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ABSTRACT 

NONUPDATING METHODS FOR THE CHARACTERIZATION OF  

NONLINEAR STRESS-STRAIN AND DELAMINATION FRACTURE  

PROPERTIES OF FIBER REINFORCED COMPOSITES 

 

Bastiaan Corstiaan Wouter van der Vossen, Ph.D. 

The University of Texas at Arlington, 2018 

 

Supervising Professor: Andrew V. Makeev 

 

Efforts to develop strength and life prediction analysis tools for aircraft composite 

structures have shown a great need to understand the complexity and interaction of failure 

modes. Many failure models are highly sensitive to transverse nonlinear shear stress-strain and 

delamination fracture properties, which are notoriously hard to measure. Without proper input 

parameters, life predictions analyses will not be successful. The objective of this work was to 

accurately characterize these mechanical properties of carbon fiber reinforced polymer 

composites through advanced experimental methods. 

Full-field noncontact deformation measurements using Digital Image Correlation are 

used to quantify all surface strains components, enabling the design of experiments subject to 

complex loading. The presented splined-based optimization techniques link measured strains to 

applied loading, converging to accurate material properties without ad hoc assumptions on the 
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material model. These methods improve on first-order closed-form and iterative numerical 

solutions due to flexibility and accuracy without the computational expense. 

Applications of the optimization model on the Short Beam Shear and Thick Adherend 

shear tests proved the usefulness of these methods. Full three-dimensional characterization of 

selected carbon fiber-reinforced polymer composites is presented with a discussion of the 

applicability of simplifying assumptions on the material model. This experimental program 

showed that the assumption of transverse anisotropy must be verified, as it may be inaccurate 

depending on the material. Furthermore, large shear strain response of IM7/8552 UD specimens 

has been measured by asymmetric three-point bending test.  

Applicability of the common D3518 ±45 degree off-axis tensile test was also deliberated. 

Shear stress-strain response measured from D3518 specimens disagrees with the Short Beam 

Shear and Small Plate Twist test results after about 5000 microstrain. This conclusion was shown 

to be influenced by the specimens’ stacking sequence and microdamage which develops well 

before damage can be spotted in X-ray Computed Tomography reconstructions.  

High-magnification deformation measurements are applied to directly measure cohesive 

laws in precracked Double Cantilever Beam and Thick Adherend shear specimens. Supported by 

non-destructive in situ crack front measurements by Computed Tomography, the loaded crack tip 

displacements are directly related to the J-integral. The derived traction-separation law is verified 

by the excellent agreement of the global response between cohesive model Finite Element 

Analysis and measurements. This study was the first application of the direct measurement of 

mode II traction-separation law in Thick Adherend shear specimens.  
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CHAPTER 1  

INTRODUCTION 

1.1  Motivation 

Fiber reinforced plastics (FRP) and similar composites are fundamental to modern 

aerospace structures, where new developments in material science are necessary to meet the 

ambitious design requirements. The development of new materials also drives and enables new 

capabilities for the future. In part, the performance of these structures relies on the superior 

specific strength and stiffness characteristics of FRPs as well as the ability to predict the useful 

life of in-service structures.  

Efforts to develop life prediction analysis tools for aircraft composite structures has 

shown a great need to understand the complexity and interaction of failure modes. Without 

proper input parameters, strength and life predictions analyses will not be successful. Failure 

mechanisms of composite structures are complex due to the high anisotropy of fiber-reinforced 

materials. In one loading direction, the fibers give the composite high modulus and strength, 

whereas in other directions the mechanical properties are defined more by the weaker and softer 

matrix properties.  

Failure mechanisms of out-of-plane loads in composite shells are often dominated by 

matrix properties, such as the out-of-plane elastic modulus and nonlinear shear behavior. 

Characterizing these properties is difficult, especially when the shear and normal stress-strain 

material characteristics have coupling in the nonlinear regime. To fully understand the material 

behavior, an intensive and elaborate program of mechanical testing is necessary. Because of the 
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high anisotropy and susceptibility of FRPs to moisture, time and temperature, such a program 

could undergo hundreds to thousands of tests and still be able to define all significant 

constitutive properties. 

This has caused significant efforts in the scientific community to develop new methods 

that allow the user to define multiple mechanical properties from a single test method in cost-

effective ways. Many of these tests make use of complex stress-states and full-field 

measurements of strains or displacements, preferably using tests of simple geometry and loading 

and sometimes including specific failure modes. The challenge is to accurately identify the 

material parameters of the material being tested through advanced numerical methods that can 

capture the full material behavior. 

While constitutive properties of stress and strain are indicative of the performance of a 

material, the accurate characterization of material behavior during failure phenomena and 

development of physics-driven failure simulations are necessary to predict the useful life of a 

composite structure. Many high-performance applications of composite materials require 

accurate predictions of useful life and other failure performance attributes for the structure. This 

challenge is enhanced due to the tendency of FRPs to be heavily influenced by manufacturing 

defects in static strength and fatigue life. Hence, the development and testing process for 

composite structures would benefit from prediction models of manufacturing techniques and in-

situ nondestructive inspection (NDI) techniques to define such manufacturing defects. The 

development of analysis tools that may predict useful life of composite structures may lead to 

faster design iterations that require fewer verification and validation tests for certification. 
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This thesis studies the extraordinary efforts required to gain confidence in material 

properties, performance, and allowables. The present day industry and government practices 

dictate a building-block approach, starting from basic coupon-level experiments [1]. Because of 

the efforts required, many composite materials are only characterized partially, such as only in 

the linear elastic regime, and strength allowables are specified for specific laminates and stacking 

sequences. Moving to more advanced characterization efforts quickly requires expensive 

experimental designs and computationally expensive analyses to derive the material behavior. 

Therefore, there is a need to address the effectiveness and computational efficiency of material 

characterization programs. 

The first specific problem is the inherent difficulty of characterizing the nonlinear stress-

strain properties in in-plane and in out-of-plane shear for fiber reinforced polymer composites. 

Accurate characterization of the mechanical behavior of fiber reinforced polymer-matrix (FRP) 

composites is instrumental to predict the stiffness, strength, and useful life of primary composite 

structures [2]. Traditionally, standard tests require local measurements of deformation to 

determine the surface strains and a measurement of load and geometry to calculate the applicable 

stress. Strain gauges are commonly used to measure the average deformation under the area 

covered by the gauge. As such, the test performed must usually achieve a uniform stress-state, 

such as in-plane tension, compression, or pure shear. Since FRPs have inherent anisotropy, 

multiple tests are needed to characterize only a limited set of properties, with the shear moduli 

measured separately from the normal elastic moduli [3]. Multiple tests have been proposed to 

measure the shear behavior of FRPs, but most suffer from problems with load introduction, 
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heterogeneity of the stress field, adequacy of data reduction, consistency, or complexity of 

specimen preparation [4].  

Computationally effective and accurate multi-parameter identification tests reduce lead 

time and characterization effort for new materials. New methods have been proposed that induce 

a multivariate heterogeneous stress-field in a composite specimen, while full-field 2D surface 

deformations are measured  [5,6]. The strain field in a heterogeneous stress-field depends on the 

(distribution of) material stress-strain behavior. Thus, the characterization of said stress-strain 

behavior poses an inverse problem. These experimental designs usually require a form of 

iterative Finite Element Analysis (FEA) that is both expensive from a numerical point of view 

and requires great expertise from the operator and analyst of the test. Furthermore, many of these 

iterative schemes must assume a certain material model to be fitted. There is still a need for 

computationally effective test methods that are accurate and flexible enough to capture all the 

complex constitutive properties of the composite material. 

The work presented in this thesis addresses the need for a simpler analysis tool applied to 

test specimens subject to heterogeneous stress states to solve the material characterization 

inverse problem in a flexible, intuitive and time- and computationally effective manner. A large 

portion of this work is applied to the Short Beam Shear test method. The specimens are relatively 

inexpensive to test and are subject under a combination of shear and bending, making them ideal 

specimens for this research. Tests performed for this thesis include Short Beam Shear (SBS), 

Long Beam 3-point bend, Thick Adherend (TA) shear, ±45o off-axis tensile tests, and Small 

(Torsion) Plate Twist (SPT) tests. 



 

 
5 

The second specific problem addresses the lack of understanding of delamination 

cohesive laws, which is a fundamental aspect of strength and fatigue progressive damage and 

failure analysis (PDFA) of composite structures. Delaminations, a major failure mode in 

composite structures, behave different from bulk material failure. The cohesive zone laws are 

used to simulate interface damage initiation and progression in the FEA analysis. The derivation 

of these laws is typically based on mathematical assumptions fit to simplify convergence of 

analysis tools, instead of physics or measurement. Since convergence models do not usually 

prove that a solution is unique, the simplifying assumption may cause the simulation task to 

favor wrong cohesive material properties.  

The objective was to perform a feasibility study focused on developing experimental 

methods and nonupdating analysis techniques for capturing the interface traction-separation law 

and increasing confidence in material input data for PDFA. Static Double Cantilever Beam 

(DCB), and Thick Adherend (TA) shear specimens have been pre-cracked under fatigue load and 

used to test the create mode I and mode II fracture. X-ray Computed Tomography (CT) 

reconstructions were used to locate the crack front. A direct approach was applied to measure 

cohesive laws using high resolution Digital Image Correlation (DIC) techniques. This high-

magnification surface tracking method was used to measure crack tip separation in these 

specimens. The usefulness of the method was to be verified by direct comparison of load-

displacement curves between numerical Finite Element models and experimental data of the 

DCB and TA test.  
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1.2  Outline 

The dissertation is divided into chapters as follows: Chapter 1 introduces the problem 

statement and the objective of the work performed. Chapter 2 shows the development of analysis 

tools for the Short Beam Shear method. The Finite Element Model Updating (FEMU) was 

shown as the reference case, as the high-fidelity model captures the stress field as accurately as 

possible. Using that model as a starting point, a physics-driven approach was used to develop a 

nonupdating method based only on the measured strains, the specimen geometry, and the 

measured load.  

Chapter 3 lays out the work done to verify the experimental method and analysis 

developed. Foremost, the chapter compares the experimental results of the SBS, the Torsion 

Plate Twist, and the ±450 off-axis test for two different material systems. The results are used to 

verify simplifying assumptions on the three-dimensional stress-strain behavior.  

Chapter 4 provides evidence to demonstrate the capability of the Short Beam Shear to 

measure large-strain shear performance. The work done shows that an asymmetric loading nose 

offset improves experimental results. 

Chapter 5 elaborates on the feasibility study for the direct measurement of the cohesive 

traction-separation law in mode I and in mode II. The chapter first defines the theoretical 

framework for the project. It follows with the specimen preparation and experimental procedure. 

Test results and analyses are shown for DCB (mode I) and TA (mode II) specimens. The TA 

specimen is subject to a mix of mode I and mode II fracture energy, without an available closed-

form solution. The fracture energy is approximated using the Virtual Crack Closure Technique 

(VCCT) method in Abaqus CAE. By employing DIC with high-magnification zoom, the 
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deformations at the crack tip are measured and used directly for the cohesive law. Usefulness of 

the results was verified by FEA analysis.  

Chapter 6 describes the most pertinent conclusions and perspectives from the work 

shown in this thesis. At the time of writing, some of the work in this thesis has been published in 

references [7,8]. 

The remainder of chapter 1 delves into the available literature for the mechanical testing 

of FRP materials. This chapter cannot possibly be exhaustive but highlights the research that is 

more relevant to the research topic. It also defines the current challenges in the topic. 

1.3  Material Model for FRP 

The mechanical behavior of materials and structures requires knowledge of the 

relationship between stresses and strains: the constitutive model. Due to the high specific 

strength and specific stiffness of composite materials, their popularity and demand in aerospace 

structures is on the rise. This increased demand leads to a high rate of development of new 

materials. Among these, glass and carbon fiber/epoxy laminated composites have proven 

important in high-performance designs. 

1.3.1  Material Model and FEA Implementation 

The material model presented in this thesis is applicable to laminated Glass- and Carbon 

Fiber Reinforced Plastics (GFRP and CFRP). The mechanical test specimens have a 

unidirectional layup, unless otherwise specified. In this configuration, all plies are stacked with 

all fibers in the same direction. This allows for specimen geometry to match with material 

principal directions. Specimens tested under shear will not behave linearly (brittle). [9–11]. This 
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nonlinear behavior depends on complex micro-scale behavior, but macroscale behavior is often 

characterized by stress-strain equations, such as the third-power polynomial and the Ramberg-

Osgood equation. A third-power stress-strain response works well in linear systems such as the 

Virtual Fields Method, but has limited applicability. The Ramberg-Osgood offers the flexibility 

to specify the nonlinear exponent, improving modeling accuracy (see Figure 1). 

𝛾𝑖𝑗 =
𝜏𝑖𝑗

𝐺𝑖𝑗
+ 𝑠𝑖𝑔𝑛(𝜏𝑖𝑗) |

𝜏𝑖𝑗

𝐾𝑖𝑗
|

1
𝑛𝑖𝑗

( 1-1 ) 

𝐺𝑖𝑗
∗ =

1

𝐺𝑖𝑗
+

1

𝑛𝑖𝑗𝐾𝑖𝑗
|
𝜏𝑖𝑗

𝐾𝑖𝑗
|

1
𝑛𝑖𝑗

−1

( 1-2 ) 

In thus relationship, K and n are nonlinear parameters, and ij represents the 12, 13, or 23 

material planes. Gij
* represents the locally reduced inverse of shear modulus due to nonlinearity. 

Other formulations have been proposed [12–14], which generally use more curve-fitting 

parameters. The Ramberg-Osgood equation is well suitable to capture nonlinear behavior up to 

3-5% shear strain.  

 

Figure 1. Ramberg-Osgood Equation fitting Measurement Data 
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The implementation of the Ramberg-Osgood relationship for nonlinear shear in FEA 

analysis for composites requires the use of a custom UMAT. The following equation represents 

the relationship between stresses and strains at stress interval k.  

[
𝛿𝜖

𝛿𝜎
]
𝑘

=

[
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−
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𝐺23
∗ 0 0

0 0 0 0
1
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∗ 0

0 0 0 0 0
1

𝐺12
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𝑘

( 1-3 ) 

where, 

E11 = {
E11T if σ11 ≥ 0

E11C if σ11 ≤ 0
( 1-4 ) 

The 1, 2, 3 subscripts represent the material principal directions. The axial modulus E, 

shear modulus G, and Poisson’s ratio ν represent orthotropic material properties. ε and σ 

represent the set of normal and shear strains and stresses. Certain materials show a difference in 

tensile and compressive axial stiffness [15]. The tensile modulus of CFRP is about 10% higher 

than the compressive modulus. In this thesis, this phenomenon is referred to as bi-modularity. 

The Jacobian for each element is finally given as: 

[𝐽] = [
𝛿𝜎

𝛿𝜖
]
𝑘

= ([
𝛿𝜖

𝛿𝜎
]
𝑘

)

−1

( 1-5 ) 
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The Jacobian is used to update material stresses, which can be updated incrementally. 

Shear stresses cannot be updated incrementally, as the solution might be dependent on the size of 

strain increments. Therefore, a Newton-Raphson model was implemented to solve for shear 

stress τnew iteratively. While residual < tolerance: 

τnew = τold + Δτ = τold +
Gγnew − τ − sign(τ)G |

τ
K|

1
n

1 +
G|τ|

1
n
−1

nK
1
n

( 1-6 ) 

𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 = |
Δτ

τnew + 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒
| ( 1-7 ) 

 

1.3.2  Shear Nonlinear Behavior 

The micro-structural phenomena that lead to nonlinear behavior in composites are not yet 

fully understood. Classical Lamination Theory (CLT) assumes that the three-dimensional stress 

state has no coupling between the normal and shear stress-strain properties. However, there is 

reason to believe that material shear behavior in the nonlinear regime is sensitive to matrix stress 

[16,17]. As the shear stress increases, micro-damage in the matrix causes a loss of stiffness; the 

stress-strain curve becomes nonlinear. Plastic flow in glassy polymers is commonly driven by 

shear bands, which are regions of localized, heterogeneous deformation forming in the direction 

of maximum shear stress. This failure phenomenon leads to very local yielding, softening the 

bulk material by reorientation of fibers. According to Courtney, the yield strength of the material 

depends on the temperature and hydrostatic pressure. In his model, a tensile pressure would lead 

to less resistance to shear band formation, while a compressive pressure would increase it [18].  
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A tensile load in combination with shear deformation will worsen microscale damaged 

development, whereas a compressive load may delay or suppress the onset of damage, as has 

been illustrated in Figure 2. Vogler and Kyriakides [19,20], who have done a systematic testing 

program on the interaction between nonlinear transverse compression and nonlinear shear in 

AS4/PEEK. Petterson [21] argues that nonlinearity arises from geometric damage, creep 

deformations, and micro-crack arrays. 

 

 

 

* Note: Reprinted with permission from Puck and Schürmann [16] (left) and Vogler and 

Kyriakides. [20] (right). Copyright © 2002 Elsevier Science, Ltd. All rights reserved. 

 

Figure 2. Coupling Effects between Transverse and Shear Stresses and Strains. Left: Effect of 

Transverse Stress on Shear Stress-Strain Response. Right: Effect of Compressive Stress on Shear 

Stress-Strain Response. 

 

Over time, aerospace systems tend to increase structural efficiency with higher stress 

levels. As such, understanding of nonlinear shear behavior becomes more valuable. Experimental 

and analytical research by Camanho [17] shows load capacity of composites under transverse 

tensile and shear stresses. In composite shell structures, the transverse and interlaminar shear 
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stresses cause plies to separate and delaminate, limiting the failure load. These failure modes are 

more important in out-of-plane loading than noted in-plane loading. Camanho builds upon 

Hashin’s theory, with matrix failure envelope defined by the shear and matrix stresses. Their 

interaction influences the failure load. Including these coupling effects improved accuracy of 

their failure predictions. Without modeling shear nonlinearity, the stress components in design 

are usually overestimated. As the matrix becomes more ductile, the load capacity decreases from 

what analytically expected values. Material shear modulus decreases due to micro-damage in the 

matrix, which does not develop into macro-cracks due to the presence of fibers, but does have a 

significant effect on the overall structural stiffness.  

1.4  Characterization of Mechanical Material Properties for FRPs 

1.4.1  Complexity of Standard Material Certification Programs 

The rapid advances in material development drive a great need for efficient 

characterization methods. Compared to traditional metal characterization programs, fiber 

reinforced plastics require a wide selection of tests to characterize each constitutive property. 

This problem is made complex by time-consuming, costly test setups and complex specimen 

geometries that are often required. Refer to Figure 3 for a map given by the Military Handbook 

of Composites [1] on characterizing a new material. Due to the complexity and monetary 

barriers, not all material properties are fully characterized. Among these, nonlinear and out-of-

plane shear behavior can be assumed. Even though this behavior is critical to predict complex 

deformation and damage development, cost may be prohibitive. Once a material has been finally 
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fully-certified, it can be very difficult to introduce a new material system in later stages of 

product development.  

Material certification requires knowing the constitutive properties in all three principle 

directions. Industry standards require many different test methods to measure these properties, 

but some of these will never be mentioned due to prohibitive costs. Often, the material properties 

exhibit significant scatter in material properties (modulus, strength, manufacturing quality). This 

scatter is caused by irregularities in production and handling, which means that multiple panels 

from different batch materials have to be made for each test. This effort makes it also very costly 

to investigate complicating effects (such as temperature, strain rate sensitivity, fatigue, moisture, 

nonlinear behavior) in detail. There are multiple quality publications available that discuss 

mechanical testing in composite materials. Among these, Adams et al. [22] and Czichos et al. 

[23] provide more insight into these tests. Sharpe [24] gives a more up-to-date view on material 

characterization, including noncontact measurement methods, such as the Digital Image 

Correlation method. This method is described in detail by Sutton [25]. Generally, the industry 

generally has three important guidelines for on the test selection: 

 

1. Preference for small specimens and thin laminates to reduce cost and time; 

2. To measure both elastic properties and failure strength in one direction. For accuracy, 

the stress state has to be homogeneous and not multi-axial. 

3. To test on common universal testing machines for reproducibility. This rules out exotic 

shapes and loading configurations. 
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* Note: Approved for Public Release by U.S. D.O.D. [1] 

Figure 3. Material Characterization Efforts as explained by MIL-HDBK-17 

 

Statistical variability of composite material properties requires testing of a large number 

of specimens. Creating a material database to provide this statistical variability is therefore time- 

and cost intensive. Reasons for this variability are numerous [26]. Due to sensitivity to material 

processing, specimens are created from panels made from different prepreg material batches 

[27]. As such, batch traceability is important. Laminate testing is usually performed to define 

allowables for open hole tension/compression for selected layups. After a testing program, the 

product development may be limited to a subset of layup configurations. Understanding of 

material nonlinear stress-strain and damage behavior enables development of data-driven 

methods necessary to predict useful life of composite structures, regardless of chosen layup. This 

may reduce the number of required tests to verification levels. 
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Consider the intermediate modulus carbon fiber in a tough epoxy matrix IM7/8552, 

meant for use in primary aerospace structures [28,29]. The qualification material property data 

report is extensive and covers hundreds of both UD and laminate test specimens. Still, out-of-

plane shear moduli are not measured. Even though shear nonlinear behavior is shown, it is not 

quantified in the report. Consider that companies may source their own material or need to 

certify the material for an application, companies are advised to perform in-house material 

testing to test for relevant laminate stacking sequences, different environments, and more 

complex failure phenomena. Considering the tremendous amounts of effort and money this 

requires, it is no surprise that a composite material might not be fully understood during the 

design process of a structure. Without this understanding, composite structures still rely on 

extensive structural testing programs for certification. 

1.4.2  Characterizing Shear Nonlinearity in FRP Materials 

Specimens subject to multi-axial stresses may be used to enhance cost-effectiveness of 

material characterization programs [30,31]. In one specimen, all orthotropic linear parameters are 

involved in the global response. By measuring full-field deformations, the contribution of each 

parameter on the global and local response can be determined. Doing so requires knowledge of 

the influence of the material on the specimen response (via FEA or analytical solutions) and 

advanced, reliable, and accurate methods to measure full-field deformations [32]. Doing so 

efficiently could lead to rapid material screening capabilities. 

Measuring the shear nonlinear stress-strain response requires a well-considered choice of 

test method. Multiple test methods measure the shear response curve, but obtaining a pure and 

uniform shear stress state is hard to achieve. Torsion of a circular thin-walled tube would give a 
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very accurate shear stress-strain response, but the test can be prohibitively expensive and 

sensitive to test misalignment. The Iosipescu (ASTM D 5379 ) or V-notched Rail (ASTM D 

7078) shear tests manage to produce an area of pure shear, but are sensitive to notch geometry. 

While expensive to produce, the two methods are known to be accurate and reliable. The [±45] 

tension test (ASTM D 3518) and the two- and three-rail shear tests (ASTMD 4255) require a 

simpler geometry and test fixture, but do not produce a region of pure shear [33]. As such, these 

specimens produce the wrong failure mode. Iosipescu specimens may fail from matrix tensile 

stress at the notch, while Short Beam Shear specimens may create compression cracks under the 

loading nose. For a more elaborate discussion, please refer to Chaterjee et al. [4]. 

The SBS test (ASTM D 2344 [34]) is a three-point bending test with a small span-to-

thickness aspect ratio. In this configuration, specimens are loaded such that they fail under pure 

shear stress. Conventionally, the SBS test is popular, because of its simplicity and ease in which 

the specimens can be conducted. The method is relatively inexpensive, but does not provide a 

uniform shear stress state and failure is often affected by bending and contact stresses. Large 

strain gradients are present throughout the specimen. Even though an area of pure shear is 

formed, it cannot be captured using a strain gauge. Instead, the test performs well as a quality 

control test, indicating of the quality of the fiber-matrix interfacial bonds (the interlaminar shear 

strength). 

At the University of Texas in Arlington, Advanced Materials and Structures Lab 

(AMSL), a combination of a modified Short Beam Shear (SBS) method [34] is used to 

characterize material all three-dimensional constitutive properties, along with interlaminar shear 

and tensile strength. The lab has adapted the SBS method to prevent the contact and bending 
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stresses to influence the in-plane shear strength measurements [35]. Full-field noncontact strain 

measurements are performed using stereo vision 3D Digital Image Correlation (DIC). By 

tracking surface features as the specimen deforms, surface deformations are measured with high 

resolution, which allows for an accurate measurement of the shear strains at the whole front 

surface. This resolution allows for measurement at the region of pure shear, which is too small 

for strain gauges. As the influences of axial, transverse, and through-the-width stresses are nearly 

zero at the neutral axis, the shear stress-strain response in the SBS specimen should match that of 

the more reliable Iosipescu test method. 

The SBS test is explained by Makeev [15] and the setup is shown in Figure 4 and Figure 

5. In these figures, the three-point bending fixture, speckled specimen, lighting, and DIC system 

are visible. The speckled specimen usually is a glass or carbon fiber epoxy but is applicable to 

metals and other material systems. There is some flexibility with the test in terms of specimen 

size, contact roller dimensions, and support positioning. As the SBS specimens are subject to 

complex stress states including large axial and shear stresses, material characterization in 

multiple directions is possible [15]. The SBS test has many benefits over the competing shear 

methods: coupons with small size and simple geometry can be produced cheaply and often be 

produced along with other types of specimens from the same panel. Even within a single small 

panel, dozens of specimens may be cut in different loading planes. In each plane, axial and shear 

modulus is tested. By testing in the different loading planes, the 3D constitutive model is known 

with little material use, including the shear nonlinear response in the 1-2 and 1-3 plane. As such, 

this method may substitute for other test methods, such as Iosipescu shear, curved beam bending, 

tension, and compression tests.  
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By using the high-resolution noncontact DIC system, all strain components are measured 

and used for material characterization. As such, the SBS test method is proven to measure all 

constitutive properties in 3D, using a small subset of the full-field information. From the full-

field data, line and point measurements have been taken to identify material parameters. Full-

field strain measurements provide more information that traditional “point” or “area” strain 

measurements, such as gradients, distribution and information on loading misalignment. 

Therefore, there is untapped information on material behavior to be discovered.  

 

 

Figure 4. Short Beam Shear Test Setup, showing the fixture, a coupon being tested,  

and the optical system. 

 

Figure 5. Loading Configuration of the SBS method. Note the Failure in Interlaminar Shear [41] 
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The PhD theses of Y. He [36], P. Carpentier [35], and J. Cline [37] and a previous MSc 

thesis by B. van der Vossen [38] serve as the foundation of this continued research. Carpentier 

used an analytical expression to identify material parameters from strain measurements. By 

observing that axial strains are linear through the thickness of the specimen, she and Makeev 

derive a closed-form analytical solution for axial and shear stresses away from the points of 

contact. These equations are more readily applicable than the solution derived by Whitney and 

Browning [39]. In the thesis of He, an iterative method is proposed to find accurate shear stress-

strain behavior by using accurate shear stresses from FEA. In the thesis of Van der Vossen, it 

was shown that axial modulus calculations could be improved by FEM and that the shear 

nonlinear behavior is affected by compressive matrix stress near the contact points. Further 

evidence is given in the thesis of Cline, who used full-field optimization methods to identify 

material parameters to minimize the error between FEA-simulated and DIC-measured strains. 

The tools used include a FEM model and User Material Subroutine, which are used in a Finite 

Element Model Updating (FEMU) technique to find the shear nonlinear parameters. A similar 

FEMU approach has been applied in [38] on applied to axial and transverse strains.  

The SBS method is unable to measure shear nonlinearity in the 2-3 plane. In order to 

reach high shear stresses, the applied force must be high. In the 2-3 plane, there are no fibers to 

hold the bending moment, causing these specimens to usually break before reaching the 

nonlinear regime. Further work is done to characterize nonlinear shear properties by means of 

the torsion Small Plate Twist test method [40]. By combining the DIC technique with the plate 

twist setup, one can measure high shear strains in all material planes. No closed-form solutions 

exist to relate the applied force to surface stresses, so a tool was developed using the 



 

 
20 

aforementioned strain matching technique between FEM and DIC to iteratively solve for the 3D 

nonlinear shear parameters. Figure 6 shows one possible test setup using three stereo camera 

systems to track surface strains in all three material planes, which are shown in Figure 7.  

The popular [±45] ASTM D3518 tensile test [42] is relevant for the thesis as reference. 

While known for its straightforward specimen geometry, loading, and analysis, it may not be a 

satisfactory test. As Chaterjee et al. [36] note, the material response and strength depend on the 

exact lay-up (number and grouping of plies). They note that there are significant matrix tensile 

stresses in these specimens. As experimentally shown by Sket et al. (2014), these tensile 

specimens develop significant matrix cracks after this threshold. They also show the fiber axes 

rotating away from the original 45deg axis, causing the closed-form solutions for the stress to be 

inaccurate. The ASTM standard advises to use these specimens only up to 5% shear strain. This 

test is, however, more capable of demonstrating damage progression, most notably permanent 

strains and shear modulus reduction. This has led to interesting publications on nonlinear shear 

stress-strain analysis [43]. Even the ASTM D3518, which has homogeneous stress distribution, 

can benefit from DIC full-field strain measurements [44]. 
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Figure 6. Setup for Simultaneously Monitoring Surface Strains in all Principle Material Planes 

using three Synchronized Stereo Camera Systems for the Plate Twist Test Method [40] 

 

The applications for nonlinear (transverse) shear stresses in structural composites are 

already well-established, with methods calculating transverse shear stresses in beams using 

equilibrium equations [45], using the shear resultant [46] or by functionally graded materials 

such as in [47,48].  

 

 

Figure 7. Shear Strain Measurements using DIC system in (a) 1-2 Plane,  

(b)1-3 Plane, (c) 2-3 Plane [39] 
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1.4.3  Material Parameter Characterization; The Inverse Problem  

The problem of deriving material properties from strain measurements is often defined as 

an inverse problem [32,49–51]. In a direct structural analysis, the geometry, loading, and the 

material model with parameters are known and used to solve for stresses, strains, and 

displacements. Consider the standard set of FEM equations: 

𝐾(𝜃)𝑈 = 𝑅 ( 1-8 ) 

where 𝐾(𝜃) is the stiffness matrix as a function of the material constants θ. In this case, 

the displacements U and loads R are known. For material testing, the inverse for this problem has 

to be solved: starting with the displacements U (or strain measurements), geometry, and loading 

configuration (R) to find the material parameters θ. For simple geometries and loadings, inverse 

relationships may be derived that link measured response to applied loading. As a basic example, 

the axial modulus may be calculated from strain measurements in tensile specimens, given the 

specimens cross-section and load level. Introducing complexity such as stress concentrations and 

non-uniform loading or geometry leads to heterogeneous stress states (not constant). In these 

cases, specimen response is often dependent on the material behavior and closed-form solutions 

are not always available.  

Measurements from specimens loaded under a homogeneous state may easily be used to 

derive one or maybe two material parameters, such as modulus and Poisson’s ratio. 

Measurements from specimens subject to a heterogeneous stress states give information on many 

more properties. Since optical full-field strain measurements are given in 2D, the full 2D 

material model could be characterized in one test method. The chosen inverse method must take 

the complex loading configuration and material model in account to find the relevant material 
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parameters. The most well-known inverse methods are: Closed-form solutions, Virtual Fields 

Method (VFM), Finite Element Model Updating method (FEMU), Constitutive Equation Gap 

Method (CEGM), Equilibrium Gap method (EGM), and the Reciprocity Gap Method (RGM) 

[51]. 

Closed-form solutions are the most obvious choice if available, wherein an established 

relationship between load and stress is used to calculate the material properties. For the standard 

ASTM test methods, these relationships are known. For tests specimens subject to multiaxial 

heterogeneous stress states, closed-form solutions are often not available.  

Half of the given solutions are updating methods. The FEMU, CEGM, and RGM 

methods use FEM analyses to compute reference stress, strain or displacement fields. The FEMU 

method is flexible, widely applicable, and accurate enough to take full 3D geometry and loading 

into account. Therefore, it is applied by many researchers [49,50,52,53]. The first iteration of the 

FEA analysis uses an initial guess for the material parameters. A cost function is derived, often 

comparing the output strain from FEA and measured strain from DIC. Using a sensitivity matrix, 

the next iteration of the FEA model uses a new set of properties to reduce the value of the cost 

function. The model keeps iterating until convergence is reached. The cost function is used to 

evaluate the fit between measured and simulated variables, and is often based on a least-squares 

fit. The CEGM and RGM are variations on the FEMU approach. The Constitutive Equation Gap 

method was used previously to verify Finite Element simulations. In the past several years, 

applications to material parameters identification have been discovered. The Reciprocity Gap 

method is another variation, employing kinematic fields on the boundaries. So far, no reference 

is known where this method has been applied to test data.  
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The other methods are nonupdating. The Virtual Fields Method [54] is based on the 

principle or virtual work. 

−∫ 𝜎: 𝜖[𝑢∗]𝑑𝑉
𝛺

+∫ 𝑇. 𝑢∗𝑑𝑆
𝑆𝑓

= ∫ 𝜌𝑢.̈ 𝑢∗𝑑𝑉
𝛺

( 1-9 ) 

With u* being the virtual displacement field. First, a constitutive model is chosen such 

that 

𝜎 = 𝐾(𝜃)𝜖̂ ( 1-10 ) 

 With known strains 𝜖̂. Integrating these virtual fields and the strain measurements 

provides a linear system which can be solved to give the material parameters. This method is 

highly appropriate and does not require a Finite Element Model, leading to reduced cost. 

Unfortunately, the virtual fields are assumed. Optimal virtual fields are hard to achieve and 

require a lot of validation [55]. Linearization of the shear model degrades the quality of the 

results. Furthermore, the response is integrated from the entire front surface, which includes the 

insecurities under the stress concentrations and local damage effects. As the axial response is 

integrated, no difference can be discerned between tensile /compressive moduli. The Equilibrium 

Gap Method is similar and can be seen as an equivalent of the VFM with piecewise particular 

fields [56].  

The noncontact full-field displacement and strain measurements are of crucial importance 

to solve the inverse problem. The full strain field is comprised of hundreds or thousands of data 

points, providing much more data than strain gauges could provide. The options for optical full-

field noncontact measurement systems include Moiré interferometry, Digital Image Correlation 

with speckle or grid patterns, photo-elasticity, or X-Ray stress analysis [24]. Digital Image 



 

 
25 

Correlation has become the state of the art due to high performance. VIC3D software processes 

random speckle pattern images to create fields (matrices) of displacement measurements, from 

which strain fields are derived. The output depends on some user-defined variables, such as the 

subset size and the filter size. The subset size influences the strain gradient which can be 

measured, while the filter size renders the data smoother. Some post-processing methods exist to 

refine DIC data or make it more useable for advanced analysis: Matching Finite Element nodes 

using bi-linear interpolation [50]; Parameterizing the DIC strain output using Artificial Neural 

Networks [58]; or least-squares solutions including Multi-Layer Perception Networks [59]. 

The nonupdating inverse methods described compensate for the lack of closed-form 

solutions by using overdetermined full-field strain measurements to find the material parameters 

that are most probable to give the measured response. As such, the method can be no more 

accurate than the resolution and quality of the DIC speckle pattern. Some tradeoffs are noted; the 

chosen subset size in the DIC analysis determined how many pixels are used to define the shape 

function. A direct effect is lack of data at the edges of the measurement field, thus some methods 

may require extrapolation beyond what is measured. Furthermore, measured strain levels must be 

sufficiently high to give a satisfactory signal-to-noise ratio. To mitigate these concerns, high 

magnification DIC is necessary with excellent speckle contrast.  

Each of the FEMU- and VFM-life methods has its benefits. The FEMU methods offer 

higher accuracy and flexibility, albeit at a greater computational cost. Application to the SBS 

favors the FEMU method, due to the complex contact loading. Deriving virtual fields is 

complicated by changing boundary conditions; the contact area at the loading nose is a function 
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of geometry, matrix modulus, and applied load. The FEMU iterative scheme was already applied 

to derive the nonlinear shear behavior [38,57]. This thesis builds on this work. 

1.5  Cohesive Zone Properties for FRP Delamination Failure 

The need to develop more durable composite materials for flight-critical composite 

components and structures, also requires efficient performance prediction. The Finite Element 

Method (FEM) method has been the most widely accepted technique for strength and fatigue life 

prediction [60]. Cohesive Zone Modeling (CZM) is a powerful tool to predict delamination 

initiation and progression.  

1.5.1  The Cohesive Zone Model 

Damage in a composite structure may be simulated by stress-based or fracture-based 

methods. Bulk material may use either, such as continuum damage models which degrade 

elements or fracture models such as VCCT or XFEM. Delamination as a primary failure model 

in composite structures may best be simulated using fracture mechanics-based methods. These 

methods are the most pertinent approaches to simulate PDFA in the FEA environment. A 

distinction may be made between methods that determine crack initiation and crack growth. 

Linear elastic fracture mechanics have been successful in modeling crack growth, but are limited 

to small-scale yielding and cannot determine when or where a crack starts. These analyses 

require a starting crack or a different crack initiation criterion. The Cohesive Zone Model is a 

powerful way to predict initiation and damage growth of delaminations in composites structures 

[61–65] and can thus be used to accurately predict fracture progression. The CZM application 

also extends to bonded structures with large nonlinear yielding response. 
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One of the focus points of this thesis lies on characterizing delamination crack growth. 

Laminates by nature are weakest at their ply interfaces. Delaminations at free edges and at 

notches are often caused by a combination of interlaminar tensile (mode I) and shear (mode II 

and III) stress and the strength is matrix-dominated and process-dependent. These are among the 

more challenging constitutive properties to measure. While the matrix stress-strain behaviors and 

strength values are applicable, delamination growth is a fracture phenomenon and best described 

using methods that use concepts of energy and work [66]. The cohesive zone method (CZM) 

described the relationship between crack surface traction and separation [67]. It characterizes 

local level damage and energy dissipation is defined as the area under the traction-separation 

curve (see Figure 8). This relationship appears simplified as a triangle, but can take any shape. 

The shape of this relationship does significantly affect crack growth behavior and should be 

carefully characterized [67]. 

 

 

Figure 8. Schematic of traction-separation relationship 
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CZM provides a macroscopic reproduction of damage along an interface, by defining the 

traction-separation (t - δ) cohesive law which correlates surface displacements to the applied 

traction. The CZM model usually makes a distinction between Mode I tension, Mode II, III 

shear, and mixed-mode fracture criteria. Traction initially increases with surface separation, after 

which damage is simulated by softening until reaching zero traction at a critical separation [60]. 

One challenge of PDFA methods based on fracture is sensitivity to the cohesive laws, which are 

typically assumed but not measured.  

1.5.2  Testing for Fracture Properties 

The standard methods used to measure fracture toughness as specified in D4762 are the 

Double Cantilever Beam (DCB) [68,69], End Notch Flexure (ENF) [70], and Mixed-Mode 

Bending (MMB) tests. Specimens created for these tests typically have an initial delamination 

like flaw implemented during manufacturing. This flaw may be a Teflon insert between plies, 

which inhibits adhesion between interfaces. DCB mode I toughness results are usually consistent 

with crack length, but mode II interlaminar shear fracture may not be. In the ENF D7905 

configuration, crack propagation is unstable, which limits measured to the cracking onset from 

the Teflon insert. As such, this fracture behavior may merely reflect manufacturing quality, 

rather than material behavior. One argument for this is that the shape and regularity of the natural 

crack front in delamination is usually not straight through the width.  

The Thick Adherend (TA) [71] shear test provides an alternative shear test. As a single 

lap joint, the shear force goes through the interface of interest. The TA test is a standard to 

measure stress-strain behavior of adhesives in shear. By introducing a crack between the 

adherends, the interface is loaded predominantly in mode II. As a downside, the single lap joint 
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is subject to a bending moment as well, which rotates the joined section and induces peeling 

stresses at the crack tips [72]. Recent research has used the TA test as verification for the Mode I 

and Mode II traction-separation laws as determined using the DCB and ENF tests [73].  

Deriving the traction-separation laws for CZM is not straightforward, nor are methods 

standardized to characterize them. Recent literature provides two general approaches to 

characterize such laws. Similar to deriving shear nonlinear behavior, the two methods are either 

FEA-updating or nonupdating direct methods. The FEA-updating approach uses the FEMU 

scheme to fit cohesive law parameters to a predetermined shape such as a triangle or trapezium. 

The CZM parameters are optimized to minimize a cost function or to match an objective 

function, such as one derived from comparison of FEA to specimen load-displacement data [74–

77].  

The nonupdating approach identifies the cohesive law directly from measured crack tip 

displacements δ and the energy release rate G. The crack tip displacement can be measured 

noncontact optical techniques such as DIC [20] or other reference point-tracking technologies 

[78,80]. The energy release rate is calculated using the J-integral [78–84] or Virtual Crack 

Closure Technique (VCCT) in a FEM analysis [85–88]. By the definition, the area under the 

traction-separation curve represents the fracture toughness of the material. Using this definition, 

the cohesive law equals the derivative of the δ – G curve. Svensson proposed a hybrid technique 

in Ref [82] to estimate the cohesive law using the direct approach and to improve upon it using 

the inverse approach.  

A tradeoff may be performed between the FEMU and direct approaches. The FEMU 

approach can accurately simulate compliance and ultimate load but is less flexible because of the 
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assumption on the shape of the cohesive law. This updating inverse method finds the parameters 

that best fit the objective function. There is no guarantee that the converged solution is unique, 

accurate, or even applicable to other test configurations. The direct approach does offer the 

flexibility in the shape of the cohesive law, but the measurements are subject to signal noise. The 

direct method makes fewer assumptions on the material model than the FEMU scheme, but the 

final solution is not guaranteed to be accurate or useful to simulate specimen ultimate load or 

load-displacement behavior. The displacements measured at the side of the specimen are 2D, 

while the crack is 3D in nature and varies through the specimen width.  

Many fracture specimens exhibit this 3D nonuniform crack front through the specimen 

width. The crack front in DCB specimens is well documented to be curved, which may lead to 

wrong fracture toughness measurements [61]. The crack front shape is influenced by partial 

restriction of anticlastic bending and free edge effects, which limits the applicability of the plane 

stress assumption [74].  

Accurately locating the crack front is a large problem in measuring the crack tip 

displacements. The paint on the side of the specimen may crack at different strain level than the 

substrate, such that the paint is not a good indicator of crack tip location. Wildy [89] proposed a 

numerical crack finding algorithm using a governing differential equation. The accuracy of this 

method is also defined by cracking of the paint and does not have the spatial resolution to 

pinpoint the crack front in a DIC field either. This problem is worst if paint is brittle, while the 

adhesive interface is ductile. In that case, the use of the J-integral to describe fracture energy in 

ductile adhesive materials that have been plastically unloaded is not a physically-complete 

calculation and should include proper considerations for bulk plasticity [90]. 
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Figure 9 [3] provides an overview of the standard ASTM fracture test methods to 

characterize delamination growth. Mode III fracture is not usually measured. Important details of 

these tests are the pre-crack created during specimen production and stable crack growth towards 

failure. There have been several publications which try to characterize the shape of the traction-

separation curve using full-field deformation measurements and FEM analysis. Bergan et al. [91] 

uses E1922 notched flat plate specimens to derive this law. Svensson and Alfredsson [82] use the 

DCB and three-point bend test. Both these sources assume a shape of the CZM to reduce the 

number of variables to solve. Shen et al. [77] uses the FEMU model to optimize any arbitrary 

CZM shape, but is applied to cementitious composites. Leitao et al. [79,80] uses DIC with ENF 

to characterize the CZM laws using the J-integral. There is still a need to characterize the CZM 

for FRP composite delaminations using high-resolution DIC, data-driven analysis without ad hoc 

assumptions of the CZM law. 

 

 

* Note: Standard Guide for Testing Polymer Matrix Composite Materials by 

Subcommittee D30.01 Reproduced with permission of ASTM International in the format 

Republish in a thesis/dissertation via Copyright Clearance Center. 

Figure 9. ASTM Standard Fracture Test Methods [3]  
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CHAPTER 2  

THREE-POINT BEND TEST AND ANALYSIS METHODS 

2.1  Experimental Setup 

The 3-Point Bend test is a versatile method to obtain the 3D constitutive properties 

[15,35]. As mentioned in the introduction, the AMSL lab has a nonstandard method to perform 

the tests, which deviates from ASTM standard [34]. As such, this chapter highlights the test 

method, and focuses on the analysis tools developed for data reduction.  

2.1.1  Application of DIC to the 3-Point Bend Test 

The 3-point bend test, in particular the SBS test, is well-known as an affordable yet 

inaccurate test to measure composite materials interface shear strength. As such, it works well as 

quality control, or to compare different materials [4]. The issue lies with the heterogeneous stress 

field. The specimens are subject to a combination of bending and shear stress, and thus large 

strain gradients. While the specimens are subject to a region of pure shear, no strain gauge is able 

to capture the magnitude of the maximum shear strain. The strain gauge works by averaging out 

the strains under the bonded surface, and thus lack the spatial resolution to provide the necessary 

data.  

With the development of noncontact, full-field optical strain monitoring, the required 

spatial resolution is achieved. The Digital Image Correlation (DIC) method uses two stereo-

vision cameras to track surface features of the tested article as it is being deformed. The 

specimens are prepared with a white base paint coat, followed by a black speckle pattern, applied 

using a compressor-fed air brush. These black speckles provide the contrast necessary to serve as 
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tracking features. The VIC-3D software developed by Correlated Solutions maps out the 

deformation field as these speckles move with respect to each other. The coordinates of the 

reference speckle (xi,yi) and the deformed location (xi
*,yi

*) are related by translations u, and v, in 

the X- and Y- direction respectively. The deformation map can be found by relating the 

translations between two images [92]: 

𝑥∗ = 𝑥 + 𝑢 +
𝛿𝑢

𝛿𝑥
𝛥𝑥 +

𝛿𝑢

𝛿𝑦
𝛥𝑦 ( 2-1 ) 

𝑦∗ = 𝑦 + 𝑣 +
𝛿𝑣

𝛿𝑥
𝛥𝑥 +

𝛿𝑣

𝛿𝑦
𝛥𝑦 ( 2-2 ) 

Where Δx and Δy represents the distance from the center of sub-image to the point (x,y), 

and ui,j represents the displacement gradients. The fidelity of the results depends on several 

factors, including accurate 3-dimensional calibration of the cameras, image contrast, resolution, 

the speckle pattern, and proper camera focus. The methodology is flexible, such that different 

brands of cameras with different specifications may work at any reasonable distance if the focus, 

calibration, resolution, and field of view are adequate. During this thesis, 16MP cameras were 

used with 60mm lenses, at approximately 7in. from the specimen. A photo of the SBS setup is 

shown in Figure 4 in Chapter 1. Figure 10 shows a schematic of the test setup with DIC-system 

on one surface, and representative test images with DIC analysis are shown in Figure 11. 



 

 
34 

 

Figure 10. Short Beam Shear Test Hardware Setup 

 

 

Figure 11. Optical Full-Field Surface Measurements of 3-Point Bend Test  

with Strain Fields as Measured using DIC 
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2.1.2  Specimen Preparation and Selection for 3-Point Bend Test 

The 3-Point Bend specimens are small and have very simple geometries. This is part of 

why these are some of the more affordable specimens to make. However, they do require a thick 

laminate, as the desired square cross-section has a width and height of .25in. While specimens of 

1/6in. are adequate, the operator will need to compensate with higher resolution cameras or 

higher magnification. The cross-section is as constant as possible, and the length depends on the 

desired test span. SBS specimens only need an aspect ratio (L/h) of 5-7, while long beam 

specimens need much more length. For SBS specimens of .25in. high, this comes out to a span of 

1.2in. The loading nose either has either a 2in. or a 4in. diameter, as the large contact surface 

suppresses mixed compression/ shear cracks at the contact. The supports are .25in. in diameter. 

For a detailed derivation for the optimal span and test parameters, refer to Carpentier [35]. The 

parameters of the loading fixture have negligible effect on the material properties measured but 

does change the strain field locally as to induce the desired failure mode. 

The DIC full-field measurements are by nature 2-dimensional. As such, it is appropriate 

to apply this method to specimens subject to either plane-stress or plane-strain. The Short Beam 

Shear specimens are approximately plane-stress, such that the strain varies little throughout the 

width of the specimen. To achieve full 3-D material characterization, multiple material planes 

must be tested. The specimens to be tested are cut and loaded in the desired material plane. The 

plane notations are such that the first number is the longitudinal axis, and the second number the 

vertical axis. The numbers represent the principal material directions as defined in Figure 12, 

with the 1-direction defined in the direction of the fibers and the 3-direction being out-of-plane. 

In this case, specimen cut as configuration A can be loaded both in the 1-2 and 1-3 plane. 
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Specimen B can be loaded in the 2-3 and 2-1 direction, while C can be loaded in the 3-1 and 3-2 

planes. Specimens tested in configuration C require very thick laminates, and will generally have 

a smaller span, width and height to compensate [93].  

3-Point Bend specimens are subject to axial stress due to bending and shear stress, 

inducing gradients of axial, transverse, and shear strains. These specimens ideally have a linear 

distribution of axial strains, such that this strain component is equal to zero at the neutral axis. 

On the other hand, shear stress is maximum at the neutral axis, creating a region of pure shear. 

Short Beam Shear specimens capitalize on this phenomenon, and due to their short span are more 

likely to fail in shear. Long beams, on the other hand, are more likely to fail under bending 

induced axial stresses before shear strain becomes significant. As such, it is beneficial to test 

both short and long beam specimens. Table 1 summarizes the most popular configurations for 

the 3-Point Bend test and the desired material properties that can be characterized using this test. 

Since transverse stresses are absent halfway between the loading nose and the supports, 

axial strains are merely a function of the applied bending stress. Any transverse strains that are 

present are assumed to be a result of the Poisson’s Ratio effect under the chosen material model. 

Altogether, each specimen can provide a measure of the axial modulus, the Poisson’s Ratio, and 

shear modulus in one test. 

One can note that if SBS coupons are tested in the 1-2, 1-3, 2-3, and 3-2 planes, the full 

3-D constitutive stress-strain model is characterized. Unfortunately, not every failure mode may 

be achieved. The short beams tested with the fibers aligned with the longitudinal axis benefit 

from the high axial strength, allowing the specimens to fail under pure shear and allows for the 

full nonlinear shear stress-strain curve to be determined. On the other hand, specimens tested in 
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the 2-3 and 3-2 plane exhibit a much smaller tensile strength and will generally fail under tension 

before shear strains become significant, such that the nonlinear shear behavior cannot be 

determined in this plane.  

 

 

 

Figure 12. Tested Material Plane of the 3-Point Bend Test depends  

on how the Coupon is cut from a Cured Plate [35] 

2.2  First-Order Analysis of 3-Point Bend Specimens 

The following analysis provides a first-order estimate of the stress-state in 3-Point Bend 

specimens based on beam theory equations (section 2.1.1), and the more general solution offered 

by Whitney and Browning [94] (section 2.2.2).  
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Table 1. Testing and Processing the 3-Point Bend Specimens in Different Principal Material 

Planes and Span Lengths Determines Measured Properties 

 Material Plane Measured Property 

A 

 

Axial Tensile Modulus E11T, E11C, E11average 

Poisson’s Ratio ν12 

Shear Stress-Strain Properties G12, K12, n12 

Desired Failure Mode: Pure Shear S12 

A 

 

Axial Tensile Modulus E11T, E11C, E11average 

Poisson’s Ratio ν13 

Shear Stress-Strain Properties G13, K13, n13 

Desired Failure Mode: Pure Shear S13 

B 

 

Axial Tensile Modulus E22T, E22C, E22average 

Poisson’s Ratio ν23 

Shear Modulus G12 

Desired Failure Mode: Matrix Tension S22T 

C 

 

Axial Tensile Modulus E33T, E33C, E33average 

Poisson’s Ratio ν32 

Shear Modulus G23 

Desired Failure Mode: Interlaminar Tension S33T 

A 

 

Axial Tensile Modulus E11T, E11C, E11average 

Poisson’s Ratio ν12 

Shear Modulus G12 

Desired Failure Mode: Fiber Compression S11C 

A 

 

Axial Tensile Modulus E11T, E11C, E11average 

Poisson’s Ratio ν13 

Shear Modulus G13 

Desired Failure Mode: Fiber Compression S11C 
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2.2.1  Analytical Solution using Beam Theory Equations 

With the full-field strain measurements, it is possible to make a first estimate of the 

material properties in the 3-Point Bend specimen. For the purposes of this analysis, the beam 

theory equations do not apply to the regions near the contact surfaces, as they are subject to 

transverse stresses. Halfway between the loading nose and the support locations, the strain 

distribution is parabolic, without being influenced by the contact surfaces. This parabolic shear 

strain and linear axial strain distribution is characteristic for stresses in beams. Figure 13 

schematically shows the SBS specimen and defines several key variables as well as the shear 

force and bending moment diagrams. It also shows that the strain distribution conforms to beam 

theory only away from the contact surfaces. From this 2-mm wide vertical section, the axial and 

shear strains are averaged and extracted for analysis. 

As the test is being performed (quasi-static, displacement control, 0.05in./min), the DIC 

system will capture the surface deformations at regular intervals. Each frame provides sufficient 

information to characterize axial moduli and the Poisson’s Ratio. As the signal-to-noise ratio 

improves at larger strains, the confidence in the result improves at larger load levels. Since the 

Poisson’s Ratio and axial moduli are linear constants, only one frame is required. The shear 

modulus does require knowing stresses and strains at multiple load levels, as this is a nonlinear 

property. 
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Figure 13. Static Analysis of the 3-Point Bend Test,  

with Coordinate Notation and Axial Strain Distribution 

The shear force diagram in Figure 13 is simplified in a way that all contacts are assumed 

to be point loads. Regardless, the shear force in the left and right sections are given in the 

following equations. 

𝑅𝐴 = 𝑃
𝐿𝑅
𝐿
   ,    𝑅𝐵 = 𝑃

𝐿𝐿
𝐿

( 2-3 ) 
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𝑀𝑚𝑎𝑥 = 𝑃
𝐿𝑅𝐿𝐿
𝐿

𝑀𝐿 = 𝑀𝑅 = 𝑅𝐵𝛥𝑥 = 𝑃
𝐿𝑅𝐿𝐿
𝐿

𝛥𝑥

𝐿𝑅
( 2-4 ) 

Where the operator decides on the appropriate value of Δx/LR to be away from the points of 

contact. This may be closer to the loading nose for large beams. A similar analysis is performed 

on the left side of the specimen. The following equation shows the linear approximation of the 

axial strains.  

𝜖𝑥𝑥 = −𝜅𝑦 − 𝑏    ,   −
ℎ

2
≤ 𝑦 ≤

ℎ

2
( 2-5 ) 

Note that from this equation, the neutral axis lies at y = -b/κ. The neutral axis does not coincide 

with the mid-plane, due to a significant difference between tensile and compressive axial moduli. 

Solving for the equilibrium equations, the axial moduli are determined to be [15]: 

𝐸𝑇,𝐶 =
𝑀

𝜅𝐼(1 ∓ 𝑎)2
    ,   𝑎 =

2𝑏

ℎ𝜅
  , 𝐼 =

𝑤ℎ3

12
( 2-6 ) 

Where I represents the second moment of area, and κ and b are the slope and intercept 

from the linear fit of the axial strain through the cross-section. As the value of the intercept b 

goes to zero, the difference between Et and Ec becomes smaller and the solution goes to E = 

M/(κI).  

The shear strains are maximum at the neutral axis, as the axial strains are zero. In this 

region of pure shear, the beam theory equation is used to estimate the shear stress.  

𝜏𝑥𝑦 =
3𝑉

2𝑤ℎ
    𝑤ℎ𝑒𝑟𝑒   𝑉 = {

𝐿𝑅
𝐿
𝑃,   𝑖𝑓 𝑙𝑒𝑓𝑡

   
𝐿𝐿
𝐿
𝑃,   𝑖𝑓 𝑟𝑖𝑔ℎ𝑡

( 2-7 ) 
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With known strain-stress pairs, the nonlinear parameters for Gxy, Kxy, nxy are found using 

nonlinear least-squares curve fitting using the curve-fitting toolbox in Matlab. The robust bi-

square option is enabled during the curve-fitting.  

The Poisson’s Ratio can be found by plotting transverse strains against axial strains in the 

cross-section. As transverse stress goes to zero away from the contact surfaces, the transverse 

strains are purely an effect of the Poisson’s Ratio. In addition, the strength of the specimen is 

determined by its failure mode. If the specimen fails at the cross-section under the loading nose, 

the axial stress is maximum. If the specimen fails under pure shear, the shear stress is equal to 

the shear strength. If the wrong specimen and fixture geometry is used, the specimen may exhibit 

mixed-mode failure near the loading nose. Since this is a complex interaction between nonlinear 

shear and fiber compressive stresses, this topic is considered out of the scope of this thesis. 

𝑆𝑥𝑦 =
3

2

𝑚𝑎𝑥(𝐿𝐿 , 𝐿𝑅)

𝐿

𝑃𝑚𝑎𝑥
𝑤ℎ

    ( 2-8 ) 

𝑆𝑥𝑥 = 𝑃𝑚𝑎𝑥
𝐿𝐿𝐿𝑅
𝐿

 
ℎ

2𝐼
 ( 2-9 ) 

2.2.2  Theoretical Analysis via Hyperbolic Stress Functions 

In 1985, Whitney and Browning solved for the stresses in 3-point and 4-point bend 

specimens by Fourier series, based on classical theory of elasticity. The solution applies to the 

setup shown in Figure 13, including overhang. The applied load is represented as an evenly 

distributed normal pressure over a distance d by  

𝑓𝑖(𝜉) =
𝑃

𝑏𝑑
(𝛽 + ∑ 𝑠𝑖𝑛

𝑝𝑚𝛽

2
𝑐𝑜𝑠 𝑝𝑚𝛿𝑖 𝑐𝑜𝑠 𝑝𝑚 𝜉

∞

𝑚=1

) , (𝑖 = 1,2) ( 2-10 ) 
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Where ξ, β, δ1, δ2 refer to specimen and fixture geometry, and pm = 2 m π. In this 

application, the solution is sought in the following form of normalized stress distributions: 

𝜎𝜉 = 𝑅(𝐴0 + 𝛽0𝜂 + ∑ 𝜇𝑚
2 ∑𝜆𝑖

2𝑔𝑚𝑖

2

𝑖=1

𝑐𝑜𝑠 𝑝𝑚 𝜉

∞

𝑚=1

) ( 2-11 ) 

𝜎𝜂 = −
1

𝑆
(2 + ∑ 𝑝𝑚

2 ∑𝜆𝑖
2𝑔𝑚𝑖

2

𝑖=1

𝑐𝑜𝑠 𝑝𝑚 𝜉

∞

𝑚=1

) ( 2-12 ) 

𝜏𝜉𝜂 =
1

𝑅
∑ 𝑝𝑚

2 ∑𝜆𝑖

2

𝑖=1

(𝐴𝑚𝑖
𝑠𝑖𝑛ℎ 𝜆𝑖𝜇𝑚𝜂

𝑠𝑖𝑛ℎ 𝜆𝑖𝜇𝑚
  + 𝐵𝑚𝑖

𝑐𝑜𝑠ℎ 𝜆𝑖𝜇𝑚𝜂

𝑠𝑖𝑛ℎ 𝜆𝑖𝜇𝑚
)

∞

𝑚=1

 ( 2-13 ) 

For the solution to this set of equations to the imposed boundary equations, refer to [39]. 

The hyperbolic functions are assumed to fit the partial derivative model and depends on the 

material parameters 𝜆𝑖, which are by their definition elastic. Figure 14 shows the shear stress 

field as determined in this solution.  

 

 

Figure 14. Solution of SBS Shear Stresses by Whitney’s Analytical Solution. 

 

The solution is able to capture interesting phenomena that otherwise only an FEA model 

could pick up. The shear “moustache” shape is evident, showing stress concentrations at the 
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contact surfaces. Unfortunately, the loading scenario is too simplistic, and the material model is 

homogeneous and linear. As such, it is of limited practical use for the SBS analysis. It does show 

that there is a pronounced effect of the loading nose on key analysis parameters. Due to the 

proximity of the loading nose, the SBS specimens have a slightly lower maximum shear stress. 

Furthermore, the neutral axis shifts due to very small residual transverse stresses. As such, any 

SBS specimen will have an artificially large measured difference between tensile and 

compressive modulus. This effect is shown in Figure 15. 

 

 

Figure 15. The Whitney and Browning Analytical Model Shows Deviations from Beam Theory 

at Low Aspect Ratios 

Of key interest here is that common SBS specimens are tested in the range of 4<L/h<5. 

The operator may expect some error when using the analytical solution in the G-, ET,C – moduli. 

This model shows that instead of finding ET,C, the operator should define Eaverage instead. 

Therefore, there is value in testing long-beam specimens, to which beam equations are more 

accurate and applicable.  
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2.3  Multi-parameter Finite Element Method Updating 

As per the previous discussion, the closed-form solutions are not adequate for the 

nonlinear stress-strain analysis applied to the SBS test. As the test is performed, the load and 

strain fields are measured, with which the certainty depends on the quality of the sensors and the 

procedure. The desired outcome is a stress-strain relationship, so given the geometry and applied 

loading, a mathematical model is created to calculate the stress. Since the stress field is 

heterogeneous, the solution is material dependent, which necessitates the solving of an inverse 

problem. The reference case shall be the FEMU method, as described in references [38,41]. This 

section briefly describes the method.  

2.3.1  Finite Element Model 

The FEA model’s purpose as described in this chapter is to calculate accurately the 

stresses at the front surface. These stresses are to be used directly to provide stress-strain 

relationships, from which the axial, and shear moduli may be derived. The model is parametric 

and specimen-specific with respect to loading, geometry. A representative model is shown in 

Figure 16. The loading nose and supports are modelled by analytical rigid surfaces, while the 

SBS specimen is a solid rectangular extrusion with a homogeneous section. This may only be 

true for unidirectional coupons, as is the case in this methodology. The orientation of the 

material corresponds to the material plane as tested.  

The structure is meshed with C3D8I elements, which perform well in bending-dominated 

structures, as they remove shear locking and reduce volumetric locking. The mesh is refined 

along the top/bottom surfaces and under the contact areas, as these are the locations where stress 

gradients are highest. One symmetry plane is applied in the x-y plane, without detriment to the 
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result. The supports have the encastre boundary conditions, while the loading nose is only free to 

move in the y-direction. The surface-to-surface contact definition is applied to contact regions, 

with penalty tangential behavior of 0.2 and maximum elastic slip of 0.005 and standard 

geometric properties. Small amount of contact stabilization was required to obtain a solution, but 

care is taken that the energy dissipation is not significant.  

 

 

Figure 16. Typical FEA Model for SBS Finite Element Updating Scheme 

2.3.2  Finite Element Model Updating Scheme 

The objective of this FEMU scheme is to have an agreement between strains as measured 

in the DIC and as calculated in the FEA model. The chosen parameters for the model are the 

shear Gxy, Kxy, nxy parameters, the axial ET,C moduli, and the Poisson’s Ratio. After calculating 
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initial values as per the section 2.2.1, the model is run. The model hits specific load levels that 

correspond to those in the test. The stresses and strains are extracted along the left and right 

cross-sections as shown in Figure 16 and used to define new material properties for the next 

iteration. 

The following numerical quantities are replaced by FEA: The slopes for 
𝑑 𝑦𝑦

𝑑 𝑥𝑥
 is compared 

to the measured and used to adjust the Poisson’s Ratio νxy; The slope of the axial stress 
𝑑𝜎𝑥𝑥

𝑑𝑦
 

replaces the calculated bending moment over second moment of area M/I. Edges nodes are 

excluded from regression analysis, to compensate for a lack of data in the DIC strain fields at the 

top/bottom surfaces; A linear regression of the FEA axial strains provides the location of the 

neutral axis, which may not agree with measurements. If Exx.T/Exx,C ratio is too high, the neutral 

axis in the simulation is too far down. The bimodularity ratio is refined until the neutral axis 

matches the measurement; One node at the mid-plane represents the maximum (pure) shear 

stress. The shear stress at this location at each frame replaces the first-order estimate of 
3𝑃

4𝐴
. Then, 

the Gxy, Kxy, nxy parameters are found by least-squares regression analysis.  

Figure 17 shows the logic flowchart of the FEMU program. From the DIC measurements, 

the user needs to input the geometry, loading data, and measured strain- Y-coordinates pairs at 

the required cross-section. In the blue block, the stresses are replaced by the new iteration of 

FEA stresses. From there, the material properties are updated. If the convergence criterium is 

met, the program ends. That criterium is satisfied if the material properties do not change 

significantly between iterations: 
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Figure 17. Logic Flow for the FEM Updating Scheme 

(
𝐺𝑥𝑦

𝐺𝑥𝑦0
− 1)

2

+ (
𝐾𝑥𝑦

𝐾𝑥𝑦0
− 1)

2

+ (
𝑛𝑥𝑦

𝑛𝑥𝑦0
− 1)

2

+ (
𝜈𝑥𝑦

𝜈𝑥𝑦0
− 1)

2

+(
𝐸𝑥𝑥𝑇
𝐸𝑥𝑥𝑇0

− 1)
2

+ (
𝐸𝑥𝑥𝐶
𝐸𝑥𝑥𝐶0

− 1)
2

< 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ( 2-14 )

 

Where the subscript 0 refers to reference values. These reference values are arbitrary at 

the first iteration and later represent the previous loop. Important to note is that the FEA model 

calculates both sides at the same time. Therefore, the material input properties in the FEA model 

are defined as the average of the two solutions. 

This updating scheme was verified using a batch of four IM7/8552 carbon epoxy 

specimens tested in the 1-3 plane. These specimens are common in the aerospace industry and 

have been extensively characterized [29]. Using the beam theory equations, the material 

parameters calculated do not agree with the reference. The specimens had a width of .25in. and a 

height of .25in. These were tested at a span of 1.2in., loading nose diameter 4in., and roller 
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support diameter .25in. The disagreement in outcome is due to the low aspect ratio of these 

specimens. The four specimens equate to 8 data sets. All other test settings were as 

recommended in section 2.1. For the FEMU scheme, the threshold value is set to 1%. 

 

 

Figure 18. Virtual gage areas simulated by DIC in the  

ASTM D5379 V-notched specimen. 

 

Figure 19. Comparison of Material Properties as Calculated using Beam Theory (Initial), after 

FEMU (Converged), and Reference 
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Table 2. Convergence of Material Properties of IM7-8552 Batch, Compared to Reference 

Iteration E11,T E11,C ν13 G13 K13 n13 

A1:1 

5 

2.64 E+07 

2.36 E+07 

2.11 E+07 

2.13 E+07 

0.347 

0.423 

7.74 E+05 

7.36 E+05 

2.94 E+04 

2.61 E+04 

.199 

.174 

A2:1 

4 

2.62 E+07 

2.35 E+07 

2.18 E+07 

2.17 E+07 

0.334 

0.424 

7.74 E+05 

7.36 E+05 

2.80 E+04 

2.47 E+04 

.191 

.165 

A3:1 

4 

2.64 E+07 

2.35 E+07 

2.26 E+07 

2.23 E+07 

0.290 

0.387 

7.99 E+05 

7.58 E+05 

3.00 E+04 

2.71 E+04 

.205 

.184 

A4:1 

4 

2.64 E+07 

2.36 E+07 

2.09 E+07 

2.12 E+07 

0.309 

0.462 

7.85 E+05 

7.42 E+05 

3.22 E+04 

3.07 E+04 

.220 

.208 

AVG 4 2.36 E+07 2.16 E+07 0.424 7.43 E+05 2.71 E+04 .183 

Hexcel 

COV [%] 

2.26 E+07 

[1.7 

2.07 E+07 

6.4 

0.333* 6.8 E+05** 

3.7 

  

* Average of Poisson’s Ratio from tensile and compression test 

** G12 cited as reference, tested with ±45deg off-axis tensile test 

 

 

Figure 19 and Table 2 show the performance of this FEMU tool. The initial estimate 

comes from the beam equations. The converged solution is after FEMU. The shear nonlinear 

properties are compared to reference data from the Iosipescu shear test (Figure 18 [36]). While 

the Iosipescu specimens are more expensive to run, they are well known for giving accurate 

shear stress-strain properties. These results show that the SBS specimens can reach the same 

quality result via advanced analysis tools. The axial properties are compared to reference values 

by Hexcel and demonstrate a better match, mainly be reducing the ratio between the tensile and 

compressive modulus. The results for the Poisson’s Ratio were less impressive, due to the low 
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strain levels being noisier data. There is also an outsized influence of proximity to the loading 

nose. 

In conclusion, the FEMU method serves as the reference case of the material parameters 

moving forward. This iterative method substitutes stresses from the closed-form solution with 

those found in the FEA, creating a more accurate solution. It reduces the shear stresses, which 

are otherwise too high. The method also corrects for the aspect ratio effect on the neutral axis. 

There is on the other hand less benefit to apply this model to long beams and the results did also 

not compare favorably for the Poisson’s Ratio.  

FEA is a powerful tool to analyze virtually any geometry and loading and FEMU can 

incorporate large amount of overdetermined data. Even though most sources in this study use the 

FEMU method to solve the inverse problem of parameter identification, the solution is usually 

approximately solved due to experimental, discretization and modeling errors [51]. The FEMU 

model shown uses a small subset of the total measured strain field. A different FEMU iteration 

scheme was developed by Cline and Seon [40], which uses strain matching between FEA and 

DIC. The material parameters are changed by use of a Jacobian matrix. These FEMU models can 

only characterize the material model specified and there is still need for a nonupdating tool for 

material characterization which allows for any arbitrary material model.  
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2.4  Direct Optimization Method 

2.4.1  Observations and the Applicability of Assumption 

The equations as described in section 2.2.1 are based on the observation that axial strains 

are linear through the cross-section. This is certainly true for long beam specimens, but not 

necessarily true for the SBS specimens. Consider Figure 20, which shows a part of a parametric 

study on the influence of the aspect ratio and tensile/compressive moduli ratio in the test 

specimen. Note that the SBS specimens (with aspect ratio L/h = 4.8 has nonlinear stress 

distribution. Worse, for specimens with no difference in tensile/compressive modulus, the model 

does show the intercept is nonzero. This neutral axis does shift when bi-modularity becomes 

more significant. 

Of note is the high sensitivity of the axial properties to the position of the neutral axis. A 

small deviation due to measurement uncertainty has a disproportional influence on the result 

(Figure 15). Furthermore, an attempt was made to create a bi-linear fit to separate tensile and 

compressive modulus [38]. This method did not mathematically make a difference, as the 

underlying assumption of plane stress dictates the solution. Therefore, the combination of low 

aspect ratio, very large shear stresses, and proximity of the loading nose leads to a combination 

where the assumption of planar stresses is not valid. 
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Figure 20. Effect of Aspect Ratio and Tensile/Compressive Modulus Ratio on Axial Strain 

Distribution 

By extension, the derivation of the shear stress distribution cannot be accurate either. The 

notion that shear stresses are parabolic through the cross-section depends on the axial stresses to 

be linear. By observation and simulation, shear strains are roughly parabolic through the cross-

section. However, this would not be possible in the combination of parabolic shear stress 

distribution and highly nonlinear stress-strain relationship. This counterargument is supported by 

Figure 21. Other assumptions (plane stress state, small displacements) have been verified using 

FEA. 

 

 

Figure 21. Parabolic Stress Distribution is Incompatible with Measurements 
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2.4.2  Optimization Model 

Closed-form solutions are often based on invalid assumptions. Most often, analysts 

assume linear elastic behavior and transverse isotropy for composite plies. Only rarely are 

heterogeneous stress states entirely material independent. When it comes to identifying material 

parameters, attempting to solve these equations using iterative methods is a logical step. 

However, these iterative methods will be expensive to perform; the operator or experimentalist 

will have to use dedicated software (FEA) on powerful computers and have a lot of available 

time and expertise to get the correct answer. Instead, consider the following set of equilibrium 

equations (assuming body forces are negligible). 

𝑡𝑖 = 𝜎𝑖𝑗𝑛𝑗           𝑜𝑛 𝑆𝑓
𝜎𝑖𝑗,𝑗 = 0               𝑖𝑛 𝛺

𝜎𝑖𝑗 = 𝜎𝑗𝑖              𝑖𝑛 𝛺
( 2-15 ) 

where ti is the applied traction on the surface Sf. σij are the stress combination in the 

domain Ω of the specimen and has to satisfy the balance of forces and moments. Consider the 

kinematic compatibility equations: 

휀𝑖𝑗 =
1

2
(
𝛿𝑢𝑖
𝛿𝑥𝑗

+
𝛿𝑢𝑗
𝛿𝑥𝑖

)           𝑖𝑛 Ω

𝑢 = �̅�                                𝑜𝑛 𝑆𝑢

( 2-16 ) 

where u is the displacement vector, and �̅� is the applied displacement on surface Su. The 

constitutive equation is given as 

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙(𝜎𝑖𝑗)휀𝑘𝑙         𝑖𝑛 𝛺 ( 2-17 ) 

with Cijkl being the Hooke tensor. To note its nonlinear behavior, it is noted as being a 

function of applied stress. The general idea is that with DIC, the surface displacement field �̅� is 
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calculated from tracking of the speckling pattern during deformation of the surface. Using the 

previous equations, the Cauchy infinitesimal strain tensor is calculated. For the remainder of this 

proposal, “strain” shall be defined as engineering strain, so the shear strain is multiplied by a 

factor of 2.  

On the other hand, the applied traction will be considered as a known quantity, resulting 

in a traction load, which manifests itself within the body as applied stress. Using the force 

equilibrium equation, a set of integrals is defined with which the integral of stress is set equal to 

the applied loading case. The specifics of this integral depend on the loading case, as it can 

manifest itself in a body as a normal force Nαβ, a shear force Vα, or a bending moment Mαβ in any 

direction.  

The first method to solve for Cijkl(σij) is using optimization algorithms. To solve this set 

of equations, start with displacement field measurements across multiple load/deformation 

levels. Note for each frame the applied loads. Next, define the engineering strains on the surface. 

Then, define stress as a function of strains as: 

𝜎𝑖𝑗 = 𝑓(휀𝑘𝑙) ( 2-18 ) 

Stress is purposely left as an arbitrary function of strain. The analyst may choose any 

preset model that works or create a tabular form of stress-strain and use spline tools to make the 

conversion. The variables in eq. 3-4 to identify are called [X]. Curve fitting is always possible 

after optimization. The temporary stress field is computed using an initial guess for the material 

parameters.  

The next step is to apply the applicable integration across any cross-sectional or surface 

stresses that physically must equal the applied load. These integrals are to be derived from the 
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force balance equation 3.1. For every stress field m, you can then have integrated normal force 

(𝑁αβ)𝑠𝑢𝑚
, shear force (𝑉α)𝑠𝑢𝑚, and bending moment (𝑀αβ)𝑠𝑢𝑚

. The subscript “sum” denotes 

that for numeric data, the integration usually is a summing operation.  

The objective is then to create a cost function f([θ]) to evaluate the difference between the 

applied Nαβ, Vα, and Mαβ and the integrated values for each selected load level. Constraint 

functions (𝐴, 𝐴𝑒𝑞, 𝑏, 𝑏𝑒𝑞, 𝑐([θ]), 𝑐𝑒𝑞([θ])) and limits (lb, ub) can also be set up to guide the 

solution. The analyst is free to select a programming solver to minimize f([θ]) while satisfying 

the constraints imposed. One example of such is the function “fmincon” by Matlab that finds the 

minimum of a problem specified by 

𝑚𝑖𝑛
𝑋
𝑓([𝜃])  𝑠𝑢𝑐ℎ  𝑡ℎ𝑎𝑡 

{
 
 

 
 

𝑐([𝜃]) ≤ 0
𝑐𝑒𝑞([𝜃]) = 0
𝐴 . [𝜃] ≤ 𝑏

𝐴𝑒𝑞 . [𝜃] = 𝑏𝑒𝑞
𝑙𝑏 ≤ [𝜃] ≤ 𝑢𝑏

( 2-19 ) 

A simpler method exists for linear stress-strain relationships, where optimization is 

possible, but more than sufficient. A linear property such as matrix tensile modulus and fiber 

tensile, compression modulus, only require one load-frame to get a solution. Equation 3-4 

simplifies to become 

𝜎𝑖𝑗 = 𝐸(휀𝑖𝑗) ( 2-20 ) 

which simplifies the process considerably. The integral equation derived from eq. 3-1 can 

then be rewritten to integrate measured strain values directly. The integral equation can then be 

used to solve for E using algebraic operations. Good practice is to apply this calculation to each 

load-frame, to see if the solution does not vary with applied load level.  
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2.4.3  Implementation in SBS Test 

While the methodology works for different test methods, it must be tailored to the 

specific test and the measurements. The only thing measured during the SBS test is the applied 

load and the surface strains. From there, we get two very distinct objectives: to match the applied 

shear force and applied bending moment. 

The material model chosen in this application is tabular. The conversion of measured 

strain to virtual stresses is done via cubic spline, consisting of stress-strain pairs. The strain data 

points area chosen at 2000με intervals, such that the corresponding stress data points are the 

variables [θ] to be optimized. The number of data points must be large enough to capture the 

nonlinear behavior accurately. On the other hand, small intervals between data points leads to 

erratic behavior. Noise in the data leads to data points not being exactly on the material curve. As 

the spline must go through each data point, and still be piecewise continuous, it will appear to 

oscillate and deviate widely from the general trend.  

 

 

Figure 22. Graphical Representation of Integrating Shear Stresses through Cross-Section 
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The next step is to convert measured strains to virtual stresses. Physically, the integration 

of shear stress over the specimen cross-section must equal the applied shear force. Figure 22 

shows the distribution of shear stresses through a cross-section and the integration scheme. Note 

that DIC data is incomplete at the edges, so extrapolation is necessary and shown as well. 

Numerical integration using trapezoidal steps is performed to calculate a virtual shear force Vsum. 

Assuming no stress variation through the width and small deflections, the following optimization 

scheme is set up. It is important to emphasize that the material model applies to all strain data 

points in all the frames. 

 

𝜏𝑖 = 𝑓(𝛾𝑖) ( 2-21 ) 

𝑉𝑠𝑢𝑚 = 𝑤∫ 𝜏𝑑𝑌

ℎ
2

−
ℎ
2

=∑[𝜏𝑖−1 +
1

2
(𝜏𝑖 − 𝜏𝑖−1)] (𝑌𝑖 − 𝑌𝑖−1)

𝑖=2

( 2-22 ) 

min
𝑋
∑(𝑉𝑠𝑢𝑚𝑖 − 𝑉𝑖)

2
( 2-23 ) 

 

Where 𝜏𝑖  and 𝛾𝑖 represent shear stress and strain, respectively. The index represents each 

point as measured through the cross-section. The virtual shear force is calculated for each load 

frame and compared to 𝑉𝑖, the applied shear force. The initial error using the closed-form 

solution represents a mismatch between applied shear force and what would be the internal 

stress-state with the calculated material model. After optimization, this error is greatly reduced to 

noise-level. 
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Figure 23. Trends Captured using Shear Stress-Strain Optimization in SBS Specimens 

The implications of the optimization scheme lead to a new set of trends that corresponds 

well to what is observed from the FEMU analysis (as shown in Figure 23). The stress 

distribution across the cross-section flattens out to become less parabolic and the maximum 

stress does not correspond linearly with maximum load anymore. Most importantly, the shear 

stress-strain curve is adjusted. All the while, nothing changes in the relationship of load vs 

maximum strain, as these are the measured properties. 

The analysis as performed for the axial modulus is similar. The axial strain distribution 

through the cross-section is transformed to the axial stress distribution via a spline material 

model via the following equation. Note this is not necessarily linear. 

𝜎 = 𝑓(𝜖) ( 2-24 ) 
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Note this equation is a very simplified 1-D version of Hooke’s law. In this case, the σzz 

and σyy are both equal to zero, which simplifies the equation. For this application, the integral of 

the σzz*Y must equal the bending stresses. According to the equilibrium equations, the integral of 

σzz must also equal net axial force. Unfortunately, noise in the system makes optimization for 

both targets hard to achieve. Because the bending moment is defined at multiple load steps, the 

problem is over-defined and of acceptable accuracy. 

 Figure 24 shows an example of axial strains through the cross-section. Normalized axial 

strain data come from a 1mm wide band, instead of 2mm to reduce noise. About 300-400 data 

points are usually present. Extrapolation of the DIC data is necessary to fill in the strain at the 

free edges. Regression of last (or first) k many data points gives a line equation used to predict 

εxx at ±h/2. Since these strains are nonzero, this part of the solution is significant. The data points 

represent a piecewise linear line as shown. The line equation for stress is given as follows and 

used to derive the integral (numerical summation) and objective function for the optimization 

algorithm.  

𝜎 = 𝑚𝑌 + 𝑏 =
𝜎𝑖 − 𝜎𝑖−1
𝑌𝑖 − 𝑌𝑖−1

𝑌 +
𝜎𝑖−1𝑌𝑖 − 𝜎𝑖𝑌𝑖−1
𝑌𝑖 − 𝑌𝑖−1

( 2-25 ) 

𝑀𝑠𝑢𝑚 = 𝑤∫ 𝜎𝑌𝑑𝑌

ℎ
2

−
ℎ
2

=∑[
1

3

𝜎𝑖 − 𝜎𝑖−1
𝑌𝑖 − 𝑌𝑖−1

(𝑌𝑖
3 − 𝑌𝑖−1

3 ) +
1

2

𝜎𝑖−1𝑌𝑖 − 𝜎𝑖𝑌𝑖−1
𝑌𝑖 − 𝑌𝑖−1

(𝑌𝑖
2 − 𝑌𝑖−1

2 )]

𝑖=2

( 2-26 )

 

𝑚𝑖𝑛
𝑥
∑(𝑀𝑠𝑢𝑚𝑖

−𝑀𝑖)
2

( 2-27 ) 
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Figure 24. Axial Strain and Stress Distribution with Extrapolation 

 

2.4.4  FEA Verifications and Sensitivity Analyses 

Usefulness, accuracy, and reliability of this method was established by means of virtual 

test, comparison of test analysis, and sensitivity study to analysis parameters. The virtual test 

uses the FEA model as illustrated in section 2.3.1. The model was first run using typical values 

for a fiber reinforced epoxy composites (G = 757ksi, K = 45.2ksi, n = 0.292). After running the 

specimen, the surface strains at the cross-section of interest are exported for analysis and 

represented the measurement data. Results of the first-order analysis and the optimization 

analysis are shown in Figure 25. The initial estimate for shear stress is not accurate, and widely 

overstates the nonlinear stress-strain curve. However, the input stress-strain relationship is 

recovered accurately after the optimization analysis. The G-K-n Ramberg-Osgood parameters 

vary (Table 3), which is a weakness of the Ramberg-Osgood equation: One curve can be 

characterized by different G-K-n combinations. 
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Table 3. Results of the Virtual Test: Tabular Data for Gxy, Kxy, and nxy. 

 Input  3P/4A  Optimized 

Gxy 757000  783321  725736 
Kxy 45200  49999.99  44478 
nxy 0.292  0.275798  0.288 

 

 

Figure 25. Results of the Virtual Test. The Nonlinear Material Model is Recovered using 

Optimization Analysis 

After verification of the optimization model, this has been applied to a batch of 5 

IM7/8552 specimens tested in the 1-2 and 1-3 plane. Testing parameters have been kept identical 

to that tested for the data in section 2.3. Results of the optimization analysis are shown in Figure 

26 and a comparison of the three methods (first-order, FEMU, optimized) in Figure 27.  

Figure 26 shows that the amount of scatter is not necessarily increased, but results depend 

on the amount of noise in the full-field strain measurement data. The optimized axial stress-strain 

plot is a continuous curve from εmin to εmax, going from negative to positive. A typical result is 

shown for one specimen. Notably, the result agrees well with a linear slope, as fibers have very 

linear stress-strain response. The slope of this line usually agrees also very well with the average 
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modulus as defined by the closed-form solution. As such, it confirms that the SBS is best used 

for average tensile modulus, rather than a separate tensile/compressive modulus.  

Figure 27 shows an excellent agreement of the optimization and FEMU model up to 2.5-

3%. As such, the nonupdating method is a vast improvement over the first-order approximation. 

The disagreement may be a result of the flexibility of the spline-based tool to adjust to highly 

nonlinear behavior. On the other hand, the optimization model uses more DIC data to obtain its 

result, and thus may be more influenced by noise-related factors in the data. 

Among the factors studied in the sensitivity analysis, the following three factors were 

deemed significant: extrapolation of DIC strain measurements to correct for missing data, subset 

size of DIC analysis and choice of cross-section for optimization analysis. 

Extrapolation of DIC data is necessary to account for missing data in the strain field. At 

the edges, significant axial strains are present, but not measured. These form a significant part of 

the integral. Consider the extrapolation points as shown in Figure 24. It is plausible this method 

could be only 5% accurate, so the effect of this accuracy is shown in Table 4. If the edge strains 

are really 5% higher than as analyzed, the measured modulus is overestimated by 1%. If the edge 

strains are 5% lower, the modulus is underestimated by 1%. As such, the sensitivity to this 

analysis choice is low. 
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Figure 26. Results of the Optimization Analysis IM7/8552 SBS Specimens (1-3 Plane) 

 

 

Figure 27. IM7/8552 SBS Analysis. FEMU agrees well with Optimization Analysis 



 

 
65 

Table 4: Sensitivity Study of Extrapolated Axial Strain Nodes 

  Edge Nodes * 1.05  Edge nodes * 0.95 

  ExxT ExxC ExxAVG  ExxT ExxC ExxAVG 

Left  -1.0% -0.9% -0.9%  1.1% 0.9% 1.0% 

Right  -1.0% -0.8% -0.9%  1.0% 0.9% 0.9% 

AVG  -1.0% -0.8% -0.9%  1.0% 0.8% 0.9% 

 

The second analysis choice is the subset size in DIC. The subset size influences the strain 

gradients that may be captured. A finer subset size allows for more spatial resolution and 

capturing large strain gradients. On the other hand, the speckle pattern and camera resolution 

must be able to support the chosen subset size. For a more accurate discussion, refer to [92]. 

Figure 28 shows two choices for a subset size in the SBS analysis. The left image has 10 subsets 

through the thickness, 45pixels. The latter has 13, and only 35 pixels per subset. The respective 

difference is quantified in Table 5. 

 

      

Figure 28. Sensitivity Analysis: Two Choices for Subset Size 
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Table 5. Sensitivity Analysis: Analysis Difference between Subset Size 

 

G K n ExxT ExxC ExxAVG 

Left -0.6% 0.2% 0.3% 1.5% 1.8% 1.7% 

Right -0.4% 0.3% 0.4% -2.0% -0.5% -1.5% 

AVG -0.5% 0.2% 0.3% -0.5% 0.8% 0.1% 

 

Again, the sensitivity to subset size is not very large, as the measured strain gradients are modest 

compared to the capability of the DIC system. The last variable is the choice of cross-section 

with respect to the loading nose. Consider 
𝛥𝑥

𝐿𝑅
 in Figure 13. Set at 0%, it is at the support 

locations. Here, bending moment and shear force are zero and stresses of the contact are high. 

Set at 100%, bending moment is maximum, shear force is zero, and contact stresses are high. 

50% works well for SBS specimens, but analysis for long beam specimens could be closer to 

80% benefit of higher axial strain measurements. How does the choice of 
𝛥𝑥

𝐿𝑅
 influence SBS 

analysis? For typical specimen dimensions as discussed, the following conclusions are drawn: 

• Shear optimization gives similar results between 10%<
𝛥𝑥

𝐿𝑅
<60% 

• Axial properties calculations are consistent between 30%<
𝛥𝑥

𝐿𝑅
<60% 

• Poisson’s Ratio is affected by stresses near the contacts; use 40%<
𝛥𝑥

𝐿𝑅
<50% 

At 40%, the bending moment is lower, but axial strains have a more linear distribution 

through the cross-section. At 60% the bending moment is higher, but strains are less linear. As 

results at 40% seem more promising, a comparison is shown in Table 6. The results of the 

analysis of IM78552 1-2 Plane analysis agree better with the reference parameters [29], but 
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scatter is higher and results do not necessarily improve. As such, the choice of cross-section is up 

to the user. 

In conclusion, the presented optimization model has great benefits over the FEMU 

model, considering it is a flexible approach, uses more data across many frames, is nonupdating, 

very fast, and has very intuitive guiding equations. It is also much more accurate than the first-

order analysis. The shear properties found in this analysis method are not very sensitive to model 

and analysis parameters, and the axial modulus is easily derived from the results. However, the 

average modulus is not significantly different from that found by closed-form beam equations 

and thus not improved compared to the FEMU. It does, however, use more data from the DIC 

strain field, increases confidence, and does verify whether the stress-strain relationship is linear. 

Note the applicability of the optimization analysis: It applies to homo- and heterogeneous strain 

fields, with well-defined equilibrium equation for the objective functions and for specimens 

subject to plane strain/plane stress state. 

 

Table 6. IM7/8552 SBS Analysis: Comparison of Choice 
𝛥𝑥

𝐿𝑅
 

 
𝑥

𝐿𝐿
= 40%  

𝑥

𝐿𝐿
= 50% 

Property 12-plane 13-plane COV  12-plane 13-plane COV 

ExxT 24.0 Msi 26300000 7.4%  25700000 26000000 4.5% 

ExxC 19.7 Msi 19300000 4.1%  19900000 19300000 3.5% 

Eavg 21.8 Msi 22800000 4.0%  22400000 22200000 1.7% 

νxy 0.32 0.31 13.5%  0.3 0.3 11.9% 
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CHAPTER 3  

CHARACTERIZING NONLINEAR SHEAR LAMINA PROPERTIES 

DIC-based advanced measurement techniques are effective for material characterization 

and can be used to verify simplifying assumptions. One notable assumption is the transverse 

isotropic approximation, which assumes that shear nonlinear behavior in the 1-3 plane is the 

same as that in the 2-3 plane and depends on shear stress-strain curves in the 1-2 and 1-3 plane to 

be very similar to each other. The industry standards are currently not able to adequately measure 

shear nonlinear behavior in the 2-3 plane due to early other failure modes [3]. Some polymeric 

composites may exhibit anisotropic shear response; thus, this assumption should be verified.  

This chapter presents an analysis and comparison of different experimental methods to 

characterize shear stress-strain behavior in all three material planes. DIC data-driven methods 

developed at AMSL are the SBS and Small-Plate Twist (SPT) method. This was work performed 

as part of a project in collaboration with the Boeing Research & Technology group, developing 

novel test and inspection techniques to determine what input properties are needed for 

progressive damage analysis (PDA) methods. This work was an effort to develop verification 

and validation guidelines based on experimental mechanics, inspection fidelity, and method 

formulation. Results for these two methods will be compared to the industry standard ±45 

laminate tensile test to determine accuracy and usefulness of this method. 



 

 
69 

3.1  Small Plate Twist and Verification of Transverse Isotropy Assumption 

3.1.1  Test Method and Analysis 

While the SBS method can characterize nonlinear shear behavior in the 1-2 and 1-3 

plane, it is unable to do so for the 2-3 plane. Due to the absence of fiber reinforcements in the 

axial direction, these specimens fail under axial stress before reaching significant shear strains. 

The same principle applies in the 3-2 plane, in which interlaminar tension is the primary failure 

mode. However, out-of-plane shear properties in the 1-3 and 2-3 plane are necessary to 

accurately predict delamination failure and matrix cracking in PDFA methods. In order to 

measure shear nonlinear behavior in every plane, the SPT test was developed [40,95]. A small, 

rectangular plate is twisted in all four corners, generating shear strain in each material plane 

without prohibitive tensile stresses in the matrix. Using DIC-based strain measurements and 

FEMU methodology, all three shear stress-strain behaviors are characterized at the same time, in 

the same specimen. 

Figure 29 and Figure 30 shows the test setup, including three stereo vision DIC systems. 

Each camera set measures a material plane and is synced with the other cameras. While testing 

IM7/8552 specimens, the strains measured reach about 5% in the 1-2 and 2-3 plane, and 3.5% in 

the 1-3 plane. As there is no closed-form solution for the deformations at the surface of a small 

plate twist specimen, data-driven modeling is a necessity. The iterative FEMU as shown in 

Figure 31 was used to solve for the Ramberg-Osgood shear parameters for the tests performed. 

The method as developed by Seon optimizes material parameters until the error between the 

virtual and measured strain fields is minimized. More details can be found in reference [40]. 
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Figure 29. Small Plate Twist Test Hardware Setup 
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Figure 30. Small Plate Twist Test, showing three Stereo Vision DIC Systems, Fixture, Specimen, 

and Measured Strain Fields in all three Principal Material Planes 

 

 

 

Figure 31. Finite Element Model Updating (FEMU) Iterative Method for Characterizing 

Nonlinear Shear Stress-Strain Parameters [40] 
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3.1.2  Characterization of Lamina Properties 

For this project, the DIC data-driven methods of the SBS and SPT were applied to the 

legacy IM7/8552 carbon-epoxy composite and a nondisclosed material system which will be 

referred to as “material X”. Each material system was subject to the same testing procedure; 

three batches of five 1.75 x .25 x .25in. rectangular SBS coupons to be tested in the 1-2, 1-3, and 

2-3 planes; SPT specimens 2.5 x 2.5 x .25in. and 1.5 x 1.5 x .25in. machined from the same 

panel as the SBS coupons.  

 

Table 7. Comparison Average Lamina Properties IM7/8552; SBS Method with Optimization and 

Standard Test Methods 

Lamina Material Property 
SBS Test Method 

(COV) 
ASTM Standard Test 

(COV) 

Young’s modulus, Eaverage 22.7 Msi (1.7%) 22.0 Msi (2.0%) 

Young’s modulus, E22 1.49 Msi (2.5%) 1.30 Msi (3.4%) 

Poisson’s ratio, ν12 0.294 0.316 

Poisson’s ratio, ν13 0.278  

Poisson’s ratio, ν23 0.511  

Shear Modulus, G12 720 ksi (2.6%) 759 ksi (3.1%)  (*) 

Shear Modulus, G13 674 ksi (4.3%) 734 ksi (4.2%)  (*) 

Shear Modulus, G23 437 ksi (2.2%) 437 ksi (2.2%)  (*) 

Shear secant-intercept modulus, K12 31.3 ksi 48.8 ksi  (*) 

Shear secant-intercept modulus, K13 30.9 ksi 48.7 ksi  (*) 

Shear exponent, n12 0.213 0.266  (*) 

Shear exponent, n13 0.218 0.271  (*) 

1-2 plane ILS strength, S12 15 ksi  21.2 ksi (0.5%) (*,**) 

1-3 plane ILS strength, S13 12.9 ksi (2.1%) 16.6 ksi (4.3%)  (*) 

2-3 plane matrix tensile strength, S22 18.6 ksi (6.1%) 18.6 ksi (6.1%) 

* Standard properties from same SBS specimens, analyzed using closed-form solution 

𝜏𝑚𝑎𝑥 =
3𝑃

4𝐴
. 

** Shear failure occurs at large strains larger than can be fitted with Ramberg-Osgood 

equation.   
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Results of the IM7/8552 test batch are summarized in Table 7, showing good agreement 

between SBS test method and ASTM standard for all linear properties. As a subset, the basic 

lamina material properties in the SBS test can be faithfully generated. This process is repeated 

for material X. Due to lack of reference, these properties are not shown here. Properties as 

defined in the SBS specimens were used as the starting point (initial material parameters) for the 

FEMU iteration scheme. Lacking more knowledge at that time, transverse isotropy was assumed, 

with, K23 and n23 set equal to K13 and n13. 

Figure 32 shows the experimental results for IM7/8552 as tested with SBS, 1.5in. SPT, 

and 2.5in. SPT. Excellent agreement verifies that both test methods are accurately measuring the 

material properties. As shear in the 1-2 and 1-3 plane are very similar, the assumption of 

transverse isotropy is reasonable to make. Note that the smallest SPT specimens achieve agree 

very well with the larger specimens but can achieve higher strain values. While the fixture 

parameters may be a cause in delaying failure in the SPT15 specimens, the smaller aspect ratio 

(span/thickness) is deemed to be more significant, as it is for the SBS specimens.  

SPT specimens fail in a mixed-mode complex stress state, usually assisted by matrix 

tension. As such, no inference can be made on shear strength, but it is at least as large as the 

maximum stress as calculated in FEA. The ILS shear strength for IM7/8552 is estimated at 

13.2ksi.  
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Figure 32. Average Shear Nonlinear Stress-Strain Behavior of IM7/8552 in All 3 Material 

Planes, Tested in Short Beam Shear (SBS), Small Plate Twist 1.5in. Square (SPT15) and 2.5in. 

Square (SPT2.5) 

 

Figure 33. Average Shear Nonlinear Stress-Strain Behavior of Material X in All 3 Material 

Planes, Demonstrating Shear Anisotropy 
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The method is repeated for material X, for which the results are shown in Figure 33. The 

agreement between SBS and SPT is striking and show a distinct difference between material 

behavior in the 1-2 and 1-3 plane. Whereas IM7/8552 specimen shows a rather homogeneous 

microstructure throughout, material X has a clear topography difference in microstructure 

between 1-2 and 1-3 plane (Figure 34). As such, there is a strong anisotropic behavior, 

demonstrating the importance of accurate three-dimensional quantification of material 

parameters to be used in PDFA methods. In this case, such an assumption would have led to a 

25% error in shear modulus and 20% error in ILS strength [7].  

 

 

Figure 34. Top: Microscope Images of IM7/8552 SBS Specimens shows Similar Topology in 1-2 

and 1-3 Principal Material Planes. Bottom: Different Topology suggests Different Shear 

Properties 
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3.2  Tensile Test of ±45 Laminate 

The most common method to characterize the shear modulus of a composite is to perform 

the ASTM D3518 ±45 degree off-axis tensile test. This method is very compatible with other 

tensile tests, as it does not require dedicated fixtures. Ideally, this method for characterizing 

shear stress-strain behavior will agree with the SBS and SPT test. It is, however, not subject to 

pure shear [4]. D3518 specimens are subject to matrix and fiber tensile stress, and therefore 

exhibit the complex failure modes. The purpose of this study is to compare the shear curves 

between the tensile and SBS test to determine until what strain level they agree. 

3.2.1  Virtual Test and Fiber Reorientation Studies 

A virtual test using FEA was conducted to test whether the test procedure is accurate and 

captures all the true stresses and strain in the nonlinear regime. The FEM reproduced the ASTM 

D3518 in-plane shear stress-strain response. The 3D model consists of 1 or 2 elements per ply 

and has a mesh oriented with the fiber direction. Explicit PDFA was used to predict cracks and 

delaminations. Using the nonlinear material model, the FEA output strains are used as if they are 

the full-field strain measurements.  

𝜏12 =
𝑃

2𝐴
 ( 3-1 ) 

𝛾12 = 휀𝑥𝑥 − 휀𝑦𝑦 ( 3-2 ) 

As shown in Figure 35, the virtual test was able to capture the input properties of the FEA 

model. This was done both with input properties of IM7/8552 and for material X. However, a 

slight deviation starts occurring at 3% shear strain. According to literature, cross-sectional area 

reduction is not captured in the ASTM standard equations, and fiber reorientation is not 
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simulated in the FEA model. The fiber reorientation is due to a geometry change: shear strain 

changes the angle of a volume element, and thus the fiber moves as well, as shown in Figure 36. 

The effect of area reduction can be found using: 

𝜏12 =
𝑃

2𝐴(1 + 휀𝑦𝑦)
 ( 3-3 ) 

 

 

Figure 35. Virtual Test: FEA Model and Calculated Stress-Strain Curves Match Input for both 

Material X and IM7/8552 

 



 

 
78 

 

Figure 36. Fiber Reorientation in Off-Axis Tensile Test 

Fiber reorientation is a function of the changing geometry. By trigonometry analysis, the 

new angle is defined as: 

𝑡𝑎𝑛(𝜃𝑒) =
𝑎′

𝑏′
=
𝑎

𝑏

1 + 휀𝑦𝑦

1 + 휀𝑥𝑥
= 𝑡𝑎𝑛 (𝜃)

1 + 휀𝑦𝑦

1 + 휀𝑥𝑥
 ( 3-4 ) 

Therefore, principal stress and strains are in the wrong material axes. First, strain must be 

rotated. Stresses cannot be rotated, as the material behavior is nonlinear. The solution for a 

tensile test with fiber reorientation is found incrementally using small steps. In Matlab, the 

following scheme is applied using classical lamination theory (CLT). Calculate: 

1. ABD matrices and Qply at current stress level; 

2. Increment in global strains Δεx,y; 

3. Fiber reorientation angle 𝜃e; 

4. Angle Increment Δ𝜃 = 𝜃e – 𝜃; 

5. Total principal strains ε1,2 by rotation about angle Δθ: ε1,2’; 

6. Increment in principle strains Δε1,2; 
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7. Increment in principle stresses Δσ1,2  = Qply Δε1,2; 

8. Total principle stresses σ1,2’  = σ1,2 + Δ σ1,2; 

9. Total global stresses σx,y, updating Qi,j for nonlinear behavior 

 

The 1,2 and x,y subscripts represent the material principal and global directions, 

respectively. The effect of these two phenomena are summarized in Figure 37. The cross-

sectional area reduction and fiber reorientation becomes significant after 5% shear strain. This 

agreement fits well with established ASTM standard guidelines [4]. 

 

Figure 37. Virtual Test: Influence of Fiber Reorientation, Nonlinear Axial/Transverse Modulus, 

and Correction for Reduced Cross-Sectional Area 

3.2.2  Test Method and Results 

ASTM D3518 tensile tests were performed on 0.06in. thick 8-ply straight [±45] and dog-

bone [+452 /-452]S specimens for IM7/8552 and only straight specimens for material X. The 
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straight specimens are according to ASTM spec, but the dog-bone specimens were used to 

ensure failure occurs at the gauge section, with the opportunity to track micro-cracks and other 

damage using CT imaging. Specimens are shown in Figure 38. The black-and white speckle 

patterns was used for the full-field strain measurement by DIC. The strain field was assumed 

homogenous, such that the average shear strain is of the whole part of the gauge section caught 

by the cameras and plotted against average stress. The specimens were tested in the Instrom 

hydraulic test frame at 0.05in./min, with the first specimen tested with two DIC systems; one on 

each side. The DIC systems showed near-perfect agreement on the level of shear strain, verifying 

the alignment of the machine. The first specimen for each material is shown in Figure 39.  

 

 

Figure 38. ASTMD3518 Specimens made of IM7/8552: 

 8-ply straight [±45]2S (top) and Dog-Bone [+452 /-452]S (bottom) Specimens  

 

The pilot specimens demonstrate that the straight specimens can reach very large levels 

of shear strain. This is also inevitable accompanied with some degree of fiber reorientation. This 

is visible on the un-painted back side, of the material X specimen, photographed during the test. 

At shear strain of 5%, the angle between the plies had reduced from 90 degrees to 87.5 degrees. 
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A linear trend is shown, where at a shear strain of 10%, the angle between plies is only 84 

degrees still. The straight specimens lasted up to a very large strain, but the dog-bone specimen 

failed before reaching 4%.  

 

Figure 39. Analysis of Pilot Specimens for IM7/8552 and Material X Straight ASTM D3518 

Specimens, Including Fiber Reorientation Results. 

With the pilot study complete, the remainder of the specimens were tested using one DIC 

system. Due to the likelihood of matrix cracks forming, the test plan was set to load different 

specimens up to 6000 μstrain, 1% shear strain, and 3% shear strain, and to perform CT 

reconstructions for each specimen. The test results are summarized in Table 8, Table 9, Figure 

40, and Figure 41. Table 8 also shows at what strain level specimens were tested to before the 

test was stopped and at what load the CT scan was performed. The average G12 value was 

defined by a linear regression in the ASTM D3518 test between 1000-3000 μstrain and matches 

well to the SBS-measured value, but the nonlinear properties do not match. The discrepancy 

starts at 4000 μstrain, at the start of nonlinear behavior. This phenomenon is consistent between 

the two material planes. At about 3% shear strain, the ASTM D3518 test result is about 12-15% 

lower than the SBS result. 
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Table 8. Test Results for ASTM D3518 Specimens 

 Specimen Tavg [in] Wavg [in] Pmax [lbf] G [psi] γmax  [-] Pscan [lbf] 

IM
7

/8
5

5
2

 D
o

g
-B

o
n

e 

PB-1 0.060 0.60 825 6.49E+05 0.0388 Broken 

PB-2 0.059 0.60 282 7.06E+05 0.0058 0, 200 

PB-3 0.058 0.60 420 6.58E+05 0.0099 0, 300 

PB-4 0.059 0.60 778 7.18E+05 0.0316 Broken 

PB-5 0.059 0.60 770 6.71E+05 0.0324 0, 500 

IM
7

/8
5

5
2

 S
tr

a
ig

h
t P8-T45-1 0.060 1.00 1816 7.11E+05 0.1752 0 

P8-T45-2 0.059 1.00 488 7.23E+05 0.0060 360 

P8-T45-3 0.060 1.00 731 7.21E+05 0.0100 500 

P8-T45-4 0.059 1.00 1347 6.86E+05 0.0375 650 

M
at

e
ri

al
 X

 S
tr

ai
gh

t 

O115-1-1 0.060 0.99 2002 6.21E+05 0.2300 - 

O115-1-2 0.060 1.00 416 6.06E+05 0.0060 0 

O115-1-3 0.060 0.99 594 6.31E+05 0.0097 0 

O115-1-4 0.060 0.99 1060 6.14E+05 0.0307 0 

O115-1-5 0.060 0.99 1170 6.07E+05 0.0563 - 

        

        

Table 9. Comparison Linear Shear Modulus G12 between SBS and T45 

 

IM78552 Material X 

SBS 7.20E5 6.03E5 

45o Tensile 6.94E5 6.16E5 

% difference -3.6% +2.2% 
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Figure 40. Comparison Nonlinear Shear IM7/8552; ASTM D3518 Straight and Dog-bone 

Tensile Test, Short Beam Shear, and SPT 1-2 Plane 

 

Figure 41. Comparison Nonlinear Shear Material X; ASTM D3518 Straight Tensile Test, Short 

Beam Shear, and SPT 1-2 Plane 
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3.2.3  CT Study of D3518 Specimens  

The shear strength measured in ASTM D3518 tests are usually underestimated due to the 

effect of normal stresses in the matrix [18], leading to mixed-mode matrix cracking. This might 

cause the considerable reduction of the 0.2 offset strength. Besides that, there is also a noticeable 

effect of stacking sequence and number of plies [4]. Consider that the D3518 specimens were 

only 0.06in. long, they may have cured differently than the SBS and SPT specimens, all cut from 

a .25in. thick panel.  

A scan of the straight IM7/8552 specimen P8T45-1, tested up to 17%, provides insight on 

the failure modes that one may expect to see in the reconstruction. This specimen was scanned 

using a heavy element dye penetrant that shows up clearly in the reconstruction. Figure 42 shows 

a wild array of matrix cracks in the 45deg direction, along with delaminations and crack 

amalgamation between plies. 

 

 

Figure 42. CT Reconstruction of IM7/8552 D3518 Specimen at 17% Shear Strain 
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Figure 43. Pretest/Posttest Scan Material X O115-1-4 (3.1% Shear Strain) 

CT reconstruction images from the D3518 specimens pre-test and post-test scans with 

heavy element dye penetrants and some of them under load as well. A typical reconstruction is 

shown in Figure 43. All specimens have plenty of defects, including voids, matrix cracks, and 

inclusions (including hairs). The dye penetrant has not penetrated any cracks, which indicates 

edge cracks are small or nonexistent. Furthermore, damage pattern and size are consistent 

between pre-test and post-test scans. While these flaws may influence the shear modulus, 

damage development is not yet active at 3% strains. This result is supported by reference [96]. 
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3.2.4  Evaluation of In Situ Lamina Shear Properties in SPT 

One big difference between ASTM D3518 and the SBS/SPT is the stacking sequence. 

The 90deg interply angle represents a laminate, rather than a unidirectional stacking sequence. 

Therefore, one hypothesis is that some in-situ material properties are different from those in 

unidirectional configuration. Neighboring plies may cause constraints on allowable deformation 

or introduce stresses within the material during curing. As such, a SPT specimen was created of 

IM7/8552 with a stacking sequence of [02/902]3S at UTA facilities. The specimens are 1 x 1 x 

0.177in and one is shown in Figure 44. The specimen is speckled and only used for 1-2 shear 

stress-strain characterization. The other two surfaces have alternate plies between 1-3 and 2-3, so 

it is not logical to perform measurements on these planes as well.  

Analysis of the SPT 1in. specimens was performed by the FEMU algorithm, only 

optimizing the 1-2 plane. Legacy data for IM7/8552 was used to fill in the other properties, 

including shear in the 1-3 and 2-3 planes. The results of this iterative analysis are plotted 

alongside the previous obtained result in Figure 44. Regardless of the stacking sequence, the SPT 

1in. specimens agree well with previous SPT tests, confirming the robustness of this test. The 

evidence does not support the hypothesis that in situ material properties in the laminate are 

different from those measured in unidirectional coupons.  
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Figure 44. An IM7/8552 SPT Specimen with [02/902]3S Stacking Sequence (top), and Typical 

Surface Shear Strain Measurements in 1-2 Plane. 

 

3.2.5  Compression D695 Tests and Sensitivity to Stacking Sequence 

As noted in references [16,20], the shear nonlinear behavior is affected by normal 

stresses in the matrix. As such, the hypothesis is formed that the normal stress state of the epoxy 

influences the shear stress-strain behavior. To test this hypothesis, one D3518 specimen was 

machined into 6 smaller specimens (.458 x .060 x 3in.), to be used as D695 compression 

specimens. The D695 fixture is modified to have a clear plastic front plate, such that it is 

possible to perform DIC strain field measurements. The front and back parts of this fixture 

prevent buckling as the specimen is compressed. This is plotted in Figure 45, where it is shown 

that the D695 specimen test results agree nearly exactly (on average) with the D3518 specimens, 

even though the loading is reversed. As the specimen is not constrained laterally, the specimen 

buckles sideways at higher loads and deviates from the D3518 specimen test results. 
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Figure 45. Comparison of IM7/8552 D695 [±45]2S Compression Shear Stress-Strain Test Results 

to SBS, SPT Results. Left: Picture of D695 Fixture with Different Specimen 

The test results for the D695 test compared to D3518 do not give conclusive evidence 

that the normal stress state in the material is responsible for the difference in test methods. In this 

final effort, a new batch of IM7/8552 SBS [0]24 specimens with D3518 specimens with [452/-

452]3S specimens are made. These specimens are made with material sourced at AMSL, and all 

have a thickness of 24 plies. As such, there are more commonalities between these specimens 

than before. The tests (5 specimens each), have been tested using the identical test method as 

described in previous sections and the results are shown in Figure 46. For the SBS coupons, the 

agreement between test results of different material supply is very good, but the D3518 test 

results are different. The thicker laminate has an increased 0.2% offset strength and does agree 

better with SBS test results. The difference at 3% shear strain is 8% between test methods, so the 

difference is still significant.  
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Figure 46. Comparison of IM7/8552 D3518 [452/-452]3S Shear Stress-Strain Test Results to SBS, 

Sourced from AMSL Materials 

3.2.6  Reversible Strains 

Nonlinear shear stress-strain behavior may occur to micro-structural damage such as 

shear bands [18][21]. Polymer behavior is unlike metals, such that the 0.2% offset strength may 

not represent permanent damage. Instead, polymer deformation is a nonlinear process in which 

the molecule chains align and stretch before damage starts. Moreover, it is difficult to judge what 

part of the stress-strain curve is considered a damaged state, which may be significant for useful 

life predictions of composites. The D3518 tensile test is an effective method to study constitutive 

behavior, degradation, and stiffness reduction under monotonic and repeated loadings. While full 

characterization of damage processes in nonlinear shear is out of scope for this thesis, the 

following test data shows viability of this test method to indicate a threshold for the elastic 

regime of the material.  
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One tensile D3518 [±45]2S IM7/8552 tensile specimen is loaded under repeated and 

increasing peak strains according to the scheme shown in Figure 47. Strains are measured using 

the DIC system. Each step increases peak strains (displacement control), before quickly 

unloading and relaxing at zero load to remove transient strains. As such, the residual strains 

represent a permanent damaged state of the material. The nonlinear behavior also means that 

load increments are quite small to reach ever higher strains. In the figure, one can quickly tell 

that significant residual and transient strains start forming as soon as 1% of peak strain is 

reached. Holding time was set in increasing intervals to ensure transient strains had been mostly 

removed, which increased as peak strains increased as well. 

 

 

Figure 47. Repeated Loading History of an IM7/8552 D3518 Specimen  

 

Using DIC full-field strain measurements, the repeated loading stress-strain curves are 

plotted in Figure 48. As a reference, the data from a monotonously quasi-static loaded D3518 

specimen is plotted along these repeated loading curves. As the peak strain increases, the loading 
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curves shift to the right, and the total stress-strain curve becomes significantly lower than as 

measured in the quasi-static test. Note that all transient strains are removed at the start of each 

loading curve, such that only permanent strains remain. Figure 48 (right) shows all stress-strain 

curves shifted to start at the origin. As such, they do follow the reference line very well in the 

nonlinear regime. 

 

 

Figure 48. Repeated Loading Stress-Strain Curves for IM7/8552 D3518 Specimen.  

Left: Permanent Strains are Visible. Right: Permanent Strains Removed 

 

A visible reduction in shear modulus is apparent from the shear curves in Figure 48, 

which is related to the permanent strain state within the epoxy. The shear modulus as a 

percentage of the elastic (original) shear modulus is plotted in Figure 49. The relaxed strains are 

added to this chart to establish trends. As peak strains increase during repeated loadings, both 

transient and permanent strains increase, while the linear modulus decreases. Permanent and 

transient strains become significant starting at 1%, while the shear modulus drops quickly at 

1.5%. At these levels of strain, no damage was identified in the CT reconstructions. Further 
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studies should be conducted to establish what phenomena are responsible for the loss in modulus 

and the significance of the level of peak strain. 

 

 

Figure 49. Reduction in Shear Modulus and Increasing Permanent and Transient Strains during 

Repeated Loading of IM7/8552 D3518 Specimen 

 

This chapter presented an analysis of the applicability of the SBS, SPT, and ±45deg 

tensile test method to characterize shear nonlinear properties. The SBS specimens analyzed with 

optimization methods agree very well with the SPT specimens, which were analyzed with FEMU 

analysis. As a result, this methodology can be used to verify simplifying material model 

assumptions, such as transverse isotropy in shear. The ASTM D3518 specimens agree in the 

linear regime but deviate at 4000μstrain. The tensile test results are dependent on stacking 

sequence, overall specimen thickness, and suffer from complex mixed-mode micro-scale damage 

development, which develops well before damage can be picked up by CT reconstructions. 
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CHAPTER 4  

ADVANCED APPLICATIONS IN THE SBS METHOD 

The Short Beam Shear test method is highly versatile method and can be used to measure 

the 3D constitutive material properties, as well as nonlinear shear behavior in the 1-2 and 1-3 

plane and a range of failure modes. Across the wide range of available shear characterization 

methods, obtaining a pure shear failure mode is still challenging. In the SBS test, many 

specimens can fail in shear if the proper fixture and specimen configuration is used [35]. Still, 

certain materials can withstand large amount of shear deformation and will still fail in mixed-

mode failure at the contacts. Legacy FEMU and first-order solutions do not provide the 

flexibility or accuracy to characterize high-strain material behavior. 

4.1  Characterizing High Strain Response 

4.1.1  Wrapping phenomena during the test 

The IM7/8552 and material X SBS specimens tested in the 1-2 plane (see section 3.1.2)  

were subjected to very high levels of shear strain. Moving beyond 5% shear strain, these 

specimens experience very large deformation and “wrapping” behavior of the specimen around 

the loading nose. What is visible in Figure 50 is full-scale yielding along the cross-section of the 

SBS, with quickly rising shear strains as the contact area of the loading nose increases until it 

makes full contact. Effectively, the distance between contact surfaces decreases and shear strains 

are concentrated in a smaller span section. While specimens in this study failed in pure shear, 
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specimens that exhibit this behavior often fail in mixed-mode fiber compression – interlaminar 

shear stresses. 

 

Figure 50. IM7/8552 SBS specimen .25x.25x1.2in. Span Tested in 1-2 Plane. Wrapping of the 

Specimen Around Loading Nose (top). Strain Fields as Measured using DIC are shown. 

Considering this behavior rapidly decreases the effective span to thickness aspect ratio, 

the first order estimate becomes more inaccurate. This is due to warping of the specimen cross-

section and transverse stresses that are spread along a larger section of the span. Furthermore, the 

Ramberg-Osgood equation is not able to curve-fit beyond 4-5% of shear strain, as the change in 

slope occurs too quickly. These are the reasons that images of specimens at loads exceeding the 

wrapping threshold have been discarded as unreliable data. The DIC system is an objective and 
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independent analysis method able to measure large strains and deformations and should provide 

accurate strain measurements even after wrapping.  

4.1.2  Results from Optimization Model 

The optimization model as defined in chapter 2 provided the flexibility to analyze SBS 

from start to failure. Instead of performing the cross-sectional analysis at the customary 50%, the 

chosen cross-section 
𝑥

𝐿𝐿
= 40% is not subject to the transverse stresses, even after wrapping 

around the loading nose. This maintains the assumptions that the optimization model is based 

upon. Focusing on the shear properties, the first order estimate of 
3𝑃

4𝐴
 is evaluated first, followed 

by the optimization analysis. No changes to the optimization model were made. These two 

solutions are plotted in Figure 51. As expected, the closed-form solution greatly overestimates 

the maximum shear stress. At a shear strain of 8%, this error is about 33%.  

 

 

 

Figure 51. Characterization of Nonlinear Shear Stress-Strain Behavior  

in 1-2 Plane for IM7/8552 (Left) and Material X (Right) 
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The nonlinear stress-strain curves exhibit small oscillations at the highest strain values, 

because the amount of data at the highest strain value is the lowest. Therefore, it is the most 

susceptible to noise. The curves exhibit a large change in slope after 3% shear strain. The 

material X specimens show the most dramatic change in shear modulus, as the slope goes 

horizontal. As such, the load increases, but the maximum stress does not. Such a counter-

intuitive result draws parallels with perfectly plastic behavior of metals.  

The underlying assumptions for the optimization model may lose validity when analyzing 

specimens with large deformations. Notably, the specimen is assumed to have small deflections 

such that the fibers and the specimen itself do not rotate. As such, part of the shear force may be 

aligned in the direction of the beam and transformed into an axial force. Furthermore, the 

operator must be mindful of the strain formulation, which is defined as engineering strain. Future 

studies investigating this large-strain response with greater confidence and accuracy should 

address the implication and aspects of these assumptions.  

4.1.3 Simulation in FEA environment 

To gain more insight into the wrapping behavior of the SBS specimens at higher loads, an 

FEA study was performed. As the material X specimen had such extensive wrapping behavior 

starting at 3%, with such a dramatic change in slope, it was chosen to simulate in the FEA 

environment. Note that the FEA model used is the same as was developed and described in 

section 2.3.1. The diameter of the loading nose is 4in. as tested, which is a significant parameter 

for the model. 

The material model chosen is a simplification of the stress-strain curve as plotted in 

Figure 51. The Ramberg-Osgood equation sets the behavior up to a strain level of 0.03% 
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(8000psi). The UMAT includes an if-statement. If the strain exceeds 0.03%, the slope must be 

zero. A material model with a large discontinuity in derivative will lead to unstable behavior, 

frequently causes FEA models not to finish. Therefore, the flat line is replaced with an 

exponential function, which has an initial slope to provide continuity but quickly goes to zero. 

This is plotted in Figure 52. 

Simulation of the SBS specimen is performed in one quasi-static step, but results can be 

distinguished into two separate phases. Up to 3% shear strain, the SBS specimen behaves 

predictably, with simulated strain fields matching with that of the measurement (Figure 53). As 

soon as 3% shear strain is reached, the contact surface area starts to increase rapidly with applied 

load. This behavior is only simulated by including the highly nonlinear large-strain behavior. 

Without, the virtual specimen would carry much larger loads without inducing the wrapping. As 

soon in Figure 54, the regions of maximum shear appear to cover a smaller part of the span. The 

material model is shown to be directly responsible for the wrapping.  

 

 

Figure 52. Highly Nonlinear Shear Model for UMAT to Simulate High-Strain Behavior 
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Figure 53. Material X SBS Specimen: Comparison of Measured and Simulated Strains. 

Specimens are .25 x .25 x 1.2in. Span under 900lbf Load. Color Legend is Matched 

 

 

Figure 54. Material X SBS Specimen: Comparison of Measured and Simulated Strains. 

Specimens are .25 x .25 x 1.2in. Span under 1100lbf Load. Color Legend is Matched. 
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Figure 55. Material X SBS Specimen: Comparison of Simulated stresses under 900lbf and 

1100lbf Load. Specimen demonstrated Large-scale Yielding throughout the Cross-section.  

Color Legend is Matched for both Plots  

The reason that the specimen wraps around the loading nose is due to large-scale yielding 

through the cross-section. At approximately P=900lbf applied load, the maximum stress of 

8200psi is reached. This stress cannot increase, as it is not on the material stress-strain curve. 

Therefore, other parts of the cross-section must increase their stress to 8200psi to sustain the 

applied load, as can be seen in Figure 55. The load is increased, until the cross-section is unable 

to raise its stress along the cross-section anymore. As a result, shear strain increases rapidly, and 

conforms to the shape of the loading nose.  

Wrapping behavior at the loading nose is not an undesirable result, as it is driven by 

material stress-strain behavior. However, some specimens tend to exhibit pure shear failure if 

tested with a small loading nose diameter, without the wrapping behavior. A small loading nose 

would distribute the load under a smaller area, and locally the shear stresses could exceed either 

the ILS strength or induce a mixed-mode shear and compression stress failure.  
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4.2  The Asymmetric Three-Point Bend Test 

4.2.1  Reasoning and First-order Estimate 

While the current SBS test has many different configurations (see Table 1) to test many 

different properties, the short beam and long beam specimens have distinct advantages and 

disadvantages which may require the use of both tests. The long beams have low shear stresses 

through the cross-section, such that the first-order equations are very accurate. Short beam 

specimens are necessary to characterize shear behavior but suffer from less reliable axial strain 

measurement data. It is very difficult to get high magnification/resolution in long beam 

specimens, due to the desire to have the longer specimen in the field of view. By using 

symmetric fixtures such that the left and right supports are placed equidistant from the loading 

nose, one limits themselves in possible outcomes. The fixture span and support placements are 

important considerations.  

 

Figure 56. Static Analysis of the 3-Point Bend Test, with Asymmetric Span Setup 
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The asymmetric SBS test shown in Figure 56 is subject to different stresses in the left and 

right gauge sections. Most notable, the cross-section in the short side is subject to the larger shear 

force. While the bending moment is not significantly different between the two gauge sections, 

the long side benefits from the low shear stresses. Therefore, the theory is that the short side is 

more effective to measure shear nonlinear properties. The long side would be more suitable for 

measuring the axial properties. Applying equations 2-3 and 2-4 to the asymmetric SBS, the 

maximum shear force increases while the maximum bending moment decreases, which means 

SBS specimens are much more likely to fail in shear, rather than fail under mixed-mode stresses 

at the loading nose.  

Consider a hypothetical SBS specimen with a span of 1.2in. loaded with the loading nose 

at 0.4in. from the left support. The shear force would be twice higher in the short side, compared 

to the long side. The effective aspect ratio (span/thickness), would be 3.2 on the left and 6.4 on 

the right. This would make the first-order estimate less accurate on the short side, and more 

accurate on the long side (evidence provided in Figure 15). Since the specimen is more likely to 

fail in pure shear, it is reasonable to increase the total span or decrease loading nose diameter to 

compensate for the small aspect ratio effect.  

4.2.2  Experimental program and Test Results 

All the predictions from the previous sections have been verified by an experimental 

study for IM7/8552 SBS specimens in the 1-2 and 1-3 plane. From a single IM7/8552 panel, two 

sets of .25 x .25 x 1.75in. specimens were machined to be tested in the 1-2 plane. The first set of 

five SBS were tested with symmetrical fixture and a span of 1.2in. The second set of these 

specimens were offset with the left support set at 1.0in. and the right at 0.6in.. 
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From a second IM7/8552 panel to be tested in the 1-2 plane, two sets of specimens were 

machined of dimensions .175 x .175 x 1.75in. The first set of five specimens were tested in the 

symmetric fixture, and four specimens were machined dedicated for the offset SBS test. Three of 

these were tested with a span of 0.36in. and 0.60in. left and right respectively. The last specimen 

was tested at a more extreme offset, with support placements at 0.36in. and 1.00in..  

All specimens had been tested with two DIC systems, one for the front and one for the 

back. Figure 57 shows the shear strain field for a IM7/8552 1-2 plane specimen with each of the 

two offsets. No complications associated with the offset were found during the test. The shear 

strains are larger on the short side, exceeding 5% shear strains. The specimens tested in the 1-2 

plane exhibited larger strains and more wrapping behavior at the loading nose.  

  

 

 

Figure 57. IM7/8552 Offset Asymmetric SBS Specimens Tested in 1-2 Plane.  
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Figure 58. IM7/8552 SBS Test Results: Comparison Average Shear Stress-Strain Curves from 

Symmetric and Offset SBS Specimens. Left: 1-2 Plane. Right: 1-3 Plane 

 

Table 10. IM7/8552 Specimens 1-3 Plane Test Results: Comparison Average Material 

Parameters from Symmetric and Offset SBS Specimens  

 First-Order Analysis 

 Symmetric Asymmetric 

Span (L,R inches) 0.6, 0.6 1.0, 0.6 

Et [Msi] 22.3 22.0 

Ec [Msi] 19.1 20.0 

EAVG [Msi] 20.7 21.0 

νt 0.31 0.34 

νc 0.38 0.42 

S [ksi] 15.5 16.1 

Failure Mode Mixed Shear 

G [ksi] 731 708 

K [ksi] 3.75 33.8 

n 0.239 0.232 

 Optimization Analysis 

G [ksi] 698E 681 

K [ksi] 23.7 24.7 

n 0.176 0.184 

S [ksi] 12.8 13.2 

Exx [Msi] 20.7 20.7 
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The test results are summarized in Figure 58 and in Table 10. The agreement between the 

shear stress-strain curves of symmetric and asymmetric specimens is striking, because the first-

order estimate is very different. Note how the closed-form solution for shear stress in the offset 

specimens is worse than in the symmetric specimen, but that difference is removed during 

optimization analysis. Symmetric SBS specimens in the 1-2 plane failed early due to mixed-

mode failure, because the span of 1.2in. was set too high for the specimen thickness of 1.75in. 

The asymmetric specimens were able to achieve pure shear failure with a shear stress-strain that 

agrees well to that as plotted in Figure 51.  

The choice of span for the symmetric SBS specimens in the 1-3 plane was more 

appropriate, but the specimens were failing under mixed-mode failure at the loading nose. While 

the offset specimens have a slightly longer span, the increase in shear force at the short end was 

sufficient to result into characterizing the full shear nonlinear behavior until pure shear failure. 

Tabular results for the specimens in the 1-3 planes show that both experimental setups are 

effective at measuring all material properties. For this study, the axial properties were evaluated 

only on the long end, which did marginally improve on the numerical results for the tensile and 

compressive moduli in the fiber direction. 

The optimum offset parameters are not fully investigated during this thesis, as they may 

depend on the material system to be tested. The IM7/8552 SBS specimens in the 1-2 plane were 

tested in two configurations, which represent a 3:5 and a 9:25 span ratio. The comparison is 

shown in Table 11. The longer and more offset ratio of 9:25 provided a marginally improved set 

of axial moduli but did not provide any more benefit for characterizing shear nonlinear 

properties. As the specimen gets longer, the operator must reduce DIC resolution to maintain the 
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specimen in the field of view. The law of diminishing results applies; results do not necessarily 

improve with increasing offset ratios.  

The short beam shear specimen offers great flexibility in the design of experiments, 

which allows the user to influence what failure modes and mechanical properties are measured. 

By choosing an offset span ratio for the SBS test, the chance of pure shear failure is increased. 

This experimental design program adds complexity and closed-form solutions become less 

applicable. Shear stress-strain results after optimization are consistent results between a selection 

of configurations. This alleviates concerns of repeatability and gives confidence in the reliability 

of this experimental setup. The experimentalist may choose the span supports and offset of the 

loading nose to best measure the intended material response. By using optimization methods 

described in this thesis, large shear strain response can be characterized, even if it does not 

follow a particular material model.  

 

 

Table 11. IM7/8552 Offset SBS Specimens 1-2 Plane Test Results:  

Comparison Offset Ratio on Characterized Material Properties 

L:R Span 

(in) 

Pmax 

(lbf) 

Strength 

(psi) 

G  

(psi) 

K  

(psi) 

n  

( - ) 

ET,avg  

(psi) 

Ec, avg 

(psi) 

Exx 

(psi) 

0.36 : 0.60 

3 : 5 
718 20959 7.58E+05 3.98E+04 0.222 2.54E+07 2.05E+07 2.29E+07 

0.36 : 1.00 

9 : 25 
548 19263 7.67E+05 3.77E+04 0.214 2.32E+07 2.07E+07 2.20E+07 
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CHAPTER 5  

CHARACTERIZING TRACTION SEPARATION BEHAVIOR 

This work addresses a lack of understanding and measurement data on cohesive traction-

separation laws for delamination fracture. This is a fundamental challenge of progressive damage 

and failure analysis of composite structures, which is sensitive to the input parameters of the 

cohesive zone model. Typical updating methods use CZM laws based on mathematical 

assumptions and strive to optimize its parameters to minimize the error to a certain objective 

function. The work presented in this chapter aims to develop methods to measure the traction-

separation law directly, improving the confidence in cohesive laws. 

5.1  Cohesive Force Model 

The growth of a crack constitutes a change in the energy in a system. From this idea, the 

fracture characteristics of an adhesive crack were derived from total specimen energy balance. 

The energy balance is defined by Sun and Wang [97] as 

𝛥𝑊 = 𝛥𝑈𝑒 + 𝛥𝑊𝑝 + 𝛥𝑊𝑠 ( 5-1 ) 

where W and U represent work and energy respectively. ΔUe is the elastic strain energy, 

ΔWp is the plastic energy and ΔWs is the energy required to grow the crack surface. Fracture 

energy is dissipated from total work and depends on the change in fracture area. 

𝑅 =
𝛥𝑊

𝑑𝐴
−
𝛥𝑈𝑒
𝑑𝐴

=
𝑑𝑊𝑝

𝑑𝐴
+
𝑑𝑊𝑠
𝑑𝐴

 ( 5-2 ) 
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𝑅 = 𝐺𝑝 + 𝐺 ( 5-3 ) 

The dissipated energy R represents energy loss due to plasticity and creation of new crack 

surface dA. For brittle materials, plastic energy dissipation is assumed to be negligible [83,85], 

such that fracture energy is equal to the energy release rate G. By adopting this assumption, one 

can use the J-integral or the VCCT method to gain a useful estimate of the energy release rate. 

For the DCB test, the contour integral is calculated about the cohesive zone. A closed-form 

solution exists for this application [81] as 

𝐽 =
12(𝑃𝑎0)

2

𝐸𝑑ℎ𝑑
3 + (𝑤1

′ − 𝑤2
′) ( 5-4 ) 

where P is the applied load; a0 is the crack length; Ed and hd are the lengthwise modulus 

and thickness of the adherend skins respectively; and w’ are the rotations of the skins at the crack 

tip. This equation assumes negligible contribution due to shear force, so the crack length must be 

much longer than the specimen thickness. No closed-form solution exists to calculate the J-

integral for the Thick Adherend test. The VCCT method was selected to calculate the strain 

energy release rate for the TA test. G is defined as the work necessary to close a crack with an 

element length. The equation for fracture energy dissipation has been rewritten to be 

implementable in the FEM environment with finite element sizes: 

𝐺𝐼𝐼 =
1

2

𝐹𝑠𝛿𝑢𝑥
𝐵𝛥𝑎

 ( 5-5 ) 

in which F and δu are the surface shear reaction force and relative separation of the 

relevant nodes as shown in Figure 59. The relative separation is the difference in displacements 

of the nodal points. The size of the element in which the crack growth is given by B and Δa, the 
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element width and length. The underlying assumption is that the crack is self-similar and will 

continue parallel to its current path, so the elements near the crack have the same size.  

The following definitions are used to relate the separation of the top and bottom crack 

surfaces to the restraining stress acting on them within the damage zone. A linear elastic fracture 

mechanics approach is not useable, as it leads to infinite stresses at the crack tip. Instead, the J-

integral is used. By definition, the J-integral is path independent, as long as the contour Γ does 

not go through the cohesive zone. It is conveniently placed along the upper and bottom traction 

surfaces. In this derivation, crack tip separation is only 1D.  

 

Figure 59. Relevant Parameters for the VCCT Method 

𝐽 = −∫ 𝑇𝑖
𝜕𝑢𝑖
𝜕𝑥1

𝑑𝑠
𝛤

= −∫ 𝜎
𝜕𝛿

𝜕𝑥1
𝑑𝑥1

𝑐.𝑧.

= −∫
𝜕𝛿

𝜕𝑥1
[∫ 𝜎(𝛿)𝑑𝛿

𝛿

0

] 𝑑𝑥1
𝑐.𝑧.

( 5-6 ) 

𝐺 = 𝐽 = ∫ 𝜎(𝛿)𝑑𝛿
𝛿𝑡

0

( 5-7 ) 

Here, c.z. is the abbreviation for cohesive zone, and δ can be defined as either the normal 

separation at the crack front (Mode I), or the slip separation (Mode II). σ(δ) is the surface traction 

as a function of the crack separation. As the J-integral is path independent, it can also be set very 
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far away from the crack zone. At a far distance, the cohesive forces are insignificant, so the J 

integral represents the energy decrease of the noncohesive solution. In other words, the area 

under the traction-separation cohesive law gives the work done to grow a crack and is thus 

defined as being equal to G. Finally, the traction-separation relationship can then be deduced to 

𝜎(𝛿) =
𝜕𝐽

𝜕𝛿
 ( 5-8 ) 

5.2  Experimental Procedure 

5.2.1  Specimen Manufacturing and Precracking 

Thick Adherend and DCB specimens were manufactured from IM7/8552 carbon fiber 

reinforced prepreg tape co-cured with Hysol EA 9690-006 film adhesive and cut from the same 

panel. The specimen dimensions are shown in Figure 60. Fiber bridging was a concern, so the 

chosen lay-up [016/32/FilmAdhesive/-32/016]T has 3degree offset fibers at the interface. This 

orientation prevents fiber bridging, while still being close to unidirectional. The film adhesive 

was co-cured with the skins, which created an irregular bondline thickness, averaging .0068in. 

The DCB specimens had aluminum blocks with center drilled holes bonded for load application. 

A starting notch was machined between the blocks using a grinder. The TA specimens were 

made by milling out grooves on both ends of the gauge section. CT reconstructions of the TA 

specimens were used to identify manufacturing issues. Machining of the grooves caused damage 

at the side surface of the TA specimens as shown in Figure 61. The damage may have acted as a 

starting point for failure, so it was removed by grinding, reducing the width of these specimens. 
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Figure 60. Thick Adherend (Left) and Double Cantilever Beam (Right) specimens  

as cut from a single co-cured panel.  

 

 

Figure 61. Thick Adherend Specimen Fabrication Issues 

Specimens were manufactured without initial defect. Preliminary testing of DCB and TA 

specimens has proven that crack growth is stable in the DCB and TA tests (see Figure 62). Under 

fatigue loads, TA specimens exhibit low average stresses, and a small process zone. Crack 

growth is very sudden in static TA tensile test without a pre-crack, as the internal energy 

becomes very high. The net stress and process zone are large, and failure occurs seconds after 
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initiation. Every specimen was pre-cracked in fatigue (f = 10Hz, R=0.1). Each DCB specimen 

was pre-cracked until a0 was about 10mm long and the TA specimens until a0 on either side was 

3mm long. CT pretest reconstructions were used to identify the crack tip locations through the 

width.  

 

Figure 62. Fatigue Failure Progression in TA Specimens. Strains Along Bondline are shown at 

Select Cycle Counts  

5.2.2  General Procedure 

All specimens were painted white on both sides using Krylon White spray paint. One side 

was finely speckled using an airbrush set at 40psi, to measure crack tip displacements using DIC. 

The other side was kept white for contrast with the growing crack. By adding millimeter marks, 

the crack tip was tracked optically during the test. TA specimens were tested in a 20kip capacity 

Instron servohydraulic load frame. DCB specimens needed much less load, so these were tested 

in a 2kip capacity Shimadzu electomechanical load frame instead. 
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Figure 63. Thick Adherent Test Experimental Setup. A camera on the left tracks crack front 

optically. The cameras on the right take images of speckled side for DIC.  

Testing speed was .02in/min for DCB tests 0.01 in/min for TA tests. DCB specimens 

were unloaded each 5mm of crack growth. After reaching crack length of 30mm, the DCB 

cracked specimens were CT scanned under load, such that the crack front was visible in the 

reconstruction. DCB specimens were retested with the longer crack length. The TA specimens 

were only tested once, as they break quickly in static loading. 

 

 

Figure 64. DCB Data. Left: Crack Tip Location and Vertical Displacement Field. The red 

crosses indicate where crack tip displacements are measured.  

Right: Crack Front as Reconstructed in CT. Distance measured from groove edge 
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The crack surfaces in DCB and TA specimens were 3D, as shown in Figure 64. They 

were mostly within the adhesive but otherwise at the skin-adhesive interface. To simplify 

analysis, the crack front is assumed to be 2D, halfway through the adhesive thickness. 

The cameras in the test setup as shown in Figure 63 have 16MP resolution. One camera is 

used to track the crack along the length of the specimen, which requires less magnification. The 

DIC cameras are zoomed in as far as possible. At the DCB test, pixel pitch in DIC is 5 μm, with 

34 pixels through the adhesive layer. Because of this high magnification, the crack tip would 

move out of the field of view, so the cameras were moved and recalibrated for longer crack 

lengths. The DIC cameras had to see the whole gauge section in TA specimens, so pixel pitch 

was reduced to 6.2 μm. Figure 64 and Figure 65 show how measurements are taken at 0.5mm 

away from the actual crack front. While the displacement field should be discontinuous at the 

crack tip, DIC filtering methods create steep gradients of the displacement field instead, leading 

to inaccurate results. As a consequence, it is assumed that all measured displacements at the 

nodes are due to deformation of the bondline.  

The displacements and rotations are extracted at the nodes. For analysis of the DCB 

specimens, the rotation of the skins has a significant influence on the calculated fracture 

toughness. The difference in vertical displacement of the two measured nodes gives the crack tip 

separation. A correction for the rotation of the gauge section has to be applied to the crack tip 

separation measured for TA specimens [98]. This rotation causes an artificial increase in tip 

separation. The dots in Figure 66 represent three nodes at either side of the bondline as the 

specimen deforms. The rotation angle must be eliminated via the following equation: 
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Figure 65. Synchronized Data Captured with Cameras during TA test: (a) Optical Tracking of 

Crack Length; (b) Deformed Speckle Pattern; (c) Shear Strain Measurements; (d) In-plane 

Specimen Rotation. 

𝛥𝑉 = (𝛥𝑉𝐿𝑒𝑓𝑡 − 𝛥𝑉𝑅𝑖𝑔ℎ𝑡) − 𝑑𝑥 𝑡𝑎𝑛 𝜃  ( 5-9 ) 

where dx is the horizontal difference between the two measured points and θ is the in-

plane rotation as an average of the two nodes. 

 

Figure 66. Nodes Along Bondline Undergo Translation and Rotation  
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5.3  Simulation of DCB and TA Tests in FEA 

5.3.1  FEA Models 

A numerical study was performed to investigate the numerical sensitivity of traction-

separation law parameters to the simulation. For this, the two models in Figure 67 represent the 

DCB and TA specimens in the ABAQUS/Standard by Dassault Systèmes environment, and both 

employ the same methodology. The specimen and the adhesive joint were modeled as a 3D solid 

with C3D8 elements. The free end is pinned, while the loaded edge is loaded in displacement-

control. The cohesive interface is modelled as cohesive contact, to be able to extract the contact 

forces and displacements for the VCCT analysis. The formulation was nodes-to-surface with 

finite sliding, with cohesive and damage properties as defined in the traction-separation curves. 

Viscous stabilization coefficient is 1E-4 to allow for numerical convergence. Mesh refined at the 

crack tip was based on convergence of specimen load-displacement results. 

The FEA model of the TA specimen was used to calculate the fracture energy using the 

VCCT method. The nodal forces and displacements were taken at the interface of the single lap 

joint under quasi-static loading were used. The model consisted of two parts; each part has one 

adherend and one half adhesive layer. The half adhesive layer of each part faces the other such 

that the cohesive surface is halfway through the bondline thickness. One half-width was 

simulated thanks to the plane of symmetry. Since the specimen ends are gripped and do not 

deform, these ends are omitted from the specimen and constrained against rotation. The analysis 

step is nonlinear and discontinuous, in preparation for the cohesive zone modeling. During the 

test, the skins were not highly stressed, so the material model was kept linear. The ductile 

behavior of the adhesive is then captured in the cohesive law. Material properties are given in 
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Table 12. The adhesive is modeled as isotropic solid with E = 300ksi, ν = 0.45. Adhesive 

thickness was taken as an average of 0.0068in. 

 

Table 12. Material Properties IM7/8552 used in FEA Simulation [61] 

Property Value 

Elastic Modulus E11 [Msi] 22.858 

Elastic Modulus E22 = E33 [Msi] 1.282 

Poisson’s Ratio ν12 0.320 

Poisson’s Ratio ν13 0.329 

Poisson’s Ratio ν23 0.461 

Shear Modulus G12 [Msi] 0.824 

Shear Modulus G13 [Msi] 0.757 

Shear Modulus G23 [Msi] 0.456 

 

 

Figure 67. FE Meshed Models for TA (left) and DCB (right) Test Specimens. 
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5.3.2  Sensitivity of FEA Solution to CZM Modeling Parameters  

Progressive damage and failure analysis is sensitive to the input parameters of the 

cohesive elements or cohesive contact. To ensure accurate results, the correct model parameters 

and cohesive properties must be used. The following sensitivity study applies to the DCB model. 

The triangular CZM law as in Figure 8 is considered, with parameters Gc, K, and 𝜎0 = 𝑡𝑛. 

The loaded cohesive zone creates a damage zone near the crack tip (Figure 59). As such, 

the FEA model must carefully simulate this damage zone, and ideally has about 3 elements 

between the crack front and the end of the damage zone. Figure 68 shows elements at the 

bondline at a cohesive zone size of .14in. The red elements are passed the point of maximum 

stress and are thus in the damaged state. The smaller cohesive element size captures the curved 

crack front phenomenon, but only marginally changes global response of the specimen.  

 

 

* Note: Graphs courtesy of G. Nikishkov, 2018 

Figure 68. Convergence of Cohesive Element Size in DCB FEA Analysis 
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* Note: Graphs courtesy of G. Nikishkov, 2018 

Figure 69. FEA Simulation of DCB Specimen by CZM Triangular Traction-Separation Law. 

Graphs show Sensitivity to Cohesive Penalty Stiffness (a), Fracture Energy (b), Maximum 

Traction Stress (c), and Stabilization Viscosity (d) 
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Figure 69 summarizes the results of the sensitivity study on how the parameters of a 

triangular CZM law influence global DCB response. The penalty stiffness and maximum traction 

stress appear to have only a marginal effect on the failure load. The solution is very sensitive to 

the fracture energy of the CZM law. Viscous regularization of the model is necessary to reach 

numerical convergence but should be kept under 1E-4 to prevent excessive energy dissipation. 

What is not shown is an interaction effect between the penalty stiffness and maximum traction 

stress. Both parameters influence the cohesive damage zone size. As such, certain combinations 

of K and tn result in a very small process zone, at which mesh size can be a limiting factor, 

leading to erroneous results. 

5.4  Derivation of CZM Law 

The load-displacement results for DCB specimens were consistent. The global response 

and R-curve are shown in Figure 70 [68], showing low sensitivity to crack length. Separation 

displacements at the crack tip were measured using DIC. Lacking a reliable indicator of the crack 

tip location under the paint, the crack tip was located using CT reconstruction measurements. 

The shape of the crack front was characterized using CT reconstructions at pretest length a0 = 

18.5mm and posttest at a0 = 30mm. The location of the crack tip was marked in the DIC field, 

which happened to be at a different location then where the paint had cracked. Displacement and 

rotation measurements were taken at .5mm above and below the bondline, as shown in Figure 

64. The J-integral and the derived traction-separation are calculated and plotted for the three 

tested specimens at a crack length of 30mm in Figure 71.  
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Figure 70. Test Data from DCB Specimens. Left: Load-Displacement Data from the Test Frame.  

Right: Resistance Curve, in accordance with ASTM standard D5528 

 

Figure 71. Derivation of the Mode I Cohesive Traction-Separation Law in DCB Specimens.  

Left: J-integral vs Crack Tip Separation. Right: Traction-Separation Curves.  

The traction-separation law in Figure 71 may be reasonably approximated by a triangular 

shape, with an exception at δ = dV = 0. The damaged down-slope appears to be bi-linear or 

exponential decay. Note that the penalty stiffness is very low in this curve, and must be including 

the (in-)elastic behavior of the adhesive. Results are shown for crack length of 30mm. The 

shorter crack lengths were giving results with very large scatter, while the closed-form solution 

would have been invalid due to a higher shear force effect. Scatter in the results may be 

explained by sensitivity to the precise failure mode, which is shown in CT images to vary 
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between adhesive and adhesive-adherend debonding seemingly at random. The scatter is worse 

at shorter lengths, where the higher shear force causes extra peeling stresses and the profile of 

the crack tip through the width has a more pronounced effect. Longer crack lengths would likely 

have given more favorable results. 

The energy release rate in the TA specimens was calculated using the VCCT method in 

the model as shown in Figure 67 (left). This model was precracked; the top and bottom crack 

lengths cracks modeled with mesh refinement at the crack front location (see Figure 65). The 

crack is defined by bonding a node subset of the interface without damage, assuming the crack to 

be constant through the width. The results for fracture toughness and crack tip separation are 

shown in Figure 72 and Figure 73 for one specimen. The fracture energy is calculated to be on 

average between 10-11lb/in, which is very similar to the Mode I fracture energy. Mode II 

fracture energy is shown to be the dominant driving force for the crack, even though mode I is 

about 33% of mode II. The derivative of the G – separation curve gives a shape which is easy to 

fit with a triangle shape. The penalty stiffness term is very low, while the down ramp may also 

be somewhat bilinear.  

 

Figure 72. Fracture Energy in the TA Test, as Calculated using VCCT 
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Figure 73. Derivation of Traction-Separation Law in TA specimens.  

Left: J-integral vs Crack Tip Separation. Right: Traction-Separation Curve.  

5.5  Verification by FEA Analysis 

5.5.1  Comparison of Global Response 

To simulate the global response of DCB and TA tests, the cohesive zone behavior is used 

as input in the FEA models from Figure 67. By turning on cohesive damage parameters, the FEA 

model will initiate and grow the crack along the specified interface direction. Shortly after the 

crack growth begins, maximum load is reached, similar to what happens during the test. The 

comparison between experimental and FEA load-displacement curves is plotted in Figure 74. 

The experimental displacement is measured by the crosshead displacement, after a correction for 

system/fixture compliance. The DCB curve matches the specimen compliance, but has a lower 

maximum load (98 FEA vs 102 experimental, -4%). Specimen compliance is sensitive to the 

CZM penalty stiffness term. The reduction in load may be caused by experimental error or 

choice of average CZM from all three curves shown in Figure 71.  

Comparing the specimen compliance between measurement and FEA simulation again 

gives very positive results for the TA specimen, but the simulation’s maximum load significantly 

overshoots the ultimate strength (4300lbf vs 3940lbf, +9.1%). While the choice of measurement 
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nodes as in Figure 65 may be responsible for some mismatch, this much error is due to mixed 

mode failure. As mentioned previously, the mode I crack driving force is about 33% of the mode 

II, due to a bending moment inside the gauge section. The TA model was rerun with both mode I 

and mode II cohesive laws, with experimental results approximated by triangle laws. Due to lack 

of information on mixed mode failure, this criterion was specified with power law of exponent 1. 

The result is added in Figure 74 as the black line, and clearly reduces the simulated maximum 

load and stretch before failure. The ultimate load is much improved, but the mixed-mode failure 

warrants further investigation. 

 

 

Figure 74. Comparison Global Numerical and Experimental Specimen Load-Displacement 

Measurements for DCB (Left) and TA (Right). 

5.5.2  Sensitivity of Solution to Measurement Location in DCB Specimens 

According to simulations and measurements, deformations in DCB and TA specimens 

are a function of location. As the nodal displacements are direct input for the CZM 

measurements, sensitivity is high; Taking measurements behind or in front of the crack tip will 

lead to a change in the estimate of penalty stiffness and maximum traction. Figure 75 shows the 

effect of taking measurement in front or behind the crack tip.  
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The crack front can be measured within 1mm accuracy in CT reconstruction analysis. If 

the placement of the measurement nodes exceeds 1mm away from the crack front, the maximum 

traction and penalty stiffness term are significantly affected. These CZM laws lead to significant 

errors in global response as simulated in FEA. Sensitivity of the measurement node locations in 

the direction normal to the bondline is much lower as strain and displacement gradients are lower 

in these directions. 

 

 

Figure 75. Sensitivity of Traction-Separation Law to Crack Tip Measurement in DCB 

Specimens.   
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5.5.3  Application to TA Specimen Without Adhesive 

A batch of three specimens have of co-cured IM7/8552 specimens were manufactured 

without adhesive. A panel of .25in. thick was machined by grinding two grooves exactly half the 

thickness deep. These specimens were precracked in fatigue and scanned under load. Scanning 

under load opened the crack to facilitate the identification of the crack tip. Typical measurements 

are shown in Figure 76. The experiment did not show complications; the crack growth in fatigue 

was very stable; The 3deg off-axis plies at the interface prevented fiber bridging. Without the 

adhesive layer, the composite skins were subject to large shear stresses, and crack grow along a 

near-zero thickness interface. This in contrast to TA specimens with adhesive, which had all 

ductile and fracture failure within a finite thickness adhesive zone. 

 

 

Figure 76. CT and Optical Measurements of IM7/8552 TA Specimens without Adhesive 
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Figure 77. CZM Characterization of IM7/8552 Specimens 

The analysis for the TA specimens was unchanged for the specimens without adhesive 

Crack tip measurements were taken within .125in. of either side of the interface. The GII fracture 

energy was calculated using VCCT using a model without an adhesive layer. The results are 

summarized in Figure 77. Striking is a large difference in fracture toughness GIIc and smaller 

maximum crack tip shear separation. A low penalty stiffness is defined, which is counter-

intuitive [81]. Using this method, the shear deformation of the skins before fracture is included 

within the CZM law. 

5.5.4  Characterizing Bondline Shear Stress-Strain Response 

Insight in the adhesive stress-strain response was used to create understanding of the 

CZM law. The ASTM D5656 [71] is used to measure stress-strain behavior of adhesive in shear 

loading. Strain measurements are performed via the KGR, a dedicated extensometer fixture. This 

extensometer will accurately measure strains at one-point location. By assuming stress and strain 

are constant through the cross-section, a stress-strain relationship is established. Consider Figure 

65, where shear strains are shown to be heterogeneous through the cross-section. Taking a 
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measurement at a single point is unlikely to represent the distribution of strains that exist. If 

measured at the center of the specimen, the KGR method cannot be accurate. 

A virtual test was performed to develop an appropriate analysis for the stress-strain 

behavior at the bondline. Using full-field strain field measurements from FEA, all strains along 

the bondline are known. This gives different options to calculate the material properties. The first 

method is a virtual KGR measurement (as in Figure 78). Three measurement points in the FEA 

analysis act as an extensometer. For details, refer to ASTM D5656 [71]. Another method is to 

plot average stress P/A over strains in the middle of the bondline and average stress over average 

bondline strains. Additionally, an optimization method was developed to optimize the stress-

strain curve to satisfy the equilibrium conditions (as in section 2.4). The integration of the 

stresses over the cross-section must be equal to the applied load. The optimization scheme is 

shown in Figure 79 (left). 

 

 

Figure 78. Simulation of KGR Strain Measurement in FEA 
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Figure 79. Comparison of Stress-Strain Characterization Analyses for TA Specimens. The 

Flowchart for the Optimization Method is shown Left.  

Comparing the outcome of the virtual experiment and analyses confirms that the KGR 

method cannot accurately define the stress-strain behavior of the bondline. Plotting average 

stress against the average measured strain in the bondline gives a reasonable estimate of the 

stress-strain behavior. However, maximum strains at the free edges are averaged out and lost in 

this method. By contrast, the optimization method can characterize the stress-strain behavior up 

to failure strain. The downside to the optimization method is sensitivity to noise in the data. The 

optimization and average stress-average strain methods were applied to the co-cured TA 

specimens with adhesive and the result is plotted in Figure 80. It shows significant nonlinear 

behavior. This nonlinear behavior is a significant part of the total global specimen behavior. As 

thus, cohesive failure is a combination of shear nonlinear stress-strain and fracture behavior [99].  

Future work could address isolating fracture behavior from global response. 
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Figure 80. Measured Nonlinear Stress-Strain Behavior of Adhesive in TA Specimens 

5.6  Discussion of Results 

The approach presented in this chapter was used to directly measure the cohesive laws for 

co-cured specimens, without the use of iterative numerical FEA analyses. High-resolution and 

high-magnification DIC techniques were applied to measure the mode I and mode II fracture 

properties. Importantly, the J-integral and VCCT methods were both adequate to determine the 

fracture energy to derive the cohesive laws for the DCB and TA specimens. 

The importance of micro-focus X-ray CT scans of the crack front cannot be overstated. 

As shown in this chapter, the crack tip separation measurements are very sensitive to the 

placement of the measurement nodes. The paint does not necessarily crack at the same strain 

level as the adhesive, so using only visual identification of the crack tip, there was too much 

scatter in the results. By scanning the specimen (under load) before testing, the crack tip was 

accurately found, which improved quality of the results.  
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Figure 81. Adjustment of G1c of CZM Law to Improve Agreement between  

FEA Simulation and Measurement Data 

Numerical analyses of the DCB and TA specimens in ABAQUS/standard were 

performed to verify the measured cohesive laws by comparing the load-displacement curve 

between simulation and measurement. Both the DCB and TA models matched global 

compliance, and the DCB maximum load simulation was very close to the measured maximum 

load. The TA model with mode II fracture properties overestimated the failure load by 9.1%, 

because it did not take mixed-mode failure into account. When mode I CZM properties were 

added to the simulation, the specimen strength was within 2.5% of the measured strength. 

Further refinement of the results may be obtained by investigating mixed mode failure laws.  

A hybrid direct- and updating FEMU method may be used to improve accuracy of the 

CZM law. The direct method could verify the shape of the cohesive law, of which the parameters 

may be optimized with FEA analysis. An example of such hybrid analysis is shown in Figure 81. 

Compared to Figure 74, the agreement with global response is improved by adjusting the fracture 

toughness.  
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CHAPTER 6  

CONCLUSIONS, DISCUSSION, AND FUTURE WORK 

The body of this work addressed the challenge to accurately identify material parameters 

of carbon fiber reinforced polymer composites through advanced experimental methods that 

capture the full three-dimensional material behavior. The importance of measuring transverse 

shear nonlinear stress-strain and fracture properties is highlighted. Many failure models are 

highly sensitive to these complex failure phenomena, which are notoriously hard to measure.  

An optimization method was introduced to analyze specimens subject to heterogeneous 

stress state. The method captures the complex constitutive properties of the composite material in 

a computationally effective, accurate, and flexible procedure without ad hoc assumptions of the 

material model. To identify multiple material parameters in a single test method, specimens were 

loaded in multi-axial stress states. Full-field noncontact deformation measurements by DIC of 

these specimens provided overdetermined data used for material characterization. The 

characterization of the orthotropic and nonlinear stress-strain behavior poses an inverse problem. 

The proposed method links the measured strain distribution to the applied load, by optimization 

of material stress-strain cubic spline parameters. As such, nonlinear stress-strain curves can be 

defined without a material model. Comparison to FEA analysis proved this method is accurate.  

The optimization method was applied to the D2344 3-Point Bend and D5656 Thick 

Adherend tensile tests. These tests were used to characterize nonlinear shear behavior of bulk 

material and adhesives, respectively. The shear properties found in this analysis method are not 
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very sensitive to model and analysis parameters, and the moduli are derived from the results via 

regression analysis. 

Overdetermined strain distribution information from full-field DIC measurements 

increases confidence in material parameters and can be used to verify simplifying assumptions. 

The assumption of transverse isotropy of polymer composites is often not substantiated. The SBS 

test is shown to provide shear stress-strain properties which agree very well with the nonlinear 

properties derived from the SPT test, which were analyzed with FEMU analysis. Full 3D 

nonlinear lamina characterization verifies whether the assumption of transverse isotropy is valid. 

Data showed that this assumption depends on microstructure topology. The IM7/8552 carbon 

fiber epoxy exhibits transverse isotropic behavior, but data showed that the assumption was not 

valid for material X.  

The shear behavior derived from SBS specimens agrees very well with the SPT test 

results, but not with the ASTM D3518 test. These 45deg off-axis tensile specimens agree in the 

linear regime but shear behavior deviates after about 4000-5000μstrain. The tensile test results 

are dependent on stacking sequence, overall specimen thickness, and suffer from complex 

mixed-mode micro-scale damage development. This damage is shown to start well before 

damage can be seen in X-ray CT reconstructions. 

Across the wide range of available shear characterization methods, obtaining a pure shear 

failure mode is still challenging. In the SBS test, certain materials can withstand large amount of 

shear deformation and will still fail in mixed-mode failure at the contacts. Legacy FEMU and 

first-order solutions do not provide the flexibility or accuracy to characterize high-strain material 

behavior. The short beam shear specimen offers great flexibility in the design of experiments, 
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allowing the user to influence what failure modes and mechanical properties are measured. This 

work showed how an offset span ratio for the SBS test can increase the chance of pure shear 

failure. By using optimization methods described in this thesis, large shear strain response 

greater than 5% can be characterized. Results are shown to be consistent between various span 

and offset configurations. 

Flexibility in the design of experiments will allow for more detailed investigations in the 

nonlinear and complex deformation and failure behavior of polymer composites. By varying the 

3-Point Bend configurations, the material may be subject to a wide range of axial and shear 

loading combinations, leading to a set of mixed-mode failure criteria to be used for PDFA 

methods. Future work performed should take advantage of the flexibility of the SBS method to 

define new parameters, such as to define the multi-axial failure (or yielding) envelope, as well as 

time-dependent and fatigue behavior. Future studies may also investigate the use of optimization 

models for the use in other test methods subject to either plane stress or plane strain conditions. 

4-Point Bending tests of straight or curved beams are possible subjects.  

Experimental methods and nonupdating analysis techniques were applied to capture the 

interface traction-separation law and increase confidence in material input data for PDFA. Direct 

measurement of traction-separation cohesive laws in Mode I and Mode II fracture was proven to 

be feasible. DCB and TA specimens, made of IM7/8552 skins co-cured with a film adhesive, 

were tested with high-magnification DIC measurements at the crack tip. The thick adherend as a 

predominant mode II fracture test exhibited the proper failure modes. The traction-separation law 

was derived from crack tip displacements extracted from the DIC displacement fields at the 

crack tip. The J-integral and VCCT method were both found to be appropriate methods for 
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obtaining fracture toughness. Micro-focus X-ray Computed Tomography (CT) scans of the crack 

front were critical to obtain an accurate result. 

Global response of the DCB and TA simulation with CZM model derived from test 

results compared very favorable to the experimental load-displacement curve. Further study will 

be required to separate true cohesive laws from the specimen response including the compliance 

of adherend materials, and reversible and inelastic strain from the adhesive. Specimen diversity 

especially for shear may be used for verification purposes. Reaching beyond, these methods may 

be used to define static and fatigue cohesive damage laws for composite structures with or 

without adhesive. 
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