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ABSTRACT 

The principal development and deliverable of the research presented herein is a generic 

synthesis assembling decision support environment called AIDRA-DSS. The purpose of the system 

is to develop further expertise and a baseline environment to test complex vehicle automated 

synthesis architecture synthetization, which would be easily adaptable into a greater cognitive 

system. This tool has been developed as a precursory and developmental task towards an ultimate 

objective of an artificial intelligence design and research assistant peer.  

The motivation for this research has been to explore the advancement of toolsets for the 

decision maker and designer operating at the earliest planning and design phase of an aerospace 

vehicle or program. In particular, the driving motivation of this research is a vision of a future 

where in the designer is assisted by an artificial intelligence design peer. A vision of the future is 

one where an artificial intelligent design peer assists the designer in tedious repetitive tasks, design 

automation, knowledge retention, and more. The goal being reduction in tedious tasks such as data 

handling, method handling/integration and improvement in time to solution, ease of non-traditional 

concept consideration, tool reuse/integration, and improvement in design choice and design 

knowledge extraction and continuation. Such an environment would be advantageous as the early 

design phase—the conceptual design phase—is ultimately the most significant in determining the 

success of a program but yet is the shortest in time and sees the least in allocated labor. However, 

as the development of a true artificial design peer is beyond the scope of a single dissertation, it is 

identified that a necessary component would include synthesis automation, and hence the principal 

deliverable of this research.  

To address immediate applicability, the system developed is an engineering environment that 

arrives the user at an applicable synthesis solution toolset to solve a given problem through the 

provision of standard feedback and decision aiding platforms. That is, it is a framework for 

automated composable architecture formation that provides a concept, process and method fidelity 

independent toolset for problem solving. It is a framework that allows engineers to analyze or size 

any vehicle through a generic synthesis assembly approach. Giving the user the ability to compose 

a vehicle from different elements, AIDRA-DSS creates a tailored sizing code based on the user-

designated requirements, removing the tedious task of synthesis architecture assembly from the 

requirements of the user. The user only need specify what to analyze and the constructs of how to 

accomplish the analysis.  

The solution concept is founded on a decomposition-composition approach. It is a code 

assembly concept utilizing a warehousing approach. Fundamentally, the user provides a set of 

inputs specifying the vehicle to be considered, the process of analysis, the methods to use, and the 

output presentation desired. From these instructions, a synthesizer routine gathers the necessary 

code elements, both engineering methods and code processing (data handling, method handling, 

etc.), and assembles the components into a functional synthesis architecture. The synthesis is 

executed as prescribed by the user and the results are processed and returned to the user.  
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System functionality and applicability were demonstrated through the execution of a 

verification case and an exploratory trade study case. The verification case utilized the GHV and 

the X-51A. In comparison to known design parameter values, analysis results were resolved to less 

than 5% error, with most error being less than 1%. Successful execution demonstrated proper 

automated system assembly and method correctness.  

The trade study case evaluated air launched airbreathing and non-airbreathing concepts for 

consideration as reusable hypersonic vehicle research and development platforms. The GHV and 

X-51A, in addition to the FDL-7/Model-176, served as baseline concepts and configurations for 

the trade vehicles. In so doing, the blended-body and all-body were represented. Trade variables 

include concept, configuration, geometric design parameters, payload, mission scenarios, and fuel 

types. Through the range of trade conditions, a solution space for hypersonic test vehicles was 

assembled, visualized, and discussed. The concept solutions were considered in light of carrier 

vehicle geometric and weight constraints.  
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Chapter 1 INTRODUCTION 

HE development and demonstration of a generic synthesis environment for improved 

decision-making and automated synthesis creation is the principal topic and deliverable of 

this research. This topic is arrived at and exists within a greater scope—artificial intelligence (AI). 

This greater scope is the driving motivation for conducting the research presented. As such, this 

chapter documents the principal motivation, the general background on the subject, and topic 

refinement towards an original research topic (generic synthesis tool), and finalizes with the 

specifications of the research objective, deliverables, scope, and document layout. 

1.1 Motivation 

Fundamentally, the motivation for this research is to explore the advancement of toolsets for 

the decision maker and designer operating at the earliest planning and design phase of an aerospace 

vehicle or program. From the early aerospace vehicle product gestation phase onwards, the future 

projects engineer is challenged to develop a level of assurance when committing resources towards 

a product aimed at achieving an envisioned impact on the future market years after conception. 

The success of a product is dependent on the quality of the underlying early forecasts, requirement 

definitions, technology selections, and initial concept and configuration selections. Consequently, 

the forecasting team and future projects environment is responsible to identify the available 

product solution space and risk topographies, resulting in the correct choice of the facilitating 

technologies, baseline concept, and architecture. 

It is well known that the designer is supplemented by his tools available. These include 

software, experience, and knowledge. All are tools of the designer. However, software can be 

expensive and cumbersome with inherent limitations and problem focus resulting in rigidity and 

lack of flexibility in addressing non-standard designs. Knowledge and experience require time and 

dedication. Furthermore, knowledge and experience can be lost. Education is a fundamental 

approach to knowledge transfer but is frequently relegated to standardized fundamental knowledge 

and not the particulars an individual acquires through a lifetime of experiences. So how could the 

designer be better supplemented? How can knowledge be capture and reused? What are ways to 

improve the decision maker and designer’s situation? Blair, in Launch Vehicle Design Process: 

T 
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Characterization, Technical Integration, and Lessons Learned [1], reflects on the situation 

addressing areas of improvement:  

“ … Currently, any design synthesis or design update depends on the designer's ideas and 

experience base on an ad hoc basis. Possible approaches to technology leaps in this area 

include idea stimulus approaches; use of artificial intelligence and knowledge-based 

systems to convert designer's judgments and rules of thumb into algorithms; techniques for 

visualization of the design space; multidisciplinary optimization; and automated synthesis 

or inverse engineering.”  

Similar sentiments have been communicated by an AIAA technical committee in 1991, as stated 

in AIAA Technical Committee on  Multidisciplinary Design Optimization (MDO) White Paper on 

Current State of the Art [2]: 

“ … Multidisciplinary design optimization of aerospace vehicles cannot take place without 

substantial contributions from supporting disciplines. The identified supporting disciplines 

and methodologies are the Human Interface Aspects of Design, Intelligent and Knowledge-

based Systems, Computing Aspects of Design and Information Integration and 

Management.” 

These statements simply reflect the fundamental motivation of this research. To originally 

contribute to supporting the decision maker and designer in the development of the aerospace 

vehicle at the earliest of the design phase via the development of next generation design tools. 

More specifically, it is envisioned that the aerospace designer and decision maker be augmented 

by an artificial intelligent (AI) design and research assistant. The original creation of such a system 

is the motivation of this research.  

1.2 Design Process 

1.2.1 Design 

Engineering design, as stated by Calkins, 

“… may be thought of as the arrangement of 

elements that make up a machine or other 

man-made system…” such that “… an 

environment is created in which elemental 

interactions produce a desired result.” [4] 

More specifically, aerospace vehicle design 

is the “… application of the fundamentals of 

aerodynamics, structures, power plant, 

stability and control, based upon certain 

degree of judgement and experience of the 

individual designer.” [5] The application of 

 
Figure 1-1  System Engineering Process [3] 
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this knowledge leads to the determination of the design variables that define the vehicle. Calkins 

[4] further identifies two key elements to the design process, they are synthesis and analysis. These 

are fundamental components to a design process. They are also a part of the systems engineering 

processes as defined by Military Standard 499B, which outlines a general problem solving process. 

[6] In this approach, there are two analysis categories: requirement and function. However, for the 

discussion here in, it is limited to the simpler construct of analysis in general with the 

understanding that analysis can be applied to the arena of requirements, function, performance, or 

any other. For further details on the systems engineering process see refs: [3, 7]. 

1.2.2 Synthesis 

The key element of any aerospace vehicle design methodology is the concept of synthesis. It 

is the processes to develop concepts and designs where the product (concept/design) is an assembly 

comprised of core base components; it is a creative activity or phase.[3, 4] It “… involves the 

generation of one or more design solutions consistent with the requirements defined during 

formulation of the design problem and any additional requirements identified during synthesis.”[8] 

The output of synthesis is a product, a physical architecture.[3] The final product is a solution that 

has been verified, through analysis, to meet the requirements and performance required. The 

process, however, can be very time intensive and is “… one of the important areas to be considered 

from the standpoint of automation.”[8] 

1.2.3 Analysis 

At its core, analysis is the examination of some element. It does not infer or necessitate 

evaluation. As Calkins defines it, analysis is “… an examination of a complex system, its elements, 

and their interactions.”[4] With the inclusion of evaluation, analysis is the examination of system 

or element in relation to some given requirement. As such, analysis is “… any procedure that 

ascertains whether a given design will meet certain specified objectives.”[9] Within the design 

process, analysis is a core component of evaluating and verifying that the product of synthesis 

satisfies the necessary function, performance, and requirements identified and set forth during the 

design process. The result of analysis is a design update to meet better the function and 

requirements defined or the verification that the product satisfies the requirements and objectives 

as laid out. 

Analysis includes the classical components of education and is most recognizable by the 

general community. Different category sets include the classical disciplines: aerodynamics, 

structural mechanics, propulsion, trajectory, etc. Classical analysis tools fall into the categories of 

analytical, empirical, and numerical. Commonplace analysis tools/approaches, for example, would 

include tools such as FEM or CFD.  
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1.3 Product Life Cycle: Design Phases 

An aerospace vehicle is a product of a 

specific sequence of development, testing, 

and operation. This sequence of product 

development and operation is referred to as 

the product life cycle (PLC). Adapted from 

Roskam [11], the product (vehicle) life cycle 

can be divided into four phases: (1) research 

and development, (2) manufacturing and 

acquisition, (3) operation and support, and 

(4) disposal. The research and development 

phase itself comprises of the classical design 

phases. There are three. They are conceptual 

design (CD), preliminary design (PD), and 

detailed design (DD). The design phases 

classically occur sequentially.1 Each phase 

represents a set of different inputs, tasks, and 

outputs—completion of which occurs with 

different toolsets and toolset fidelity. The 

sequence of events occurring through the CD to DD phases refines the design options into a final 

design product. This filtration and design convergence is conceptually illustrated in Figure 1-2.  

» Conceptual Design (CD): This design phase involves the tasks of identifying and evaluating 

sets of plausible concepts2 and configurations3 to satisfy the requirements given and 

determined during analysis. Outcomes are the identification of a baseline solution concept with 

principal shape, size, and layout. Lower fidelity toolsets, select small teams, and relatively 

short turn around characterize this phase.  

» Preliminary Design (PD): Refinement of the design arrived at during the CD phase. Minor 

modifications to the external design are conducted, as necessary. A larger labor force is 

introduced along with increased fidelity tools, optimization, and wind tunnel testing.  

» Detailed Design (DD): The decision to manufacture has been made. This phase deals with the 

generation of detailed part schematics, fabrication, and overall design finalization for 

 
1 The design cycle generally is considered to execute sequentially and before manufacturing. However, concurrent 

engineering, which combines/interlays some phases to reduce time and ideally cost, is also popular and has gained 

traction. Generally, the merged phases are DD and testing/manufacturing though testing and manufacturing can be 

brought into the earlier phases as well.  
2 A concept is a “… product or system vision, idea, notion or mental image which maps form to function...” [12] 
3 Configuration refers to “… the general layout, the external shape, dimensions and other relevant characteristics” of 

the vehicle.[13] 

  

 
Figure 1-2 Design phases and product refinement, modified from 

[10] 
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manufacturing of the vehicle. The configuration has been frozen; major design modifications 

are minimized. This phase has the largest work force and usually the most time allocated. 

1.3.1 Product Life Cycle Knowledge versus Design Freedom 

The nature of design freedom and cost characterize the design phases. Knowledge and design 

freedom during the PLC phases are variable. Design knowledge and design freedom are inversely 

related. As depicted in Figure 1-3, the knowledge available is minimal initially during the 

conceptual design phase and increases through the PLC phases. The design freedom is exactly the 

opposite. The maximum design freedom available coincides with the point of minimum 

knowledge, decreasing rapidly. As such the designer has abundant freedom to consider and 

evaluate a plethora of design options and combinations, provided times and tools allow. However, 

generally, neither do, or in the event one does the other does not. Frequently, design exploration 

is so time costly that the time constraints do not permit it and the advantage of design freedom is 

significantly reduced or lost. An objective within the community is to attempt to shift the curve 

imbalance, to bring more design knowledge earlier into the design cycle and extend the design 

freedom further into the design cycle.[2] 

1.3.2 Discipline Integration 

Classically the discipline integration across the PLC has also been imbalanced.[2] This is 

reflected in the Figure 1-3. Classically, certain disciplines have taken precedence during each 

design phase. Notably stability and control are one of the last to be addressed; aerodynamics and 

performance are usually favored to the degree that many early designs are driven for maximum 

performance at the detriment of operational cost and manufacturing. The lack of ability to account 

for manufacturability, sustainment, and cost earlier in the design process (CD phase) has been an 

identified issue and is an area for correcting.  

 
Figure 1-3 Design cycle design knowledge, design freedom, and discipline integration. Adapted from [2] 

Conceptual Preliminary Detailed100% 100% 100%

Knowledge about design

Design freedom

Goal

Goal

Cost

Supportability

Manufacturing

Controls

Structures

Propulsion

Aerodynamics

Current Goal

Time into design process

100%



6 Introduction 

 

1.3.3 Cost 

The cost for significant design changes increases with PLC phase. Nicolai [14] states, “… the 

cost of making a design change is small during conceptual design but is extremely large during 

detail design.” This nature is reflected in Figure 1-4. In order to minimize potential cost, it is 

imperative that the correct design be selected early during the design process, which principally 

occurs during the CD phase. Approximately 80% of the total configuration is determined during 

the CD phase.[15-17]  These design decisions can account for 70% of the cumulative system cost 

while only having incurred 1% of the total cost. Small teams, rapid turnaround, and short time 

allocation characterize the CD phase. The result is that for a highly cost determinant event, 

comparatively, the cost invested is minimal.   

 
Figure 1-4 Design phases and product refinement in relation to cost. Recreated from [2] 

1.3.4 Significance of the Conceptual Design Phase 

The CD phase is the phase in which the general design is selected. As Nicolai states, “ … [t]he 
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1.3.5 Program Exposure and Knowledge 

The CD phase requires ideation and therefore creativity and experience. However, a very 

interesting trend has developed; the project exposure an engineer experiences is decreasing 

significantly. Half a century ago, an engineer could expect to work on a dozen or more projects. 

Today, they may be lucky to see the completion of more than one.[19] The result of this 

phenomenon is the reduction in design experience, knowledge, and exposure. All of which are 

invaluable to a designer. This illustrates a situation necessitating a system of standardized 

knowledge retention, transfer, and expression. 

1.3.6 Lessons Learned 

Due to the increased design freedom, low cost of significant design change, and ability to 

impact the final product cost, performance, and therefore success, this leads to the conclusion that 

the CD phase is the most significant and impactful place for the overall product definition and 

eventual success. Therefore, this research is directly targeted at supporting the aerospace 

community at this early design phase. The conceptual design phase is characterized by time 

constraints and low manpower but simultaneously establishes directly or indirectly the probability 

of success and cost of the program through functional solution identification. This necessitates that 

the decision maker and designer be best armed during this phase.   

1.4 Background and Refining Research Scope 

In this chapter section, the research scope and the original contribution objectives are resolved. 

They are arrived at through a consideration of intelligence; a definition is provided for both human 

intelligence and artificial intelligence. In addition to the consideration of intelligence, the fields 

and categories of artificial intelligence are introduced, and finally a general consideration of the 

application of intelligent systems in aerospace vehicle design is provided. From this, the research 

direction is identified and selected for this document. 

1.4.1 Intelligence 

Two questions are addressed. First, what is intelligence? Second, what is artificial intelligence?  

1.4.1.1 Human Intelligence 

The nature of intelligence is such that it is difficult to define. For millennia, it has been a point 

of debate. Two definition groups are briefly addressed as they correlate well with the definitions 

and constructs of artificial intelligence. A common interpretation of intelligence is the notion of 

multiple intelligences. In the late 1930s, Thurstone [20] correlated intelligence to multiple abilities, 

identifying nine categories (verbal comprehension, reasoning, perceptual, speed, numerical ability, 

word fluency, associative memory, spatial visualization). Since Thurstone, Gardner [21] similarly 

identified intelligence as multiple intelligences working together (visual-spatial, verbal-Linguistic, 
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bodily-kinesthetic, logical-mathematical, interpersonal, musical, intrapersonal, naturalistic) to 

which emotional intelligence has since been recognized as well.[22, 23] Gardner represents 

perhaps the most notable author, him identifying intelligence as distinct categories each of which 

an individual could be weak or strong in.  

Intelligence has also been classified as attributes. Sternberg [24] identifies three attributes of 

intelligence: (1) analytical intelligence, (2) creative intelligence, and (3) practical intelligence. 

These attributes translate to applicable aspects as problem solving, application of past knowledge 

to new situations, and adaptability to a new environment respectively. This concept correlates well 

with that of artificial intelligence (AI).  

Krishnakunar summarizes the several ways intelligence has been defined:  

» “The ability to learn or understand from experience 

» Ability to acquire and retain knowledge 

» Mental ability, the ability to respond quickly and successfully to a new situation,  

» Use of the faculty of reason in solving problems, directing conduct, etc. effectively”[25] 

1.4.1.2 Artificial Intelligence 

As with human intelligence, the definition of AI varies depending on the individual asked. 

Artificial intelligence, in its broadest consideration, is the mimicking of human intelligence by a 

computational means. The how, what, when, and where distinguish each concept. Harrison  [26] 

notes that, given the variety of AI concepts, the most agreed upon concept “ … is that AI is the ‘the 

mimicking, or emulating, of human techniques.’”.  As stated by Munakata, AI is “… the study of 

making computers do things that the human needs intelligence to do.”[27] Frequently, to act 

intelligent infers some ability to reason. Harrison defines AI “… as the subfield of computer science 

that attempts to use computers to emulate the way humans think and reason when solving 

problems.” [26] Russel, a notable author in the field, further breaks the definition down based upon 

thought process, reasoning, and behavior arriving at four distinct definition categories.[28] The 

four definition categories are (1) systems that think like humans, (2) systems that act like humans, 

(3) systems that think rationally, and (4) systems that act rationally, where a “… system is rational 

if it does the ‘right thing,’ given what it knows.”[28] Krishnakumar [25] notes that “… the 

intelligence of a system is characterized by its flexibility, adaptability, memory, learning, temporal 

dynamics, reasoning, and the ability to manage uncertain and imprecise information.” The present 

section provides general definitions of AI; in the following sections, what AI entails is refined 

through identification of the fields and categories of AI.  
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1.4.2 Fields of AI 

AI is a very large field. As Russel [28] points out “… AI systematizes and automates 

intellectual tasks and is therefore potentially relevant to any sphere of human intellectual 

activity…it is a truly universal field.” AI has been categorized into six primary fields: 1) natural 

language processing, 2) knowledge representation, 3) automated reasoning, 4) machine learning, 

5) computer vision, and 6) robotics.[28] Note that the fields generally match or correlate with the 

attributes and categories of intelligence, as one would expect. A summary of each field is given in 

Table 1-1. 

Table 1-1 Summary of AI fields 

AI Field Summary 

Natural language 

processing 

Enable effective communication. [28] 

 

“Areas such as automatic text generation, text processing, machine translation, speech 

synthesis and analysis, grammar and style analysis of text etc.”[8] 

Knowledge 

representation 

Storage of knowledge. [28] 

 

“The process of structuring knowledge to be stored in a knowledge-based 

system.”[29]  

Automated 

reasoning 

Generate conclusions and answers to a problem from the stored knowledge[28] 

Machine learning Determine new patterns and adapt to changing environment [28] 

 

“An adaptive mechanism that enable computers to learn from experience, learn by 

example, and learn by analogy…[it is] the basis of adaptive systems.” [29] 

Computer vision Physical object perception [28] 

 

“This topic deals with intelligent visualization, scene analysis, image understanding 

and processing and motion derivation” [8]     

Robotics Machine mobility and manipulation of objects[28] 

 

“This deals with the controlling of robots to manipulate or grasp objects and using 

information from sensors to guide actions etc.” [8]     

1.4.3 Tools of AI 

The tools developed for the field of AI are many. They can be broken down into three 

fundamental categories: computational intelligence, knowledge-based systems, and hybrid 

systems.[30] The different categories are illustrated in Figure 1-5 and are summarized below. Note 

that in the usage of the term AI in the remaining document, it is considered the inclusive form; that 

is, on mention of AI, knowledge-based systems, computational intelligence systems, and hybrid 

systems are all referenced. 

1.4.3.1 Computational Intelligence  

Computational Intelligence (CI) is distinguishable from knowledge-based AI in that it does not 

operate on the explicit representation of knowledge; rather it operates on numbers in an intelligent 

sequence. CI deals only with numerical data, has pattern recognition, does not use knowledge in 

the same sense AI does, and exhibits adaptively, fault tolerance, and speed and error rates that 
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approaches that of a human.[31] The building blocks of CI are fuzzy logic, neural networks, 

evolutionary programming, and genetic algorithms.[31] 

 

 
 

Figure 1-5 Categories of intelligent systems and tools of AI, recreated from [30] 
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A Knowledge-based systems (KBS) are computer system that are programmed to store a 
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relationships. The inference engine contains the information on how, when, and what to do with 

the knowledge stored in the knowledge base.[33] The typical components of a knowledge-based 

system are illustrated in Figure 1-6. A typical knowledge-based system is the Expert System. An 

expert system is “… a type of knowledge-based system designed to embody expertise in a 

particular specialized domain”.[33] A subset of KBS is Knowledge-Based Engineering (KBE); 

its focus is on “…automation of the creation of the CAD geometry, the engineering analysis, and 
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Figure 1-6 Typical components of a knowledge-based system[33] 

1.4.3.3 Hybrid Systems 

Hybrid systems are those systems that share components or methods of both knowledge-based 

systems and computational intelligence. KB and CI techniques are not exclusive; they can operate 

complimentarily within a system in order to address a complex problem with each being applied 

to its specialized and best suited for the task.[33]  

1.4.4 AI in Aerospace 

Intelligent systems4 are common within aerospace as AI and CI techniques are very useful. In 

this way, intelligent computational applications have included air space management expert 

systems [35, 36] and naval carrier decision support systems [35-38]. Additionally, methods are 

applicable to flight performance estimation [39], systems health monitoring [40], and control 

systems [41] and their design [42]. Intelligent systems have been applied to  computer aided design 

(CAD) and engineering (CAE) [43-46], early initial design generators [16, 47], multidisciplinary 

design optimization [48-50] and subsystem or disciplinary optimization such as airfoil [51, 52] 

and trajectory [53, 54]. As engineering is an intellectually arena, it is not surprising that intelligent 

systems have been found applied across the aerospace industry, including endoatmospheric and 

exoatmospheric situations.  

In this section a brief sampling of intelligent systems in aerospace literature is given. The 

following is a sampling of the AI and CI applications in aerospace design literature and is not 

exhaustive as the field is quite large. Almost everything discussed could effectively be described 

as a hybrid system as design is multidisciplinary and complex. The aerospace problem, both in 

 
4  Krishnakumar [25] defines an intelligent system as “… one that emulates some aspects of 

intelligence exhibited by nature. These include: learning, adaptability, robustness across problem 

domains, improving efficiency (over time and/or space) information compression (data to 

knowledge), extrapolation.”  
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complexity and data availability, requires multiple tools to be integrated and utilized within the 

design process. That said, the discussion is by knowledge-based systems (knowledge-based 

engineering), optimization (computational intelligence), and virtual assistant. Though evident that 

it is applicable across the domain, the topic is limited to aerospace vehicle design and relevant 

applications with emphasis on the early CD design phase.  

1.4.4.1 Optimization 

Perhaps the most affluent region of applied artificial and computational intelligence is in the 

solving of the optimization problem. Generally, the distinguishing factor is the technique applied 

whether to the solver itself or the geometric formulation. The techniques have been applied in 

multidisciplinary design optimization (MDO) of a complex system and to specific component 

design, such as a structural member or airfoil. The techniques are applicable to the range of 

aerospace vehicle design including rotary systems, unmanned aerial systems (UAS), high-speed 

and space systems, in addition to the traditional vehicle configurations. Chae [55] develops and 

demonstrates—with tip-jet-driven gyrodyne configuration—a conceptual design level fuzzy or 

soft probabilistic evolutionary algorithm. Optimization application to UAS [56] for configuration 

independent design space definition for design knowledge identification are demonstrated. UAV 

wing multi-variable multidisciplinary design optimization with high fidelity CFD and FEA are 

demonstrated [57] with an evolutionary algorithm. Lee [58] demonstrates the application of an 

evolutionary algorithm for airfoil section and wing planform design and optimization for 

aerodynamic performance and radar cross section reduction of combat UAS. Optimization of the 

airfoil and wing are a significant subject area in literature, examples include [51, 59-62]. In regards 

to high-speed and space systems, Viviani [63] demonstrates a conceptual design level self-shaping 

re-entry vehicle configuration approach using genetic algorithm. Bayley [64] demonstrates a study 

of space access systems including air-launched systems. Mosher [65] gives a tool development for 

conceptual design of spacecraft that integrates genetic algorithm for design space search. As in the 

case of the wing and airfoil, trajectory optimization is another area of significant literature. Huang 

[66] surveys numerical methods including genetic algorithms, swarm, and ant-colony approaches 

for hypersonic vehicles trajectory optimization. Zotes [54] provides an overview of AI application 

to aerospace problems such as launch trajectory and interplanetary satellite trajectory optimization. 

A common task within multi-objective optimization is data evaluation and knowledge 

extraction for correct solution identification and general knowledge addition. In the case of multi-

objective design, to identify the correct solution from the optimal set requires datamining and 

specifically to extract design knowledge to determine the best solution. Oyama [67] demonstrates 

the application of datamining of solar observatory trajectory design solutions found by a multi-

objective evolutionary approach. Similarly, knowledge discovery through datamining of optimal 

solution sets (determined with evolutionary algorithm) is demonstrated for transonic regional-jet 

wing [68], transonic airfoil design [52], and two-stage-to-orbit (TSTO) fly-back booster wings 

[69].  
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As in the evolutionary systems application, neural networks are similarly applied universally 

within the design arena. They prove advantageous in acting as surrogate models for complex 

systems reducing the optimization design time or improving rapid technique accuracy. Khurana 

[61] demonstrates neural networks in conjunction with a swarm optimization approach for airfoil 

shape optimization. Berke [70] similarly demonstrates the application of neural networks in the 

approximation of new structural wing design. Khlopkov [71] employees their use in aerodynamic 

approximation for improved stability and control evaluation in hypersonic vehicle shape based off 

an optimal solution set.  

1.4.4.2 Knowledge Based Systems  

Knowledge based systems are generally applied to automate certain tasks within the design 

process. Given the popularity of MDO over the last few decades and its dependency on a strong 

geometry generation core, this area has seen significant application. Many modern KBS directly 

support optimization or analysis. As such many KBS are integral parts of an IS for optimization. 

These systems would be classifiable as hybrid, however, here the focus is on their KB element 

consideration. KBS have been applied in the configuration and geometry definition phase of the 

design process, also referred to as knowledge engineering (KE) or knowledge-based engineering 

(KBE). Rentema [47] demonstrates a rule based approach for initial concept definition for 

conventional systems. Similarly, Gong [16] demonstrates a KBE approach to missile design with 

KE integration as an initial step in baseline configuration definition and evaluation step in an 

optimization procedure. Similar examples of KBE applied for configuration and geometric model 

definitions can be found in [44, 72, 73]. Component (part) design is supported by KBE as well 

[74]. Similarly, as to setup a MDO study requires expertise, so too KBS are applied to support 

MDO study setup[75]. Additionally, expert systems can be applied to the control and coordination 

of optimization as demonstrated by Price [76].   

1.4.4.3 Advisor (Virtual Assistant) 

Up to this point, both optimization and application of knowledge-based systems in engineering 

(KBE) have been considered. The next intelligent system considered are virtual assistants (VA). 

The virtual assistant is distinguished from the standard expert advisory systems. A distinguishing 

ability is natural language processing in particular for easy question-answer interfacing. Well 

known and commercial virtual assistants include systems such as Amazon’s Alexa, Apple’s Siri, 

Google Assistant, and Microsoft’s Cortana. A literature review of virtual assistants is given by 

Martin [77]. He identifies several VAs, however none are within the aerospace vehicle design 

domain. In the review of design literature, this author has not identified any aerospace design 

specific VAs either; only three VAs (or VA research programs) related to the aerospace community 

have been identified. They are NASA’s IBM Watson based systems [78], ESA’s DEA [79], and 

Daphne [77, 80]. There are advisory system within the expert system domain such as the MDO 

advisory system [75], however, they fall outside of the range of a modern VA. The vision of a VA 
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would be one that would contain such a system within it in addition to many more system 

capabilities.  

NASA-Watson endeavor is NASA’s stepwise research plan towards a more complete VA as 

is indicated in the technology innovation plan vision, Figure 1-7. NASA has utilized IBM’s 

Watson, a data analytics system. Current work has included the Watson Content Analytics, which 

identifies trends, connections, and expertise by incorporating and analyzing thousands of 

documents.[81] In addition, NASA conducted a proof of concept VA with the Watson Pilot and 

Aerospace Innovation advisor proof of concept that “… generates leads to hard questions and 

provide evidence for new paths…”[81] Both are steps to the greater objective. 

ESA’s DEA and Daphne target applicability is to the space domain with mission/trajectory 

planning. DEA is “…an expert system to support decision-making at the early stages design of 

spacecraft, a Knowledge Engine for mission design, facilitating Knowledge Management and 

Reuse.”[79] It is still in early development. Similar to DEA, Daphne is a virtual assistant to support 

high level design of distributed satellite missions (DSM).[77] According to Virosi [77], Daphne 

has a capacity of natural language interfacing for information quarry in addition to trade space 

exploration tools. It has been tested at NASA. It is specifically for application in satellite mission 

design.  

 

 
Figure 1-7 NASA’s data analytics and machine intelligence capability vision [82] 
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1.4.5 The Great Problem 

In Section 1.3 Product Life Cycle: Design Phases, the PLC was introduced and the CD phase 

identified as a critical design phase where in design freedom is maximum but yet design knowledge 

is minimum. An area of research within the community to attempt to alleviate some of the issues 

within the CD phase is the automation of elements of the design process. Automation of the design 

process requires computer software. Within the software domain, an applicable tool for automation 

is AI. A consideration of AI in literature as applied to design and principally the CD phase is given. 

Recall, that the research motivation has been to contribute to CD tool development through AI and 

specifically advancement toward an artificial intelligent design and research assistant, which in 

literature is representable by the virtual assistant. On consideration of the literature, it is evident 

that research and development heavily focuses on design automation, particularly through 

optimization systems (a more in-depth account of automation and design tools, in particular 

multidisciplinary design optimization, is given in the proceeding chapter). On consideration of the 

availability of systems within the virtual assistant domain (a class beyond the typical hybrid expert 

system), there are few within the aerospace domain and even fewer (none?) within the conceptual 

design domain applied to aerospace vehicle design and synthesis. In terms of potential to contribute 

to research, this is excellent; however, to construct an entire virtual assistant for the CD phase is 

beyond the scope of a single dissertation. As such, with the target identified and verified as a point 

of research, it is necessary to identify what this construct could be and what system within that 

could be addressed to move towards this final objective.  

1.4.6 Vision and Research Scope Reduction 

There primary research goal is to create a virtual assistant for aerospace vehicle design. The 

virtual assistant envisioned is an intelligent system that is tasked to show many of the 

characteristics of a cognitive system. A cognitive system is a system that “… performs the 

cognitive work of knowing, understanding, planning, deciding, problem solving, analyzing, 

synthesizing, assessing, and judging as they are fully integrated with perceiving and acting.”[83] 

The system is envisioned to support the decision-making process by providing an intelligent, 

adaptive, and parametric framework for systems design, strategic planning, and technology 

forecasting. Emphasis is placed on non-traditional systems, high-speed systems, and space access 

systems with a focus on the highly abstract CD phase. Envisioned capacity includes 

simulation/analysis, synthesis, knowledge extraction and reuse, simulated flight-testing, full 

modularity for ready future modification. Some system specifications include: 

» knowledge generation and retention through dynamic knowledge base & data base 

» scenario based multidisciplinary design analysis and optimization (MDAO) 

» self-composing architecture capability with configuration, hardware, and mission 

independence 

» visualization and interpretation of design space topography 
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» natural language interfacing 

» rational action without human oversight. 

 

On considering the architecture constructs specified, in light of past and current research within 

the research group that this dissertational research is conducted, included research activities have 

been synthesis system development [84-87], space program planning [88], technology portfolio 

forecasting [89] in addition to current research by other research team member applied to vehicle 

design data aggregation and knowledge extraction. Each topic area would be an element within a 

virtual assistant. As such, a meaningful and impactful research direction could include 

continuation of anyone system; for the purposes of this research, the topic area is synthesis system 

development.  

As such, this research is reduced from the domain of AI and VA development specifically, to 

the development of a synthesis system implementation for future integration into this cognitive 

system environment. However, until such point that this becomes plausible the system is required 

to serve as a useful standalone implementation in the synthesis domain of conceptual design. Since 

the current research endeavors and the necessity for integration within the greater VA system in 

the near future, the synthesis system shall address and incorporate automation and within concept 

construction incorporate potential for further automation.  

1.5 Research Outlook and Scope  

The research outlook includes four topics. They are problem statement, research objective, 

research deliverables, and research scope. Each is considered. 

1.5.1 Problem Statement 

The aerospace domain has no virtual assistants for aerospace vehicle design. There should be 

a virtual assistant for design. There are vast quantities of data and knowledge ready to be employed 

in addition to analysis methods. Design data is unsurmountable and require computer assistance 

for evaluation and knowledge extraction. Design cycle time is constrained, design process 

elements need to be automated as much as feasible. A key element for aerospace vehicle design is 

synthesis, any virtual assistant for aerospace vehicle design should incorporate automated design 

synthesis. 

1.5.2 Research Objective and Contribution 

There are two research objectives aimed at originally contributing to aerospace science. They 

relate to the principal deliverable and the application of the deliverable to a useful problem.  
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Principle Objective: 

» Development of a complex vehicle conceptual design synthesis tool to assist the decision 

maker and designer in the analysis and evaluation of design options. 

» Develop a synthesis assembly automation framework.  

Secondary Objective: 

» Demonstrate system operability through a reusable hypersonic test vehicle case study. 

The principal objective is formulated with the intended future application of such a system in 

a larger framework. Such frameworks could include but are not limited to intelligent systems, 

technology portfolio planning systems, and program or architecture planning systems. 

Fundamentally, the goal is to advance the decision-making and the design process through the 

integration of rapid and flexible analysis capability earlier into the decision and design process. 

The goal is to develop an adaptable synthesis design tool with general applicability and increased 

transparency.  

1.5.3 Research Deliverables 

There are three principal deliverables from this research. They fall into the categories of tool 

specification, tool development, and tool application. They are as follow. 

» Specifications for an automated synthesis generation toolset. 

» A decision support environment with an integral synthesis assembly tool for tailor made code.  

» Solution topographies for air-launched and reusable hypersonic test vehicles. 

1.5.4 Research Scope 

The research topic itself is vast. The consideration of artificial intelligence, synthesis, vehicle 

design, and optimization anyone topic can have any number of potential research topics and 

approaches. This research however is conducted within the scope of addressing one specific area 

and part that is common to all—synthesis architecting. Within the research environment that this 

research is conducted, development areas include program planning [88], portfolio planning [89], 

vehicle synthesis tool development [84-87], knowledge base [90] and database [91]. This research 

is conducted within the evolution of and lessons learned from said research and specifically in 

continuation of the work presented by [86, 87].  
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1.6 Document Outline 

To accomplish the objectives towards original contributions to aerospace science as identified, 

the problem is addressed through a constructive sequence. The sequence follows the tasks of 

situational illumination, solution identification, solution implementation, system verification, and 

system application. Logically, this document is organized into this sequence.  

» Chapter 1: Introduction – This chapter identifies the motivation and objectives of this research. 

An introduction to principal topics is given. This includes intelligence, artificial intelligence, 

and an envisioned AI research and design assistant framework and critical components. From 

the identification of critical components, the research objectives and deliverables are defined. 

» Chapter 2: Literature Review – In this chapter a review of engineering design synthesis tools 

is given. Emphasis is placed on design automation. Specifications for a generic synthesis 

system are identified. 

» Chapter 3: Solution Concept – A generic synthesis generating solution concept is given. The 

critical conceptual components are identified and discussed. 

» Chapter 4: Concept Implementation – The previous chapter identifies the fundamental solution 

concept. This chapter documents the manifestation of the system concept into a functional 

system. 

» Chapter 5: Verification and Application – In this chapter the application of the tool is 

demonstrated. Successful tool development is illustrated through a verification case and a trade 

study case. The vehicles of consideration are air launched reusable hypersonic cruisers of both 

airbreathing and non-airbreathing type. 

» Chapter 6: Conclusion – Concluding statements are made. The research is summarized; 

principal deliverables and contributions reiterated. Recommendations for areas for 

advancement and improvements are given.  

» Appendix A: Case Studies Expanded – This section contains expanded description of the 

baseline vehicles and expanded results of the trade study not included in the main text. This 

includes more details pertaining to the convergence behavior and selected enlarged solution 

space and solutions.



 

 

Chapter 2 LITERATURE REVIEW 

In this chapter, the design tools of the conceptual designer are considered. The objective is two 

part. First, a consideration of the various tools employed in design. Second, the identification of 

lessons learned and specifications for a future automated synthesis assembly and decision support 

environment system.  

2.1 Design Classes 

The CD phase is characterized by decision-making. Synthesis or design tools are the closest 

broad categories of toolsets available to the aerospace design engineer that assist the engineer in 

making decisions. The designer employs the tool to a given problem in order to arrive at a condition 

such that a designer can make an informed design decision. 

Approaches to aerospace vehicle design can be categorized. Chudoba [17, 18] provides a 

historical review of flight vehicle design synthesis systems and tracks their evolution. After 

identifying over a hundred system, he identifies five classes of design. Class 1 – 5 correspond to 

design by experimentation, manual design processes by means of design handbooks and texts, 

automation through software (discipline specific and local optimization), automation through 

multidisciplinary design optimization (MDO), and lastly configuration independent design with 

AI integration (in particular Knowledge-based systems). The evolution of design through these 

five generations of synthesis systems illustrates a level of increasing proficiency at and automation 

of systems integration and design exploration.  

Fundamentally, the classes identified can be narrowed into two groups. Design with 

automation and design without automation. In this context, automation generally relates to the act 

of executing a design process task in an automatic fashion, that is without human immediate 

direction or minimal involvement. Note that we distinguish automated design and design 

automation as automation can be applied either to the identification of a design through design 

variable modulation (MDO) or to the automatic generation of synthesis codes that can themselves 

include automated design search. 
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The following sections consider the different design approaches and tools involved. Particular 

emphasis is placed on design automation and automation of design systems as an AI system of the 

type prescribed would require automation at every level. Furthermore, automation of product 

development tasks is key to increased productivity and reduction in time to market and costs.[44] 

For completeness, the classic non-automated (texts) are considered as well as a point of reference. 

2.2 Classical Design: Texts and Programs  

Classical synthesis toolsets can be separated into two categories. The categories are text-based 

(Class 2) and computer-based (Class 3-4). The text-based toolsets are generally either in the form 

of design handbooks or textbooks. The computer based are software that have an implemented 

process and analysis routine. The computer-based systems here are distinguished from the more 

modern systems that are addressed in a later section.  

2.2.1 Design Texts 

Design texts chronical and attempt to communicate design knowledge and the multidiscipline 

nature of the aerospace vehicle. The intent of the texts is to educate and communicate knowledge 

in a transparent fashion. The design texts address the multidisciplinary reality of aerospace vehicle 

design, generally addressing each principal discipline—aerodynamics, propulsion, stability and 

control, cost, etc. Classically, they address the design through analytical and empirical 

methodologies. As physics is a constant, many of the references share similarity in knowledge and 

even methods directly. However, since many are founded on empirical/statistical methods, they 

can be non-applicable or useless when addressing non-standard concepts where in the data and 

experience does not exist.[92] A representative selection of aircraft and launch vehicle design texts 

are presented in Table 2-1 and Table 2-2, respectively. Many of the texts are well-known aircraft 

design texts in the community: Torenbeek, Raymer, Roskam, and Nicolai are standard design texts 

in academic teaching environments.  

Table 2-1 Selected aircraft vehicle design texts 

Author Year Title Reference 

Corning 1960 Supersonic and Subsonic, CTOL and VTOL, Airplane Design [93] 

Wood 1964 Aerospace Vehicle Design Vol. 1, Aircraft Design [94] 

Loftin 1980 Subsonic Aircraft: Evolution and the Matching of Size to Performance [95] 

Torenbeek 1982 Synthesis of Subsonic Airplane Design [13] 

Roskam 1985 Airplane Design [96] 

Raymer 1989 Aircraft Design: A Conceptual Approach [97] 

Stinton 1998 The Anatomy of the Airplane [98] 

Anderson 1999 Aircraft performance and design [99] 

Fielding 1999 Introduction to Aircraft Design [100] 

Jenkinson 1999 Civil jet aircraft design [101] 

Howe 2000 Aircraft Conceptual Design Synthesis [102] 
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Author Year Title Reference 

Schaufele 2000 The Elements of Aircraft Preliminary Design [103] 

Nicolai 2010 Fundamentals of aircraft and airship design Volume 1, Aircraft design [14] 

Sadraey 2012 Aircraft Design: A Systems Engineering Approach [104] 

Gudmundsson 2013 General Aviation Aircraft Design: Applied Methods and Procedures [105] 

Sforza 2014 Commercial Airplane Design Principles [106] 

Kundu 2019 Conceptual Aircraft Design: An Industrial Approach  [107] 

 

Table 2-2 Selected Space Access Vehicle design texts 

Author Year Title Reference 

White 1963 Flight Performance Handbook for Powered Flight Operations [108] 

Wood  1963 Aerospace Vehicle Design Vol. 2, Spacecraft Design [109] 

U.S. Air 

Force 

1965 Space Planners Guide [110] 

Humble 1995 Space Propulsion Analysis and Design [111] 

Logdson 1998 Orbital Mechanics: Theory and Applications [112] 

Hammond 2001 Design Methodologies for Space Transportation Systems [113] 

Suresh 2015 Integrated Design for Space Transportation Systems [114] 

 

The principal concerns with design texts are that they focus on a particular topic and by 

definition are static. Design texts (as do many software systems) are generally dedicated to a 

particular concept or configuration and low speed. As a result, many non-traditional and high-

speed vehicles are not addressed. The classic textbook, though a significant general aid, serves as 

an information and knowledge library for fundamental knowledge transfer and application as 

necessary to low fidelity analysis or early design variable estimations. Although they represent 

potential method libraries for rapid low-fidelity conceptual design and excellent educational 

resources for the burgeoning student and engineer, they generally do not represent the state of the 

art in terms of advanced computational approaches, design automation and optimization, nor 

address non-traditional concepts. Note that these tools are still highly valuable and applicable in 

certain situations and even are employed within computational systems as discussed next.   

2.2.2 Design Computer Systems 

With the advent of computer systems, naturally grew a community of aerospace vehicle design 

software. Many design tools were built. Like the classical design texts, many early (and even 

modern systems) tended to be highly focused and would tend towards a monolithic nature, 

becoming difficult to maintain and modify, especially to address non-traditional concepts. 

Additionally, many early systems would be distinguishable as being conducting discipline specific 

or multidisciplinary analysis (MDA) but distinctly not integrating a multidisciplinary design 

optimization (MDO) framework. Modern frameworks have generally transitioned to a modular 

approach, allowing for improved system modification, adaptation, and method fidelity variance. 



22 Literature Review 

 

MDO has also become a heavily focused upon element and topic (perhaps to the detriment of 

development in systems for early conceptual design and program planning where in the optimal 

design identification is less important than the identification of what concept to even consider to 

be optimized and for what conditions). Note however, that since these computer systems allow for 

method fidelity variation, they lend to application beyond the conceptual level and are applied up 

to a preliminary design synthesis level.[115]  

Table 2-3 Selected aircraft vehicle design software tools [86] 

Acronym Year Full Name Developer 

AAA 1991 Advanced Airplane Analysis DARcorporation 

ACSYNT 1987 AirCraft SYNThesis NASA 

AVDS 2010 Aerospace Vehicle Design System Aerospace Vehicle 

Design Laboratory 

CADE 1968 Computer Aided Design Evaluation McDonnell Douglas 

FLOPS 1994 FLight OPtimization System NASA Langley 

Research Center 

Model Center 1995 Model Center Integrate - Explore - Organize Phoenix Integration 

Inc 

ODIN 1974 Optimal Design Integration system for synthesis of aerospace 

vehicles  

NASA Langley 

Research Center 

PrADO 1986 Preliminary Aircraft Design and Optimization Technical University 

Braunschweig 

pyOPT 2012 Python-based object-oriented framework for nonlinear constrained 

optimization 

Royal Military College 

of Canada 

VDK/HC 2001 VDK/Hypersonic Convergence McDonnell Douglas, 

Hypertec 

2.2.3 Synopsis of Systems Reviews 

In continuation of Chudoba’s review of synthesis approaches, Huang [84], Coleman [85], 

Gonzalez [86], Omoragbon [87], and Oza [89] have conducted additional surveys of existing 

aerospace vehicle synthesis tools with a focus on the legacy systems. Figure 2-1 summarizes the 

sequence of reviews. As mentioned, Chudoba identified many conceptual design systems and 

postulated a categorical classification scheme. Huang continued the system evaluation with 

emphasis on considerations for space access vehicles. He surveyed 115 synthesis systems with 

application to aircraft, helicopter, missile, and launch vehicle design, documenting them based on 

development history, design logic, module evaluation, and software development, noting both the 

advantages and disadvantages of each system. Huang noted an absence of system focus on space 

access vehicles and recommended that future systems address generic design and modular 

multidisciplinary design capability, multidisciplinary design optimization, data management 

systems, and dedicated vehicle conceptual design knowledgebase.  

Coleman [85] continued systems evaluation.  He identified three stages within the conceptual 

design process—parametric sizing, configuration layout, and configuration evaluation. He 

evaluated the synthesis systems based on these three sub-phases of the conceptual design phase. 

The survey forced him to identify the necessity for a readily available process and methods library 

that would include direction on how and when to implement them. The intent of the libraries being 
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the allowance of necessary design elements (process and methods) for rapid adaptation to solve a 

new problem. Colman goes on to document and populate a process and method library and 

implement a parametric sizing tool based on this knowledge.  

 

Figure 2-1  Synthesis systems review summary [116] 

 

Gonzalez [86], Omoragbon [87], and Oza [89] evaluated several synthesis systems based on a 

broad criteria set for future systems development. Emphasis transitioned in part from a traditional 

synthesis and sizing system evaluation approach towards technology portfolio planning and 

forecasting capacity review, or rather a review of systems in light of technology portfolio planning 

and forecasting. Omoragbon  notes, the review is conducted to “… understand the applicability of 

existing synthesis systems to the acquisition problem.”[87] Gonzalez [86] states that the review 

has centered on assessing aerospace synthesis system’s capability “… to characterize, analyze, 

and solve classical and new/novel aerospace problems.” Table 2-4 specifies the capability 

evaluation criteria. Additionally, evaluated are data handling capacities as outlined in Table 2-5. 

Both text (by-hand) and computerized systems were considered.  
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Table 2-4 Synthesis system evaluation criteria [86, 87] 

 
 

Table 2-5 Data management system evaluation criteria [86, 87] 

 

From the review, Gonzalez identifies the significance of the open-ended integration platforms 

(presented in Section 2.3.4 Process Integration and Design Optimization Tools), in particular the 

modularity, flexibility, and freedom they offer; however, he also identifies that the freedom comes 

at the loss of a structured tool with method and processes selection and integration, as represented 

by the classical monolithic systems. Gonzalez identifies a need for a bridge between the two 

approaches. He describes this bridge environment as “… an environment with the adaptability of 

an integration platform, while implementing the knowledge gained from classical conceptual 

design methodologies to aid the user in the creation of synthesis systems tailor-made to solve given 

problems.”[86] This leads him to identify the following system specifications:  

» “Stores/implements classical design methodologies, both in terms of analytic process and 

disciplinary methods 

» Cross references hardware applicability to stored analytic processes and disciplinary methods 

» Allows matching of the analysis framework to problem requirements 
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» Allows visualization of the ability of the analysis framework to address problem 

» Allows comparison of aerospace synthesis systems 

» Allows measurement of the multidisciplinary integration level of the analysis framework”. [86] 

The result of Gonzalez [86], Omoragbon [87], and Oza [89] research was a synthesis toolset 

for composable systems. An overview is given in Section 2.4.6. Note that this research is a 

continuation of their work. 

2.3 Multidisciplinary Design Optimization 

In the following section multidisciplinary design optimization (MDO) is addressed. The topic 

itself is vast and a full treaty is beyond the scope of this work. For an in-depth review of MDO and 

its architectures see references: [117-121]. The objective here is not to give a detailed account of 

MDO and its processes or techniques. Rather, the goal is to obtain a general concept introduction 

and insight into the world of MDO and identify system attributes and recommendations that would 

be integral to future design systems. This section address defining MDO, specifying its 

fundamental process, identifying significant components of MDO, integration tools, and lastly 

lessons learned and specifications for a MDO environment. 

2.3.1 What is MDO? 

Sobieszczanski-Sobieski [117] defines MDO as a “methodology for the design of systems in 

which strong interaction between disciplines motivates designers to simultaneously manipulate 

variables in several disciplines.” Fundamentally, MDO is the application of an optimization 

routine to a multidisciplinary design analysis (MDA) routine to find the best solution. At its core, 

multidisciplinary design optimization facilitates the identification of hard to find design solutions 

by balancing potentially non-intuitive tradeoffs between the subsystems of a complex system.[122] 

By definition, MDO is distinctly different from a singular optimization approach. That is, 

optimization applied to a trajectory or structural optimization problem does not infer MDO; MDO 

requires more than one disciplinary interaction. Additionally, multidisciplinary design 

optimization of the system does not provide that any one subsystem is optimal. As Rafique notes 

the “multidisciplinary solution might not be the solution for any one discipline analyzed separate 

from other disciplines, but is the best solution accounting for interactions.”[123] 

MDO has become very popular. A reason for the impressive degree of applied MDO is that an 

aerospace vehicle is a highly complex system with many interlacing disciplines and design 

variables. It is well known that the aerospace vehicle is a complex system, is multidisciplinary by 

nature, and as such, for the demanding criteria placed upon the designs, the system’s components 

cannot be designed and developed in isolation.[124] It is necessary to have a design approach that 

can account for the many interdependencies within the design scope. 
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2.3.2 Fundamental Process Components of MDO 

Vandenbrande [122] describes the design space exploration through implementation of a MDO 

process as comprising of three fundamental elements: a design explorer, a multidisciplinary design 

analysis model, and a optimizer. The architecture is illustrated in Figure 2-2. The design explorer 

is the component that controls the initialization and continuation of the exploration process by 

generating a design point for the MDA model as denoted by (𝑥1, 𝑥2, … , 𝑥𝑛). The MDA model is 

an analysis set that can analyze the generated design point for each discipline considered. The 

output of the analysis is denoted by (𝑓1, 𝑓2, … 𝑓𝑛) and feeds the optimizer. The optimizer is a 

mathematical optimization scheme to search the design space for the best design solution, given 

some design criteria and or constraints. The optimizer is closely coupled with the design explorer.  

 

Figure 2-2 Generic MDO based design space exploration process [122] 

2.3.3 Components of MDO 

The above section provided a very top-level understanding of the MDO process and its core 

components. However, the components of MDO can be further identified. Sobieszczanski-

Sobieski [125] initially proposed that MDO is formulated by six components. He identifies them 

as approximations, system mathematical modeling, design-oriented analysis, decomposition, 

design space search, human interface, and optimization procedures. The component tree is 

illustrated in Figure 2-5. Each is summarized below. For further overview on the components of 

MDO see [117, 125, 126]. 

» Approximation Concepts: a secondary approximate analysis method callable by a design space 

search engine to approximate the solution with sufficient accuracy rapidly. Necessitated due 

to excessive computation cost of the design-oriented analysis component; full analysis is called 

as required to maintain prescribed error levels. This component correlates to the 

Multidisciplinary Design Analysis Response Model element identified in the previous section. 

The approximation approaches include polynomial functions, neural networks, surrogate 

models, and metamodels. A current area of study for these approximation routines is referred 

to as Design of Experiments (DOE).   

» System Mathematical Modeling: set of engineering methods applied in a modular approach 

and in an intelligent manner to reduce computational cost. Mathematical code models are 

modular; the monolithic coding approach is avoided. Current research objectives include the 

quantification of the non-classical design disciplines and phases such as manufacturing, 
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sustainment, and flight-testing. To reduce data transfer points and computational costs, 

methods are intelligently reduced or combined, and numerical methods guarantee matching 

output to input nodal coordinates for synchronization of variable parameterization for reduced 

workload on data processing and potential analysis grid (mesh) regeneration. 

» Design Oriented Analysis: a component consisting of engineering design analysis processes, 

data management systems (database), and data visualization. Design analysis processes include 

procedures for analysis execution including repetitive full analysis application to answer the 

“what if” question, partial analysis execution for low-cost re-evaluations (re-execution of 

certain modules as necessary dependent on input parameter variation and the reuse of non-

affected data), multi-fidelity analysis or fidelity analysis selection, and sensitivity analysis. In 

regard to data management and storage, data should be stored in a manner for ready retrieval 

and reuse by the system and designer as well as be communicated effectively visually.  

» Decomposition: the act of dividing a complicated optimization problem into less complicated 

coordinated optimization tasks that can be solved while retaining the multidisciplinary 

connections. This is illustrated in Figure 2-3. There are three decomposition approach 

classes—hierarchical, non-hierarchical, and hybrid. In the hierarchical approach, the system is 

a parent-child pyramidal process where in the data flows between a parent and a children set; 

data does not directly traverse child-to-child. The non-hierarchical approach does not restrict 

communication between the children, as such, no parent-children sets are discernable. A hybrid 

system is one that consists of both hierarchical and non-hierarchical. Decomposition can be a 

nontrivial task; tools such as genetic algorithms have been applied to the decomposition 

problem. 

 
Figure 2-3 Illustration of system’s 𝑁2 organization diagram before and after decomposition and reassembly [127] 

» Design Space Search: Evaluation of the design space in search of the “best” or optimal solution 

given the optimization criteria and design constraints. A mathematical solver seeks the 

optimum solution. There are many optimizers available for use. The search algorithms include 

control theory and computational intelligence (AI) based approaches. 
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» Optimization Procedure: a procedure that organizes the here identified optimization elements 

into a coherent execution format. There are many approaches and architectures, the selection 

of which is dependent on the problem and computing resources at hand. An example process 

is shown in Figure 2-4. 

 
Figure 2-4 Example optimization procedure for a Non-hierarchical system [125] 

» Human Interface: a means for the user to interact directly with the optimization process and 

execution. It provides access to intermediate results for review and judgment as well as 

intervention in process setup, execution, and termination. Generally, direct human involvement 

is required in setup and exaction; the setup and execution are not fully automated. 

 
Figure 2-5 Principle components of MDO [125] 
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2.3.4 Process Integration and Design Optimization Tools 

To assist in the optimization process, many commercial and open-source tools have been 

developed. A common approach to high fidelity MDO design architecture creation is the use of 

process integration and design optimization (PIDO) execution control software. PIDO system offer 

a integration capacity of third-party software, optimization, visualization, statistical analysis, and 

data management.[128] In regards to capability for third party code integration, pre and post 

processing, and algorithm availability provided, the PIDO software provide similar 

capability.[120] However, van Gent [129] notes that the PIDO platforms, though developed for 

similar purposes, each can vary in their approach to user interaction, workflow concept, component 

integration, distributed execution, derivatives, and convergence.  

PIDO systems have been identified and summarized by van Gent [129], Riccardi [127], and 

Simpson [120]. There are many commercial and open-source systems. Riccardi [127] performed 

a literature review on the systems identifying and describing over twenty systems. Table 2-6 is a 

exert from the review of PIDO systems. Simpson [120] likewise identifies and discusses PIDO 

systems but with emphasis on system capability in both metamodeling and optimization. Riccardi 

[127] notes that “…optimization strategies included are mostly the best known algorithms for 

deterministic and stochastic optimization. Hybrid optimization approaches between the already 

present strategies are not envisaged.” Common PIDO systems include CAFFE [130], 

ModelCenter [131], Dakota [132],  OPTIMUS [133], modeFRONTIER [134], and RCE [135]. 

Table 2-6 Composable system software tools, table excerpt from reference [127] 

Software Main Features 

AML, AMOpt, 

Technosoft, 2002 

Interfaces with existing tools for structural analysis and post processes analysis. Generative 

modeling. Integration of third party applications. XML data handling. Process Parallelization. 

Visualization tools. Multiplatform. 

BOSSQuattro, 

Samtech, 1997 

Open design and optimization architecture for parametric analyses, design of experiments, 

multidisciplinary optimization and sensitivity analysis, statistic analyses and updating. It can make 

use of internal solvers or integrate external optimization algorithms. 

Caffe, Desktop 

Aeronautics, 2000 

Collaborative Optimization framework. Integration of existing code for analysis and optimization. 

Management of the design process on multiple distributed platforms. GUI. XML data handling. 

DAKOTA, Sandia 

Web, 2009 

Flexible and extensible interface between simulation codes and analysis methods. Containing 

algorithm for deterministic and stochastic optimization, parameter estimation and sensitivity 

analysis. Multilevel parallel object oriented framework. 

iSIGHT, Dassault 

Syst`emes Simulia, 2007 

Capability of include commercial CAD/CAE software and internally developed programs. 

Interfaces for custom applications and Excel spreadsheets. Design of Experiments, Optimization, 

and Approximations technologies. 

Kimeme, Cyber 

Dyne, 2011 

Platform for multi-objective and multidisciplinary design optimization. Coupled, by means of 

scripts, with third-party software. Integration of custom optimization and/or analysis algorithms. 

Graphical design environment for problem definition, analysis and visualization of the results. 

Software network infrastructure to distribute the computational load. 

MDICE, 

NASA, 1998 

Multidisciplinary Analysis. Interface with commercial software for computer aided design, grid 

generation, computational fluid dynamics, computational structural dynamics. Visualization tools. 

Computing environment for the concurrently and cooperatively operation of many computers. 
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From the point of view of this research, the point of interest in these systems are their capacity 

for tool integration, levels of system automation, and process flexibility. Optimization itself is not 

the objective research rather automation of synthesis creation.  

2.3.5 MDO System Specifications and Lessons Learned 

MDO excellent for discipline integration, and search for optimum solutions within certain 

bounds but is a solver not an approach for AI. It is a lower-level attribute that could be employed 

but is not the driving core of a flexible, multi-problem agent. It would be a tool of a greater actor 

just as it is for the current designer. However, MDO is a fundamental tool of the designer and must 

be accounted for in any new design approach or system. As part of the review of literature on 

MDO, specific focus and attention was applied on identifying the MDO tool / system requirements 

for MDO in aerospace. In the following section, specifications are summarized. 

2.3.5.1 Automation 

Automation in paramount, as many systems as possible should be automated. This includes 

automated data transfer between and execution of analysis, including high-fidelity.[136] The 

system should automate or support the automation of the repetitive elements of the MDO process 

and design.[72, 137, 138] Furthermore, automation should apply to the pre and post processing of 

ModelCenter, 

PhoenixIntegration, 1998 

Visual environment. Workflow graphically constructed. Data Fitting. Quick wrapping of batch 

mode programs into the modeling environment. Up to 30 optimization algorithms with definition 

of objectives, variables and constraints. 

modeFRONTIER, 

ESTECO 1998 

Multi-disciplinary and multi-objective optimization and design environment. Coupling to many 

existing computer aided engineering tools. Post processing results analysis. Visual environment. 

Simultaneous use of simulation software on different machines. 

Nexus, iChrome, 2011 Linking to a list of third party commercial tools. Plugins for specific custom analysis tools. Trade-

off, design of experiments, statistical analyses, response surface and metamodelling studies. Multi-

objective optimisation algorithms. Visual environment. 

OptiY, OptiY 

e.K., 2005 

Multidisciplinary design environment. Providing direct and generic interfaces to many CAD/CAE 

systems, intern codes and externs programs through predefined interfaces. Graphical workflow 

editor. Modern optimization strategies, probabilistic algorithms for uncertainty, reliability, 

robustness, sensitivity analysis, data-mining and meta-modeling. 

OPTIMUS, 

Noesis Solutions, 1996 

Process Integration and Design Optimization software. Design of experiments and response surface 

modeling for design space exploration. Visual environment. Graphic workflow editor. 

PASS, Desktop 

Aeronautics, 2005 

Applicable to Aircraft Design. Rapid analysis coupled with optimization tools. Wide range of 

appropriate, real-world constraints. It is built on a modular, extensible framework that allows for 

the implementation of higher-fidelity analysis codes into the conceptual design process. Visual 

environment. 

HyperWorks - 

HyperStudy, Altair 

Engineering, 1999 

Design of experiments. Meta modeling approximations. Collection of single and multiobjective 

algorithms. Stochastic studies. Post processing and Data Mining. Parameterization of analysis 

models. 

VisualDOC 

Vanderplaats Research 

and Development, 

1998 

Multidisciplinary design, optimization, and process integration software. Optimization, design of 

experiments, response surface approximation, and probabilistic (robust and reliability-based) 

analysis. Integration of virtually any CAE analysis software. Graphic workflow editor. 
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data as well as its transfer between tools.[138] Automation is the key to reducing time-to-market 

and cost, and increasing productivity.[44] 

2.3.5.2 Early Concept Definition 

A system should suggest an initial concept construct. The system should assist the designer in 

identifying a proper starting point (initial concept) for the next design sequence.[47]  

2.3.5.3 System of Systems (vehicle-of-vehicles) 

Systems-of-systems represent a challenging as each component system can have its own 

requirements and function. An optimal system-of-systems may result in non-optimal subsystems; 

however, this is not necessarily a negative. When addressing system-of-systems, it is necessary to 

ensure to address that the system-of-systems configuration is not constant, it can dynamically vary 

with time.[139] 

2.3.5.4 Multiple Concept and Design Phase Applicable 

A system should be flexible such that it can adapt to different design cases and design phase. 

[137] This includes flexibility in configuration and design phase process requirements.[138] In 

particular, as geometric modeling is critical to many MDO systems, the geometry module should 

not be a limiting factor to concept applicability. It should not limit application to traditional 

configurations.[72] Fundamentally, “…it should be possible to design any type of aerospace 

vehicle using any (appropriate) methodology...”.[115] 

2.3.5.5 Tool Integration and Distributed Computing 

A design tool should be capable of integrating design tools and in particular distributed design 

tools.[136-138] This includes commercial off-the shelf, in-house tools, and legacy systems.[72, 

128, 138] Integration should occur in a user friendly fashion.[128] As part of integration, the 

system should grantee proper data handling/correctness between the various tools.[138] 

Additionally, there should be no limited to the number of integrated systems, modules, or methods 

accessible to the system.[115] 

2.3.5.6 Variable Fidelity 

Generally, the literature suggests fidelity variability. Systems should incorporate both high and 

low fidelity analysis tools. [72, 115, 137, 138] It is additionally suggested to incorporate automated 

fidelity variation as required.[72]  

2.3.5.7 Robust 

Robust system framework is necessary.[72] Automated design (MDO) tools can be complex 

and brittle. By their nature they are established to address a specific problem and generally cannot 

venture far, in terms of configuration evaluation, from the initial problem definition and is limited 
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to the constraints imposed in problem  setup.[140] As such, systems should allow for easy 

interactive user control and modification of the optimization problem setup.[128] 

2.3.5.8 Transparency 

It should go unsaid that a system should be transparent. However, many systems are not. In 

particular the design process workflow should be visible.[72] 

2.3.5.9 Geometry 

Optimization is heavily dependent on the geometry being defined. As such, a MDO tool should 

include parametric geometry generation and agile manipulation techniques.[136, 141] 

Furthermore, the geometry model implementation should not limit the configuration applicability, 

in particular it should not limit application to conventional configurations.[72] 

2.3.5.10 Visualization and Solution Exploration 

A critical component of a solution package should be a visualization capability. Visualization 

of both the solution, solution space, sensitivities, and geometry should be available.[72, 142] 

Visualization should be in an automated fashion.[47] It is necessary to support the decision 

processes.  

Significant to any design processes is the identification of the best solution. A systematic 

approach to design space exploration is necessary to improve the design process.[122] 

Additionally, an approach to identify why a particular solution is superior to another is needed 

[128] In particular the incorporation of tools for risk assessment and mitigation is needed. 

Mathematical optimal solutions are not always the best or correct solution.[136]  

2.3.5.11 Software independent 

Naturally, it is recommended to have the system software independent.[115, 140] That is, the 

system should not depend on any one software, especially third party software. By retaining 

software independence, the user maintains more control and reduces potential cost. 

2.4 Selected Design Systems 

In the following section, a consideration is given to specific more modern representative 

systems that resemble or are of interest to the current research. In particular, they are considered 

for their approaches to and application towards the conceptual design and design automation or 

more importantly, automation of design synthesis. 
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2.4.1 AIDA: Artificial Intelligence supported conceptual Design of Aircraft [47]  

AIDA is an example case of an AI-KB approach to conceptual design. AIDA addresses the 

early concept definition phase of the conceptual design. Many conceptual design tools focus 

heavily on MDO and do not address well the initial concept definition and exploration phase (circa 

2004), where in the concept itself is not necessarily even defined yet. AIDA attempts to define 

concepts for the early conceptual design through the application of AI and investigate the 

usefulness of various AI techniques in application to such a situation.  

The solution logic is formed around addressing sequentially the author identified design cycle 

phases: suggesting, simulating, evaluating, proposing modifications. It is a modular system; it 

consists of four modules. A case-based reasoning (CBR) module for initial concept generation. 

The Function module that utilizes rule-based reasoning (RBR) techniques and sensitivity analysis 

to refine the initial concept into a feasible concept. Geometrical module to generate a CAD model 

of the concept through feature-based techniques and constraint-based modelling. Lastly, the central 

user interface, which controls system integration and data transfer. The system utilizes early 

conceptual design level methods as seen in the classic text references such as Torenbeek [13] and 

Roskam [96]. On consideration of the system, Rentema states that the system is “… useful for 

‘configuration design’ type of design tasks, but is less suitable for innovative and creative design.” 

This is inherent in its dependency on established rules and concept elements in its libraries. 

Additionally, Rentema notes that such an implementation (CBR and RBR based approach) 

requires significant experience and pre-processing effort in order to populate and operate the 

system’s data and knowledge bases. 

2.4.2 Aircraft Design Automation and Subscale Testing [143] 

A framework for automating the design and manufacturing process of Micro Air Vehicles 

(MAV) was developed at Linköping University by Lundström [143]. The goal of the system is 

described as “ … to find a method for MAV design and optimization from a holistic viewpoint, i.e. 

not a method for optimizing single subsystems, such as motor or propeller, but a method that 

embraces all disciplines of MAV design.”[143] Additionally, Lundström identifies two key drivers. 

They are the utilization of off-the-shelf components where possible and geometric shape 

optimization in view of aerodynamic properties, internal component layout, and stability criteria. 

Like many design systems of its type, the system is modular. The systems control interface is 

through a Microsoft Excel spreadsheet. Disciplinary and component subsystems formulate the rest 

of the system. These include a geometry model, an aerodynamic model, and an off-the-shelf 

propulsion parts database. The subsystems are integrated through modeFRONTIER, a PIDO 

system. Design automation occurs through the use of an optimizer. The optimization routine is 

sourced from modeFRONTIER. It utilizes a single-objective and a multi-objective GA for 

optimization. A dual-stage optimization routine is enacted. The geometry and aerodynamic models 

and analysis can be selected as either high or low fidelity. Low fidelity techniques are handled 

within Excel. A high-fidelity geometry selection incorporates Catia; a high-fidelity aerodynamics 
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selection utilizes PANAIR, a panel method code. The output of the system is a CAD model and 

part list. The CAD model can be passed to a 3D printer for manufacturing. Distributed computing 

has also been demonstrated. Additionally, Lundström notes that the system could be considered a 

hybrid system. That is, it employees both CI and KB methods. He states that it employs heuristic 

knowledge within the geometry tool expressed as rules and constraints. Additionally, the system 

incorporates a GA optimization routine, which is categorized as CI. 

One of the distinguishable features of the system is its dual fidelity optimization routine. It was 

identified that for high fidelity optimization, the optimization routine would generate an excessive 

number of non-feasible solutions. To rectify the problem a dual stage optimization approach was 

implement. The optimization processes were separated into a low fidelity stage and a high-fidelity 

stage. The low fidelity stage solutions, which have effectively been filtered for feasible solutions, 

are used as a starting point in the high-fidelity stage. The routine proved to be robust and user 

friendly.  

 

Figure 2-6 Dual-fidelity optimization process [143] 

The system demonstrates a class of AI hybrid (KB+CI) systems. The general system is example 

of very standard approach to tool creation found in literature. Multiple separate tools are integrated 

with a PIDO tool and optimization conducted by means of a CI algorithm, frequently an 

evolutionary type such as a Genetic Algorithm. Additionally, the system demonstrates a more 

unique approach that is less common, which is the integration of an off-the-shelf parts library. The 

system demonstrates a solution approach to handling the difficulty in feasible solution search, 

employing a dual-fidelity approach. Similar approaches are taken in other tools but with variation 

in the optimization algorithm. Furthermore, the concept for rapid prototyping, with a 

demonstration of output to 3D printer for manufacture and subsequent testing is an interesting 

concept. 

2.4.3 GLADOS [140] 

Genetic Learning Automated Design Optimization Software (GLADOS) “… represents a 

flexible evolutionary algorithm based architecture intended to allow for the generation of 

conceptual or preliminary design stage aircraft designs without any human beings in the loop.” 

[140] The researchers’ objective was to develop a system to automate portions of the design 

process to reduce human involvement and thereby reduce cost and time to completion. The original 
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motivation for the system was to address the problem of multi-variant high modularity complex 

system design through the application of an evolutionary algorithm. They identify and propose a 

solution to three identified issues. They attempt to address design space biasing5, commonality or 

modularity in complex system design, and the rigidness inherent in many MDO architectures6. 

Addressing these issues resolves into “…the three most important traits are being able to naturally 

search a much larger section of the design space, enable straightforward development of high 

commonality and modular systems and be expressive enough to be capable of recursion and 

therefore meta-level self-improvement.”[140] In [140] the authors provide a description of the ideal 

concept and an account of a significantly reduced proof of concept. Of principle interest is the 

ideal system concept.  

The concept is a recursive tool that can generate potentially feasible design concepts from a 

concept component library, populate the design variables, evaluate the design suggestion, and 

identify potential solutions to be carried over to the next design evolution sequence. The authors 

summarize GLADOS as: 

… a large assembly of component, sub-system, sub-discipline and operational level 

analysis modules wrapped in an evolutionary algorithm framework that ultimately selects 

designs based on simulated natural selection, with fitness being assessed by operational 

simulation of each trial design.[140] 

The system concept consists of a: concept library, trial design synthesis subsystem, modeling and 

analysis framework, fitness module, evolutionary framework, and artificial intelligence and 

machine learning. The GLADOS concept is built around an evolutionary routine for initial concept 

generation and subsequent evolution. The concept employees a warehousing approach where in 

an updateable concept warehouse of existing design elements can be queried and formulated into 

an initial candidate design for further analysis and optimization. The generated concept constructs 

are modified for correctness and filtered by evaluation of feasibility by the trial design synthesis 

module. Each trial design is analyzed and modeled by a modeling and analysis framework that 

includes optimization; the framework is characterized by a tiered analysis processes where in each 

tier can incorporate greater design and analysis fidelity. A fitness module quantifies each trial 

construct based on some evaluation criteria, which is utilized in the evolutionary algorithm to 

populate the next evolution. A general inclusion of AI and CI methods are described as included 

for system efficiency improvement including approximation routines as well as a capacity for self-

population of the concept library and analysis association. Self-population and analysis 

discernment through a recursive approach is a key trait of the system concept. 

The concept presented is interesting for its non-standard approach to the design automation 

problem. Much of literature, for the optimization problem, shows a standard approach of problem 

 
5 Design space biasing is the event of experiencing or implementing bias into a proposed solution set due to underlying 

experience, favoritism, or exposure to certain solutions, thereby not considering potential alternatives. 
6 MDO architectures are generally setup to address specific problems, configurations, and solution space 

boundaries/constraints, which restricts the architecture’s applicability; they are not generic design architectures. 
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specific code formation through PIDO systems integrating high fidelity third-party analysis 

modules. The GLADOS concept presents an in-house approach to system integration with a user 

created tier-based refining concept definition and analysis approach. When compared to the 

concept for Aircraft Design Automation and Subscale Testing, the GLADOS concept proposes to 

address initial design construct feasibility through a dedicated evaluation system, similar to AIDA. 

The tiered optimization process is of note; tiers of analysis/optimization where in the user can 

control the design freedom of each tier such that proper a natural evolution of design refinement 

(similar to the conceptual to preliminary design tasks) can occur and thereby minimize computing 

power required is a notable approach.  

2.4.4 Daphne [77, 80]  

Daphne is distinctly different from most other design tools. Daphne is a virtual assistant to 

support high level design of distributed satellite missions (DSM); it is quite possibly the first of its 

kind.[77] The objective of Daphne is “… to help system engineers reduce their cognitive load when 

exploring large tradespaces for DSMs by providing them with easier and timely access to relevant 

information.” [77] According to Virosi [77], Daphne has a capacity of natural language interfacing 

for information quarry in addition to tradespace exploration tools such as scatter plots, model 

inspection and explanation, and data mining.  

An illustration of Daphne architecture is shown below. It has a user interface (a web front-

end), an architecting element (Daphne Brain) that controls user requests, software snippets (Roles) 

that utilize the Backend and Data Sources to obtain the answer to the user’s quarry. Backends are 

code elements that compute the information requested by the Roles using the data acquired from 

the Data Sources. Data sources include three databases: an Expert Knowledge Database, a Design 

Solutions Database, and a Historical Database.[77]   

 

Figure 2-7 Daphne architecture [80] 
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Daphne represents the interesting design aid of the virtual assistant. If one recalls the principal 

motivation for this research—effectively a virtual assistant/peer—Daphne most resembles it at 

least in general practice. In light of the research problem being addressed (automation of design 

synthesis), in comparison to the Daphne architecture, this research addresses a task within the 

“Engineer” role above. The “Engineer” role’s function is to “Evaluate new architectures” and 

“Answer questions about architecture performance and cost.”[80] 

2.4.5 GENUS [115] 

Developed at Cranfield University by Szirozák [115], GENUS is a design framework that “… 

provides a sufficiently generic platform that can be utilized for the conceptual level design of 

specific classes of aircraft, including, but not limited to hypersonic transports, space launchers, 

blended-wing-body and solar-powered aircraft.”[115] The motivation for the development of the 

system was to assist the educational system, specifically university students and researchers. The 

author notes that in university, programs have students spend a significant portion of their project 

time on method development and integration with insufficient time to actually appreciate the end 

result or conduct specialized feature analysis.7 System requirements included: modularity, 

expandability (unconstrained fidelity level and method count), flexibility (capacity to address any 

vehicle; generic synthesis tool), independence (software independent, non-proprietary, source 

code language with significant longevity prognosis), sustainability (easily maintained and 

expandable), and performance (reasonable performance on a standard desktop or laptop). 

GENUS is a design environment to provide a modular, flexible framework both for designers 

to use existing and for researchers to develop new methods for aerospace vehicle design. 

Fundamentally, it is a shell environment similar to the PIDO tools. That is, it itself is an integration 

and optimization environment where in the user prescribes, through a transparent user interface, 

the analysis modules, inputs, internal variables, objectives, and constraint. The system also 

provides the results visually through the GUI and as text file. GENUS is based on a modular 

(library, warehouse equivalent) framework. Modules are divided by the essential modules and the 

non-essential or “special modules”. There are nine essential modules: Geometry, Mission 

specification, Propulsion specification, Mass breakdown, Aerodynamics, Propulsion, Packaging 

and CG, Performance, and Stability and Control. In addition to these there in the Atmosphere 

module. It has a clean GUI, Figure 2-8, and is programed in Java. It has capacity for a single run 

analysis and optimization. All iterative analysis occurs through the optimizer, there is no indication 

of inherent automated trade study or sensitivity analysis. The analysis process is linear and rigid, 

occurring in the order of the methods shown. In summary, GENUS provides a transparent 

conceptual design method integration environment with single point analysis and optimization 

capability; automation tasks include method integration through data handling and design space 

search by the optimizer. 

 
7 As a former teaching assistant for the undergraduate aerospace engineering senior design course, the author can 

concur with this sentiment. 
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(a) Module selection 

 
(b) Input specification 

 
(c) Output results 

 
(d) Optimization setup and results 

Figure 2-8 GENUS graphical interface [115] 

2.4.6 AVDDBMS [86, 87, 89] 

Aerospace Vehicle Design Database Management System (AVDDBMS) was developed at the 

University of Texas in Arlington by Gonazlez [86], Omoragbon [87], and Oza [89]. The system 

was developed to address two issues. First, as Gonazlez states it is “… a methodology for the 

composition of complex multi-disciplinary systems (CMDS) through the automatic creation and 

implementation of system and disciplinary method interfaces.”[86] It is an environment to alleviate 

the difficulties in synthesis architecture creation and to diverge from the classic monolithic system 

by assembling the synthesis architecture per problem definition. According to Gonzalez, it 

attempts to bridge the gap between classical monolithic systems and the shell integration systems 

(PIDO). The second reason it was conceived was to assist in technology forecasting and portfolio 

definition—the object of Oza’s work—as to evaluate many potential concepts, requires a robust, 

problem specific generation architecture. Within the literature of aerospace vehicle design and 

design automation, this approach is distinctly different; rather than focusing on automating the 

design search as in optimization routines, this approach automates portions of the creation of the 

design tool itself, the synthesis architecture (this does not preclude that optimization does not occur 

within the architecture either). AVDDBMS interface is MS Access, the system generates synthesis 

architectures as MATLAB scripts. 

The concept behind AVDDBMS is a decomposition-recomposition approach. The idea being that 

systems (legacy monolithic codes) and vehicles can be decomposed into their base constructs 

(process, methods, hardware, etc.) and placed into a repository where from a new system can be 
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assembled from these parts and part associations to solve a new problem. The system’s foundations 

are its databases and knowledgebase repositories. The system consists of a reference library, 

variable library, methods library, process library, vehicle library, and the actual system interface 

for problem architecture definition and assembly (referred here as Main System). Each has a GUI 

interface for access and modification. Each library contains the decomposed elements according 

to its name. The methods are associated to hardware applicability. The actual architecture 

definition and assembly process occurs within the Main System GUI. The process is divided into 

four stages. These stages are matching, selecting, arranging, and generating. Through these stages 

the user selects a project vehicle, a project process, defines the trajectory profile, selects analysis 

methods and resolves any system conflicts such as multiple disciplinary method associations per 

hardware through the definition of method constraints. From these selections the system assembles 

the methods and process into a syntactically correct sizing tool. The user then is free to use the 

resulting tool to solve their specific problem. Note that the system does identify input, output, and 

interdisciplinary variables, however all input value defining, synthesis tool execution, and post 

processing occurs outside of the system and by the user. Once the architecture is generated, the 

operation and actions of AVDDBMS are complete. 

AVDDBMS represents a class of synthesis tools that itself does not solve the design problem but 

rather generates the tool that is used to solve the design problem. AVDDBMS has been created to 

provide the designer with a tool of tools; it is a tool to create tools that are tailor-made to the exact 

problem at hand with the fidelity and robustness as determined by the user. It is different class of 

automation; it automates the creation of the synthesis architecture rather than design automation 

through automating the design search. Although this system represents a promising approach to 

automation, it is noted that the system does not directly contain post processing, an input/output 

interface, and is limited in vehicle decomposition level and limited in its process application. As 

noted, this research is a continuation of the synthesis design effort at the AVD Lab at the University 

of Texas at Arlington as represented by AVDDBMS. This system and the work by Gonzalez [86], 

Omoragbon [87], and Oza [89] will be referenced more in the following chapters. 

2.5 Summary and Specifications for Future Systems 

2.5.1 Summary and Discussion 

This research began with AI and design peer being identified as a probable solution to 

dilemmas within design. However, a true design peer was determined infeasible for a single 

researcher and as such a perceived necessary element, design automation (automation of synthesis) 

was identified. This chapter has presented a review of design tools with particular emphasis on 

design automation and the necessary components, in addition to a consideration of select 

representative systems. The result is the identification and consideration of toolsets in literature 

and the approaches to the design problem, in particular those applying automation. 
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Aerospace synthesis design approach is categorizable. A classification scheme was presented. 

From the classes, of note are two classification groups: text-based systems and computer-based 

systems. The text-based systems are representable by the classical design texts, by definition are 

not automated, and represent libraries of knowledge and early conceptual design analysis methods. 

The second classification set are computer systems that automate part of the design process. Two 

types are distinguished, the monolithic and non-monolithic system. The classical computer 

systems tended towards monolithic nature where in, though with highly impressive knowledge 

integration and accuracy, they were compiled upon as new capability were added leading to lack 

of maintainability, modifiability, and applicability to new concepts. The second type, non-

monolithic, are generally specifically design modular approaches where in the modules (including 

third-party software) are integrated through some integration scheme and can be specifically 

developed for the problem at hand. Within these system MDO has been a critical component as 

well as focus in literature on design automation.   

Within aerospace vehicle design literature, design automation generally infers MDO. It is the 

process of automating the process of design refinement through solution space search. MDO is a 

significant focus within the literature but is not the only solution nor necessarily the correct 

solution in all situations, though from literature one would not be wrong to assume it were given 

it is so widely applied and touted. Optimization tasks are frequently time consuming, can have 

massive software and hardware requirements, and require expertise in and of itself to set up 

properly. In effect, there has been a trade of one problem (the monolithic design codes) for another. 

To assist in MDO execution process, many integration and process control software have been 

developed both commercially and as open-source software; naturally, these systems are widely 

used. A selection of systems available was given. 

A conclusion that can be derived from literature is that there is a lack of focus on the early 

conceptual design within tool development, specifically the initial problem gestation phase and 

initial potential concept solution selection. Many systems/research/tool development jump quickly 

to optimization without considering if the object they are optimizing is even the right choice or 

starting point. Some systems attempt to address this through evolutionary algorithms and concept 

part libraries but not all. This is similarly reflected in the literature on road mapping and program 

planning, systems are advised but without numerical proof of why they should be in the first place. 

There is a need to address the early conceptual design phase and even the pre-design phase. As 

MDO has been praised for bringing better solutions and more accurate, higher fidelity approaches 

earlier into the design process, perhaps it is necessary to improve analysis tools in the parametric 

definition cycle of conceptual design and even into the pre-design operations as well. This calls 

for rapid concept exploration environment, that is truly generic in vehicle consideration, which can 

provide analysis capability of fidelity levels prescribed by the user and be operable quickly. This 

leads to the specification of a generic conceptual design decision support environment. 
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2.5.2 Specifications for a Future System 

As noted, this research is in part a continuation of the work by Gonzalez, Omoragbon, and 

Oza. AVDDBMS was a proof of concept with its own limitations. AVDDBMS demonstrated the ability 

to have an environment in which, through user interaction, synthesis tools could be generated to 

address a specific problem. However, the system had an inherent limit to the complexity of the 

problem and as such an inherent limit to the cases in which the tool could be applied.[87] 

Furthermore, the system exists in an MS Access environment, which does not lend well to 

continuation, in particular towards AI—a primary research objective of the local research group. 

(As a result, the research deliverable here in presented has been created to address these issues.) 

As such, many of their identified solution construct requirements remain. In addition to those 

identified, several are added here in order to address some of the short comings of AVDDBMS and 

to advance the concept to a more capable place with potential for increased automation and 

eventual adaptation into a greater cognitive framework. Based on the synthesis system review and 

addressing issues identified in AVDDBMS, the following are identified as the primary guidelines 

and requirements for a next-generation synthesis capability. 

2.5.2.1 General Design System Guidelines 

» Flexibility: modularity to handle various fidelity levels, unique concepts, and unique 

configurations. 

» Expandability: ability to and easy implementation in the expansion of the underlying 

framework and capability when new data, knowledge, and processes are identified and require 

addition. 

» Transparency: transparent to the user of the operation of processes and systems, the methods, 

underlying knowledge, data, etc. 

» Rapidity: quick turnaround, able to adapt and keep up with a rapid environment and quick 

turnaround deliverable times; minimal time of operation to output.  

» Operability: low user learning-curve. 

» Sustainability: system should be based on a coding language likely to continue into the 

foreseeable future. 

2.5.2.2 System Specific Specifications and Guidelines 

The following specifications are shared in the specifications for AVDDBMS by Gonzalez [86] 

and Omoragbon [87]. 

» Employ a decomposition-composition solution approach. 

» Store and implement design analytical processes. 
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» Store vehicle hardware concepts. 

» Store and implement engineering disciplinary analysis methods. 

» Associate hardware-method-process applicability. 

» Assemble synthesis architecture. 

The following specifications are added to those identified by Gonzalez, and Omoragbon.  

» Architecture specifications occurs within a decision support environment (interface). 

» Improved system transparency in both method / process specifications and architecture 

generation. 

» Architectures should be assembled as fully contained scripts. 

» Assembled architectures should be fully executable and distributable. 

» Include capability for system-of-systems (vehicle-of-vehicles) consideration. 

» Include capability for multiple design analysis processes association or a tiered processes 

approach (sub-processes within a primary process). 

» Allows evaluation of results (data post processing and GUI return for assessment and inquiry). 

» Allows for specification and generation of standard or user defined solution visualizations. 

» Increased automation or capacity for automation of architecture generation process. 

» Allow for porting into a greater system and allows expansion and integration of data mining 

and increased post processing towards a design recommender.  

2.5.3 Document Outlook 

The remaining document address the solution concept, the implementation of the concept, and 

verification and demonstration of the concept implementation. As noted in Chapter 1, this research 

is in continuation of the research endeavor by Gonzalez [86], Omoragbon [87], and Oza [89]. As 

such, much parallelism is drawn between their research and solution concept presented and 

developed in this research.  

 

 



 

 

Chapter 3 SOLUTION CONCEPT 

In this chapter, the solution concept is presented. A general solution concept for a general 

synthesis automated generation decision support environment is given. For detailed manifestation 

of the concepts presented here, see Chapter 4 Concept Implementation.  

3.1 General Solution Concept 

To address the requirements identified, the objective is to develop a decision support 

environment for the aerospace domain, specifically targeting the conceptual design phase. Within 

the frame of the decision support tool, it is necessary to implement a framework for automated 

composable analysis architectures. That is, the system shall not be bound to any one vehicle 

concept or configuration, nor shall it be bound by the process or objective function definition. 

Furthermore, the tedious task of synthesis architecture assembly is removed from the requirements 

of the user. The user only need specify what to analyze and the constructs of how to accomplish 

the analysis. To accomplish this task, it is necessary to implement an auto coding approach. A top-

level solution for such a system is illustrated in Figure 3-1. The solution concept is founded on a 

decomposition-composition approach. It is a non-graphical code assembly concept. The primary 

components of the concept are the composable complex system components, the synthesis 

generator, and system results. Fundamentally, the user provides a set of inputs specifying the 

vehicle to be analyzed, the process of analysis, the methods to use, and the output presentation 

desired. From these instructions, a synthesizer routine assimilates the necessary code elements, 

both engineering methods and code processing (data handling, method handling, etc.), and 

assembles the components into a functional synthesis architecture. The synthesis is executed as 

prescribed by the user and the results are processed and returned to the user according to the user’s 

deliverable specifications. Each core component is summarized below. 

» Inputs: A collection of user selections during software interaction. They are acquired through 

a GUI interface. They specify the components of the synthesis system as related to the 

engineering analysis problem. 
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» Complex System Elements: It is a set of libraries populated with the building blocks necessary 

to assemble a synthesis analysis code. It consists of three libraries: product, methods, and 

processes. These follow the complex system decomposition approach described below.  

» Synthesis Generator: A collection of processes to assemble the base components (complex 

system elements) into a functional synthesis analysis code based on the user’s inputs. Sub 

processes include input mapping, library queries, component gathering, and component 

assembly. The output of the process is a tailor made fully functional synthesis analysis code 

for the specific problem at hand. 

» System Results: The system results group is a collection of processes to execute the synthesis 

code, archive the results (data), process the results, and return the results to the user through 

the DSS in a meaningful form. Part of the result return is the auto generation of meaningful 

figures for design evaluation and insight. 

Each principal component of the solution approach is discussed in detail in the following 

sections. 

 

Figure 3-1 General solution concept 

3.2 Decomposition Concept 

As stated, this research and development effort has been conducted within the evolutionary 

synthesis development arc of [84-87, 89]. In particular, this is a continuation and adaptation of the 

concepts laid down by Omoragbon [87] and Gonzalez [86]. The following general description is 

adapted from [87]. Note that in the following discussions the term complex system is used 

frequently. The term is used in two connotations. First as the system being decomposed and being 

labeled complex as it consists of the identified decomposition groups. The term is also used to 

refer to a system-of-systems or what one would perceive natively as a complex system such as an 

aircraft or ship. The discussion at hand indicates which construct is being used. 
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For a given complex system, a tripartite decomposition routine is enacted. A complex system 

is described by the product, process, and methods. Alternatively, the term complex architecture 

could be used. The product is the physical description of the complex system; generally, this is the 

vehicle of interest. A product is described according to what it is, what it does, when it does it, and 

requirements or limitations of operation. These conditions define four categories of a product—

structure, function, operational event, and operational requirement. The process is the numerical 

and organizational approach to solving the problem, and the methods are the analytical, numerical, 

or empirical means and their dependencies to approximate a physical condition. Each category is 

addressed in more detail in the following sections. 

 

Figure 3-2 Three elements of a complex system 

3.2.1 Product 

The product is the complex system being considered. The system is defined according to 

structural subsystem (structural decomposition), functional subsystem (functional decomposition), 

operational event, and operational requirement. Omoragbon initially identified just three 

classifications (functional subsystem, operational event, and operational requirement), however, a 

fourth (structural subsystem) has been added to better handle the more complex situations (vehicle-

of-vehicles) and complex mission and operation description. 

 

Figure 3-3 Product decomposition 

3.2.1.1 Structural Subsystem 

The structural subsystem decomposing (hierarchical decomposition) is a standard 

decomposition approach by parent-child system reduction. It is a mapping of the structural 

components and their structural subcomponents, continuing in subcomponent layer refinement, as 

necessary. For the solution concept discussed herein, the structural hierarchical decomposition 

scheme is included in order to expand system capability to include the vehicle-of-vehicles case. 

The vehicle-of-vehicles is a specific condition of the system-of-systems concept. A system of 

systems is “ … a set or arrangement of interdependent systems that are related or connected to 

provide a given capability.”[144] Structural decomposition decomposes a system into its 
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subsystems and the subsystems into their elements. Likewise, a vehicle-of-vehicles is a complex 

system where in the parent vehicle is composed of sub-vehicles, which are composed of systems. 

A parent vehicle can have any number of child vehicles. Furthermore, each vehicle is its own 

complex system in the sense of the decomposition approach being discussed. Each one is its own 

complex system with its oven product, process, and method decomposition. The complex system-

of-systems (vehicle-of-vehicles) structural hierarchical decomposition in general is illustrated in 

Figure 3-4. In terms of an aerospace vehicle, this decomposition approach is illustrated in Figure 

3-5. 

 

Figure 3-4 System-of-systems structural tree decomposition [145] 

 

 

Figure 3-5 Illustrative example hierarchical structural decomposition [47] 
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3.2.1.2 Functional Subsystem 

The functional subsystem represents the decomposition of a complex system’s product by 

component function. Functional decomposition is the association of function (purpose) to the 

systems element (hardware). Various functionality includes lift source, drag source, thrust source, 

volume source, etc. Various function categories are illustrated in Figure 3-6. Within these 

categories, one or more elements could be associated. For example, a thrust source can be 

airbreathing, but within airbreathing there are many design options, the element could be a turbojet, 

a turbofan, or even a ramjet or depending on the design criteria. 

 

Figure 3-6 Functional subsystem decomposition categories adapted from [87] 

Omoragbon intentionally includes a functional decomposition approach to allow for a 

synthesis system to better address, trade, and evaluate factors such as acquisition, TRL, and 

maintainability. Furthermore, through functional decomposition, a complex system is describable 

as a shell construct with certain attributes that are populated per unique design case. They are 

product design details of which can be populated and traded dependent on the user’s intentions. 

Such an approach allows for more readily the inclusion of more detail and analysis-oriented 

approaches within the pre-conceptual design phase (road mapping, architecture and program 

planning, etc.) or easier inclusion of manufacturing, servicing, sustainment and other like 

constraints that manifest much later in the product life cycle but are integral to the success of a 

program long-term. 

3.2.1.3 Operational Event 

The Operational Event describes the vehicle by environmental and operational conditions of 

its use. The classification and description are in regard to the total system operation and is 

distinguishable from its hardware. The Operational Event category is subcategorized by mission 

type, flight profile, speed range, gravitational body, and altitude range.   

3.2.1.3.1 Mission Type 

A vehicle has an objective, that objective is accomplished through the execution of a specific 

mission. The mission type is a label to describe mission and ultimately the objective of the vehicle. 
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A vehicle can have more than one mission type. For example, an advanced single-stage-to-orbit 

vehicle would perform a mission of (1) space access, (2) orbital operations, (3) Re-Entry, and, 

potentially, (4) point-to-point. These and other possible mission types are identified and described 

in Table 3-1. 

Table 3-1 Mission types 

Name Description 

Point-to-Point Transportation of a cargo from one latitude and longitude to another, 

generally atmospheric bound but not necessarily so; 

Space Access Transportation of a good or service to space or the transfer of sufficient 

energy from one system to another allowing the recipient to reach space; 

the system does not have to achieve orbital conditions but could.  

Sub-orbital Transportation of a cargo to space but in a manner in which the vehicle or 

cargo does not have sufficient velocity to achieve orbit; 

Re-Entry Vehicular atmospheric entry to a body of influence from orbital conditions 

with a start condition outside of the effective atmosphere (space); 

Orbital Exo-atmospheric (space) operation at sufficient speed and energy for a 

vehicle to maintain an orbit; 

* Space (outside of the effective atmosphere) for Earth is considered 100+ km.  

 

3.2.1.3.2 Flight Profile 

The mission flight profile is segmented into its constituents. These are the classical flight 

profile components such as takeoff, cruise, climb, etc. It is common for a flight profile to be 

segmented into its core components as it can make communication and analysis simpler. The flight 

profile segments options are indicated below. These values are updatable and can be changed by 

the user if a particular one is necessary and not currently available. The focus is on atmospheric 

flight though elements can be readily expanded to include orbital operational elements. 

» Warmup » Taxi » Takeoff » Climb 

» Cruise » Loiter » Dash » Turn/Maneuver 

» Descend » Deployment » Rendezvous » Re-Entry 

In the consideration of the multi vehicle case, a vehicle system can comprise of multiple 

distinct missions or flight profiles. It is possible for a component vehicle to have a different mission 

and objective than the parent or other secondary component vehicles. This is especially true in the 

case of two-stage-to-orbit (TSTO) or reusable launch systems such as the Falcon 9 or Falcon 

Heavy. In these cases, the total system (all component vehicles acting as a single vehicle) act on a 

single flight profile until the systems disengage and each execute separate flight profiles as 

fragmented systems but each with uniquely different objectives, requirements, or flight profiles. 

3.2.1.3.3 Speed Range 

The speed range defines the operational speed range experienced by the vehicle. A vehicle, 

within the definition of the problem, can have a combination of selections. For example, a 

hypersonic vehicle can experience subsonic, transonic, supersonic, and hypersonic conditions. At 

each speed condition, different phenomena can occur and as such, the vehicle’s complete 

description would have to account for this (atmospheric dissociation, shock formation, variation 
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in aerodynamic center, etc.). The speed is an indicated for many physical phenome occurrences. 

The speed range values are indicated in Table 3-2. The speed ranges follow standard speed ranges 

experienced within atmospheric flight; naturally, orbital conditions could be considered as well. 

Table 3-2 Speed range categories 

Name Speed Range (Mach Number) 

Subsonic < 0.8 

Transonic 0.8 – 1.2 

Supersonic 1.2 – 5.0 

Hypersonic 5.0 – 10 

High Hypersonic 10 – 25 

Re-Entry 25 > 

 

3.2.1.3.4 Gravitational Body 

The gravitational body is simply the specification of the principal body of gravitation that the 

vehicle operates. The majority of aerospace problems are relegated to operating on Earth; however, 

there are cases where in the principal body is not Earth but other bodies such as Mars. As such, 

not to be constrained by the body of influence, this parameter is a necessary descriptor. The 

gravitational body is not only applicable to the consideration of defining the gravitational 

parameter but is also directly linked to the atmospheric model required. Atmospheric operation is 

a consideration discussed in the “Altitude Range” descriptor. 

3.2.1.3.5 Altitude Range 

The altitude range is defined through the atmospheric operation zones. The atmospheric zones 

are for Earth and are indicated in Table 3-3. Naturally, a vehicle can operate in any combination 

of atmospheric zones, generally in a continues form. A vehicle, within the definition of the 

problem, can have a combination of selections. Note, that the problem does not have to be limited 

to Earth, but for this case, it is used as the principle gravitational and atmospheric zone of influence. 

Table 3-3 Operational altitude zones 

Zone Altitude 

Troposphere 0 – 8 (14.5) km 

Stratosphere 8 (14.5) km - 50 km 

Mesosphere 50 km - 85 km 

Thermosphere 85 km - 600 km 

Exosphere 600 km – 10,000 km 

Exo-atmospheric 100 km > (Kármán line) 

3.2.1.4 Operational Requirement 

The complex system exists and operates within limitations and requirements. The Operational 

Event category describes the vehicle by the environment and operational conditions of what it does 

whereas the Operational Requirement describes the limits in which the system is required to do 

what it does. The limitations of the system can be categorized by (1) regulations, and (2) 

specifications. Regulations are government restrictions or standards imposed upon the system. 

Examples are safety standards, emission standards, noise regulations, etc. The operational 
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requirement specifications are additional conditions mandated upon the system that are not 

hardware, function, or regulation descriptors. Such mandates include human rated, vulnerability, 

survivability, propellant, manned, unmanned, etc.   

3.2.2 Process 

After the product description, the next element in the decomposition of the complex system is 

the process. The process is the analytical process to solve a given problem. A process is specified 

independently of the product; the process description has no indication or direct connection to the 

product. It is product independent. There are two types of processes: primary process and 

secondary process. The primary process is the driving instructions for the total vehicle analysis. It 

encompasses all process for a given complex system. The secondary process is a process that 

executes within the operations of the primary process. There can be any number of secondary 

processes but only one primary. Each process is decomposable by its system elements and its 

disciplinary elements. 

 

Figure 3-7 Process decomposition categories 

3.2.2.1 System Elements 

The system elements describe the mathematical components of an analysis process if that 

process has some objective function. The objective function specifies the mathematical criteria for 

convergence or optimization. However, it is not necessary that a process have an objective 

function; the absence of an objective function indicates a process that is not iterative. If the process 

is not iterative, then there are no decomposable system elements. The system elements are 

independent variable, dependent variable, and objective function. Each is described below. 

» Objective function: the objective function is a mathematical expression that specifies the 

process’ criteria for satisfactory termination. This is usually applied as a convergence or 

optimization criteria. The process continues until the objective function is either satisfied or 

determined unattainable. The objective function consists of dependent and independent 

variables. 

» Independent Variable: the objective function’s variables that are independent of the analysis 

and are known (guessed) initially. They are the values searched for to converge or solve the 

analysis process. 

» Dependent Variable: the objective function’s variables that are computed through the 

operations of the process and are an output of the analysis, as such they depend on the value 

Disciplinary 

Elements

Process

System 

Elements



Decomposition Concept 51  

 

of the independent variable. They must be output by the disciplinary operations as specified 

by the disciplinary elements. 

3.2.2.2 Disciplinary Elements 

In addition to the objective functions as described previously, the process is composed of 

disciplinary events and their order of operation. The disciplinary elements are the descriptive 

elements that define the operational order of the process and categorize the analytical sub 

processes. Each is described below. 

» Disciplinary Event: the disciplinary events are the specification of an analysis set execution 

that is categorized by a topic of analysis. Classically, the disciplinary events are the categories 

aerodynamics, weight and balance, propulsion, geometry, stability and control, etc. However, 

they are not limited to these and can be varied or added to depending on the process and the 

overall topic being addressed. Disciplinary events can be constructed to have standard variable 

outputs that the encompassed analysis is required to generate. 

» Disciplinary Order: the disciplinary order of operation is the specification of the order of 

process disciplinary events. The specification is linear; however, non-linear attributes are 

accounted for through the internal operands of the disciplinary event.  

3.2.3 Method 

The method group is an assembly of descriptors identifying a particular analysis element. The 

analysis element is what one would consider as an engineering analysis method. It can be 

numerical, analytical, or empirical. A method is described by its product applicability, its variables, 

and its analysis. 

 

Figure 3-8 Method decomposition categories 

3.2.3.1 Product Association 

The product applicability follows the functional decomposition described in section 3.2.1 

Product. A given method is applicable or associable to a particular hardware, hardware function, 

mission, or operational event or requirement and is describe through these conditions. The method 

is associated to the hardware, function, mission, operational event, and operational requirement in 

the same manner as the product. Fundamentally, this is necessary for proper method selection and 

system assembly and operation. 
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3.2.3.2 Variables 

The variables category encompasses the variables that define the methods inputs, outputs, and 

constraints.  

» Input: They are the variables required as inputs (known conditions) by the method in order to 

operate properly and return the output. 

» Output: They are the variables that are solved for within and returned from the method. They 

may be required by other methods within the same discipline/discipline process or other 

disciplinary methods. 

» Constraints: The constraint variables are the variables that, if any, constrain the application of 

the method to a specific variable value condition. An example would be Mach Number; a 

subsonic method may be only applicable during Mach Numbers of 0 to 0.8 for example, and 

so that method would be constrained to a given Mach Number range.   

3.2.3.3 Analysis 

The Analysis block contains the elements that describe the method according to process 

discipline, assumptions, and analysis body. The process discipline is exactly that, it is the 

specification and subsequently the mapping of the method to a specific discipline. Specifically, it 

is the specification of the discipline event as categorized by the Disciplinary Element (section 

3.2.2.2 Disciplinary Elements). The analysis assumptions are the specification of the assumptions 

within the analysis itself. The analysis body comprises of the mathematical relations that makeup 

the method. The assumptions and analysis body are not so much classifications as actual 

description and embodiment of the method.  

3.3 Mapping and Synthesis Generation 

In the previous section, the decomposition of the complex system was described. The purpose 

of executing a decomposition as laid out is to have the necessary information in a capacity to 

identify and assimilate the necessary components to generate and execute a synthesis code. The 

construction of a synthesis code occurs through the mapping of the selections and the assembly of 

the decomposed elements based on the mapping function into a correctly composed code. This 

section discusses the mapping concept and code assembly concept. 

3.3.1 Decomposition-Composition Mapping 

The system construct discussed in this chapter, is based on the concept of decomposition and 

composition. For a composition to occur (the assembly of parts into a whole) the parts must exist. 

As such, the parts for composition are the decomposed elements (product, method, process) that 

must already exist within the framework. If it does not, it must be added. These points of product, 
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method, and process storage are the hardware, method, and process library as illustrated in Figure 

3-1.  

A mapping of inputs is the composition of the decomposition selections made by the user into 

a coherent product, method, and process statement that is fundamentally the instructions for system 

assembly. The decomposed elements (process objective function, disciplines, methods, product, 

etc.) are mapped. Mapping of dependencies is the specification of the association of the parts in 

the global picture. The mapping concept is notionally illustrated in Figure 3-9. For every vehicle, 

its subsystem hardware, and the hardware’s functionality, place of function, process discipline 

event, and the limitations and requirements placed upon it are associated. This is done for every 

component identified. The mapping statement is utilized by the synthesis generation routine to 

assemble a functional synthesis tool. 

 
Figure 3-9 Notional mapping of decomposed elements 

3.3.2 Synthesis Generation 

Synthesis generation occurs through the assembly of base components into a usable form. This 

is illustrated in Figure 3-10. The base components include methods and processes. Each is a 

readymade analysis file, description, template, or data file. The correct methods and processes are 

selected based on the mapping of the user inputs on defining the product, methods, and process of 

the complex system architecture they are building. Conceptually it is a simple notion. The details 

of the implementation are in Chapter 4 Concept Implementation. 
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Figure 3-10 Notional synthesis generation 

3.4 System Results 

The system concept as defined has fundamentally three results. First, the system generates a 

synthesis code—that is the first result. The second result is the numerical values generated from 

the execution of the synthesis code generated. Lastly, the third system result, are the figures and 

diagrams generated and returned to the user. Each is discussed in brief below. 

3.4.1 Synthesis Code 

The synthesis code is the fundamental system output. All other system results depend upon 

this component. A system design decision is whether to assemble the synthesis code as a modular 

system (dispersed files) or as a self-contained system. A goal of the system being developed is 

transparency and ease of distribution. As such, the synthesis code is determined to be assembled 

as a self-contained entity. That is, all necessary decomposable elements (product, methods, and 

process) are contained within the synthesis file. This allows for ready distribution and control of 

method and information disbursement. 

3.4.2 Synthesis Execution Results 

The execution of the synthesis code results in analysis data. The result data is the second 

principal system output. The data is archived for later reference, mining, or reuse. The data is 

stored in a database for easy retrieval. The data is saved with every successful design iteration in 

the event of system or function error. 
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3.4.3 Return Results 

The system data is processed and returned in a format for decision-making. The principal 

deliverable is the solution-space topography. That is, a visualization of the results for the 

identification of correct solutions and insights into the design problem. The solution concept 

allows for the automated generation of diagrams at the behest of the user. Any design variable 

could be visualized and assessed. A standard figure set is established. A standard set includes 

execution summary (convergence report) and solution topographies by standard sizing variables.  

 

Figure 3-11 Figure generation construct 

3.4.4 Recommendations 

Although not implemented in the current evolution of the system generated, the solution 

concept accounts for the possibility for the integration of some form of a design recommender 

system. The recommender system would process the data, mine the results, evaluate the results, 

and make some design suggestions for revision or best solution set identification. However, the 

inclusion of a recommender system, given the other efforts of this research, is beyond the scope of 

a single dissertation. This element is not addressed beyond the identification of its place and 

usefulness. 

3.5 Chapter Summary 

In this chapter, the solution concept for a composable vehicle-of-vehicles synthesis assembly 

decision support environment was presented and discussed. The overall arching DSS concept is a 

semi-automated tool-of-tools. Its primary purpose is the assembly of methods into a sizing toolset 

to better help in decision-making. Each sizing toolset is specifically generated to solve the problem 

at hand.  

The system is founded on the principles of system component decomposition and re-

composition. Core elements—products (vehicles), processes, and methods—are described in their 

base components as specified by the decomposition approach. These core elements reside within 

depositories until needed. Through operation of a DSS, the user’s inputs are translated into a 

system assembly instruction function that, through a determined assembly routine, identifies, 

extracts, and assembles the decomposed core elements into a newly composed synthesis 
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architecture. The synthesis architecture is executable on assembly or stored for later use or 

distribution. On execution, results are stored, processed, and presented to the user. 

 In the following chapter, this solution concept is flushed out into a functional toolset. The 

details of the concept’s manifestation are given. 

 

 



 

 

Chapter 4 CONCEPT IMPLEMENTATION  

This chapter documents the product of the concepts discussed in the previous chapter. The 

product is the principal deliverable of the research conducted. Recall, the product is a generic 

synthesis tool for rapid sizing/analysis architecture generation ready for integration into a follow 

on intelligent automated environment. The product is referred to as Artificial Intelligence Design 

and Research Assistant Decision Support System (AIDRA-DSS). A general system description, 

file system, component architecture setup, approach to system execution for problem solving, and 

a consideration of the systems front-end and core back-end components are the topics addressed 

in this chapter. Each is addressed sequentially in the following sections. 

4.1 Description, Structure, and Core Components 

Addressed in this section are ADIRA-DSS, its objective, and the general architecture of the 

system. The system’s architecture includes the individual files and their organization as well as 

the key environments: front-end and back-end. 

4.1.1 Description and Objective 

AIDRA-DSS is a framework for the selecting and processing of synthesis and design analysis 

options for an identified vehicle of vehicles set, resulting in the generation of sizing or analysis 

codex that can be executed externally or internally of the framework, resulting in the presentation 

of standard or nonstandard decision supporting diagrams for rapid and substantiated decision 

making. AIDRA-DSS is a tool designed to be an environment to assist the user through 

accelerating design problem exploration and decision-making. The system is developed and 

applied for aerospace; however, the system is topic independent. That is, it is in theory not limited 

to anyone subject area. This system is not limited to aerospace and, as long as the designer carries 

the proper methodologies and processes, a vehicle can be sized or analyzed, such as a car or ship.  

AIDRA-DSS has two objectives. The first objective is to explore, develop, and prepare a 

modular-synthesis-architecture-assembly tool for transition into a cognitive system or other AI 

framework. This is the driving objective of this research. In this respect, the purpose of the system 

is to develop further expertise and a baseline environment to test complex vehicle automated 
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synthesis architecture synthetization that would be easily adaptable into a greater cognitive system. 

The second purpose is to serve as a useful engineering environment that arrives the user at a 

synthesized solution toolset, based on user selections, to solve a given problem by providing 

standard feedback and decision aiding platforms. The second objective one could consider as an 

intermediate objective to provide immediate system utility while driving towards the greater 

objective of a cognitive design and research assistant. 

AIDRA-DSS is a computer software system. The general construction is illustrated in Figure 

4-1. AIDRA-DSS has been developed in Python with GUIs written in QT. The system relies on 

SQL based relational database sets. The system files can be broken into two types: those that 

comprise the front-end and those that comprise the back-end. The front-end is the system’s GUIs. 

The back-end is a collection of files that support the front-end in operation, such as database files 

and execute other tasks in the compilation of design codes. In the following sections, the systems 

architecture, including its files, are identified, described, and file location given. 

 

 

Figure 4-1 System architecture summary 
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4.1.2 Front-End 

The front-end is the GUI. The front-end is summarized in 

Figure 4-2. There are seven GUIs. Each GUI set corresponds to a 

different system component or module. These subsystems are the 

Project Builder, Variable Library, Reference Library, Methods 

Library, Vehicle Library, and Process Library. Each is 

summarized in Table 4-1. All front-end components are python 

based. The GUI framework is QT. Note that the python files not 

only contain the instructions for GUI formation but also the 

instructions for front-end to back-end interfacing. That is, the files 

contain non-GUI specific code that is required for proper GUI 

operation; this code is considered as back-end material. Front-end is limited to only the specific 

graphical interface. 

Table 4-1 AIDRA-DSS's front-end systems 

GUI Description File 

Project Builder Primary GUI file for DSS operation. Interface for DSS 

execution and problem solution execution 

projectBuilder.py 

Variable Library Interface to handle system variables used in method 

development and project building 

variableLibrary.py 

Reference Library Interface to a library of references that are used to support 

method, processes, and vehicle definition and knowledge 

retention 

referenceLibrary.py 

Methods Library Interface to add or remove system analysis methods methodsLibrary.py 

Vehicle Library Interface to define or remove system vehicles vehicleLibrary.py 

Process Library Interface to create processes for analysis and synthesis processLibrary.py 

4.1.3 Back-End 

The back-end files are categorize into database or operational 

files. The database files support the operation of the front-end. It 

is sumarrized in Figure 4-3. The operational files are the files that 

are required and contain the algorithms to properly operate the 

front-end (distinctly different from the GUI definition syntax), 

link the front-end with the back-end databases, and process the 

front-end option selections into a cohesive and executable 

sizing/analysis program. Each back-end specific file is listed in 

the table below; included is a brief description, indication of file 

type, and what front-end file it supoorts. As noted in the previouse 

section, the front-end python files also include the algorithms (considered as part of the back-end) 

that conduct the linkage between the front-end and back-end as well as the algorithms required 

during the operation of the GUI, such as dynamic filtering algorithms that are required to correctly 

 
Figure 4-2 System front-end summary 

 
Figure 4-3 System back-end overview 
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populate GUI elements. All backend elements are required, however, a uniquely different and 

critical element is the Synthesis Assembler. 

 Table 4-2 AIDRA's primary back-end files 

 

The Synthesis Assembler is the element that, as the name implies, assembles the synthesis 

code. A problem’s elements are defined during the principal operation of the Project Builder 

(discussed in detail in later sections). Given the components of the problem, such as the vehicle 

selections and decomposition, the processes, and the methods selection, the Synthesis Assembler 

extracts the information from the systems databases and, using an auto-coding instruction 

algorithm, assembles the synthesis code with correct order of operation and initialization. The code 

is assembled automatically as per the user’s specifications. The result is a unique and tailor-made 

synthesis code specific to the problem at hand. The Synthesis Assembler’s output is a single 

aggregate file containing all necessary definitions and information required to execute the sizing 

and analysis. The Synthesis Assembler is discussed in detail in section 4.4 Back-End: Synthesis 

Assembler and Architecture 

4.1.4 File Locations and Folder Tree Structure 

AIDRA-DSS is built with relative file pathing. The system does not depend on a specific 

location for initialization and operation. All subdirectories are created through the system’s 

operation and are generated relative to the location of the main file (projectBuilder.py). The file 

structure is discussed below. 

AIDRA-DSS primary files’ structure is illustrated in Figure 4-4. The file folder structure is 

relative to the main project folder. The main project folder is the folder that the user creates as the 

primary place for system execution and contains all necessary source files and databases. The user 

can indicate a specific file path for result output; however, the default structure is as illustrated.  

» GUIs: Folder of system front-end GUI files. 

» Databases: Folder containing databases for GUI operation. 

File Description Type Supports 

projectDatabase.db Database to store option selections from 

projectBuilder.py 

Database projectBuilder.py 

variableLibrary.db Database to store option selections from 

variableLibrary.py 

Database variableLibrary.py 

methodsLibrary.db Database to store option selections from 

methodsLibrary.py 

Database methodsLibrary.py 

vehicleLibrary.db Database to store option selections from 

vehicleLibrary.py 

Database vehicleLibrary.py 

processLibrary.db Database to store option selections from 

processLibrary.py 

Database processLibrary.py 

referenceLibrary.db Database to store option selections from 

referenceLibrary.py 

Database referenceLibrary.py 

synthesisAssembler.py Set of algorithms to assemble the synthesis 

tool from the selections of Project Builder 

Operation projectBuilder.py 
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» Processes: Folder containing process pseudo code and function text files; the folder is 

segmented into subfolders for each and named accordingly. 

» Methods: Folder of the methods’ pseudo text file and python code file; subdirectories for each 

category are created. 

» Results: Folder containing all materials used and generated for and from the execution of a 

project study. 

The “Results” folder itself is separated into pre and post project execution. The folder and 

subfolders are created on project synthesis code generation. For each project execution, a new 

“Project Name” folder tree is created, and the “Project Name” folder renamed according to the 

user specified project name. The organization scheme is depicted in Figure 4-5. The “Pre” folder 

contains the subset material required and used for the specific project operation. It effectively is 

an archival of the materials used in the project. The subset material includes the system databases, 

methods, and processes used for the project build as well as the synthesis file generated during 

system execution.  

The “Post” folder contains the output of the project execution. This includes the data, figures, 

and system logs; the folder organization follows the naming scheme. The naming scheme relates 

the folder content and is self-evident to folder content; therefore, the matter will not be addressed 

in further detail.  

 

 
Figure 4-4 Project folder-file structure 

 

 
Figure 4-5 Results folder-file structure on project build 
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4.2 Process to Problem Solving 

AIDRA-DSS execution to arrive at the 

problem solution follows a specific sequence. This 

is not to be confused with the procedure to execute 

any specific code but rather the order of operation 

of the system’s tools to arrive at the synthesis code 

and ultimately synthesis results. The overall 

problem-solving process is shown in Figure 4-6. 

The overall process is constant for all problems. 

Differentiation of projects occurs in the user’s 

selections during the process execution. 

The process to problem solution has four 

action items. The process is illustrated in Figure 

4-6. For any given problem where in this system is 

utilized, the process steps are: define the study, 

create the necessary supporting elements if they 

are not already in system, create and execute 

synthesis architecture for the given problem, and, 

either based on initial study definition or on 

architecture execution results, iterate the definition 

itself or iterate system subcomponents, as 

necessary. The process repeats until satisfactory 

completion of the user’s objective. The overall 

process is simple however each step is a process 

unto itself. Each is briefly addressed below; a 

detailed consideration of the components utilized 

within the steps is given in Section 4.3 Front-End: 

Core Components Description. 

4.2.1 Study Definition 

In the study definitin step the user user defines the problem. Problem definition includes the 

identification of the overall objective of the study and the general elements of the study. 

Specifically, these are the elements required to create a synthesis system through the use of the 

Project Builder routine. They include, but are not limited to, the vehicle, process, mission, 

trajectory, trade study, and even the mehods required. By the end of this step, the user has clearly 

defined all system elements of a classical design study that are required to execute the Project 

Builder—generation and execution of a synthesis architecture. This is necessary as these elements 

should exist within the system for rapid operation; determination if they exist and, if not, to add 

them to the system is the subject of the next step—Support Material Definition. Note, however, 

 
Figure 4-6 General execution process to AIDRA-DSS  
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many principle components can be generated from within the Project Builder in the event that, 

while operating, new requirments or study definition elements are determined necessary and yet 

are not currently available or in the event that the user is unaware of what components already 

exist in a usable form.  

4.2.2 Support Material Definition 

The Support Material Definition step involves the generation of the materials required for the 

architecture generation step. Architecture generation occurs within Project Builder. The 

supporting elements needed for architecture generation include the vehicles, processes, and 

methods required for the problem at hand. These correlate to the Vehicle Library, Process Library, 

and Methods Library. On identification of what is required to solve the problem in the Problem 

Definition step, the user must now verify that the required library elementals exist. In the event 

that they do not, the operator must initiate and execute the system’s libraries sub-processes as 

necessary to add the required elements. The process is repeated as necessary per element required. 

Additionally, to reiterate, any of the base elements identified during Problem Definition, can 

be created during the operation of Project Builder during the Architecture Generation and 

Execution step. In this way, if an element required was not foreseen, such as a particular method, 

it can be added to the system during Project Builder operation. Each supporting library is 

accessible through the Project Builder. Once the support libraries are populated to a critical level, 

the user could move directly to the Project Builder with confidence that the base elements exist 

and, if not, can be added, as necessary.  

4.2.3 Architecture Generation and Execution 

The Architecture Generation and Execution action item embodies the primary purpose of 

AIDRA-DSS. This action item is the execution of a process to arrive at an architecture to solve the 

given problem. The process to arrive at an architecture and its execution is the process of executing 

Project Builder. The Project Builder, similar to the supporting libraries, has its own procedure of 

execution. Project Builder’s process is discussed in detail in section 4.3 Front-End: Core 

Components Description, however, a brief discussion of it is given below. 

Given the problem definition and setup, the user executes the Project Builder to arrive at the 

generation and execution of a synthesis architecture tailor made to address the problem as defined. 

With the vehicle and process, as required by the problem definition and subsequent creation in the 

support libraries, the user executes the Project Builder. The user selects the desired methods to 

model the vehicles and uses these option selections, in addition to others such as trajectory options, 

to assemble the core components of a synthesis architecture. The system is executed either in 

system with results and visualization displayed to the operator or the architecture is generated and 

executed later at the user’s digression. With the architectures generated and executed per the 

problem definition, the user now considers if the problem definition has been satisfied, this takes 

the user to the last step in the process—Project Iteration. 
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4.2.4 Project Iteration 

On system execution and result accumulation and review, a study can be deemed either 

complete or requiring iteration. A study is considered complete when the system is no longer 

required and the study definition is satisfied in terms of system applicability. In the event that the 

study is deemed complete, the system is no longer necessary and the process of system execution 

ends. In the event that the study is not complete with the given processes sequence, then the process 

repeats but with either a change in a design variable, element selection (such as the method or 

process), or study definition. On identification of the iteration element, the process restarts at either 

Problem Definition or Architecture Generation and Execution depending on if the definition or if 

the architecture generation element selections require iteration, respectively.  

4.3 Front-End: Core Components Description 

Seven principal system modules form AIDRA-DSS. The systems are: Reference Library, 

Methods Library, Vehicle Library, Process Library, and Project Builder. Each is addressed in the 

following sections. 

4.3.1 Reference Library 

The Reference Library is a user interface to a database of references and file correlations for 

both knowledge gathering and retention, and for system method, process, and vehicle referencing. 

The database entry listings and new entry creation form are illustrated in Figure 4-7 and Figure 

4-8 respectively. 

The Reference Library is the least complicated of the system modules. Two tabs form the front-

end. The first—Figure 4-7—is the browser page; tabulated and shown is an aggregate of references 

according to author and title. From this page, a reference can be selected for modification or 

deletion, or a new reference entry procedure can be initiated. On both modify and new, the second 

tab—Reference Builder—is shown. Figure 4-8 shows an example for the Reference Builder tab. 

The tab’s form has two regions. First, the general reference information is displayed. If it does not 

exist, as for a new entry, then the entry fields are empty and are awaiting for the information to be 

added. The second half of the window is a non-editable region showing where the reference has 

been applied, such as a project or method. Tracking the references application allows for easy 

accountability for reference use in method, vehicle, or process building. 
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Figure 4-7 Reference Library listing and start page  Figure 4-8 Reference input and documentation form 

4.3.2 Methods Library 

The Methods Library is a database of 

system analysis methods accessible to the 

Project Builder for application in the 

synthesis tool. The database entry listings 

and new entry creation form are illustrated 

in Figure 4-9 and Figure 4-10 respectively. 

The Method Browser tab is the Methods 

Library’s home screen. From here, a 

method can be deleted, modified, or added. 

A listing of all currently entered methods is 

given. The methods are listed 

alphabetically. Method ID numbers are 

unique and automatically generated on 

method creation. General method 

information is displayed including the discipline the method is associated to and a brief method 

description. 

To create a new method, the user clicks the “New” 

button on the Method Browser tab. To view an existing 

method, the user clicks a cell corresponding to the desired 

method’s row and selects “Modify”. 

On selection of “New”, the user is presented with a 

method entry form as shown in Figure 4-10. As evident in 

the figure, the user enters the method’s general 

information such as a descriptive name and a general 

description. Additionally, the user selects the applicable 

primary and secondary disciplines, such as aerodynamics or propulsion, thereby correlating the 

 
Figure 4-9 Methods Library Browser 

 
Figure 4-10 New Method form 
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method to a discipline. The selection of a primary discipline is required. On save, the new method 

information is saved to the back-end database and appropriate tables are created as well as blank 

method script files that are discussed later. On completion, the user is taken to the Method Builder 

tab—Figure 4-11—for further method specification. On modify, the user is directly shown the 

Method Builder tab.  

The Method Builder is where the method is fully described, entered, and associated. This task 

is segmented into three subtabs in the Method Builder page labeled Logic, I/O, and Application; 

they are shown in Figure 4-11, Figure 4-12, and Figure 4-13 respectively. The Logic tab is 

organized into four fields. The left half of the page contains two fields for describing and 

documenting the method. This includes the general information entered on the method creation 

form and a field for selecting the references for the method. The user is to add the references to 

support the method. The documenting of the references allows for an easy identification of source 

material for later reference if necessary. 

The right half of the Logic tab’s page consists of two text fields for the method’s code 

documentation: “Pseudo Code” and “Editor”. The “Pseudo Code” section is a text field to 

document—via pseudo code—the method script that is entered in the “Editor” text field below 

“Pseudo Code” field, in the bottom right corner. The “Pseudo Code” is saved to a text file in the 

back-end that is created on method creation. The “Editor” field is a text field as well. Within this 

field, the user enters the method. The user must write in the “Editor” field in proper python syntax 

(or paste a properly written script into the field). Similar to the “Pseudo Code” field and associated 

 
Figure 4-11 Method Builder—Logic definition tab 
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file, the “Editor” associated file and entries are similarly created and saved to the back-end, but as 

python script files. All method pseudo code and script files s are stored relative to the master folder 

as described in the previous section. Both files are named according to the method name, 

discipline, and ID generated on method creation. On entering the information and selecting next, 

all page information is saved to the back-end and the user is displayed the I/O tab—Figure 4-12. 

The I/O page is the page in which the user identifies the method’s inputs and outputs. As is 

visible, the page is separated into two regions. The left half is a list of all variables currently stored 

in the system and is loaded from the Variable Library’s database. The right half of the page 

contains tables for displaying the selected input and output variables. To add a variable to the 

selection fields, the user must select the desired variable from the variable list and add them to 

either the inputs or the outputs list by clicking the appropriate button: “Add to Inputs” or “Add to 

Outputs”. On click, the currently selected variables in the variable list are added to the appropriate 

list according to the button activated. 

 
Figure 4-12 Method Builder–Input and Outputs (I/O) tab 

If the desired variable does not exist, the user can click the “Open Library” button, which will 

open the Variable Library. Upon opening the Variable Library, the user shall add the desired 

variable, after which, it will be available and displayed in the I/O variable list.  

Upon completion of specifying the input and output variables, the user clicks “Next”. On click 

of “Next”, two operations occur. First, the selected variables are saved to the back-end in the 

appropriate tables according to whether they are inputs or outputs. Second, the active tab changes 

to Application, the last tab. 
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The Method Library’s Application tab—Figure 4-13—is where the user identifies the method’s 

applicable conditions. The applicable conditions are those states in which the method is applicable 

and, therefore, are requirement conditions that should be met for correct method application. By 

selecting the appropriate condition field elements, the user will correctly define the applicability 

of the method. These options are selected from the drop-down menus above each text field. The 

text field displays the current selections and notifies the user on condition add or remove. 

There are three condition fields. They are Concept, Hardware, and Operation. The Concept 

field identifies the type of vehicle concept the method is applicable to, such as a TSTO launch 

vehicle or a flat-bottom lifting vehicle. Similarly, the Hardware field is the collection of 

decomposed system hardware components that assemble into a system-of-systems vehicle. 

Hardware includes such elements as the landing gear and type, the engine and type, lifting surfaces, 

etc. The Hardware are the physical components that assemble into the total system that the method 

models. The Operation field identifies the operating conditions in which the method is applicable. 

This would include, for example, man vs unmanned, subsonic vs supersonic, fuel and oxidizer 

type, etc.  

After the completion of the application condition selections, the user clicks “Done.” On doing 

so, the information selected is saved to the back-end database, the method addition or modification 

is complete, and the Method Library’s Browser tab is displayed, where in, the process can be 

repeated for a new method or method modification, as necessary.  

 

 
Figure 4-13 Method Builder—Application tab 
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4.3.3 Vehicle Library 

The Vehicle Library constitutes an interface and database for the creation and storage of 

vehicles that are to be employed within the Project Builder. The Vehicle Library interface is the 

means in which the user specifies the constituents composing the vehicle. Two tabs formulate the 

Vehicle Library. They are Vehicle Browser and Vehicle Builder, each depicted in Figure 4-14 and 

Figure 4-15 respectively. 

 

In opening the Vehicle Library, the user is presented 

with the Vehicle Browser. This browser’s operation and 

layout is the same as all previously discussed browser 

pages. The user is presented a chronicle of all currently 

entered vehicles. From this page, the user can select to 

modify, create, or delete a vehicle. To modify a vehicle the 

user selects a cell in the desired vehicle’s row and selects 

“View/Modify”. At this point, the user will be displayed the “Vehicle Builder” window (discussed 

below). On the click of “New”, the user is presented a vehicle initialization window as shown in 

Figure 4-16. As evident in the figure, the user enters a vehicle name, the vehicle type, and a vehicle 

description. This information displays in the Vehicle Browser’s table of vehicles on continuation 

as a new vehicle entry. On completion and save, the Vehicle Builder tab displays. 

The Vehicle Builder tab presents the interface in which the user specifies the specifics of the 

vehicle and, in doing, defines the vehicle. The Vehicle Builder page is displayed in Figure 4-15; 

the layout and operation are the same as that in the Methods Library’s Application subtab. The 

user specifies the constituents composing, defining, and limiting the vehicle. This is accomplished 

by specifying the vehicle’s Concept, Hardware, and Operation. The constituents are subsystem 

components or conditions that specify the total system. These constituents are the same elements 

within the condition fields of the Methods Library. If a vehicle has more than one of an element, 

 
Figure 4-14 Vehicle Library—Vehicle Browser 

 
Figure 4-15 Vehicle Library—Vehicle Builder 

 
Figure 4-16 Vehicle Library—New Vehicle 
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the user need only select it once. On click of “Next”, the information selected is saved and the user 

is returned to the Vehicle Browser tab; this completes a vehicle build. 

4.3.4 Process Library 

The Process Library is the interface where in an analytical process is defined and stored. A 

process can be either a secondary or a primary process. A secondary process is a process that 

occurs within or in the context of a primary process. A primary process is a process that can be 

executed independently or in conjunction with another defined system process (secondary 

process). A primary process governs the total system; a secondary process must exist within a 

primary process. The creation of each within the Process Library, follows the same procedure. 

The Process Library’s approach is 

consistent with the other libraries of 

AIDRA-DSS. As in the other libraries, the 

Process Library comprises of two principal 

tabs: “Process Browser” and “Process 

Builder”. The “Process Browser”—Figure 

4-17—is the screen shown at library 

initialization. A table presents the user with 

all currently recorded processes. The user 

is presented with each process’ identifying 

information. This includes the process’ 

name, whether it is a primary or secondary 

process, whether or not convergence 

occurs within the process, and a process description. The identifying process information is entered 

on process creation, see Figure 4-18. From the browser page, the user can select a process for 

modification or deletion, or the user can initialize the creation of a new process. On the selection 

of a process and clicking “View/Modify”, the user is taken to the Process Builder tab, Figure 4-19. 

On clicking “New” the new process entry form is presented, Figure 4-18.  

The new process initialization form is shown in Figure 4-18. 

On completion of this form, the new process is initialized within 

the system. To begin, the user enters the process identifying 

information: name, author, process type (primary or secondary), 

convergence class (yes or no), and a brief description. On the click 

of “Add/Save” the necessary tables for the new process are created 

in the back-end and the information is saved, thereby initializing 

the process. Additionally, this form closes and the user is 

displayed an active Process Builder tab. 

The Process Builder, Figure 4-19, is where the user defines or 

edits a process. The tab’s page is setup in three columns. The first 

 
Figure 4-17 Process Library—Process Browser 

 
Figure 4-18 Process Library—New 

Process form 
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column constitutes the general information describing the process. This includes the sections: 

Process Details and Pseudo Code. The Process Details section is the process information added in 

the new process form; it is not editable. The Pseudo Code section has a text field for the user to 

specify in natural language the process. The text added here is saved in a text file in the back-end. 

The second column contains the section Objective Function. If the process has a governing 

objective equation(s), in this section the user specifies it. The process of specifying the objective 

function has two parts. First, the user must add the independent and dependent function variables. 

They are added by clicking “Add Variable”; at which a form to select the variables opens, see 

Figure 4-20. The form has on the left a table of available variables to choose. On the right are two 

tables, one for independent variable listing and a second for dependent variable listing. To add to 

either table, and thereby make a variable an independent or dependent process variable, the user 

selects the desired variable from the variable list and then selects either “Add to Ind.” or “Add to 

Dep.” to add the variable to the 

independent or dependent variable list, 

respectively. When all necessary 

variables are added, the user clicks 

“Done”, at which point the form is 

closed, the selections saved to the back-

end, and the Process Builder tab’s page is 

shown with the selected variables visible 

in the appropriate Primary or Secondary 

tables. 

 
Figure 4-19 Process Library—Process Builder 

 
Figure 4-20 Process Builder—Objective Function variable selection 

form 
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The second part of the objective function specification process is to enter the objective function 

itself. The objective function(s) are added in the Process Function table. On the selection of 

independent variables, the Process Function table row count is set to the number of independent 

variables. The user must type the objective functions into the newly created rows. Between all 

objective functions entered, all independent and dependent variables must be used at least once. 

The variable names must be entered as they appear in the Independent and Dependent tables. It is 

upon the user to verify accuracy in entry and that all variables have been used. Additionally, all 

objective functions should equate to zero. The system is current set only to solve for objective 

functions in this form. 

The form’s third column section is 

Process Disciplines. In this region, the user 

identifies the primary and secondary 

disciplines, and the primary discipline 

order of operation. The user first selects the 

disciplines and then specifies the order. To 

select the disciplines, the user clicks “Add 

Disc”. On clicking, the discipline selection 

form, Figure 4-21, is presented.  

The form layout and the process of selecting disciplines, is similar to the variable selection 

process. The form is organized with the disciplines (primary and secondary) available on the left 

and those selected on the right. To add a discipline to the Selected Process Discipline tables, the 

user selects the variable from either the Primary or the Secondary tables under the Process 

Disciplines area and selects appropriately either “Add to Primary” or “Add to Secondary”. The 

user cannot mix disciplines; that is, the user cannot add a primary discipline as a secondary 

discipline or a secondary discipline as a primary discipline. To add or modify the list of available 

disciplines, the user must adjust the appropriate table in the back-end database. On selecting the 

desired disciplines, the user clicks “Save/Close”, at which point the user is presented with the 

Process Builder window, where in the previously selected disciplines are shown in the appropriate 

Primary and Secondary tables. To finalize the process build, the user need only award the 

discipline order. The discipline execution is serial. In the third and right most column, under 

Primary Discipline Order, the user is displayed a table populated with the primary disciplines. The 

user must add a numerical value correlating to the disciplines order in the overall process. The 

numbering must be integer based; the order will be executed in numerically increasing order. That 

is, the discipline with the lowest numeric value will occur first in the process execution; the value 

with the greatest numeric value will occurs last. 

On completion of all form sections, the user completes the process creation and build by 

clicking “Done”, at which point all entered information is appropriately written to the tables in the 

back-end and the user is returned to the Process Browser. 

 
Figure 4-21 Process Builder—Process Discipline Selection form  
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4.3.5 Project Builder 

The Project Builder is the primary component of AIDRA-DSS. This system is the DSS 

environment. The Project Builder has seven discernable secondary components in addition to the 

standard library browser. These components are the tabs of the DSS GUI. The tab breakdown is 

illustrated in Figure 4-22, the order of operation is indicated by the numerals. The inspiration for 

segmenting the system into the specific scheme what is called “the standard to design ladder” as 

presented in [88]. Simply, the ladder is a symbolic representation of specific technical tasks that 

should be present in a technically rigorous process of design and evaluation. Each tab has a unique 

task to build towards the final deliverables and ultimately decision making. A summary of each 

tab’s objectives is given below. This followed by an in-depth discussion of each tab as fabricated.  

 
Figure 4-22 AIDRA-DSS Project Builder tab set 

» Analysis: Selection of primary and secondary vehicles and corresponding trajectory segments 

» Integration: Selection of architecture processes and assignment to the vehicle selections, 

selection of hardware-discipline methods, and association of hardware function to mission 

segment 

» Iteration: Selection and specification of a method set for hardware requiring multiple methods 

per discipline, and establishment of vehicle trajectory 

» Convergence: Review of architecture processes selections including convergence 

specifications, and specification of additional convergence criteria including the option for user 

specific solver selection and solver option specification 

» Screening: Specification of the study as single or multipoint, specification of trade variables 

and ranges if a trade study, and specification of required input variable values 

» Visualization: Selection of visualization materials to be generated to assist in design evaluation 

» Assessment: Evaluation of study results for system accuracy and general design insights 

towards the design problem at hand 

4.3.5.1 Project Builder Browser 

As in the case of the libraries, the Project Builder also starts with a browser window. The style 

and operation are consistent with the other browsers. A table lists all currently started project 

builds. From this vantage point, the user can delete, modify, or begin a project. The operation is 

Analysis IterationIntegration Convergence Screening Visualization Assessnent

Project Builder

1 2 3 4 5 6 7
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identical to the browser in the other libraries discussed earlier. The Project Builders browser tab 

and new project window are shown in Figure 4-23 and Figure 4-24respectively. 

 
Figure 4-23 Project Builder—Browser 

 
Figure 4-24 Project Builder—New Project 

4.3.5.2 Analysis 

The Analysis tab presents the page wherein the user identifies the principal system(s) for 

analysis and the environment of analysis. The Analysis tab’s content is shown in Figure 4-25. The 

page is separated into specific sections: Project Information, Analysis Details, Mission Segments, 

Vehicle Selection, and Selected Vehicle Decomposition.  

 
Figure 4-25 Project Builder—Analysis 
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The Project Information section, the top-left region of the page, contains the project specific 

information as generated and created in the new project form. This information is not editable and 

is repeated, in part, in the other tabs’ page for reference. 

Below the general project information, is the Analysis Details section. In this section, the user 

is required to select several analysis options. This includes the execution automation level 

(currently full and semi are not functional), the celestial body that governs the gravitational and 

atmospheric conditions, and the celestial body type assumption, that is, the case of flat, round, or 

spherical body assumption. These selections will set the environment of the vehicle’s operation 

and method analysis type. These option selections will participate in the governing of the methods 

presented for selection in a later window. 

Below the Analysis Details section, 

is the Mission Segments section. In this 

section, a table shows the mission 

segments (trajectory segments) selected 

for vehicle operation. To select the 

mission segments, the user clicks 

“Mission Segments” and the mission 

selection window opens, see Figure 

4-26. In this window, the user selects 

the desired missions in the same manner as previously discussed for similar selection windows. 

The mission segments available directly correlate to the trajectory methods available. On save, the 

window is closed, the back-end database updated, and the mission segment selections displays in 

the Mission Segment section table. 

The section Vehicle Selection (top-

right corner) displays the vehicle(s) 

selected for analysis. To select a 

vehicle(s), the user clicks “Select 

Vehicle”, at which point, the vehicle 

selection window—Figure 4-27—

displays. On the left side of the window, 

the vehicles available are shown. These 

are the vehicles from the Vehicle Library. The user must select a vehicle. Multiple vehicles can be 

selected; however, if multiple are selected, then there must be at least one primary vehicle. The 

user must correctly select the vehicles as primary or secondary. A primary vehicle is a vehicle that 

is independent but can consist of one or more secondary vehicles. A secondary vehicle is a vehicle 

or a system that acts like a vehicle (a distinguishable sub element such as a first stage in a multi-

stage rocket) or is a distinguishable vehicle but is part of a total system that is considered itself as 

a vehicle. For example, the Falcon Heavy would be considered a primary vehicle consisting of 

multiple distinct secondary vehicles (the side stages, center core, and upper stage) that, in their 

 
Figure 4-26 Analysis—Mission Selection window 

 
Figure 4-27 Analysis—Vehicle Selection window 
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own-right, can be treated as distinct vehicles with their own secondary missions and sizing 

processes. On completion of vehicle selection, the user clicks “save”, the data is added to the back-

end, the window closes, and the vehicles are added to the Vehicle Selection table. 

The Selected Vehicle Decomposition section displays the elemental constructs of the vehicles 

selected. The user can switch between the vehicles selected. The table displays the constructs 

selected during the vehicle build. The vehicle’s concept, hardware, and operation selections are 

shown. This is provided for self-review prior to moving to the next tab, Integration. 

4.3.5.3 Integration 

The Integration tab, Figure 4-28, contains three sections: Process Selection, Method Selection, 

and Function Assignment. These sections lead to the selection of the analysis’ processes, the 

selection of the analysis’ methods, and the association of hardware to function. The order of 

operation is to select the processes first, followed by the methods, and lastly the hardware-function 

assignment. Each is discussed next. 

 

 

 

 

 
Figure 4-28 Project Builder—Integration 
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4.3.5.3.1 Process Selection 

The user selects the analysis process in 

the Process Selection and Assignment 

window, Figure 4-29. Clicking the “Select 

Process” button will display the window. 

On the left side of the window is the 

Process List. The Process List is an 

itemization of the processes available for 

selection. The right side of the window 

contains two windows—Primary and 

Secondary. The primary and secondary terms correspond to the vehicle class not the process class. 

The process’ class (primary or secondary) is indicated in the Process List table. A process 

classification can be either secondary or primary and can be assigned to either a primary or a 

secondary vehicle. (Recall, a primary process is a process that governs the closure of a vehicle 

design and can but is not required to contain a sub-process. A secondary process is a process that 

operates within the bounds of a primary process.) To assign a process, the user selects the process 

in the Process List table and then clicks either “Add to Pri.” or “Add to Sec.” to add the process to 

the Primary or Secondary table, respectively. After selecting the process, the user assigns the 

process to a vehicle by selecting the desired vehicle from the drop-down window available in the 

Primary or Secondary table depending on the user’s selection. Only vehicles selected during the 

Analysis page operation will be available as options to the user. When the process selection and 

assignment to a vehicle is complete, the user selects “Save/Close” at which point the selections 

made are saved to the back-end database and the window closes. The process-vehicle selections 

made are displayed in the Integration page’s Process Selection table. 

4.3.5.3.2 Method Selection 

Method selection occurs through the Method Selection window—Figure 4-30. The window is 

accessed by selecting “Select Method” under the Method Selection tab. On button click, the 

window displays and is populated. 

Methods are assigned according to vehicle-hardware-discipline association. The vehicle(s) 

previously selected and its hardware populates the Method Selection window. Each hardware has 

the option to be assigned a single method per process discipline (if more than one method is 

necessary, all hardware-discipline methods for that discipline should be assigned under the 

Iteration tab). The methods available per hardware per discipline display in a dropdown menu in 

the Method Name column. To assign a method and activate the analysis option, the user must 

select a method from the menu in the Method Name column and select “Yes” under the Select 

column. The user can decline a hardware-discipline analysis by selecting “No” under the Select 

column; in this case, the method displayed in the Method Name column is non-consequential. By 

reviewing the Select column’s entries, the user can review to what degree a given hardware is 

being considered in the analysis (hardware-discipline accountability). On completion of method 

assignment, the user selects “Save” and the user’s selections are saved to the back-end database, 

 
Figure 4-29 Integration—Process Selection and Assignment window 
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the window closes, and the vehicle-hardware-method selections are displayed in the Integration 

page’s “Selected” table section under the Method Selection tab.  

4.3.5.3.3 Function Assignment 

The Function Assignment tab—shown in Figure 4-31—is the interface for the user to assign a 

vehicle’s hardware a function mode (its purpose) and assign that functionality to a given mission 

segment. The function type is set in the Function column. A drop-down menu shows the available 

functions (Lift Source, Thrust Source, TPS, etc.). If multiple hardware provides the same function 

for the same mission, their order of operation (simultaneous or sequential) is assigned via the value 

set in the Hardware Order column. The order is in ascending order, that is, the lower value 

associated hardware function occurs first. 

Additionally, this section indirectly sets the mission segments per vehicle. As such, the user 

must assure that all required mission segments per vehicle are associated. The mission options 

available are from the list selected in the Analysis tab. To add a row, and therefore a mission 

segment, select “Assignment”. This will add a single row. Furthermore, note that there is a direct 

dependency between mission segment and hardware function; this means that for all mission 

segments the vehicle must have some hardware performing a function whether it be thrust, lift, 

thermal protection, or some other.  

By the completion of the Function Assignment tab, the vehicle has its mission segments 

specified, hardware per mission segment operation type and variable range defined, and, in the 

 
Figure 4-30 Integration—Method Selection window 

 
Figure 4-31 Integration—Function Assignment tab 
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event of multiple hardware with the same function mode, the specification of operational order. 

Not defined however, is the mission order. The mission order is set during the Iteration page 

operation. 

4.3.5.4 Iteration: 

The Iteration tab—Figure 4-32—is the environment in which the user defines the parameters 

that refine the analysis process for proper code assembly. There are two primary objectives: (1) 

expand methods per hardware per discipline if necessary and (2) formulize the trajectory. These 

objectives are fulfilled by the interactions within the Method Expansion and Functional Mission 

Builder sections, respectively. 

A secondary objective of the Iteration page is to verify the vehicle-process selection. This is 

done by review of the information presented in the Process Check section. Here, the selected 

vehicle and associated process’ grade are indicated (primary or secondary). All vehicles should 

have a process and the primary vehicle must have a primary process associated. The user should 

review the presented selections for correctness; this is a manual verification process. 

4.3.5.4.1 Method Expansion 

The Method Expansion section provides the user the option to add or assign multiple methods 

to a vehicle-hardware-discipline association. As visible in Figure 4-33, the Method Expansion area 

is a table populated with drop down menus for the user to associate a new method as in a similar 

manner to previously done. However, the user must now address a new condition, the 

conditionality of multiple methods per the same device. This is addressed through the selection of 

a control variable and variable value. 

 
Figure 4-32 Project Builder—Iteration Page 
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The control variable is a method variable that controls the operational execution of the multiple 

methods. The control variable is selectable from the method input variables. The methods 

execution is controlled by the value of the control variable as set in the Value column. For example, 

if there are three aerodynamic methods (subsonic, transonic, and supersonic) then a control 

variable could be the Mach number with control variable values of 0.85, 1.25, and 7. In this case, 

the subsonic method would execute so long as the Mach number is less than 0.85. The transonic 

method would execute for Mach numbers between 0.85 and 1.25. The supersonic method would 

execute for Mach number values greater than 1.25 and less than 7. In this way, the user controls 

the application range of a method in a multi-method set. 

4.3.5.4.2 Function Mission Builder 

The Function Mission Builder section is the area in which the user defines the vehicle’s 

mission. The Function Mission Builder is populated with the mission segments selected in the 

Integration page’s Function Assignment tab. In this section, the user specifies the parent-child 

vehicle relationship, assigns a mission segment and order value to a vehicle, and specifies a trigger 

condition if necessary. 

The vehicle parent-child relationships are controlled through the Primary Vehicle and 

Secondary Vehicle column selections. If the user selected more than one vehicle during the 

operation of the Analysis tab, then here the user specifies the vehicle relationships. The primary 

vehicle or parent is selected in the Primary Vehicle column. All vehicles are listed as options. The 

secondary vehicle or child vehicle is specified in the Secondary Vehicle column. A secondary 

vehicle can be a primary vehicle as well. During the operation of the Analysis tab, if only one 

 
Figure 4-33 Iteration—Method Expansion section 

 
Figure 4-34 Iteration Page—Function Mission Builder Section 
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vehicle were selected, then the Second Vehicle column will display “No Sec. Veh. Required” and 

the user must not make any selection. All vehicles and their dependencies must be assigned mission 

segments. 

For each mission segment, the user is required to assign a value for the Mission Order. The 

mission order defines the order of mission segment occurrence in the total mission. The value 

assigned expresses the order of operation; the lower the value the earlier the mission segment 

occurs. The mission order per vehicle is sequential. In the case of the multi-vehicle, the values 

need to coincide if the vehicles (primary and secondary) operate concurrently or as a single system. 

At the point of a multi-vehicle disintegration, the mission segment and order per vehicle does not 

need to agree. In this way, the user can define a system of vehicles that operates concurrently as a 

single system for a specified set of mission segments, but that can also operate disintegrated as 

independent individual systems—with unique mission segments—at a predetermined point in the 

total mission trajectory. 

The trigger variable is a user-selected variable that specifies a variable dependency for the 

mission segment execution. The mission segment execution is controlled by the value of the trigger 

variable. In this way, similar to the case of multiple methods for single hardware, the user can set 

switches to control the mission segment analysis. 

If a trigger variable is not required, then the user must set the Trigger Value entry to NA and 

set the Trigger Var. to any variable, the Trigger Var. is nonconsequential. In this case, all mission 

trajectory control will be accomplished through the standard method inputs for the mission 

segment. The inputs are set in the Screening tab.  

4.3.5.5 Convergence 

The Convergence tab—Figure 4-35—has two purposes. The purpose is to display the process 

information (as visible in the Process Information section) and, as visible in the Convergence Setup 

section, present the user with a means to control more directly the convergence execution.  

The Process Information section presents the user with three information portals: Independent 

Variables, Convergence Functions, and Inter-Process Disciplinary Variables. These three portals 

are setup for system transparency and system review. Recall that a developmental objective is 

solution system transparency. As such, here the user is presented for review and edification, the 

independent variables of the process, the convergence functions of the process selected, and the 

process variables that are part of the multidisciplinary process (inter-disciplinary variables). The 

interdisciplinary variables account for the interconnectivity of the disciplinary analysis and 

changes with method selection. From this information, the user can track variable influence and 

the degree of discipline dependencies. This is significant for identifying and tracking potential 

design driving variables and allows for a means of assessment on method selection for 

multidisciplinary variable integration into the concept design. The Process Information section 
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presents information; the user is required to review the information for impact, significance, and 

correctness.  

The Convergence Setup section is the interface for refining the convergence process and user 

feedback. The user is able to select the convergence output style and specify solver options through 

the Output Style and Solver Options sections respectively. The output style refers to how the 

convergence output is handled in regard to the user; the user can select to receive no specific 

feedback, a data file of the convergence function outputs per iteration, or a real-time plot of the 

convergence data. The Solver Option section is where the user can specify a specific solver from 

a set of options, specify the numerical zero value for the solver and user specific solver options. 

The user specific options interface is a text input area; the text must be in proper python syntax for 

the solver selected. 

4.3.5.6 Screening 

The Screening tab—Figure 4-36—is a significant action location. Three critical tasks are 

accomplished: trade study specification, input variables’ value specification, and system 

generation. The page’s tasks are categorized horizontally into three rows corresponding to each 

task. 

 
Figure 4-35 Project Builder—Convergence Page 
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4.3.5.6.1 Trade Study Specification 

The first task is trade study specification. Trade study specification occurs through the Study 

Type and Trade Variables sections selections and range specifications. The study type, selected in 

the Study Type section, can be selected as single point, multi-point, or sensitivity. The first two 

are self-explanatory. The sensitivity type is a type of multi-point but with a specific purpose of 

identifying variables of high influence on the design solution and does not allow user selection of 

trade variables. 

For a multipoint study type, the trade study variable selection and specification occurs through 

the operation of the Trade Variables section. There are two steps to setting up the trade study: 

selecting the trade variables and identifying the trade variable range and step count. 

The user must select the trade variables. The trade variables are selected through the Trade 

Variable Selection window—Figure 4-37—that is opened by clicking “Select” in the Trade 

Variables section. The Trade Variables Selection window presents the user with a list of available 

variables—the left-hand table. From this list, the user selects the trade variables desired and clicks 

“Add to Selected”. On click, the variables selected are displayed in the Selected Variables section’s 

table. When all trade variables are selected, the user clicks “Save/Close” at which point the data is 

saved and presented in the Trade Variables section’s table in the Screening tab.  

The selecting of the variables completes the first step; the second step is to specify the variable 

trade values. With the trade variables selected the user must enter the, the user enters the minimum, 

maximum, and desired data points between the minimum and maximum specified (including the 

boundary values). The user enters the values directly in the Trade Variables section’s table. 

 

 
Figure 4-36 Project Builder—Screening tab’s page 
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Figure 4-37 Screening Page—Trade Variable Selection window 

4.3.5.6.2 Input Value Specification 

The second third of the Screening window comprises of a table of input variables, as 

determined by the system, where in the user is to specify the values. Through an evaluation of all 

methods selected and their place within the order of operations in the process selected, the system 

determines which variables require an initial value from the user. These variables are uniquely 

different from the interdisciplinary variables discussed previously in the Convergence tab. The 

user enters values for each variable at this interface. On the click of “next” or any of the generation 

buttons (discussed below) the input values entered by the user are saved to the backend database 

and are automatically entered into the synthesis script on generation. However, if the user clicks 

“back”, the data is not retained, as each time the Screening window is displayed the required input 

variables are reevaluated and presented.  

4.3.5.6.3 System Execution 

The bottom third of the page contains the System Execution section. At this point, the user is 

presented with a principal option. The user is able to generate the code as standalone but that is 

not executed at the time of generation, or the user can generate the code and run it subsequently 

but with no tasked figure generation. At this point all necessary elements to generate the synthesis 

code have been specified. If the user chooses not to generate it at this point, it will be generated by 

default after the Visualization tab’s page completion. Additionally, the user has the option to 

change the output folder. By default, the output folder is relative to the location of the GUI’s script 

file as described in the earlier folder tree discussion. There is the option to not generate the code 

at this point if the user favors to set a desired result visualization scheme, which is set in the next 

tab—Visualization. If the user decides to generate and execute the synthesis generation at this 

point, then no result data analysis will be conducted automatically; a database of result data will 

be generated for later evaluation and analysis upon synthesis code execution. 

4.3.5.7 Visualization 

The Visualization page is the interface in which the user identifies the decision-making support 

figures to be generated. The page is shown in Figure 4-38. The user can specify the file type and 

image resolution in the File Format and Resolution sections respectively (located on the left-hand 

side of the page). The Visualization Package and Selected Variables sections are where in the user 

defines the figures to be generated. 
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4.3.5.7.1 Visualization Package 

In the Visualization Package section, the user has two options: Standard or Custom. These 

options control the variables and figure types that are to be generated. The user can adjust the 

standard package. Currently, the standard figures address study success (convergence iterations 

per trade and final convergence error per iteration), in addition to geometric and weight design 

variable depiction. Ideally, the standard package would contain a set of preselected figures that 

should address some standard design questions for a given problem relevant to the conceptual 

designer; this set could and would vary depending on the problem/vehicle type. Table 4-3 

summarizes a standard figure package set. The Custom option is selected if the user wishes to 

specify the visualization output exactly. 

Table 4-3 Visualization Standard Package figure set 

Field Description Type 

Geometry/Weight Standard sizing figure of 𝑆𝑝𝑙𝑛 versus 𝑇𝑂𝐺𝑊; trade study inclusive Scatter-Line 

Geometry Vehicle length versus span; trade study inclusive  Scatter-Line 

Convergence Depiction of convergence criteria per solver iteration; trade study 

inclusive; 𝑓(𝑃𝑟𝑜𝑐𝑒𝑠𝑠 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒, 𝑒𝑟𝑟𝑜𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒) 
Scatter-Line 

Study Summary Presentation of all converged and non-converged points and execution 

error log check; rapid identification of non-solution iterations 

Bar 

 

To initiate the custom output option, the user clicks “Select Custom”, at which point the 

“Custom” radial option is set active and the variable selection window—Figure 4-39—displays. 

The window is separated into a table of variables available and the set of selected variables and 

their corresponding figure axis assignment. The user can plot up to three different variables. The 

user selects a variable from the “Variable List” and assigns it to an axis by clicking “Add to X”, 

“Add to Y”, or “Add to Z” referring to the corresponding X, Y, and Z axis, respectively. On 

completion of variable selection, the user clicks “Save/Close”; at this point the user’s selections 

 
Figure 4-38 Project Builder—Visualization Page 
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are saved to the backend database and then displayed in the Visualization tab’s Selected Variables 

section. 

4.3.5.7.2 Selected Variables 

The Selected Variables 

section presents to the user the 

variables to be visualized and the 

style of the visualization. Each 

row corresponds to a single 

figure. The variables for the x, y, 

and z axes are shown as selected 

in the Visualization Variable 

Selection form. The interaction 

required from the user is to select the figure type. Here the user is given a drop-down menu in the 

Style column, for each figure, where the user is to select the figure style. Style options include 

Scatter, Line, Bar, Pie, Histogram, and Cluster. The user must select one. 

4.3.5.8 Assessment 

The Assessment tab, Figure 4-40, has the purpose of presenting the user with an interface for 

reviewing results for accuracy, reviewing results for design insights, and reviewing design 

recommendations. To accomplish this, the window contains three different tabs, each individually 

addressing a purpose: Data Summary, Visualization, and Recommendations. 

 

 

 

 
Figure 4-39 Visualization—Figure Variable Selection window 

 
Figure 4-40 Assessment page—Data Summary tab 
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4.3.5.8.1 Data Summary 

 The Data Summary tab—Figure 4-40—is separated into two sections: Design Data Summary 

and Error Summary. The Design Data Summary is a section that contains a table that is populated 

by the primary design data generated by the code. The significant design variables and their values 

are shown. The Design Data Summary is a static display of the results for review by the user. 

The Error Summary section is area in which principal design data is compared to a known 

vehicle’s value. The percent difference between the known value and the output value are shown. 

The primary purpose of this section is to present an easy view for evaluating the accuracy of the 

system built. The user can select a specific vehicle for comparison by selecting it from the drop-

down menu next to the “Change Comparison Vehicle” label. The current comparison vehicle name 

is displayed in the bottom left box at “Known Comparison Vehicle”. The system will automatically 

select the nearest available vehicle available. If desired comparison vehicle is not available, then 

the user must add it to the database or perform the comparison in an outside environment.  

4.3.5.8.2 Visualization 

 The Visualization tab, see Figure 4-41, 

displays the figures generated as previously 

specified in the Visualization page. The tab is 

separated into two sections; each section is a figure 

display area. Under each area is a separated drop-

down menu. From the drop-down menus, the user 

can switch the figure displayed. The menu options 

are the figures found in the figure folder for the 

specific study. The user can change the default 

folder by selecting “Open Folder”. 

4.3.5.8.3 Recommendations 

The Recommendation tab—Figure 4-42—

displays a set of design recommendations for the 

given project. This portion is underdevelopment 

and is to be a research and development area for 

another work. The purpose of this tab is to present 

the user with computer recommendations for the 

design problem. This can include the best design 

point, the effect of different hardware on the 

system, hardware combination recommendations, 

and more. 

 

 

 

 
Figure 4-41 Assessment page—Visualization tab 

 

 
Figure 4-42 Assessment page—Recommendation tab 
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4.4 Back-End: Synthesis Assembler and Architecture 

A general description of the back-end was given in section 4.1 Description, Structure, and 

Core Components, however, a more indepth discussion of the Synthesis Assembler comonent is 

necessary. The Synthesis Assembler is the element that, as the name implies, assembles the 

synthesis code. Given the problem’s elements as defined during the operation of the Project 

Builder, such as the vehicle selections and decomposition, the processes, and the method selection, 

the Synthesis Assembler extracts the information from the systems databases and, using an 

assembly instruction algorithm, assembles the synthesis code with correct order of operation and 

initialization. The result is a unique and tailor-made synthesis code specific to the problem at hand. 

The Synthesis Assembler’s output is a single aggregate file containing all necessary definitions and 

information required to execute the analysis. 

4.4.1 Synthesis File Structure 

The synthesis code itself, as generated, has a specific structure. Every synthesis architecture is 

assembled into a structure composing of specific algorithms, as necessary, which can be 

categorized by task. Each is identified and described below. 

» Process Cost Function: a definition that is the primary call for the solver routine. The function 

contains a main analysis call and the objective function to be minimized. The primary output 

is the objective function(s) error in the correct form for the solver used.  

» Solver Iteration and Call: a definition set that is the primary analysis driver. It contains the 

solver call and a routine for approximating the initial values or bounds for said solver. The 

solver itself is variable and dependent on the user. In the current environment, both a general 

nonlinear solver and an evolutionary global solver are used either individually or in tandem. 

» Primary Disciplines Call: a definition containing the primary discipline function calls 

(aerodynamics, propulsion, etc.). They are called according to the order of operation set by the 

process selected. Interdisciplinary calls are handled appropriately as needed within the parent 

discipline method.  

» Input Sheet Call: a definition that contains and defines the variables and any associated values 

of the input and outputs of each method. 

» Mission and Hardware Definition: a definition that identifies the linkages and relevant 

information between the mission segments and the functional hardware per mission segment. 

» Trade Study Setup: a definition that identifies the trade variables and values for the trade study. 

The related or affected vehicle, method, hardware, and discipline are identified as well.  

» Data Process and Save: a set of definitions for preparing and saving the data to json database 

files. 
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» Variable Update Handling: a set of definitions that handle the duties of updating and 

concatenating the variable data. 

» Hardware-Method Association: a definition that defines the linkages and constraints between 

the various hardware and the principal methods applicable per function and discipline. 

» Multiple Method Resolve: a definition that, in the event a given hardware or discipline has 

multiple associated methods, identifies which method to use in a given situation and the 

necessary and/or current input values available to execute the identified correct method. 

» Multiple Hardware/Method Variable Handling: code set that identifies how to handle data in 

the case that, for a given variable, the vehicle or hardware has multiple sources.  

» Main Analysis Methods: a set of functions that are the engineering analysis methods that are 

called in the primary disciplines call block. 

» Driver Code Block: this code block is a set of code (standard to all synthesis architectures) that 

initiates the program by calling the solver and iteration call definition (along with others). This 

is standardized code that exists after the if __name__ == “__main__” block of python code. 

This code handles the appropriate calls and setup of the problem dependent on the convergence 

and iteration case selected. 

4.4.2 Synthesis File Generation Process 

The code generation process to assemble the code is shown in 

Figure 4-43. The process is sequential. The process begins with the 

querying of the project database for the project variable definitions. 

These include the process(es), vehicle(s), and methods selected 

along with the method constraints, mission definition, and 

hardware-method-mission associations. Based on the process 

variable data, the Process Library is queried for the process 

information—primary disciplines, discipline order of operation, and 

objective functions. The input variables and values are extracted 

from the Project Builder’s database; recall that the input and 

interdisciplinary variables were identified during the Project 

Builder operation and the user has entered the variable values. With 

the problem specific data available, the synthesis code is assembled.  

The code is assembled into the parts as described previously. A 

new code file is created. To it is added the principal analysis control 

definitions (Process Cost Function Solver, Solver Iteration and Call, 

Primary Discipline Call) in addition to the input values (Input Sheet 

Call) and trade study definition (Trade Study Setup). Additionally, 

the methods themselves are added. The methods are processed for 
 

Figure 4-43 Code assembly process 
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trigger events for automated code insertion based on the dependent (interdisciplinary) method calls 

found within the source file. After processing, the updated methods are inserted into the file along 

with additional templated code control algorithms, method resolve algorithms and data processing, 

handling, and saving algorithms. On completion, the Synthesis Assembler has output a synthesis 

code that can be executed externally or internally of the DSS and is fully distributable with all 

uniquely necessary code included. 

4.4.3 Synthesis File Generator Structure 

The assembler code, the Synthesis Assembler, is a standard python script consisting of many 

functions. The functions can be categorized by application. The categories are summarized in 

Table 4-4. They, naturally, are similar to the synthesis code structure described previously, as they 

are responsible for generating the synthesis file.  

Table 4-4 Principal function categories of the back-end’s Synthesis Assembler 

Category Description 

Utility Methods Collection of supporting definitions not specific to any one condition 

Directory Create Definitions that identify root directory and create project subdirectory folder, as necessary. 

File Control Set of definitions for file name and path generation, and file copy to directory. 

Import Inputs Set of definitions for input sheet import and trade variable setup to proper form. 

Data Extract Set of definitions to query databases to extract primary data as selected and specified during 

GUI operation. Data is harnessed into useful form. Such data includes the process and 

methods selected, method limitations, mission definition, hardware-method-function-

mission association, etc. 

File Generator Definition set to control synthesis code generation; calls to sub definitions for creation. 

Creates file in structure as described in 4.4.1 Synthesis File Structure. 

Part Generator Definition set that supports or executes specific subtasks within the file generation process 

or are code templates utilized in file generation. Various definitions generally fall within the 

code categories identified in 4.4.1 Synthesis File Structure.  

Method Processing A definition set for processing engineering methods for trigger events, import calls, and 

proper format. Definitions handle code injection for trigger events. 

4.4.4 Selected Significant Algorithms  

The Synthesis Assembler and resultant synthesis file comprise of many definitions. The 

Synthesis Assembler script is about 4000 lines, and the synthesis file is not limited to any length. 

There are several significant algorithms in both files. Many are shared in some form as one creates 

the other and the Synthesis Assembler is in part a library of templated code. Several significant 

definitions are selected for discussion and are summarized algorithmically. They are separated by 

location—synthesis generation (Synthesis Assembler) and synthesis / analysis file. 
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4.4.4.1 Synthesis Assembler 

The overall approach to file generation according to the Synthesis Assembler is given in 

section 4.4.2 Synthesis File Generation Process. In this section, discussed specifically is the 

processing of the methods file for insertion into the assembled code. There are two points of 

discussion (1) method file processing in general and (2) trigger event processing. 

4.4.4.1.1 Method File Processing 

Figure 4-44 depicts the method processing process. The procedure begins with the 

identification of the methods required for the given vehicle’s solution process. Each method is 

transcribed into a temporary methods collection file. During the transcribing process, each 

method's file is opened and read line by line. During the transcribing process, if a lines text satisfies 

a specific regex condition, the line is processed, and an event occurs. Two specific conditions 

searched for are the identification of a trigger event and the identification of an import call (python 

element). Other secondary processing occurs but it is not critical to this discussion as it reshapes 

the file into a desired layout and formatting style. If the line contains an import call, the import 

call is saved to a list that, on completion of all method processing, is filtered for unique imports, 

is joined with other required import calls specified elsewhere, and is inserted at the head of the 

main synthesis file. If a trigger event is identified, the event call is decomposed, processed, and 

the appropriate code is added to the method in the temporary file. The event is discussed in detail 

below. After all methods are processed, the temporary methods collection file is appended to the 

main synthesis file. 

Algorithm Method File Process 

Dependents: 𝑓(𝑚𝑎𝑖𝑛𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠) 

Output: temporary methods file, appending to main synthesis file 

1: 𝑓𝑜𝑟 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 

2: 𝑚𝑒𝑡ℎ𝑜𝑑𝑠 ← 𝑔𝑒𝑡 𝑚𝑒𝑡ℎ𝑜𝑑𝑠 𝑙𝑖𝑠𝑡 

3: 𝑓𝑜𝑟 𝑚𝑒𝑡ℎ 𝑖𝑛 𝑚𝑒𝑡ℎ𝑜𝑑𝑠 

4: 𝑙𝑖𝑛𝑒 ← 𝑔𝑒𝑡 𝑚𝑒𝑡ℎ𝑜𝑑 𝑙𝑖𝑛𝑒 

6: 𝑖𝑓 𝑙𝑖𝑛𝑒 𝑖𝑠 𝑖𝑚𝑝𝑜𝑟𝑡 𝑙𝑖𝑛𝑒, 𝑠𝑡𝑜𝑟𝑒 𝑖𝑚𝑝𝑜𝑟𝑡 𝑐𝑎𝑙𝑙 

7: 𝑖𝑓 𝑙𝑖𝑛𝑒 𝑖𝑠 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛 𝑙𝑖𝑛𝑒, 𝑠𝑡𝑜𝑟𝑒 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛, write to temp. methods file  

8: 𝑖𝑓 𝑙𝑖𝑛𝑒 𝑖𝑠 𝑡𝑟𝑖𝑔𝑔𝑒𝑟 𝑒𝑣𝑒𝑛𝑡 

9: 𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝐸𝑣𝑒𝑛𝑡𝐼𝑛𝑓𝑜 ← 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑡𝑟𝑖𝑔𝑔𝑒𝑟 𝑒𝑣𝑒𝑛𝑡 

10: 𝐼𝑛𝑠𝑒𝑟𝑡 𝑡𝑟𝑖𝑔𝑔𝑒𝑟 𝑒𝑣𝑛𝑒𝑡 𝑐𝑜𝑑𝑒 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜 𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝐸𝑣𝑒𝑛𝑡𝐼𝑛𝑓𝑜 𝑖𝑛𝑡𝑜 𝑡𝑒𝑚𝑝 𝑓𝑖𝑙𝑒 

11: 𝑖𝑓 𝑛𝑜 𝑠𝑝𝑒𝑐𝑖𝑎𝑙 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛, 𝑤𝑟𝑖𝑡𝑒 𝑙𝑖𝑛𝑒 𝑡𝑜 𝑡𝑒𝑚𝑝. 𝑓𝑖𝑙𝑒 

12: 𝑔𝑜 𝑡𝑜 𝑛𝑒𝑥𝑡 𝑙𝑖𝑛𝑒 

13: 𝐴𝑝𝑝𝑒𝑛𝑑 𝑡𝑒𝑚𝑝. 𝑚𝑒𝑡ℎ𝑜𝑑𝑠 𝑓𝑖𝑙𝑒 𝑡𝑜 𝑚𝑎𝑖𝑛 𝑠𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑠 𝑓𝑖𝑙𝑒 

14: 𝐴𝑝𝑝𝑒𝑛𝑑 𝑢𝑛𝑖𝑞𝑢𝑒 𝑖𝑚𝑝𝑜𝑟𝑡 𝑐𝑎𝑙𝑙 𝑙𝑖𝑠𝑡 𝑡𝑜 ℎ𝑒𝑎𝑑 𝑜𝑓 𝑠𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑠 𝑓𝑖𝑙𝑒 

Figure 4-44 Method File Processing function process and layout 

 

4.4.4.1.2 Trigger Event Processing 

Each method file, during transcribing, is processed for trigger events. A trigger event is a line 

instructing for a certain code call to be inserted dynamically based on user selections. If a line 

contains a trigger event call, the event call is decomposed into its core components—event type, 

call discipline/function, call hardware, call local inputs, and call local output name. The type 
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indicates if it is a function or discipline call. The call indicates the specific discipline or function 

of interest. The hardware term specifies whether the call applies to the total vehicle or a specific 

subsystem, and the inputs/outputs are the names within the source code that are required to access 

the output or input data for the call execution itself and the call results. Based on the event 

specifications, the correct code is inserted to call the correct code specified by the event and to 

create the correct function that is called. Figure 4-45 and Figure 4-46 are examples of the inserted 

event call code and the generated function that is called. Additionally, the generated function is 

dependent on a method resolution and variable processing function set, which is discussed in detail 

in the next section. The new functions and event call code generated per trigger are transcribed 

into the temporary method file as discussed previously. 

 
Figure 4-45 Example trigger event call and local inserted code 

 
Figure 4-46 Example trigger event inserted function 

4.4.4.2 Synthesis File 

Section 4.4.1Synthesis File Structure summarized the principal function groups and general 

file structure. In this section, the principal algorithms are addressed in more detail. Specifically 

considered are the groups: Process Cost Function, Solver Iteration and Call, Primary Disciplines 

Call, Multiple Method Resolve, and Multiple Hardware/Method Variable Handling. These 

algorithms effectively form the spine of the analysis and solution finding process. 

4.4.4.2.1 Process Cost Function 

The process cost function is the function 

targeted by the numerical solver; it computes and 

returns the value of the process’s objective 

functions given values for the independent 

process variables as shown in Figure 4-47. The 

function calls the main engineering analysis 

function, computes the objective functions’ 

values, and returns the values. These values are 

used by the numerical solver to converge to 

correct independent variable values. 

Algorithm: Process Cost Function (Solver Function) 

Dependents: 𝑓(𝑚𝑎𝑖𝑛𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠) 

Output: 𝑒  

1: 𝑓𝑜𝑟 𝑣𝑎𝑟 𝑖𝑛 𝑖𝑛𝑑𝑉𝑎𝑟𝑆𝑒𝑡 

2: 𝑖𝑛𝑝𝑢𝑡𝑠[𝑣𝑎𝑟] ← 𝑢𝑝𝑑𝑎𝑡𝑒 𝑣𝑎𝑟 𝑣𝑎𝑙 𝑔𝑖𝑣𝑒𝑛 𝑥0𝑖𝑛𝑖𝑡 

3: 𝑟𝑒𝑠𝑢𝑡𝑙𝑠 = 𝑚𝑎𝑖𝑛𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠(𝑖𝑛𝑝𝑢𝑡𝑠) 

4: 𝑓𝑜𝑟 𝑣𝑎𝑟 𝑖𝑛 (𝑖𝑛𝑑𝑉𝑎𝑟𝑆𝑒𝑡, 𝑑𝑒𝑝𝑉𝑎𝑟𝑆𝑒𝑡) 

5: 𝑣𝑎𝑟 ← 𝑒𝑥𝑡𝑟𝑎𝑐𝑡 𝑣𝑎𝑟 𝑣𝑎𝑙 𝑓𝑟𝑜𝑚 𝑟𝑒𝑠𝑢𝑡𝑙𝑠[𝑣𝑎𝑟] 

6: 𝑓𝑜𝑟 𝑜𝑏𝑗𝐹𝑢𝑛𝑐 𝑖𝑛 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑆𝑒𝑡 

7: 𝑒𝑖 ← 𝑜𝑏𝑗𝐹𝑢𝑛𝑐(𝑖𝑛𝑑𝑉𝑎𝑟, 𝑑𝑒𝑝𝑉𝑎𝑟) 

8: return e 

Figure 4-47 Solver function process and layout 
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4.4.4.2.2 Solver Iteration and Call 

The Solver Iteration and Call consists of a function where in the Process Cost Function is called 

as necessary until problem resolution. Figure 4-48 illustrates the process. The process occurs per 

design or mission variable trade as shown by the first for loop. For each trade condition, the solver 

is executed for n number of attempts (𝑛𝑎𝑡𝑡𝑒𝑚𝑝𝑡). With each attempt, a different initial condition is 

utilized. It was found, for the hypersonic case study addressed in Chapter 5 Verification and 

Application, that the success of the solver—convergence—could depend greatly on the initial 

condition used. 

Several initial guess approaches were implemented and are usable. Approaches include a 

constant or random growth factor applied to the previous converged solution (a Monte Carlo type 

approach), an evolutionary algorithm, and a simple grid search for an appropriate initial guess. 

However, the standard approach is to begin each trade, with the previous converged state’s values 

as the starting point of the initial guess for the independent process variable. The value is queried 

from the result database using the initCondApprox function. The independent variable values are 

adjusted according to the initial guess approach being utilized. Ultimately, with any approach used, 

the result is an initial guess that is used by a nonlinear solver to solve for the independent variable.  

Upon satisfactory solver completion or expiration due to reaching the attempt limit and 

exhausting initial guess approaches, the result is either a converged or a not converged event. If 

convergence does occur, the indent variables’ values solved for are passed into the main analysis 

and the execution results are returned. The results are processed for form and are saved to a Jason 

database file. If convergence does not occur, the final iteration result and solver state is saved for 

record keeping. The process repeats for the next trade state. 

Algorithm Solver Iteration and Call 

Dependents: f(initCondApprox, runEvolSolver, solverFunc, mainAnalysis, jsonifier, jsonSave) 

Output: main analysis data and summary 

1: 𝑓𝑜𝑟 𝑖 𝑖𝑛 𝑛𝑡𝑟𝑎𝑑𝑒𝑠 do 

2: 𝑓𝑜𝑟 𝑗 𝑖𝑛 𝑛𝑎𝑡𝑡𝑒𝑚𝑝𝑡 do 

3: if 𝑖 = 1 

4: 𝑥0𝑖𝑛𝑖𝑡 = 𝑋0𝑔𝑢𝑒𝑠𝑠 

5: else 

6: 𝑥𝑖𝑛𝑖𝑡 ← 𝑖𝑛𝑖𝑡𝐶𝑜𝑛𝑑𝐴𝑝𝑝𝑟𝑜𝑥()  

7: 𝑓𝑜𝑟 𝑣𝑎𝑟 𝑖𝑛 𝑥𝑖𝑛𝑖𝑡 

8: 𝑥0𝑖𝑛𝑖𝑡 ← 𝑣𝑎𝑟 ∗ 𝑖𝑛𝑖𝑡𝐺𝑟𝑜𝑤𝑡ℎ𝑉𝑎𝑟 

9: 𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝑠𝑜𝑙𝑣𝑒𝑟(𝑠𝑜𝑙𝑣𝑒𝑟𝐹𝑢𝑛𝑐, 𝑥0𝑖𝑛𝑖𝑡) 

10: 𝑖𝑓 𝑒𝑣𝑎𝑙𝑆𝑜𝑙𝑣𝑒 = 𝑡𝑟𝑢𝑒 𝑎𝑛𝑑 𝑟𝑒𝑠𝑢𝑙𝑡. 𝑐𝑜𝑛𝑣 = 𝐹𝑎𝑙𝑠𝑒 

11: 𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝑟𝑢𝑛𝐸𝑣𝑜𝑙𝑣𝑆𝑜𝑙𝑣𝑒𝑟(𝑠𝑜𝑙𝑣𝑒𝑟𝐹𝑢𝑛𝑐)  

12: 𝑥0𝑖𝑛𝑖𝑡 = 𝑟𝑒𝑠𝑢𝑙𝑡  

13: 𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝑠𝑜𝑙𝑣𝑒(𝑠𝑜𝑙𝑣𝑒𝑟𝐹𝑢𝑛𝑐, 𝑥0𝑖𝑛𝑖𝑡) 

14: 𝑖𝑓 𝑟𝑒𝑠𝑢𝑙𝑡. 𝑐𝑜𝑛𝑣 == 𝑇𝑟𝑢𝑒 

15: 𝑑𝑎𝑡𝑎 = 𝑚𝑎𝑖𝑛𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠() 

16: 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑒𝑑𝐷𝑎𝑡𝑎 ← 𝑗𝑠𝑜𝑛𝑖𝑓𝑖𝑒𝑟(𝑑𝑎𝑡𝑎) 

17: 𝑗𝑠𝑜𝑛𝐹𝑖𝑙𝑒 ← 𝑗𝑠𝑜𝑛𝑆𝑎𝑣𝑒(𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑒𝑑𝐷𝑎𝑡𝑎) 

Figure 4-48 Synthesis solver iteration process 
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4.4.4.2.3 Primary Disciplines Call 

The Primary Disciplines Call, or main analysis, is rather strait forward. Figure 4-49 shows 

algorithmically the approach. The function is responsible for executing the engineering analysis 

as prescribed by the process. The analysis function is uniquely generated for each synthesis 

architecture created according to the process, method, and vehicle/hardware selections made in 

Project Builder. However, in most cases the main analysis is a linear sequence of discipline calls. 

The analysis for most cases follows that depicted—a standard analysis process for a single vehicle. 

For each vehicle’s primary process and the disciplines required the analysis executes per hardware 

as required. The result is a dataset containing the input and output of each analysis method 

executed. 

Algorithm Primary Disciplines Call 

Dependents: 𝑓(𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 𝑚𝑒𝑡ℎ𝑜𝑑𝑠) 

Output: 𝑔𝑙𝑜𝑏𝑎𝑙𝐷𝑎𝑡𝑎 

1: 𝑓𝑜𝑟 𝑑𝑖𝑠𝑐𝑖𝑝𝑙𝑖𝑛𝑒 (𝑑𝑖𝑠𝑐) 𝑖𝑛 𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 

2: 𝑓𝑜𝑟 ℎ𝑎𝑟𝑑𝑤𝑎𝑟𝑒 (ℎ𝑎𝑟𝑑) 𝑖𝑛 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 (𝑣𝑒ℎ) 

3: 𝑖𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 ℎ𝑎𝑟𝑑𝑤𝑎𝑟𝑒 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑡𝑜 𝑑𝑖𝑠𝑐𝑖𝑝𝑙𝑖𝑛𝑒 

4: 𝑓𝑜𝑟 𝑚𝑒𝑡ℎ𝑜𝑑 (𝑚𝑒𝑡ℎ) 𝑖𝑛 𝑑𝑖𝑠𝑐 𝑝𝑒𝑟 𝑣𝑒ℎ ℎ𝑎𝑟𝑑 

5: 𝑖𝑛𝑝𝑢𝑡𝑠 ← 𝑔𝑒𝑡 𝑖𝑛𝑝𝑢𝑡𝑠, 𝑓(𝑣𝑒ℎ, ℎ𝑎𝑟𝑑, 𝑑𝑖𝑠𝑐, 𝑚𝑒𝑡ℎ) 

6: 𝑑𝑎𝑡𝑎 ← 𝑚𝑒𝑡ℎ𝑜𝑑(𝑖𝑛𝑝𝑢𝑡𝑠) 

7: 𝑔𝑙𝑜𝑏𝑎𝑙𝐷𝑎𝑡𝑎 ← 𝑢𝑝𝑑𝑎𝑡𝑒 𝑤𝑖𝑡ℎ 𝑙𝑜𝑐𝑎𝑙 𝑑𝑎𝑡𝑎 

8: return  𝑔𝑙𝑜𝑏𝑎𝑙𝐷𝑎𝑡𝑎 

Figure 4-49 Main Analysis function process and layout 

 

4.4.4.2.4 Multiple Method Resolve and Data Processing 

There are situations in which there is more than one method per hardware or function. To 

determine the appropriate method and necessary inputs, a method resolve routine is necessary. The 

processes to determine, execute, and process the results of a multiple method or multiple hardware 

case is illustrated in Figure 4-50 through Figure 4-52. These processes correlate to three functions. 

The three functions are referred to as the Method Resolve, Special Call Data Return, and Process 

Special Data. These methods are contained within the Multiple Method Resolve, and Multiple 

Hardware/Method Variable Handling groups discussed previously. Each is discussed next.  

The Method Resolve implements a process to determine the appropriate method to execute 

given multiple methods associated to a hardware for a given discipline or function. Upon 

execution, the result is the correct method for the given situation. The correct method is determined 

by the method’s type (driver method or not), the number of methods, and the methods’ control 

variable’s value versus the variable’s current value. The process is depicted below. The function 

returns the determined method’s name and function handler. The input (methodDataSet) is a list 

of relevant methods, their data, and their handles. In the greater scheme, the Method Resolve is 

called within the Special Call Data Return function, which is discussed next. 
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Algorithm Method Resolve 

Dependents:  

Input: methodDataSet 

Output: 𝑚𝑒𝑡ℎ𝑜𝑑𝑈𝑠𝑒𝑃𝑜𝑖𝑛𝑡𝑒𝑟, 𝑚𝑒𝑡ℎ𝑜𝑑𝑈𝑠𝑒𝑁𝑎𝑚𝑒  

1: 𝑛𝑎𝑚𝑒𝑠, 𝑝𝑜𝑖𝑛𝑡𝑒𝑟𝑠, 𝑐𝑜𝑛𝑡𝑉𝑎𝑟, 𝑐𝑜𝑛𝑡𝑉𝑎𝑟𝑉𝑎𝑙 ← 𝑑𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑒 𝑚𝑒𝑡ℎ𝑜𝑑𝐷𝑎𝑡𝑎𝑆𝑒𝑡 

2: 𝑖𝑓 𝑙𝑒𝑛𝑔𝑡ℎ(𝑚𝑒𝑡ℎ𝑜𝑑𝑠) == 1 𝑎𝑛𝑑 𝑐𝑜𝑛𝑉𝑎𝑟 ! =  𝑁𝑜𝑛𝑒 𝑎𝑛𝑑 𝑐𝑜𝑛𝑉𝑎𝑟 ! = 𝐷𝑟𝑖𝑣𝑒𝑟 

3: 𝑚𝑒𝑡ℎ𝑜𝑑𝑈𝑠𝑒 = 𝑚𝑒𝑡ℎ𝑜𝑑𝑠[0] 

4: 𝑒𝑙𝑖𝑓 𝑑𝑟𝑖𝑣𝑒𝑟 𝑚𝑒𝑡ℎ𝑜𝑑 𝑖𝑛 𝑚𝑒𝑡ℎ𝑜𝑑𝑠 

5: 𝑖𝑓 𝑐𝑜𝑢𝑛𝑡(𝑑𝑟𝑖𝑣𝑒𝑟𝑚𝑒𝑡ℎ𝑜𝑑) > 1 

6: 𝑟𝑎𝑖𝑠𝑒 𝑒𝑥𝑐𝑒𝑝𝑡𝑖𝑜𝑛 "𝑚𝑜𝑟𝑒 𝑡ℎ𝑎𝑛 1 𝑑𝑟𝑖𝑣𝑒𝑟 𝑚𝑒𝑡ℎ𝑜𝑑" 

7: 𝑒𝑙𝑠𝑒 

8: 𝑖 ← 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑚𝑒𝑡ℎ𝑜𝑑 𝑖𝑛𝑑𝑒𝑥 

9: 𝑚𝑒𝑡ℎ𝑜𝑑𝑈𝑠𝑒 = 𝑚𝑒𝑡ℎ𝑜𝑑𝑠[𝑖] 

10: 𝑒𝑙𝑖𝑓 𝑙𝑒𝑛𝑔𝑡ℎ(𝑚𝑒𝑡ℎ𝑜𝑑𝑠) > 1 𝑎𝑛𝑑 𝑑𝑟𝑖𝑣𝑒𝑟𝑀𝑒𝑡ℎ𝑜𝑑 𝑛𝑜𝑡 𝑖𝑛 𝑚𝑒𝑡ℎ𝑜𝑑𝑠 

11: 𝑤ℎ𝑖𝑙𝑒 𝑗 < 𝑙𝑒𝑛𝑔𝑡ℎ(𝑚𝑒𝑡ℎ𝑜𝑑𝑠) 

12: 𝑖𝑓 𝑗 == 𝑙𝑒𝑛𝑔𝑡ℎ(𝑚𝑒𝑡ℎ𝑜𝑑𝑠) − 1  

13: 𝑖𝑓 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑉𝑎𝑟𝑉𝑎𝑙 ≤ 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑉𝑎𝑟𝑉𝑎𝑙 

14: 𝑚𝑒𝑡ℎ𝑜𝑑𝑈𝑠𝑒 = 𝑚𝑒𝑡ℎ𝑜𝑑𝑠[𝑗] 

15: 𝑒𝑙𝑖𝑓 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑉𝑎𝑟𝑉𝑎𝑙 > 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑉𝑎𝑟𝑉𝑎𝑙 

16: 𝑟𝑎𝑖𝑠𝑒 𝑒𝑥𝑐𝑒𝑝𝑡𝑖𝑜𝑛: "𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑣𝑎𝑙𝑢𝑒 𝑒𝑥𝑐𝑒𝑒𝑑𝑠 𝑚𝑒𝑡ℎ𝑜𝑑𝑠 𝑟𝑎𝑛𝑔𝑒𝑠" 

17: 𝑚𝑒𝑡ℎ𝑜𝑑𝑈𝑠𝑒 = 𝑁𝑜𝑛𝑒 

18: 𝑒𝑙𝑠𝑒  

19: 𝑟𝑎𝑖𝑠𝑒 𝑒𝑥𝑐𝑒𝑝𝑡𝑖𝑜𝑛: "𝑁𝑜 𝑚𝑒𝑡ℎ𝑜𝑑 𝑚𝑒𝑒𝑡𝑠 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠  

20: 𝑚𝑒𝑡ℎ𝑜𝑑𝑈𝑠𝑒 = 𝑁𝑜𝑛𝑒 

21: 𝑒𝑙𝑖𝑓 𝑗 == 0 

22: 𝑖𝑓 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑉𝑎𝑟𝑉𝑎𝑙 ≤ 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑉𝑎𝑟𝑉𝑎𝑙 → 𝑚𝑒𝑡ℎ𝑜𝑑𝑈𝑠𝑒 = 𝑚𝑒𝑡ℎ𝑜𝑑𝑠[𝑗] 

23: 𝑒𝑙𝑠𝑒 𝑗+= 1 

24: 𝑒𝑙𝑠𝑒 

25: 𝑖𝑓 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑉𝑎𝑟𝑉𝑎𝑙[𝑗 − 1] < 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑉𝑎𝑟𝑉𝑎𝑙 ≤ 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑉𝑎𝑟𝑉𝑎𝑙 

26: 𝑚𝑒𝑡ℎ𝑜𝑑𝑈𝑠𝑒 = 𝑚𝑒𝑡ℎ𝑜𝑑𝑠[𝑗] 

27: 𝑒𝑙𝑠𝑒 

28: 𝑗+= 1 

29: return 𝑚𝑒𝑡ℎ𝑜𝑑𝑈𝑠𝑒𝑃𝑜𝑖𝑛𝑡𝑒𝑟, 𝑚𝑒𝑡ℎ𝑜𝑑𝑈𝑠𝑒𝑁𝑎𝑚𝑒  

Figure 4-50 Method Resolve function process and layout 

 

Special Call Data Return 

The Special Call Data Return is the function set that identifies and executes the method given 

a trigger event. The functions general structural procedure is shown in Figure 4-51. The Method 

Resolve is called in this function. The principal output is the data generated from the resolved 

method. The inputs are the trigger event data and the current variable data set at parent method 

execution. The process executes based on the trigger events data: event type, event option call, 

hardware call, specified local inputs, and specified output name. Per vehicle and per functional 

hardware as prescribed by the call option and hardware, the procedure identifies the appropriate 

method for the given state of the methods’ constraining variable and method types. The global 

inputs, for the identified correct method, are updated with the specified local input variable values. 

The updated values are inserted into the method, the method executes, and the results are returned. 
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Algorithm 2 Special Call Data Return 

Dependents: 𝑓(𝑚𝑒𝑡ℎ𝑜𝑑𝑅𝑒𝑠𝑜𝑙𝑣𝑒) 

Input: trigger event information, inputData 

Output: 𝑑𝑎𝑡𝑎  

1: 𝑡𝑦𝑝𝑒, 𝑜𝑝𝑡, ℎ𝑎𝑟𝑑, 𝑖𝑛𝑝𝑢𝑡, 𝑜𝑢𝑡𝑝𝑢𝑡 ← 𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝐸𝑣𝑒𝑛𝑡𝐷𝑎𝑡𝑎 

2: 𝑑𝑖𝑠𝑐, 𝑓𝑢𝑛𝑐 ← 𝑓𝑢𝑛𝑐2𝑑𝑖𝑠𝑐𝑀𝑎𝑝(𝑜𝑝𝑡), 𝑑𝑖𝑠𝑐2𝑓𝑢𝑛𝑐𝑀𝑎𝑝(𝑜𝑝𝑡) 

3: 𝑓𝑜𝑟 𝑣𝑒ℎ 𝑖𝑛 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑆𝑒𝑡 

4: ℎ𝑎𝑟𝑑𝑤𝑎𝑟𝑒𝑆𝑒𝑡 ←  𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝐹𝑢𝑛𝑐2ℎ𝑎𝑟𝑑𝑤𝑎𝑟𝑒𝑀𝑎𝑝(𝑚𝑖𝑠𝑠𝑖𝑜𝑛, 𝑓𝑢𝑛𝑐) 

5: 𝑓𝑜𝑟 ℎ𝑎𝑟𝑑 𝑖𝑛 ℎ𝑎𝑟𝑑𝑤𝑎𝑟𝑒𝑆𝑒𝑡 

6: 𝑚𝑒𝑡ℎ𝑜𝑑𝑆𝑒𝑡𝐷𝑎𝑡𝑎 ← 𝑎𝑙𝑙𝑀𝑒𝑡ℎ𝑠𝐷𝑎𝑡𝑎[𝑣𝑒ℎ][ℎ𝑎𝑟𝑑][𝑑𝑖𝑠𝑐] 

7: 𝑤ℎ𝑒𝑟𝑒 𝑚𝑒𝑡ℎ𝑜𝑑𝑆𝑒𝑡𝐷𝑎𝑡𝑎 𝑜𝑓 𝑡𝑦𝑝𝑒 [𝑛𝑎𝑚𝑒, 𝑝𝑜𝑖𝑛𝑡𝑒𝑟, 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑉𝑎𝑟, 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑉𝑎𝑟𝑉𝑎𝑙] 

8: 𝑖𝑓 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑀𝑒𝑡ℎ𝑜𝑑 𝑖𝑛 𝑚𝑒𝑡ℎ𝑜𝑑𝑆𝑒𝑡𝐷𝑎𝑡𝑎 → 𝑝𝑜𝑝 𝑚𝑒𝑡ℎ𝑜𝑑 

9: 𝑙𝑜𝑐𝑀𝑒𝑡ℎ𝐼𝑛𝑝𝑢𝑡𝑠 ← 𝑔𝑒𝑡 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑚𝑒𝑡ℎ𝑜𝑑 𝑖𝑛𝑝𝑢𝑡 𝑣𝑎𝑙𝑢𝑒𝑠 𝑓𝑟𝑜𝑚 inputData 

10: 𝑙𝑜𝑐𝐼𝑛𝑝𝑢𝑡𝑠 ← 𝑔𝑒𝑡 𝑢𝑝𝑑𝑎𝑡𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑓𝑟𝑜𝑚 𝑡𝑟𝑖𝑔𝑔𝑒𝑟 𝑒𝑣𝑒𝑛𝑡 𝑑𝑎𝑡𝑎 

11: 𝑖𝑛𝑝𝑢𝑡𝑆𝑒𝑡 ← 𝑢𝑝𝑑𝑎𝑡𝑒 𝑙𝑜𝑐𝑀𝑒𝑡ℎ𝐼𝑛𝑝𝑢𝑡𝑠 𝑤𝑖𝑡ℎ 𝑙𝑜𝑐𝐼𝑛𝑝𝑢𝑡𝑠 

12: 𝑚𝑒𝑡ℎ𝑜𝑑𝑃𝑜𝑖𝑛𝑡𝑒𝑟, 𝑚𝑒𝑡ℎ𝑜𝑑𝑁𝑎𝑚𝑒 ← 𝑐𝑎𝑙𝑙 𝑚𝑒𝑡ℎ𝑜𝑑𝑅𝑒𝑠𝑜𝑙𝑣𝑒(𝑚𝑒𝑡ℎ𝑜𝑑𝑆𝑒𝑡𝐷𝑎𝑡𝑎) 

13: 𝑑𝑎𝑡𝑎 ← 𝑐𝑎𝑙𝑙 𝑚𝑒𝑡ℎ𝑜𝑑𝑃𝑜𝑖𝑛𝑡𝑒𝑟(𝑖𝑛𝑝𝑢𝑡𝑆𝑒𝑡[𝑚𝑒𝑡ℎ𝑜𝑑𝑁𝑎𝑚𝑒]) 

14: 𝑟𝑒𝑡𝑢𝑟𝑛 𝑑𝑎𝑡𝑎 

Figure 4-51 Special Call Data Return function process 

 

Process Special Data 

Process Special Data processes the data returned by Special Call Data Return prior to passing 

the data back to the parent function that had initiated this cycle of events. The data for each function 

source as related to the hardware and vehicle is returned as a set of data identifying the variable 

values by hardware, vehicle, and total vehicle. In this way, all data states are available to the parent 

analysis file for use. The necessity of a data processing event arises due to the potential for 

multiplicity of vehicle or hardware and the necessity of situational awareness of the variable for 

proper total variable value determination, for not all variable’s total is the simple sum of the 

individual variable’s values (∑𝑇 = 𝑇𝑡𝑜𝑡𝑎𝑙  𝑏𝑢𝑡 ∑𝐼𝑠𝑝 ≠ 𝐼𝑠𝑝𝑡𝑜𝑡𝑎𝑙
). The simplest case is the single 

vehicle and single hardware. In this case, the minimal condition (the single hardware’s functional 

effect) is the total condition (the total vehicles functional effect on that variable). Figure 4-52 

shows the process of the Process Special Data function. Each variable is treated according to its 

type—simple average, simple sum, weighted average, or special case. The type and associated 

handling rule must be identified for each variable. 

Algorithm Process Special Data 

Dependents: 𝑓(𝑚𝑎𝑖𝑛𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠) 

Output: processedData, originalData 

1: 𝑣𝑎𝑟 𝑑𝑎𝑡𝑎 𝑠𝑒𝑡 ← 𝑔𝑎𝑡ℎ𝑒𝑟 𝑠𝑖𝑚𝑖𝑙𝑎𝑟 𝑣𝑎𝑟𝑖𝑎𝑙𝑏𝑒𝑠 𝑝𝑒𝑟 ℎ𝑎𝑟𝑑𝑤𝑎𝑟𝑒 𝑑𝑎𝑡𝑎 𝑠𝑒𝑡 𝑝𝑒𝑟 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 

2: 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 ℎ𝑎𝑟𝑤𝑎𝑟𝑒 𝑠𝑒𝑡 𝑎𝑛𝑑 𝑣𝑎𝑟 𝑖𝑛 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 ℎ𝑎𝑟𝑑𝑤𝑎𝑟𝑒 𝑠𝑒𝑡 𝑑𝑜 

3: 𝑐ℎ𝑒𝑐𝑘 𝑣𝑎𝑟 𝑓𝑜𝑟 𝑠𝑝𝑒𝑐𝑖𝑎𝑙 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 (𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑎𝑣𝑒𝑟𝑎𝑔𝑒, 𝑠𝑢𝑚, 𝑒𝑡𝑐. ) 

4: 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜 𝑠𝑝𝑒𝑐𝑖𝑎𝑙 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 and store in dictionary 

5: 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑣𝑒ℎ 𝑎𝑛𝑑 ℎ𝑎𝑟𝑑𝑤𝑎𝑟𝑒, 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑣𝑎𝑟 𝑠𝑢𝑏𝑠𝑒𝑡𝑠 𝑖𝑛𝑡𝑜 𝑡𝑜𝑡𝑎𝑙 𝑠𝑦𝑠𝑡𝑒𝑚, 𝑙𝑜𝑐𝑎𝑙 𝑠𝑦𝑠𝑡𝑒𝑚, 𝑎𝑛𝑑 𝑙𝑜𝑐𝑎𝑙 ℎ𝑎𝑟𝑑𝑤𝑎𝑟𝑒 𝑠𝑒𝑡𝑠 

6: return processedData, originalData 

Figure 4-52 Process Special Data function process and layout 
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4.5 Chapter Summary 

4.5.1 General Summary 

In this chapter, a presentation of the principal research objective—development of a decision 

support framework for the CD phase—was given. The system is referred to as AIDRA-DSS. The 

overall system was discussed. The general file structures, both front-end and back-end, were 

presented. An in-depth presentation of the front-end and back-end was given. Identified and 

discussed were the support libraries (Reference Library, Method Library, Process Library, and 

Vehicle Library) as well as the primary DSS environment, the Project Builder, and principal 

components and approach of synthesis code generation through the Synthesis Assembler. The 

Project Builder is the principal element that the libraries support. A primary deliverable of the 

system is a synthesis architecture. 

AIDRA-DSS’s primary directive is the assembly, documentation, and standardization of sizing 

architecture generation. The goal is transparency and accountability in the development of sizing 

toolsets. AIDRA-DSS is a semi-automated tool-of-tools. Through a code assembly platform, given 

the user’s specifications, the system assembles base components into a functional architecture for 

a given problem. Its primary purpose is the assembly of methods into a sizing toolset to better help 

in decision-making. This is model-based engineering, with a capacity to model any hardware’s 

effect and contribution to any discipline within the design process, to assist in design evaluation 

and decision-making. Each sizing toolset is specifically generated to solve the problem at hand. 

With the system discussed, the next objective is to demonstrate proper system functionality 

and potential. The next chapter will demonstrate the functionality of the system by presenting a 

case study in both single point verification and multi-point trade study. 

4.5.2 Contribution Statement 

» Developed and presented a unique generic synthesis assembly tool founded on principles of a 

vehicle-of-vehicle concept and problem definition by vehicle-hardware statement. 



 

 

 

 

  



 

 

Chapter 5 VERIFICATION AND APPLICATION 

Having specified the system concept and implementation, the next requirement is to 

demonstrate functionality and application. The research conducted and elaborated on in this 

document is of course of two parts. There is the tool developed and there is the output of the 

execution of the tool and its utilization. Functionally, the system’s outputs are both the synthesis 

code generated and the output of the synthesis code. The correctness of the synthesis code results 

depends directly on the correctness of the code assembly. 

Proper system code assembly is verified by manual inspection of code assembly and, more 

significantly, is mostly inferred from correct output upon assembled synthesis system execution. 

As of now, there is no automated or computerized intelligent verification of proper code assembly 

aside from the assembly code executing without error. For the purposes of the following 

discussion, the synthesis codes were manually checked for proper assembly. On inspection, all 

codes were assembled as algorithmically specified. With this understanding, the condition of code 

assembly is considered properly executed. Therefore, the criterion of manual verification of 

synthesis code assembly based on user GUI selections is found to be complete. The remainder of 

this chapter evaluates the code assembly by consideration of correctness of code output and 

demonstrates system application. 

Inference of correct assembly and demonstration of system application is accomplished 

through the execution of a verification study and a trade study. The verification study and the trade 

study are the subject addressed in this chapter. The problem setup and results of the case studies 

selected are systematically presented in the following sections. Addressed first is a general 

description of the problem and solution approach. The verification and case study are on the topic 

of hypersonic reusable vehicle demonstrators.  
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5.1 Problem Statement 

The execution study is separated into two parts—verification and application demonstration 

through a trade exploration. The verification step is critical in establishing the correctness of GUI 

to synthesis code operation and execution. The trade exploration takes the verification step a step 

further. It serves as not only a system test and verification for the multipoint system execution 

case, but is also a demonstration of the systems utility to a larger problem that is relevant. For the 

purposes of this research, the objective is to demonstrate system operability for the single-vehicle 

and the single process case. 

5.1.1 System Verification 

The verification and validation is presented in two parts. The approach can be broken into the 

consideration of the single point and the multi-point cases. Both are conducted to verify proper 

system execution. However, for the purposes of the discussion of verification, the single point case 

is considered the primary focus here as it demonstrates the key system component of individual 

vehicle execution on which any multi-point case is based upon. That is, the multi-point case is an 

expansion of the single case (repeated execution of the single point case for a breath of varied input 

values). 

Single point verification occurs by executing the system for a known control vehicle and 

comparing the resulting design output to known vehicle design variables’ values (legacy 

verification data). System execution correctness is inferred based on the output versus known 

variable comparison. Several vehicles are selected as representative cases. They are selected such 

that the AIDRA-DSS system must execute several scenarios in which the process components 

must be varied. Control vehicles are both, real world production or test vehicles, and concept case 

study vehicles from other documented project (paper) studies. 

The problem of verification is approached through a systematic buildup. To establish 

verification, there is the establishing of the vehicle selections, the vehicles’ missions, the vehicles’ 

synthesis process, and the synthesis methods that culminates in the result evaluation and, 

subsequently, satisfactory verification establishment. Each step is addressed in the following 

chapter sections.  

5.1.2 Trade Study 

The trade study is an expansion of the single point verification case. The trade study entails 

the variation of assumptions or input variables to arrive at many solutions that are presented to the 

user as a space of solutions. The solution space is there to assist in the evaluation of the solutions’ 

responses to variations in design variables. Figure 5-3 illustrates simplistically a trade study as 

multiple cases of a single point design case, Figure 5-2, with variation in a design variable.  

The trade study serves two purposes. First, in terms of system operability, it demonstrates the 

iterative multi-point analysis functionality. Second, it presents an opportunity to study a problem 
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through the exploration of a solution space. In the multi-point case, it is possible to evaluate 

selections in vehicle concept, configuration, hardware, and operational conditions. In the case 

presented in this chapter, the single point verification vehicles are used as baseline concepts to 

explore a hypersonic solution space. 

The trade study identifies, synthesizes, and 

evaluates a representative baseline set of 

hypersonic test vehicle concepts in terms of the 

consideration of carrier vehicle constraints. 

Figure 5-1 illustrates considerations for carrier 

vehicle constraints through the illustration of the 

X-24C and B-52 combination. Baseline 

configurations’ solution topographies are 

identified through the evaluation of various 

vehicle operational requirements; as such, a 

trade matrix is identified. The multi-disciplinary 

study results are constrained with carrier 

payload mass and geometry limitations. The 

multi-disciplinary results provide physical insights into near-term hypersonic test vehicle design 

variable relation to the carrier vehicle requirements.  

The trade study case is similarly built up as the single point verification case. Due to significant 

overlap between the two cases, both are addressed concurrently. As such, the multi-point case is 

likewise documented through a systematic buildup addressing the establishment of the vehicle 

selections, the vehicles’ missions, the vehicles’ synthesis process, the synthesis methods, and the 

additional identification of a trade matrix, which finalizes in result presentation and discussion. 

 

 

 

 
Figure 5-1 Illustration of X-24C  test vehicle and B-52 carrier 

vehicle constraints considerations [146] 

 
Figure 5-2 Example of the classical performance matching 

diagram design point[85] 

 
Figure 5-3 Trade study illustration visualized by a set of 

performance matching diagram[85] 
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5.2 Vehicle Selection 

The vehicle concept and configurations selected for study are categorized by verification case 

and multi-point trade study case. The vehicle selection of each is considered. 

5.2.1 Verification Case 

The verification vehicles include a mix of concept vehicles and flown vehicles. The vehicles 

are hypersonic test vehicles. The hypersonic test vehicles selected are the USAF AFRL Road 

Runner Generic Hypersonic Vehicle (GHV) [147] and X-51A [148]. Each vehicle represents a 

different concept, blended-body versus all-body respectively. A range of vehicle concepts has been 

selected in order to ensure that the methods for each discipline will have to change, thereby testing 

for proper code generation. Note that the vehicles selected are high-speed (hypersonic). Low speed 

(subsonic) vehicles could equally have been used. However, hypersonic systems are a current 

research and development area of relevance to many governments and agencies. As such, the topic 

serves as a relevant case study demonstration. Additionally, the trade study case is for hypersonic 

systems, so the verification by hypersonic systems supports the trade study cases as well. Under 

this condition, the system is tested for proper operation and synthesis code generation. Table 5-1 

identifies each vehicle and summarizes each vehicle’s general classification. 

Table 5-1 Verification study vehicles 

Name Class Organization Mach Range Summary 

GHV Hypersonic Test Air Force 𝑀 = 6 Blended-Body waverider with 3D inlet and nozzle air-

breathing scramjet powered cruise vehicle concept 

X-51A Hypersonic Test DARPA 

Air Force 

𝑀 = 6 + All-body 2D scramjet powered hypersonic test vehicle 

 

With the vehicles identified, the geometric and sizing variables for each vehicle are tabulated 

in Table 5-2. Additional discussion of each vehicle can be found in Appendix A Case Studies 

Expanded. 

Table 5-2 Vehicle sizing and general parameter values [147, 148] 

 Units GHV(1x) GHV(2x) GHV(3x) GHV(4x) GHV(5x) X-51A 

𝜏 - 0.0735 0.0698 0.0678 0.0674 0.0657 0.2075* 

𝑉𝑡𝑜𝑡 𝑚3 0.563 1.494 2.713 4.111 5.642 0.705* 

𝑆𝑝𝑙𝑛 𝑚2 3.888 7.705 11.699 15.496 19.457 2.26* 

𝑙        

Overall 𝑚 4.468 6.319 7.739 8.936 9.991 4.267 

Fuselage 𝑚 4.313 6.100 7.471 8.627 9.645 - 

𝑑 𝑚 0.479 0.677 0.829 0.957 1.070 0.584 

𝑏 𝑚 1.488 2.104 2.577 2.975 3.327 0.702 

𝑊𝐺𝑇𝑂𝑊 𝑁 5430 11586 19386 27894 36456 6690 

𝑊𝑓𝑢𝑒𝑙  𝑁 1099** 3493 6658 10331 10331 1241** 

𝑊/𝑆 𝑁/𝑚2 1397 1504 1657 1800 1874 2960* 

* estimate 
** usable fuel plus approximate non usable (launch weight less cruiser operating weight) 

 



Vehicle Selection 103  

 

The verification vehicles are illustrated below. The GHV and X-51 are shown in Figure 5-4, 

Figure 5-5 respectively. 

 
Figure 5-4 GHV 

 
Figure 5-5 X-51. 

5.2.2 Trade Study Case 

The vehicles from the verification case form a baseline vehicle set for the trade study case. As 

in the verification case, the all-body (AB) and the blended-body (BB) concept types are 

represented. Furthermore, the hypersonic test vehicle case is expanded to consider both 

airbreathing and non-airbreathing systems. The GHV and X-51 are used both in their initial 

airbreathing concept and in a modified non-airbreathing concept state. Figure 5-6 visualizes each 

of the vehicle concepts. The blended-body concept is represented by the GHV vehicle class 

concept. The X-51 concept represents the all-body class. Note that the all-body’s principle lift 

generating source is its own body and, as such, is also referred to as a lifting-body (LB).  

The GHV concept is an air-breathing blended-body vehicle. To address the rocket powered 

blended-body concept (BBRKT), the GHV vehicle is transformed into an enclosed fuselage rocket 

concept, Figure 5-6(b). The vehicles fuselage intake is closed off and a rocket system added. The 

X-51 concept is the baseline for the AB airbreathing concept (AB2DS)—Figure 5-6(c). A rocket 

class AB baseline (ABRKT)—Figure 5-6(d)—is modelled after the FDL-7 and McDonald 

Douglas Model 176 and MRS, which predate the X-51 but share many similarities in configuration 

and concept.  The X-51’s configuration’s outer mold line is very similar to the FDL-7’s and Model 

176’s configuration, but with the addition of a spatula nose and an underslung 2D scramjet in place 

of the rocket propulsion system. Additionally, for low-speed landing, the AB concepts have an 

internal swing-wing included (historically included in the FDL-7, Model 176, and MRS as well). 

All systems concepts were originally designed for high Mach number operations. Note that the 

objective herein is not to drive to an optimal vehicle configuration, but rather to realize a general 

solution space. The vehicle concept perturbations are a representative spectrum incorporating both 

near-term and mid-term propulsion systems.  
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(a) Air-breathing GHV baseline (BB3DS) 

 
(b) Rocket modified GHV baseline (BBRKT) 

 
(c) Air-breathing X-51 baseline (AB2DS) 

 
(d) Rocket-powered Model-176 baseline (ABRKT) 

Figure 5-6 Multi-point trade study baseline vehicles. 

5.3 Processes Definition 

In this section, the synthesis process implemented for each case study is discussed. Each case 

study follows the same general process. The process implemented does not very and its variation 

should not be misconstrued with the variation in methods selected from case-to-case. A process 

coordinates the methods, and the methods can be variable while existing within the operation of 

the same process. The methods are independent of the process and are discussed in a later section. 

Presented in this section are the multi-disciplinary synthesis process, the convergence processes, 

and the process to solution space formation. 

5.3.1 Multi-Disciplinary Synthesis Process 

The multi-disciplinary synthesis core process is shared between both the single-point and 

multi-point case studies. Figure 5-7 illustrates the process. The dash-dot area sections the synthesis 

core process. Both studies share this convergent process. It is discussed in detail below. The multi-

point process utilizes the same core synthesis process; however, appended to it is an iterative 

feedback loop as indicated. In the multi-point case, the single point case is executed repeatedly to 

identify a set of solutions; it is a trade study. In this process, the single point case is repeated with 

different configurations, concepts, hardware, or operational conditions. All conditions of the single 

point case’s processes remain; that is, the disciplinary execution, order of operation, and 

convergence approach are maintained. 

The synthesis process for all case studies implemented is converging. Convergence is 

synonymous with the phrase: “closing the design.” A converging process is one in which some 
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objective function or functions are satisfied in an iterative manner. Through this process, some 

design variables value is searched for until a predetermined condition (objective function) is met. 

A non-converging process is one in which no process objective function is met. In such a condition, 

the design is not iterated to satisfy a predetermined design condition. In the non-converging 

process, the resulting vehicle solution point would be considered not closed. The processes used 

here are converging; therefore, all design points indicated herein are closed designs.  

5.3.2 Convergence Process Description 

The process is a series of steps. There are two primary parts: the disciplinary analysis and the 

convergence loop. The disciplinary analysis exists within the convergence loop as indicated in 

Figure 5-7. The convergence loop contains the analysis block and, in an iterative process of 

analysis block execution, seeks convergence criteria satisfaction through analysis input variable 

variation. The convergence iteration variables are planform area (𝑆𝑝𝑙𝑛) and wing loading 

(𝑊/𝑆𝑝𝑙𝑛). The study sizing methodology is a weight and volume-based convergence process. The 

process employed here considers the total vehicle volume required given the weight estimate. The 

approach is adapted from references [85, 86]. 

The disciplinary analysis begins with the assumption of a baseline vehicle and mission profile. 

A key geometric parameter—the vehicle volume coefficient (𝜏 = 𝑉𝑡𝑜𝑡/𝑆𝑝𝑙𝑛
1.5 )—is held constant for 

each convergence cycle. (The variation of 𝜏 allows for a volumetric scaling of the vehicle rather 

than a simple pictorial scaling, which is more appropriate for hypersonic vehicles.) It is an input 

into the geometry method and directly defines the other geometric parameters given the vehicle 

configuration. With a geometric definition in place, the discipline specific analysis modules 

execute. They are executed in the following order: aerodynamics, propulsion, trajectory, and 

finally weight and volume. The aerodynamic and propulsion modules can be executed either: (1) 

in the sequential series to generate aerodynamic and propulsion lookup maps for the vehicle at 

different operating conditions, or (2) they can be called directly within the trajectory methods. In 

the case studies executed here, the aerodynamic and propulsion disciplines are called directly in 

the trajectory methods. The trajectory module utilizes the vehicle’s aerodynamic and propulsion 

data in the analysis of the vehicle's trajectory. From the trajectory analysis, the vehicle's 

performance parameters are determined, including the required weight ratio along the flight path. 

The weight and volume module updates the weight and volume of the vehicle based on the 

trajectory module’s output. On completion of a sequence of disciplinary module-based analysis 

execution, the instance of analysis is complete. However, the overall vehicle has not necessarily 

converged. 
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Figure 5-7 Sizing process, both single-point and multi-point sequence 

After the analysis block’s execution, the objective functions are tested for solution 

convergence. Two objective functions are minimized simultaneously, see equations (5.1) and 

(5.2). The first objective function, Eq. (5.1), is a function of operating weight empty by weight 

analysis (𝑂𝑊𝐸𝑤) and operating weight empty by volume analysis (𝑂𝑊𝐸𝑉). This function closes 

the vehicle’s weight and volume requirement simultaneously. The second objective function, Eq. 

(5.2), is a function of wing loading (𝑊/𝑆𝑝𝑙𝑛), planform area (𝑆𝑝𝑙𝑛), and takeoff gross weight 

(𝑇𝑂𝐺𝑊). In this function, the TOGW and planform area closes through an iteration of the wing 

loading. The convergence process is complete when each cost function equates to zero. In other 

words, the vehicle is said to be converged when its solution point is mathematically acceptable 

because weight and volume converge with 𝑂𝑊𝐸𝑊 = 𝑂𝑊𝐸𝑉 and (𝑊 𝑆𝑝𝑙𝑛⁄ )
 

= 𝑇𝑂𝐺𝑊/𝑆𝑝𝑙𝑛. If 

the objective functions are not satisfied, planform area and wing loading are iterated, and the 

sequence repeats until both cost functions are minimized simultaneously. For further discussion of 

this approach and the metrics used in the equations see Czysz [149], Coleman [85],  and Gonzalez 

[86]. 
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Objective Function 1: 

 𝑂𝑊𝐸𝑉 − 𝑂𝑊𝐸𝑊 = 0 (5.1) 

 

Objective Function 2: 

 
(

𝑊

𝑆
)

𝑔𝑢𝑒𝑠𝑠
−

𝑇𝑂𝐺𝑊

𝑆𝑝𝑙𝑛
= 0 (5.2) 

 

Weight Budget: 

 𝑂𝑊𝐸𝑊 = 𝑂𝐸𝑊 + 𝑊𝑝𝑎𝑦 + 𝑊𝑐𝑟𝑤 (5.3) 

 

 
𝑂𝐸𝑊 =

𝐼𝑠𝑡𝑟 ∙ 𝐾𝑤 ∙ 𝑆𝑝𝑙𝑛 + 𝐶𝑠𝑦𝑠 + 𝑊𝑐𝑝𝑟𝑣 + 𝑇 𝑊⁄ ∙ 𝑊𝑅 𝐸𝑇𝑊⁄ ∙ (𝑊𝑝𝑎𝑦 + 𝑊𝑐𝑟𝑤)

1 (1 + 𝜇𝑎)⁄ − 𝑓𝑠𝑦𝑠 − 𝑇/𝑊 ∙ 𝑊𝑅/𝐸𝑇𝑊
 (5.4) 

 

Volume Budget: 

 
𝑂𝑊𝐸𝑉 = 𝜏 ∙

𝑆𝑝𝑙𝑛
1.5 ∙ (1 − 𝑘𝑣𝑣 − 𝑘𝑣𝑠) − (𝑉𝑝𝑐𝑟𝑤 − 𝑘𝑐𝑟𝑤) ∙ 𝑁𝑐𝑟𝑤 − 𝑊𝑝𝑎𝑦/𝜌𝑝𝑎𝑦

𝑘𝑣𝑒 ∙ 𝑊𝑅 ∙ 𝑇 𝑊⁄ + (𝑊𝑅 − 1) 𝜌𝑝𝑝𝑙⁄
 (5.5) 

5.3.3 Process to Solutions Space Formation (Multi-Point Case) 

The subject of this section is the practical implementation of the processes into the 

development of the multi-point case’s principal deliverable, the solution space visualization. This 

is a frequently misunderstood process.  

A solution space is simply a locus of single point designs that can be visualized. An examiner 

formulates and visualizes a solution space to assist in evaluating trade options and solution 

behavior in a multidisciplinary environment. The formation of the solution space is the multi-point 

case’s process in action. To understand better the process and, more importantly, the outcome, 

Figure 5-8 illustrates the process to arrive at the solution space definition. In this illustration, the 

X-51 type lifting-body 2D scramjet concept configuration and the GHV blended-body 3D scramjet 

concept configuration are used to give example process context. The example considers a three 

variable trade scenario for each vehicle: cruise time, volume coefficient (𝜏), and payload mass.  

Figure 5-8 illustrates the stepwise processes to the population of a solution space. This 

illustrates pictorially the operational results of the process shown in Figure 5-7. Considering Figure 

5-8, a solution space is a locus of single point designs, the manifestation of which begins with an 

initial set of design point solutions. This first consideration is illustrated in Figure 5-8(a). Each 

point is, in this case, a converged solution for a given set of inputs. The process to arrive at each 

individual solution is the execution of the single point case’s process. The resulting solutions are 
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mapped onto a plot, forming a simple solution space. In this example, each point plotted 

corresponds to a different mission cruise time. The cruise time is indicated alphanumerically next 

to each point. This set of points forms a mission cruise time trade for a given vehicle’s (X-51 class 

AB) payload weight, and 𝜏. Similarly, the cruise trade is executed for a new 𝜏, as illustrated in 

Figure 5-8(b). The diagonal lines, highlighted by the callouts for the values of τ, are lines of 

constant vehicle τ, with the maximum value (minimum slenderness) appearing on the left and the 

minimum value (maximum slenderness) on the right.  

Continuing with Figure 5-8 (c), another trade variable is introduced. The activities discussed 

for figures (a) and (b) are repeated but with a new input variable condition (the trade variable). In 

this example, trades in vehicle payload mass are conducted. The results are added to the plot. As 

such, this one diagram now illustrates three different trades. Each separately bounded and shaded 

solution space corresponds to a different payload mass mission of varying cruise endurance and 

geometric parameter τ. Any number of hardware or operational trade variables could be introduced 

to expand the solution space, revealing additional design behavior of the concept and configuration 

selected. 

Finally, as illustrated in Figure 5-8(d), the trade option is expanded to include the vehicle 

concept and configuration. All activities discussed in Figure 5-8(a)-(c) formulation are executed 

again for the new concept and configuration. In this example, a vehicle of the GHV type is 

introduced to the trade matrix. Now, represented in this individual figure, is the solution space as 

given by the trade variables—cruise time, 𝜏, and payload—for both a X-51 class and GHV class 

vehicle, capturing the behaviors of an all-body 2D scramjet vehicle versus a blended-body 3D 

scramjet vehicle. At this point, to derive further information from the illustration, constraints could 

be added to the figure. 

  
(a) 

 
(b) 

  
(c) 

 
(d) 

Figure 5-8 Visualization of the steps to a solution space 
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5.4 Missions Definition 

Addressed in this section are the various missions that occur within the verification and multi-

point case studies. The section concludes with the synopsis of the vehicles’ mission compositional 

segments and flight conditions. 

There are two distinct mission profiles for the hypersonic test vehicle. Both are characterized 

by being air launched. The discriminating feature is whether an expendable or integrated 

propulsion system accelerates the vehicle to the primary mission start condition (hypersonic 

cruise). The air-breathing configurations are limited to the expendable rocket booster scenario. A 

combined or dual cycle concept is not considered. The non-air breathing rocket configurations are 

not limited; both mission launch scenarios (i.e. external expendable boost system and internal 

reusable boost system) are applied to them. All scenarios start with an airdrop condition at Mach 

0.8 and 12.2 km (40 kft.), and a horizontal gliding recovery at a landing site. 

5.4.1 Expendable Booster Profile 

The expendable external booster profile is a profile characterized by the state in which the 

vehicle’s on-board propulsion system does not accelerate the vehicle to propulsive operational 

conditions. Rather, an external device—an expendable booster rocket—accelerates the vehicle to 

a condition in which the on-board propulsion can operate and take over as the primary propulsive 

system. In the non-combined cycle propulsion system, this assistance is necessary, as the scramjet 

and ramjet are not able to start at the subsonic airdrop conditions. 

Figure 5-9 illustrates the external expendable booster mission profile. The vehicle is airdropped 

from a carrier vehicle at 12.2 km (40 kft) and Mach 0.8. On release, the vehicle is boosted to the 

test starting condition, the point for onboard propulsive operation at 22.96 km (75 kft) and Mach 

4.5. After expenditure, the external booster separates, and the primary vehicle continues to 

accelerate at constant altitude until it reaches the design cruise Mach number. Acceleration occurs 

by means of the onboard propulsion system. After accelerating to the test cruise Mach number, the 

vehicle executes a constant Mach cruise of some duration. On completion of the cruise segment, 

the vehicle performs a gliding descent to the landing point. The conditions at which each event 

occurs can vary as a trade variable. Cruise time specifically is a trade variable considered. 

 
Figure 5-9 Mission Profile: external expendable booster 
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5.4.2 Internal Booster Profile 

Unlike the expendable external booster case, the internally boosted case does not have an 

external fall away propulsive system; rather the full mission profile is powered through the 

onboard propulsion system. Given that the vehicle is launched at subsonic conditions, this flight 

scenario is limited to only the rocket-powered vehicles. Illustrated in Figure 5-10 is the mission 

scenario profile. The mission starts with an airdrop condition. After carrier vehicle release, the 

hypersonic vehicle accelerates to its cruise condition by means of the integrated onboard rocket 

system. The acceleration phase comprises of a constant altitude acceleration to a dynamic pressure 

of 89.3 kPa (a dynamic pressure that correlates to Mach cruise condition at cruise altitude) 

followed by a constant dynamic pressure climb to the cruise condition. Upon achieving the desired 

cruise condition—altitude and Mach number—the vehicle ceases acceleration and executes a 

constant Mach cruise for a predetermined cruise time. Upon completion of the cruise segment, the 

engine is shutoff and the vehicle glides to a landing condition. This mission trajectory profile 

mimics the profile of the externally boosted scenario. 

As there is no drop-away external boost system, the test vehicle is its own accelerator. The 

integrated onboard main engine powers acceleration and cruise. Significantly, this mission sizes 

the vehicle to include the propulsive capacity previously provided by the external expendable 

booster. In this regard, the all-rocket vehicles can be potentially fully reusable. 

 

 
Figure 5-10 Mission Profile: integrated booster 

5.4.3 Vehicle Mission Segment and Summary 

With an understanding of the two mission scenarios considered, the mission profiles and 

conditions of each vehicle are summarized in this section. As stated, the total mission profiles 

comprise of individual mission segments. The mission segments correspond to specific flight 

conditions and methods (the methods are discussed in section 5.5 Methods). It is, in part, for this 

reason that the missions are decomposed into their primary constituents. For clarity and 

convenience, the mission segments comprising the total mission for each vehicle are indicated in 

Table 5-3. Both the verification and trade study cases are indicated. 

Max L/D Gliding Descent

Air-Launch

Altitude: 12.2 km

Mach 0.8

Constant Mach Cruise

Alt.: 22.86 + km

Mach: 6.0

Q: 89 kPa – 48 kPa

Constant Q Climb

Alt.: 12.2 km - 22.86 km 

Mach: 2.6 - 6.0

Const. Alt. Accel.

Altitude: 12.2 km

Mach: 0.8 - 2.6

Q: 89.3 kPa
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Table 5-3 Vehicle Mission Segments toward total mission profile 

 Verification  Trade Study 

 GHV X-51 BB3DS AB2DS ABRKT BBRKT 

Mission Type      Non-Int. Int. Non-Int. Int. 

External Boost Launch to Cruise ● ● ● ● ●  ●  

Internal Boost Launch to Cruise      ●  ● 

Mission Segments         

Gliding Descent ● ● ● ● ● ● ● ● 

Constant Mach Cruise  ● ● ● ● ● ● ● 

Constant q Climb ●     ●  ● 

Constant Altitude Acceleration ● ● ● ● ● ● ● ● 

Air Launched  ● ● ● ● ● ● ● ● 

 

Table 5-3 indicates each vehicle’s mission segments, it does not, however; indicate the flight 

conditions at each mission segment. Table 5-4 and Table 5-5 provide the mission segment flight 

conditions for the verification and trade study cases, respectively. Note that for the BBRKT and 

ABRKT integrate boost type case, the table columns do not correspond to mission order. The 

constant altitude acceleration segment occurs prior to the boost segment as described previously. 

Table 5-4 Verification vehicles’ mission segment flight conditions 

Vehicle Mission Type Start Condition Booster Acceleration 

and Climb 

Internal Propulsive 

Acceleration 

Constant Mach 

Cruise 

Gliding Descent 

  
Alt Speed Alt Speed Alt Speed Alt Speed Alt. Start Alt. End 

GHV Boost Launch 

to Cruise 

15 0.8 20.6 4.5 20.6 to 24.2 6 24.2+ 6 24.2+ 0 

X-51 Boost Launch 

to Cruise 

15 0.8 18.3 4.5 18.3 6 18.3+ 6 18.3+ 0 

All speed in Mach Number 

All Alt. in km 

 

Table 5-5 Trade study vehicles’ mission segment flight conditions 

System Boost Type Start Condition  

(Airdropped) 

Booster Acceleration 

and Climb 

Acceleration Constant Mach 

Cruise 

Gliding Descent 

 
 

Alt  Speed Alt Speed Alt Speed Alt Speed Alt. Start Alt. End 

BB3DS, 

AB2DS 

External 12.2 0.8 22.9 4.5 22.9 6 22.9+ 6 22.9+ 0 

BBRKT, 

ABRKT 

External 12.2 0.8 22.9 4.5 22.9 6 22.9+ 6 22.9+ 0 

Integrated 12.2 0.8 22.9 6 12.2 2.6 22.9+ 6 22.9+ 0 

All speed in Mach Number 

All Alt. in km 

5.5 Methods Selection 

Continuing with addressing the problem setup, this section addresses the methods used for the 

verification case study and the trade study case. As the trade study case uses the verification 

vehicles as baselines, many methods are shared between cases. The methods are addressed in a top 

overview approach; for details on select methods see the noted references. 
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5.5.1 General Method Overview 

A listing and general overview of the principal methods employed are presented in Table 5-6. 

The methods are categorized by discipline. The disciplines are Geometry, Aerodynamics, 

Propulsion, Trajectory, and Weight and Volume. Each discipline consists of at least one method 

and may contain more than one. Not all methods are applicable simultaneously nor necessary to a 

single vehicle. The method-vehicle associations are given in section 5.5.2 Method Application 

Summary.  

Table 5-6 Summary of methods applied 

Discipline Methods Description Reference 

Geometry FDL-7/Model-176, GHV, 

GHV modified, and X-51 

baseline geometries 

Geometry analytical relations and look up table modules 

with data populated by configurations created in NASA 

openVSP 

[147, 148, 

150] 

Aerodynamics Subsonic, Transonic, 

Supersonic, Hypersonic 

(blended-body and lifting-

body) 

Empirical McDonald Douglas aerodynamic relations for 

estimating lift-to-drag ratio (L/D)max, lift curve slope 𝐶𝐿𝛼
, 

induced drag factor 𝐿’, and zero lift-drag coefficient 𝐶𝐷0
  

[85, 151] 

Propulsion Rocket Performance Off and on design point analytical relations for 

determination of 𝐼𝑠𝑝 and thrust available, T  

[152] 

 2D Scramjet Performance Off and on design point analysis incorporating stream 

thrust analysis and CEA based fuel properties to determine 

𝐼𝑠𝑝, thrust available T, and fuel flow rates 

[153] 

 3D Scramjet Performance Custom method derived from the GHV’s propulsion 

system 

[147] 

Trajectory Const. Alt. Acceleration 

Const. q Climb 

Gliding Descent 

Constant Mach Cruise 

Air Launch / Booster 

Separation 

Numerical method for small flight path angle atmospheric 

flight. 

[154] 

Weight  

& Volume 

Transatmospheric vehicle 

sizing 

A set of empirical and analytical relations for the 

identifying of weight and volume of the vehicle and its 

subsystems 

[85, 149, 

155] 

5.5.2 Method Application Summary 

With the methods available presented, now the methods applied per vehicle is considered. 

Since the vehicles share many trajectory segments and since the methods are very generic, many 

of the methods are used across the vehicle spectrum. Table 5-7 shows the methods per vehicle 

breakdown. The filled bullet indicates the application of the method to the given vehicle. Note that 

the geometry method tool is the same across all vehicles; however, the individual method module’s 

data is different per vehicle. The tool (openVSP and supporting script) is used to populate the data 

necessary for the individual geometry method module.  



Trade Matrix 113  

 

Table 5-7 Methods per vehicle application summary 

 Verification Trade Study 

 GHV X-51 BB3DS AB2DS ABRKT BBRKT 

Geometry     Non-Int. Int. Non-Int. Int. 

openVSP ● ● ● ● ● ● ● ● 

Aerodynamics*         

Subsonic ● ● ● ● ● ● ● ● 

Transonic ● ● ● ● ● ● ● ● 

Supersonic ● ● ● ● ● ● ● ● 

Hypersonic ● ● ● ● ● ● ● ● 

Propulsion         

Rocket Performance     ● ● ● ● 

2D Scramjet Performance  ●  ●     

3D Scramjet Performance ●  ●      

Trajectory         

Gliding Descent ● ● ● ● ● ● ● ● 

Constant Mach Cruise ● ● ● ● ● ● ● ● 

Constant q Climb ●     ●  ● 

Constant Altitude Acceleration  ● ● ● ● ● ● ● 

Air Launch ● ● ● ● ● ● ● ● 

Weight and Volume         

Transatmospheric Sizing ● ● ● ● ● ● ● ● 

* A different module is used for each speed regime depending on if a BB or an AB 

5.6 Trade Matrix 

A trade matrix is established for the trade study case. There is no trade matrix for the 

verification case; no vehicle properties are traded, rather, the goal is to arrive at the given vehicles 

within reasonable error. As such, the trade matrix discussed herein is in regard to the trade study 

case only. 

The trade study case is an exploration of the air-launched reusable hypersonic test vehicle 

solution space. The examination is for the growth vehicle case. That is, the vehicles trades are to 

include increasing capability to identify how the vehicle size varies with capability variance. The 

reader could consider the vehicles sized similar to those of hypersonic missiles of varying 

capability. The trade matrix is given in Table 5-8. Observe that the concepts themselves are a trade. 

For each concept, the mission variables are traded, specifically cruise time and payload. Additional 

trades per concept configuration include geometric volume coefficient 𝜏 and propulsion system 

fuel (hydrogen and kerosene). The trade matrix indicates the range evaluated; however, note that 

not all points converge under the convergence criteria specified, which in itself can be informative. 

See Appendix A Case Studies Expanded for an account of the non-converged and converged trade 

points.  
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Table 5-8 Trade study trade matrix 

Vehicle 

Tag 

Baseline  

Vehicle 

Propulsion  

System 

Boost  

Type 

Fuel 

Type 

Tau  

Range 

Payload  

(N) 

Endurance  

Cruise (s) 

BBRKT GHV Liquid Rocket External H2 / RP-1 0.09 - 0.12 0 – 4000  0 – 300 

BBRKT GHV Liquid Rocket Internal H2 / RP-1 0.09 – 0.12 0 – 4000 0 – 300 

BB3DS GHV 3D Scramjet External Ethylene 0.0657 – 0.0735 0 0 – 750 

ABRKT MODEL 176 Liquid Rocket External H2 / RP-1 0.1405 – 0.2143 0 – 5000 0 – 500 

ABRKT MODEL 176 Liquid Rocket Internal H2 / RP-1 0.1405 – 0.2143 0 – 5000 0 – 500 

AB2DS X-51 / 

MODEL 176 

Scram 

2D Scramjet External JP-7  0.1405 – 0.2143 0 – 4000 0 – 750 

5.7 Results: Single Point Verification Case 

The verification case was executed with satisfactory conclusion. The verification case 

implemented the synthesis sizing code as established in the preceding chapter sections. Table 5-9 

presents the sizing variable results. Both the calculated value and the percent error (% 𝐸𝑟𝑟𝑜𝑟 =

100 × (𝐴𝑐𝑡𝑢𝑎𝑙 − 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑)/𝐴𝑐𝑡𝑢𝑎𝑙) to the known value are given. Through the verification 

case execution, the methods have been calibrated as well. The percent error has been reduced by 

calibrating the method to better arrive at the known vehicle sizing variables’ values. The X-51 and 

GHV error values are all within 5% of the known values with the majority below 1%. This error 

is acceptable at the early conceptual design stage where in speed to evaluate the largest possibility 

of solutions concepts is paramount. 

Table 5-9 Verification case’s sizing variables’ value and percent error 
 

GHV 1X  GHV-5X  X-51A 

Parameter Actual Calculated % Error  Actual Calculated % Error  Actual Calculated % Error 

Tau, 𝜏  0.0735 0.0735 0.0  0.0657 0.0657 0  0.2074** 0.2074 - 

Planform Area, 

(𝑆𝑝𝑙𝑛, 𝑚2) 

3.88 3.895 -0.189  19.45 19.469 -0.062  2.26** 2.266 -0.271 

Total Volume, 

(𝑉𝑡𝑜𝑡, 𝑚3) 

0.563 0.565 -0.368  5.642 5.644 -0.034  0.705** 0.730 -3.587 

Length, 

(𝑙, 𝑚) 

4.468 4.471 -0.068  9.991 9.996 -0.048  4.267 4.273 -3.167 

Span, 

(𝑏, 𝑚 ) 

1.488 1.491 -0.189  3.327 3.333 -0.206  0.702 0.7029 -0.134 

Takeoff Gross Weight, 

(TOGW, 𝑁) 

5430 5552 -2.247  36456 36238 0.598  6690 6689 0.016 

Wing Loading, 

(𝑊/𝑆𝑝𝑙𝑛, 𝑁/𝑚2) 

1397 1425 -0.022  1874 1861 0.694  2960 2952 0.270 

*usable fuel            

**estimate            

With the execution of the synthesis modules and satisfactory arrival at minimal percent error 

from the calculated value to the known value, the verification and calibration case study is 

considered complete. From the execution of the synthesis code and arrival at satisfactory sizing 

variable results, it is inferred that the AIDRA-DSS system executes correctly for the single vehicle 

case. The verification case illustrates correct system execution and instills confidence in the system 
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and the methods selected for the vehicles considered. The next task is to consider the trade study 

case.  

5.8 Results: Trade Study Case 

The results of the trade study are presented in the following sections. The results are considered 

individually according to boost scenario and propulsion type. The discussion closes with the 

presentation of the total solution space with all scenarios shown with carrier vehicle constraints 

considered. Note that the solution spaces presented include marked solutions (design points); 

however, the reader should be aware that the problem at hand does not necessitate a unique 

solution. The solutions presented here are not necessarily ‘optimal’ solutions. For the given design 

trade combination, there could be any number of plausible and practical solutions. Here, a map of 

the solutions arrived at are presented and probable areas of viable solutions are indicated. 

5.8.1 External Booster 

The externally boosted concepts include both airbreathing and non-airbreathing concepts. For 

clarity, the solution space of each is presented separately. Figure 5-11 presents the airbreathing 

vehicles’ solution space. Figure 5-12 and Figure 5-13 presents the non-airbreathing vehicles’ 

solution space for the RP-1 and 𝐻2 based systems, respectively. For reference, in both figures, the 

wing-loading of 3,413 𝑁/𝑚2 is highlighted. This wing-loading corresponds to the landing design 

requirement of the X-24C [146] (a test vehicle further along in the FDL family vehicle evolution). 

Additionally, note that these solutions are for the cruiser only, the total stack is considered in a 

following section. 

The AB solutions converge along lines of higher wing-loading than those of the BB. The AB 

airbreathing solutions converge along the 2,500 𝑁/𝑚2 wing-loading line and are bracketed by the 

3,300 𝑁/𝑚2 and 1,650 𝑁/𝑚2 lines. The BB solutions converge along approximately the 1,750 

𝑁/𝑚2 wing-loading line and are bracketed by the 1,900 𝑁/𝑚2 and 1,200 𝑁/𝑚2 lines. The wing-

loading is directly relatable to the stall speed and structural loads. Given that the AB solutions 

converge along higher wing-loadings, the AB will have higher approach speeds unless 

supplemented. Historically this configuration type (AB) has been equipped with a secondary 

retractable lifting device for landing. It is for this reason that all AB concepts considered include 

an integrated deployable low-speed wing. At lower wing-loadings, the BB concepts do not require 

additional lifting support, overall representing an advantage.   

The AB solutions for 0 to 4000 N payload and 0 to 750 second cruise time are indicated. In 

general solution convergence occurs with ease and as such the problem is well behaved. The 

solution areas expand vertically with mission variable trade, increasing in TOGW with minimal 

expansion (comparatively) in the planform area per 𝜏. This is the volumetric design behavior and 

advantage of the AB configuration.  
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The BB solutions for 0 N payload are also shown. Unlike the AB solutions, the BB solutions 

expand significantly both vertically and horizontally with mission variable trade, increasing in 

both TOGW and planform area. Note that the single zero payload cases span the entire planform 

solution length as the AB solutions for 0 – 4000 N payload. It is noted however that the BB 

solutions are initially under sized and require scaling to closer match known design points despite 

the calibration of the methods. During operation, note that in some cases design point solutions 

are non-unique; it is possible that additional smaller scale solutions can be found. It is warranted 

that further investigation be conducted to verify if reduced vehicle size solutions do exist. As such, 

due to the scaling factor, the higher endurance design points appear to suffer from overestimating 

TOGW when compared to the reference GHV tool calibration vehicles in this region. In regard to 

the general behavior of the solutions, the expansive nature in both planform area and TOGW with 

increasing endurance is not unexpected given that the type of configuration does not share the 

same geometric efficiency advantage of the AB. However, the BB does maintain a lower wing 

loading given its trend towards larger planform area. 

 

Figure 5-11 Boosted airbreathing hypersonic vehicle solution space: TOGM vs. 𝑆𝑝𝑙𝑛 

Considering the non-airbreathing case of the kerosene (RP-1) and hydrogen (𝐻2) systems as 

shown in Figure 5-12 and Figure 5-13 respectively, the solutions in both cases overlap each other 

significantly. Please note, the differences in payload and mission endurance. It is worth noting at 

this point that the BB configuration do suffer from significant convergence issues, that is difficulty 

in finding solutions, especially as compared to the AB case. The reader will notice differences in 

trade variable ranges and points of no solutions for certain trade combinations (such as the 𝜏 =

0.12 at 4000 N and 300s for the 𝐻2 case in Figure 5-13). The AB case does not suffer as 

significantly, though there are converged points that significantly exceed the solution trends as in 
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the point in Figure 5-13 for 𝜏 = 0.2143 and 5000 N. In regard to the RP-1 and 𝐻2 solutions, they 

both fall within the wing-loadings of 1,300 𝑁/𝑚2 and 4,200 𝑁/𝑚2. The RP-1 solution field 

indicates that the AB concept can offer a lighter and smaller solution for approximately all mission 

design point cases, whilst the BB is showing only some possible advantage in size at the 0 payload 

and 300 s endurance point. Overall, the AB growth to mission requirement increases was at a lower 

rate than the BB. Additionally, and not unsurprisingly, due to having to carry oxidizer on board, 

all solutions as compared to the air-breathing case, are greater in TOGW and 𝑆𝑝𝑙𝑛.  

Significantly, the fuel type directly impacts the vehicle’s TOGW and 𝑆𝑝𝑙𝑛. For both, the AB 

and BB, the 𝐻2 cases offer only increased 𝑆𝑝𝑙𝑛 and TOGW for the same mission. Additionally, the 

𝐻2 system grows very rapidly in both TOGW and 𝑆𝑝𝑙𝑛, at a rate much greater than the RP-1 based 

system per change in mission variable. The hydrogen-based BB grows rapidly in size, an entirely 

undesirable behavior for the case at hand when evaluating of the trade space for carried 

demonstrator vehicles. As such, per the solutions gained, the hydrogen fuel poses no benefit. 

 

 

Figure 5-12 Boosted non-airbreathing hypersonic vehicle solution space RP-1: TOGM vs. 𝑆𝑝𝑙𝑛 
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Figure 5-13 Boosted non-airbreathing hypersonic vehicle solution space 𝐻2: TOGM vs. 𝑆𝑝𝑙𝑛 

5.8.2 Trade Study Solution Space: Launch Stack & Carrier Constraints 

The previous section considers the cruiser case specifically. With the following, the total stack 

is considered. The launch stack comprises of the booster, inter-stage, and flight vehicle. The stack 

is sized based off the X-51A’s stack. The total stack is considered in terms of the carrier vehicle 

constraints. At first, is considered the integrated versus boosted rocket system is considered. This 

is followed by a general consideration of payload capacities and of geometric constraints where 

available.  

The evaluation of external versus onboard acceleration capacity systems indicates, that the 

inclusion of full acceleration capacity system integration is not beneficial when judged by design 

point 𝑇𝑂𝐺𝑊 and 𝑆𝑝𝑙𝑛. The figure below illustrates the two cases for the AB case. Note, that the 

fully integrated systems prove to be a much more difficult problem to solve, in particular for the 

BB case. Solutions indicate, not unexpectedly, the integrated cases are both heavier and larger than 

their comparative non-integrated case. However, there are solution points in which the integrated 

RP-1 system is more advantageous in both 𝑆𝑝𝑙𝑛 and TOGW than the same mission design point 

for the inserted hydrogen case. There are some cases for the zero cruise time in which the integrated 

system solutions are less in both weight and area than the equivalent inserted system, which may 

indicate that the booster rocket is oversized for the case, or that the onboard propulsive system is 

more efficient then the accelerator motor. Naturally, the integrated hydrogen case has no 

advantages over any other solution point. As such, in the evaluation of the design points by 𝑇𝑂𝐺𝑊 

and 𝑆𝑝𝑙𝑛, the integrated solutions show no advantage to the externally boosted vehicle except in 

the case of an integrated RP-1 based solution being chosen over a hydrogen-based insert solution. 
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However, if the criterion includes full reusability, the integrated case naturally satisfies the criteria 

whereas the vehicle accelerated by expendable systems does not. Generally, for the same mission, 

the integrated systems are approximately twice the 𝐺𝑇𝑂𝑊 and two-to-three times larger in 𝑆𝑝𝑙𝑛.  

 

Figure 5-14 Integrated non-airbreathing hypersonic vehicle solution space: TOGM vs. 𝑆𝑝𝑙𝑛 

In Figure 5-15 and Figure 5-16, the launch stack for the AB and BB are presented, illustrating 

the solution space in regards to TOGW and 𝑆𝑝𝑙𝑛 versus known carrier vehicle payload limits. The 

pylon hard-point payload limits for several classical vehicles including the B-52 (HRC), F-15, and 

B-1B in addition to the Gulfstream C-20A, are indicated. Each system has either been used as a 

launch platform for test systems or is being fitted to carry hypersonic systems. Limits are based on 

publicly available hard point information or known carried hardware such as the 600 gallon fuel 

tank for the F-15 midline hardpoint. The selected vehicles represent the lower, middle, and upper 

limits of generally available carrier aircraft relevant to the hypersonic deployable system. Not 

included but equally plausible launch platforms include launch vehicles and their components, 

such as the Falcon 9 or Minotaur.  

Considering the carrier vehicle constraints, it is observable that the majority of the solutions 

arrived at for the inserted vehicles with payloads of ≤ 5,000 𝑁 and cruse times of ≤ 750 𝑠, are 

within the payload limits of the B-52 with upgraded hardware. The principal exception only being 

hydrogen-based systems. The integrated solutions would exceed the B-52’s capacity quickly as 

payload increases or cruise time beyond 250 − 500𝑠 depend on the fuel. However, almost all 

solutions far exceed the capacity of the C-20A and F-15. The solution field applicable to the F-15 

are the AB and BB low-end zero to 500 N payload case up to potentially 250s cruise time of the 

RP-1 boosted design class and possibly a minimal performance airbreathing system. The B-1B 
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offers a potential launch platform that can address approximately a third to half the solution space 

identified. The max mission requirements considered do tax the considered carrier vehicle payload 

capacities. For a growth test vehicle concept, vehicles of a mission requirement greater than that 

selected, would rapidly exceed the B-52 limits and would require a new launch platform besides 

the classical systems for hypersonic test systems application. 

 

 
Figure 5-15 AB full stack payload constrained solution space: TOGM vs. 𝑆𝑝𝑙𝑛 

 

 
Figure 5-16 BB full stack payload constrained solution space: TOGM vs. 𝑆𝑝𝑙𝑛 
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Figure 5-17 and Figure 5-18 illustrates the solution space in regard to the geometric dimensions 

of launch stack overall length (𝑙) and span (𝑏) versus known carrier vehicle payload geometric 

limits by BB and AB respectively. As in the previous figure, the B-52 (HCR), F-15, B-1B, and 

CA-20 are used for payload limits. (The geometric limitations of each vehicle are defined by the 

payload placement location. Limitations are set based on such parameters as landing gear location, 

inboard distance between fuselage and engine nacelle, jet wake, and payload CG location.) All 

vehicle solutions are represented in the figure. The practical solution spaces collapse down 

significantly when considering length and span. As evident from the figure, the solutions’ span 

values are below the first limiting vehicles span constraint—C-20A. In regard to overall length, 

many do exceed the limits of F-15 and even the B-52. However, note that the accelerator was 

assumed to be a single linear component; the accelerator could be potentially divided and placed 

in parallel along the sides of the cruiser vehicle in order to reduce overall length at potentially the 

cost of span. Unlike the payload weight limit, in the length limits case, the integrated systems are 

indicated to have an advantage over the boosted systems, being of less length. Generally speaking, 

all feasible or likely AB and BB design choices fall within the geometric limits of the B-52. Only 

select BB solutions exceed the B-52 length limits, those being impractical hydrogen-based 

systems. In the case shown, the limiting factor is the stack or vehicle length. However, this likely 

could be solved through division of the accelerator into smaller elements fastened to the vehicle’s 

fuselage rather than tail end.  

 

 

Figure 5-17 BB vehicle geometric constrained solution space: 𝑙 vs. 𝑏 

 



122 Verification and Application 

 

 

Figure 5-18 AB vehicle geometric constrained solution space: 𝑙 vs. 𝑏 

5.9 Conclusion  

5.9.1 Study Summary 

The principal intent of this chapter has been to demonstrate system functionality and 

application. Functionality and applicability are shown through a verification case study and a trade 

study. For system verification, two vehicles have been selected to be sized and the results 

compared against each other. The vehicles are the X-51A and GHV. These vehicles represent the 

hypersonic all-body and blended-body vehicle classes. The vehicles selected include both a flown 

test vehicle and a paper concept study. The vehicles are entered into the AIDRA-DSS system. 

Through user operation of the system, the result of the user selections via the user interface 

represents the generation of unique synthesis codes, each addressing a specific vehicle. The 

vehicles, processes, methods, and mission conditions for each have been presented. Upon synthesis 

code generation, each has been executed. The result is a satisfactory arrival at sizing results very 

near in value to the control vehicles known sizing variables’ value. The percent error is within 5% 

for all sizing variables evaluated (most below 1%). The execution of the support system, the 

execution of the resulting synthesis tools, and the evaluation of the results indicate that the tool 

works properly. It is inferred that the system operates, that it uniquely assembles new synthesis 

codes, and that it executes the codes correctly as confirmed by the correct outcomes of the 

verification case. 

Following the verification case, the systems applicability and functionality is demonstrated 

through the execution of a trade study. Using the vehicle concepts from the verification case as 

baseline vehicle concepts—with the addition of a rocket powered BB and AB concept—a trade 

study has been executed. Trade variables include configuration and concept (the vehicle base lines 

representing airbreathing and non-airbreathing blended-body and all-body concepts), payload, 
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mission scenarios, and fuel types. The trade study not only demonstrates system functionality in 

terms of a multi-design point study, but also demonstrates system applicability. Through the range 

of design trades, a solution space for hypersonic test vehicles is assembled and visualized. The 

solutions are contextualized through the consideration of carrier vehicle geometric and weight 

constraints.  

5.9.2 Study Conclusions 

In regard to the trade study itself, a few concluding statements can be made. First, for all cases 

the AB solutions tended to have the advantage in in planform area, length, span, and even generally 

weight as compared to the BB counterparts. The BB solutions tend towards being larger in 

planform area for the same mission. Furthermore, the BB solution areas, for both airbreathing and 

non-airbreathing concepts, expand with performance demand significantly more so than the AB 

cases. Regarding the integrated systems, they show no advantage in overall weight, minor potential 

advantages in overall length are identified. Moreover, the integrated system represents a fully 

reusable system and for this reason could be more desirable than the other concepts for certain 

research objectives. Lastly, considering the carrier vehicles, for the missions and performance 

requirements selected, the B-52 could carry most probable near term systems identified. However, 

the trades considered result in solutions that approach the limits of the B-52 and as such, for any 

concepts that exceed those considered here in, an alternative launch platform or fully self-sustained 

concept would be required. From the study, it can be concluded that for a growth test hypersonic 

program of reusable systems, the carrier vehicle options are adequate for near term research but 

are limited and necessitate being considered in program planning far beyond near term. However, 

in consideration of the solutions as weapon or small-scale test systems and not growth research 

and development systems, then vehicles of the payload class of the B-1 and B-52 can carry several 

small systems simultaneously. 

With the execution of these case studies, it has been shown that the system operates as expected 

for the single process and single complex vehicle synthesis assembly and execution scenario. 

Additionally, with the completion of the case studies, the capacity for trade study is demonstrated. 

In conclusion, all verification and demonstration tasks as outlined at the start of this chapter have 

been completed successfully. 

5.9.3 Contribution Statement 

» Verified single point and multi-point functionality of a new synthesis design tool. 

» Solution space identification and visualization of all-body and blended-body airbreathing and 

non-airbreathing reusable hypersonic air-launched vehicles for 0-750s cruise time at varying 

payload, fuel type, and trajectory design. 



 

 

 

 



 

 

Chapter 6 CONCLUSION 

This document is concluded with the consideration of a research summary, a research 

contributions summary, and a consideration of areas of research and development for future 

enhancement of the concepts and system presented here in. 

6.1 Research Summary 

The principal development and deliverable of the research presented herein has been the 

generic synthesis decision support environment as a precursor to an artificial intelligence design 

and research assistant (AIDRA-DSS). AIDRA-DSS was developed in Python with an executable 

GUI written in QT. It is a framework that allows engineers to design and size any vehicle through 

a generic synthesis assembly approach. Additionally, the system is not limited to aerospace and, 

as long as the designer carries the proper methodologies, a vehicle can be assembled. The ideology 

behind AIDRA-DSS is a versatile system that can size and prototype vehicles in a fast-paced design 

environment. Giving the user the ability to compose a vehicle from different elements, AIDRA-

DSS creates a tailored sizing code based on the user-designated requirements. 

The systems functionality and applicability has been demonstrated successfully through the 

execution of a verification case and a trade study. The verification case considered the GHV and 

X-51A. Representing the blended-body and all-body configurations, these concepts and 

configurations were used as baseline vehicles for the trade study. The trade study evaluated air 

launched airbreathing and non-airbreathing concepts for consideration as reusable hypersonic 

vehicle research and development platforms. Trade variables include configuration and concept, 

payload, mission scenarios, and fuel types. Through the range of trade conditions, a solution space 

for hypersonic test vehicles was assembled and visualized. To assist in evaluating concepts and 

gleaning information from the results in pertinence to the carrier vehicle, the solutions were placed 

into context with carrier vehicle geometric and weight constraints. From the study, it can be 

concluded that for a growth test hypersonic program of reusable systems, the carrier vehicle 

options are limited and necessitate being considered in program planning. The vehicle solutions 

indicate plausible requirements for future carrier vehicles. Additionally, the all-body has shown 
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superior solution regions in terms of total weight and size, both of which are critical for carrier 

vehicle consideration.  

With the execution of the two case studies, it has been shown that the system operates as 

expected for the single process and single complex vehicle synthesis assembly and execution 

scenario. Additionally, with satisfactory execution of the case studies, the capacity for system 

handling of said trade studies is demonstrated. 

The development of the system has had two purposes. First, advancement toward modular 

design synthesis assembly infusion into cognitive systems or other AI frameworks. This is the 

driving motivation of this research. In this respect, the purpose of the system is to develop further 

expertise and a baseline environment to test complex vehicle automated synthesis architecture 

synthetization that would be easily adaptable into a greater cognitive system. The second purpose 

is to serve as a useful engineering environment that arrives the user at an applicable synthesis 

solution toolset, based on user selections, to solve a given problem by providing standard feedback 

and decision aiding platforms. The second objective one could consider as an intermediate 

objective to provide immediate system utility while driving towards the greater objective of a 

cognitive design and research assistant. 

Reiterating the statements of Chapter 1, fundamentally, the motivation for this research has 

been to explore the advancement of toolsets for the decision maker and designer operating at the 

earliest planning and design phase of an aerospace vehicle or program. The significance of the 

decisions made at these early phases cannot be overstated. The level of success of a product is 

dependent on the quality of the underlying early forecasts, requirement definitions, technology 

selections, and initial concept and configuration selections. This research has been but one-step 

towards a greater goal; the system itself could have additional immediate advancements through 

follow on research and development. Some foreseen and suggestable areas of development are 

discussed in section 6.3 Research and Development for Future Enhancement. 

6.2 Research Contribution Summary 

The research contributions are summarized below. The contributions are in the areas system 

concept specification, system development, system demonstration, and trade study execution.  

» Specification for a design decision support system environment concept for application to 

aerospace vehicle design, with an approach emphasis for vehicle-of-vehicle design. 

» Development of a modular and automated synthesis assembly toolset in the framework of a 

transparent and user-friendly decision support environment. 

» Demonstration of environment functionality through a verification case study. 

» Identification of a reusable hypersonic demonstrator class solution space for all-body and 

blended body vehicles of both airbreathing and non-airbreathing type. 
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The research undertaken has developed software to directly assist the early conceptual design 

phase and even the activities of the pre-design phase, notably the program planning and road-

mapping activities that can include but are not limited to technology portfolio planning and 

requirements identification. As such, principal tool development and its application does focus on 

the parametric sizing phase, itself presenting the initial sub-phase of the conceptual design process. 

Any design naturally follows a refining processes and, as such, demands that the synthesis software 

increase its analysis fidelity successively as well. To accommodate this natural event of refinement 

through increasing analysis fidelity, the system presented would approach the problem through the 

generation of multiple architectures of varying analysis fidelity. As such, the fidelity of analysis is 

variable, and the tool and approach are applicable to more than one design event within the design 

process. 

There are several additional advantages to the system’s approach as identified and developed. 

First, through a transparent process of a dynamic method and analysis process definition and 

selection sequence, a user can implement a design analysis process that directly reflects the needs 

and requirements of the product at hand, as each product can have different criteria and design 

initiation avenues. For example, in the classical design approach, a basic geometric definition is 

the first step. However, it may not be necessary that a design initiates with this particular discipline 

nor that a process be limited to certain disciplinary areas and sequences. The disciplines represent 

an analysis type and the user is free to add any discipline to create and apply a new process as 

necessary. Thus, the synthesis architecture process is moldable to arrange the order of analysis as 

necessary to address the unique problem being solved. Modules can be added as needed to address 

the necessary analysis including cost models, life support models, radar cross-section analysis 

models, thermal heating models, etc. In summary, the process is user definable and not limited to 

a specific disciplinary analysis module application nor order of operation. However, the user tends 

to apply engineering best practice and knowledge in the design of a process to ensure correctness 

and peer-acceptability in application and design.  

The modular process definition underscores an additional advantage to this approach and 

application, that is the ability to concurrently evaluate dissimilar concepts and configurations 

conceived to address the same problem. A classical design problem is the inability to rapidly 

compare uniquely different aerospace design configurations for the same mission in a timely 

manner. The automated modular approach presented, through a library of various processes and 

methods, permits the rapid assembly of architectures of consistent fidelity that each address 

different design concepts allowing for the comparison of potentially very dissimilar solutions on 

equal design evaluation footing.  

A final notable benefit of the automated modular synthesis approach within an easy to use and 

transparent user interface, is the savings in time. Time in two regards; first time in regard to 

engineer training and time in regards to analysis deliverables. A key to learning is exposure. A 

rapid architecture generation capacity—of a generic type—allows for increased engineer exposure 

to various design processes, analysis methods, and aerospace concepts and configurations. The 
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automated approach can directly contribute to an enhanced learning environment through which a 

novice engineer can rapidly gain exposure and design understanding. A synthesis architecture 

generation system of a transparent nature that operates through synthesis assembly automation by 

means of a modular design process and methods library, allows for the rapid introduction and 

exposure of inexperienced personnel to the labyrinth of available knowledge and the design 

processes of the institution. This subsequently permits increased design exposure and general 

experience, such that the experience and knowledge available can be more readily directed and 

passed on to the novice designer. Similarly, the same advantage is applicable to the university 

environment, where student exposure to the actual evaluation and comprehension of the design 

and the value of their work, is lost due to frequent lack in time for exposure and experimentation 

after the initial generation of method analysis tools. A modular automated synthesis generation 

approach allows for reduced time and effort in the design tool fabrication process, that if employed 

would allow for increased time in analysis application, design understanding, and overall 

improvement in an engineer’s education. 

The second note on time savings is that of actual tool generation which has been hinted at in 

the previous discussion. An automated synthesis architecture generation process permits for the 

development and deployment of synthesis architectures rapidly. Time savings occur through the 

automation of the tedious tasks of linking methods and data handling, in addition to identifying 

and presenting to the user methods and processes available, with potential specification of the best 

methods and tools for the hardware application and fidelity required in addition to other 

requirements, ensuring proper method application. In the event of adequately populated libraries 

(process, methods, and vehicles), input variable databases, and dependent on hardware 

decomposition level, architectures can be rapidly generated within mere minutes and architectures 

executed thereafter. Furthermore, they are additionally archivable and distributable with full access 

to the methods involved allowing for reuse and modification, as necessary.  

6.3 Research and Development for Future Enhancement 

The work presented here has been an iteration of a vehicle decomposition and modular 

synthesis assembly concept, with the goal of sequential development towards a cognitive design 

and research assistant. This work has led to the development of a modular framework that can be 

refined and inserted as a numerical analysis core into an AI framework with modification of course. 

As such, some foreseen efforts for continuation and improvement of the design kernel include the 

following. 

Towards Architecture Planning: 

» Vehicles as Trade Studies. The system current is set to treat each vehicle selected as a 

component of a greater vehicle; however, this same implementation could readily be converted 

to allow for trade study iterations to include the vehicles themselves. Vehicle trades could 

occur in two manners. First, rather than setting a vehicle group as a subset of a parent vehicle, 
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they could be set to be individual independent concepts to be evaluated. Such a capacity would 

support pre-phase or program and architecture planning. A second case, a parent vehicle’s 

component sub-vehicles could be traded in addition to the classical trades such as aspect ratio 

or fuel type. This would allow for a single project set up and run to evaluate many vehicle 

concepts simultaneously. 

» Decomposed System Trades. In the same fashion as the point noted above, the individual 

components of a vehicle—whether it be the vehicle itself, vehicles within the vehicle, or any 

individual vehicle’s concept, hardware, or operational conditions—could be a trade option. 

Traditionally trades are in specific input parameters; this system would allow a trade study to 

be much more global in consideration. 

Towards Increased and Improved Automation: 

» Natural Language Processing. The GUI itself is in place to benefit the user. However, for an 

autonomous system, the GUI is not necessary. A plausible improvement could be a natural 

language processor where in the instructions are given either verbally or via a standard 

keyboard input (text). In such as sense the system could have an integrated chatbot like 

interface. The GUI operations would be handled by the system without direct user interfacing 

other than through basic instruction however being dependent on a sound expert system or 

similar. 

» Database and Knowledgebase Expansion and Integration. Improved and increased 

knowledgebase and database integration and population would directly benefit the system. 

Furthermore, it is necessary for a true research and design assistant. Currently, the system is 

limited to a selection of methods and references as the knowledge base and the project results 

exist in fragmented result databases. Additional knowledge and data handling capacity could 

be added through many means. For instance, the addition of a global projects results database 

with datamining and data reuse could be integrated allowing for a mechanism for improved 

convergence parameter initial guess values, input variables value assignment, or even new 

method derivation through datamining. Furthermore, system execution could be enhanced 

through an improved expert system or decision tree/process for automated method filtering 

based on knowledge of the available methods such as method applicability, accuracy, speed, 

or dependability. Given a concept statement, with the right knowledge and data, the system 

could make the correct choices the user classically makes during GUI operation allowing for 

time reduction in system operation and final product. 

» Design and Analysis Recommendations. The purpose of a decision support system is to help 

the user arrive at the correct or best decision given the information available. The current 

system assists the user by providing a transparent synthesis assembly tool allowing the user to 

setup an analysis solution to the problem at hand that results in not only the analysis tool but 

also design figures. The user is left, however, to derive conclusions based on the results and 

figures presented. All though this may accelerate the problem solution process, it itself does 
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not give design recommendations. A system improvement would be a direct result analysis 

process that arrives at and provides both intelligent design recommendations and intelligent 

analysis recommendations (recommendations to rerun the analysis to better evaluate the 

problem or new problems identified through the analysis, including changing methods). 

» Improved Generative Coding. A primary deliverable of the DSS developed is a synthesis code 

tailor made for the user given the user’s selections in system operation. The system generates 

the synthesis code effectively through the use of code assembly rules and code block libraries. 

The system could be further advanced through improvements to the code assembly process 

such as through the utilization of agents or other auto-coding and generative techniques.
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 Case Studies Expanded 

The following section provides additional documentation of the case studies ran. The order of 

presentation follows the case studies—verification then trade study.  

A.1 All Body: X-51A  

A.1.1 Vehicle Description 

The X-51A is a hypersonic scramjet 

powered demonstrator vehicle. The 

Boeing Company and Pratt & Whitney 

Rocketdyne developed the vehicle for the 

US Air Force and DARPA. The X-51A is 

a waverider concept designed for Mach 6+ 

flight and a powered flight time of 240 

seconds. The vehicle has no onboard 

subsonic propulsion and, as such, is 

accelerated by a booster rocket to the 

engine start condition. The X-51A is launched from a carrier vehicle, the B-52H. The X-51A 

vehicle and stack is illustrated in Figure A-1. The vehicle is a spatula nosed concept derived from 

the Affordable Rapid Response Missile Demonstrator (ARRMD) program[156]. On observation, 

the configuration shares many similarities to the legacy lifting bodies FDL-7 and McDonnell 

Douglas MRS. The vehicle is non-recoverable and is destroyed on mission completion. Four flight 

vehicles were built and flown; the X-51A conducted its first scramjet powered flight on May 26, 

2010 and its last test flight on May 1, 2013 with a peak speed of Mach 5.1.[157]. For additional 

discussion on the X-51A see [148, 156, 157]. For a discussion on the ARRMD program see [158]. 

 

 
Figure A-1 X-51 configuration and full stack [156] 
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A.1.2 Vehicle Weights 

The vehicles’ primary geometric parameters and weight breakdown are given in Table A-1 and 

Table A-2 respectively.  

Table A-1 X-51A primary dimensions, adapted from [148] 
 

in m 

AVD Stack Length 301 7.645 

Cruiser Length 168 4.267 

Max Body Width 23 0.584 

Engine Flow-Path Width 9 0.229 

 

Table A-2 X-51A Primary Mass Properties, adapted from [148] 
 

𝒍𝒃𝒎 kg N 

Cruiser Operating Weight 1225 556 5449 

Cruiser Launch Weight 1504 682 6690 

JP-7 Fuel (Useable) 265 120 1179 

Booster 2277 1033 10129 

Interstage 160 73 712 

Stack Gross Weight 

(Captive Carry) 

3942 1788 17535 

A.1.3 Notional Mission 

The X-51A mission is an 

airdropped non-reusable mission. 

The notional mission is illustrated 

in Figure A-2. The mission is 

described by references [156, 157]. 

The mission is very similar to the 

GHV mission. The vehicle is 

released from a B-52H at 

approximately 49,500 ft. and Mach 

0.8. Shortly after release, the rocket 

booster ignites and burns for about 

35 seconds, performing an 

accelerating climb. The rocket 

accelerates the X-51A to approximately Mach 4.5+ and 60,000 ft. at which point the cruise vehicle 

separates. The X-51A coasts until scramjet ignition. After ignition, the vehicle accelerates under 

the power of the scramjet from approximately Mach 4.5 to the cruise condition of Mach 6 and 

70,000+ ft. The scramjet continues operating until the usable fuel is consumed after which the 

engine shuts off and the vehicle descends, performing unpowered experimental flight. The vehicle 

is ditched in the ocean and is not recovered. 

 
Figure A-2 X-51 notional mission[148] 
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Table A-3 Summary of X-51A notional mission profile 

Mission Segment Mach Altitude Dynamic Pressure 

ft. m psf kPa 

Carrier Separation (booster ignition) 0.8 49,500 15,088 111 5 

Initiation (booster separation) 4.5 60,000 18,288 2123 102 

Acceleration and Climb 6 70,000 21,336 2336 112 

Lifting Cruise 6 +70,000 21,336 2336 112 

A.1.4 Project Builder Selections 

This section documents the Project Builder selections. Depicted are each page’s selections. 

The selection is organized according to the Project Builder’s tabs. 

 

 
Figure A-5 X-51A Integration page, (b) Function Assignment 

 

 
Figure A-6 X-51A Iteration page 

 

 
Figure A-3 X-51A Analysis page 

 
Figure A-4 X-51A Integration page, (a) Method Selection 
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Figure A-7 X-51A Convergence page 

 
Figure A-8 X-51A Screening page 

A.1.5 Trade Study 

The X-51A all-body concept, in addition to inspiration from the Model-176 and FDL-7, were 

used as baseline concepts for a trade study of all-body hypersonic cruiser vehicles. This section 

presents the trade study trade matrix, the convergence behavior and results, and the final 

consideration of the results pictorially in context to potential carrier vehicles.  

A.1.5.1  Trade Matrix 

The all-body concept evaluation evolved around two concepts—airbreathing and non-

airbreathing. For each concept volume coefficient (𝜏), cruise time (𝑡𝑐𝑟𝑢𝑖𝑠𝑒), and payload weight 

(𝑊𝑝𝑎𝑦) were traded. For the non-airbreathing cases, the fuel type was traded as well. The fuels 

traded were RP-1 and 𝐻2. The trade ranges are shown in Table A-4.  

Table A-4 All-Body trade matrix 

Vehicle Tag Baseline Vehicle Propulsion System Boost Type Fuel Type Tau Range Payload (N) Cruise Time (s) 

AB2DS X-51 / MODEL 

176 Scram 

2D Scramjet External JP-7  0.14 – 0.2143 0 – 4000 0 – 750 

ABRKT MODEL 176 Liquid Rocket External H2 / RP-1 0.14 – 0.2143 0 – 5000 0 – 500 

ABRKT MODEL 176 Liquid Rocket Internal H2 / RP-1 0.14 – 0.2143 0 – 5000 0 – 500 

A.1.5.2  Trade Convergence Summary: Iteration Errors 

The trades were executed as laid out. For reference, the final convergence error and 

convergence error per independent variable iteration for each trade are presented pictorially below. 

The order presented follows that of the row order in the trade matrix table. As can be seen, the 

convergence for the airbreathing cases occurred much more readily and with no noticeable 

difficulty. However, the problem solving became more laborious as the problem progressed 

through the non-airbreathing cases and specifically the integrated (internal boost) case. Note that 

for all trades, the all-body solutions converged, unlike the blended-body case. 
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Figure A-9 AB scramjet iteration final convergence 

 

 
Figure A-10 AB scramjet iteration convergence error by step 
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Figure A-11 AB boosted rocket (RP1) iteration final convergence 

 

 
Figure A-12 AB boosted rocket (RP1) iteration convergence error by step 
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Figure A-13 AB boosted rocket (𝐻2) iteration final convergence 

 

 
Figure A-14 AB boosted rocket (𝐻2) iteration convergence error by step 
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Figure A-15 AB integrated rocket (RP1) iteration final convergence 

 

Figure A-16 AB integrated rocket (RP1) iteration convergence error by step 
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Figure A-17 AB integrated rocket (𝐻2) iteration final convergence 

 
Figure A-18 AB integrated rocket (𝐻2) iteration convergence error by step 
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A.1.5.3  Trade Study Results: Solution Spaces 

The solution spaces are considered by first, the reason for solution reduction in the main text, 

second, the full solution set for cruise vehicle, and lastly the full solution set for the total launch 

stack. While considering the solutions presented here in, the reader is encouraged to recall that 

these solutions are not optimal in the generally recognized sense. Understand that these solutions 

identify an area of mathematically plausible solutions but do not necessitate that they are the best 

nor only solutions for the given case. Additionally, when reviewing the results, note the 

significance that the 𝜏 parameter has on the solutions. For a given payload and cruise time, the 

solutions 𝑇𝑂𝐺𝑊 can be twice the value while comparing the minimum versus maximum 𝜏 

solutions, underlining the significance of volumetric efficiency for the hypersonic case.  

A.1.5.3.1 Solution Space: Area Reduction 

The hydrogen rocket AB class solution space grows rapidly in both weight and planform area 

with increasing cruise time and in doing, it dominates the solution area. Consider the minimal case 

of zero payload. Figure A-19 illustrates this case. As one can clearly see, the hydrogen-based 

rocket dominates in terms of growth and total weight. The vehicle solutions rapidly exceed the B-

52’s capacities at 250s cruise time and even exceed the Cosmic Girl’s weight limit at the 750s 

case. The vehicle grows rapidly due to the compounding nature of weight, volume, and 

aerodynamic forces. In effect, the hydrogen all-body cases above the 250s mark represent solutions 

more on par with a second or third vehicle iteration in a growth vehicle program. Many of these 

solutions are not practical solutions for most air-launched scenarios. Rather, they would likely be 

better suited operating as standalone vehicles or be accelerated atop a vertically launched rocket 

such as a Minotaur or Falcon 9. Furthermore, these design points more readily represent upper 

stage orbital class vehicles and should be viewed for that application. In fact, the Model-176 was 

intended for this purpose. Lastly, due to the hydrogen solutions far exceeding the other trade 

solutions in both weight and planform area, the solutions within the main text body are limited to 

the solutions within the comparable range of the other trades and within practical carry vehicle 

application (B-52 pylon limit). The full solution sets are shown here.  
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Figure A-19 Selected All-Body solutions illustrating 𝐻2 solution dominance: 𝑆𝑝𝑙𝑛 vs 𝑇𝑂𝐺𝑊 

A.1.5.3.2 Solution Space: Cruiser  

The solutions for the cruise vehicle are presented below. The cruise vehicle does not include 

the expendable booster for the airbreathing and boosted rocket cases. All solutions are presented 

in a singular figure first and are individually plotted thereafter in the order of airbreathing, inserted 

vehicle (externally boosted), and lastly the integrated vehicle.  

 

Figure A-20 All-Body cruiser vehicle solutions: 𝑆𝑝𝑙𝑛 vs 𝑇𝑂𝐺𝑊  
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Figure A-21 Boosted All-Body airbreathing cruiser solutions: 𝑆𝑝𝑙𝑛 vs 𝑇𝑂𝐺𝑊  

 

  
Figure A-22 Boosted All-Body 𝐻2 rocket cruiser solutions: 𝑆𝑝𝑙𝑛 vs 𝑇𝑂𝐺𝑊 
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Figure A-23 Boosted All-Body RP-1 rocket cruiser vehicle solutions: 𝑆𝑝𝑙𝑛 vs 𝑇𝑂𝐺𝑊  

 

 
Figure A-24 Integrated All-Body 𝐻2 rocket cruiser vehicle solutions: 𝑆𝑝𝑙𝑛 vs 𝑇𝑂𝐺𝑊 
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Figure A-25 Integrated All-Body RP-1 rocket cruiser vehicle solutions: 𝑆𝑝𝑙𝑛 vs 𝑇𝑂𝐺𝑊  

A.1.5.3.3 Solution Space: Full Stack 

The solutions for the full launch stack (cruise with external booster as necessary) are presented 

below. The stack launch weight (𝑇𝑂𝐺𝑊) versus cruiser planform area (𝑆𝑝𝑙𝑛) solutions are 

presented in a singular figure first and are individually plotted thereafter in the order of 

airbreathing, inserted vehicle (externally boosted), and lastly the integrated vehicle. These are 

followed by the illustration of cruiser span (𝑏) and stack length (𝑙) versus cruiser planform area. 

𝑇𝑂𝐺𝑊 versus 𝑆𝑝𝑙𝑛: 

 
Figure A-26 All-Body full stack solutions: 𝑆𝑝𝑙𝑛 vs 𝑇𝑂𝐺𝑊  
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Figure A-27 Boosted All-Body airbreathing full stack solutions: 𝑆𝑝𝑙𝑛 vs 𝑇𝑂𝐺𝑊  

 

  
Figure A-28 Boosted All-Body 𝐻2 rocket full stack solutions: 𝑆𝑝𝑙𝑛 vs 𝑇𝑂𝐺𝑊 
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Figure A-29 Boosted All-Body RP-1 rocket full stack solutions: 𝑆𝑝𝑙𝑛 vs 𝑇𝑂𝐺𝑊  

 

 
Figure A-30 Integrated All-Body 𝐻2 rocket full stack solutions: 𝑆𝑝𝑙𝑛 vs 𝑇𝑂𝐺𝑊 
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Figure A-31 Integrated All-Body RP-1 rocket full stack solutions: 𝑆𝑝𝑙𝑛 vs 𝑇𝑂𝐺𝑊  

 

 

Span and Length: 

 
Figure A-32 All-Body full stack solutions: 𝑆𝑝𝑙𝑛 vs 𝑙  

 

 



162 Case Studies Expanded 

 

 
Figure A-33 All-Body full stack solutions: 𝑆𝑝𝑙𝑛 vs b  

 

 

 



 

 

A.2 Blended Body: Road Runner Generic Hypersonic Vehicle 

A.2.1 Vehicle Description 

The Road Runner Generic Hypersonic 

Vehicle (GHV) is a family of hypersonic 

vehicles. The vehicles share the same concept 

and configuration. The top view, bottom view, 

and internal layout are illustrated in Figure 

A-34, Figure A-35, and Figure A-36 

respectively. Significant features are indicated. 

The vehicle has a blended-body underside with 

a distinct fuselage on the topside. A central 

through flow scramjet system characterizes the 

vehicle. The propulsion system is ethylene 

based. The inlet and nozzle are both three-

dimensional. The combustor is axisymmetric. 

The vehicle concept is the baseline for the 

family of five vehicle sizes. The mass flow rate 

scales the vehicle. The vehicle operates up to 

Mach 6 and a dynamic pressure range of 1000 

to 2000 psf. 

The vehicle family was created with the 

intent to have a publicly distributable and 

creditable hypersonic vehicle design case for research and development. As the study, see 

reference [147], states: 

 [i]t was decided that a family of in-

house designs should be created which 

would be publicly releasable and 

relevant to current hypersonic projects. 

AFRL would then be able to share these 

designs and any data derived from 

them with other government, academic 

or industry partners and thereby foster 

greater collaboration within the area. 

The concepts were generated for improved 

research, development, and collaboration. To 

ensure a credible baseline hypersonic design 

point, the concept has been based on credible vehicles. For instance, the GHV shares many 

configuration similarities with the HIFiRE-6 and HIFiRE-8 [159, 160]. 

 
Figure A-34 GHV top view with features indicated [147] 

 
Figure A-35 GHV bottom view with features indicated [147] 

 
Figure A-36 Propulsive system internal layout [147] 
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A.2.2 Vehicle Weights 

The vehicles’ primary geometric parameters and weight breakdown are given in Table A-5 and 

Table A-6 respectively. Mass flow rate scales the vehicle. The family set comprises of five scaled 

designs; each is represented.  

Table A-5 GHV family primary dimensions, adapted from [147] 
  

Flow-Path Scale (X) 

Element Units 1 2 3 4 5 

Length Overall 𝑚 4.4681 6.3189 7.7390 8.9362 9.9910 

Fuselage Length 𝑚 4.3134 6.1001 7.4711 8.6269 9.6451 

Effective Fuselage Diameter - Nose 𝑚 0.2793 0.3951 0.4838 0.5587 0.6246 

Effective Fuselage Diameter - Tail 𝑚 0.4786 0.6769 0.8290 0.9573 1.0703 

Wing Span 𝑚  1.4877 2.1039 2.5767 2.9754 3.3265 

Nose-to-root Offset 𝑚 0.2568 0.3632 0.4448 0.5136 0.5742 

Root Chord 𝑚 4.1059 5.8066 7.1116 8.2118 9.1811 

Tip Chord 𝑚 0.4884 0.6908 0.8460 0.9769 1.0922 

Effective Leading Edge Sweep 𝑑𝑒𝑔 80.6 80.6 80.6 80.6 80.6 

Effective Trailing Edge Sweep 𝑑𝑒𝑔 13.6 13.6 13.6 13.6 13.6 

 

 

Table A-6 GHV family primary mass breakdown, adapted from [147] 
  

Flow-Path Scale (X)  
Mass (Kg) 1 2 3 4 5 

Structure Total Skin 96.3 228.9 405.3 613.7 674.1 

  Flaps 21.5 58.7 110.0 166.1 233.6 

  Tails 7.9 21.4 39.5 59.6 83.4 

  TPS 15.3 40.1 73.4 110.0 153.3 

  Spars and Kneels 7.2 14.1 21.1 27.9 35.0 

  Inlet 12.8 24.7 36.4 48.0 59.6 

  Isolator 17.1 33.6 50.0 66.3 82.6 

  Combustor 42.3 83.6 124.6 165.7 206.6 

  Nozzle 54.2 101.2 156.0 200.4 251.5 

Fluids Usable Fuel 102.9 327.4 624.0 968.2 1425.0 

  Residual Fuel 9.0 28.7 54.7 84.9 125.0 

  Nitrogen 1.9 6.0 11.5 17.9 26.3 

Other Ballast 31.8 79.4 136.1 181.4 226.8 

  GN&C 133.4 133.4 133.4 133.4 133.4 

  Payload 0.0 0.0 0.0 0.0 0.0 

Summary Gross 553.5 1181.0 1976.1 2843.4 3716.3 

  Empty 450.6 853.7 1352.1 1875.2 2291.2 

  Dry 439.6 818.9 1285.9 1772.4 2139.9 

  Structure Mass 

Fraction 

0.496 0.513 0.514 0.513 0.479 

  Fluids Mass Fraction 0.206 0.307 0.349 0.377 0.424 

  Other Mass Fraction 0.298 0.180 0.136 0.111 0.097 
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A.2.3 Notional Mission 

The GHV’s notional mission is illustrated in Figure A-37. The general mission segment 

conditions are given in Table A-7. The vehicle is air-launched, and it is assumed that a rocket 

booster accelerates the vehicle to the engine start condition—between 1500-2500 psf—at which 

point the booster separates. On engine start, the vehicle accelerates from Mach 4 to Mach 6, 

climbing in altitude as it does. At Mach 6, the vehicle levels out and performs a lifting cruise 

segment. Powered cruise occurs at a dynamic pressure between 1000 – 2000 psf. The cruise 

segment is optionally split by a maneuver execution. Maneuver options considered include an 180o 

turn or a 45o-90o-45oswitch back maneuver. In the event that no maneuver is executed, a straight 

fly-out mission is executed. In this mission situation, no maneuvers are performed, only 

acceleration-climb and cruise conditions are considered. After the cruise and optional maneuver, 

the engine shuts off; this ends the powered segments of the mission. After engine shutoff, the 

vehicle descends, during which it is able to perform unpowered tests. The vehicle is not reusable. 

 
Figure A-37 GHV notional mission profile [147] 

 

Table A-7 GHV notional mission conditions, adapted from [147] 
 

Mach Lift/Weight Dynamic Pressure 
 

  psf kPa 

Initiation (booster separation) 4 – 5 1 2500 - 1500 120 - 70 

Acceleration and Climb 4 – 6 >1 2500 - 1500 120 - 70 

Cruise 6 1 2000 - 1000 96 - 48 

Maneuver (#1 or #2) ~6 ~2 2000 - 1000 96 - 48 

Cruise 6 1 2000 - 1000 96 - 48 

Descend (powered) 6 – 4 <1 2000 - 3000 96 - 140 

Descend (unpowered) 4 – 3 <1 2500 - 5000 120 - 240 

Maneuver (unpowered) ~3 >1 5000 240 

A.2.4 Project Builder Selections 

This section documents the Project Builder selections. Depicted are each page’s selections. 

The selection is organized according to the Project Builder’s tabs. The selections shown are for 

the reverse sizing case however, the same general selections were made for the trade study as well. 

The only significant variance being the mission profile and selected method (as laid out in Chapter 

5 Section 5.4) in addition to the trade variable selections. 
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Figure A-38 GHV Analysis page 

 

 
Figure A-39 GHV Integration page, (a) Method Selection 

 
Figure A-40 GHV Integration page, (b) Function Assignment 

 
Figure A-41 GHV Iteration page 

 
Figure A-42 GHV Convergence page 

 
Figure A-43 GHV Screening page 
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A.2.5 Trade Study 

The GHV Blended-Body (BB) concept was used as a baseline concept for a trade study of 

blended-body hypersonic cruiser vehicles. This section presents the trade study’s trade matrix, the 

convergence behavior and results, and a consideration of the results pictorially in context to 

potential carrier vehicles and general solution space behavior.  

A.2.5.1  Trade Matrix 

The blended-body concept evaluation evolved around two concepts—airbreathing and non-

airbreathing. For each concept volume coefficient (𝜏), cruise time (𝑡𝑐𝑟𝑢𝑖𝑠𝑒), and payload weight 

(𝑊𝑝𝑎𝑦) were traded. For the non-airbreathing cases, the fuel type was traded as well. The fuels 

traded were RP-1 and 𝐻2. The trade ranges are shown in Table A-8. 

Table A-8 Blended-body trade matrix 

Vehicle Tag Baseline Vehicle Propulsion System Boost Type Fuel Type Tau Range Payload (N) Cruise Time (s) 

BB3DS GHV 3D Scramjet External Ethylene 0.0657 – 0.0735 0 0 – 750 

BBRKT GHV Liquid Rocket External H2 / RP-1 0.09 - 0.12 0 – 4000  0 – 300 

BBRKT GHV Liquid Rocket Internal H2 / RP-1 0.09 – 0.12 0 – 4000 0 – 300 

A.2.5.2  Trade Convergence Summary: Iteration Errors 

The trades were executed as laid out. For reference, the final convergence error and 

convergence error per independent variable iteration for each trade are presented pictorially below. 

The order presented follows that of the row order in the trade matrix table. As can be seen, the 

convergence for the airbreathing cases occurred much more readily and with less noticeable 

difficulty (as measured by total independent variable iterations to solution convergence). 

Furthermore, the problem solving became exceedingly more laborious as the problem progressed 

through the non-airbreathing cases and specifically the hydrogen-fueled cases, as the vehicle 

increased in size due to mission parameters. Additionally, the solution finding could be 

exceptionally sensitive to slight changes in independent variable value. The numerical solver 

would frequently fall into local valleys of no solution. On repeated evaluation of the same point, 

different solutions would occur as well, highlighting that the solutions are non-unique. Future 

studies should rely on robust global solvers. Lastly, note that not all points converged, that is—for 

the given process—the solutions would not close mathematically.  
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Figure A-44 BB scramjet iteration final convergence 

 

 
Figure A-45 BB scramjet iteration convergence error by step 



Blended Body: Road Runner Generic Hypersonic Vehicle  169 

 

 
Figure A-46 BB boosted rocket (RP1) iteration final convergence 

 

 
Figure A-47 BB boosted rocket (RP1) iteration convergence error by step 
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Figure A-48 BB boosted rocket (𝐻2) iteration final convergence 

 

 
Figure A-49 BB boosted rocket (𝐻2) iteration convergence error by step 
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Figure A-50 BB integrated rocket (RP1) iteration final convergence 

 

 
Figure A-51 BB integrated rocket (RP1) iteration convergence error by step 
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