Two-sample t-test results for construction of buildings` industry groups 

Null hypothesis 

F-statistics 

(equality of 

variances) 

T-statistics 

(Mean 

comparison) 

Mean of LWC in Industrial Building Construction is not greater than Commercial Building Construction 1.96* 1.89* 

Mean of LWC in Industrial Building Construction is not greater than Residential Building Construction 3.64** 3.50** 

Mean of LWC in Commercial Building Construction is not greater than Residential Building Construction 0.53** 0.45 

Notes: * and ** represent rejection of null hypothesis at the 5%, and 1% significance level, respectively. 

 

Figure 3.4 shows the box plots of LWC in the Construction of Buildings` industry 

groups. Industrial Building Construction industry group is also the most volatile industry 

group among the Construction of Buildings` industry groups, since the IQR and the 

maximum expected value of LWC are the greatest for this industry group (34.5% and 

89.5%, respectively). The lower IQR for the Commercial Building industry group, makes 

this industry group the most resilient among them. In fact, in 50% of cases, counties faced 

a maximum increase of somewhere between 0% to 13.1% in labor wages in Commercial 

Building Construction. The maximum expected value of LWC (the upper end of the 

whiskers) for the three industry groups are 42%, 90%, and 33%, respectively. 
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Fig. 3.4:  Box plots of LWC for construction of buildings` industry groups 

 

3.2.2. Heavy and civil engineering constructions sub-sector 

Table 3.5 presents the summary statistics of LWC for Heavy and Civil Engineering 

Construction`s industry groups and their industries. The mean value of LWC for the four 

industry groups of the Heavy and Civil Engineering Construction sub-sector (Utility 

System Construction; Land Subdivision; Highway, Street, and Bridge Construction; and 

Other Heavy Construction) are 14.7%, 16.3%, 14.8%, and 15.7%, respectively. However, 

the results of Table 3.6 show that I cannot rank the industry groups. The 25th percentile 

of the four industry groups remain around zero which means almost 75% of the affected 

counties, experience an increase in labor wages compared to before the disaster. 
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Table 3.5: Summary statistics of LWC for heavy and civil engineering 
construction`s industry groups 

Sector Mean 
Std. 

Dev. 
Min Q1 

Media

n 
Q3 Max 

 237 Heavy and Civil Engineering Constructions (%) 16.2 24.6 -51.9 1.2 9.1 22.6 141.7 

  2371 Utility System Construction (%) 14.8 24.7 -41.6 1.0 10.4 22.1 139.8 

     23711 Water and Sewer System Construction (%) 52.5 38.7 -63.5 2.7 14.6 45.8 704.2 

     23712 Oil and Gas Pipeline Construction (%) 12.2 24.6 -26.7 -1.6 8.6 24.2 108.2 

     23713 Power and Communication System Construction (%) 14.4 27.2 -65.0 -1.2 9.9 20.9 149.1 

  2372 Land Subdivision (%) 16.3 29.2 -44.9 0.0 12.3 29.7 130.9 

  2373 Highway, Street, and Bridge Construction (%) 14.8 22.8 -58.5 2.0 10.2 25.6 132.5 

  2379 Other Heavy Construction (%) 15.7 27.2 -51.9 1.2 12.6 23.1 144.4 

 

 

Table 3.6: Two-sample t-test results for heavy and civil engineering  
construction`s industry groups 

Null hypothesis 

F-statistics 

(equality of 

variances) 

T-statistics 

(Mean 

comparison) 

Mean of LWC in Land Subdivision is not greater than Other Heavy Construction 1.15 0.20 

Mean of LWC in Land Subdivision is not greater than Highway, Street, and Bridge 

Construction 
1.65** 0.50 

Mean of LWC in Land Subdivision is not greater than Utility System Construction 1.40* 0.51 

Mean of LWC in Other Heavy Construction is not greater than Highway, Street, and Bridge 

Construction 
1.42* 0.30 

Mean of LWC in Other Heavy Construction is not greater than Utility System Construction 1.21 0.32 

Mean of LWC in Highway, Street, and Bridge Construction Utility System Construction 0.84 0.01 

Notes: * and ** represent rejection of null hypothesis at the 5%, and 1% significance level, respectively.  

 

Figure 3.5 shows the box plots of LWC for Heavy and Civil Engineering 

Construction`s industry groups. The Land Subdivision is the most volatile among the 

Heavy and Civil Engineering Construction industry groups since the IQR and the 

maximum expected value of LWC for this industry group is the greatest compared to the 
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other three industry groups (29.7% and 74.2%, respectively). The maximum expected 

values of LWC (the upper end of the whiskers) for the four industry groups (Utility System 

Construction; Land Subdivision; Highway, Street, and Bridge Construction; and Other 

Heavy Construction) are 54%, 74%, 61% and 56%, respectively, that are relatively high 

compared to the other construction industry groups. 

 

 

Fig. 3.5: Box plots of LWC for heavy and civil engineering construction`s industry groups 

 

3.2.3. Specialty trade contractors’ sub-sector 

Table 3.7 presents the summary statistics of LWC for Specialty Trades 

Contractors` industry groups and their industries. The mean value of LWC for the four 

industry groups of the Specialty Trade Contractors sub-sector (Building Foundation and 

Exterior Contractors, Building Equipment Contractors, Building Finishing Contractors, 

and Other Specialty Trade Contractors) are 13.4%, 9.8%, 10.2%, and 13.1%, 

respectively. The results of Table 3.8 show that Building Foundation and Exterior 

Contractors and Other Specialty Trades Contractors are more vulnerable industry groups 
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compared to Building Finishing Contractors and Building Equipment Contractors. The 25th 

percentile of the four industry groups are around zero which means almost 75% of the 

affected counties, experience an increase in labor wages compared to before the 

disaster. 

Table 3.7: Summary statistics of LWC for specialty trade contractors` industry groups 

Sector Mean 
Std. 

Dev. 
Min Q1 Median Q3 Max 

 238 Specialty Trade Contractors (%) 8.8 14.3 -52.2 1.0 5.9 13.4 110.0 

   2381 Building Foundation and Exterior Contractors (%) 13.4 20.9 -28.5 2.0 8.7 20.0 143.0 

     23811 Poured Concrete Structure Contractors (%) 16.7 20.4 -35.3 2.1 10.6 24.2 122.1 

     23812 Steel and Precast Concrete Contractors (%) 14.6 25.5 -50.9 1.8 10.1 19.6 126.7 

     23813 Framing Contractors (%) 24.6 46.3 -82.5 -12.4 14.1 53.3 144.4 

     23814 Masonry Contractors (%) 18.5 28.9 -37.9 0.0 9.7 24.3 140.7 

     23815 Glass and Glazing Contractors (%) 14.4 26.8 -46.6 1.4 8.4 16.3 147.8 

     23816 Roofing Contractors (%) 14.0 24.5 -32.8 0.2 8.7 18.8 143.5 

     23817 Siding Contractors (%) 14.5 24.5 -41.0 0.0 9.9 22.5 116.5 

     23819 Other Building Exterior Contractors (%) 17.2 29.8 -27.1 0.0 11.3 25.6 130.6 

  2382 Building Equipment Contractors (%) 9.8 17.1 -32.9 0.0 6.1 14.3 103.1 

    23821 Electrical and Wiring Contractors (%) 10.3 16.3 -45.0 1.0 6.6 13.5 91.1 

    23822 Plumbing and HVAC Contractors (%) 8.2 15.8 -35.4 0.0 6.2 13.3 95.2 

    23829 Other Building Equipment Contractors (%) 11.6 22.6 -44.8 0.0 8.5 20.5 103.5 

  2383 Building Finishing Contractors (%) 10.2 21.0 -54.5 -0.2 6.9 17.8 136.6 

    23831 Drywall and Insulation Contractors (%) 8.3 21.7 -45.0 -2.1 6.3 15.3 141.6 

    23832 Painting and Wall Covering Contractors (%) 11.8 21.6 -55.4 -0.8 8.6 18.2 147.3 

    23833 Flooring Contractors (%) 9.5 18.6 -28.8 -2.0 6.3 18.4 96.0 

    23834 Tile and Terrazzo Contractors (%) 15.6 29.2 -65.3 -.04 10.6 23.7 143.0 

    23835 Finish Carpentry Contractors (%) 11.6 18.9 -44.2 -0.4 9.2 18.7 125.8 

    23839 Other Building Finishing Contractors (%) 14.6 27.9 -19.7 -1.4 8.1 21.8 145.0 

  2389 Other Specialty Trade Contractors (%) 13.1 21.3 -33.7 1.2 9.4 20.0 136.2 

    23891 Site Preparation Contractors (%) 10.2 21.2 -39.9 -0.7 7.7 17.6 144.3 

    23899 All Other Specialty Trade Contractors (%) 19.8 22.8 -50.0 2.1 10.5 24.1 146.0 
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Table 3.8: Two-sample t-test results for specialty trade contractors` industry groups 

Null hypothesis 
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Mean of LWC in Building Foundation and Exterior Contractors is not greater than Other Specialty Trade Contractors 0.96 0.23 

Mean of LWC in Building Foundation and Exterior Contractors is not greater than Building Finishing Contractors 0.98 2.17* 

Mean of LWC in Building Foundation and Exterior Contractors is not greater than Building Equipment Contractors 1.49** 2.82** 

Mean of LWC in Other Specialty Trade Contractors is not greater than Building Finishing Contractors 1.02 2.38** 

Mean of LWC in Other Specialty Trade Contractors is not greater than Building Equipment Contractors 1.55** 3.05** 

Mean of LWC in Building Finishing Contractors is not greater than Building Equipment Contractors 1.51** 0.27 

Notes: * and ** represent rejection of null hypothesis at the 5%, and 1% significance level, respectively.  
 

Figure 3.6 shows the box plots of LWC for the Specialty Trade Contractors` 

industry groups. The IQR for the four industry groups are 18%; 14%; 18%, 19%, 

respectively. Thus, the Building Foundation and Exterior Contractors industry group and 

Other Specialty Trade Contractors industry group are the most volatile among the 

Specialty Trades Contractors industry groups, since the IQR and the maximum expected 

value of LWC for these two industry groups are the greatest among them.  

According to Figure 3.6, although in some cases LWC increases by more than 

100% for all four industry groups, the maximum expected values of the LWC for the four 

industry groups are 45%, 36%, 45% and 48%, respectively. 
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Fig. 3.6: Box plots of LWC for specialty trade contractors` industry groups 

  

Since Building Exterior Construction is among the most exposed to the natural 

disaster, data of the average weekly wages for the 4 industry groups of the Building 

Exterior Construction (Framing Contractors, Masonry Contractors, Glass and Glazing 

Contractors, and Roofing Contractors), provided by BLS, were also collected and LWC 

was calculated for each county at each industry group for both Residential and Non-

Residential laborer. 

3.2.3.1. Framing contractors 

Table 3.9 shows the summary statistics of LWC for the Residential Framing 

Contractors. The mean value of LWC for this sector is almost 12 percent. Thus, an 

average maximum of 12 percent increase in Residential Framing labor wages occurs in 

at least one of the 4 quarters following the weather-related disasters (including the quarter 

of the disaster); however, the median of 8 percent indicates that in 50 percent of the 

counties under study, the increase in wages were less than 8 percent (or wages 

decreased). Information on the first quartile (Q1) shows that in 75 percent of the counties, 

there were an “increase” in Residential Framing labor wages following disasters occurred 
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and the third quartile (Q3) shows that in 25 percent of the counties, the wages increased 

were more than 19 percent. The difference between Q3 and Q1, also known as Inter 

Quartile Range (IQR), is a measure of statistical dispersion and shows the range in which 

the middle 50% data take place. The IQR for this sector is 19 percent.  

 

Table 3.9: Summary statistics of LWC for the residential framing contractors 

Sector 

 

Mean Std. Dev. Min. Q1 Median Q3 Max. 

Framing Contractors (%)  12.1 22.3 -48.1 -0.3 8.0 19.4 80.1 

 

Table 3.10 shows the summary statistics of LWC for the Non-Residential Framing 

Contractors. The mean value of LWC for this sector is 16 percent, which is almost 4 

percent greater than Residential Building Framing Contractors. Thus, an average of 16 

percent increase in Non-Residential Framing labor wages occurs in at least one of the 4 

quarters following the weather-related disasters. The IQR for this sector is 25 percent. 

The greater IQR for the Non-Residential sector and the greater mean and median values, 

make the Non-Residential sector more vulnerable compared to the Residential sector. 

 
Table 3.10: Summary statistics of LWC for the non-residential framing contractors 

Sector 

 

Mean Std. Dev. Min. Q1 Median Q3 Max. 

Framing Contractors (%)  16.4 23.1 -27.4 0.5 13.7 25.1 80.8 

 

Figure 3.7 illustrates the proportional LWC by quarter for Framing Contractors. The 

first pie chart in Figure 1 shows that in 23 percent of cases, the maximum labor wage 

increases occurred in the quarter that the disaster happened. In 16 percent of cases, the 

maximum LWC occurred one quarter after the disaster. In 41 percent of cases, the 

maximum LWC was 2 quarters after the disaster, and in 20 percent of cases, the 
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maximum LWC was 3 quarters after the disaster. The second pie chart shows the same 

values for Non-Residential Framing Contractors. In both Residential and Non-Residential 

sectors, the maximum increase in labor wages, mostly, occurs 2 quarters after the 

weather-related disasters. 

 

  

 

Fig. 3.7: Proportional LWC by quarter for framing contractors (a) residential, (b) non-residential 

 

3.2.3.2. Masonry contractors 

Table 3.11 shows the summary statistics of LWC for the Residential Masonry 

Contractors. The mean value of LWC for this sector is 15 percent which is 3 percent 

higher than Framing Contractors. Thus, a maximum average increase of 15 percent in 

Residential Masonry Contractors` wages occurs in at least one of the 4 quarters following 

the weather-related disasters (including the quarter of disaster); however, the median is 

10 percent. Q1 equals 2 percent which means in 75 percent of the counties, an increase 

of greater than 2 percent in Residential Masonry Contractors` wages occurs and Q3 

shows that in 25 percent of the counties, wages increased by more than 21 percent. IQR 

for this sector is 19 percent. 
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Table 3.11: Summary statistics of LWC for the residential masonry contractors 

Sector 

 

Mean Std. Dev. Min. Q1 Median Q3 Max. 

Masonry Contractors (%)  15.1 27.8 -46.5 1.8 9.7 20.8 188.9 

 

Table 3.12 shows the summary statistics of LWC for the Non-Residential Masonry 

Contractors. The mean value of LWC for this sector is 18 percent which is almost 3 

percent greater than Residential Building Masonry Contractors. Thus, an average 

maximum of 18 percent increase in Non-Residential Masonry Contractors` wages occurs 

in at least one of the 4 quarters following the weather-related disasters. The IQR for this 

sector is 28 percent which is greater than the other sectors. The high IQR for the Non-

Residential Masonry sector makes this sector the most vulnerable among all Building 

Exterior Contractors. 

 
Table 3.12: Summary statistics of LWC for the non-residential masonry contractors 

Sector 

 

Mean Std. Dev. Min. Q1 Median Q3 Max. 

Masonry Contractors (%)  18.3 31.0 -30.0 -0.7 13.1 26.8 160.4 

 

Figure 3.8 shows the pie charts for the Residential and Non-residential Masonry 

Contractors. Both pie charts indicate that most wage increases occur in the second 

quarter after weather-related disasters; however, the shares appear almost equally 

spread over the 4 quarters for both Residential and Non-Residential Masonry 

Contractors. 
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Fig. 3.8: Proportional LWC by quarter for masonry contractors (a) residential, (b) non-residential 

 

3.2.3.3. Glass and glazing contractors 

Table 3.13 presents the summary statistics of the LWC for the Residential Glass 

and Glazing Contractors. The mean value of the LWC for this sector is 13 percent. Thus, 

an average of 13 percent increase in Residential Glass and Glazing Contractors` wages 

occurs in at least one of the 4 quarters following the weather-related disasters (including 

the quarter of disaster). An increase of greater than 2 percent in Glass and Glazing 

Contractors` wages occurs in almost 75 percent of the counties. In 25 percent of the 

counties, an LWC greater than 19 percent happens. The IQR for this sector is 17 percent. 

 
Table 3.13: Summary statistics of LWC for the residential glass and glazing contractors 

Sector 

 

Mean Std. Dev. Min. Q1 Median Q3 Max. 

Glass and Glazing Contractors (%)  12.9 21.0 -40.9 2.1 9.5 19.3 94.3 

 

Table 3.14 shows the summary statistics of LWC for the Non-Residential Glass 

and Glazing Contractors. The mean value of LWC for this sector is 19 percent which is 

almost 6 percent greater than the Residential Building Glass and Glazing Contractors. 

So, an average maximum of 19 percent increase in Non-Residential Glass and Glazing 

Contractors` wages occurs in at least one of the 4 quarters following the weather-related 

disasters. Q1 shows that, 75 percent of the counties experience an increase of 4 percent 

25%

25%
28%

22%
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20%

23%
30%
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or more in Non-Residential Glass and Glazing labor wages. The greater IQR for the Non-

Residential sector (21 percent) makes this sector more vulnerable compared to the 

Residential sector. 

 
Table 3.14: Summary statistics of LWC for the non-residential glass and glazing contractors 

Sector 

 

Mean Std. Dev. Min. Q1 Median Q3 Max. 

Glass and Glazing Contractors (%)  18.8 35.4 -36.2 4.2 11.6 25.1 216.3 

 

Figure 3.9 shows the pie charts for the Residential and Non-residential Glass and 

Glazing Contractors. Both pie charts indicate that most wage increases occurred in 2 

quarters after weather-related disasters; however, the shares appear almost equally 

spread over the 4 quarters for the Non-Residential Glass and Glazing Contractors. In rare 

cases (16 percent of cases), Residential Glass and Glazing Contractors faced the highest 

increase in wages in the quarter of the disaster. 

 

  

 

 

  

Fig. 3.9: Proportional LWC by quarter for glass and glazing contractors (a) residential, (b) non-

residential 
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3.2.3.4. Roofing contractors 

Table 3.15 presents the summary statistics of LWC for the Residential Roofing 

Contractors. The mean value of LWC for this sector is 14 percent. Thus, an average 

maximum of 14 percent increase in Residential Roofing Contractors` wages occurs in at 

least one of the 4 quarters following the weather-related disasters (including the quarter 

of disaster). Seventy five percent of counties experience at least one quarter (out of 4) in 

which Roofing Contractors` wages “increased” compared to 1 quarter before the disaster; 

however, 25 percent of the counties faced an increase of greater than 22 percent, in 

Residential Roofing Contractors` wages. The IQR for this sector is 22 percent. 

 
Table 3.15: Summary statistics of LWC for the residential roofing contractors 

Sector 

 

Mean Std. Dev. Min. Q1 Median Q3 Max. 

Roofing Contractors (%)  14.0 25.5 -25.7 0.0 9.0 22.2 183.3 

 

Table 3.16 shows the summary statistics of LWC for the Non-Residential Roofing 

Contractors. The mean value of LWC for this sector is 13 percent which appers almost 

equal to Residential Roofing Contractors. The IQR for this sector ranges from 2 to 18 

percent. The IQR for this sector has a smaller value (16 percent) than Residential sector. 

This makes the Non-Residential sector more resilient, compared to the Residential sector. 

In addition, in almost 75 percent of the counties, an increase of greater than 2 percent in 

Non-Residential Roofing Contractors` wages occurs in the 4-quarter-period. 

 

Table 3.16: Summary statistics of LWC for the non-residential roofing contractors 

Sector 

 

Mean Std. Dev. Min. Q1 Median Q3 Max. 

Roofing Contractors (%)  13.2 27.9 -48.5 2.0 10.7 18.0 196.6 
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Figure 3.10 shows the pie charts for the Residential and Non-Residential Roofing 

Contractors. Both pie charts indicate that most wage increases occurred 2 quarters after 

the weather-related disasters. 

 

  

 

 

  

Fig. 3.10: Proportional LWC by quarter for roofing contractors: (a) residential, (b) non-residential 

 

3.2.4. Distributions of labor wage changes 

Figure 3.11 shows the distributions of LWC for different sub-sectors and industry 

groups of the construction sector. The red vertical line shows the mean of the dataset and 

the black vertical line shows the median. Table 3.17 presents the skewness and kurtosis 

of each distribution. Information from Figure 3.11 and Table 3.17 show that LWC for all 

sub-sectors and industry groups of the construction sector are highly right-skewed since 

the mean of the datasets are greater than their medians and skewness of the distributions 

are greater than 1 (except for Industrial Building Construction that is “moderately” right-

skewed). Thus, most of the mass of the distributions are at the left side of the mean 

values, i.e. in most cases, LWC values are less than the calculated mean value of LWC 

for the sub-sectors (and industry groups). The high values of excess kurtosis, in Table 

3.17, show that most counties experience a labor wage change of around the values in 

the central peak and the tails, and less experience the values on the “shoulders,” 
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compared to a normally distributed dataset with an excess kurtosis of zero. Figure 3.11 

shows that the right tails of the distributions are longer than the left tails. Thus, a county 

is more likely to face a “significant increase” in construction labor wages than a “significant 

decrease.” 
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 Fig. 3.11: Distribution of LWC for all construction sectors and sub-sectors 
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Table 3.17: Skewness and Kurtosis values of distributions of LWC for construction 
sub-sectors and industry groups 

Sector Skewness 
Excess 

Kurtosis 

 236 Construction of Buildings (%) 1.37 4.98 

  23611 Residential Building Constructions (%) 1.88 8.19 

  23621 Industrial Building Constructions (%) 0.80 1.76 

  23622 Commercial Building Constructions (%) 1.92 3.83 

 237 Heavy and Civil Engineering Constructions (%) 1.71 4.82 

  2371 Utility System Construction (%) 1.99 7.02 

  2372 Land Subdivision (%) 1.06 2.61 

  2373 Highway, Street, and Bridge Construction (%) 1.14 4.58 

  2379 Other Heavy Construction (%) 1.58 6.27 

 238 Specialty trade contractors (%) 1.75 8.45 

  2381 Building Foundation and Exterior Contractors (%) 2.43 10.39 

  2382 Building Equipment Contractors (%) 2.18 7.99 

  2383 Building Finishing Contractors (%) 1.86 7.83 

  2389 Other Specialty Trade Contractors (%) 2.08 7.29 

 

3.2.5. Quarter of maximum increase in labor wages 

Figure 3.12 represents the quarters in which the maximum labor wages occurred 

by their percentage of occurrence. This Figure shows that in the Construction of Buildings 

sub-sector, in 28 percent of cases, the maximum percentage increase in labor wages 

(compared to one quarter before the disasters) occurred in the same quarter as the 

disaster. In 20 percent of cases, the maximum percentage increase occurred 1 quarter 

after the disasters; in 27 percent of cases, the maximum percentage increase was 2 

quarters after the disaster; and in 25 percent of cases, the maximum percentage 
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escalation was 3 quarters after the disasters. These percentages have almost the same 

spread for the other two sub-sectors. Thus, the maximum increase in labor wage could 

occur anytime over the one-year-period after the disasters or possibly after one year. 
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Fig. 3.12: Distribution of LWC for all construction sectors 

 

3.2.6. Cumulative percent change in construction labor wages 

Figure 3.13 shows the cumulative percent change of labor wages for the three sub-

sectors of the construction sector. Labor wages in Construction of Buildings sub-sector, 

on average, decreased by 0.6% in the quarter of the disaster and gradually increased by 

4.4% in the following three quarters. Specialty Trade Contractors` wages, on average, 

decreased by 0.8% in the quarter of the disaster and increased by 4.6% in the following 

three quarters. Heavy and Civil Engineering Construction`s labor wages did not exhibit 

this decrease after the disasters; wages increased immediately after disasters hit the 

counties and then rapidly increased by 8.6% in the three quarters after the disasters. One 

reason could be that Heavy and Civil Engineering projects are in high priority for repairs 

after disasters, while homeowners may need to wait until the claim adjusters assess the 

damage. 
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Fig. 3.13: Cumulative percent change of labor wages 

 

 

3.3. Assumptions and Research Limitations 

The labor wage data, used in this chapter, does not distinguish between different types 

of laborer (foreman, supervisor, manager, etc.). The results of this research are limited to 

the average labor wage data, published by BLS, for all sub-sectors (and industry groups) 

of the Construction industry. More rigorous research should go forward to compare 

different types of laborer, in an industry, against each other.   
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CHAPTER 4: ROLE OF PRE-DISASTER CONSTRUCTION MARKET  

CONDITIONS IN INFLUENCING POST-DISASTER DEMAND SURGE 

The relationships between construction labor wage fluctuations and a disaster’s 

magnitude and the number of associated disasters is well documented (Döhrmann et al., 

2013; Olsen and Porter, 2013). Despite the significant role of the construction industry in 

post-disaster labor wage changes, the relationship between pre-disaster construction 

market conditions and labor wage changes has not been studied. This chapter 

investigates the relationship between the pre-disaster residential construction market 

conditions and the post-disaster residential labor wage changes based on weather-

related disasters in the United States. 

4.1. Methodology 

The pre-disaster level of five residential construction market indicators 

(establishment count, construction contributions, average weekly wages, employment 

level, and building permits) are used as potential explanatory variables to quantify the 

impacts of pre-disaster residential construction market conditions on the percentage 

change in residential building labor wages, using regression analyses.  

4.1.1. Data collection 

I used two criteria to select these variables. First, these variables are used in the 

literature to represent construction market conditions and their impacts on construction 

wage changes (Ashuri et al., 2012) and labor wage fluctuations (Phillips, 1958; Friedman, 

1968; Forder, 2014). The availability of the county-level data on construction market 

indicators was the second criterion. 
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Data on establishment count, construction contributions, average weekly wages, 

and employment level were collected from Bureau of Labor Statistics (BLS) and data on 

Building Permits were collected from the United States Census Bureau. BLS measures 

labor market activities, working conditions, and price changes in the U.S. economy and 

has provided crucial economic information to support both private and public decision-

making since 1884 (BLS, 2017). BLS provides the county-level information on 

construction market indicators (establishment count, construction contributions, 

employment level, and labor wages). 

4.1.1.1. Establishment count for residential building construction  

An establishment is an economic unit that produces goods or provides services 

(BLS, 2017). The LQ establishment count data for residential building construction 

provides the opportunity to compare the number of establishments in a county against 

the other counties regardless of the size of the counties. I obtained the county-level LQ 

establishment count data associated with one quarter before the disaster event from the 

BLS website to analyze the impact of the number of establishments providing residential 

building construction services on the post-disaster LWC. 

4.1.1.2. Construction contribution for residential building construction 

Contributions are the monies deposited in trust funds to pay unemployment claims. 

Contributions are calculated on taxable wages and are reported quarterly to BLS (BLS, 

2017). Construction contributions data associated with one quarter before the disaster 

were collected from BLS to analyze the impact of pre-disaster residential construction 

contributions on the post-disaster LWC. 

 

https://www.bls.gov/bls/history/home.htm
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4.1.1.3. Average weekly wages for residential building construction  

The county-level quarterly average weekly wages data for the residential building 

construction industry are provided by BLS. Average weekly wages per employee is 

computed by dividing total wages by the number of employees (BLS, 2017). The pre-

disaster level of average weekly wages for residential building construction were collected 

from BLS to analyze the impact of pre-disaster level of labor wages on the post-disaster 

LWC.  

4.1.1.4. Employment level for residential building construction  

BLS monthly employment data for each sub-division of an industry represent the 

number of covered workers who have worked during the pay period that includes the 12th 

day of each month (BLS, 2017). The average LQ employment level data for residential 

building construction labor within the last three months before a natural disaster provides 

the opportunity to compare the number of employees among the counties. A county with 

a higher level of LQ employment might experience a different LWC compared to a county 

with a lower level. 

4.1.1.5. Building permits  

The United States Census Bureau as a part of U.S. Department of Commerce 

provides monthly state-level data on the number of building permits. Building permits data 

were collected for the period of 2 years before the disasters for the affected counties to 

quantify the impact of changes in building permit issues on the amount of LWC. Table 4.1 

represents the summary statistics for the full data set.  
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Table 4.1: Summary statistics 

Cat. Variable Obs. Mean Std. Dev. Min. Q25 Q50 Q75 Max. 

 

 

1 

LWC 58 7.21 9.08 -9.59 1.53 5.13 13.67 27.37 

EC 58 1.05 0.39 0.44 0.77 0.98 1.25 2.09 

CC 58 1.11 0.87 0.11 0.61 0.84 1.31 5.41 

WW 58 0.99 0.21 0.53 0.87 0.97 1.14 1.46 

EL 58 1.02 0.59 0.29 0.58 0.81 1.32 2.77 

BP (% change) 58 -6.91 30.34 -45.3 -28.46 -11.29 4.87 57.56 

Damage (M) 58 162.8 153 30.7 56.6 100.3 227.5 750 

 

 

2 

LWC 56 11.69 11.21 -16.7 6.12 11.76 17.96 40.98 

EC 56 1.10 0.44 0.31 0.81 1.11 1.24 2.44 

CC 56 1.11 0.65 0.10 0.54 1.05 1.48 2.62 

WW 56 0.91 0.21 0.47 0.78 0.90 1.07 1.37 

EL 56 1.00 0.56 0.25 0.61 0.87 1.23 2.25 

BP (% change) 56 -10.43 23.59 -58.3 -29.37 -11.06 4.48 57.56 

Damage (M) 56 20.73 42.18 15 17.24 20 23.96 30 

 

 

3 

LWC 97 10.07 11.11 -18.5 3.61 7.14 15.96 41.86 

EC 97 1.25 0.53 0.43 0.89 1.19 1.47 3.55 

CC 97 1.02 0.78 0.01 0.56 0.85 1.26 4.14 

WW 97 0.96 0.25 0.40 0.79 0.94 1.10 1.93 

EL 97 1.07 0.77 0.19 0.59 0.82 1.27 5.22 

BP (% change) 97 -11.59 27.75 -51.2 -31.57 -11.06 2.08 67.99 

Damage (M) 97 9.9 2.6 5.1 6.9 10 11.2 14.1 

 

 

4 

LWC 114 9.97 15.13 -26.9 0.88 6.10 16.36 63.16 

EC 114 1.13 0.48 0.25 0.79 1.04 1.42 2.60 

CC 114 1.03 0.71 0.08 0.55 0.91 1.31 5.07 

WW 114 0.93 0.18 0.56 0.82 0.90 1.05 1.58 
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Cat. Variable Obs. Mean Std. Dev. Min. Q25 Q50 Q75 Max. 

EL 114 1.02 0.60 0.31 0.59 0.84 1.31 3.36 

BP (% change) 114 -4.30 37.25 -62.9 -34.46 -6.98 14.03 111.48 

Damage (M) 114 2.97 0.95 1.55 2.11 3 3.72 4.9 

 

 

5 

LWC 70 8.05 12.08 -15.7 -1.01 6.76 13.62 58.62 

EC 70 1.20 0.58 0.43 0.79 1.09 1.38 3.63 

CC 70 0.97 0.74 0.07 0.42 0.75 1.35 3.40 

WW 70 0.94 0.20 0.54 0.82 0.93 1.03 1.41 

EL 70 1.00 0.68 0.18 0.53 0.82 1.37 3.64 

BP (% change) 70 -10.09 25.78 -51.3 -30.69 -11.06 12.90 59.27 

Damage (M) 70 1.15 0.18 1 1 1.1 1.25 1.5 

 

In this section, the null hypothesis is that no relationship exists between the pre-

disaster level of the above five potentially explanatory variables and the level of changes 

in residential building labor wages in the aftermath of large-scale weather-related 

disasters. Rejection of null hypothesis means that these variables have impacts on the 

level of post-disaster residential building labor wage changes. Two types of regression 

models (constant variance and category dependent variance) were created to quantify 

the impacts of potential explanatory variables on labor wage changes following disasters. 

4.1.2. Regression analysis 

The regression method is widely used to estimate the magnitude and significance 

of the effects of independent variables on a dependent variable (Neale et al., 1994). Five 

potentially explanatory variables were defined as construction market indicators in the 

introductory paragraph of this methodology section. At this step, the methodology used 

to create multiple linear regression models are presented. These models were created to 
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quantify the effects of the potential explanatory variables on the amount of labor wage 

changes (LWC). I first propose a multiple linear regression model regardless of the 

damages caused by catastrophes (Model 1). Later, the data will be categorized into five 

groups considering the property damage to the counties to quantify the relationship 

between LWC and potential explanatory variables for different levels of damage (from 

significant to minimal, Models 2 through 6).  

To create a multiple linear regression model, I started with the full model including 

all possible interaction terms between the predictors. Then, the backward elimination 

method (Hocking, 1976) was utilized to identify the best reduced model. This method 

starts with the full model and at each step evaluates the elimination of the variable whose 

loss gives the most statistically insignificant deterioration of the fitted model and repeats 

this elimination until no further variable can be deleted from the model. This study uses 

the Akaike information criterion (Akaike, 1973) for its backward elimination method. This 

criterion compares model complexity (measured by the number of parameters) against 

the likelihood of observing the available data given the proposed model. Akaike 

information criterion (AIC) is defined as: 

AIC = 2K – 2 Ln (L̂) 

where K is the number of model parameters and L̂ is the maximum value of the likelihood 

function of the model. An ideal proposed model should have fewer parameters and a 

larger likelihood, and thus, a smaller AIC value. For each of the proposed Models 1 

through 6, a reduced model with the lowest AIC value was selected to be the best model 

of its category. Since AIC is an estimator of the “relative” quality of statistical models, 

these AIC values will then be used to compare Models 1 through 6 against each other. 
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Burnham & Anderson (2004) showed that AIC has two theoretical advantages over 

Bayesian information criterion (BIC): 1) AIC is derived from principles of information while 

BIC is not. 2) The Bayesian-framework derivation of BIC has a prior of 1/R (R is the 

number of candidate models), that is "not sensible," since the prior should be a decreasing 

function of k. Stone (1977) and Fang (2011) argued that the cross-validation method is 

asymptotically equivalent to AIC for both ordinary linear regression and mixed-effects 

models. Boisbunon et al. (2014) showed that Mallows' Cp is equivalent to AIC for linear 

regression models. Therefore, for my application, AIC is superior or at least equivalent to 

other methods. 

4.1.2.1. Regression model assuming a constant variance 

The first model assumes that LWC reacts the same to the explanatory variables 

after all weather-related disasters. In other words, I assume no relationship between LWC 

and the amount of property damages because the plot of LWC vs. property damages 

does not signal any upward or downward trend (Figure 4.1).  

https://en.wikipedia.org/wiki/Akaike_information_criterion#CITEREFBurnhamAnderson2004
https://en.wikipedia.org/wiki/Akaike_information_criterion#CITEREFBurnhamAnderson2004
https://en.wikipedia.org/wiki/Bayesian_information_criterion
https://en.wikipedia.org/wiki/Akaike_information_criterion#CITEREFBurnhamAnderson2004
https://en.wikipedia.org/wiki/Akaike_information_criterion#CITEREFBurnhamAnderson2004
https://en.wikipedia.org/wiki/Akaike_information_criterion#CITEREFBurnhamAnderson2004
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Fig. 4.1: Plot of labor wage change vs. property damages 

 

In fact, even after large-scale disasters with high property damages, labor wages 

in some counties did not increase, and in some cases, they even decreased. On the other 

hand, after small disasters, some counties encountered significant increases in labor 

wages. Thus, the first model assumes a constant residual variance for all weather-related 

disasters:  

𝐿𝑊𝐶𝑖 =  α0 + α1𝐸𝐶𝑖 + α2𝐶𝐶𝑖 + α3𝑊𝑊𝑖 + α4𝐸𝐿𝑖 + α5𝐵𝑃𝑖 + ∑ 𝛽𝑘 ∗ 𝐼𝑇𝑘
𝑝
𝑘=1 + 𝜀𝑖  

 where LWCi represents labor wage changes in county i; α0, α1, α2, α3, α4, α5, and 

𝛽𝑘 are the model parameters; IT represents the interaction terms (combination of 

variables); p is the number of all possible interaction terms; ECi is the establishment count 

for residential building construction at one quarter before the catastrophe in county i; CCi 
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is the construction contribution for residential building construction at one quarter before 

the catastrophe in county i; WWi is the average weekly wages for residential building 

construction at one quarter before the catastrophe in county i; ELi is the average 

employment level for residential building construction at three months before catastrophe 

in county i; BPi is the state-wide percent change in the average number of building permits 

issued three months before the catastrophe compared to that of one year earlier; and εi 

is the error term. 

All interaction terms are mean-centred to avoid high multicollinearity problems. 

Centering the data is a method of standardization that decreases multicollinearity and has 

the added benefit of not changing the interpretation of the coefficients. By subtracting 

data from their mean (mean-centring), each coefficient continues to estimate the change 

in the mean response for each unit change in the explanatory variable while all other 

explanatory variables are held constant. 

4.1.2.2. Regression models assuming a category dependent variance 

At this step, the data are categorized into five categories based on property 

damage in all the counties. The National Oceanic and Atmospheric Administration 

(NOAA) collects information on property damage from insurance companies and other 

qualified individuals. If data are not available, estimates are obtained from emergency 

managers, such as the U.S. Geological Survey, U.S. Army Corps of Engineers, power 

utility companies, and newspaper articles (NOAA, 2017). Property damage includes 

damages to buildings (destroyed houses, destroyed garages, destroyed porches, 

damaged awnings, destroyed poles, destroyed roofs, and electrical damage), as well as 

powerlines/poles, roads, bridges, and agriculture. Unfortunately, NOAA does not provide 
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detailed information on the types of property damages incurred at the county-level; thus, 

in this study, I categorize the disasters based on the rough estimates on their total 

property damages provided by NOAA. Table 4.2 summarizes these categories and 

presents the number of observations collected for each category.  

 

Table 4.2: Categories of damages to the counties 

Category 

(j) 
Description 

No. of 

obs. 

1 Disasters causing significant property damages to a county (greater than $30M) 58 

2 Disasters causing high property damages to a county (between $15M and $30M) 56 

3 Disasters causing medium property damages to a county (between $5M and $15M) 97 

4 Disasters causing low property damages to a county (between $1.5M and $5M) 114 

5 Disasters causing very low property damages to a county (between $1M and $1.5M) 70 

 

Regression models assuming a category-dependent variance allow the 

coefficients and the error terms to be different among the groups: 

𝐿𝑊𝐶𝑖,𝑗 =  α0,𝑗 + α1,𝑗𝐸𝐶𝑖 + α2,𝑗𝐶𝐶𝑖 + α3,𝑗𝑊𝑊𝑖 + α4,𝑗𝐸𝐿𝑖 +  α5,𝑗𝐵𝑃𝑖 +  ∑ 𝛽𝑘,𝑗 ∗ 𝐼𝑇𝑘,𝑗

𝑝

𝑘=1

+ 𝜀𝑖,𝑗 

where LWCi,j is the labor wage change in county i and category j; α0,j, α1,j, α2,j, α3,j, α4,j, 

α5,j, and 𝛽𝑘,𝑗 are the model parameters and are independently distributed in category j; IT 

represents the interaction terms; p is the number of all possible interaction terms; and εi,j 

is the error term in county i and category j. 

4.2. Results 

Table 4.3 presents Pearson correlation coefficients between each pair of 

explanatory variables. Considering the common threshold of 0.7, only EC and EL seem 
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to be highly correlated, i.e., the higher number of establishments providing residential 

building services will typically lead to a higher employment level in residential building 

construction in a county and vice versa; however, some counties might have a lower 

number of establishments while each establishment hires more employees. Thus, I keep 

both variables in the initial full models. 

Also, all the interaction terms between variables remain in the model, since they 

are conceptually reasonable. For example, a comparison could be made for a case in 

which the number of building permits have increased, the number of establishments 

providing construction services are high, and employment level is high, against a case in 

which the number of building permits have increased, but the levels of the other variables 

are low. 

Table 4.3: Pearson correlation coefficients 

 EC CC WW EL BP 

EC 1 0.55 0.22 0.78 0.18 

CC 0.55 1 0.27 0.68 0.11 

WW 0.22 0.27 1 0.38 0.16 

EL 0.78 0.68 0.38 1 0.17 

BP 0.18 0.11 0.16 0.17 1 

 

To continue with the constant variance model, explanatory variables are plotted 

vs. response variables (LWC). Figure 4.2 shows the scatter plot of the response variable 

(LWC) vs. each explanatory variable (EC, CC, WW, WL, BP). Some linear downward (or 

upward) trends between LWC and any of the explanatory variables exist. No curvature 

could be seen in these plots; thus, the assumption of linear regression would be 

reasonable. The assumptions of the linear regression method will be investigated next. 
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Fig. 4.2: Scatter plots of response variable vs. each explanatory variable 

 

4.2.1. Regression model assuming a constant variance 

The initial full model was set to be the model assuming constant variance. Using 

the backward elimination method, the model that minimized Akaike information criteria 

(AIC) among the reduced models is: 

Model 1: 

DS i = Intercept i + WW i + EC i *WW i + CC i*EL i + CC i*BP i + WW i*EL i + EL 

i*BP i + ECi*CCi*WWi + EC i*CC i*EL i + EC i*CC i*BP i + CC i*WW i*BP i + EC i*CC 

i*WW i*EL i + EC i*CC i*WW i*BP i+ CC i*WW i*EL i*BP i 

Table 4.4 shows the parameter estimates and the variance inflation factors (VIFs) 

that are used to check multicollinearity. The adjusted R-squared for this model is 17%, 
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which means 17% of the variability in the amount of LWC could be explained using these 

explanatory variables regardless of the magnitude of the disasters.  

Table 4.4: Parameter estimates for model 1 

 Estimate t-value Pr. (>|t|) VIF 

Intercept 19.9450 6.165 1.80E-09 ***  

WW -11.5779 -3.458 0.00061 *** 1.59 

EC*WW -25.6301 -2.787 0.0056 *** 6.83 

CC*EL -2.7910 -1.668 0.09611 * 4.44 

CC*BP 0.1400 2.661 0.00812 *** 2.73 

WW*EL 21.9264 3.184 0.00157 *** 9.16 

EL*BP -0.1070 -2.052 0.04081 ** 4.49 

EC*CC*WW -52.4096 -5.241 2.65E-07 *** 6.40 

EC*CC*EL 3.2924 2.176 0.03014 ** 4.96 

EC*CC*BP -0.1349 -2.236 0.02585 ** 1.60 

CC*WW*BP 0.3019 1.609 0.10845 1.73 

EC*CC*WW*EL 30.2556 3.726 0.00022 *** 8.25 

EC*CC*WW*BP 0.6771 1.582 0.11672 4.17 

CC*WW*EL*BP -0.63922 -1.762 0.07893 * 5.30 

Note: *, **, and *** represent rejection of null hypothesis at the 10%, 5%, and 1% significance level, 

respectively. Residual standard error: 11.27 on 391 degrees of freedom; Multiple R-squared: 0.20; Adjusted 

R-squared: 0.17; F-statistic: 7.178 on 13 and 381 DF; p-value: 1.465e-12; AIC: 1927.22. 

4.2.2. Regression models assuming a category dependent variance 

In this step, the data are categorized into five categories based on the amount of 

property damage, and each category is analyzed individually. The full models including 

all interaction terms were first created, and then the best reduced models were selected 

for each category using the backward elimination method. 
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4.2.2.1. Significant-impact disasters (more than $30 M damage to the county) 

Significant impact disasters are weather-related disasters, which cause property 

damage of 30-million dollars or more in a county in the United States. The full category-

dependent variance model is first assumed as the full model for this category (category 

1) and then backward elimination method is utilized to select the reduced model:  

Model 2: 

LWCi,1 = Intercept i,1 + ECi,1 + WW i,1 + EC i,1*CC i,1 + EC i,1*BP i,1 + CC i,1*BP i,1 + 

WW i,1*EL i,1 + WW*BPi,1 + EL i,1*BP i,1 + EC i,1*CC i,1*WW i,1 + EC i,1*CC i,1*EL i,1 + EC 

i,1*CC i,1*BP i,1 + EC i,1*CC i,1*WW i,1*ELi,1 + CC i,1*WW i,1*EL i,1*BP i,1 

Table 4.5 shows the parameter estimates for Model 2 and the calculated VIFs.   
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Table 4.5: Parameter estimates for model 2 

 Estimate t-value Pr. (>|t|) VIF 

Intercept 3.1215 0.417 0.67847  

EC -5.8687 -1.460 0.15141 3.44 

WW 11.4742 1.666 0.10275 2.87 

EC*CC -13.044 -2.187 0.03409 ** 5.75 

EC*BP -0.4018 -3.738 0.00053 *** 3.46 

CC*BP 0.5908 5.401 2.5e-06 *** 8.06 

WW*EL 54.3421 3.445 0.00126 *** 6.42 

WW*BP 0.7984 3.167 0.00279 *** 3.98 

EL*BP -0.4225 -3.013 0.00428 *** 8.45 

EC*CC*WW -41.0716 -1.280 0.20740 12.05 

EC*CC*EL 29.7063 2.827 0.00704 *** 17.06 

EC*CC*BP -0.2061 -1.410 0.16554 3.65 

EC*CC*WW*EL -73.4501 -2.382 0.02159 ** 15.18 

CC*WW*EL*BP -1.6568 -2.794 0.00768 *** 6.27 

Note: *, **, and *** represent rejection of null hypothesis at the 10%, 5%, and 1% significance level, 

respectively. Residual standard error: 6.52 on 44 degrees of freedom; Multiple R-squared: 0.61; Adjusted 

R-squared:  0.50; F-statistic: 5.276 on 13 and 44 DF; p-value: 1.436e-05; AIC: 229.47. 

 

4.2.2.2. High-impact disasters (between $15 M and $30 M damage to the county) 

High impact disasters are the weather-related disasters which cause property 

damage between 15- and 30-million dollars in a county in the United States. The full 

category-dependent variance model is first assumed to be the full model (including all 
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possible interaction terms) for this category (category 2). The backward elimination 

method is then utilized to create the best reduced model, which is: 

Model 3: 

LWCi,2 = Intercepti,2 + EC i,2 + CC i,2 + EC i,2*CC i,2 + EC i,2*WW i,2 + CC i,2*EL i,2 + 

WW i,2*EL i,2 + ECi,2*CCi,2*ELi,2 + EC i,2*CC i,2*BP i,2 + CC i,2*WW i,2*EL i,2 + CC i,2*WW i,2*BP 

i,2 + WW i,2*EL i,2*BP i,2 + ECi,2*CC i,2*WW i,2*BP i,2 + CC i,2*WW i,2*EL i,2*BP i,2 + EC i,2*CC 

i,2*WW i,2*ELi,2*BP i,2 

Table 4.6 shows the parameter estimates for Model 3 and the calculated VIFs. 
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Table 4.6: Parameter estimates for model 3 

 Estimate t-value Pr. (>|t|) VIF 

Intercept -3.7416 -0.776 0.44246  

EC 13.9633 3.141 0.002950 *** 5.06 

CC -3.6651 -1.690 0.09822 * 2.71 

EC*CC 33.4539 4.025 0.00024 *** 11.12 

EC*WW -51.4505 -2.688 0.01033 ** 6.54 

CC*EL -10.7548 -1.627 0.11131 8.53 

WW*EL 66.3682 5.081 8.63e-06 *** 5.12 

EC*CC*EL -28.2761 -3.983 0.00027 *** 9.38 

EC*CC*BP 0.7688 2.825 0.00727 *** 4.75 

CC*WW*EL -30.9288 -2.754 0.00873 *** 3.07 

CC*WW*BP 1.4269 1.748 0.08793 * 11.28 

WW*EL*BP -2.7418 -3.492 0.00116 *** 9.18 

EC*CC*WW*BP 9.1469 3.994 0.00026 *** 18.96 

CC*WW*EL*BP -2.7923 -1.782 0.08212 * 19.58 

EC*CC*WW*EL*BP 4.9416 1.960 0.05683 * 15.24 

Note: *, **, and *** represent rejection of null hypothesis at the 10%, 5%, and 1% significance level, 

respectively. Residual standard error: 6.352 on 41 degrees of freedom; Multiple R-squared:  0.76, Adjusted 

R-squared:  0.68; F-statistic: 9.313 on 14 and 41 DF; p-value: 1.023e-08; AIC: 219.6. 

 

4.2.2.3. Medium-impact disasters (between $5 M and $15 M damage to the county) 

Medium impact disasters are weather-related disasters which cause property 

damage between 5- and 15-million dollars in a county in the United States. The full 

category-dependent variance model is first assumed as the full model for this category 

(Category 3). The backward elimination method was then utilized to create the best 

reduced model, which is: 
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Model 4: 

LWCi,3 = Intercept i,3 + WW i,3 + BP i,3  + CC i,3 *BP i,3  + WW i,3 *EL i,3  + EC i,3 *CC 

i,3 *WW i,3  + EC i,3 *CC i,3 *EL i,3  + EC i,3 *CC i,3 *BP i,3  + CC i,3 *WW i,3 *EL i,3  + WW i,3 *EL 

i,3 *BP i,3  + EC i,3 *CC i,3 *WW i,3 *BP i,3  + EC i,3 *CC i,3 *WW i,3 *EL i,3 *BP i,3 

Table 4.7 shows the parameter estimates and the VIFs. 

 

Table 4.7: Parameter estimates for model 4 

 Estimate t-value Pr. (>|t|) VIF 

Intercept 36.9822 7.229 1.96e-10 ***  

WW -28.5023 -5.461 4.62e-07 *** 2.05 

BP 0.05929 1.412 0.16172 1.59 

CC*BP 0.20527 2.758 0.0071*** 2.29 

WW*EL 9.3897 1.542 0.1267 8.44 

EC*CC*WW 79.6195 2.838 0.0056 *** 19.38 

EC*CC*EL 3.3472 1.971 0.05198 * 2.399 

EC*CC*BP -0.3648 -2.466 0.0156 ** 4.634 

CC*WW*EL -42.6820 -2.545 0.0127 ** 19.56 

WW*EL*BP -0.1985 -1.764 0.0813 * 15.81 

EC*CC*WW*BP -3.0249 -4.365 3.56e-05 *** 5.16 

WC*CC*WW*EL*BP 1.6214 2.438 0.0168 ** 15.27 

Note: *, **, and *** represent rejection of null hypothesis at the 10%, 5%, and 1% significance level, 

respectively. Residual standard error: 9.05 on 85 degrees of freedom; Multiple R-squared: 0.41; Adjusted 

R-squared:  0.34; F-statistic: 5.425 on 11 and 85 DF; p-value: 1.778e-06; AIC= 438.52. 

 

4.2.2.4. Low-impact disasters (between $1.5 M and $5 M damage to a county)  

Low-impact disasters are weather-related disasters, which cause property damage 

between 1.5- and 5-million dollars to a county. The full category-dependent variance 
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model is first assumed as the full model for this category (category 4). The backward 

elimination method was then utilized to create the best reduced model, which is: 

 

Model 5: 

LWCi,4 = WW i,4 + EL i,4  + EC i,4 *WW i,4  + EC i,4 *EL i,4  + CC i,4 *WW i,4  + EC i,4 *CC 

i,4 *WW i,4  + EC i,4 *CCi,4 *WW i,4 *BP i,4  + CC i,4 *WW i,4 *EL i,4 *BP i,4  + EC i,4 *CC i,4 *WW 

i,4 *EL i,4 *BP i,4 

Table 4.8 shows the parameter estimates and the VIFs. 

 

Table 4.8: Parameter estimates for model 5 

 Estimate t-value Pr. (>|t|) VIF 

Intercept 16.1386 2.380 0.01913 **  

WW -14.2348 -1.854 0.06655 * 1.38 

EL 7.1704 2.519 0.01330 ** 2.03 

EC*WW -25.7388 -1.643 0.10336 1.65 

EC*EL -11.3897 -2.236 0.02749 ** 2.59 

CC*WW 45.6697 3.222 0.00170 *** 3.32 

EC*CC*WW -94.4505 -4.382 2.81e-05 *** 9.90 

EC*CC*WW*BP  2.7678 2.535 0.01272 ** 7.40 

CC*WW*EL*BP -2.3043 -2.473 0.01503 ** 7.50 

EC*CC*WW*EL*BP 2.9723 2.812 0.0059 *** 14.56 

Note: *, **, and *** represent rejection of null hypothesis at the 10%, 5%, and 1% significance level, 

respectively. Residual standard error: 12.7 on 104 degrees of freedom; Multiple R-squared: 0.35, Adjusted 

R-squared: 0.30; F-statistic: 6.265 on 9 and 104 DF; p-value: 4.86e-07; AIC: 588.95. 
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4.2.2.5. Very low-impact disasters (less than $1.5M damage to a county) 

 Very low-impact disasters are weather-related disasters, which cause property 

damage of less than 1.5-million dollars in a county. The full category-dependent variance 

model is first assumed as the full model for this category (category 5). The backward 

elimination method is then used to create the best reduced, model which is: 

 

Model 6: 

LWCi,5 = Intercept i,5 + CC i,5  + EC i,5 *CC i,5  + CC i,5 *WW i,5  + WW i,5 *EL i,5  + EC 

i,5 *CC i,5 *WW i,5  + ECi,5 *CC i,5 *EL i,5  + EC i,5 *CC i,5 *BP i,5  + CC i,5 *WW i,5 *BP i,5  + WW 

i,5 *EL i,5 *BP i,5  + EC i,5 *CC i,5 *WW i,5 *EL i,5 

Table 4.9 shows the parameter estimates and the VIFs. 
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Table 4.9: Parameter estimates for model 6 

 Estimate t-value Pr. (>|t|) VIF 

Intercept -0.4684 -0.220 0.826864  

CC 5.9841 3.154 0.002534 *** 2.07 

EC*CC 12.5289 3.143 0.002618 *** 3.97 

CC*WW -21.2590 -1.915 0.060335 * 3.31 

WW*EL 24.1230 1.751 0.085066 * 3.66 

EC*CC*WW -117.0780 -7.002 2.69e-09 *** 4.15 

EC*CC*EL -13.2973 -4.106 0.000126 *** 12.77 

EC*CC*BP -0.4641 -4.225 8.40e-05 *** 1.28 

CC*WW*BP 1.2740 1.969 0.053684 * 3.38 

WW*EL*BP -1.6600 -2.832 0.006326 *** 3.24 

EC*CC*WW*EL 95.3601 4.744 1.37e-05 *** 17.99 

Note: *, **, and *** represent rejection of null hypothesis at the 10%, 5%, and 1% significance level, 

respectively. Residual standard error: 8.099 on 59 degrees of freedom; Multiple R-squared: 0.62; Adjusted 

R-squared: 0.55; F-statistic: 9.44 on 10 and 59 DF; p-value: 3.894e-09; AIC: 302.87. 

4.2.3. Diagnosis of model assumptions 

Four common model assumptions are discussed for all the regression models. The 

assumptions are linearity, homoscedasticity, multicollinearity, and normality. 

4.2.3.1. Linearity 

Linearity is known to be one of the most important assumptions while conducting 

regression analyses. Plotting the data of residuals vs. fitted values is still known to be the 

best way to detect the violation of linearity assumption (Stevens, 2009). Figure 4.3 shows 

the plots of residuals vs. fitted values for all Models 1 through 6. The residuals for all 

models are well scattered around the mean of zero and no curvilinearity is detected for 
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any of them. We also considered the plots of the response variable vs. each independent 

variable for all Models 1 through 6 and did not find any evidence for the existence of 

curvilinearity. Thus, the assumption of linearity is satisfied for all Models and adding curve 

components to the models is not reasonable. 

 

Fig. 4.3: Plots of residuals vs. fitted values 

 

4.2.3.2. Homoscedasticity 

Homoscedasticity assumption refers to equality of variance of errors across all 

levels of independent variables (Osborne and Waters, 2002), i.e., errors are spread 

consistently among the variables. Bartlett’s test (Bartlett, 1937) and Levene`s test 
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(Levene and Howard, 1960) are used in this study to assess homoscedasticity. In both 

tests, the data of residuals of the fitted values for each model are divided into two equal 

groups (around the median), and the assumption of homoscedasticity is tested. The null 

hypothesis of these tests is that the variances of the two groups are equal. Rejection of 

the null hypothesis means that the residuals do not have constant variances that leads to 

heteroscedasticity. Table 4.10 and 4.11 show the results of Bartlett’s test and Levene`s 

test. All of the p-values are greater than 0.05 except for the Levene`s test for Model 1; 

thus, the assumption of homoscedasticity was satisfied for all models except for Model 1.  

 

Table 4.10: Results of Bartlett`s test 

 

Bartlett`s test  

Bartlett`s  

K-squared 
P-value 

Model1 6.81 0.01 

Model 2 0.16 0.69 

Model 3 0.01 0.91 

Model 4 1.70 0.19 

Model 5 0.36 0.55 

Model 6 0.02 0.88 
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Table 4.11: Results of Levene`s test 

 

 Levene`s test 

Levene`s  

F-value 
P-value 

Model1 1.71 0.19 

Model 2 0.70 0.405 

Model 3 2e-04 0.98 

Model 4 0.28 0.59 

Model 5 0.30 0.58 

Model 6 0.001 0.97 

 

4.2.3.3. Multicollinearity 

The multicollinearity assumption assumes that the independent variables are not 

highly correlated (Darlington, 1968; Keith, 2006). Multicollinearity occurs when the 

independent variables are correlated or when one independent variable is a near linear 

combination of other independent variables (Keith, 2006).  

A VIF greater than 10 indicates a multicollinearity problem (O’Brien, 2007). 

Multicollinearity does not reduce the predictive power or reliability of the model as a whole, 

at least within the sample data set; it only affects calculations regarding individual 

predictors. The predictor variables depend on each other and cannot be individual 

predictors of the dependent variable. Some sources define serious multicollinearity to be 

problematic when the VIF is greater than 100, especially when interaction terms are being 

considered (Belsley, 1980). The VIF for each explanatory variable is calculated and 

shown in the tables of parameters estimates. Except for 15 explanatory variables that 

have VIFs greater than 10 (and less than 20), the rest of the explanatory variables have 

https://en.wikipedia.org/wiki/Dependent_and_independent_variables#Use_in_statistics
https://en.wikipedia.org/wiki/Dependent_and_independent_variables#Use_in_statistics
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VIFs of less than 10. To avoid high multicollinearity problems in Models 2 through 6 

(Tables 5 through 9), interaction terms are mean-centred (by subtracting data from their 

mean). By mean-centring, each coefficient continues to estimate the change in the mean 

response for each unit change in the explanatory variable, while all other explanatory 

variables are held constant. Mean-centring reduces the “nonessential collinearity” and 

does not change the fit of regression models (Dalal and Zickar, 2012). 

4.2.3.4. Normality 

Regression analysis assumes that errors of the model are normally distributed 

(Osborne and Waters, 2002). The Anderson and Darling test (Anderson and Darling, 

1954) and the Shapiro-Wilk test (Shapiro and Wilk, 1965) were utilized in this study to 

check the assumption of normality for the five models. The null hypothesis of these tests 

is that the residuals of the fitted model are normally distributed. A p-value of smaller than 

0.05 results in rejection of the null hypothesis. Tables 4.12 and 4.13 summarize the results 

of these two tests. The null hypothesis was rejected for Model 1 but was not rejected for 

any of the five categorized models, which means the assumption of normality was not 

satisfied for Model 1 and is satisfied for the categorized models.  
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Table 4.12: Results of Shapiro-Wilk test 

 

Shapiro-Wilk test 

 

W-Value P-value 

Model 1 0.95 5.8e-10 

Model 2 0.97 0.75 

Model 3 0.97 0.31 

Model 4 0.97 0.07 

Model 5 0.97 0.08 

Model 6 0.97 0.22 

 

Table 4.13: Results of Anderson Darling test 

 

 

Anderson Darling test 

A-Value P-value 

Model 1 3.88 1.11e-09 

Model 2 0.19 0.90 

Model 3 0.42 0.31 

Model 4 0.08 0.07 

Model 5 0.77 0.06 

Model 6 0.38 0.39 

 

4.2.4. Comparison of results 

Two types of models were created to forecast the amount of LWC after weather-

related disasters. Model 1 assumes that LWC reacts the same to the explanatory 

variables for any magnitude of weather-related disasters. Models 2 through 6 categorize 

the data based on the magnitudes of disasters (property damage) and assume that LWC 

reacts differently to the explanatory variables based on the magnitudes of the weather-

related disasters. The predictability of Model 1 is compared to that of Models 2 through 6 
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using their sum of squared residuals (SSR). The following equation shows how SSR is 

calculated: 

𝑆𝑆𝑅 = ∑(𝐿𝑊𝐶𝑖
̂ − 𝐿𝑊𝐶𝑖)2

𝑛

𝑖=1

 

where 𝐿𝑊𝐶𝑖
̂  is the predicted LWC for observation i, and 𝐿𝐶𝐶𝑖 is the actual LWC for 

observation i. To compare the predictability of the models, SSR for Model 1 is compared 

against the sum of SSR for Models 2 through 6. Thus, both have the same sample sizes 

and become comparable. The results of Table 4.12 show that the SSR for the categorized 

models are 37% lower than the SSR for model 1. Thus, using these models would give 

more accurate estimations. Furthermore, Models 2 through 6 have higher adjusted R-

squares that make them more reliable and useful. Also, all the model assumptions were 

satisfied for Models 2 through 6. 

 

Table 4.14: Comparison between models 

Measure Model 1 Models 2 to 6 

SSR 49314 31120 

 

4.2.5. Discussion of results 

The scatter plots of response variable vs. each explanatory variable (Figure 4.2) 

show linear relationships between any of the explanatory variables and the response 

variable, and the plots of residuals vs. fitted values (Figure 4.3) do not signal any patterns 

or curvatures. Thus, the assumption of linearity is satisfied for all Models 1 through 6, and 

there is no need for non-linear transformation. The results show that the pre-disaster 
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levels of the residential construction market indicators signal the post-disaster levels of 

changes in residential labor wages.  

To avoid high multicollinearity problems in Models 1 through 6, interaction terms 

are mean-centred (by subtracting data from their mean). By mean-centring, each 

coefficient continues to estimate the change in the mean response for each unit change 

in the explanatory variable while all other explanatory variables are held constant. 

The results of this study show that Models 2 through 6 have higher predictability 

power compared to Model 1. Four criteria were considered in selecting the best set of 

predicting models: 

1. The sum of squared residuals for Models 2 through 6 (category dependent 

models) is 31120 which is smaller than that of Model 1 (49314).  

2. The adjusted R-squared values of Models 2 through 6 (0.5, 0.68, 0.34, 0.30, 

0.55, respectively) are greater than that of Model 1 (0.17). 

3. The AIC values of Models 2 through 6 (229, 219, 439, 589, 302.9, respectively) 

are less than the AIC value of Model 1 (1927). 

4. Models 2 through 6 passed all the linear regression assumptions while Model 

1 did not. 

5. Thus, using Models 2 through 6 would give more accurate estimations in the 

event of a weather-related disaster. A comparison of AIC values and adjusted 

R-squared values of models 2 through 6 shows that model 3 with the highest 

adjusted R-squared (0.68) and the lowest AIC value (219) has the best 

performance among the category dependent models and model 5 with the 

lowest adjusted R-squared (0.34) and the highest AIC has the least 
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predictability power among the category dependent models. Hence, in case of 

a disaster with a property damage between 15-million and 30-million dollars to 

a county, Model 3 would be helpful, and for very low-impact disasters (with a 

property damage less than 1.5-million dollars to the county), Model 6 could be 

used to predict the maximum county-level percentage change in residential 

construction labor wages. 

 

4.3. Assumptions and Research Limitations 

This chapter focuses on the residential building construction data to model the post-

disaster changes in labor wages in the residential building construction sector. Future 

research is needed to model construction labor wage changes in other construction 

sectors (heavy and civil engineering construction, and specialty trade contractors) or their 

smaller industry groups. Moreover, the labor wage data, used in this study, does not 

distinguish between different types of laborer (foreman, supervisor, manager, etc.) in the 

residential building construction sector. 

This study used the pre-disaster construction economic data (establishment count, 

construction contributions, average weekly wages, employment level, and building 

permits) to assess their impact on the post-disaster labor wage changes. I included some 

other economic variables, such as GDP at the state level, in my models but they did not 

exhibit any relationship with labor wage changes nor did they improve the predictability 

power of the models. On the other hand, availability of the data at the county-level was 

one of my main constraints in obtaining data for other unobserved potential explanatory 
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variables. Future research may include those unobserved variables to create new models 

with possibly higher accuracy. 
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CHAPTER 5: ASSESSING SPATIO-TEMPORAL AUTOCORRELATIONS IN 

EXISTING DEMAND SURGE MODELS USING SPATIAL PANEL DATA MODELS 

Different predictive models have been created to study the underlying factors 

affecting post disaster construction labor cost escalations; however, all of these models 

are cross-sectional models and do not consider the spatial interaction effects and time-

specific effects in the models. Failing to account for these effects, as in cross-sectional 

studies, increases the risk of obtaining biased estimation results. The objective of this 

chapter is to create spatial panel data models (SPDM) to find the spatial interaction effects 

as well as time-specific effects in the existing cross-sectional demand surge models.  

5.1. Methodology 

The county-level labor wage changes were measured as the seasonally adjusted 

percent change of labor wage following each disaster season. The pre-disaster levels of 

construction economic indicators were used as the explanatory variables. Spatial weight 

matrices were created to describe the spatial arrangement of the counties under study. 

Geary`s C test was conducted to test for the spatial autocorrelation among the values of 

post-disaster labor wage changes (dependent variable). Spatial panel data models were 

created, and the parameters were estimated through maximum likelihood 

implementation. Finally, to test for the assumption of random effects models (versus fixed 

effects models), the Hausman test was implemented. 

5.1.1. Explanatory variables 

For each of the disaster seasons, the county-level data of pre-disaster construction 

economic indicators were obtained from BLS. The pre-disaster construction economic 

data, used in the literature, are LQs of: 
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1) Employment level in construction that represents the number of covered workers 

who have worked during the pay period that includes the 12th day of each month 

(BLS, 2018) 

2) Construction labor wage that is the average weekly wages per employee and is 

computed by dividing total wages by the number of employment (BLS, 2018).  

3) Construction contributions, that are the monies deposited in trust funds in order to 

pay unemployment claims. Construction contributions are calculated on taxable 

wages and are reported quarterly to BLS (BLS, 2018).  

4) Construction establishment counts that are the number of economic units that 

provide residential construction services (BLS, 2018).  

5.1.2. Spatial weight matrix 

Before starting spatial analysis, I need to create spatial weight matrices that 

describe the spatial arrangement of the counties under study. Let W denote an (N×N) 

spatial weight matrix and wij the (i,j)th element of W, where i and j = (1, . . ., N) and N 

represents the number of counties. It is assumed that W is a matrix of known constants, 

which all diagonal elements of the weight matrix are zero. I implemented three methods 

to measure the spatial distance of neighboring counties (off-diagonal wij elements):  

1) First-order binary contiguity matrix that is only the counties which share border 

are considered neighbors; 

2) K= q nearest neighbors where q neighboring counties are considered neighbors 

(usually q is an integer between 2 to 6); 

3) Distance-based neighbors that creates an inverse distance matrix that decays 

the spatial weight of farther counties.  
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Since spatial panel data models are sensitive to the selection of weight matrix, I 

created all the three different types of weight matrices and compared their effects in the 

spatial panel data models. 

5.1.3. Geary`s C test 

To test for the spatial autocorrelation among the values of labor wage changes 

(dependent variable), I perform a preliminary test on spatial dependence of labor wage 

changes among the neighboring counties. Geary's C (Geary, 1954) is a measure of 

spatial autocorrelation to determine if the values of the dependent variable are correlated. 

Geary`s C is defined as: 

𝐶 =
(𝑵 − 𝟏) ∑ ∑ 𝑤𝑖𝑗(𝑥𝑖 − 𝑥𝑗)𝟐

𝑗𝑖

𝟐𝑾 ∑ (𝑥𝑖 − 𝒙̅)𝟐
𝑖

 

where N is the number of spatial units indexed by i and j; x is the variable of interest; x̅ is 

the mean of x; 𝑤𝑖𝑗 is a matrix of spatial weights with zeros on the diagonal; and W is the 

sum of all 𝑤𝑖𝑗. A Geary`s C value of between 0 and 1 demonstrates a positive spatial 

autocorrelation, while a value of greater than 1 demonstrates a negative spatial 

autocorrelation. 

5.1.4. Spatial panel data model 

Spatial panel data models were created to capture spatial interactions across 

counties and over time. I started from a general spatial panel data model that includes a 

spatial lag of the dependent variable (LWC) and spatial autoregressive disturbances: 

𝐿𝑊𝐶 = 𝜆(𝐼𝑇 ∗ 𝑊𝑁)𝐿𝑊𝐶 + 𝛽𝑋 + 𝑢 

where LWC is an NT × 1 vector of observations on the dependent variable (N= number 

https://en.wikipedia.org/wiki/Autocorrelation
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of spatial units, and T= number of disaster seasons), X is an NT × 4 matrix of observations 

on the four exogenous explanatory variables (employment level in construction, 

construction labor wages, construction contributions, and construction establishment 

counts), 𝐼𝑇 is an identity matrix of dimension T, 𝑊𝑁 is the N × N spatial weights matrix of 

known constants, and λ the corresponding spatial autoregressive parameter, and u is the 

disturbance vector that is (Baltagi et al. 2003): 

𝑢 = (𝑙𝑇 ∗ 𝐼𝑁)µ + 𝜌(𝐼𝑇 ∗ 𝑊𝑁)𝜀 + 𝜈 

 where 𝑙𝑇 is a T×1 vector of ones, 𝐼𝑁 an N×N identity matrix, µ is a vector of time invariant 

individual specific effects that are not spatially autocorrelated, ρ is the spatial 

autoregressive parameter, 𝜈 is the vector of remainder error components, and 

𝜈~𝐼𝐼𝐷(0, 𝜎𝜈
2) and 𝜀~𝐼𝐼𝐷(0, 𝜎𝜀

2). Two different models were created considering the 

existence of spatial lag of dependent variable (lag = True) and absence of spatial lag of 

dependent variable (lag = False). 

A second specification for the vector of disturbances is described in Kapoor et al. 

(2007). They assumed that spatial correlation applies to both the individual effects and 

the remainder error components. This assumption implies a different spatial spillover 

mechanism governed by a different structure of the implied variance covariance matrix 

(Millo and Piras, 2012). I considered the implementation of both error term specifications 

in my analysis. 

Considering the three types of spatial interaction effects in the full spatial panel 

data model, three types of reduced models could be created (Halleck and Elhorst, 2015): 

1) the spatial autoregressive (SAR) model containing the endogenous interaction effects 
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𝜆. 𝐿𝑊𝐶; 2) the spatial error model (SEM) containing the error terms` interaction effects 𝑢; 

3) the spatial autoregressive combined (SAC) model containing both 𝜆. 𝐿𝑊𝐶 and 𝑢. More 

models are proposed by researchers that include the spatial interaction effects of 

explanatory variables on the dependent variables of neighboring counties; however, due 

to the overfitting problems associated with these models (Halleck and Elhorst, 2015), they 

were not considered in this analysis. 

5.1.5. Maximum likelihood implementation 

The following likelihood function was maximized to estimate the model parameters 

𝛽, 𝜎𝜀
2, 𝛷, 𝜆 and ρ (Anselin 1988): 

𝐿(𝛽, 𝜎𝜀
2, 𝛷, 𝜆, 𝜌) = −

𝑁𝑇

2
2𝜋 −

𝑁𝑇

2
ln 𝜎𝜈

2 + 𝑇 ln|A| −
1

2
ln|𝑇𝛷𝐼𝑁 + (𝐵T𝐵)−1| + (𝑇 − 1) ln|𝐵| −

1

2𝜎𝜈
2 𝑢T ∑ 𝑢−1            

where 𝛷 = 𝜎µ
2/𝜎𝜀

2, 𝐴 = 𝐼𝑁 − 𝜆𝑊𝑁, 𝐵 = 𝐼𝑁 − 𝜌𝑊𝑁,  𝜎𝜈
2 = (𝐴𝑌 − 𝑋𝛽)T𝛴−1(𝐴𝑌 − 𝑋𝛽)/𝑁𝑇, 

𝑢 = [𝐼𝑇 ∗ (𝐼𝑁 − 𝜌𝑊𝑁)−1]𝜀 and 𝛽 = (𝑋T𝛴−1𝑋)−1𝑋T𝛴−1𝐴𝑌. 

5.1.6. Spatial Hausman test 

Overall, two types of spatial panel data models are proposed in the literature: 

random effects and fixed effects models. A random effects model assumes that the 

unobserved individual effects are not correlated with the other explanatory variables in 

the model (Millo and Piras, 2012). The Hausman test, proposed by Hausman (1978), 

compares random versus fixed effects estimators and tests whether the assumption of 

random effects model is supported by the data. Mutl and Pfaffermayr (2011) extended 

Hausman`s procedure to a spatial framework. 
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5.2. Results 

Texas is among the top three states in the U.S. with highest property damages 

from natural disasters. Over the past decade, ten major weather-related disasters hit 

Texas over four different disaster seasons (Table 5.1): 

Table 5.1: Texas weather-related disasters from 2007 to 2015 

No. 
Property 

Damages 
Disaster Incident Period 

1 $486M Severe Storms and Tornadoes April 21, 2007 – April 24, 2007 

  Hurricane Dean August 17, 2007 - September 05, 2007 

  Tropical Storm Erin August 14, 2007 – August 20, 2007 

2 $15B Hurricane Dolly July 22, 2008 – August 01, 2008 

  Hurricane Gustav August 27, 2008 - September 07, 2008 

  Hurricane Ike September 07, 2008 - September 26, 2008 

  Hurricane Ike September 07, 2008 - October 02, 2008 

3 $169M Tropical Storm Alex June 27, 2010 – August 14, 2010 

  Hurricane Alex June 30, 2010 – August 14, 2010 

4 $947M 
Severe Storms, Tornadoes, 

Straight-line Winds, and Flooding 
May 04, 2015 – June 23, 2015 

 

Figure 5.1 shows the state of Texas and its county boundaries. For each of the 

above disasters, I obtained the pre-disaster construction economic data of those Texas 

counties for which the data were published by Bureau of Labor Statistics (BLS) and 

created spatial panel data models to take into account both spatial and time specific 

effects in my models. Since spatial panel data models are sensitive to the selection of 

weight matrix, all the three different types of weight matrices were created, and their 

effects were compared in the spatial panel data models (Figure 5.2). 



77 
 

 

Fig. 5.1: Texas state  
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                             (a)          (b) (c) 

Fig. 5.2: a) Contiguity binary matrix; b) 4-nearest-neighbors’ matrix; c) Distance-based matrix (100 

km) 

 

Figure 5.3 shows the percentage change in the amount of residential building 

construction labor wage, at the county-level, for each of the four disaster seasons in 

Texas, from 2007 to 2015. The labor wage changes in the neighboring counties have, to 

some extent, a similar behavior, which suggests the existence of spatial autocorrelations.  
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Fig. 5.3: Percentage change in labor wage following different disaster seasons in Texas 

 

Table 5.2 represents the results of Geary`s C for each of the disaster seasons in 

Texas. The results show that for all four disaster seasons, Geary`s C is less than 1 that 

means there is a positive spatial autocorrelation among the values of the dependent 

variable exists. In other words, an increase (decrease) in the construction labor wage in 

a county will lead to an increase (decrease) in the construction labor wage in the 

neighboring counties. 
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Table 5.2: Geary`s C statistics 

Year 
Geary`s C 

Statistics 
Expectation Variance P-value 

2007 0.79 1.00 0.019 0.07 

2008 0.81 1.00 0.013 0.01 

2010 0.93 1.00 0.030 0.08 

2015 0.73 1.00 0.020 0.03 

 

I also regressed labor wage change on the four explanatory variables (employment 

level in construction, construction labor wages, construction contributions, and 

construction establishment counts) for each of the disaster seasons in Texas. Figure 5.4 

shows the plots of residuals from OLS models. Neighboring counties shared some 

unexplained properties in their model residuals that suggests the existence of spatial 

autocorrelations.  
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Fig. 5.4: Residuals from OLS model 

 

Tables 5.3 to 5.5 show the parameter estimates of spatial panel data models 

assuming three different spatial weight matrices. When all spatial parameters are 

included in the model (using both Baltagi and Kapoor methods) and neighboring counties 

are considered as counties within 100 km distance from each other, all spatial parameters 

(Φ, ρ, λ) are significant in the model. 
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Table 5.3: SPDM parameter estimates: contiguity binary matrix 

Weight Matrix  Contiguity binary 

Lag  False  True 

Error  Baltagi Kapoor None  Baltagi Kapoor None 

Intercept  56.4a 56.5a 56.4a  56.5a 56.7a 56.2a 

 EC  -8.0b -7.7b -8.0b  -7.8b -7.5b -8.0b 

CC  -1.1 -1.2 -1.1  -1.2 -1.2 -1.1 

WW  -35.8a -36.0a -35.8a  -35.8a -35.9a -35.8a 

EL  4.6 4.7 4.6  4.6 4.6 4.6 

Φ  0.39a 0.38a 0.39a  0.38a 0.38a 0.39a 

ρ  - 0.05 -  0.05 0.07 - 

λ  - - -  -0.02 0.04 0.02 

Note: a and b represent rejection of null hypothesis at the 1% and 10% significance level, respectively. 

Table 5.4: SPDM parameter estimates: 4NN matrix 

Weight Matrix  4NN matrix 

Lag  False  True 

Error  Baltagi Kapoor None  Baltagi Kapoor None 

Intercept  55.9a 55.8a 56.4a  59.1a 60.1a 58.6a 

EC  -8.4b -8.4b -8.0b  -8.6b -8.4b -8.6b 

CC  -0.9 -0.9 -1.1  -0.9 -1.0 -0.9 

WW  -35.1a -34.9a -35.8a  -36.0a -36.4a -35.8a 

EL  4.4 4.4 4.6  4.4 4.4 4.4 

Φ  0.39a 0.38a 0.38a  0.40a 0.40a 0.39a 

ρ  -0.12 -0.09 -  0.04 0.16 - 

λ  - - -  -0.15 -0.19 -0.12 

Note: a and b represent rejection of null hypothesis at the 1% and 10% significance level, respectively. 

 
Table 5.5: SPDM parameter estimates: distance-based matrix (100 km) 

Weight Matrix  Distance based matrix (100 km) 

 
Lag  False  True 

Error  Baltagi Kapoor None  Baltagi Kapoor None 

Intercept  56.3a 56.4a 56.4a  46.9a 62.5a 57.9a 

EC  -8.4b -8.4b -8.0b  -7.4b -6.6b -8.4b 

CC  -0.9 -1.0 -1.1  -0.8 -1.2 -1.0 

WW  -35.5a -35.5a -35.8a  -32.8a -34.4a -35.8a 

EL  4.6 4.6 4.6  4.9 3.8 4.5 

Φ  0.40a 0.39a 0.39a  0.39a 0.43a 0.40a 

ρ  -0.11 -0.08 -  -0.57a 0.12a - 

λ  - - -  0.39a 0.58a -0.08 

Note: a and b represent rejection of null hypothesis at the 1% and 10% significance level, respectively. 
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All of the above models assume that random effects exist in the models. Table 5.6 

shows the results of Hausman test. Since the p-value of the test is less than 1% and the 

null hypothesis of existence of fixed effects is rejected, I accepted the alternative 

hypothesis. 

      Table 5.6: SPDM parameter estimates: contiguity + 100 km matrix 

Lagrange Multiplier p-value Alternative hypothesis 

4.75 2.033e-06 Random Effects 

 

5.3. Model Selection and Diagnosis 

To select the best model among those proposed in this chapter, three criteria were 

considered: 1) significance level of the entire model, 2) log-likelihood of the model, and 

3) significance level of the model parameters. The results showed that, after creating the 

distance-based-neighbors weight matrix (where neighboring counties are assumed to be 

within 100 km distance from each other) and including both lag of dependent variable and 

spatial error terms (considering Baltagi`s assumption) in the model: 1) the model is 

significant (has p-value of less than 1%), 2) the model has the highest loglikelihood i.e. 

the highest prediction accuracy, and 3) all of the spatial model parameters (Φ, ρ, λ) are 

significant. Different weight matrices were created considering different distances; 

however, the best model results were obtained when the distance between the center of 

the counties were set to 100 km. This distance seems to be a reasonable commute 

distance for laborer to perform their work in the neighboring areas. 

The Baltagi method in creation of vector of disturbances assumes that error terms are 

autocorrelated across the counties; and the vector of remainder error components are the 



84 
 

errors that are not spatially autocorrelated. To test the existence of autocorrelations 

among the values of vector of remainder error components, a Geary`s C test was 

conducted on the data of this vector for each data panel (2007, 2008, 2010, and 2015). 

The results of Geary`s C test, summarized in table 5.7, show that the p-values for all data 

panels are greater than 10% and thus, the null hypothesis of existence of autocorrelations 

among the values of the vector of remainder error components would be rejected. In other 

words, the proposed spatial panel data model captured the autocorrelations in the vector 

of spatially autocorrelated error terms (𝜀), and no spatial autocorrelations exist in the 

vector of remainder error components (𝜈). 

 

Table 5.7: Geary`s C statistics of the vector of remainder components 

Year 
Geary`s C 

Statistics 
Expectation P-value 

2007 1.08 1.00 0.91 

2008 1.01 1.00 0.60 

2010 0.96 1.00 0.25 

2015 0.98 1.00 0.36 

 

5.4. Assumptions and Research Limitations 

This chapter focuses on the labor wage data in the state of Texas. Future research is 

required to create more general models that include the labor wage data of the other 

states in the United States. Moreover, unobserved variables in this study (e.g. regional 

economic indicators, physical properties of the disasters, risk-mitigation or other disaster-
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related policies made before or after the disasters, etc.) could be added and tested in the 

spatial panel data models to possibly create more comprehensive and accurate models. 
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 CHAPTER 6: DISCUSSION OF RESULTS 

Chapter 4 proposes models 2 to 6 to be used as cross-sectional models for predicting the 

residential building construction labor wage changes in the events of weather-related 

disasters in the U.S. To create these models, I started from the full models and then used 

backward elimination method (using AIC) to get to the reduced models. One may still 

prefer to use the less complex models, although the adjusted R-squared decreases 

slightly. I removed insignificant variables in the models 2 to 5, one at each step, until all 

model parameters became significant. This resulted in creation of less complex models; 

however, the adjusted R-squared for models 2 to 5 changed from 0.50, 0.68, 0.34, and 

0.30 to 0.43, 0.59, 0.31, and 0.27, respectively. Since all variables in model 6 are 

significant, this model remains unchanged. Tables 6.1 to 6.4 show the new parameters 

for these models. 

Table 6.1: New parameter estimates for model 2 

 Estimate t-value Pr. (>|t|) 

Intercept 7.73 7.46 1.15e-09*** 

EC*BP -0.34 -3.25 0.002*** 

CC*BP 0.49 5.60 9.21e-07*** 

WW*EL 39.39 3.13 0.002*** 

WW*BP 0.76 3.01 0.004*** 

EL*BP -0.43 -3.66 0.0006*** 

EC*CC*WW*EL -33.18 -1.93 0.05** 

CC*WW*EL*BP -1.63 -2.90 0.005*** 

Note: *, **, and *** represent rejection of null hypothesis at the 10%, 5%, and 1% significance level, 

respectively. Multiple R-squared: 0.50; Adjusted R-squared:  0.43; F-statistic: 7.23 on 7 and 50 DF; p-value: 

5.61e-06. 
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Table 6.2: New parameter estimates for model 3 

 Estimate t-value Pr. (>|t|) 

Intercept -2.39 -0.54 0.59 

EC 9.77 2.45 0.01*** 

EC*CC 17.22 4.03 0.0001*** 

WW*EL 39.63 5.28 2.99e-06*** 

EC*CC*EL -27.48 -4.24 9.86e-05*** 

CC*WW*EL -32.70 -3.25 0.002*** 

EC*CC*WW*BP 1.47 2.68 0.01*** 

Note: *, **, and *** represent rejection of null hypothesis at the 10%, 5%, and 1% significance level, 

respectively. Multiple R-squared:  0.63, Adjusted R-squared:  0.59; F-statistic: 14.2 on 6 and 42 DF; p-

value: 2.72e-09. 

 
Table 6.3: New parameter estimates for model 4 

 Estimate t-value Pr. (>|t|) 

Intercept 38.55 7.63 2.4e-11*** 

WW 29.72 -5.74 1.23e-07*** 

CC*BP 0.09 1.79 0.077* 

EC*CC*WW 86.27 3.32 0.001*** 

CC*WW*EL 37.24 -2.33 0.02** 

EC*CC*WW*BP -2.38 -4.10 9.06e-05*** 

WC*CC*WW*EL*BP 0.85 2.67 0.009*** 

Note: *, **, and *** represent rejection of null hypothesis at the 10%, 5%, and 1% significance level, 

respectively. Multiple R-squared: 0.35; Adjusted R-squared:  0.31; F-statistic: 8.11 on 6 and 90 DF; p-value: 

5.148e-07. 
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Table 6.4: New parameter estimates for model 5 

 Estimate t-value Pr. (>|t|) 

Intercept 4.49 1.65 0.1 

EL 5.61 2.09 0.038** 

EC*EL -10.99 -2.18 0.03** 

CC*WW 35.94 2.74 0.007*** 

EC*CC*WW -111.65 -5.45 3.22e-07*** 

EC*CC*WW*BP  3.12 2.88 0.004*** 

CC*WW*EL*BP -2.55 -2.72 0.007*** 

EC*CC*WW*EL*BP 3.50 3.38 0.001*** 

Note: *, **, and *** represent rejection of null hypothesis at the 10%, 5%, and 1% significance level, 

respectively. Multiple R-squared: 0.32, Adjusted R-squared: 0.27; F-statistic: 7.1 on 7 and 106 DF; p-value: 

5.98e-07. 

I created cross-sectional models to predict the post-disaster residential building 

construction labor wage changes in the events of weather-related disasters in the U.S. I 

also created spatial panel data models to predict this change for the state of Texas. Future 

research may use data of the other U.S. states or collect more comprehensive data and 

create national-level spatial panel data models. Figure 6.1 shows the framework that is 

needed to be followed in order to select the best cross-sectional/spatial panel data model, 

for any similar application. 
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Fig. 6.1: Proposed framework to create demand surge models 
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CHAPTER 7: CONCLUSIONS 

The results of this study showed that among the construction sub-sectors, Heavy 

and Civil Engineering Construction is the most vulnerable to weather-related disasters. 

Under the Construction of Buildings sub-sector, the Industrial Building Construction 

industry group is the most vulnerable; and under the Specialty Trade Contractors sub-

sector, the Building Foundation and Exterior Contractors industry group and Other 

Specialty Trades Contractors industry group are the most vulnerable to weather-related 

disasters. 

In almost 75% of the affected counties, an increase in the construction labor wages 

in the quarter of the disaster or one of the following three quarters occurs. A county is 

more likely to face a significant increase in the construction labor wages in the aftermath 

of weather-related disasters than a significant decrease. The skewness and kurtosis of 

the distributions of historical labor wage changes in different construction sub-sectors 

(industry groups) showed that in most cases labor wage changes are less than the 

calculated mean value; however, in rare cases, very high levels of increase in wages were 

observed.  

On average, labor wages in the Construction of Buildings sub-sector and the 

Specialty Trade Contractors sub-sector decreased by 0.6% and 0.8%, respectively, in the 

quarter of the disaster and gradually increased by 4.4% and 4.6%, respectively, in the 

following three quarters. On the other hand, Heavy and Civil Engineering Construction`s 

labor wages did not experience this decrease right after the disasters; wages increased 

immediately after disasters hit the counties and then rapidly increased by 8.6% in the 

three quarters after the disasters. 
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LWC represents the highest percentage increase in labor wages over the four 

quarters following the weather-related disasters (including the quarter of disaster) and, in 

most cases, the counties did not face such an increase in the other three quarters 

following the disasters. The longer tails of the LWC in the right hand showed the possibility 

of significant increases (up to more than 100%) in labor wages in all sub-sectors (industry 

groups).  

The relationship between pre-disaster construction market conditions and 

residential building labor cost changes following weather-related disasters was quantified. 

The multiple linear regression method was used to quantify the relationship between the 

pre-disaster level of residential construction market indicators and the maximum 

percentage change in the residential building labor wages following weather-related 

disasters. First, two types of regression models (constant variance and category 

dependent variance) were proposed. Then, using the SSR method, the best set of models 

were proposed. A lower SSR shows a tighter fit of the model to the actual values of the 

empirical data. The second type of models (category dependent variance) had lower 

SSR. Thus, a relationship between LCC and all five explanatory variables (establishment 

count, contribution level, average weekly wages, employment level, and building permits) 

based on the magnitude of the weather-related disasters (property damages to the 

counties) exists. In other words, changes in the residential building labor wages following 

weather-related disasters significantly depend on the level of property damages and the 

pre-disaster level of construction market indicators (and the interactions between the 

construction market indicators).  
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Predictive models were proposed to forecast construction labor cost changes 

following large-scale weather-related disasters in the United States, using pre-disaster 

construction economic indicators. Since the data of all predictor variables are known at 

the quarter in which the disaster occurs (data are publicly available by the Bureau of Labor 

Statistics and the U.S. Census Bureau), cost estimators and construction firms can use 

these models to estimate the expected percentage increase in the residential building 

labor wages in the event of a weather-related disaster to prepare more accurate bids. 

Capital planners and disaster-risk-mitigation stakeholders, on the other hand, could 

identify the more vulnerable counties before or at the event of a catastrophe to get 

involved in disaster risk mitigation strategies, such as improving labor market capacity 

gaps. Vulnerable counties are those with higher levels of labor wage changes.  

The spatio-temporal autocorrelations among the variables in the existing cross-

sectional demand surge models were also evaluated. The results showed that spatio-

temporal autocorrelations exist among the values of dependent variable (labor wage 

change) as well as the values of error terms in the OLS models. Since spatial panel data 

models are sensitive to the selection of weight matrix, three different types of weight 

matrices (first-order binary contiguity matrix, 4-nearest-neighbors matrix, and distance-

based-neighbors matrix) were created and their effects were compared in the spatial 

panel data models. After arranging the counties based on these weight matrices, two 

types of spatial panel data models were created. The first type (lag = false) assumed that 

no endogenous interaction effects exist in the model i.e. the values of dependent variable 

are not autocorrelated over space, and the second type (lag = true) assumed existence 

of spatial autocorrelations among the values of dependent variable. Then, for each type, 
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three methods were used to construct the vector of disturbances: Baltagi method, Kapoor 

method, and no spatial autocorrelations among the error terms. The results showed that, 

after creating the distance-based-neighbors weight matrix (where neighboring counties 

are assumed to be within 100 km distance from each other) and including both lag of 

dependent variable and spatial error terms (considering Baltagi`s assumption) in the 

model: 1) the model is significant (has p-value of less than 1%), 2) the model has the 

highest loglikelihood i.e. the highest prediction accuracy, and 3) all of the spatial model 

parameters (Φ, ρ, λ) are significant. Different weight matrices were created considering 

different distances; however, the best model results were obtained when the distance 

between the center of the counties were set to 100 km. This distance seems to be a 

reasonable commute distance for laborer to perform their work in the neighboring areas. 

I proposed a framework to be followed for creating demand surge models for other 

U.S. states or for other regions in the world. It is expected that this work will help demand 

surge modelers to create more accurate predictive models. 
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