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Abstract 

SURFACE ROUGHNESS FORMATION DURING 

TENSILE PLASTIC DEFORMATION OF 

NICKEL POLYCRYSTALS 

 

Kranthi Balusu, PhD 

 

The University of Texas at Arlington, 2018 

 

Supervising Professor: Haiying Huang 

 

Understanding the formation of surface roughness could help better diagnose a metal 

component’s health and could potentially help in making better microstructure design decisions. 

Both of these, in turn, contribute to the design of efficient structural components. In this work, the 

research objective is to understand the relationship between the surface microstructure (i.e., grain 

orientations) and the surface-height changes in nickel polycrystals undergoing small amounts of 

tensile plastic deformation. The secondary objective is to determine the relationship between surface 

height and strain localization. Primarily simulations were used, along with experimental surface 

roughness observations, to validate the simulation results. Discrete dislocation plasticity (DDP) was 

used to simulate slip-step-type surface roughness, and the crystal plasticity finite element method 

(CPFEM) was used to simulate grain-scale surface roughness. Electron backscatter diffraction 

(EBSD) characterized the microstructure on the surface, and surface white light interferometer 

(SWLI) measured the surface heights of deformed samples. Randall Kelton, a Ph.D. candidate in 

Material science and Engineering, performed experiments and I focused primarily on simulations 

and analysis of experimental data.  

The first phase of the work has an emphasis on simulating the surface roughness at the 

scale of the slip steps. Calculation of stress fields associated with dislocations at the surface is 
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essential in the simulation of slip-step formation. So, a novel, efficient way to simulate stress fields 

of dislocations at the free surface of 3D elastic, anisotropic materials was devised. Subsequently, it 

was found that DDP can only generate results at a much smaller scale than that of this study’s 

experimental surface-height measurements.  

In the second part of this work, the focus shifts to roughness at a greater length scale, the 

grain scale. First, the effect of grain orientation on its surface height was investigated, ignoring the 

role of the interaction of neighboring grains in roughness formation. Experimental and simulations 

have revealed that the plastic hardness of a grain does not determine the grain-surface height as 

previously thought. It was found that the plastic deformation of the grain’s most stressed slip 

systems along the direction normal to the surface determines a grain’s surface height. Simulations 

also indicated that plastic strains of a grain in the loading direction are not be related to its surface 

height. However, plastic strains in the other two directions can be potentially estimated using surface 

heights.  

For many grain orientations, simulating the grain itself does not produce the experimentally 

observed surface behavior. The neighboring grains were found to be highly influential in 

determining a grain’s surface height, especially the grains lying underneath the surface up to depths 

of 3–4 grain diameters. Thus, discrepancies between experiments and simulations are justified. 

While doing so, it was also found that a few specific grain orientations exhibit the same surface 

behavior irrespective of the neighboring grains.   

The studies conducted in this research have led to an understanding of grain-scale surface 

roughness formation, and as a result, the limitations in predicting surface roughness using surface-

grain orientations are that surface-height data can make only a limited diagnosis of strain 

localization.  
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Chapter 1  

Introduction 

 Motivation 

The efficient design of metal structural components requires the understanding and 

prediction of structural failure. Structural failure in ductile metals often follows localization events 

during plastic straining. Localization events such as crack initiation and necking can often be 

predicted by monitoring the roughness of the surfaces during plastic deformation [1]–[4]. This is a 

feasible approach because plastic deformation is the unified mechanism governing both surface 

roughening and failure. However, the exact relationship between strain localization and surface 

roughness is not well understood. Surface roughness results from out-of-plane plastic deformation 

and manifests itself due to the heterogeneity of the underlying microstructure in a polycrystalline 

metal. In this case, the relationship between the surface roughness formation and the underlying 

microstructure remains poorly understood. 

 

 

 

  

Figure 1-1. (a) FCC crystal lattice with the three axes representing the crystallographic coordinate 

system; (b) surface of a sample depicting orientations of the lattice in every grain. 
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The microstructure of the whole sample is expected to influence the sample’s deformation 

behavior. However, using widely available techniques, only the surface microstructure can be 

characterized non-destructively. In pure, defect-free metal polycrystals, grains are the key 

microstructural features. Grains in a polycrystal are individual crystals with a unique lattice 

orientation. Figure 1-1(a) shows the lattice structure of nickel which is a face-centered crystal (FCC) 

lattice. Characterization using techniques such as electron backscatter diffraction (EBSD) allows us 

to determine the boundaries and orientation of each grain on the surface. The key research question 

is whether or not the microstructure information (i.e., grain orientation) from the surface can 

determine the surface roughness.  

 

 Objectives and approach 

The primary of objective of this study is to understand the relationship between surface 

microstructure and surface roughness. The secondary objective is to determine the relationship 

between surface roughness features and strain distributions.  

Our main approach to achieve the research objectives involves using simulations. The 

advantage of simulations lies in their ability to isolate individual features of the microstructure and 

vary these features while holding other parameters constant, thereby providing an in-depth 

understanding of the influence of the isolated feature on the results. While the slip of the atomic 

planes is the fundamental underlying plastic deformation mechanism, various modeling approaches 

are used to model microstructure sensitive deformation behavior at different scales, as shown in 

Figure 1-2[5]. The accuracy of the modeling approaches and their applicability to a particular scale 

of plastic deformation is still not well understood [6], [7]. That is why simulation methods supported 

by experimental observations are often used to study microstructure sensitive plastic deformation.  



 

3 

 

 

 

Surface roughness in pure metals, such as nickel here, can be classified into two scales: grain 

scale (Figure 1-3 (a)) and slip steps (Figure 1-3(b)). Both these scales of surface roughness are 

considered in this study. Slip steps are features of the slip of atomic/lattice planes at the surface. 

However, it is not necessary to use atomic level simulations to model slip steps. Discrete dislocation 

lines, which separate the unslipped and slipped regions, can be used instead. Dislocation intersection 

with the surface is the origin of slip step formation. Plastic deformation consists of the movement, 

 

Figure 1-2. Length scales in the microstructure-sensitive modeling of materials.  

Min.  Length
 Scale, L O(10-10 m)     O(10-8 m) O(10-7 m)  O(10-5 m)   O (10-3 m)

 

           Atomistic          Discrete            Dislocation     Polycrystal          Macroscale
   dislocations           patterns    plasticity        plasticity

Atomistic

10    𝑚

Discrete

Dislocations

10   𝑚

Dislocation

Patterns

10   𝑚
Grain scale

10   𝑚
Macroscale

10   𝑚

Homogenous 

Continuum 

Plasticity

Discrete 

Dislocations

Molecular 

Dynamics
Distributed 
Dislocations

Crystal 

Plasticity

Scale

Modeling 

approach

  
 

 

Figure 1-3. Profile of an initially smooth sample after plastic tensile deformation; (a) grain scale 

surface roughness; (b) inset from (a) illustrates slip steps. 

(a) (b)
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multiplication, and interaction of these dislocations. Dislocations, depending on the lattice structure, 

have a specific magnitude and direction and move in specific lattice planes, making dislocation 

plasticity dependent on the microstructure. This modeling framework is called discrete dislocation 

plasticity (DDP), and it is suitable to simulate slip-step formation on the surface.  

The unique plastic deformation of individual crystals toward the free surface leads to grain-

scale surface roughness formation. The crystal plasticity finite element method (CPFEM) refers to 

models of crystal plasticity in a numerical implementation using finite elements. Crystal plasticity, 

at its most complex, uses the collective deformation mechanics of dislocations informed by 

simulations at lower scales, and the simplest approach uses phenomenological models [8]. All the 

approaches ignore modeling individual dislocations but still capture the unique deformation 

behavior of individual grains [6], [9]. Grain-scale roughness is intended to be simulated using 

phenomenological crystal plasticity models in CPFEM.   

 

The microstructure on the surface of the gauge is characterized using electron backscatter 

diffraction (EBSD, Hitachi S-3000N SEM). We used a scanning white light Interferometer (SWLI, 

 

Figure 1-4. A scanning whitelight interferometer (SWLI) integrated with a mechanical tester 

for in-situ 3D surface profiling of the sample surface. 

 

Mechanical testerTest specimen

SWLI microscope
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Bruker NPFLEX) installed along with a tensile testing machine (Bose LM2 test bench) to record 

the surface heights in situ (see Figure 1-4). The SWLI surface profiler has a lateral resolution of 

366 nm and a vertical resolution of less than 1 nm.  

 

 

 Dissertation organization  

This dissertation is article based and consists of two manuscripts arranged as Chapters 2 

and 3, which contain an extensive literature review on the simulation of slip-step and grain-scale 

roughness formation, respectively. Chapters 4 is dedicated to some preliminary work that is yet to 

be published. The first problem encountered is modeling slip-step formation. The current numerical 

approaches cannot effectively simulate elastic deformation near free surfaces. As a solution, the first 

paper, “A Combined Dislocation Fan–Finite Element (DF-FE) Method for Stress Field Simulation 

of Dislocations Emerging at the Free Surfaces of 3D Elastically Anisotropic Crystals,” presents a 

novel, efficient numerical method. While this paper achieves its objectives, our experiments 

indicated that the surface roughness developed is dominated by the grain scale deformation instead 

of the slip band formation. Therefore, the focus shifted to simulate the grain-scale surface roughness. 

In grain-scale surface roughness formation, we found that there is still a lack of a 

fundamental understanding of the relation between the grain orientation and grain-surface height. 

The relationship between grain orientation and its surface height is studied in the paper, 

“Investigating the Relationship Between Grain Orientation and Surface-Height Changes in Nickel 

Polycrystals Under Tensile Plastic Deformation”, using both experimental and simulation 

approaches. We found that Schmid and Taylor factors, which depend only on the grain orientation 

in the loading direction, do not determine grain-surface height. We further discovered that, for most 

grains with a specific loading direction orientation, the orientation in the direction normal to the 

surface determines the grain-surface height. While the simulation results matched the experimental 



 

6 

 

observations for grains with the loading direction orientation near the [001] and [111] 

crystallographic directions. The simulated and measured surface behavior deviated for grains with 

other loading direction orientations. The dependence of these grains’ surface behavior on the 

behavior of the grains around it could explain this phenomenon.  

The first section of Chapter 4 contains a discussion of the second objective—determining 

the grain stresses and strains from a grain’s surface height. For this purpose, the same simulation 

sample as the one presented in the previous chapter is used. We found that the strain and stress in 

the loading direction is dependent on the orientation in the loading direction but not related to grain-

surface height. However, average grain surface heights are linearly related to stresses and strains in 

the normal and transverse directions. The second section investigates the role of neighboring grains 

in a grain’s surface height. The results indicate that neighboring grains, especially grains directly 

underneath, have a substantial effect on surface height. As a consequence, for most orientations, the 

neighboring grains could determine a grain’s surface behavior.  
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Chapter 2  

A COMBINED DISLOCATION FAN – FINITE ELEMENT (DF-FE) METHOD FOR 

STRESS FIELD SIMULATION OF DISLOCATIONS EMERGING AT THE FREE 

SURFACES OF 3D ELASTICALLY ANISOTROPIC CRYSTALS 

 

 

 

 

Kranthi Balusu, Haiying Huang 

 
 
 
 

Balusu, K. & Huang, H., 2017. A combined dislocation fan-finite element (DF-FE) method for 

stress field simulation of dislocations emerging at the free surfaces of 3D elastically anisotropic 

crystals. Modelling and Simulation in Materials Science and Engineering, 25(3), p.0355007 

(14pp).1 

  

                                                           
1 Copyright information: IOPscience, the publisher of Modelling and Simulation in Materials 

Science and Engineering journal, gives authors the right to include the Final Published Version of 

the article in their research dissertation 
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Abstract  

A combined dislocation fan-finite element (DF-FE) method is presented for efficient and 

accurate simulation of dislocation nodal forces in 3D elastically anisotropic crystals with 

dislocations intersecting the free surfaces. The finite domain problem is decomposed into half-

spaces with singular traction stresses, an infinite domain, and a finite domain with non-singular 

traction stresses. As such, the singular and non-singular parts of the traction stresses are addressed 

separately; the Dislocation Fan (DF) method is introduced to balance the singular traction stresses 

in the half-spaces while the Finite Element Method (FEM) is employed to enforce the non-singular 

boundary conditions. The accuracy and efficiency of the DF method is demonstrated using a simple 

isotropic test case, by comparing it with the analytical solution as well as the FEM solution. The 

DF-FE method is subsequently used for calculating the dislocation nodal forces in a finite elastically 

anisotropic crystal, which produces dislocation nodal forces that converge rapidly with increasing 

mesh resolutions. In comparison, the FEM solution fails to converge, especially for nodes closer to 

the surfaces.  

Keywords: Dislocation fan - finite element method; Discrete dislocation dynamics; free 

surfaces; anisotropic elasticity; Stress field simulation; Peach-Koehler forces  

 
 

 Introduction 

Understanding material plasticity is necessary for the optimal design of structures 

undergoing plastic deformation and fatigue. Plasticity, i.e., the permanent deformation of materials 

under static or cyclic loading, is generally attributed to internal dislocation activities. Persistent slip 

band (PSB) formation on the surfaces has long known to be a manifestation of material plastic 

deformation. In order to form the PSBs, the internal dislocation lines have to emerge and intersect 

the free surface. In other words, free surface– dislocation intersection is a crucial part of the slip 

band formation and nucleation mechanisms [10]. In addition, size effects [11] on the strength of 
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both single crystals [12] and polycrystals [13] are affected by free surface interaction. Free surface 

interaction is also required to explain the size effect on hardness in nanoindentation [14]. 

In recent years, discrete dislocation dynamics (DDD) simulation has made great advances 

in simulating plasticity at a microscopic scale, due to ever-increasing computation capabilities [15], 

[16]. In DDD simulations, dislocation is modeled as a line defect in a linear elastic body. A set of 

kinematic equations, typically obtained through molecular dynamics simulation, are used to govern 

the motion of individual dislocation in terms of the net forces acting on the dislocation due to 

external loading, defects, and other dislocations. The determination of dislocation stress fields and 

the corresponding dislocation nodal forces, therefore, is the most fundamental solution of any DDD 

simulation model. While the stress field solution for dislocation structures in an infinite domain is 

analytical [17], [18], the analytical stress field expressions for finite domains, however, are only 

available for a few specific domain shapes [19]–[24] and are also sometimes complicated to 

evaluate [25]. A common approach for finding the dislocation stress field in a generically shaped 

domain involves generating an image stress field to correct the stress field of the dislocations in 

infinite bodies and enforce the required boundary conditions [26]. For generalized domain shapes, 

numerical methods are often necessary to generate these image stress fields. Various methods, 

including the Finite Element Method (FEM) [27]–[30], Boundary Element Method [31], point force 

distribution [32], and surface dislocation loops [33] etc. have been developed in the past to obtain 

the dislocation stress field solution in finite bodies. 

The aforementioned numerical simulation methods, however, cannot efficiently simulate 

the stress field of dislocation structures intersecting a free surface, due to the stress singularity at the 

intersecting point. Balancing these singular stresses requires a high mesh resolution at locations 

close to the intersection point [32], [34]. In a DDD simulation, this adaptive meshing has to be 

carried out at every time step and for a large number of intersecting dislocations. Since this would 

incur impractical computational burdens, adaptive meshing has not been used in full-scale DDD 
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simulations. Rather, a uniform mesh is usually used, and the solution converges only for meshes as 

fine as the lattice spacing [35], which is also impractical.  

To address the singularity issue introduced by a dislocation intersecting with the surface of 

an isotropic body, Tang et al. presented a hybrid method, in which the image stress is a superposition 

of analytical and FEM solutions [36]. The closed-form solution of a semi-infinite dislocation line 

intersecting the free surface of the isotropic half-space [22] was used to remove the singular 

tractions that need to be corrected. The remaining non-singular surface stresses were balanced by 

the image stresses solution calculated from FEM. This hybrid method has been shown to be more 

accurate and efficient than using FEM alone. However, it is only applicable to isotropic materials. 

Although most researchers have used isotropic models in DDD, almost all metallic crystals are 

elastically anisotropic, making it natural to consider elastic anisotropy [37]–[39]. Considering 

anisotropic elasticity in DDD is particularly necessary for some crystals that are strongly 

anisotropic. For example, in highly anisotropic 𝛼-Fe, Frank-Read activation stresses [40] and 

dislocation pile-ups [41], aspects that strongly influence the plastic behavior, are significantly 

different when anisotropy is considered. Moreover, experimentally observed sharp corners in 

dislocation loops can only be simulated when anisotropy is considered [42]. Unfortunately, 

simulating anisotropic elasticity incurs additional computational effort in already expensive DDD 

simulations. Evaluating the stress fields of dislocation structures in infinite elastically anisotropic 

domains itself involves greater computational expense [43] because they either requires evaluation 

of an Eigenvalue problem or numerical integration [18]. Therefore, the method to balance the 

traction stress along the surfaces of a finite domain has to be as efficient as possible in order to keep 

the computational burden manageable. 
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In this work, we present a combined dislocation fan – finite element (DF-FE) method to 

simulate the stress field of a dislocation intersecting the free surfaces of a finite anisotropic body, 

 
 

  
 

Figure 2-1. The decomposition process involved in the combined DF-FE method; (a) a dislocation 

intersecting the free surfaces at top and bottom surfaces of a representative finite domain; (b) semi 

–infinite dislocations (0-1-5) and (4-3-6) intersecting the free surfaces of the half-spaces; (c) the 

original dislocation structure, with the segments (0-1) and (4-3) removed and replaced by 

corresponding coincident lines extending to infinity away from the free surface. These lines start 

at nodes 1 and 3 and are in the opposite directions to the original. Note that the summation of the 

dislocation structures in (b) and (c) is equivalent to the original dislocation structure in (a); (d) the 

body meshed as finite elements to enforce the stress boundary conditions. The image tractions are 

shown in green. 
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extending the approach presented in Tang et al. (2006) from isotropic to anisotropic elasticity. 

Dislocation fan (DF) has been previously developed for analyzing the elastic energy and image 

forces on the semi-infinite intersecting dislocation in elastically anisotropic half-spaces [44]. In this 

paper, we developed a numerical implementation of the DFs to remove the singular stresses of 

dislocation lines emerging at the surfaces of elastically anisotropic spaces. As such, the finite 

element model is only needed to enforce the non-singular traction-force and displacement boundary 

conditions. Since the singularity is addressed by the DFs instead of the FEs, adaptive meshing in the 

FE model is no longer necessary. A uniform mesh is sufficient to account for dislocation motions. 

More importantly, the FE model can still converge with a coarse mesh, increasing the efficiency of 

the DDD simulation significantly.  

 Methodology  

The problem that we intend to solve is the stress field of an arbitrary dislocation structure in a finite 

body that has dislocations intersecting its free surfaces, as shown in Figure 2-1(a). This finite body 

can be of any shape to represent a single crystal or even a grain in polycrystalline materials. The 

surfaces that the dislocation intersects can be of any arbitrary orientation. For illustration purposes, 

however, we assume the dislocation structure intersects the top and bottom surfaces of the finite 

body. In case the surfaces the dislocation intersects are curved, the surface near the point of 

intersection can be approximated as being locally flat. For computational purposes, the dislocation 

structure is discretized into straight segments denoted by nodal numbers. The stress field of such a 

dislocation structure, at an arbitrary point 𝒙 in the finite body, can be decomposed into individual 

stress contributions as  

𝝈(𝒙) = 𝝈hsI(𝒙)+𝝈hsII(𝒙) + 𝝈inf(𝒙) +𝝈img(𝒙),  (2.1) 

where 𝝈hsI(𝒙) and 𝝈hsII(𝒙) are the stress fields of the two semi-infinite dislocations in 

half-spaces as shown in Figure 2-1(b). 𝝈inf(𝒙) is the stress field of the dislocation component in an 
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infinite elastically anisotropic medium shown in Figure 2-1(c). 𝝈img(𝒙) is the correction image 

stress for the remaining traction stresses along the boundaries (see Figure 2-1(d)). It is worth noting 

that 𝝈img(𝒙) does not have any singular traction stresses. As such, it can be solved using 

conventional stress-analysis methods, such as FEM, BEM, etc.  

 

For traction-free surfaces, the boundary conditions can be expressed as 

𝝈(𝒙) ⋅ 𝒏 = 0, (2.2) 

where 𝝈(𝒙) is the stress tensor at point 𝒙 on the free surfaces and 𝒏  is the vector normal to the free 

surfaces. The dot in equation (2.2) represents a convolution by one index. The combined DF-FE 

approach doesn’t pose any extra limitations on the boundary conditions that can be enforced on any 

of the surfaces. Instead of a traction-free condition in equation (2.2), a finite traction boundary 

condition can be enforced by the addition of the required traction to the stress boundary conditions 

in FEM. Zero displacement boundary conditions are often used to model impenetrable grain 

boundaries in polycrystals [13], [45]. FEM alone can be used to set any required displacement 

boundary conditions on a surface with or without a dislocation intersection, since its displacement 

  
  

Figure 2-2. (a) A semi-infinite dislocation line emerging on the free surface (𝑧=0) of an elastically 

anisotropic half-space. The dislocation line is defined by the vector 𝒕. It lies in the 𝑧𝑥-plane and 

makes an angle 𝜃 with the 𝑥 axis; (b) the same problem as a superposition of an infinite 

dislocation line and a dislocation fan. 

 

 

(a) (b)
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field has no singularities. Similarly, surfaces with no intersecting dislocations, i.e. no singular stress 

fields, requires no special treatment and thus their boundary conditions can be set through the usual 

superposition approach using FEM.  

Among the four stress components given in equation (2.1), the analytical solution for 𝝈inf(𝒙) is 

well-known [18] and 𝝈img(𝒙) can be obtained using conventional FEM. The stress field of a semi-

infinite dislocation line intersecting the free surface of an elastically anisotropic half-space, i.e. 

𝝈hsI(𝒙) and 𝝈hsII(𝒙), is given by the discretized Dislocation Fan (DF) method. In DF method, the 

stress field of a semi-infinite dislocation line intersecting the surface of a half-space, as shown in 

Figure 2-2(a), is equivalent to the stress field of an infinite body containing an infinite dislocation 

line and a dislocation fan on the 𝑧=0 plane, as defined in Figure 2-2(b). The dislocation fan is 

introduced to generate image stresses to cancel out the stresses of the dislocation line on the 𝑧=0 

surface. The superposition of these two stresses fields thus satisfied the traction-free boundary 

condition of the half-space. A dislocation fan consists of a continuous distribution of virtual infinite 

dislocation lines on the surface centered on the intersection point between the free surface and the 

infinite dislocation. Each infinite dislocation line in the fan is defined by an angle 𝜓 with respect to 

the 𝑥-axis. The solution for finding the Burgers vector of each dislocation in the fan, originally 

derived by Lothe et al. (1982) [44], is re-arranged in a more logical way and is summarized in the 

appendix. Once the Burgers vector of the dislocation fan 𝒃(𝜓) is known, the stresses at any generic 

point due to the dislocation fan can be obtained numerically by discretizing the fan into individual 

dislocations at specific locations 𝜓𝑖 , i.e.  

where  Δ𝜓𝑖,𝑖+  is the angular spacing between the adjacent dislocations at locations 𝜓𝑖  and 

𝜓𝑖+ . The stress field in an elastically anisotropic half-space is then a summation of the stress fields 

of each of these individual dislocation lines in the fan [17] and the intersecting dislocation. 

𝒃(𝜓𝑖) =  𝒃(𝜓) Δ𝜓𝑖,𝑖+  , (2.3) 
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 Results and Discussions 

3.1. Stress field of a dislocation intersecting the surface of an isotropic half-space  

 
 

The accuracy of the DF method was validated first by comparing it with the analytical solution in 

an isotropic half-space, i.e. the Eshelby twist formalism for a semi-infinite screw dislocation line 

intersecting the free surface at a normal angle [46] (see Figure 2-3). The material is assumed to have 

a Young’s modulus of 𝐸 = 200 GPa and a Poisson’s ratio of  𝜈 = 0.31. The global coordinate 

system is set up assuming the 𝑧 axis is normal to the free surface. A semi-infinite screw 

dislocation line, with a Burgers vector of magnitude |𝒃| = 2.86 Å, lies normal to the free surface.  

The stress field is sampled along a vertical line in the 𝑧𝑥-plane that is parallel to the dislocation and 

separated by a distance of 15 Å from the dislocation line. Stress field simulation is most difficult to 

simulate closest to the point of intersection i.e. close to the unbalanced traction singularity. As 

 

Figure 2-3. The test case for validating the discretized Dislocation Fan Method. The semi-infinite 

dislocation line is shown in red and is represented by the vector t. It intersects the free surface (𝑧 = 

0) of the half-space at an normal angle. The sampling line is shown in blue; it lies in the 𝑧𝑥-plane 

and is parallel to the dislocation. 
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sampling distance increases, results from any numerical method would be clearly more accurate. 

The distance of 15 Å was chosen because linear elasticity is valid only beyond this distance. 

To gauge the computational efficiency of the DF method, the problem defined in Figure 

2-3 was also solved using a commercial FE simulation tool, ANSYS. The simulated domain is a 

cuboid of dimensions 30 × 30 × 12 nm in 𝑥, 𝑦 and 𝑧 directions with the origin at the center of the 

topmost surface. The topmost surface is assumed to be traction free while the other five sides are 

assumed to be under zero displacement condition. These boundary conditions and the finite domain 

are good approximations for a half-space, especially for stress field simulation near the center of the 

domain and close to the free surface [35]. Uniform 8-node cuboid elements were used to mesh the 

finite domain and equal numbers of element divisions were chosen for each side of the domain. 

Since there is a node at the origin, the point at which the dislocation line intersects the topmost 

surface was set to be at 𝑥 = 0.25 Å. In this work, the element size is denoted as the ‘grid size’, which 

is the largest length of the elements. The stresses at locations that are not coincident with the nodes 

were linearly interpolated from the nodal stress values averaged from adjacent elements. For grid 

sizes ranging from 15 Å (8000 elements) to 2.14 Å (2.7 million elements), the FE computational 

time ranged from 2 minutes to 24  hours in a workstation with an Intel core i7 processor and 28 GB 

RAM. In comparison, the numerical implementation of a dislocation fan with 180 equally spaced 

lines to calculate the stress field at 1000 points requires around two minutes and the computation 

time is linearly proportional to the sampling points.  
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 The DF method and FEM calculations of the image stress component 𝜎𝑧𝑦 at different 

locations along the sampling line are compared with the analytical solution in Figure 2-4. The stress 

values are non-dimensionalized by normalizing them with the shear modulus 𝜇. Two dislocation 

fans, one with 180 dislocations and the other with 360 dislocations were evaluated, which produced 

maximal deviations of 0.001% and 0.002% from the analytical solution, respectively. Since the 

improvement upon increasing the fan resolution is insignificant, only the results from the 180 

discrete dislocations fan are presented. The FEM results of comparable accuracy requires meshes at 

the sizes of lattice dimensions, which took hours of computational time in contrast to a few minutes 

required for a DF method simulation. 

  
 

Figure 2-4. Comparison of results from the discretized Dislocation Fan Method,  Finite Element 

Method, and analytical solution. 

Distance from the surface (nm)
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3.2. Dislocation nodal forces in a finite elastically anisotropic crystal 

The test case for calculating the dislocation nodal forces in a finite elastically anisotropic 

crystal is depicted in Figure 2-5. The dislocation structure consists of four line segments with the 

ends intersecting the top and bottom surfaces of the cuboid (see Figure 2-5(a)). Surfaces at the left 

and the right are also assumed to be traction-free, while surfaces on the front and the back are set 

with zero displacement conditions. The segments are assumed to lie in the 𝑧𝑥-plane and their 

orientations are shown in Figure 2-5(b). The simulated domain is a cuboid of dimensions 30 × 30 ×

12 nm in 𝑥, 𝑦 and 𝑧 directions with the origin at the center of the topmost surface. The material of 

the finite domain was assumed to be nickel with the elastic parameters of 𝐶  = 251.6 GPa, 𝐶 2 =

154.4 GPa, and 𝐶44 = 122.0 GPa [47]. The 𝑧𝑥-plane represents the lattice slip plane (111) while 

  

Figure 2-5. (a) A finite crystal with a dislocation structure intersecting the top and bottom free 

surfaces; (b) Orientation of the dislocation structure in the 𝑧𝑥-plane. It consists of three 2 nm long 

dislocation segments and segment  (3-4) extends to intersect the bottom free surface normally. 
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the 𝑧 axis represents the Burgers vector 
 

2
[01̅1].  The magnitude of the Burgers vector |𝒃| is 2.86 Å. 

The FEM simulation was performed using the mesh specified in section 3.1.  

 

  

  

 

Figure 2-6. Simulated dislocation nodal forces in 

𝑥 direction. The forces are calculated using both 

the hybrid DF-FE method and FEM at multiple 

grid sizes. The forces are non-dimensionalized; 

(a) force on node 0, i.e. the node on the top free 

surface; (b), (c) and (d) forces on nodes 1, 2 and 3 

respectively; (e) force on node 4, i.e. the node on 

the free surface at the bottom. 

 
 
 

 

 
 
 

 

 
 
 

0

0.5

1

1.5

2

2.5

3

3.5

0.2 0.5 0.8 1.1 1.4

/

Grid size ( )
(a)

DF-FE method

FEM

0

0.2

0.4

0.6

0.8

1

1.2

0.2 0.5 0.8 1.1 1.4

/
Grid size ( )

(b)

DF-FE method

FEM

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.2 0.5 0.8 1.1 1.4

/

Grid size ( )
(c)

DF-FE method

FEM

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.2 0.5 0.8 1.1 1.4

/

Grid size ( )
(d)

DF-FE method

FEM

-3

-2.5

-2

-1.5

-1

-0.5

0

0.2 0.5 0.8 1.1 1.4

/

Grid size ( )
(e)

DF-FE method

FEM



 

20 

 

Once the stress field is determined from equation (2.1), the force on the dislocation per unit 

length, i.e. the Peach-Koehler force 𝒇PK(𝒙) at an arbitrary point 𝒙 on the dislocation, can be 

calculated as 

𝒇PK(𝒙) = (𝝈(𝒙) ∙ 𝒃) × 𝒕 ,  (2.4) 

where the tensor 𝝈(𝒙) is the total stress field, 𝒃 is the dislocation Burgers vector and 𝒕 is 

the unit vector denoting the local dislocation orientation. Equation (2.4) is valid for any generalized 

dislocation structure. For a dislocation structure discretized as straight segments, the force on each 

segment is distributed among its dislocation nodes using a suitable linear weight function, 𝑁𝑖(𝒙). 

The force 𝑭𝑖
(𝑖𝑗)
 on node 𝑖 from the segment with nodes at 𝒙𝑖 and 𝒙𝑗   can expressed as  

𝑭𝑖
(𝑖𝑗)

= ∫ 𝑁𝑖(𝒙)
𝒙𝒋
𝒙𝒊

𝒇PK(𝒙)𝑑𝑙(𝒙),                     where 𝑁𝑖(𝒙) =
|𝒙 𝒙𝑗|

|𝒙𝑗 𝒙𝒊|
 . (2.5) 

The integral in equation (2.5) has to be evaluated numerically. To avoid stress singularities 

at locations close to a dislocation, an approximation scheme utilizing a dislocation core radius equal 

to the Burgers vector magnitude was used [43]. This method neglects all the stress contributions 

from the dislocation segments lying within a core radius around a stress sampling point.  

 

Figure 2-6 shows the convergence of the nodal forces along the 𝑥 direction with decreasing 

grid sizes. The hybrid DF-FE method produced results that converge rapidly. When the grid size 

was decreased from 1.5 nm to 0.25 nm, the maximum change of the nodal force contribution from 

the surfaces is only 3%. This indicates that the largest grid size used, i.e. 1,.5 nm, is sufficient for 

an accurate simulation of the nodal forces in this domain. In contrast, the FEM results don’t 

converge for all five dislocation nodes, even at very small grid sizes. In particular, the results for 

nodes 3 and 4 show significant fluctuations. However, the FEM results do show a trend of 

convergence towards the hybrid DF-FE method results. At the grid size of 0.25 nm, the FEM results 

differ from the hybrid method’s by 165%, 46.6%, 9.6%, -106% and -5120%  at nodes 0, 1, 2, 3 and 
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4 respectively. Therefore, we can infer that the hybrid method can produce more accurate results 

than FEM, especially for the nodes on or close to the surface. Another observation is that when 

using the FEM, forces on a dislocation normally intersecting the free surface, e.g., segment (3-4), 

show worse convergence when compared to a dislocation that intersects the surface at an angle, e.g., 

segment (0-1).  

 

 Conclusion  

This paper presents a combined DF-FE method to calculate stress fields of dislocations 

intersecting the free surfaces of elastically anisotropic crystals. The DF method is introduced to 

balance the singular tractions associated with a dislocation intersection, and FEM is used to balance 

the non-singular traction. Treating the singular and non-singular stresses using two different 

methods allows the solution to converge at a much coarser mesh and achieving excellent accuracy 

when compared to traditional methods. The presented work is intended to ease the computational 

burden in incorporating free surfaces and other boundary conditions in already expensive 

anisotropic DDD simulations. Combining this work with other recent developments [48]–[50] might 

make large-scale DDD simulations feasible. Another application of the presented hybrid method 

that we intend to pursue is the static simulation of surface stresses associated with persistent slip 

bands, which in turn might give insights into grain boundary penetration of slipbands (Hall-Petch 

effect) and crack initiation.  
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Appendix A. Stress field of a semi-infinite dislocation intersecting the free surface of an 

elastically anisotropic half-space 

The stress field 𝝈hs(𝒙),  at a point denoted by a vector 𝒙 in the half-space, is decomposed 

as 

𝝈hs(𝒙) = 𝝈 i(𝒙) + 𝝈f(𝒙), (A.1) 

Where 𝝈 i(𝒙) and 𝝈f(𝒙) are the stress fields of the infinite dislocation line and the 

dislocation fan in the infinite body. The Burgers vector of the dislocation fan can be calculated by 

enforcing the traction free condition, i.e. 

𝝈hs(𝒙) ⋅ 𝒏 |𝑧=  = 0, (A.2) 

where 𝒏𝟎 is the normal to the surface. Combining equations (A.1) and (A.2) leads to 

𝝈f(𝒙) ⋅ 𝒏 |𝑧=  = −𝝈
i(𝒙) ⋅ 𝒏 |𝑧=   (A.3) 

The stress field of an infinite dislocation line in an infinite body, i.e. 𝝈i(𝒙), can be found 

using various formalisms [18].  Since the dislocation line has an infinite length, all points along a 

line that is parallel to the dislocation line have identical stress components. Therefore, the 3D infinite 

domain can be reduced to a 2D plane that is perpendicular to the dislocation line t. Assume that 𝑥𝑦-

plane of the global 𝑥𝑦𝑧 coordinate system is the horizontal plane and the dislocation line t falls in 

the 𝑥𝑧-plane, for a point 𝑃  in the 3D space, an orthogonal local coordinate system {𝒕,  𝒎,  𝒏} can 

be defined in such a way that the mn-plane contains 𝑃  and the unit vector 𝒏 is parallel to the 𝑦 axis, 

as shown in Figure 2-7. Another orthogonal basis {𝒎𝝋, 𝒏𝝋, 𝒕} can be defined by rotating 𝒎 and 𝒏 

vectors an angle 𝜑 about 𝒕. The stress field tensor at 𝑃  (𝜌 , 𝜑 ) is then given as [51] 

𝝈 i(𝜌 , 𝜑 )

=
1

2𝜋2𝜌 
∫ 𝑑𝜑 
𝜋

 

[𝑪 ∙ 𝒎𝜑 − (𝑪 ∙ 𝒏𝜑)(𝒏𝝋𝒏𝝋)
  
(𝒏𝝋𝒎𝝋)] ⋅ 𝒃𝟎  

sin(𝜑 − 𝜑 )
, 

(A.4) 
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where 𝒃  is the Burgers vector of the infinite dislocation line and 𝑪 = 𝐶𝑖𝑗𝑘𝑙  ∀ 𝑖, 𝑗, 𝑘, 𝑙 =

1, 2, 3 is the elastic stiffness tensor. Here, for any two real vectors 𝒂 and 𝒅, a designation is 

introduced such that  

(𝒂𝒅)𝑗𝑘 = 𝑎𝑖𝐶𝑖𝑗𝑘𝑙𝑑𝑙 ,  (A.5) 

and (𝒂𝒅)   is the inverse of the (𝒂𝒅) matrix.  

To calculate the traction forces generated by the dislocation fan, each infinitely long 

dislocation line 𝒕𝜓  is assumed to have an infinitesimally small Burgers vector, 

𝑑𝒃 =  𝒃(𝜓) 𝑑𝜓. (A.6) 

The traction stresses generated by this dislocation line at the point 𝑃  on the surface are [17] 

𝒏 ∙ 𝝈 tψ(𝑟 , 𝜓 )|𝑧=  =
𝑩(𝜓) ⋅ 𝑑𝒃

2𝜋𝑑
, 

 
(A.7) 

 

Figure 2-7. A point 𝑃  is denoted by the polar coordinates (𝜌 , 𝜑 ) in the 𝒎𝒏-plane of the local 

orthogonal coordinate system {𝒎,  𝒏, 𝒕}. The unit vector 𝒏 is defined to be parallel to the 𝑦 axis. 

The orthogonal vectors 𝒎𝜑 and 𝒏𝜑 are obtained by rotating the 𝒎 and 𝒏 vectors by an angle 𝜑 

about 𝒕. 
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where 𝑑 = 𝑟 sin (𝜓 − 𝜓) is the distance between the point 𝑃  and the dislocation line (see 

figure A2(b)). 𝑩(𝜓) is known as the energy matrix and can be evaluated using Stroh formalism as 

shown below.  A matrix 𝑵 is defined as  

𝑵 = [
(𝒏𝒏)  (𝒏𝒎) (𝒏𝒏)  

(𝒎𝒏)(𝒏𝒏)  (𝒏𝒎) − (𝒎𝒎) (𝒎𝒏)(𝒏𝒏)  
] , (A.8) 

in which 𝒏 and 𝒎 are any two orthogonal unit vectors in the plane normal to the dislocation 

line 𝒕𝜓. The Eigenvalues 𝑝𝛼 of the matrix N, found by solving 𝑵𝝃𝛼 = 𝑝𝛼𝝃
𝛼 for 𝛼 = 1, 2, . . , 6, form 

complex conjugate pairs. Arranging the eigenvalues in such a way that 𝑝4, 𝑝 , 𝑝6 are the complex 

conjugates of 𝑝 , 𝑝2, 𝑝  respectively and Im(𝑝𝛼) > 0 for 𝛼 = 1, 2, 3, the corresponding orthonormal 

eigenvector  𝝃𝛼 can be split into two 3x6 matrices, i.e.  

𝝃𝛼 = [
𝑨𝛼

𝑳𝛼
] , (A.9) 

from which the components of the energy matrix B can be calculated as  

𝐵𝑘𝑗 = 2𝑖𝐿𝑘𝛼𝐿𝑗𝛼   ∀     𝑘, 𝑗, 𝛼 = 1,2,3. (A.10) 

Integrating equation A.7 over 𝜓 for all the dislocation lines in the fan, the traction on the 

𝑥𝑦-plane at point 𝑃 due to the dislocation fan is  

𝒏 ∙ 𝝈 f(𝑟 , 𝜓 )|𝑧=  = ∫  
𝜋

 

𝑩(𝜓) ⋅ 𝒃(𝜓) 𝑑𝜓

2𝜋𝑟 sin(𝜓 − 𝜓 )
 (A.11) 

Substituting equations A.4 and A.11 into A.3 results in  

1

2𝜋2𝜌 
∫ 𝑑𝜑 
𝜋

 

[𝑪 ∙ 𝒎𝜑 − (𝑪 ∙ 𝒏𝜑)(𝒏𝝋𝒏𝝋)
  
(𝒏𝝋𝒎𝝋)] ⋅ 𝒃𝟎  

sin(𝜑 − 𝜑)

= ∫  
𝜋

 

𝑩(𝜓) ⋅ 𝒃(𝜓) 𝑑𝜓

2𝜋𝑟 sin(𝜓 − 𝜓 )
, 

(A.12) 

for any point 𝑃  on the 𝑧=0 surface.  
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For any arbitrary point P located in the 𝑧 = 0 plane, the relationship between its polar 

coordinates (𝑟, 𝜓) in the global coordinate and (𝜌, 𝜑) in the local coordinate can be found from 

Figure 2-8(a) as 

𝜌 = 𝑟 sin(𝛼) (A.13) 

and 

 

  
 

Figure 2-8. A point 𝑃  in the 𝑧 = 0 plane is defined by the polar coordinates (𝑟 , 𝜓 ) in the 𝑥𝑦-

plane and (𝜌 , 𝜑 )  in the 𝒎𝒏-plane. 𝑃 is a point on a dislocation line 𝑡𝜓 that lies at a polar angle 

𝜓. (b) and (𝑐) show the points 𝑃  and 𝑃 in the  𝑥𝑦 and 𝒎𝒏 coordinates respectively 

(a)

(b) (c)
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cot(𝜑) = cot(𝜓)sin (𝜃),   (A.14) 

where 𝜃 is the angle between 𝒕 and the 𝑥-axis while 𝛼 is the angle between 𝑂𝑃 and 𝒕. From 

equation A.14, we can derive that 

𝑑𝜑 =
sin2(𝜑)

sin2(𝜓)
 sin(𝜃) 𝑑𝜓 =

sin(𝜑) cos(𝜑)

sin(𝜓) cos(𝜓)
 𝑑𝜓  (A.15) 

Based on figure A2(b) and A2(c), we also have 

sin(𝜓 − 𝜓)

sin(𝜑 − 𝜑)
=
cos(𝜓 )

cos(𝜑 )
sin (𝛼) (A.16) 

Substituting equations A.13-A.16 into equation A.12 and equating the integrands leads to 

the Burgers vector distribution of the fan,  

𝒃(𝜓) =
𝑩  (𝜓)

𝜋 sin(𝛼)
[(𝒏𝟎𝒎𝝋) − (𝒏𝟎𝒏𝝋)(𝒏𝝋𝒏𝝋)

  
(𝒏𝝋𝒎𝝋)] ⋅ 𝒃𝟎   (A.16) 
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Abstract  

This paper investigates the effect of the grain orientation on the surface roughening of 

nickel polycrystals undergoing plastic tensile deformation. Both experiment and simulation work 

was carried out. In the experiments, we measured the surface topography at different strain levels. 

The surface topography images were analyzed to classify individual grains as either rising or 

sinking. In simulations, we utilized a Crystal Plasticity Finite Element model that embeds a grain in 

an isotropic sample. This arrangement ensures that only the grain orientation of the embedded grain 

influences the grain surface topography. The average surface height of the grain was calculated for 

classifying its rising or sinking behavior. Both experiment and simulation results indicate that the 

grains with the loading direction close to the <001> and <111> lattice orientations tend to sink. In 

addition, a grain’s loading direction orientation, and thus the Schmid or Taylor factor, does not 

uniquely determine whether it rises or sinks. The parametric study revealed that a grain’s average 

surface height is contributed by the plastic deformation of the most stressed slip systems along the 

direction normal to the surface. 

 

 Introduction 

Understanding material failure is essential for designing efficient structural components. 

Localized plastic deformation, which typically manifests as surface roughness changes, is 

considered as the start of material failure. Therefore, material failure may be predicted by 

monitoring the topography changes of the surfaces during the plastic deformation of ductile metals 

[1], [52]. Surface topography change is a result of the out-of-plane plastic deformation, which 

manifests itself due to the heterogeneity of the underlying microstructure in a polycrystalline metal. 

Therefore, understanding surface topography changes in relation to the underlying microstructure 

is crucial in predicting failure of metals.  
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Plastic induced surface roughening results from the formation of slip bands and the overall 

deformation of individual grains. The heights of the slip bands are usually small. As a result, their 

contribution to the surface topography changes is insignificant as compared to the overall 

deformation of individual grains [3]. Due to the anisotropic nature of grain crystals, individual grains 

with a unique crystal orientation display distinctive plastic and elastic behavior. Under plastic 

deformation, differently oriented grain crystals cause different out-of-plane deformations, leading 

to surface roughening. Grain-scale surface roughening can be classified into two categories based 

on the length scale, i.e., banding/ridging and orange-peel. For banding/ridging, clusters of grains 

having similar grain orientations and hence, similar surface heights, are organized into narrow 

bands. Orange-peel type roughness approximately maps the grain shape and is prominent in 

materials with random textures [53], [54]. The contribution of a grain’s orientation to orange-peel 

type surface roughening is still unknown [55], [56]. 

Three main obstacles contribute to the difficulty in investigating the relationship between 

a grain’s orientation and its surface changes. The first obstacle is that the neighboring grains, 

including the ones on the surface and underneath, could have a strong effect on the surface 

topography of the grain that is of interest [55], [57]. Sauzay (2006) has demonstrated that the onset 

of plasticity in a grain depends on the neighboring grains [58]. This neighboring grain effect exists 

typically over a few grain diameters. The inability to separate the effect of the grain’s own 

orientation and that of its neighbor hinders the comprehension of the mechanism underlying the 

surface topography changes. Additionally, assessing the effects of the neighboring grains is 

complicated by the fact that the morphology and orientation of the subsurface grains are usually 

unknown. 

The second obstacle is that the grain is usually characterized using simple factors such as 

the Taylor or Schmid factor [55], [56], [59]. The Taylor factor is calculated with the assumption that 

every grain in a polycrystal is constrained to undergo isotropic plastic deformation, i.e. isostrain. 
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The Schmid factor calculation assumes that the grain is completely unconstrained, and every grain 

experiences the same applied stress, i.e., isostress. Both these factors depend only on the grain’s 

orientation in the loading direction. The traditional understanding of grain level sinking and rising 

is based on evaluating the ‘hardness’ of the grains, i.e., the ease of plastic deformation, based on 

one of these factors. For example, a large Taylor or a small Schmid factor implies that the grain is 

hard. Therefore, such a grain deforms less and rises relative to the average polycrystal surface. In 

contrast, a grain with a small Taylor or a large Schmid factor is soft and thus sink below the surface. 

However, the correlation between these factors and the surface topography changes is rather weak. 

Wouters et al. (2006) used the orientation imaging microscopy to investigate the relationship 

between the orientation of surface grains and their topography. They concluded that the Schmid 

factor of a surface grain alone is not sufficient to predict the evolution of the surface height. They 

hypothesized that a cumulative Schmid factor through the thickness would predict the depressions 

on the surface. Lee et al. (1998) only found a weak correlation between low Taylor factors and 

depressions on the surface. Similarly, Choi et al. (2004) also found a weak correlation between the 

valleys and low Taylor factors along with high Schmid factors. Both researchers attributed the 

discrepancy between theory and experiment to the influences of the in-plane neighbors and the 

subsurface grains on the surface topography changes. 

The third obstacle is that it is difficult to simulate the surface roughening of a real-world 

sample using numerical simulation. Crystal Plasticity Finite Element Method (CPFEM) simulation 

has been extensively used to study the phenomenon of surface roughening under plastic strain  [3], 

[4], [9]–[12]. CPFEM can produce reasonably accurate surface roughness changes, strain variations 

and evolution of orientation distributions averaged over a grain or a few grains [6]. However, studies 

attempting one-to-one correlation with experimentally observed surface roughening at scales 

smaller than grain dimensions has limited success [64], [65]. Zhao et al. attribute the discrepancy 

between simulation and experimental observations to the unknown grain boundary geometry 
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through the thickness direction [64]. Ha, et al. attribute the discrepancy to the inability in modeling 

plasticity near the grain boundaries [65]. 

This paper employs both three-dimensional surface profiling technique and CPFEM 

simulations to understand the influence of a grain’s orientation on its own surface under plastic 

tensile load. Firstly, to minimize the effect of the neighboring grains, we characterize the measured 

height change of a grain with respect to its immediate neighbors. In simulations, we model the 

polycrystal as an anisotropic grain embedded in an isotropic frame. Secondly, instead of just using 

Taylor or Schmid factors, we use the grain’s orientation for complete characterization. Lastly, to 

work with inaccuracies in numerical simulations, we evaluated a grain’s behavior based on its 

relative surface height, classifying the grain as either sinking or rising. Only this rising or sinking 

behavior is used for comparing with experimental observations. This comparison confirms that the 

grains with an LD orientation near the <100> and <111> lattice always sink while grains with other 

LD orientations may rise and sink, indicating the ND orientation also play a role. Parametric studies 

were then carried out to understand how ND affects the surface height. Based on this study, we 

concluded that the ND orientation, not the Schmid or Taylor factor, determines the rising or sinking 

behavior for a grain with a specific LD orientation.   

 

 

 Experiment 

2.1. Methodology 

The subsize tensile specimen was designed according to ASTM E8/E8M-13A, and its 

dimensions are given in Figure 3-1(a). The gauge length is 0.5 mm while the gauge width is 1.39 

mm. A finite element analysis with isotropic material properties confirmed the constant stress state 

in the gauge area as depicted in Figure 3-1(b). 
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The sample was machined from as-received commercially available nickel 200 sheet with 

a purity of 99.52%. Both sides of the sample were polished with conventional sandpapers and 

alumina powders to an arithmetic average surface roughness Ra < 20 nm. After mechanical 

polishing, one side of the sample is electropolished in standard Struers A2 solution followed by 

etching in ASTM E407 - 25 solution to reveal the grain boundaries. The as-received material had a 

thickness of 1.575 𝑚𝑚, which was reduced to 1.17 𝑚𝑚 after polishing. The entire gauge area was 

imaged using Electron Backscatter Diffraction (EBSD) and then used to determine the orientation 

of every identified grain on the surface. The EBSD measurement confirmed a random distribution 

of grain orientations. The grain size, measured as per ASTM E112-13 planometric procedure, is 0.1 

mm. 

The sample was then loaded using a mechanical testing machine (Bose LM2 test bench). 

We measured the sample surface heights at three stress levels, i.e., at (a) 1.02, (b) 1.17, and (c) 1.3 

times of the yield stress. Applied stress on the gauge section was calculated using the force applied 

as measured from the load cells of the tensile machine and the smallest cross-section area of the 

sample. The axial strain of the gauge section was not directly measured but approximated by fitting 

the slope of the stress-strain curve in the elastic region to be Young’s modulus of nickel (200 𝐺𝑃𝑎). 

From this stress-strain curve, the three stress levels at which the sample is profiled correspond to 

applied axial engineering strains of (a) 0.75%, (b)  1.12%, and (c)  1.5%. The surface profiling was 

carried out using a Scanning White Light Interferometer (SWLI, Bruker NPFLEX). The mechanical 

testing machine was integrated with the SWLI microscope so that surface profiling can be performed 

without removing the sample from the mechanical tester. 
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2.2.  Data analysis & results 

Figure 3-2(a) depicts the SWLI surface topography image of the initial sample surface 

before loading. It reveals that the initial sample surface had a significant height drop of 4 𝜇𝑚 at the 

edges, likely due to the rounding of the edges during polishing. For this reason, we exclude data 

acquired at locations that are within 200 𝜇𝑚 from each edge. To remove the inherent curvature of 

the polished surface, we divided  the gauge area into three equal vertical sections with around 20% 

overlap, applied curvature filtering to each section, and then stitched them back. (b-d) show the 

filtered surface topography at the three loading levels. These measurements clearly show that the 

sample surface developed significant surface roughness as the sample undergoes plastic 

deformation. It is worth pointing out that the out-of-plane displacements of individual grains appear 

to contribute to the majority of the surface topography changes. In addition, while the out-of-plane 

displacements of individual grains increase in amplitude with the increase of the applied stresses, 

 

 

Figure 3-1. (a) Schematic representation of the tensile specimen. The gauge width is 1.39 mm, 

the length is 0.5 mm and the thickness is 1.17 mm; (b) FEM simulation showing uniform stress 

state in the gauge area. The loading direction is towards the horizontal.  

(a)

(b)
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the direction of the out-of-plane movement, i.e. whether a grain sinks below or rises above the 

surface, does not change with the applied stress.   

 

Figure 3-3 takes a closer look at the surface topography of a few grains and its surroundings 

to identify characteristic features of the deformed surface topography. The first observation is, clear 

orange-peel type roughness is noticeable, i.e. the surface topography features roughly conform to 

the shape of the grains. For some grains, the entire surface may rise above or sink below the 

surrounding surface, as shown in Figure 3-3(a) & (b).  Other grains, however, may sink in some 

 

 

 

 

 

 

 

Figure 3-2. Surface topography images of gauge area showing the surface height distribution; The 

initial sample surface (a) and at an applied strain of (b) 0.75 %, (c)  1.12 %, and (d)  1.5 %. The 

applied load is along the vertical direction. 

(a)
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(b)
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portion of the surface and rise in the other, as shown in Figure 3-3(c). A small percentage of grains 

also developed slip bands. However, the surface heights of slipbands are much smaller in magnitude 

as compared to the overall surface height of the grain, as shown in Figure 3-3(d). Therefore, our 

study will be focused on the relationship between the grain orientation and the overall surface height 

of the grain.  

 
The surface of every grain is quantified by using a single parameter, the average surface 

height. For each grain, we assigned a square-shaped neighborhood that has a length of three times 

the grain’s diameter and has the grain’s centroid as its center. We then calculate the average surface 

height of the grain of interest and the neighborhood. Using these two parameters, a grain is classified 

to be either rising or sinking only if the grain’s average height differs from that of its neighborhood 

by more than 10% of the root mean square (RMS) of the entire gauge surface height. The average 

surface height of the neighborhood is used as the reference because the grain-scale sinking, and 

rsing behavior is not captured when the average height of the entire gauge area is used. For example, 

  

 

  

Figure 3-3. Surface at an applied strain of 1.5% showing a (a) rising grain, (b) sinking grain, (c) 

grain with both rising and sinking regions and (d) grain  with prominent slipbands. The grains are 

identified by the dashed outline.  

(a) (b)

(𝜇𝑚)

-9.09

3.14

(c) (d)
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all the grains shown in Figure 3-4(b) have negative grain heights with respect to the average gauge 

height, indicating all the grains have sunk. However, the surface topography image shown in Figure 

3-4(a) indicates that the grain of interest rose above its neighbors. Therefore, to classify a grain to 

be either rising or sinking, we use the grain’s immediate neighborhood. This procedure leads to 

correct classification as shown for a grain in Figure 3-4.   

 

 

 

Figure 3-4. Classifying a grain of interest as sinking or rising; (a) Grains are shown in a 3D 

surface plot, with the grain of interest identified; (b) The heights of the same grains with 

reference to the average height of the gauge area. The yellow lines represent grain boundaries. 
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We excluded the smallest and the largest grains from the classification procedure. We only 

classify grains that lie within two standard deviations from the average grain size. It is done so 

because these may show Hall-Petch type grain hardening, i.e. the yield strength of a grain is 

inversely proportional to the grain size. This kind of hardening causes the smallest grains to show 

little plastic deformation and rise irrespective of their orientation. Similarly, Hall-Petch hardening 

causes the largest grains to sink irrespective of their orientation.  

 

 
Using the analysis procedure mentioned above, 150 grains in the gauge area are classified 

to be either rising or sinking from a total of 189 identified grains. The Inverse Pole Figure (IPF) in 

Figure 3-5 shows the lattice orientations of the rising and sinking grains along the loading direction 

(LD). IPF uniquely represents the crystal orientations in the LD because of the symmetry in face-

centered crystals (FCC) like nickel. We used only the grain orientations in the loading direction 

because the Schmid and Taylor factors can be uniquely determined from these orientations. Based 

on the observations, we divided the IPF into three regions, i.e., near IPF vertex <001>, near IPF 

vertex <111>, and the rest of the IPF. We term ‘near’ as less than a vector distance of 0.15 from the 

vertex. The percentage of the sinking grains in these three regions are given in Table 3-1. 91.3% of 

 

Figure 3-5. Distribution of grains classified as rising or sinking in the loading direction (LD) 

inverse pole figure (IPF) – Experiment.  
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<001> <101>

<111>

LD IPF
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the grains sunk in the region near vertex <001> while 78.1% of the grains in the region near vertex 

<111> sunk. For the grains in the rest of the IPF, there is no preference for sinking or rising. Another 

observation is that the adjacent grains displayed dissimilar out-of-plane movements, i.e., one rises 

and the other sinks. It is worth noting that the grains displayed similar behavior at all three strain 

levels characterized. 

 

 Simulation 

To validate the observed grain orientation-surface height relationship, we performed 

studies on the surface height change of grains with different grain orientations using crystal 

plasticity finite element method (CPFEM).  

3.1. Simulation setup    

 
Figure 3-6 shows the simulation model for the parametric study. It consists of a cuboid, 

with a length of 12 mm in the loading direction (LD), and a cross-section of 3X3 mm2. A grain of a 

selected orientation is embedded in the center of the cuboid. The embedded grain is columnar with 

Table 3-1. Percentage of grains sinking – experiment 

Region 
Near 

<001> 
Near <111> Rest of the domain 

Sinking 91.3% 78.2% 51.6% 

 

 

Figure 3-6. Finite element model with a grain embedded in an isotropic solid. The embedded 

crystal has a hexagonal face with an area of 0.866 𝑚𝑚2 and has a depth of 1 𝑚𝑚.  

LD

TD ND
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a hexagonal face of 0.866 𝑚𝑚2 in area and a depth of 1 𝑚𝑚. The face of the grain is chosen to be 

hexagonal to avoid straight edges thereby representing a more generic model. The embedded crystal 

is small enough so that its orientation does not affect the bulk behavior of the entire sample. It is 

also located in the center of the face, sufficiently far from sample edges. Anisotropic crystal plastic 

behavior, modeled using CPFEM, is used only for the embedded grain. The rest of the sample 

surrounding the grain was modeled using isotropic plasticity. We use the isotropic plasticity model 

for the surrounding material to ensure that it has no exaggeration on the behavior of the embedded 

grain but only an averaged behavior. More importantly, this model enables us to study whether the 

orientation of a grain alone can determine its rising or sinking behavior, regardless of the orientation 

of its neighbors.  

The model generation and meshing were performed using NEPER software [66]. In the 

simulations, we stretched the sample along the LD up to a reasonably small strain of 5% at a strain 

rate of 2 ∗ 10   𝑠  . Results are analyzed at few levels of applied strain that include levels 

comparable to experiments. In this work, the normal direction (ND) is the direction normal to the 

free surface of the embedded grain and the transverse direction (TD) is normal to LD and ND. 

3.2.  Material model  

Assuming crystal slip is the dominant mechanism of plastic deformation, a crystal’s 

plasticity is anisotropic. This anisotropy depends on the orientation of the specific slip systems 

relative to the fixed sample coordinates. Such a plastic deformation mechanism can be modeled 

using finite elements termed the Crystal Plasticity Finite Element Method (CPFEM), which ensures 

equilibrium of stresses and compatibility of strains. The formulation of this method is summarized 

in the appendix.   

CPFEM was implemented using the DAMASK user-defined subroutines in ABAQUS 

standard solver [67] with the material parameters given in Table 3-2. These plasticity parameters 
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are empirical and were selected so that the simulated stress-strain graph of the polycrystalline 

sample under tensile loading matches that from the experiment [68], as shown in Figure 3-7. This 

simulation procedure to determine material parameters uses a cuboid (12x3x3 mm) with a random 

distribution of orientations for every mesh element as the sample. The mesh consists of 18,000 

tetrahedral elements. The experimental sample and procedure were described in section 2.1. The 

curves start to deviate after 2% strain because the simulation fails to model necking and subsequent 

failure. This is acceptable since we limit our study to small amounts of deformation prior to necking. 

Also, since the experimental and simulation samples are different, the parameters are only 

approximate. The parameters for the isotropic plasticity model [69] were also chosen so that it 

results in the same axial stress-strain plot shown in Figure 3-7. 

 

Table 3-2.  Material 

 parameters of nickel used in the CPFEM simulation  
�̇�  10   /𝑠  

m 0.02 

Initial 𝜏𝑐
𝛼 128 MPa 

𝜏𝑠 218 MPa 

ℎ  585 GPa 

𝑎 1 

𝐶   247 GPa 

𝐶 2 147 GPa 

𝐶44 125 GPa 
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3.3.  Data analysis, results & discussion 

 

The orientations of the 150 grain identified in the experiment as either rising or sinking 

were used in the simulation model described above. We characterized the out-of-plane displacement 

of the grain using the average height difference between the embedded grain and the isotropic 

surface. A grain with a negative average height difference is termed to be sinking and vice versa.  

 

Figure 3-7. Simulated and measured stress-strain curves of a randomly textured polycrystal under 

tensile deformation.  
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Figure 3-8. Distribution of grains classified into rising or sinking in the loading direction (LD) 

inverse pole figure (IPF) - simulation. Grain orientations are taken from the experimental 

sample. 
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To compare with the experiment results in section 2, the LD orientation of the rising and 

sinking grains obtained from the simulation are plotted in the IPF shown in Figure 3-8, and the 

percentages of grains sinking in the three regions are given in Table 3-4. The simulations show that 

91.3% of grains near vertices <001> sink while 96.9% of grains near <111> sink. About half of the 

grains (56.8 %) in the rest of the IPF, sink. These results qualitatively matched with the experimental 

observation, i.e., the majority of grains near <001> and <111> sink while the grains in the rest of 

the IPF have no preference for rising or sinking. 

 

 

 

The percentage of grains whose behavior differs between simulation and experimental 

observations is given in Table 3-3. The simulations correctly predict sinking behavior for most of 

the grains near vertices <001> and <111> of the LD IPF. However, simulated behavior for half of 

the grains away from the vertices <001> & <111> differs from experimental observations, indicating 

that simulation prediction is almost random. We believe that the discrepancy is because the 

simulation treats the surrounding grains as isotropic and homogeneous material. In an actual 

polycrystal, the deformation of these neighboring grains is likely to be anisotropic and 

heterogeneous. In other words, the rising or sinking classification of the grains near IPF vertices 

Table 3-4. Percentage of grains sinking - simulation  

Region Near <001> Near <111> 
Rest of the domain 

Sinking 91.3% 96.9% 56.8% 

 

Table 3-3. Percentage of grains with behavior deviating between experiment and simulation  

Region Near <001> Near <111> Rest of the domain 

Deviation  8.7% 25% 48.4% 
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<001> and <111> are less influenced by the surrounding neighbors compared to the rest of the grain 

orientations. Despite the deviations, the simulations confirm the experimental observation that 

grains next to each other in the LD IPF could show opposite behaviors (i.e., one of them sinks and 

the other rises). This observation implies that the LD lattice orientation doesn’t uniquely determine 

the rising or sinking behavior of grains in most of the cases. For a grain’s orientation to be uniquely 

specified, lattice orientations in two mutually perpendicular directions are necessary. In grain 

orientation mapping using EBSD, lattice orientations in LD and ND, which are perpendicular to 

each other, are generally specified. Therefore, to determine whether a grain will rise or sink under 

plastic deformation, we believe the grain orientation towards the free surface (ND) also needs to be 

considered. 

 

 Parametric study of the effect of the normal direction lattice orientation on the surface 

height changes of grains 

To gain a better understanding of how exactly the ND orientation of a grain influences its 

surface height, we carried out parametric studies by varying the ND orientation of a few grains 

having representative LD orientations. Figure 3-9(a) shows one of the LD orientations used and its 

corresponding ND orientations. For a given LD, ND could be any direction lying on the plane 

normal to it. Therefore, we first choose a specific ND orientation and construct nine more ND 

orientations by rotating the ND about the LD by 180∘ in equal size intervals. Due to symmetry, a 

range of 180∘ is sufficient to represent all ND orientation possibilities. Figure 3-9(b) shows the IPF 

with 15 representative LD orientations, each assigned with a number, used in our study. These LD 

orientations were chosen to be spread out over the entire domain to represent grains with randomly 

distributed LD orientations. For these LD orientations, the first ND orientations are along the {001}-

{101} line and are termed as Set-I NDs, as shown in Figure 3-9(c). In total, we simulated 150 

different orientations for the embedded grain. 
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4.1. Orientation setup  

 

 

 

 

Figure 3-9. (a) Representing the grain orientation in a lattice coordinate space. For a particular 

loading direction (LD), 10 normal directions (ND), evenly distributed over 180o, are used for 

parametric study; (b) Inverse Pole Figure (IPF) shows the LD orientations of the 15 grains used. 

(c) Set-I ND orientation for each LD orientation.  
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4.2. Results & discussion   

 

 
Figure 3-10 shows the simulated surfaces of three grains with the same <101> LD 

orientation and three different ND orientations, i.e., Set-I ND, ND rotated by 40° and ND rotated 

by 90°. For the Set-I ND orientation, the surface of the entire grain rises relative to the surrounding 

material, as shown in Figure 3-10(a). When the ND orientation is rotated by 40°, a portion of the 

  

 

 

 

Figure 3-10. Surface heights of grain with loading direction (LD) orientation No. 2. The normal 

direction (ND) orientation is rotated from Set-I ND orientation by (a) 0∘ (b)40∘ and (c) 90∘. The 

embedded grain is outlined by the dotted line.  
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grain rises, and a portion sinks, as shown in fig. 10(b).  When the ND orientation is rotated by 90∘, 

the entire grain sinks below the surrounding material (Figure 3-10(c)). 

 
We followed the procedure described in section 3.3 to calculate the average grain surface 

height for each grain orientation from the simulation results. Figure 3-11 shows the variation of the 

average surface height with the ND orientation for grains with the LD orientation at <101> IPF 

vertex. The average surface height is the highest at 0°, i.e., Set-I ND orientation, reduces to zero 

when the ND orientation rotated by about 45∘, and reaches the lowest value when the ND orientation 

is rotated by 90∘. Looking at the behavior for all the ND orientations, the variation is sinusoidal and 

has a period of 180°. 

 

Figure 3-11. Averaged grain surface heights of grain with loading direction (LD) orientation 

No. 2, plotted over all normal directions (ND). Angle 0° represents set-I ND.  
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Figure 3-12 shows the average surface height results from all 150 simulated grain 

orientations. In this figure, each vertical bar represents the range of the average heights for grains 

having the same LD orientation but varying ND orientations. The height of the bar is equal to the 

difference between the largest and smallest average height of all the grains with the same LD 

orientation.  The x-axis of Figure 3-12 was chosen to be the distance from vertex <101> of the LD 

IPF because it is the simplest quantity that gives a rough trend of decreasing height variation. We 

 

 

Figure 3-12. Average grain surface heights of all grains at an axial deformation of (a)5 %, and 

(b)1%. The range of height variations for grains with the same loading direction (LD) orientation 

are plotted as vertical bars. 
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observed that the variations of the average height for grains with different LD orientations could be 

categorized into three groups. Group #1 contains the grains with the LD orientation near <101> 

vertex i.e. LD orientation No. 2. Grains in this group can rise or sink, depending on their ND 

orientation. The variation of the average height among this group is the largest for all the LD 

orientations. Group #2 includes the grains with their LD orientation near vertex <001> and <111>, 

i.e. the LD orientation 1, 5, 15. The average height of these grains varies marginally as the ND 

orientation changes. Also, these grains always show negative average surface heights, i.e., their 

surfaces always sink.  

Group #3 contains the rest of the selected grains with LD orientations far from the vertices 

of the IPF. These grains can also rise or sink depending on the ND orientation. However, the 

variations of the average height are smaller than those in group #1. It is also worth mentioning that 

the observations just made don’t change with applied strain. Figure 3-12(a) and (b) show results 

from the applied axial strain of 5% and 1% respectively. Only the magnitude of variation in the 

average height increases with the applied strain. Therefore, we only discuss results at 5% applied 

axial strain from now on.  

The simulation results are consistent with the previous observation that the grains with the 

LD orientations away from LD IPF vertices <001> and <111> can either rise or sink. Thus, the 

parametric simulations confirm that the LD orientation is not a unique factor in determining the 

sinking and rising of the grains in group 2 or 3. For the grains in group #1, however, whether the 

grain rises or sinks can be determined from their LD orientation alone. 
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To explain the variation in the average height with the ND orientation we examine the slip 

systems. From the CPFEM simulations, we extracted the shear rate of every slip system, as given 

by equation 4, at integration points in every mesh element. Integrating shear rate values over each 

time step of the simulation determines accumulated shear strain. These values are then averaged 

over the entire grain. First, we look at the slip systems of the grains with LD orientation at the <101> 

IPF vertex, which displayed the most variation in average surface height. Figure 3-13shows the 

average shear strain values for each of its 12 slip systems. The accumulate shear strains shown is 

for the Set-I ND orientation since we observed that the influence of the ND orientation change is 

insignificant. The slip systems are numbered such that slip system No. 1 to 3 are on the same slip 

plane, 4 to 6 are on the second slip plane and so on for each of the four slip planes. We see that slip 

is accumulated almost equally on four slip systems and is negligible on the others.  

The deformation of this grain contributed by the four active slip system can be calculated 

using strain transformation, assuming the strains are small and lattice rotations are negligible [70]. 

Since the normal strains along that ND and LD are proportional to the shear strain on the slip plane, 

 

Figure 3-13. Accumulated shear strain on each of the 12 slip systems for a grain with loading 

direction (LD) orientation No. 2 and Set-I normal (ND) - simulation.   
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normalizing these two strain components results in a parameter that is independent of the shear 

strain. Figure 3-14 shows the normalized strain along the ND, i.e. 𝑑𝜀𝑁𝐷/𝑑𝜀𝐿𝐷 contributed by each 

of the four slip systems. For each slip system, the normalized ND strain varies with the ND 

orientation in a sinusoidal pattern with a period of 180°. The curves from each of the slip systems 

are the same in amplitude but two of the slip systems vary in ‘phase’. In other words, the ND 

orientation locations of the peak strains are different for two of the slip systems. Assuming all four 

slip systems have the same amount of slip, i.e. the shear increment is the same for all four slip 

systems, the total ND strain is the linear superposition of the ND strain contributed by each slip 

system. The resulting 𝑑𝜀𝑁𝐷/𝑑𝜀𝐿𝐷 ratio is shown as the blue dashed line in Figure 3-14. When the 

ND rotation angle is zero, i.e. the grain has the ND orientation {101̅}, the 𝑑𝜀𝑁𝐷/𝑑𝜀𝐿𝐷 ratio is zero. 

In other words, a crystal of this particular orientation has zero strain along the ND when it is strained 

in the LD. Considering that the sum of the three normal strains always remains zero in plastic 

deformation, strain in the TD for this case would be negative of the strain LD. If the ND orientation 

is rotated by 90°, the strain in the ND is the negative of LD strain and the TD strain is zero. In this 

case, the TD orientation is along {101̅}. Therefore, the normal strain or the dimension change in the 

{101̅} crystallographic direction is always zero for grains with <101> LD orientation. The same 

observation has been previously reported by Kalidindi and Anand [71] from experiment and 

simulation of a single crystal with a circular cross-section under compression. They explained this 

observed by stating that a direction that is normal to the slip direction and lies on the slip plane does 

not have dimension change when materials deform through slip. Grains with the <101> lattice 

orientation in the LD have two active slip planes, each having two slip directions. The resultant of 

the slip directions on each slip plane is normal to the {101̅} crystallographic direction, which also 

lies on the slip planes. As such, the {101̅} direction has no dimension change, as confirmed by 

Figure 3-14Error! Reference source not found.. 
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The deformation behavior from the four activated slip systems can explain the effect of 

ND orientation on the surface topography change show in Figure 3-10& Figure 3-11. Based on 

Figure 3-14, a crystal with the Set-I ND orientation does not show any normal strain the ND. On the 

other hand, the surrounding isotropic material deforms in ND. As a result, the grain rises the most 

relative to the surrounding isotropic material (Figure 3-10 (a)). Similarly, if the ND orientation is 

rotated by 90∘, the dimension change towards the ND is negative and greatest. As a result, the grain 

sinks the most relative to the surrounding isotropic material (Figure 3-10 (c)). When the ND 

orientation is rotated by about 45°, the {101̅} crystallographic direction is oriented at the diagonal 

direction. Since the dimension along this direction does not change, the dimension along the other 

diagonal direction must reduce the most. As a result, one portion of the grain surface rises and the 

other sinks (Figure 3-10(b)).  

 

 

 

 

Figure 3-14. Normal strain increment ratios as a function of the ND orientation for grains with 

<101> loading direction (LD) orientation – theoretical prediction.  
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For the grains with <001> and <111> LD orientations, the simulation shows that eight and 

six slip systems are activated, respectively.  For the grain with <001> LD orientation, the 𝑑𝜀𝑁𝐷/𝑑𝜀𝐿𝐷 

 

 

Figure 3-15. Normal strain increment ratios as a function of the ND orientation for grains with 

(a) <111> and (b)<001> loading direction (LD) orientations – theoretical prediction; (a) Six 

active slip systems with three of them same as the other three;  (a) Eight active slip systems with 

four of them same as the other four.  
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curves contributed by the eight slip systems have the same amplitude but have four different phases, 

as shown in Figure 3-15(a). In other words, there are four distinct pairs of curves. Similarly, the six 

activated slip systems in the grain with <111> LD orientation have three pairs of distinct 

𝑑𝜀𝑁𝐷/𝑑𝜀𝐿𝐷 curves with three different phases, as shown in Figure 3-15(b). The resulting 

deformation from all these slip systems is a constant 𝑑𝜀𝑁𝐷/𝑑𝜀𝐿𝐷 of -0.5 for both grains. This implies 

that the deformation is isotropic. That is why these grains show no variation of the surface height 

with change in the ND orientation.  

To understand the deformation behavior of the grains with LD orientations away from the 

vertices of the IPF, we use the grains with LD orientation No. 11 as an example, since it is at an 

approximately equal distance from the three IPF vertices. Figure 3-16(a) shows the shear strain on 

each of its twelve slip systems. In this case, just one slip system dominates the shear strain, which 

is labeled as No. 10. The red curve in Figure 3-16(b) shows the 𝑑𝜀𝑁𝐷/𝑑𝜀𝐿𝐷 curve for the deformation 

from this dominant slip system. The curve in black represents the average surface height variation 

with the ND orientation, extracted from the simulation results. The phases of these two curves are 

slightly different. In addition, the amplitude of the 𝑑𝜀𝑁𝐷/𝑑𝜀𝐿𝐷 red curve is the same as the net 

𝑑𝜀𝑁𝐷/𝑑𝜀𝐿𝐷 curve for the grains with <101> LD orientation (see Figure 3-14). However, the height 

variation here is less than that for grains with the <101> LD orientation. These discrepancies in 

phase and amplitude indicate that the deformation of the grains with No. 11 LD orientation is not 

solely contributed by one dominant slip system. The other three slip systems i.e. slip systems 1, 9, 

and 12, which also show significant slip, may contribute to the deformation as well (Figure 3-16 

(a)). When combined, they contribute as much shear strain as the dominant slip system. Figure 

3-16(b) shows the 𝑑𝜀𝑁𝐷/𝑑𝜀𝐿𝐷 curves from these three slip systems. These curves have different 

amplitudes and phases. Assuming the shear increments are proportional to the shear strains shown 

in Figure 3-16(a), the net 𝑑𝜀𝑁𝐷/𝑑𝜀𝐿𝐷 contributed by all four active slip systems is shown as the blue 

dashed line in Figure 3-16(b). The phase of the net 𝑑𝜀𝑁𝐷/𝑑𝜀𝐿𝐷 curve matches with that of the 
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average surface height curve. Moreover, the resultant of all the active slip systems has a lower 

amplitude. This explains why the surface height variation for this LD orientation is lower than that 

for grains with the <101> LD orientation.  

 

The slip of the active slip systems explains the surface-height variation with respect to the 

ND orientation for all three groups of grains we examined. To investigate why these specific slip 

 

 

Figure 3-16.  (a) Accumulated shear strain on each of the 12 slip systems for a grain with loading 

direction (LD) orientation No. 11 and Set-I ND, as calculated from the embedded grain 

simulation; (b) Normal strain increment ratios as a function of the normal direction (ND) 

orientation for grains with LD orientation No. 11 – theoretical prediction. The plot also shows 

the average surface height calculated from the simulation.  
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systems are activated, we calculate the Schmid factor of every slip system. Eight, six or four slip 

systems that are activated in grains with <100>, <111> & <101> LD orientations, respectively, also 

have the highest Schmid factors. For grains in the interior, however, only the dominant slip system 

was found to have the highest Schmid factor. In addition, the three other slip systems that also 

contribute to the height variation are those having the next highest Schmid factors. Therefore, the 

dominant and other active slip systems are determined by the Schmid factor. The same conclusion 

has been previously made through experimental observations of slip bands [56], particularly for 

grain orientations in the interior of the LD IPF.  

The largest Schmid factor as well as the Taylor factor, both estimate the grain hardness, 

are a function of only the LD orientation. Most researchers believe that a hard grain rises while a 

soft grain sinks. With this assumption, the rising or sinking behavior of a grain can be uniquely 

determined from the LD orientation. However, both our experiment and simulation show that most 

of the grains with the same LD orientation i.e. the same Schmid and Taylor factor, may rise or sink 

depending on the ND orientation. Therefore, the value of Schmid or Taylor factor has no role in 

determining the grain surface height for most grain orientations. The only observation that can be 

explained by Schmid or the Taylor factor could be the sinking of the grains at <100> LD IPF vertex. 

The grains at LD IPF vertex <001>, often termed as the cube orientation, sink significantly more 

than the surrounding isotropic material (see Figure 3-12). The same observation has been previously 

made by other researchers [53], [55], [60], [72]. They explained that grains with the <001> LD 

orientation sink more because Taylor and Schmid factor predict these grains to be softer than the 

average polycrystal. However, the same explanation does not seem to be applicable for grains with 

<111> LD orientation. Taylor factor and Schmid factor predict these grains to be harder than the 

average polycrystal and hence they are expected to rise. However, in both experiments and 

simulations, these grains marginally sink (seeFigure 3-12). Therefore, Taylor and Schmid factor 

does not explain the surface topography behavior for these grains.  
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In summary, Schmid and Taylor factors calculated from the LD orientation do not uniquely 

determine the grain surface height, even though the LD orientation, through Schmid factor analysis, 

determines the active slip systems that contribute to the grain deformation. The combination of the 

deformation contributed by these active slip systems along the ND determines the grain surface 

height. 

 Conclusion  

This study investigated the relationship between a grain’s orientation and its average 

surface height in a nickel polycrystal during tensile plastic deformation. Both experimental surface 

profiling and crystal plasticity simulations were carried out. The significant conclusion is that a 

grain’s hardness as estimated by Taylor or Schmid factors does not determine its surface height. It 

is the net deformation along with the ND orientation from a grain’s most stressed slip systems, i.e., 

those with the largest Schmid factors, that determines whether a grain will sink or rise.  

The presented work is intended to be the initial step to study the contribution of grain 

orientations to plasticity induced surface roughness. By neglecting the neighboring grains and 

focusing on an individual grain, we gained an understanding of the relationship between the 

orientation of a grain and its average surface height. For future work, we plan to investigate the 

effect of neighboring grains to explain deviations between experiment and simulations. This future 

study may also explain the localized surface topography changes as well.   
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Appendix. Crystal Plasticity Finite Element method (CPFEM) [8] 

The total deformation gradient tensor 𝑭 at each integration point in every mesh element of 

the finite element model can be decomposed as  

𝑭 = 𝑭𝑒𝑭𝑝     ,   (3.1) 

where 𝑭𝑒 and 𝑭𝑝 are elastic and plastic parts of the deformation gradient. The plastic 

deformation evolves as 

𝑭�̇� = 𝑳𝑝𝑭𝑝   . (3.2) 

The plastic velocity gradient 𝑳𝑝 is formulated as the sum of the shear rates �̇�𝛼 of all slip 

systems, i.e. 

𝑳𝑝 = ∑ �̇�𝛼𝒎𝛼⊗

 2

𝛼= 

𝒏𝛼 . 
 

(3.3) 

𝒎𝛼 and 𝒏𝛼 are the unit vector describing the slip direction and that normal to the slip plane 

of the slip system 𝛼, respectively. 𝒎𝛼 and 𝒏𝛼 are directions specific to the lattice structure and 12 

sets exist in a FCC lattice such as nickel. The constitutive equations of the specific plastic slip model 

gives each shear rate �̇�𝛼 as a function of the external stress and the critical resolved shear stress.  

In this paper, we used a phenomenological model of plastic slip [73], in which the critical 

resolved shear stress 𝜏𝑐
𝛼 describes the plastic hardness for each slip system 𝛼. The power-law type 

kinetic behavior of a slip system that determines the shear rate �̇�𝛼 is 

�̇�𝛼 = �̇� |
𝜏𝛼

𝜏𝑐
𝛼
|

 
𝑚

𝑠𝑔𝑛(𝜏𝛼)   , (3.4) 

where the material parameters �̇�  and 𝑚 are the reference shear rate and the rate sensitivity 

of slip, respectively. The resolved shear stress of a slip system 𝛼 is  

𝜏𝛼 = 0.5 𝑪[𝑭𝑒
𝑇𝑭𝑒 − 𝑰]:𝒎

𝛼⊗𝒏𝛼   , (3.5) 



 

58 

 

where 𝑪 is the elastic stiffness tensor of the material. The initial critical resolved shear 

stress 𝜏𝑐
𝛼 is a material parameter, which is assumed to be the same for every slip system. The 

evolution of the critical resolved shear stress 𝜏𝑐
𝛼, i.e. the hardening behavior, is  

�̇�𝑐
𝛼 = ∑ℎ𝛼𝛽|�̇�

𝛽|

 2

𝛽= 

    , (3.6) 

The hardening matrix ℎ𝛼𝛽 captures interactions amongst various slip systems and is given 

by 

ℎ𝛼𝛽 = 𝑞𝛼𝛽 [ℎ (1 −
𝜏𝑐
𝛽

𝜏𝑠
 )
𝑎

]    , (3.7) 

ℎ , 𝑎 and 𝜏𝑠 are the reference hardening rate, the hardening exponent, and the resolved 

saturation stress, respectively. These slips hardening parameters are assumed identical for all FCC 

slip systems. The parameter 𝑞𝛼𝛽 is a measure for latent hardening; its value is taken as 1.0 for 

coplanar slip systems 𝛼 and 𝛽, and 1.4 otherwise, rendering the hardening model anisotropic. 
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Chapter 4  

PRELIMINARY RESULTS FOR FUTURE WORK  

 

We have made progress in the study of the relationship between grain orientation and the 

surface height. This chapter carries out preliminary investigation of two more aspects of grain-scale 

surface roughness formation. Section 1 focuses on the relationship between surface heights and 

strains, and stresses. Section 2 focuses on the effect of neighboring grains on a grain’s surface height 

 

 

 The relationship between average grain-surface heights and plastic strains 

 

The understanding of this relationship would help in the prediction of strain localization 

which could lead to the initiation of failure. Since, the surface roughness formation and deformation 

localization are both the result of the unique deformation of individual crystals; it is expected that 

they would be related. Assessing the current state of research, surface roughness formation 

relationship to the underlying stress and strain fields have been determined only in materials with 

dominant grain orientations [59]. The understanding of the relationship between a grains surface 

height and its orientation is still lacking.  

In this section, the same simulations as in the previous chapter were used, but here, strains 

and stresses were extracted in addition to the surface heights.  

 

1.1. Results and discussion  

The grain-surface displacement data in the ND direction (i.e., surface heights) was 

extracted from the results of all the 150 simulations. We quantified the grain-surface height by 

calculating the average height difference between the embedded grain surface and the isotropic 

surface. Also, in each of these simulations, we extracted Green-Lagrangian plastic strains over the 

entire embedded grain. We extracted Green-Lagrangian strains in three directions: the loading 
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direction (LD), the normal direction (ND), and the transverse direction (TD). Figure 4-1 illustrates 

the average height plotted with respect to the grain-averaged plastic strains for all grain orientations. 

A unique color represents grains with the same LD orientation. Each subplot shows strains in a 

particular direction. Other strain components (shear strains) are not shown because they do not have 

a relationship to the average surface heights.  

We can observe from Figure 4-1(a) that, for a specific LD orientation, even if the ND 

orientation change produces a surface-height change, the plastic strain in the LD remains the same. 

This implies that the LD strains are determined by the LD orientation and are not sensitive to the 

ND orientation of the grains. As a result, the LD strains are not correlated to the surface height. 

However, a linear relationship exists between the average height and the average plastic strains in 

both the normal (Figure 4-1(b)) and transverse directions (Figure 4-1 (c)). The average height is 

inversely proportional to the magnitude of the plastic strain in the ND and is directly proportional 

to the magnitude of the plastic strain in the TD. This opposite behavior indicates that strain variations 

in ND and TD are coupled. The consequence of the linear relationship is that a rough estimate of 

the strains in ND and TD directions can be made from just the average surface height irrespective 

of the grain orientation.   

The explanation for this behavior is as follows. For all grains with the same orientation in 

the LD, the LD strains are the same, irrespective of the grain orientation in ND. To satisfy the 

condition of constant volume during plastic deformation, the grain should be shrinking in the 

directions normal to LD. However, this deformation in the plane of the cross-section is non-uniform, 

that is, it is different in ND and TD. This non-uniformity depends on the activated slip systems. 

Now, when the crystal orientation of LD is changed, the deformation in TD and ND, reflected as 

plastic strains, also change. For this reason, when the strain in one direction decreases, the strain in 

the other direction increases.  
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Figure 4-1. Plastic strains in (a) the loading direction (LD), (b) the normal direction (ND), and (c) 

the transverse direction (TD) averaged over the entire grain and plotted with respect to the average 

surface height. Results from all the grain orientations are shown, and each color represents the 

grains with the same LD orientation (Nos. 1-15), indexed by the colorbar. The dotted circle 

represents the strains in an isotropic material.  
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Another observation is that the overall variation in the plastic strain in LD (0.02) is much 

less than the variation in the plastic strain in ND or TD (0.04). The variation in the LD plastic strain 

for grains with different LD orientations, even though small, reflects in the strains in TD and ND. 

In Figure 4-1(a), grains with orientation No.15 (the group of red data points in the bottom) have the 

smallest plastic strain in LD. As a result, these grains show slightly less strain magnitude in ND and 

TD for the same grain height when compared to the other grains, as observed in Figure 4-1(b & c). 

Note that from LD strain can be determined if the strains in TD and ND are known under the 

assumptions of constant volume in plastic deformation. Since the determination of TD and ND 

plastic strain from the surface height is only an estimate, and the differences in strains in the LD are 

small, LD strain cannot be determined using LD and TD plastic strains either.  

 

 

 

 

Figure 4-2. Variation of the plastic strain in the loading direction shown with respect to the 

Schmid factor. 
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Figure 4-2 shows the average plastic strain in the loading direction plotted with respect to 

the Schmid factor for all grain orientations. Figure 4-3 shows the average plastic strain in the loading 

direction plotted with respect to the Taylor factor for all grain orientations. These two figures show 

that most of the grains behave as expected. That is, the plastic strain is inversely proportional to the 

hardness estimated from these two factors. A grain with a small Taylor factor or a large Schmid 

factor is expected to be soft. Therefore, it shows more plastic strain in the loading direction. The 

relationship is also approximately linear. Only grains with LD orientation No. 1 ([100]) are clear 

outliers. The explanation for these outliers needs further investigation.  

 

Figure 4-3. Variation of the plastic strain in the loading direction with respect to the 

Taylor factor. 
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While the estimate of the strains alone would be useful, we can also estimate residual 

stresses in TD and ND from the average height. Figure 4-4 illustrates average residual stresses in 

the transverse direction (TD) plotted with respect to the average surface height for grain orientations 

No. 2 and No. 11 and all their respective NDs. Figure 4-5 depicts average residual stresses in the 

normal direction (ND) plotted with respect to the average surface height for grain orientations No. 

2 and No. 11 and all their respective NDs. We observed that the residual stress in TD is proportional 

to the average height. The residual stress in ND is inversely proportional to the average height. 

However, the relation is roughly linear only within grains of the same LD. As Figure 4-4 and Figure 

4-5 indicate, the slopes for height and the residual stress relationship for LD grain orientations No. 

2 and No. 11 are different. This difference in the slopes, when there is none in the strains, can be 

attributed to the anisotropic elasticity. Changes in grain orientation lead to Young’s modulus or 

stiffness change in nickel crystals. As a result, residual stresses can only be estimated from the 

 

Figure 4-4. Residual stresses in the transverse direction (TD) averaged over all the grains 

plotted with respect to the average surface height. Results from LD orientation No. 2 & No. 11 and 

all NDs are shown. 
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surface heights if the stiffness tensor, calculated from the grain orientation, is known. However, a 

few qualitative predictions can still be made using just the grain-surface heights. For instance, any 

grain that sinks or that forms a valley (i.e., large negative height) shows compressive (negative) 

residual stress in the TD and tensile (positive) residual stress in the ND. Similarly, any grain that 

rises or that forms a peak (i.e., large positive height) shows tensile (positive) residual stress in the 

TD and compressive (negative) residual stress in the ND. 

 

 

 

1.2. Conclusion  

In the idealized simulation sample used in the previous chapter, we find that average grain 

height can be related to particular plastic strains. The average plastic strains in the normal and 

transverse directions are linearly related to the average grain-surface height. This deduction also 

allowed us to estimate the residual stresses from the surface height. A major conclusion is that the 

 

Figure 4-5. Residual stresses in the transverse direction (ND) averaged over the entire 

grains plotted with respect to the average surface height. Results from LD orientation No. 2 & No. 

11 and all NDs are shown. 
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strains and residual stresses in the loading direction are not related to the grain-surface heights. 

However, note all the plastic strains can be determined using the grain orientations.  

It is important to note that we make these conclusions under the assumption that the 

material surrounding the grain of interest is isotropic. Under this assumption, we can use a 

parameter—average height relative to the average surface height—to estimate strain. However, in 

an actual polycrystal, measurement of this parameter might not be possible since we do not have a 

reference average/isotropic surface. Despite this, we believe that we can still make a qualitative 

assessment of residual/compressive stresses from grain sinking and rising. More importantly, we 

believe that this study’s main contribution lies in developing a conceptual understanding of the 

relationship between strains in the grain and its surface height. Such understanding would allow 

prediction of strain localization on the surface. Further work will consider the interaction between 

grains of specific orientations and include validation using experimental observations. 

 

 The effect of neighboring grains on a grain’s surface height 

 

The analysis up to this point has revealed that the grains in the experimental polycrystal 

sample behave as expected only for a few specific loading direction grain orientations. Work by 

other researchers has predicted that the neighboring grains would play an important role in 

determining a grain’s surface height [53], [56], [59]. Therefore, this section explores whether or not 

the discrepancies between experimental and single-grain simulations are the effects of the 

neighboring grains. In subsection 2.1, the effect of an embedded grain on the surface height of the 

surrounding homogenous medium. In subsection 2.2, the variation of a grain’s surface height in a 

polycrystals is investigated.  
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2.1. Effect of an embedded grain on the surrounding surface height  

2.1.1. Simulation setup  

As in the previous chapters, we first estimated this effect of an anisotopic grain on a 

homogeneous isotropic medium by embedding a grain in an isotropic sample, but at multiple 

locations along the depth direction. Figure 4-6 illustrates some of the simulation sample 

configurations used in this study. It depicts the anisotropic grain in red and the isotropic medium in 

green. As in the previous chapters, the same columnar grain of the hexagonal cross-section was used 

in all configurations. The isotropic sample, however, was enlarged to a 8x8 mm cross-section and 

lengthened to 24 mm because we intended to study the surface heights at much farther distances 

away from the anisotropic grain. The enlargement was carried out based on the estimation by 

researchers that a grain’s influence on the roughness exists for over 2–3 grain diameters [53], [74]. 

Five configurations were studied in total. In the first configuration (Figure 4-6 (a)), the grain lies on 

the surface. In the other four configurations, the grain surface lies below the sample surface at 

distances of 0.5, 1, 2, and 3 mm. Figure 4-6(b & c) shows grains at two different depths of 0.5 mm 

and  1 mm.  

 
 

 

  
  

 

 
Figure 4-6. Anisotropic grain (red) at 

depths of (a) 0, (b) 0.5, and (c) 1 mm in an 

isotropic enclosure (green) of 24x8x8. 
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(b)

(c)
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In each configuration, we used four grain orientations with distinct surface height 

behaviors. These surface height behaviors were determined using the single-grain simulations in the 

previous chapters. Table 4-1 specifies the orientations and surface height behaviors of the selected 

grains. Grain No.1 rises the most, No. 2 sinks the most, No. 3 has zero average height but peaks and 

valleys are located on the grain boundaries, and No. 4 sinks and does not exhibit any variation with 

ND orientation change. Also, the surface height of an entirely isotropic sample was used for 

reference. The crystal plasticity parameters are the same as the ones used in the previous section. 

The tensile loading simulation until a strain of 5% was carried out using the four selected grain 

orientations in each of the five sample configurations. 

2.1.2. Results   

From the results of each simulation, we calculation the height deviation of the sample 

surface from the surface height of the isotropic sample. Then, the maximum among these height 

deviations at all points on the sample surface from each simulation is calculated. Figure 4-7(a) 

illustrates the maximum deviation of the surface height from the isotropic surface using all grain 

orientations and grain depths. Figure 4-7(b) expresses the deviation as a percentage of the maximum 

deviation if the same grain lies at the surface. Note that only the magnitude of the deviation value 

Table 4-1. Grain behavior and orientations  

Grain Orientation  Behavior Euler angles 

1 Grain that rises the most [90 135 90] 

2 Grain that sinks the most [45 90 0] 

3 Grain with zero average height but peaks and 

valleys on the grain boundaries 

[57.27 122.79 40.12] 

4 Grain that sinks and shows no variation with 

ND 

[0 0 0] 
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was used since it is expected that a rising grain will only cause the surface to rise. We are only 

interested in the magnitude of the influence and not its sign. First, for each grain orientation, the 

maximum deviation is considered. As expected the largest maximum deviation occurs when the 

grain is on the surface. Both the subplots indicate that the influence of the grain decreases with the 

depth of the grain. The influence of the subsurface grain becomes negligible (< 10% of the maximum 

deviation for the grain at the surface) at depths greater than three times the grain diameter (~ 1 mm). 

More importantly, as seen in Figure 4-7 (b), the percentage deviation behavior with respect to the 

depth is similar for all the grain orientations. Consequently, we could expect similar behavior from 

any other grain orientation as well.  
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Figure 4-7. (a) The maximum deviations in the surface height from the isotropic surface; (b) the 

maximum deviation of the surface heights as a percentage of the maximum deviation for the same 

grain orientation at the surface.  
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Figure 4-8 shows the deviations of the heights at various locations of the sample surface 

due to the presence of grain with orientation No. 1 at different depths. Figure 4-8(a) and (b) depict 

 

 

Figure 4-8. The deviation of the surface heights when using grain orientation No. 1 along the (a) 

LD and (b) TD.  
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the surface-height deviations in the loading and transverse directions, respectively, for each grain 

depth. Zero on the x-axis of these figures represents the point on the sample surface directly above 

the face center of the anisotropic grains. The first observation is that the influence of an anisotropic 

grain is similar in both directions. The only difference is that, in the TD, when the grain lies on the 

surface, slight grain-surface sinking is observed near the grain boundaries even though the grain 

itself rises. However, we ignored this slight sinking and assumed the effect to be the same in both 

directions. Figure 4-8 shows that, at every grain depth, most height deviation occurs in the area 

directly above the embedded grain. This height deviation decreases as we consider points at greater 

distances away from the center of the sample. The height deviation decreases more gradually as the 

grain lies at greater depths. In other words, the profile peak becomes smoother at greater depths. As 

a result of this, for some points on the surface, a grain at a greater depth, but not lying directly 

underneath the point, has a larger influence on the surface height. For instance, for a point at a 

distance of 2 mm in the ND (Figure 4-8 (a)) from the center of the sample surface, the height 

deviation increases with the depth of the grain.  

The most important observation is the relative influence of the position of the grain on the 

surface height. In Figure 4-8(a), consider the case where the grain is located on the surface. At a 

point on the surface, 1 mm from the center of the sample surface in the LD; the height change is 

almost zero. Now, consider a case where the grain lies at a depth of 1 mm from the center of the 

sample. The height change at the center of the sample surface is 10 μm. From this observation, we 

can postulate that, in a polycrystal, a subsurface grain is more influential on the grain’s surface 

height than the in-plane neighbor located at the same distance. Similar conclusions can be made 

based on the results from using grains with other orientations.  

From these simulations, we understand some aspects of the neighboring grains’ effects on 

the surface height. However, it remains unclear how the grain surface behavior changes in a typical 

polycrystal. 
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2.2. Grains’ surface-height change in polycrystals  

2.2.1.  Simulation setup  

 

Figure 4-9 depicts the simulation sample used to estimate the effect of neighboring grains 

in a polycrystal. This sample resembles the one used to predict the effect of neighboring grains on 

the onset of plasticity by Sauzay (2006) [75]. The simulation sample consists of 14 equally sized 

 

 

 

Figure 4-9 (a) The grain arrangement in the simulation sample used to investigate the effect of 

neighboring grains; (b) a closer look at the specific anisotropic grains in this model.  
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grains. The grains are columnar with a hexagonal face of area 0.866 mm2 and a depth of 1 mm, 

just like the grain in the simulation sample in the previous chapters. The center grain in the top layer 

is the grain of interest. The rest of the grains in this sample are adjacent to the grain of interest. As 

we have seen in the previous section, even the non-adjacent grains—those at a distance from the 

grain of interest—were expected to be influential [53]. However, we ignored the non-adjacent grains 

because their effects were expected to be smaller.  

We used nine grain orientations for the center grains. These nine grain orientations were 

chosen so that they would demonstrate distinct behaviors as predicted from the single-grain 

simulations. Figure 4-10 shows the loading-direction orientations of the first eight grains, and the 

9th grain is an isotropic grain. Table 4-2 specifies the orientation and the single-grain behavior of 

each of these center grains. Grains No. 1–3 have the same [101] loading-direction orientation. Grain 

No. 1 rises the most, and grain No. 2 sinks the most among all grain orientations. Grains No. 4–6 

have the same LD orientation close to the center of the IPF. Grains No. 4 and 6 rise and sink but 

less than the grains with [101] LD orientation. Grains 7 and 8 lie at the other two vertices of the LD 

IPF. Figure 4-11 illustrates the average surface heights of the selected center-grain orientations 

obtained from single-grain simulations in Chapter 3, section 4.2. For each specific center grain, 40 

sets of random orientations were used for 13 neighboring grains. Sauzay (2006) [75] determined 40 

sets of random orientation to represent all kinds of grain orientation combinations when using FCC 

crystals. In total, 360 grain arrangements have been simulated. The crystal plasticity parameters are 

the same as the ones used in the previous two chapters. The sample was stretched to an axial strain 

of 1%.  
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Figure 4-10. Loading-direction orientations of the eight different center grains used. 
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Table 4-2. Center-grain behavior and orientation  

Center 

Grain No. 
Behavior Euler angles 

1 rises the most 90, 135, 90 

2 sinks the most 45, 90, 0 

3 
zero average height but peaks and valleys on the grain 

boundaries 
57.27, 122.79, 40.12 

4 rises less than No.1 -87.24, 124.49, 78 

5 sinks less than No. 2 67.94, 117.34, 31.78 

6 zero average height 79.24, 123.07, 53.95 

7 sinks and shows no variation with ND 0, 0,0 

8 sinks slightly and shows no variation with change in ND -54.73, 135,90 

9 isotropic - 
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2.2.2. Results  

 

 

Figure 4-11. Average surface heights obtained from single-grain simulations of the 

selected center-grain orientations.  
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Figure 4-12. Average grain-surface heights of all grains arrangements at an axial 

deformation of 1%. Vertical bars denote the range of height variations arising from different 

neighboring grains sets for the same center grain. Markers indicate heights from single grain 

simulations.  

Center grain ori.  # 

A
v
er

ag
e 

h
ei

g
h
t 

w
.r

.t
 i

so
tr

o
p
ic

 s
u

rf
ac

e 
(𝜇
𝑚

)



 

 

 

77 

 

 

 

Figure 4-12 illustrates the average height of the center grain with reference to an isotropic 

sample from all 360 simulations. Center grain numbers are listed on the x-axis. The vertical bars in 

the figure denote the range of height variations resulting from the change of the neighboring grains. 

These results indicate that almost all grains can rise or sink depending on the neighboring grains. 

Only grain No. 1, which is expected to rise the most in single-grain simulations, rose in all cases. 

However, there are cases where the grain surface rises only a little relative to the isotropic surface. 

Considering all the center grains, height variations from the neighboring grains are always very 

large. These height variations are as large as the as the largest height change from the change in 

orientation of the center grain itself.  

 

In the experimental analysis, we determined grain surface rising/sinking behavior by 

calculating the average surface height relative to the neighboring grains as opposed to the entire 

 

Figure 4-13. Average grain-surface heights relative to the neighboring grains. Vertical bars 

denote the range of height variations arising from different neighboring grains sets for the same 

center grain. Markers indicate heights from single-grain simulations.  
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gauge area. Therefore, we followed the same procedure to analyze these simulation results as well. 

Figure 4-13 is similar to Figure 4-12 in all aspects, except that the average height was calculated 

with respect to the average surface height of the six in-plane neighboring grains. The average height 

of the neighboring grains varied in each of the 360 simulations and was not constant. By using such 

a calculation of height, the height variations resulting from the neighboring grains were much 

smaller (see Figure 4-13). As a result, grains No. 1, 2, 4, and 5 behaved just as predicted in the 

single-grain simulations. This observation indicates that using the grain height relative to the height 

of the neighborhood results in a better match to the surface behavior prediction obtained considering 

only the orientation of the grain itself. Grain No. 7, positioned near [100] LD orientation, still mostly 

sank irrespective of neighboring grains, as observed in the experimental results in Chapter 3. 

Similarly, Grain No. 8, positioned near [111] LD orientation, was observed to sink in the 

simulations, and it also sinks most of the time according to the experimental observations in Chapter 

3. However, under the influence of the neighboring grains, it rose most of the times, as seen in 

Figure 4-13. The reason for this observation is not yet clear and it is left for the future work. The 

grains No. 1, 2, 4, and 5 in Figure 4-13 are the grains that were expected to rise and sink more than 

the grains with other orientations. Therefore, we can conclude that surface behavior prediction from 

the grain orientation can only be carried out for the grains that are expected to sink or rise the most. 

These grains that can both sink and rise the most lie near the LD IPF vertex [101]. Next, we analyzed 

the surface of the experimental sample to verify if the grain orientations that were expected to rise 

and sink the most behave in the same way.  
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2.2.3. Experimental observations  

 

From the single-grain simulations in Chapter 3, we calculated simulated average surface 

heights for all the grain orientations identified in the experimental sample. Using this data, we chose 

grains whose heights differed from the isotropic surface (zero height) by a large value. This value 

is three times the standard deviations of all the simulated heights. Figure 4-14 illustrates the LD 

orientations of the five grains identified in such a way. As expected, all these grains have LD 

orientations close to the IPF vertex [101].  

 

Figure 4-15 depicts the measured surface heights of the sample deformed in the 

experiments. The same grains in Figure 4-14 are also identified here and are labeled using the same 

numbering order. Figure 4-15 (a) also specifies the average height (in μm) of the five identified 

grains relative to their neighborhood and labels them. This average height indicates grain-surface 

sinking and rising. Comparing these observed grain surface sinking to the expected grain surface 

behavior in Figure 4-14, four of the five grain surfaces behave as expected. Only grain No. 225 sank 

when expected to rise. When we disregarded the smallest grains, all the three remaining grains 

behaved as predicted by single-grain simulation (Figure 4-15(b)). This demonstrates that predictions 

 

Figure 4-14. Loading direction IPF showing the grains expected to rise and sink the most. 
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of single simulations are true but often not observed in the experiments only because of neighboring 

grains.  

 

 

 

 

  

 

Figure 4-15. Surface heights of the gage area. The identified grains are numbered, and their 

average height relative to their neighborhood in μm is shown. (a) All identified grains; (b) smallest 

grains are disregarded.  
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2.3. Conclusion  

We can conclude that the neighboring grains, especially the grains lying underneath the 

surface up to depths of 3–4 times the grain diameter, influence the surface height. In comparison, 

the effect of the in-plane neighboring grains is lesser. Because of these results, we expect that the 

consideration of subsurface grains would be necessary for the accurate prediction of surface heights. 

In addition, in typical polycrystals, neighboring grains are highly influential in determining the 

grain-surface heights and often dominate the surface behavior of the grain itself when the surface 

behavior is determined using the height of the isotropic material as the reference. However, the 

neighboring grains are slightly less influential on the grain-surface behavior when the average height 

of the neighboring grains is used as the reference. In this case, the grains that were expected to rise 

or sink the most behaved in the same way irrespective of the neighboring grains. Only for such 

grains does the orientation of the grain dictate its surface behavior.  
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Chapter 5  

CONCLUSIONS AND FUTURE WORK 

 

 

 

This research work investigated several aspects of surface roughness formation in nickel 

polycrystals during small amounts of tensile plastic loading. It relates surface-roughness features, 

both at the level of slip steps and grains, to their stress and strain distributions using simulations. To 

determine the stresses and elastic strains associated with slip steps (i.e., the dislocation intersection 

with the surface), this work developed a novel numerical approach, which has achieved large 

savings in computational time when compared to traditional numerical approaches. Based on this, 

a journal paper entitled “A Combined Dislocation Fan-Finite Element (DF-FE) Method for Stress 

Field Simulation of Dislocations Emerging at the Free Surfaces of 3D Elastically Anisotropic 

Crystals” was published and presented as Chapter 2 in this dissertation [76]. This study also carried 

out some preliminary work in determining the relationship between average grain-surface height 

and average grain strains and stresses for all grain orientations using crystal plasticity finite element 

simulations. We established that a grain’s average plastic strain in the loading direction is not related 

to its surface height. However, strains and stresses in the other two directions are linearly 

proportional to the surface height. In the same process, a qualitative relationship between grain 

heights and residual stresses was found. Based on this grain-scale work, a conference paper titled 

“A CPFEM Investigation of the Effect of Grain Orientation on the Surface Profile During Tensile 

Plastic Deformation of FCC Polycrystals” was presented and published in the proceedings [77]. The 

validation of these stress and strain distributions using experimental observations remains a task left 

for future work.  

This research work led to an understanding of the relationship between surface roughness 

formation and the surface-grain orientations using both experimental observations and simulations. 
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In experiments, a surface white light interferometer (SWLI) measured surface heights, and electron 

backscatter diffraction (EBSD) characterized grain orientations on the surface. Simulations were 

carried out using the crystal plasticity finite element method (CPFEM). This work first disproved 

an assumption that a grain’s hardness, as estimated by Schmid or Taylor factors, determines the 

grain surface height. Additionally, this work establishes that the grain orientation in the loading 

direction does not uniquely determine the grain-surface height. It is the grain’s deformation in the 

normal direction, for a specific loading direction orientation, that determines the grain-surface 

height. Based on this work relating the grain orientation and surface height, a manuscript entitled 

“Investigating the Relationship Between Grain Orientation and Surface Height Changes in Nickel 

Polycrystals Under Tensile Plastic Deformation” was submitted for journal publication and 

presented as Chapter 3 in this dissertation.  

The results until now utilized simulations considering only the orientation of the grain itself 

ignoring the neighboring grains in a polycrystal. That is why, these results can be termed as the 

predicted surface height behavior of a grain resulting from its orientation. However, experiments 

showed that, for many grain orientations, a grain’s surface does not always behave as predicted. 

This research work contains some preliminary results that demonstrated that the effect of the 

neighboring grains causes these discrepancies. Neighboring grains, both the in-plane and the 

subsurface grains, substantially modify a grain’s surface height. Moreover, among the neighboring 

grains, the grain directly underneath (subsurface grain) has the most influence. Subsurface grains 

even up to a depth of 3–4 grain diameters have been found to be influential. Despite the substantial 

influence of the neighboring grains, there are grains of specific orientations whose predicted surface 

behavior is consistently observed in experimental observations. Grains with the loading direction 

orientations near [101], i.e., those that are predicted to have the highest or the lowest surface heights, 

behave as predicted. Apart from these, the grains that have loading direction orientations near [100] 

and [111] also behave as predicted.   
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This study also found a gap of scales between slip-step simulations using discrete 

dislocations and experimental validation using SWLI. Even though simulation efficiency improved 

using our proposed numerical method, discrete dislocation simulation is still very computationally 

expensive. That is why the samples sizes are still limited to a maximum of a few micrometers. 

Moreover, individual slip steps are only separated by a few nanometers. SWLI has a maximum 

spatial resolution of only around 0.4 μm; as a result, individual slip steps cannot be resolved by 

SWLI. Helpfully, under tensile loading, grain-scale roughening dominates surface height and not 

slip steps. This justified the focus on grain-scale roughness in this dissertation.  

This study’s conclusions have implications for future research work concerning roughness 

at both slip-step scale and grain scale. The gap between scales implies that study of slip steps in 

polycrystals requires bridging of the scales from the viewpoint of both simulations and experimental 

capabilities. The scale of the simulations could be increased using additional computational power 

and efficient modeling. An alternative approach would be to use statistical modeling of dislocations 

instead of explicit treatment. Doing so, the scale of simulations could be increased. Experimental 

capabilities, both testing, and profiling, at a microscale are required. In studies considering grain-

scale roughening, complete and quantitative prediction of grain-surface behavior requires 

consideration of the morphology and orientation of grains underneath the surface up to a depth of 

few grain diameters. Additionally, experimental validation of CPFEM simulations in this study 

confirms the utility of the phenomenological crystal plasticity models and their implementation 

using finite elements in simulating features of grain-scale plasticity. 

The conclusions of the study have implications for the investigation of grain orientation 

influence on failure through the growth of voids on the surface of the sample under tensile loading. 

Based on the preliminary results, the simulation can predict tensile residual stresses in the in-plane 

direction normal to the loading axis based on a grain’s orientation as well as its rising grain surface. 

The stresses in the direction normal to the surface are always zero on the surface. As a result, a 
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grains surface that rises would lead to tensile hydrostatic stresses (i.e., the sum of the normal stresses 

in all three directions). Since large tensile hydrostatic stresses are favorable to void growth [78], this 

study predicts that a rising grain favors void growth. Using the same explanation, void growth could 

be less favorable on a grain surface that sinks.  This study also has implications on the investigation 

of the role of grain orientation in growth cracks. Grain orientation is known to be highly influential 

on the growth of small cracks [79]. This research work relates the residual stresses in surface grains 

to their orientations. Since the residual stresses, among other factors, are known to influence crack 

growth, this study can be potentially extended to relate crack growth and grain orientation.  

Since we only considered the surface grain in this study, the findings are more applicable 

to loading cases where the stress at the surface is the largest. One such loading is bending. In 

bending, the most intense stresses occur on the surface. The subsurface grains would be under 

smaller loads and thereby undergo a smaller amount of plastic strain. Therefore, it can be expected 

that the relation between grain orientation and its surface height determined in this study would be 

clearly observed [80]. Currently, in bending, there is only an understanding of the relationship 

between surface roughness statistics and grain orientation distributions and not between specific 

grain orientations and grain surface height[62].  

More importantly, in bending, failure is known to initiate on the stretched surface through 

the formation of shear bands [81]–[83]. It is also known that the failure strength depends on the 

surface-grain orientation distribution [81]. However, the relationship between individual grain 

orientations to the strain localization (shear band formation on the surface) and failure has not been 

established. The investigation of this relationship could benefit from our conclusions on grain 

surface height, deformation fields, and grain orientation.  

In the light of the conclusions from our study, there are several logical extensions of this work. 

First, strains and stresses in surface grains have to be measured to validate their relationship to grain 

orientations and surface heights. One such method that can carry out high-resolution strain 
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measurements at fine spatial resolutions is high-resolution EBSD [84]. Another immediate future 

task is to consider the contribution of the neighboring grain on the surface roughness, which can be 

done by characterizing the grains underneath the surface. Most of the currently available methods 

that characterize the orientations of the subsurface grains involve sectioning the grains [85], [86], 

and thus are destructive. For this reason, characterizing the subsurface grains is only possible after 

mechanical testing which can be a potential limitation. An alternative to destructive testing is to 

minimize the influence of the subsurface grains using the bending tests mentioned previously.   
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