

Automat ing Aerospace Synthes is

Code Generat ion
A Tool for Generic Vehicle Design and Technology Forecasting

Thomas Peter Dominic McCall

December 2020

This dissertation is submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

to the

Faculty of the Graduate School of

T H E U N I V E R S I T Y O F T E X A S a t A R L I N G T O N

ii

Automating Aerospace Synthesis Code Generation

A Tool for Generic Vehicle Design and Technology Forecasting

Thomas Peter Dominic McCall

The following members of the Committee approve this

doctoral dissertation of Thomas Peter Dominic McCall.

Chair

Bernd Chudoba, PhD

Research Advisor

Department of Mechanical and Aerospace Engineering

University of Texas at Arlington

Dudley Smith, PhD

Department of Mechanical and Aerospace Engineering

University of Texas at Arlington

Robert Taylor, PhD

Department of Mechanical and Aerospace Engineering

University of Texas at Arlington

Donald Wilson, PhD

Department of Mechanical and Aerospace Engineering

University of Texas at Arlington

Paul Componation, PhD

Department of Industrial Engineering

University of Texas at Arlington

iii

Copyright © 2020 Thomas Peter Dominic McCall

ALL RIGHTS RESERVED

iv

ACKNOWLEDGEMENTS

Before we begin, I would like to take a moment to acknowledge and thank those who have

been directly or indirectly influential and assistive in my journey to complete this dissertation. I,

like all, do not walk the path of life alone. Firstly, I would like to acknowledge my supervising

professor, Dr. Bernd Chudoba. Without his assistance and direction, I would not be where I am

today. Secondly, I would like to acknowledge my many fellow researchers at the Aerospace

Vehicle Design Lab. So many of you have been there through it all and in particular I would like

to express my gratitude to Doug Coley, Vincent Ricketts, Loveneesh Rana, Ian Maynard, Harin

Patel, and David Woodward. Additionally, it goes without saying, but thank you to my family and

parents for all your continuous support. Lastly, I would explicitly like to acknowledge and express

my sincere gratitude and appreciation to James Haley and Kiarash Seyed Alavi. These last few

years have been an adventure and I am glad to have been able to stand by your side and have your

company through it all. Through the good, the bad, and the ugly, we walked it together and we

will always have that. To my brothers, I thank you.

Thomas McCall

2020

v

ABSTRACT

The principal development and deliverable of the research presented herein is a generic

synthesis assembling decision support environment called AIDRA-DSS. The purpose of the system

is to develop further expertise and a baseline environment to test complex vehicle automated

synthesis architecture synthetization, which would be easily adaptable into a greater cognitive

system. This tool has been developed as a precursory and developmental task towards an ultimate

objective of an artificial intelligence design and research assistant peer.

The motivation for this research has been to explore the advancement of toolsets for the

decision maker and designer operating at the earliest planning and design phase of an aerospace

vehicle or program. In particular, the driving motivation of this research is a vision of a future

where in the designer is assisted by an artificial intelligence design peer. A vision of the future is

one where an artificial intelligent design peer assists the designer in tedious repetitive tasks, design

automation, knowledge retention, and more. The goal being reduction in tedious tasks such as data

handling, method handling/integration and improvement in time to solution, ease of non-traditional

concept consideration, tool reuse/integration, and improvement in design choice and design

knowledge extraction and continuation. Such an environment would be advantageous as the early

design phase—the conceptual design phase—is ultimately the most significant in determining the

success of a program but yet is the shortest in time and sees the least in allocated labor. However,

as the development of a true artificial design peer is beyond the scope of a single dissertation, it is

identified that a necessary component would include synthesis automation, and hence the principal

deliverable of this research.

To address immediate applicability, the system developed is an engineering environment that

arrives the user at an applicable synthesis solution toolset to solve a given problem through the

provision of standard feedback and decision aiding platforms. That is, it is a framework for

automated composable architecture formation that provides a concept, process and method fidelity

independent toolset for problem solving. It is a framework that allows engineers to analyze or size

any vehicle through a generic synthesis assembly approach. Giving the user the ability to compose

a vehicle from different elements, AIDRA-DSS creates a tailored sizing code based on the user-

designated requirements, removing the tedious task of synthesis architecture assembly from the

requirements of the user. The user only need specify what to analyze and the constructs of how to

accomplish the analysis.

The solution concept is founded on a decomposition-composition approach. It is a code

assembly concept utilizing a warehousing approach. Fundamentally, the user provides a set of

inputs specifying the vehicle to be considered, the process of analysis, the methods to use, and the

output presentation desired. From these instructions, a synthesizer routine gathers the necessary

code elements, both engineering methods and code processing (data handling, method handling,

etc.), and assembles the components into a functional synthesis architecture. The synthesis is

executed as prescribed by the user and the results are processed and returned to the user.

vi

System functionality and applicability were demonstrated through the execution of a

verification case and an exploratory trade study case. The verification case utilized the GHV and

the X-51A. In comparison to known design parameter values, analysis results were resolved to less

than 5% error, with most error being less than 1%. Successful execution demonstrated proper

automated system assembly and method correctness.

The trade study case evaluated air launched airbreathing and non-airbreathing concepts for

consideration as reusable hypersonic vehicle research and development platforms. The GHV and

X-51A, in addition to the FDL-7/Model-176, served as baseline concepts and configurations for

the trade vehicles. In so doing, the blended-body and all-body were represented. Trade variables

include concept, configuration, geometric design parameters, payload, mission scenarios, and fuel

types. Through the range of trade conditions, a solution space for hypersonic test vehicles was

assembled, visualized, and discussed. The concept solutions were considered in light of carrier

vehicle geometric and weight constraints.

vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... IV

ABSTRACT .. V

TABLE OF CONTENTS ... VII

LIST OF FIGURES .. IX

LIST OF TABLES ... XIII

NOMENCLATURE ... XV

CHAPTER 1 INTRODUCTION ... 1

1.1 MOTIVATION .. 1

1.2 DESIGN PROCESS.. 2

1.3 PRODUCT LIFE CYCLE: DESIGN PHASES ... 4

1.4 BACKGROUND AND REFINING RESEARCH SCOPE ... 7

1.5 RESEARCH OUTLOOK AND SCOPE .. 16

1.6 DOCUMENT OUTLINE ... 18

CHAPTER 2 LITERATURE REVIEW ... 19

2.1 DESIGN CLASSES .. 19

2.2 CLASSICAL DESIGN: TEXTS AND PROGRAMS ... 20

2.3 MULTIDISCIPLINARY DESIGN OPTIMIZATION ... 25

2.4 SELECTED DESIGN SYSTEMS .. 32

2.5 SUMMARY AND SPECIFICATIONS FOR FUTURE SYSTEMS .. 39

CHAPTER 3 SOLUTION CONCEPT ... 43

3.1 GENERAL SOLUTION CONCEPT .. 43

3.2 DECOMPOSITION CONCEPT .. 44

3.3 MAPPING AND SYNTHESIS GENERATION .. 52

3.4 SYSTEM RESULTS ... 54

3.5 CHAPTER SUMMARY .. 55

viii

CHAPTER 4 CONCEPT IMPLEMENTATION .. 57

4.1 DESCRIPTION, STRUCTURE, AND CORE COMPONENTS .. 57

4.2 PROCESS TO PROBLEM SOLVING .. 62

4.3 FRONT-END: CORE COMPONENTS DESCRIPTION .. 64

4.4 BACK-END: SYNTHESIS ASSEMBLER AND ARCHITECTURE .. 88

4.5 CHAPTER SUMMARY .. 97

CHAPTER 5 VERIFICATION AND APPLICATION .. 99

5.1 PROBLEM STATEMENT ... 100

5.2 VEHICLE SELECTION .. 102

5.3 PROCESSES DEFINITION.. 104

5.4 MISSIONS DEFINITION .. 109

5.5 METHODS SELECTION .. 111

5.6 TRADE MATRIX .. 113

5.7 RESULTS: SINGLE POINT VERIFICATION CASE ... 114

5.8 RESULTS: TRADE STUDY CASE .. 115

5.9 CONCLUSION .. 122

CHAPTER 6 CONCLUSION .. 125

6.1 RESEARCH SUMMARY .. 125

6.2 RESEARCH CONTRIBUTION SUMMARY ... 126

6.3 RESEARCH AND DEVELOPMENT FOR FUTURE ENHANCEMENT ... 128

CHAPTER 7 BIBLIOGRAPHY ... 131

CASE STUDIES EXPANDED ... 145

A.1 ALL BODY: X-51A .. 145

A.2 BLENDED BODY: ROAD RUNNER GENERIC HYPERSONIC VEHICLE 163

ix

LIST OF FIGURES

FIGURE 1-1 SYSTEM ENGINEERING PROCESS ... 2

FIGURE 1-2 DESIGN PHASES AND PRODUCT REFINEMENT ... 4

FIGURE 1-3 DESIGN CYCLE DESIGN KNOWLEDGE, DESIGN FREEDOM, AND DISCIPLINE

 INTEGRATION .. 5

FIGURE 1-4 DESIGN PHASES AND PRODUCT REFINEMENT IN RELATION TO COST 6

FIGURE 1-5 CATEGORIES OF INTELLIGENT SYSTEMS AND TOOLS OF AI .. 10

FIGURE 1-6 TYPICAL COMPONENTS OF A KNOWLEDGE-BASED SYSTEM .. 11

FIGURE 1-7 NASA’S DATA ANALYTICS AND MACHINE INTELLIGENCE CAPABILITY VISION............ 14

FIGURE 2-1 SYNTHESIS SYSTEMS REVIEW SUMMARY ... 23

FIGURE 2-2 GENERIC MDO BASED DESIGN SPACE EXPLORATION PROCESS 26

FIGURE 2-3 ILLUSTRATION OF SYSTEM’S 𝑁2 ORGANIZATION DIAGRAM BEFORE AND AFTER

 DECOMPOSITION AND REASSEMBLY .. 27

FIGURE 2-4 EXAMPLE OPTIMIZATION PROCEDURE FOR A NON-HIERARCHICAL SYSTEM 28

FIGURE 2-5 PRINCIPLE COMPONENTS OF MDO .. 28

FIGURE 2-6 DUAL-FIDELITY OPTIMIZATION PROCESS ... 34

FIGURE 2-7 DAPHNE ARCHITECTURE ... 36

FIGURE 2-8 GENUS GRAPHICAL INTERFACE ... 38

FIGURE 3-1 GENERAL SOLUTION CONCEPT .. 44

FIGURE 3-2 THREE ELEMENTS OF A COMPLEX SYSTEM ... 45

FIGURE 3-3 PRODUCT DECOMPOSITION .. 45

FIGURE 3-4 SYSTEM-OF-SYSTEMS STRUCTURAL TREE DECOMPOSITION ... 46

FIGURE 3-5 ILLUSTRATIVE EXAMPLE HIERARCHICAL STRUCTURAL DECOMPOSITION 46

FIGURE 3-6 FUNCTIONAL SUBSYSTEM DECOMPOSITION CATEGORIES .. 47

FIGURE 3-7 PROCESS DECOMPOSITION CATEGORIES .. 50

FIGURE 3-8 METHOD DECOMPOSITION CATEGORIES .. 51

FIGURE 3-9 NOTIONAL MAPPING OF DECOMPOSED ELEMENTS ... 53

FIGURE 3-10 NOTIONAL SYNTHESIS GENERATION .. 54

FIGURE 3-11 FIGURE GENERATION CONSTRUCT ... 55

FIGURE 4-1 SYSTEM ARCHITECTURE SUMMARY ... 58

FIGURE 4-2 SYSTEM FRONT-END SUMMARY ... 59

x

FIGURE 4-3 SYSTEM BACK-END OVERVIEW .. 59

FIGURE 4-4 PROJECT FOLDER-FILE STRUCTURE ... 61

FIGURE 4-5 RESULTS FOLDER-FILE STRUCTURE ON PROJECT BUILD ... 61

FIGURE 4-6 GENERAL EXECUTION PROCESS TO AIDRA-DSS .. 62

FIGURE 4-7 REFERENCE LIBRARY LISTING AND START PAGE ... 65

FIGURE 4-8 REFERENCE INPUT AND DOCUMENTATION FORM ... 65

FIGURE 4-9 METHODS LIBRARY BROWSER .. 65

FIGURE 4-10 NEW METHOD FORM ... 65

FIGURE 4-11 METHOD BUILDER—LOGIC DEFINITION TAB .. 66

FIGURE 4-12 METHOD BUILDER–INPUT AND OUTPUTS (I/O) TAB .. 67

FIGURE 4-13 METHOD BUILDER—APPLICATION TAB .. 68

FIGURE 4-14 VEHICLE LIBRARY—VEHICLE BROWSER .. 69

FIGURE 4-15 VEHICLE LIBRARY—VEHICLE BUILDER ... 69

FIGURE 4-16 VEHICLE LIBRARY—NEW VEHICLE .. 69

FIGURE 4-17 PROCESS LIBRARY—PROCESS BROWSER ... 70

FIGURE 4-18 PROCESS LIBRARY—NEW PROCESS FORM .. 70

FIGURE 4-19 PROCESS LIBRARY—PROCESS BUILDER ... 71

FIGURE 4-20 PROCESS BUILDER—OBJECTIVE FUNCTION VARIABLE SELECTION FORM 71

FIGURE 4-21 PROCESS BUILDER—PROCESS DISCIPLINE SELECTION FORM 72

FIGURE 4-22 AIDRA-DSS PROJECT BUILDER TAB SET ... 73

FIGURE 4-23 PROJECT BUILDER—BROWSER ... 74

FIGURE 4-24 PROJECT BUILDER—NEW PROJECT .. 74

FIGURE 4-25 PROJECT BUILDER—ANALYSIS... 74

FIGURE 4-26 ANALYSIS—MISSION SELECTION WINDOW .. 75

FIGURE 4-27 ANALYSIS—VEHICLE SELECTION WINDOW .. 75

FIGURE 4-28 PROJECT BUILDER—INTEGRATION ... 76

FIGURE 4-29 INTEGRATION—PROCESS SELECTION AND ASSIGNMENT WINDOW 77

FIGURE 4-30 INTEGRATION—METHOD SELECTION WINDOW .. 78

FIGURE 4-31 INTEGRATION—FUNCTION ASSIGNMENT TAB... 78

FIGURE 4-32 PROJECT BUILDER—ITERATION PAGE .. 79

FIGURE 4-33 ITERATION—METHOD EXPANSION SECTION ... 80

FIGURE 4-34 ITERATION PAGE—FUNCTION MISSION BUILDER SECTION 80

FIGURE 4-35 PROJECT BUILDER—CONVERGENCE PAGE ... 82

FIGURE 4-36 PROJECT BUILDER—SCREENING TAB’S PAGE ... 83

FIGURE 4-37 SCREENING PAGE—TRADE VARIABLE SELECTION WINDOW 84

FIGURE 4-38 PROJECT BUILDER—VISUALIZATION PAGE .. 85

FIGURE 4-39 VISUALIZATION—FIGURE VARIABLE SELECTION WINDOW 86

FIGURE 4-40 ASSESSMENT PAGE—DATA SUMMARY TAB .. 86

FIGURE 4-41 ASSESSMENT PAGE—VISUALIZATION TAB .. 87

FIGURE 4-42 ASSESSMENT PAGE—RECOMMENDATION TAB .. 87

FIGURE 4-43 CODE ASSEMBLY PROCESS .. 89

FIGURE 4-44 METHOD FILE PROCESSING FUNCTION PROCESS AND LAYOUT 91

FIGURE 4-45 EXAMPLE TRIGGER EVENT CALL AND LOCAL INSERTED CODE 92

xi

FIGURE 4-46 EXAMPLE TRIGGER EVENT INSERTED FUNCTION .. 92

FIGURE 4-47 SOLVER FUNCTION PROCESS AND LAYOUT .. 92

FIGURE 4-48 SYNTHESIS SOLVER ITERATION PROCESS ... 93

FIGURE 4-49 MAIN ANALYSIS FUNCTION PROCESS AND LAYOUT ... 94

FIGURE 4-50 METHOD RESOLVE FUNCTION PROCESS AND LAYOUT ... 95

FIGURE 4-51 SPECIAL CALL DATA RETURN FUNCTION PROCESS ... 96

FIGURE 4-52 PROCESS SPECIAL DATA FUNCTION PROCESS AND LAYOUT 96

FIGURE 5-1 ILLUSTRATION OF X-24C TEST VEHICLE AND B-52 CARRIER VEHICLE

 CONSTRAINTS CONSIDERATIONS .. 101

FIGURE 5-2 EXAMPLE OF THE CLASSICAL PERFORMANCE MATCHING DIAGRAM DESIGN POINT 101

FIGURE 5-3 TRADE STUDY ILLUSTRATION VISUALIZED BY A SET OF PERFORMANCE

 MATCHING DIAGRAM ... 101

FIGURE 5-4 GHV ... 103

FIGURE 5-5 X-51. .. 103

FIGURE 5-6 MULTI-POINT TRADE STUDY BASELINE VEHICLES. .. 104

FIGURE 5-7 SIZING PROCESS, BOTH SINGLE-POINT AND MULTI-POINT SEQUENCE 106

FIGURE 5-8 VISUALIZATION OF THE STEPS TO A SOLUTION SPACE .. 108

FIGURE 5-9 MISSION PROFILE: EXTERNAL EXPENDABLE BOOSTER .. 109

FIGURE 5-10 MISSION PROFILE: INTEGRATED BOOSTER ... 110

FIGURE 5-11 BOOSTED AIRBREATHING HYPERSONIC VEHICLE SOLUTION SPACE:

TOGM VS. 𝑆𝑝𝑙𝑛 ... 116

FIGURE 5-12 BOOSTED NON-AIRBREATHING HYPERSONIC VEHICLE SOLUTION SPACE RP-1:

 TOGM VS. 𝑆𝑝𝑙𝑛 ... 117

FIGURE 5-13 BOOSTED NON-AIRBREATHING HYPERSONIC VEHICLE SOLUTION SPACE 𝐻2:

 TOGM VS. 𝑆𝑝𝑙𝑛 ... 118

FIGURE 5-14 INTEGRATED NON-AIRBREATHING HYPERSONIC VEHICLE SOLUTION SPACE:

TOGM VS. 𝑆𝑝𝑙𝑛 ... 119

FIGURE 5-15 AB FULL STACK PAYLOAD CONSTRAINED SOLUTION SPACE: TOGM VS. 𝑆𝑝𝑙𝑛 120

FIGURE 5-16 BB FULL STACK PAYLOAD CONSTRAINED SOLUTION SPACE: TOGM VS. 𝑆𝑝𝑙𝑛 120

FIGURE 5-17 BB VEHICLE GEOMETRIC CONSTRAINED SOLUTION SPACE: 𝑙 VS. 𝑏 121

FIGURE 5-18 AB VEHICLE GEOMETRIC CONSTRAINED SOLUTION SPACE: 𝑙 VS. 𝑏 122

FIGURE A-1 X-51 CONFIGURATION AND FULL STACK .. 145

FIGURE A-2 X-51 NOTIONAL MISSION .. 146

FIGURE A-3 X-51A ANALYSIS PAGE .. 147

FIGURE A-4 X-51A INTEGRATION PAGE, (A) METHOD SELECTION .. 147

FIGURE A-5 X-51A INTEGRATION PAGE, (B) FUNCTION ASSIGNMENT .. 147

FIGURE A-6 X-51A ITERATION PAGE ... 147

FIGURE A-7 X-51A CONVERGENCE PAGE .. 148

FIGURE A-8 X-51A SCREENING PAGE .. 148

FIGURE A-9 AB SCRAMJET ITERATION FINAL CONVERGENCE .. 149

FIGURE A-10 AB SCRAMJET ITERATION CONVERGENCE ERROR BY STEP...................................... 149

FIGURE A-11 AB BOOSTED ROCKET (RP1) ITERATION FINAL CONVERGENCE 150

FIGURE A-12 AB BOOSTED ROCKET (RP1) ITERATION CONVERGENCE ERROR BY STEP 150

xii

FIGURE A-13 AB BOOSTED ROCKET (𝐻2) ITERATION FINAL CONVERGENCE 151

FIGURE A-14 AB BOOSTED ROCKET (𝐻2) ITERATION CONVERGENCE ERROR BY STEP 151

FIGURE A-15 AB INTEGRATED ROCKET (RP1) ITERATION FINAL CONVERGENCE 152

FIGURE A-16 AB INTEGRATED ROCKET (RP1) ITERATION CONVERGENCE ERROR BY STEP 152

FIGURE A-17 AB INTEGRATED ROCKET (𝐻2) ITERATION FINAL CONVERGENCE 153

FIGURE A-18 AB INTEGRATED ROCKET (𝐻2) ITERATION CONVERGENCE ERROR BY STEP 153

FIGURE A-19 SELECTED ALL-BODY SOLUTIONS ILLUSTRATING 𝐻2 SOLUTION DOMINANCE:

 𝑆𝑝𝑙𝑛 VS 𝑇𝑂𝐺𝑊 .. 155

FIGURE A-20 ALL-BODY CRUISER VEHICLE SOLUTIONS: 𝑆𝑝𝑙𝑛 VS 𝑇𝑂𝐺𝑊 155

FIGURE A-21 BOOSTED ALL-BODY AIRBREATHING CRUISER SOLUTIONS: 𝑆𝑝𝑙𝑛 VS 𝑇𝑂𝐺𝑊 156

FIGURE A-22 BOOSTED ALL-BODY 𝐻2 ROCKET CRUISER SOLUTIONS: 𝑆𝑝𝑙𝑛 VS 𝑇𝑂𝐺𝑊 156

FIGURE A-23 BOOSTED ALL-BODY RP-1 ROCKET CRUISER VEHICLE SOLUTIONS:

 𝑆𝑝𝑙𝑛 VS 𝑇𝑂𝐺𝑊 .. 157

FIGURE A-24 INTEGRATED ALL-BODY 𝐻2 ROCKET CRUISER VEHICLE SOLUTIONS:

 𝑆𝑝𝑙𝑛 VS 𝑇𝑂𝐺𝑊 .. 157

FIGURE A-25 INTEGRATED ALL-BODY RP-1 ROCKET CRUISER VEHICLE SOLUTIONS:

 𝑆𝑝𝑙𝑛 VS 𝑇𝑂𝐺𝑊 .. 158

FIGURE A-26 ALL-BODY FULL STACK SOLUTIONS: 𝑆𝑝𝑙𝑛 VS 𝑇𝑂𝐺𝑊 .. 158

FIGURE A-27 BOOSTED ALL-BODY AIRBREATHING FULL STACK SOLUTIONS: 𝑆𝑝𝑙𝑛 VS 𝑇𝑂𝐺𝑊 ... 159

FIGURE A-28 BOOSTED ALL-BODY 𝐻2 ROCKET FULL STACK SOLUTIONS: 𝑆𝑝𝑙𝑛 VS 𝑇𝑂𝐺𝑊......... 159

FIGURE A-29 BOOSTED ALL-BODY RP-1 ROCKET FULL STACK SOLUTIONS: 𝑆𝑝𝑙𝑛 VS 𝑇𝑂𝐺𝑊 160

FIGURE A-30 INTEGRATED ALL-BODY 𝐻2 ROCKET FULL STACK SOLUTIONS: 𝑆𝑝𝑙𝑛 VS 𝑇𝑂𝐺𝑊 ... 160

FIGURE A-31 INTEGRATED ALL-BODY RP-1 ROCKET FULL STACK SOLUTIONS: 𝑆𝑝𝑙𝑛 VS 𝑇𝑂𝐺𝑊 161

FIGURE A-32 ALL-BODY FULL STACK SOLUTIONS: 𝑆𝑝𝑙𝑛 VS 𝑙 .. 161

FIGURE A-33 ALL-BODY FULL STACK SOLUTIONS: 𝑆𝑝𝑙𝑛 VS B ... 162

FIGURE A-34 GHV TOP VIEW WITH FEATURES INDICATED .. 163

FIGURE A-35 GHV BOTTOM VIEW WITH FEATURES INDICATED ... 163

FIGURE A-36 PROPULSIVE SYSTEM INTERNAL LAYOUT ... 163

FIGURE A-37 GHV NOTIONAL MISSION PROFILE .. 165

FIGURE A-38 GHV ANALYSIS PAGE .. 166

FIGURE A-39 GHV INTEGRATION PAGE, (A) METHOD SELECTION .. 166

FIGURE A-40 GHV INTEGRATION PAGE, (B) FUNCTION ASSIGNMENT ... 166

FIGURE A-41 GHV ITERATION PAGE ... 166

FIGURE A-42 GHV CONVERGENCE PAGE .. 166

FIGURE A-43 GHV SCREENING PAGE .. 166

FIGURE A-44 BB SCRAMJET ITERATION FINAL CONVERGENCE .. 168

FIGURE A-45 BB SCRAMJET ITERATION CONVERGENCE ERROR BY STEP 168

FIGURE A-46 BB BOOSTED ROCKET (RP1) ITERATION FINAL CONVERGENCE 169

FIGURE A-47 BB BOOSTED ROCKET (RP1) ITERATION CONVERGENCE ERROR BY STEP................ 169

FIGURE A-48 BB BOOSTED ROCKET (𝐻2) ITERATION FINAL CONVERGENCE 170

FIGURE A-49 BB BOOSTED ROCKET (𝐻2) ITERATION CONVERGENCE ERROR BY STEP 170

FIGURE A-50 BB INTEGRATED ROCKET (RP1) ITERATION FINAL CONVERGENCE 171

FIGURE A-51 BB INTEGRATED ROCKET (RP1) ITERATION CONVERGENCE ERROR BY STEP 171

xiii

LIST OF TABLES

TABLE 1-1 SUMMARY OF AI FIELDS ... 9

TABLE 2-1 SELECTED AIRCRAFT VEHICLE DESIGN TEXTS ... 20

TABLE 2-2 SELECTED SPACE ACCESS VEHICLE DESIGN TEXTS .. 21

TABLE 2-3 SELECTED AIRCRAFT VEHICLE DESIGN SOFTWARE TOOLS ... 22

TABLE 2-4 SYNTHESIS SYSTEM EVALUATION CRITERIA ... 24

TABLE 2-5 DATA MANAGEMENT SYSTEM EVALUATION CRITERIA .. 24

TABLE 2-6 COMPOSABLE SYSTEM SOFTWARE TOOLS ... 29

TABLE 3-1 MISSION TYPES ... 48

TABLE 3-2 SPEED RANGE CATEGORIES... 49

TABLE 3-3 OPERATIONAL ALTITUDE ZONES ... 49

TABLE 4-1 AIDRA-DSS'S FRONT-END SYSTEMS ... 59

TABLE 4-2 AIDRA'S PRIMARY BACK-END FILES .. 60

TABLE 4-3 VISUALIZATION STANDARD PACKAGE FIGURE SET .. 85

TABLE 4-4 PRINCIPAL FUNCTION CATEGORIES OF THE BACK-END’S SYNTHESIS ASSEMBLER 90

TABLE 5-1 VERIFICATION STUDY VEHICLES ... 102

TABLE 5-2 VEHICLE SIZING AND GENERAL PARAMETER VALUES ... 102

TABLE 5-3 VEHICLE MISSION SEGMENTS TOWARD TOTAL MISSION PROFILE 111

TABLE 5-4 VERIFICATION VEHICLES’ MISSION SEGMENT FLIGHT CONDITIONS 111

TABLE 5-5 TRADE STUDY VEHICLES’ MISSION SEGMENT FLIGHT CONDITIONS 111

TABLE 5-6 SUMMARY OF METHODS APPLIED ... 112

TABLE 5-7 METHODS PER VEHICLE APPLICATION SUMMARY ... 113

TABLE 5-8 TRADE STUDY TRADE MATRIX .. 114

TABLE 5-9 VERIFICATION CASE’S SIZING VARIABLES’ VALUE AND PERCENT ERROR 114

TABLE A-1 X-51A PRIMARY DIMENSIONS ... 146

TABLE A-2 X-51A PRIMARY MASS PROPERTIES ... 146

TABLE A-3 SUMMARY OF X-51A NOTIONAL MISSION PROFILE .. 147

TABLE A-4 ALL-BODY TRADE MATRIX .. 148

TABLE A-5 GHV FAMILY PRIMARY DIMENSIONS ... 164

TABLE A-6 GHV FAMILY PRIMARY MASS BREAKDOWN .. 164

TABLE A-7 GHV NOTIONAL MISSION CONDITIONS .. 165

xiv

TABLE A-8 BLENDED-BODY TRADE MATRIX .. 167

xv

NOMENCLATURE

Abbreviations

AB All Body

AB2DS All-Body 2D Scramjet

ABRCKT All-Body Rocket

AFRL Air Force Research Laboratory

AI Artificial Intelligence

ARRMD Affordable Rapid Response Missile Demonstrator

BB Blended Body

BB3DS Blended-Body 3D Scramjet

BBRCKT Blended-Body Rocket

CAE Computer Aided Engineering

CD Conceptual Design

CI Computational Intelligence

DACE Design and Analysis of Computer Experiments

DARPA Defense Advanced Research Projects Agency

DBS Databased Systems

DD Detailed Design

DSM Distributed Satellite Missions

ESA European Space Agency

GHV Generic Hypersonic Vehicle

IS Intelligent Systems

KB Knowledge Base

KBE Knowledge Based Engineering

KBS Knowledge-Based Systems

KE Knowledge Engineering

LB Lifting Body

MDA Multidisciplinary Design Analysis

MDAO Multidisciplinary Design Analysis and Optimization

MDO Multidisciplinary Design Optimization

NASA National Aeronautics and Space Administration

PD Preliminary Design

PIDO Process Integration and Design Optimization

xvi

PLC Product Life Cycle

TSTO Two-Stage-To-Orbit

UAS Unmanned Aerial System

USAF United States Air Force

VA Virtual Assistant

WB Wing Body

Greek Letters

𝜇𝑎 OEW Margin

𝜌𝑝𝑝𝑙 Propellant Density

𝜌𝑝𝑎𝑦 Payload Density

Variables

𝐸𝑇𝑊 Engine Thrust to Weight Ratio

𝑓𝑠𝑦𝑠 System Weight to OEW

𝐼𝑠𝑡𝑟 Structural Index

𝐶𝑠𝑦𝑠 Fixed Systems Weight

𝑘𝑐𝑟𝑤 Crew Volume Coefficient

𝑘𝑣𝑒 Engine Volume Coefficient

𝑘𝑣𝑠 System Volume Coefficient

𝑘𝑣𝑣 Void Volume Coefficient

𝐾𝑤 Wetted Area vs Planform Area

𝑁𝑐𝑟𝑤 Number of Crew

OEW Operating Empty Weight

OWE Operating Weight Empty

𝑆𝑝𝑙𝑛 Planform Area

TOGW Takeoff Gross Weight

𝑇/𝑊 Thrust To Weight Ratio

𝑉𝑝𝑐𝑟𝑤 Crew Provision Volume

𝑊𝑐𝑝𝑟𝑣 Crew Provisions Weight

𝑊𝑅 Weight Ratio

W/S Wing Loading

𝑊𝑐𝑟𝑤 Crew Weight

𝑊𝑠𝑡𝑟 Structural Weight

𝑊𝑠𝑦𝑠 Systems Weight

𝑊𝑝𝑎𝑦 Payload Weight

Chapter 1 INTRODUCTION

HE development and demonstration of a generic synthesis environment for improved

decision-making and automated synthesis creation is the principal topic and deliverable of

this research. This topic is arrived at and exists within a greater scope—artificial intelligence (AI).

This greater scope is the driving motivation for conducting the research presented. As such, this

chapter documents the principal motivation, the general background on the subject, and topic

refinement towards an original research topic (generic synthesis tool), and finalizes with the

specifications of the research objective, deliverables, scope, and document layout.

1.1 Motivation

Fundamentally, the motivation for this research is to explore the advancement of toolsets for

the decision maker and designer operating at the earliest planning and design phase of an aerospace

vehicle or program. From the early aerospace vehicle product gestation phase onwards, the future

projects engineer is challenged to develop a level of assurance when committing resources towards

a product aimed at achieving an envisioned impact on the future market years after conception.

The success of a product is dependent on the quality of the underlying early forecasts, requirement

definitions, technology selections, and initial concept and configuration selections. Consequently,

the forecasting team and future projects environment is responsible to identify the available

product solution space and risk topographies, resulting in the correct choice of the facilitating

technologies, baseline concept, and architecture.

It is well known that the designer is supplemented by his tools available. These include

software, experience, and knowledge. All are tools of the designer. However, software can be

expensive and cumbersome with inherent limitations and problem focus resulting in rigidity and

lack of flexibility in addressing non-standard designs. Knowledge and experience require time and

dedication. Furthermore, knowledge and experience can be lost. Education is a fundamental

approach to knowledge transfer but is frequently relegated to standardized fundamental knowledge

and not the particulars an individual acquires through a lifetime of experiences. So how could the

designer be better supplemented? How can knowledge be capture and reused? What are ways to

improve the decision maker and designer’s situation? Blair, in Launch Vehicle Design Process:

T

2 Introduction

Characterization, Technical Integration, and Lessons Learned [1], reflects on the situation

addressing areas of improvement:

“ … Currently, any design synthesis or design update depends on the designer's ideas and

experience base on an ad hoc basis. Possible approaches to technology leaps in this area

include idea stimulus approaches; use of artificial intelligence and knowledge-based

systems to convert designer's judgments and rules of thumb into algorithms; techniques for

visualization of the design space; multidisciplinary optimization; and automated synthesis

or inverse engineering.”

Similar sentiments have been communicated by an AIAA technical committee in 1991, as stated

in AIAA Technical Committee on Multidisciplinary Design Optimization (MDO) White Paper on

Current State of the Art [2]:

“ … Multidisciplinary design optimization of aerospace vehicles cannot take place without

substantial contributions from supporting disciplines. The identified supporting disciplines

and methodologies are the Human Interface Aspects of Design, Intelligent and Knowledge-

based Systems, Computing Aspects of Design and Information Integration and

Management.”

These statements simply reflect the fundamental motivation of this research. To originally

contribute to supporting the decision maker and designer in the development of the aerospace

vehicle at the earliest of the design phase via the development of next generation design tools.

More specifically, it is envisioned that the aerospace designer and decision maker be augmented

by an artificial intelligent (AI) design and research assistant. The original creation of such a system

is the motivation of this research.

1.2 Design Process

1.2.1 Design

Engineering design, as stated by Calkins,

“… may be thought of as the arrangement of

elements that make up a machine or other

man-made system…” such that “… an

environment is created in which elemental

interactions produce a desired result.” [4]

More specifically, aerospace vehicle design

is the “… application of the fundamentals of

aerodynamics, structures, power plant,

stability and control, based upon certain

degree of judgement and experience of the

individual designer.” [5] The application of

Figure 1-1 System Engineering Process [3]

Design Process 3

this knowledge leads to the determination of the design variables that define the vehicle. Calkins

[4] further identifies two key elements to the design process, they are synthesis and analysis. These

are fundamental components to a design process. They are also a part of the systems engineering

processes as defined by Military Standard 499B, which outlines a general problem solving process.

[6] In this approach, there are two analysis categories: requirement and function. However, for the

discussion here in, it is limited to the simpler construct of analysis in general with the

understanding that analysis can be applied to the arena of requirements, function, performance, or

any other. For further details on the systems engineering process see refs: [3, 7].

1.2.2 Synthesis

The key element of any aerospace vehicle design methodology is the concept of synthesis. It

is the processes to develop concepts and designs where the product (concept/design) is an assembly

comprised of core base components; it is a creative activity or phase.[3, 4] It “… involves the

generation of one or more design solutions consistent with the requirements defined during

formulation of the design problem and any additional requirements identified during synthesis.”[8]

The output of synthesis is a product, a physical architecture.[3] The final product is a solution that

has been verified, through analysis, to meet the requirements and performance required. The

process, however, can be very time intensive and is “… one of the important areas to be considered

from the standpoint of automation.”[8]

1.2.3 Analysis

At its core, analysis is the examination of some element. It does not infer or necessitate

evaluation. As Calkins defines it, analysis is “… an examination of a complex system, its elements,

and their interactions.”[4] With the inclusion of evaluation, analysis is the examination of system

or element in relation to some given requirement. As such, analysis is “… any procedure that

ascertains whether a given design will meet certain specified objectives.”[9] Within the design

process, analysis is a core component of evaluating and verifying that the product of synthesis

satisfies the necessary function, performance, and requirements identified and set forth during the

design process. The result of analysis is a design update to meet better the function and

requirements defined or the verification that the product satisfies the requirements and objectives

as laid out.

Analysis includes the classical components of education and is most recognizable by the

general community. Different category sets include the classical disciplines: aerodynamics,

structural mechanics, propulsion, trajectory, etc. Classical analysis tools fall into the categories of

analytical, empirical, and numerical. Commonplace analysis tools/approaches, for example, would

include tools such as FEM or CFD.

4 Introduction

1.3 Product Life Cycle: Design Phases

An aerospace vehicle is a product of a

specific sequence of development, testing,

and operation. This sequence of product

development and operation is referred to as

the product life cycle (PLC). Adapted from

Roskam [11], the product (vehicle) life cycle

can be divided into four phases: (1) research

and development, (2) manufacturing and

acquisition, (3) operation and support, and

(4) disposal. The research and development

phase itself comprises of the classical design

phases. There are three. They are conceptual

design (CD), preliminary design (PD), and

detailed design (DD). The design phases

classically occur sequentially.1 Each phase

represents a set of different inputs, tasks, and

outputs—completion of which occurs with

different toolsets and toolset fidelity. The

sequence of events occurring through the CD to DD phases refines the design options into a final

design product. This filtration and design convergence is conceptually illustrated in Figure 1-2.

» Conceptual Design (CD): This design phase involves the tasks of identifying and evaluating

sets of plausible concepts2 and configurations3 to satisfy the requirements given and

determined during analysis. Outcomes are the identification of a baseline solution concept with

principal shape, size, and layout. Lower fidelity toolsets, select small teams, and relatively

short turn around characterize this phase.

» Preliminary Design (PD): Refinement of the design arrived at during the CD phase. Minor

modifications to the external design are conducted, as necessary. A larger labor force is

introduced along with increased fidelity tools, optimization, and wind tunnel testing.

» Detailed Design (DD): The decision to manufacture has been made. This phase deals with the

generation of detailed part schematics, fabrication, and overall design finalization for

1 The design cycle generally is considered to execute sequentially and before manufacturing. However, concurrent

engineering, which combines/interlays some phases to reduce time and ideally cost, is also popular and has gained

traction. Generally, the merged phases are DD and testing/manufacturing though testing and manufacturing can be

brought into the earlier phases as well.
2 A concept is a “… product or system vision, idea, notion or mental image which maps form to function...” [12]
3 Configuration refers to “… the general layout, the external shape, dimensions and other relevant characteristics” of

the vehicle.[13]

Figure 1-2 Design phases and product refinement, modified from

[10]

What airframe and

systems

configuration

meets the mission

requirements best?

How must the chosen

configuration be

improved and refined

to better meet the

mission?

Finalize performance

component design and

begin prototyping for

flight testing

Synthesis

What scale of vehicle and

technology is required for

the given mission?

Baseline / Feasibility

Design

Conceptual

Design

Synthesis

Preliminary

Design

Based on W. Heinze

Synthesis

Detail

Design

Product Life Cycle: Design Phases 5

manufacturing of the vehicle. The configuration has been frozen; major design modifications

are minimized. This phase has the largest work force and usually the most time allocated.

1.3.1 Product Life Cycle Knowledge versus Design Freedom

The nature of design freedom and cost characterize the design phases. Knowledge and design

freedom during the PLC phases are variable. Design knowledge and design freedom are inversely

related. As depicted in Figure 1-3, the knowledge available is minimal initially during the

conceptual design phase and increases through the PLC phases. The design freedom is exactly the

opposite. The maximum design freedom available coincides with the point of minimum

knowledge, decreasing rapidly. As such the designer has abundant freedom to consider and

evaluate a plethora of design options and combinations, provided times and tools allow. However,

generally, neither do, or in the event one does the other does not. Frequently, design exploration

is so time costly that the time constraints do not permit it and the advantage of design freedom is

significantly reduced or lost. An objective within the community is to attempt to shift the curve

imbalance, to bring more design knowledge earlier into the design cycle and extend the design

freedom further into the design cycle.[2]

1.3.2 Discipline Integration

Classically the discipline integration across the PLC has also been imbalanced.[2] This is

reflected in the Figure 1-3. Classically, certain disciplines have taken precedence during each

design phase. Notably stability and control are one of the last to be addressed; aerodynamics and

performance are usually favored to the degree that many early designs are driven for maximum

performance at the detriment of operational cost and manufacturing. The lack of ability to account

for manufacturability, sustainment, and cost earlier in the design process (CD phase) has been an

identified issue and is an area for correcting.

Figure 1-3 Design cycle design knowledge, design freedom, and discipline integration. Adapted from [2]

Conceptual Preliminary Detailed100% 100% 100%

Knowledge about design

Design freedom

Goal

Goal

Cost

Supportability

Manufacturing

Controls

Structures

Propulsion

Aerodynamics

Current Goal

Time into design process

100%

6 Introduction

1.3.3 Cost

The cost for significant design changes increases with PLC phase. Nicolai [14] states, “… the

cost of making a design change is small during conceptual design but is extremely large during

detail design.” This nature is reflected in Figure 1-4. In order to minimize potential cost, it is

imperative that the correct design be selected early during the design process, which principally

occurs during the CD phase. Approximately 80% of the total configuration is determined during

the CD phase.[15-17] These design decisions can account for 70% of the cumulative system cost

while only having incurred 1% of the total cost. Small teams, rapid turnaround, and short time

allocation characterize the CD phase. The result is that for a highly cost determinant event,

comparatively, the cost invested is minimal.

Figure 1-4 Design phases and product refinement in relation to cost. Recreated from [2]

1.3.4 Significance of the Conceptual Design Phase

The CD phase is the phase in which the general design is selected. As Nicolai states, “ … [t]he

fundamental objective of this conceptual design phase is to satisfy the designer and decision maker

that the selected concept is worthy of preliminary design continuation.”[14] Similarly, Torenbeek

reflects that “ … [t]he object of this conceptual design phase is to investigate the viability of the

project and to obtain a first impression of its most important characteristics.”[13] The CD phase

analysis results in the determination of the primary vehicle concept, configuration, and key design

parameters.[18] By the end of the CD phase, approximately 80% of the vehicle configuration is

established. As noted previously, approximately 70% of the program cost is established by the

decisions made. Given that the actions of the CD phase are so impactful to the total design and the

overall cost, the CD phase is critical to a successful program.

(Ballistic Missile System)

Cumulative

Percent LCC

Concept Advanced Full Scale Production Operation

and SupportDevelopment Development Development

100

75

50

25

70%

85%
95%

1% 7%

18%

50%

Time

Incurred Cost

Determined Cost

Background and Refining Research Scope 7

1.3.5 Program Exposure and Knowledge

The CD phase requires ideation and therefore creativity and experience. However, a very

interesting trend has developed; the project exposure an engineer experiences is decreasing

significantly. Half a century ago, an engineer could expect to work on a dozen or more projects.

Today, they may be lucky to see the completion of more than one.[19] The result of this

phenomenon is the reduction in design experience, knowledge, and exposure. All of which are

invaluable to a designer. This illustrates a situation necessitating a system of standardized

knowledge retention, transfer, and expression.

1.3.6 Lessons Learned

Due to the increased design freedom, low cost of significant design change, and ability to

impact the final product cost, performance, and therefore success, this leads to the conclusion that

the CD phase is the most significant and impactful place for the overall product definition and

eventual success. Therefore, this research is directly targeted at supporting the aerospace

community at this early design phase. The conceptual design phase is characterized by time

constraints and low manpower but simultaneously establishes directly or indirectly the probability

of success and cost of the program through functional solution identification. This necessitates that

the decision maker and designer be best armed during this phase.

1.4 Background and Refining Research Scope

In this chapter section, the research scope and the original contribution objectives are resolved.

They are arrived at through a consideration of intelligence; a definition is provided for both human

intelligence and artificial intelligence. In addition to the consideration of intelligence, the fields

and categories of artificial intelligence are introduced, and finally a general consideration of the

application of intelligent systems in aerospace vehicle design is provided. From this, the research

direction is identified and selected for this document.

1.4.1 Intelligence

Two questions are addressed. First, what is intelligence? Second, what is artificial intelligence?

1.4.1.1 Human Intelligence

The nature of intelligence is such that it is difficult to define. For millennia, it has been a point

of debate. Two definition groups are briefly addressed as they correlate well with the definitions

and constructs of artificial intelligence. A common interpretation of intelligence is the notion of

multiple intelligences. In the late 1930s, Thurstone [20] correlated intelligence to multiple abilities,

identifying nine categories (verbal comprehension, reasoning, perceptual, speed, numerical ability,

word fluency, associative memory, spatial visualization). Since Thurstone, Gardner [21] similarly

identified intelligence as multiple intelligences working together (visual-spatial, verbal-Linguistic,

8 Introduction

bodily-kinesthetic, logical-mathematical, interpersonal, musical, intrapersonal, naturalistic) to

which emotional intelligence has since been recognized as well.[22, 23] Gardner represents

perhaps the most notable author, him identifying intelligence as distinct categories each of which

an individual could be weak or strong in.

Intelligence has also been classified as attributes. Sternberg [24] identifies three attributes of

intelligence: (1) analytical intelligence, (2) creative intelligence, and (3) practical intelligence.

These attributes translate to applicable aspects as problem solving, application of past knowledge

to new situations, and adaptability to a new environment respectively. This concept correlates well

with that of artificial intelligence (AI).

Krishnakunar summarizes the several ways intelligence has been defined:

» “The ability to learn or understand from experience

» Ability to acquire and retain knowledge

» Mental ability, the ability to respond quickly and successfully to a new situation,

» Use of the faculty of reason in solving problems, directing conduct, etc. effectively”[25]

1.4.1.2 Artificial Intelligence

As with human intelligence, the definition of AI varies depending on the individual asked.

Artificial intelligence, in its broadest consideration, is the mimicking of human intelligence by a

computational means. The how, what, when, and where distinguish each concept. Harrison [26]

notes that, given the variety of AI concepts, the most agreed upon concept “ … is that AI is the ‘the

mimicking, or emulating, of human techniques.’”. As stated by Munakata, AI is “… the study of

making computers do things that the human needs intelligence to do.”[27] Frequently, to act

intelligent infers some ability to reason. Harrison defines AI “… as the subfield of computer science

that attempts to use computers to emulate the way humans think and reason when solving

problems.” [26] Russel, a notable author in the field, further breaks the definition down based upon

thought process, reasoning, and behavior arriving at four distinct definition categories.[28] The

four definition categories are (1) systems that think like humans, (2) systems that act like humans,

(3) systems that think rationally, and (4) systems that act rationally, where a “… system is rational

if it does the ‘right thing,’ given what it knows.”[28] Krishnakumar [25] notes that “… the

intelligence of a system is characterized by its flexibility, adaptability, memory, learning, temporal

dynamics, reasoning, and the ability to manage uncertain and imprecise information.” The present

section provides general definitions of AI; in the following sections, what AI entails is refined

through identification of the fields and categories of AI.

Background and Refining Research Scope 9

1.4.2 Fields of AI

AI is a very large field. As Russel [28] points out “… AI systematizes and automates

intellectual tasks and is therefore potentially relevant to any sphere of human intellectual

activity…it is a truly universal field.” AI has been categorized into six primary fields: 1) natural

language processing, 2) knowledge representation, 3) automated reasoning, 4) machine learning,

5) computer vision, and 6) robotics.[28] Note that the fields generally match or correlate with the

attributes and categories of intelligence, as one would expect. A summary of each field is given in

Table 1-1.

Table 1-1 Summary of AI fields

AI Field Summary

Natural language

processing

Enable effective communication. [28]

“Areas such as automatic text generation, text processing, machine translation, speech

synthesis and analysis, grammar and style analysis of text etc.”[8]

Knowledge

representation

Storage of knowledge. [28]

“The process of structuring knowledge to be stored in a knowledge-based

system.”[29]

Automated

reasoning

Generate conclusions and answers to a problem from the stored knowledge[28]

Machine learning Determine new patterns and adapt to changing environment [28]

“An adaptive mechanism that enable computers to learn from experience, learn by

example, and learn by analogy…[it is] the basis of adaptive systems.” [29]

Computer vision Physical object perception [28]

“This topic deals with intelligent visualization, scene analysis, image understanding

and processing and motion derivation” [8]

Robotics Machine mobility and manipulation of objects[28]

“This deals with the controlling of robots to manipulate or grasp objects and using

information from sensors to guide actions etc.” [8]

1.4.3 Tools of AI

The tools developed for the field of AI are many. They can be broken down into three

fundamental categories: computational intelligence, knowledge-based systems, and hybrid

systems.[30] The different categories are illustrated in Figure 1-5 and are summarized below. Note

that in the usage of the term AI in the remaining document, it is considered the inclusive form; that

is, on mention of AI, knowledge-based systems, computational intelligence systems, and hybrid

systems are all referenced.

1.4.3.1 Computational Intelligence

Computational Intelligence (CI) is distinguishable from knowledge-based AI in that it does not

operate on the explicit representation of knowledge; rather it operates on numbers in an intelligent

sequence. CI deals only with numerical data, has pattern recognition, does not use knowledge in

the same sense AI does, and exhibits adaptively, fault tolerance, and speed and error rates that

10 Introduction

approaches that of a human.[31] The building blocks of CI are fuzzy logic, neural networks,

evolutionary programming, and genetic algorithms.[31]

Figure 1-5 Categories of intelligent systems and tools of AI, recreated from [30]

1.4.3.2 Knowledge Based Systems

A Knowledge-based systems (KBS) are computer system that are programmed to store a

representation of know-how knowledge about a particular task or field that is used to provide

advice, solve problems, and draw inferences.[32] Hopgood [33] notes that a knowledge-based

system (KBS) is distinguished from a conventional system (code/software) by its program

structure. In a standard software system, the knowledge and system process are intertwined.

Whereas in a knowledge-based system, the knowledge element and the control element are

separated into two distinctive modules: a knowledge base and an inference engine, respectively.

The knowledge base retains the actual knowledge and information in the form of rules, facts, and

relationships. The inference engine contains the information on how, when, and what to do with

the knowledge stored in the knowledge base.[33] The typical components of a knowledge-based

system are illustrated in Figure 1-6. A typical knowledge-based system is the Expert System. An

expert system is “… a type of knowledge-based system designed to embody expertise in a

particular specialized domain”.[33] A subset of KBS is Knowledge-Based Engineering (KBE);

its focus is on “…automation of the creation of the CAD geometry, the engineering analysis, and

generation of the support information.”[34]

Expert

System
Bayesian updating,

certainty theory,

fuzzy logic

Objects, frames,

and agents

Rule-based

systems

Knowledge-

based systems

Neural networks

Evolutionary algorithms

Simulated annealing

Computational

intelligence

All software

Background and Refining Research Scope 11

Figure 1-6 Typical components of a knowledge-based system[33]

1.4.3.3 Hybrid Systems

Hybrid systems are those systems that share components or methods of both knowledge-based

systems and computational intelligence. KB and CI techniques are not exclusive; they can operate

complimentarily within a system in order to address a complex problem with each being applied

to its specialized and best suited for the task.[33]

1.4.4 AI in Aerospace

Intelligent systems4 are common within aerospace as AI and CI techniques are very useful. In

this way, intelligent computational applications have included air space management expert

systems [35, 36] and naval carrier decision support systems [35-38]. Additionally, methods are

applicable to flight performance estimation [39], systems health monitoring [40], and control

systems [41] and their design [42]. Intelligent systems have been applied to computer aided design

(CAD) and engineering (CAE) [43-46], early initial design generators [16, 47], multidisciplinary

design optimization [48-50] and subsystem or disciplinary optimization such as airfoil [51, 52]

and trajectory [53, 54]. As engineering is an intellectually arena, it is not surprising that intelligent

systems have been found applied across the aerospace industry, including endoatmospheric and

exoatmospheric situations.

In this section a brief sampling of intelligent systems in aerospace literature is given. The

following is a sampling of the AI and CI applications in aerospace design literature and is not

exhaustive as the field is quite large. Almost everything discussed could effectively be described

as a hybrid system as design is multidisciplinary and complex. The aerospace problem, both in

4 Krishnakumar [25] defines an intelligent system as “… one that emulates some aspects of

intelligence exhibited by nature. These include: learning, adaptability, robustness across problem

domains, improving efficiency (over time and/or space) information compression (data to

knowledge), extrapolation.”

12 Introduction

complexity and data availability, requires multiple tools to be integrated and utilized within the

design process. That said, the discussion is by knowledge-based systems (knowledge-based

engineering), optimization (computational intelligence), and virtual assistant. Though evident that

it is applicable across the domain, the topic is limited to aerospace vehicle design and relevant

applications with emphasis on the early CD design phase.

1.4.4.1 Optimization

Perhaps the most affluent region of applied artificial and computational intelligence is in the

solving of the optimization problem. Generally, the distinguishing factor is the technique applied

whether to the solver itself or the geometric formulation. The techniques have been applied in

multidisciplinary design optimization (MDO) of a complex system and to specific component

design, such as a structural member or airfoil. The techniques are applicable to the range of

aerospace vehicle design including rotary systems, unmanned aerial systems (UAS), high-speed

and space systems, in addition to the traditional vehicle configurations. Chae [55] develops and

demonstrates—with tip-jet-driven gyrodyne configuration—a conceptual design level fuzzy or

soft probabilistic evolutionary algorithm. Optimization application to UAS [56] for configuration

independent design space definition for design knowledge identification are demonstrated. UAV

wing multi-variable multidisciplinary design optimization with high fidelity CFD and FEA are

demonstrated [57] with an evolutionary algorithm. Lee [58] demonstrates the application of an

evolutionary algorithm for airfoil section and wing planform design and optimization for

aerodynamic performance and radar cross section reduction of combat UAS. Optimization of the

airfoil and wing are a significant subject area in literature, examples include [51, 59-62]. In regards

to high-speed and space systems, Viviani [63] demonstrates a conceptual design level self-shaping

re-entry vehicle configuration approach using genetic algorithm. Bayley [64] demonstrates a study

of space access systems including air-launched systems. Mosher [65] gives a tool development for

conceptual design of spacecraft that integrates genetic algorithm for design space search. As in the

case of the wing and airfoil, trajectory optimization is another area of significant literature. Huang

[66] surveys numerical methods including genetic algorithms, swarm, and ant-colony approaches

for hypersonic vehicles trajectory optimization. Zotes [54] provides an overview of AI application

to aerospace problems such as launch trajectory and interplanetary satellite trajectory optimization.

A common task within multi-objective optimization is data evaluation and knowledge

extraction for correct solution identification and general knowledge addition. In the case of multi-

objective design, to identify the correct solution from the optimal set requires datamining and

specifically to extract design knowledge to determine the best solution. Oyama [67] demonstrates

the application of datamining of solar observatory trajectory design solutions found by a multi-

objective evolutionary approach. Similarly, knowledge discovery through datamining of optimal

solution sets (determined with evolutionary algorithm) is demonstrated for transonic regional-jet

wing [68], transonic airfoil design [52], and two-stage-to-orbit (TSTO) fly-back booster wings

[69].

Background and Refining Research Scope 13

As in the evolutionary systems application, neural networks are similarly applied universally

within the design arena. They prove advantageous in acting as surrogate models for complex

systems reducing the optimization design time or improving rapid technique accuracy. Khurana

[61] demonstrates neural networks in conjunction with a swarm optimization approach for airfoil

shape optimization. Berke [70] similarly demonstrates the application of neural networks in the

approximation of new structural wing design. Khlopkov [71] employees their use in aerodynamic

approximation for improved stability and control evaluation in hypersonic vehicle shape based off

an optimal solution set.

1.4.4.2 Knowledge Based Systems

Knowledge based systems are generally applied to automate certain tasks within the design

process. Given the popularity of MDO over the last few decades and its dependency on a strong

geometry generation core, this area has seen significant application. Many modern KBS directly

support optimization or analysis. As such many KBS are integral parts of an IS for optimization.

These systems would be classifiable as hybrid, however, here the focus is on their KB element

consideration. KBS have been applied in the configuration and geometry definition phase of the

design process, also referred to as knowledge engineering (KE) or knowledge-based engineering

(KBE). Rentema [47] demonstrates a rule based approach for initial concept definition for

conventional systems. Similarly, Gong [16] demonstrates a KBE approach to missile design with

KE integration as an initial step in baseline configuration definition and evaluation step in an

optimization procedure. Similar examples of KBE applied for configuration and geometric model

definitions can be found in [44, 72, 73]. Component (part) design is supported by KBE as well

[74]. Similarly, as to setup a MDO study requires expertise, so too KBS are applied to support

MDO study setup[75]. Additionally, expert systems can be applied to the control and coordination

of optimization as demonstrated by Price [76].

1.4.4.3 Advisor (Virtual Assistant)

Up to this point, both optimization and application of knowledge-based systems in engineering

(KBE) have been considered. The next intelligent system considered are virtual assistants (VA).

The virtual assistant is distinguished from the standard expert advisory systems. A distinguishing

ability is natural language processing in particular for easy question-answer interfacing. Well

known and commercial virtual assistants include systems such as Amazon’s Alexa, Apple’s Siri,

Google Assistant, and Microsoft’s Cortana. A literature review of virtual assistants is given by

Martin [77]. He identifies several VAs, however none are within the aerospace vehicle design

domain. In the review of design literature, this author has not identified any aerospace design

specific VAs either; only three VAs (or VA research programs) related to the aerospace community

have been identified. They are NASA’s IBM Watson based systems [78], ESA’s DEA [79], and

Daphne [77, 80]. There are advisory system within the expert system domain such as the MDO

advisory system [75], however, they fall outside of the range of a modern VA. The vision of a VA

14 Introduction

would be one that would contain such a system within it in addition to many more system

capabilities.

NASA-Watson endeavor is NASA’s stepwise research plan towards a more complete VA as

is indicated in the technology innovation plan vision, Figure 1-7. NASA has utilized IBM’s

Watson, a data analytics system. Current work has included the Watson Content Analytics, which

identifies trends, connections, and expertise by incorporating and analyzing thousands of

documents.[81] In addition, NASA conducted a proof of concept VA with the Watson Pilot and

Aerospace Innovation advisor proof of concept that “… generates leads to hard questions and

provide evidence for new paths…”[81] Both are steps to the greater objective.

ESA’s DEA and Daphne target applicability is to the space domain with mission/trajectory

planning. DEA is “…an expert system to support decision-making at the early stages design of

spacecraft, a Knowledge Engine for mission design, facilitating Knowledge Management and

Reuse.”[79] It is still in early development. Similar to DEA, Daphne is a virtual assistant to support

high level design of distributed satellite missions (DSM).[77] According to Virosi [77], Daphne

has a capacity of natural language interfacing for information quarry in addition to trade space

exploration tools. It has been tested at NASA. It is specifically for application in satellite mission

design.

Figure 1-7 NASA’s data analytics and machine intelligence capability vision [82]

Background and Refining Research Scope 15

1.4.5 The Great Problem

In Section 1.3 Product Life Cycle: Design Phases, the PLC was introduced and the CD phase

identified as a critical design phase where in design freedom is maximum but yet design knowledge

is minimum. An area of research within the community to attempt to alleviate some of the issues

within the CD phase is the automation of elements of the design process. Automation of the design

process requires computer software. Within the software domain, an applicable tool for automation

is AI. A consideration of AI in literature as applied to design and principally the CD phase is given.

Recall, that the research motivation has been to contribute to CD tool development through AI and

specifically advancement toward an artificial intelligent design and research assistant, which in

literature is representable by the virtual assistant. On consideration of the literature, it is evident

that research and development heavily focuses on design automation, particularly through

optimization systems (a more in-depth account of automation and design tools, in particular

multidisciplinary design optimization, is given in the proceeding chapter). On consideration of the

availability of systems within the virtual assistant domain (a class beyond the typical hybrid expert

system), there are few within the aerospace domain and even fewer (none?) within the conceptual

design domain applied to aerospace vehicle design and synthesis. In terms of potential to contribute

to research, this is excellent; however, to construct an entire virtual assistant for the CD phase is

beyond the scope of a single dissertation. As such, with the target identified and verified as a point

of research, it is necessary to identify what this construct could be and what system within that

could be addressed to move towards this final objective.

1.4.6 Vision and Research Scope Reduction

There primary research goal is to create a virtual assistant for aerospace vehicle design. The

virtual assistant envisioned is an intelligent system that is tasked to show many of the

characteristics of a cognitive system. A cognitive system is a system that “… performs the

cognitive work of knowing, understanding, planning, deciding, problem solving, analyzing,

synthesizing, assessing, and judging as they are fully integrated with perceiving and acting.”[83]

The system is envisioned to support the decision-making process by providing an intelligent,

adaptive, and parametric framework for systems design, strategic planning, and technology

forecasting. Emphasis is placed on non-traditional systems, high-speed systems, and space access

systems with a focus on the highly abstract CD phase. Envisioned capacity includes

simulation/analysis, synthesis, knowledge extraction and reuse, simulated flight-testing, full

modularity for ready future modification. Some system specifications include:

» knowledge generation and retention through dynamic knowledge base & data base

» scenario based multidisciplinary design analysis and optimization (MDAO)

» self-composing architecture capability with configuration, hardware, and mission

independence

» visualization and interpretation of design space topography

16 Introduction

» natural language interfacing

» rational action without human oversight.

On considering the architecture constructs specified, in light of past and current research within

the research group that this dissertational research is conducted, included research activities have

been synthesis system development [84-87], space program planning [88], technology portfolio

forecasting [89] in addition to current research by other research team member applied to vehicle

design data aggregation and knowledge extraction. Each topic area would be an element within a

virtual assistant. As such, a meaningful and impactful research direction could include

continuation of anyone system; for the purposes of this research, the topic area is synthesis system

development.

As such, this research is reduced from the domain of AI and VA development specifically, to

the development of a synthesis system implementation for future integration into this cognitive

system environment. However, until such point that this becomes plausible the system is required

to serve as a useful standalone implementation in the synthesis domain of conceptual design. Since

the current research endeavors and the necessity for integration within the greater VA system in

the near future, the synthesis system shall address and incorporate automation and within concept

construction incorporate potential for further automation.

1.5 Research Outlook and Scope

The research outlook includes four topics. They are problem statement, research objective,

research deliverables, and research scope. Each is considered.

1.5.1 Problem Statement

The aerospace domain has no virtual assistants for aerospace vehicle design. There should be

a virtual assistant for design. There are vast quantities of data and knowledge ready to be employed

in addition to analysis methods. Design data is unsurmountable and require computer assistance

for evaluation and knowledge extraction. Design cycle time is constrained, design process

elements need to be automated as much as feasible. A key element for aerospace vehicle design is

synthesis, any virtual assistant for aerospace vehicle design should incorporate automated design

synthesis.

1.5.2 Research Objective and Contribution

There are two research objectives aimed at originally contributing to aerospace science. They

relate to the principal deliverable and the application of the deliverable to a useful problem.

Research Outlook and Scope 17

Principle Objective:

» Development of a complex vehicle conceptual design synthesis tool to assist the decision

maker and designer in the analysis and evaluation of design options.

» Develop a synthesis assembly automation framework.

Secondary Objective:

» Demonstrate system operability through a reusable hypersonic test vehicle case study.

The principal objective is formulated with the intended future application of such a system in

a larger framework. Such frameworks could include but are not limited to intelligent systems,

technology portfolio planning systems, and program or architecture planning systems.

Fundamentally, the goal is to advance the decision-making and the design process through the

integration of rapid and flexible analysis capability earlier into the decision and design process.

The goal is to develop an adaptable synthesis design tool with general applicability and increased

transparency.

1.5.3 Research Deliverables

There are three principal deliverables from this research. They fall into the categories of tool

specification, tool development, and tool application. They are as follow.

» Specifications for an automated synthesis generation toolset.

» A decision support environment with an integral synthesis assembly tool for tailor made code.

» Solution topographies for air-launched and reusable hypersonic test vehicles.

1.5.4 Research Scope

The research topic itself is vast. The consideration of artificial intelligence, synthesis, vehicle

design, and optimization anyone topic can have any number of potential research topics and

approaches. This research however is conducted within the scope of addressing one specific area

and part that is common to all—synthesis architecting. Within the research environment that this

research is conducted, development areas include program planning [88], portfolio planning [89],

vehicle synthesis tool development [84-87], knowledge base [90] and database [91]. This research

is conducted within the evolution of and lessons learned from said research and specifically in

continuation of the work presented by [86, 87].

18 Introduction

1.6 Document Outline

To accomplish the objectives towards original contributions to aerospace science as identified,

the problem is addressed through a constructive sequence. The sequence follows the tasks of

situational illumination, solution identification, solution implementation, system verification, and

system application. Logically, this document is organized into this sequence.

» Chapter 1: Introduction – This chapter identifies the motivation and objectives of this research.

An introduction to principal topics is given. This includes intelligence, artificial intelligence,

and an envisioned AI research and design assistant framework and critical components. From

the identification of critical components, the research objectives and deliverables are defined.

» Chapter 2: Literature Review – In this chapter a review of engineering design synthesis tools

is given. Emphasis is placed on design automation. Specifications for a generic synthesis

system are identified.

» Chapter 3: Solution Concept – A generic synthesis generating solution concept is given. The

critical conceptual components are identified and discussed.

» Chapter 4: Concept Implementation – The previous chapter identifies the fundamental solution

concept. This chapter documents the manifestation of the system concept into a functional

system.

» Chapter 5: Verification and Application – In this chapter the application of the tool is

demonstrated. Successful tool development is illustrated through a verification case and a trade

study case. The vehicles of consideration are air launched reusable hypersonic cruisers of both

airbreathing and non-airbreathing type.

» Chapter 6: Conclusion – Concluding statements are made. The research is summarized;

principal deliverables and contributions reiterated. Recommendations for areas for

advancement and improvements are given.

» Appendix A: Case Studies Expanded – This section contains expanded description of the

baseline vehicles and expanded results of the trade study not included in the main text. This

includes more details pertaining to the convergence behavior and selected enlarged solution

space and solutions.

Chapter 2 LITERATURE REVIEW

In this chapter, the design tools of the conceptual designer are considered. The objective is two

part. First, a consideration of the various tools employed in design. Second, the identification of

lessons learned and specifications for a future automated synthesis assembly and decision support

environment system.

2.1 Design Classes

The CD phase is characterized by decision-making. Synthesis or design tools are the closest

broad categories of toolsets available to the aerospace design engineer that assist the engineer in

making decisions. The designer employs the tool to a given problem in order to arrive at a condition

such that a designer can make an informed design decision.

Approaches to aerospace vehicle design can be categorized. Chudoba [17, 18] provides a

historical review of flight vehicle design synthesis systems and tracks their evolution. After

identifying over a hundred system, he identifies five classes of design. Class 1 – 5 correspond to

design by experimentation, manual design processes by means of design handbooks and texts,

automation through software (discipline specific and local optimization), automation through

multidisciplinary design optimization (MDO), and lastly configuration independent design with

AI integration (in particular Knowledge-based systems). The evolution of design through these

five generations of synthesis systems illustrates a level of increasing proficiency at and automation

of systems integration and design exploration.

Fundamentally, the classes identified can be narrowed into two groups. Design with

automation and design without automation. In this context, automation generally relates to the act

of executing a design process task in an automatic fashion, that is without human immediate

direction or minimal involvement. Note that we distinguish automated design and design

automation as automation can be applied either to the identification of a design through design

variable modulation (MDO) or to the automatic generation of synthesis codes that can themselves

include automated design search.

20 Literature Review

The following sections consider the different design approaches and tools involved. Particular

emphasis is placed on design automation and automation of design systems as an AI system of the

type prescribed would require automation at every level. Furthermore, automation of product

development tasks is key to increased productivity and reduction in time to market and costs.[44]

For completeness, the classic non-automated (texts) are considered as well as a point of reference.

2.2 Classical Design: Texts and Programs

Classical synthesis toolsets can be separated into two categories. The categories are text-based

(Class 2) and computer-based (Class 3-4). The text-based toolsets are generally either in the form

of design handbooks or textbooks. The computer based are software that have an implemented

process and analysis routine. The computer-based systems here are distinguished from the more

modern systems that are addressed in a later section.

2.2.1 Design Texts

Design texts chronical and attempt to communicate design knowledge and the multidiscipline

nature of the aerospace vehicle. The intent of the texts is to educate and communicate knowledge

in a transparent fashion. The design texts address the multidisciplinary reality of aerospace vehicle

design, generally addressing each principal discipline—aerodynamics, propulsion, stability and

control, cost, etc. Classically, they address the design through analytical and empirical

methodologies. As physics is a constant, many of the references share similarity in knowledge and

even methods directly. However, since many are founded on empirical/statistical methods, they

can be non-applicable or useless when addressing non-standard concepts where in the data and

experience does not exist.[92] A representative selection of aircraft and launch vehicle design texts

are presented in Table 2-1 and Table 2-2, respectively. Many of the texts are well-known aircraft

design texts in the community: Torenbeek, Raymer, Roskam, and Nicolai are standard design texts

in academic teaching environments.

Table 2-1 Selected aircraft vehicle design texts

Author Year Title Reference

Corning 1960 Supersonic and Subsonic, CTOL and VTOL, Airplane Design [93]

Wood 1964 Aerospace Vehicle Design Vol. 1, Aircraft Design [94]

Loftin 1980 Subsonic Aircraft: Evolution and the Matching of Size to Performance [95]

Torenbeek 1982 Synthesis of Subsonic Airplane Design [13]

Roskam 1985 Airplane Design [96]

Raymer 1989 Aircraft Design: A Conceptual Approach [97]

Stinton 1998 The Anatomy of the Airplane [98]

Anderson 1999 Aircraft performance and design [99]

Fielding 1999 Introduction to Aircraft Design [100]

Jenkinson 1999 Civil jet aircraft design [101]

Howe 2000 Aircraft Conceptual Design Synthesis [102]

Classical Design: Texts and Programs 21

Author Year Title Reference

Schaufele 2000 The Elements of Aircraft Preliminary Design [103]

Nicolai 2010 Fundamentals of aircraft and airship design Volume 1, Aircraft design [14]

Sadraey 2012 Aircraft Design: A Systems Engineering Approach [104]

Gudmundsson 2013 General Aviation Aircraft Design: Applied Methods and Procedures [105]

Sforza 2014 Commercial Airplane Design Principles [106]

Kundu 2019 Conceptual Aircraft Design: An Industrial Approach [107]

Table 2-2 Selected Space Access Vehicle design texts

Author Year Title Reference

White 1963 Flight Performance Handbook for Powered Flight Operations [108]

Wood 1963 Aerospace Vehicle Design Vol. 2, Spacecraft Design [109]

U.S. Air

Force

1965 Space Planners Guide [110]

Humble 1995 Space Propulsion Analysis and Design [111]

Logdson 1998 Orbital Mechanics: Theory and Applications [112]

Hammond 2001 Design Methodologies for Space Transportation Systems [113]

Suresh 2015 Integrated Design for Space Transportation Systems [114]

The principal concerns with design texts are that they focus on a particular topic and by

definition are static. Design texts (as do many software systems) are generally dedicated to a

particular concept or configuration and low speed. As a result, many non-traditional and high-

speed vehicles are not addressed. The classic textbook, though a significant general aid, serves as

an information and knowledge library for fundamental knowledge transfer and application as

necessary to low fidelity analysis or early design variable estimations. Although they represent

potential method libraries for rapid low-fidelity conceptual design and excellent educational

resources for the burgeoning student and engineer, they generally do not represent the state of the

art in terms of advanced computational approaches, design automation and optimization, nor

address non-traditional concepts. Note that these tools are still highly valuable and applicable in

certain situations and even are employed within computational systems as discussed next.

2.2.2 Design Computer Systems

With the advent of computer systems, naturally grew a community of aerospace vehicle design

software. Many design tools were built. Like the classical design texts, many early (and even

modern systems) tended to be highly focused and would tend towards a monolithic nature,

becoming difficult to maintain and modify, especially to address non-traditional concepts.

Additionally, many early systems would be distinguishable as being conducting discipline specific

or multidisciplinary analysis (MDA) but distinctly not integrating a multidisciplinary design

optimization (MDO) framework. Modern frameworks have generally transitioned to a modular

approach, allowing for improved system modification, adaptation, and method fidelity variance.

22 Literature Review

MDO has also become a heavily focused upon element and topic (perhaps to the detriment of

development in systems for early conceptual design and program planning where in the optimal

design identification is less important than the identification of what concept to even consider to

be optimized and for what conditions). Note however, that since these computer systems allow for

method fidelity variation, they lend to application beyond the conceptual level and are applied up

to a preliminary design synthesis level.[115]

Table 2-3 Selected aircraft vehicle design software tools [86]

Acronym Year Full Name Developer

AAA 1991 Advanced Airplane Analysis DARcorporation

ACSYNT 1987 AirCraft SYNThesis NASA

AVDS 2010 Aerospace Vehicle Design System Aerospace Vehicle

Design Laboratory

CADE 1968 Computer Aided Design Evaluation McDonnell Douglas

FLOPS 1994 FLight OPtimization System NASA Langley

Research Center

Model Center 1995 Model Center Integrate - Explore - Organize Phoenix Integration

Inc

ODIN 1974 Optimal Design Integration system for synthesis of aerospace

vehicles

NASA Langley

Research Center

PrADO 1986 Preliminary Aircraft Design and Optimization Technical University

Braunschweig

pyOPT 2012 Python-based object-oriented framework for nonlinear constrained

optimization

Royal Military College

of Canada

VDK/HC 2001 VDK/Hypersonic Convergence McDonnell Douglas,

Hypertec

2.2.3 Synopsis of Systems Reviews

In continuation of Chudoba’s review of synthesis approaches, Huang [84], Coleman [85],

Gonzalez [86], Omoragbon [87], and Oza [89] have conducted additional surveys of existing

aerospace vehicle synthesis tools with a focus on the legacy systems. Figure 2-1 summarizes the

sequence of reviews. As mentioned, Chudoba identified many conceptual design systems and

postulated a categorical classification scheme. Huang continued the system evaluation with

emphasis on considerations for space access vehicles. He surveyed 115 synthesis systems with

application to aircraft, helicopter, missile, and launch vehicle design, documenting them based on

development history, design logic, module evaluation, and software development, noting both the

advantages and disadvantages of each system. Huang noted an absence of system focus on space

access vehicles and recommended that future systems address generic design and modular

multidisciplinary design capability, multidisciplinary design optimization, data management

systems, and dedicated vehicle conceptual design knowledgebase.

Coleman [85] continued systems evaluation. He identified three stages within the conceptual

design process—parametric sizing, configuration layout, and configuration evaluation. He

evaluated the synthesis systems based on these three sub-phases of the conceptual design phase.

The survey forced him to identify the necessity for a readily available process and methods library

that would include direction on how and when to implement them. The intent of the libraries being

Classical Design: Texts and Programs 23

the allowance of necessary design elements (process and methods) for rapid adaptation to solve a

new problem. Colman goes on to document and populate a process and method library and

implement a parametric sizing tool based on this knowledge.

Figure 2-1 Synthesis systems review summary [116]

Gonzalez [86], Omoragbon [87], and Oza [89] evaluated several synthesis systems based on a

broad criteria set for future systems development. Emphasis transitioned in part from a traditional

synthesis and sizing system evaluation approach towards technology portfolio planning and

forecasting capacity review, or rather a review of systems in light of technology portfolio planning

and forecasting. Omoragbon notes, the review is conducted to “… understand the applicability of

existing synthesis systems to the acquisition problem.”[87] Gonzalez [86] states that the review

has centered on assessing aerospace synthesis system’s capability “… to characterize, analyze,

and solve classical and new/novel aerospace problems.” Table 2-4 specifies the capability

evaluation criteria. Additionally, evaluated are data handling capacities as outlined in Table 2-5.

Both text (by-hand) and computerized systems were considered.

24 Literature Review

Table 2-4 Synthesis system evaluation criteria [86, 87]

Table 2-5 Data management system evaluation criteria [86, 87]

From the review, Gonzalez identifies the significance of the open-ended integration platforms

(presented in Section 2.3.4 Process Integration and Design Optimization Tools), in particular the

modularity, flexibility, and freedom they offer; however, he also identifies that the freedom comes

at the loss of a structured tool with method and processes selection and integration, as represented

by the classical monolithic systems. Gonzalez identifies a need for a bridge between the two

approaches. He describes this bridge environment as “… an environment with the adaptability of

an integration platform, while implementing the knowledge gained from classical conceptual

design methodologies to aid the user in the creation of synthesis systems tailor-made to solve given

problems.”[86] This leads him to identify the following system specifications:

» “Stores/implements classical design methodologies, both in terms of analytic process and

disciplinary methods

» Cross references hardware applicability to stored analytic processes and disciplinary methods

» Allows matching of the analysis framework to problem requirements

Multidisciplinary Design Optimization 25

» Allows visualization of the ability of the analysis framework to address problem

» Allows comparison of aerospace synthesis systems

» Allows measurement of the multidisciplinary integration level of the analysis framework”. [86]

The result of Gonzalez [86], Omoragbon [87], and Oza [89] research was a synthesis toolset

for composable systems. An overview is given in Section 2.4.6. Note that this research is a

continuation of their work.

2.3 Multidisciplinary Design Optimization

In the following section multidisciplinary design optimization (MDO) is addressed. The topic

itself is vast and a full treaty is beyond the scope of this work. For an in-depth review of MDO and

its architectures see references: [117-121]. The objective here is not to give a detailed account of

MDO and its processes or techniques. Rather, the goal is to obtain a general concept introduction

and insight into the world of MDO and identify system attributes and recommendations that would

be integral to future design systems. This section address defining MDO, specifying its

fundamental process, identifying significant components of MDO, integration tools, and lastly

lessons learned and specifications for a MDO environment.

2.3.1 What is MDO?

Sobieszczanski-Sobieski [117] defines MDO as a “methodology for the design of systems in

which strong interaction between disciplines motivates designers to simultaneously manipulate

variables in several disciplines.” Fundamentally, MDO is the application of an optimization

routine to a multidisciplinary design analysis (MDA) routine to find the best solution. At its core,

multidisciplinary design optimization facilitates the identification of hard to find design solutions

by balancing potentially non-intuitive tradeoffs between the subsystems of a complex system.[122]

By definition, MDO is distinctly different from a singular optimization approach. That is,

optimization applied to a trajectory or structural optimization problem does not infer MDO; MDO

requires more than one disciplinary interaction. Additionally, multidisciplinary design

optimization of the system does not provide that any one subsystem is optimal. As Rafique notes

the “multidisciplinary solution might not be the solution for any one discipline analyzed separate

from other disciplines, but is the best solution accounting for interactions.”[123]

MDO has become very popular. A reason for the impressive degree of applied MDO is that an

aerospace vehicle is a highly complex system with many interlacing disciplines and design

variables. It is well known that the aerospace vehicle is a complex system, is multidisciplinary by

nature, and as such, for the demanding criteria placed upon the designs, the system’s components

cannot be designed and developed in isolation.[124] It is necessary to have a design approach that

can account for the many interdependencies within the design scope.

26 Literature Review

2.3.2 Fundamental Process Components of MDO

Vandenbrande [122] describes the design space exploration through implementation of a MDO

process as comprising of three fundamental elements: a design explorer, a multidisciplinary design

analysis model, and a optimizer. The architecture is illustrated in Figure 2-2. The design explorer

is the component that controls the initialization and continuation of the exploration process by

generating a design point for the MDA model as denoted by (𝑥1, 𝑥2, … , 𝑥𝑛). The MDA model is

an analysis set that can analyze the generated design point for each discipline considered. The

output of the analysis is denoted by (𝑓1, 𝑓2, … 𝑓𝑛) and feeds the optimizer. The optimizer is a

mathematical optimization scheme to search the design space for the best design solution, given

some design criteria and or constraints. The optimizer is closely coupled with the design explorer.

Figure 2-2 Generic MDO based design space exploration process [122]

2.3.3 Components of MDO

The above section provided a very top-level understanding of the MDO process and its core

components. However, the components of MDO can be further identified. Sobieszczanski-

Sobieski [125] initially proposed that MDO is formulated by six components. He identifies them

as approximations, system mathematical modeling, design-oriented analysis, decomposition,

design space search, human interface, and optimization procedures. The component tree is

illustrated in Figure 2-5. Each is summarized below. For further overview on the components of

MDO see [117, 125, 126].

» Approximation Concepts: a secondary approximate analysis method callable by a design space

search engine to approximate the solution with sufficient accuracy rapidly. Necessitated due

to excessive computation cost of the design-oriented analysis component; full analysis is called

as required to maintain prescribed error levels. This component correlates to the

Multidisciplinary Design Analysis Response Model element identified in the previous section.

The approximation approaches include polynomial functions, neural networks, surrogate

models, and metamodels. A current area of study for these approximation routines is referred

to as Design of Experiments (DOE).

» System Mathematical Modeling: set of engineering methods applied in a modular approach

and in an intelligent manner to reduce computational cost. Mathematical code models are

modular; the monolithic coding approach is avoided. Current research objectives include the

quantification of the non-classical design disciplines and phases such as manufacturing,

Design Explorer

& Optimizer

Multidisciplinary

Design Analysis

Response Model

x1

x2

xn

⋮

f1

f2

fn

⋮

Multidisciplinary Design Optimization 27

sustainment, and flight-testing. To reduce data transfer points and computational costs,

methods are intelligently reduced or combined, and numerical methods guarantee matching

output to input nodal coordinates for synchronization of variable parameterization for reduced

workload on data processing and potential analysis grid (mesh) regeneration.

» Design Oriented Analysis: a component consisting of engineering design analysis processes,

data management systems (database), and data visualization. Design analysis processes include

procedures for analysis execution including repetitive full analysis application to answer the

“what if” question, partial analysis execution for low-cost re-evaluations (re-execution of

certain modules as necessary dependent on input parameter variation and the reuse of non-

affected data), multi-fidelity analysis or fidelity analysis selection, and sensitivity analysis. In

regard to data management and storage, data should be stored in a manner for ready retrieval

and reuse by the system and designer as well as be communicated effectively visually.

» Decomposition: the act of dividing a complicated optimization problem into less complicated

coordinated optimization tasks that can be solved while retaining the multidisciplinary

connections. This is illustrated in Figure 2-3. There are three decomposition approach

classes—hierarchical, non-hierarchical, and hybrid. In the hierarchical approach, the system is

a parent-child pyramidal process where in the data flows between a parent and a children set;

data does not directly traverse child-to-child. The non-hierarchical approach does not restrict

communication between the children, as such, no parent-children sets are discernable. A hybrid

system is one that consists of both hierarchical and non-hierarchical. Decomposition can be a

nontrivial task; tools such as genetic algorithms have been applied to the decomposition

problem.

Figure 2-3 Illustration of system’s 𝑁2 organization diagram before and after decomposition and reassembly [127]

» Design Space Search: Evaluation of the design space in search of the “best” or optimal solution

given the optimization criteria and design constraints. A mathematical solver seeks the

optimum solution. There are many optimizers available for use. The search algorithms include

control theory and computational intelligence (AI) based approaches.

28 Literature Review

» Optimization Procedure: a procedure that organizes the here identified optimization elements

into a coherent execution format. There are many approaches and architectures, the selection

of which is dependent on the problem and computing resources at hand. An example process

is shown in Figure 2-4.

Figure 2-4 Example optimization procedure for a Non-hierarchical system [125]

» Human Interface: a means for the user to interact directly with the optimization process and

execution. It provides access to intermediate results for review and judgment as well as

intervention in process setup, execution, and termination. Generally, direct human involvement

is required in setup and exaction; the setup and execution are not fully automated.

Figure 2-5 Principle components of MDO [125]

Multidisciplinary Design Optimization 29

2.3.4 Process Integration and Design Optimization Tools

To assist in the optimization process, many commercial and open-source tools have been

developed. A common approach to high fidelity MDO design architecture creation is the use of

process integration and design optimization (PIDO) execution control software. PIDO system offer

a integration capacity of third-party software, optimization, visualization, statistical analysis, and

data management.[128] In regards to capability for third party code integration, pre and post

processing, and algorithm availability provided, the PIDO software provide similar

capability.[120] However, van Gent [129] notes that the PIDO platforms, though developed for

similar purposes, each can vary in their approach to user interaction, workflow concept, component

integration, distributed execution, derivatives, and convergence.

PIDO systems have been identified and summarized by van Gent [129], Riccardi [127], and

Simpson [120]. There are many commercial and open-source systems. Riccardi [127] performed

a literature review on the systems identifying and describing over twenty systems. Table 2-6 is a

exert from the review of PIDO systems. Simpson [120] likewise identifies and discusses PIDO

systems but with emphasis on system capability in both metamodeling and optimization. Riccardi

[127] notes that “…optimization strategies included are mostly the best known algorithms for

deterministic and stochastic optimization. Hybrid optimization approaches between the already

present strategies are not envisaged.” Common PIDO systems include CAFFE [130],

ModelCenter [131], Dakota [132], OPTIMUS [133], modeFRONTIER [134], and RCE [135].

Table 2-6 Composable system software tools, table excerpt from reference [127]

Software Main Features

AML, AMOpt,

Technosoft, 2002

Interfaces with existing tools for structural analysis and post processes analysis. Generative

modeling. Integration of third party applications. XML data handling. Process Parallelization.

Visualization tools. Multiplatform.

BOSSQuattro,

Samtech, 1997

Open design and optimization architecture for parametric analyses, design of experiments,

multidisciplinary optimization and sensitivity analysis, statistic analyses and updating. It can make

use of internal solvers or integrate external optimization algorithms.

Caffe, Desktop

Aeronautics, 2000

Collaborative Optimization framework. Integration of existing code for analysis and optimization.

Management of the design process on multiple distributed platforms. GUI. XML data handling.

DAKOTA, Sandia

Web, 2009

Flexible and extensible interface between simulation codes and analysis methods. Containing

algorithm for deterministic and stochastic optimization, parameter estimation and sensitivity

analysis. Multilevel parallel object oriented framework.

iSIGHT, Dassault

Syst`emes Simulia, 2007

Capability of include commercial CAD/CAE software and internally developed programs.

Interfaces for custom applications and Excel spreadsheets. Design of Experiments, Optimization,

and Approximations technologies.

Kimeme, Cyber

Dyne, 2011

Platform for multi-objective and multidisciplinary design optimization. Coupled, by means of

scripts, with third-party software. Integration of custom optimization and/or analysis algorithms.

Graphical design environment for problem definition, analysis and visualization of the results.

Software network infrastructure to distribute the computational load.

MDICE,

NASA, 1998

Multidisciplinary Analysis. Interface with commercial software for computer aided design, grid

generation, computational fluid dynamics, computational structural dynamics. Visualization tools.

Computing environment for the concurrently and cooperatively operation of many computers.

30 Literature Review

From the point of view of this research, the point of interest in these systems are their capacity

for tool integration, levels of system automation, and process flexibility. Optimization itself is not

the objective research rather automation of synthesis creation.

2.3.5 MDO System Specifications and Lessons Learned

MDO excellent for discipline integration, and search for optimum solutions within certain

bounds but is a solver not an approach for AI. It is a lower-level attribute that could be employed

but is not the driving core of a flexible, multi-problem agent. It would be a tool of a greater actor

just as it is for the current designer. However, MDO is a fundamental tool of the designer and must

be accounted for in any new design approach or system. As part of the review of literature on

MDO, specific focus and attention was applied on identifying the MDO tool / system requirements

for MDO in aerospace. In the following section, specifications are summarized.

2.3.5.1 Automation

Automation in paramount, as many systems as possible should be automated. This includes

automated data transfer between and execution of analysis, including high-fidelity.[136] The

system should automate or support the automation of the repetitive elements of the MDO process

and design.[72, 137, 138] Furthermore, automation should apply to the pre and post processing of

ModelCenter,

PhoenixIntegration, 1998

Visual environment. Workflow graphically constructed. Data Fitting. Quick wrapping of batch

mode programs into the modeling environment. Up to 30 optimization algorithms with definition

of objectives, variables and constraints.

modeFRONTIER,

ESTECO 1998

Multi-disciplinary and multi-objective optimization and design environment. Coupling to many

existing computer aided engineering tools. Post processing results analysis. Visual environment.

Simultaneous use of simulation software on different machines.

Nexus, iChrome, 2011 Linking to a list of third party commercial tools. Plugins for specific custom analysis tools. Trade-

off, design of experiments, statistical analyses, response surface and metamodelling studies. Multi-

objective optimisation algorithms. Visual environment.

OptiY, OptiY

e.K., 2005

Multidisciplinary design environment. Providing direct and generic interfaces to many CAD/CAE

systems, intern codes and externs programs through predefined interfaces. Graphical workflow

editor. Modern optimization strategies, probabilistic algorithms for uncertainty, reliability,

robustness, sensitivity analysis, data-mining and meta-modeling.

OPTIMUS,

Noesis Solutions, 1996

Process Integration and Design Optimization software. Design of experiments and response surface

modeling for design space exploration. Visual environment. Graphic workflow editor.

PASS, Desktop

Aeronautics, 2005

Applicable to Aircraft Design. Rapid analysis coupled with optimization tools. Wide range of

appropriate, real-world constraints. It is built on a modular, extensible framework that allows for

the implementation of higher-fidelity analysis codes into the conceptual design process. Visual

environment.

HyperWorks -

HyperStudy, Altair

Engineering, 1999

Design of experiments. Meta modeling approximations. Collection of single and multiobjective

algorithms. Stochastic studies. Post processing and Data Mining. Parameterization of analysis

models.

VisualDOC

Vanderplaats Research

and Development,

1998

Multidisciplinary design, optimization, and process integration software. Optimization, design of

experiments, response surface approximation, and probabilistic (robust and reliability-based)

analysis. Integration of virtually any CAE analysis software. Graphic workflow editor.

Multidisciplinary Design Optimization 31

data as well as its transfer between tools.[138] Automation is the key to reducing time-to-market

and cost, and increasing productivity.[44]

2.3.5.2 Early Concept Definition

A system should suggest an initial concept construct. The system should assist the designer in

identifying a proper starting point (initial concept) for the next design sequence.[47]

2.3.5.3 System of Systems (vehicle-of-vehicles)

Systems-of-systems represent a challenging as each component system can have its own

requirements and function. An optimal system-of-systems may result in non-optimal subsystems;

however, this is not necessarily a negative. When addressing system-of-systems, it is necessary to

ensure to address that the system-of-systems configuration is not constant, it can dynamically vary

with time.[139]

2.3.5.4 Multiple Concept and Design Phase Applicable

A system should be flexible such that it can adapt to different design cases and design phase.

[137] This includes flexibility in configuration and design phase process requirements.[138] In

particular, as geometric modeling is critical to many MDO systems, the geometry module should

not be a limiting factor to concept applicability. It should not limit application to traditional

configurations.[72] Fundamentally, “…it should be possible to design any type of aerospace

vehicle using any (appropriate) methodology...”.[115]

2.3.5.5 Tool Integration and Distributed Computing

A design tool should be capable of integrating design tools and in particular distributed design

tools.[136-138] This includes commercial off-the shelf, in-house tools, and legacy systems.[72,

128, 138] Integration should occur in a user friendly fashion.[128] As part of integration, the

system should grantee proper data handling/correctness between the various tools.[138]

Additionally, there should be no limited to the number of integrated systems, modules, or methods

accessible to the system.[115]

2.3.5.6 Variable Fidelity

Generally, the literature suggests fidelity variability. Systems should incorporate both high and

low fidelity analysis tools. [72, 115, 137, 138] It is additionally suggested to incorporate automated

fidelity variation as required.[72]

2.3.5.7 Robust

Robust system framework is necessary.[72] Automated design (MDO) tools can be complex

and brittle. By their nature they are established to address a specific problem and generally cannot

venture far, in terms of configuration evaluation, from the initial problem definition and is limited

32 Literature Review

to the constraints imposed in problem setup.[140] As such, systems should allow for easy

interactive user control and modification of the optimization problem setup.[128]

2.3.5.8 Transparency

It should go unsaid that a system should be transparent. However, many systems are not. In

particular the design process workflow should be visible.[72]

2.3.5.9 Geometry

Optimization is heavily dependent on the geometry being defined. As such, a MDO tool should

include parametric geometry generation and agile manipulation techniques.[136, 141]

Furthermore, the geometry model implementation should not limit the configuration applicability,

in particular it should not limit application to conventional configurations.[72]

2.3.5.10 Visualization and Solution Exploration

A critical component of a solution package should be a visualization capability. Visualization

of both the solution, solution space, sensitivities, and geometry should be available.[72, 142]

Visualization should be in an automated fashion.[47] It is necessary to support the decision

processes.

Significant to any design processes is the identification of the best solution. A systematic

approach to design space exploration is necessary to improve the design process.[122]

Additionally, an approach to identify why a particular solution is superior to another is needed

[128] In particular the incorporation of tools for risk assessment and mitigation is needed.

Mathematical optimal solutions are not always the best or correct solution.[136]

2.3.5.11 Software independent

Naturally, it is recommended to have the system software independent.[115, 140] That is, the

system should not depend on any one software, especially third party software. By retaining

software independence, the user maintains more control and reduces potential cost.

2.4 Selected Design Systems

In the following section, a consideration is given to specific more modern representative

systems that resemble or are of interest to the current research. In particular, they are considered

for their approaches to and application towards the conceptual design and design automation or

more importantly, automation of design synthesis.

Selected Design Systems 33

2.4.1 AIDA: Artificial Intelligence supported conceptual Design of Aircraft [47]

AIDA is an example case of an AI-KB approach to conceptual design. AIDA addresses the

early concept definition phase of the conceptual design. Many conceptual design tools focus

heavily on MDO and do not address well the initial concept definition and exploration phase (circa

2004), where in the concept itself is not necessarily even defined yet. AIDA attempts to define

concepts for the early conceptual design through the application of AI and investigate the

usefulness of various AI techniques in application to such a situation.

The solution logic is formed around addressing sequentially the author identified design cycle

phases: suggesting, simulating, evaluating, proposing modifications. It is a modular system; it

consists of four modules. A case-based reasoning (CBR) module for initial concept generation.

The Function module that utilizes rule-based reasoning (RBR) techniques and sensitivity analysis

to refine the initial concept into a feasible concept. Geometrical module to generate a CAD model

of the concept through feature-based techniques and constraint-based modelling. Lastly, the central

user interface, which controls system integration and data transfer. The system utilizes early

conceptual design level methods as seen in the classic text references such as Torenbeek [13] and

Roskam [96]. On consideration of the system, Rentema states that the system is “… useful for

‘configuration design’ type of design tasks, but is less suitable for innovative and creative design.”

This is inherent in its dependency on established rules and concept elements in its libraries.

Additionally, Rentema notes that such an implementation (CBR and RBR based approach)

requires significant experience and pre-processing effort in order to populate and operate the

system’s data and knowledge bases.

2.4.2 Aircraft Design Automation and Subscale Testing [143]

A framework for automating the design and manufacturing process of Micro Air Vehicles

(MAV) was developed at Linköping University by Lundström [143]. The goal of the system is

described as “ … to find a method for MAV design and optimization from a holistic viewpoint, i.e.

not a method for optimizing single subsystems, such as motor or propeller, but a method that

embraces all disciplines of MAV design.”[143] Additionally, Lundström identifies two key drivers.

They are the utilization of off-the-shelf components where possible and geometric shape

optimization in view of aerodynamic properties, internal component layout, and stability criteria.

Like many design systems of its type, the system is modular. The systems control interface is

through a Microsoft Excel spreadsheet. Disciplinary and component subsystems formulate the rest

of the system. These include a geometry model, an aerodynamic model, and an off-the-shelf

propulsion parts database. The subsystems are integrated through modeFRONTIER, a PIDO

system. Design automation occurs through the use of an optimizer. The optimization routine is

sourced from modeFRONTIER. It utilizes a single-objective and a multi-objective GA for

optimization. A dual-stage optimization routine is enacted. The geometry and aerodynamic models

and analysis can be selected as either high or low fidelity. Low fidelity techniques are handled

within Excel. A high-fidelity geometry selection incorporates Catia; a high-fidelity aerodynamics

34 Literature Review

selection utilizes PANAIR, a panel method code. The output of the system is a CAD model and

part list. The CAD model can be passed to a 3D printer for manufacturing. Distributed computing

has also been demonstrated. Additionally, Lundström notes that the system could be considered a

hybrid system. That is, it employees both CI and KB methods. He states that it employs heuristic

knowledge within the geometry tool expressed as rules and constraints. Additionally, the system

incorporates a GA optimization routine, which is categorized as CI.

One of the distinguishable features of the system is its dual fidelity optimization routine. It was

identified that for high fidelity optimization, the optimization routine would generate an excessive

number of non-feasible solutions. To rectify the problem a dual stage optimization approach was

implement. The optimization processes were separated into a low fidelity stage and a high-fidelity

stage. The low fidelity stage solutions, which have effectively been filtered for feasible solutions,

are used as a starting point in the high-fidelity stage. The routine proved to be robust and user

friendly.

Figure 2-6 Dual-fidelity optimization process [143]

The system demonstrates a class of AI hybrid (KB+CI) systems. The general system is example

of very standard approach to tool creation found in literature. Multiple separate tools are integrated

with a PIDO tool and optimization conducted by means of a CI algorithm, frequently an

evolutionary type such as a Genetic Algorithm. Additionally, the system demonstrates a more

unique approach that is less common, which is the integration of an off-the-shelf parts library. The

system demonstrates a solution approach to handling the difficulty in feasible solution search,

employing a dual-fidelity approach. Similar approaches are taken in other tools but with variation

in the optimization algorithm. Furthermore, the concept for rapid prototyping, with a

demonstration of output to 3D printer for manufacture and subsequent testing is an interesting

concept.

2.4.3 GLADOS [140]

Genetic Learning Automated Design Optimization Software (GLADOS) “… represents a

flexible evolutionary algorithm based architecture intended to allow for the generation of

conceptual or preliminary design stage aircraft designs without any human beings in the loop.”

[140] The researchers’ objective was to develop a system to automate portions of the design

process to reduce human involvement and thereby reduce cost and time to completion. The original

Selected Design Systems 35

motivation for the system was to address the problem of multi-variant high modularity complex

system design through the application of an evolutionary algorithm. They identify and propose a

solution to three identified issues. They attempt to address design space biasing5, commonality or

modularity in complex system design, and the rigidness inherent in many MDO architectures6.

Addressing these issues resolves into “…the three most important traits are being able to naturally

search a much larger section of the design space, enable straightforward development of high

commonality and modular systems and be expressive enough to be capable of recursion and

therefore meta-level self-improvement.”[140] In [140] the authors provide a description of the ideal

concept and an account of a significantly reduced proof of concept. Of principle interest is the

ideal system concept.

The concept is a recursive tool that can generate potentially feasible design concepts from a

concept component library, populate the design variables, evaluate the design suggestion, and

identify potential solutions to be carried over to the next design evolution sequence. The authors

summarize GLADOS as:

… a large assembly of component, sub-system, sub-discipline and operational level

analysis modules wrapped in an evolutionary algorithm framework that ultimately selects

designs based on simulated natural selection, with fitness being assessed by operational

simulation of each trial design.[140]

The system concept consists of a: concept library, trial design synthesis subsystem, modeling and

analysis framework, fitness module, evolutionary framework, and artificial intelligence and

machine learning. The GLADOS concept is built around an evolutionary routine for initial concept

generation and subsequent evolution. The concept employees a warehousing approach where in

an updateable concept warehouse of existing design elements can be queried and formulated into

an initial candidate design for further analysis and optimization. The generated concept constructs

are modified for correctness and filtered by evaluation of feasibility by the trial design synthesis

module. Each trial design is analyzed and modeled by a modeling and analysis framework that

includes optimization; the framework is characterized by a tiered analysis processes where in each

tier can incorporate greater design and analysis fidelity. A fitness module quantifies each trial

construct based on some evaluation criteria, which is utilized in the evolutionary algorithm to

populate the next evolution. A general inclusion of AI and CI methods are described as included

for system efficiency improvement including approximation routines as well as a capacity for self-

population of the concept library and analysis association. Self-population and analysis

discernment through a recursive approach is a key trait of the system concept.

The concept presented is interesting for its non-standard approach to the design automation

problem. Much of literature, for the optimization problem, shows a standard approach of problem

5 Design space biasing is the event of experiencing or implementing bias into a proposed solution set due to underlying

experience, favoritism, or exposure to certain solutions, thereby not considering potential alternatives.
6 MDO architectures are generally setup to address specific problems, configurations, and solution space

boundaries/constraints, which restricts the architecture’s applicability; they are not generic design architectures.

36 Literature Review

specific code formation through PIDO systems integrating high fidelity third-party analysis

modules. The GLADOS concept presents an in-house approach to system integration with a user

created tier-based refining concept definition and analysis approach. When compared to the

concept for Aircraft Design Automation and Subscale Testing, the GLADOS concept proposes to

address initial design construct feasibility through a dedicated evaluation system, similar to AIDA.

The tiered optimization process is of note; tiers of analysis/optimization where in the user can

control the design freedom of each tier such that proper a natural evolution of design refinement

(similar to the conceptual to preliminary design tasks) can occur and thereby minimize computing

power required is a notable approach.

2.4.4 Daphne [77, 80]

Daphne is distinctly different from most other design tools. Daphne is a virtual assistant to

support high level design of distributed satellite missions (DSM); it is quite possibly the first of its

kind.[77] The objective of Daphne is “… to help system engineers reduce their cognitive load when

exploring large tradespaces for DSMs by providing them with easier and timely access to relevant

information.” [77] According to Virosi [77], Daphne has a capacity of natural language interfacing

for information quarry in addition to tradespace exploration tools such as scatter plots, model

inspection and explanation, and data mining.

An illustration of Daphne architecture is shown below. It has a user interface (a web front-

end), an architecting element (Daphne Brain) that controls user requests, software snippets (Roles)

that utilize the Backend and Data Sources to obtain the answer to the user’s quarry. Backends are

code elements that compute the information requested by the Roles using the data acquired from

the Data Sources. Data sources include three databases: an Expert Knowledge Database, a Design

Solutions Database, and a Historical Database.[77]

Figure 2-7 Daphne architecture [80]

Selected Design Systems 37

Daphne represents the interesting design aid of the virtual assistant. If one recalls the principal

motivation for this research—effectively a virtual assistant/peer—Daphne most resembles it at

least in general practice. In light of the research problem being addressed (automation of design

synthesis), in comparison to the Daphne architecture, this research addresses a task within the

“Engineer” role above. The “Engineer” role’s function is to “Evaluate new architectures” and

“Answer questions about architecture performance and cost.”[80]

2.4.5 GENUS [115]

Developed at Cranfield University by Szirozák [115], GENUS is a design framework that “…

provides a sufficiently generic platform that can be utilized for the conceptual level design of

specific classes of aircraft, including, but not limited to hypersonic transports, space launchers,

blended-wing-body and solar-powered aircraft.”[115] The motivation for the development of the

system was to assist the educational system, specifically university students and researchers. The

author notes that in university, programs have students spend a significant portion of their project

time on method development and integration with insufficient time to actually appreciate the end

result or conduct specialized feature analysis.7 System requirements included: modularity,

expandability (unconstrained fidelity level and method count), flexibility (capacity to address any

vehicle; generic synthesis tool), independence (software independent, non-proprietary, source

code language with significant longevity prognosis), sustainability (easily maintained and

expandable), and performance (reasonable performance on a standard desktop or laptop).

GENUS is a design environment to provide a modular, flexible framework both for designers

to use existing and for researchers to develop new methods for aerospace vehicle design.

Fundamentally, it is a shell environment similar to the PIDO tools. That is, it itself is an integration

and optimization environment where in the user prescribes, through a transparent user interface,

the analysis modules, inputs, internal variables, objectives, and constraint. The system also

provides the results visually through the GUI and as text file. GENUS is based on a modular

(library, warehouse equivalent) framework. Modules are divided by the essential modules and the

non-essential or “special modules”. There are nine essential modules: Geometry, Mission

specification, Propulsion specification, Mass breakdown, Aerodynamics, Propulsion, Packaging

and CG, Performance, and Stability and Control. In addition to these there in the Atmosphere

module. It has a clean GUI, Figure 2-8, and is programed in Java. It has capacity for a single run

analysis and optimization. All iterative analysis occurs through the optimizer, there is no indication

of inherent automated trade study or sensitivity analysis. The analysis process is linear and rigid,

occurring in the order of the methods shown. In summary, GENUS provides a transparent

conceptual design method integration environment with single point analysis and optimization

capability; automation tasks include method integration through data handling and design space

search by the optimizer.

7 As a former teaching assistant for the undergraduate aerospace engineering senior design course, the author can

concur with this sentiment.

38 Literature Review

(a) Module selection

(b) Input specification

(c) Output results

(d) Optimization setup and results

Figure 2-8 GENUS graphical interface [115]

2.4.6 AVDDBMS [86, 87, 89]

Aerospace Vehicle Design Database Management System (AVDDBMS) was developed at the

University of Texas in Arlington by Gonazlez [86], Omoragbon [87], and Oza [89]. The system

was developed to address two issues. First, as Gonazlez states it is “… a methodology for the

composition of complex multi-disciplinary systems (CMDS) through the automatic creation and

implementation of system and disciplinary method interfaces.”[86] It is an environment to alleviate

the difficulties in synthesis architecture creation and to diverge from the classic monolithic system

by assembling the synthesis architecture per problem definition. According to Gonzalez, it

attempts to bridge the gap between classical monolithic systems and the shell integration systems

(PIDO). The second reason it was conceived was to assist in technology forecasting and portfolio

definition—the object of Oza’s work—as to evaluate many potential concepts, requires a robust,

problem specific generation architecture. Within the literature of aerospace vehicle design and

design automation, this approach is distinctly different; rather than focusing on automating the

design search as in optimization routines, this approach automates portions of the creation of the

design tool itself, the synthesis architecture (this does not preclude that optimization does not occur

within the architecture either). AVDDBMS interface is MS Access, the system generates synthesis

architectures as MATLAB scripts.

The concept behind AVDDBMS is a decomposition-recomposition approach. The idea being that

systems (legacy monolithic codes) and vehicles can be decomposed into their base constructs

(process, methods, hardware, etc.) and placed into a repository where from a new system can be

Summary and Specifications for Future Systems 39

assembled from these parts and part associations to solve a new problem. The system’s foundations

are its databases and knowledgebase repositories. The system consists of a reference library,

variable library, methods library, process library, vehicle library, and the actual system interface

for problem architecture definition and assembly (referred here as Main System). Each has a GUI

interface for access and modification. Each library contains the decomposed elements according

to its name. The methods are associated to hardware applicability. The actual architecture

definition and assembly process occurs within the Main System GUI. The process is divided into

four stages. These stages are matching, selecting, arranging, and generating. Through these stages

the user selects a project vehicle, a project process, defines the trajectory profile, selects analysis

methods and resolves any system conflicts such as multiple disciplinary method associations per

hardware through the definition of method constraints. From these selections the system assembles

the methods and process into a syntactically correct sizing tool. The user then is free to use the

resulting tool to solve their specific problem. Note that the system does identify input, output, and

interdisciplinary variables, however all input value defining, synthesis tool execution, and post

processing occurs outside of the system and by the user. Once the architecture is generated, the

operation and actions of AVDDBMS are complete.

AVDDBMS represents a class of synthesis tools that itself does not solve the design problem but

rather generates the tool that is used to solve the design problem. AVDDBMS has been created to

provide the designer with a tool of tools; it is a tool to create tools that are tailor-made to the exact

problem at hand with the fidelity and robustness as determined by the user. It is different class of

automation; it automates the creation of the synthesis architecture rather than design automation

through automating the design search. Although this system represents a promising approach to

automation, it is noted that the system does not directly contain post processing, an input/output

interface, and is limited in vehicle decomposition level and limited in its process application. As

noted, this research is a continuation of the synthesis design effort at the AVD Lab at the University

of Texas at Arlington as represented by AVDDBMS. This system and the work by Gonzalez [86],

Omoragbon [87], and Oza [89] will be referenced more in the following chapters.

2.5 Summary and Specifications for Future Systems

2.5.1 Summary and Discussion

This research began with AI and design peer being identified as a probable solution to

dilemmas within design. However, a true design peer was determined infeasible for a single

researcher and as such a perceived necessary element, design automation (automation of synthesis)

was identified. This chapter has presented a review of design tools with particular emphasis on

design automation and the necessary components, in addition to a consideration of select

representative systems. The result is the identification and consideration of toolsets in literature

and the approaches to the design problem, in particular those applying automation.

40 Literature Review

Aerospace synthesis design approach is categorizable. A classification scheme was presented.

From the classes, of note are two classification groups: text-based systems and computer-based

systems. The text-based systems are representable by the classical design texts, by definition are

not automated, and represent libraries of knowledge and early conceptual design analysis methods.

The second classification set are computer systems that automate part of the design process. Two

types are distinguished, the monolithic and non-monolithic system. The classical computer

systems tended towards monolithic nature where in, though with highly impressive knowledge

integration and accuracy, they were compiled upon as new capability were added leading to lack

of maintainability, modifiability, and applicability to new concepts. The second type, non-

monolithic, are generally specifically design modular approaches where in the modules (including

third-party software) are integrated through some integration scheme and can be specifically

developed for the problem at hand. Within these system MDO has been a critical component as

well as focus in literature on design automation.

Within aerospace vehicle design literature, design automation generally infers MDO. It is the

process of automating the process of design refinement through solution space search. MDO is a

significant focus within the literature but is not the only solution nor necessarily the correct

solution in all situations, though from literature one would not be wrong to assume it were given

it is so widely applied and touted. Optimization tasks are frequently time consuming, can have

massive software and hardware requirements, and require expertise in and of itself to set up

properly. In effect, there has been a trade of one problem (the monolithic design codes) for another.

To assist in MDO execution process, many integration and process control software have been

developed both commercially and as open-source software; naturally, these systems are widely

used. A selection of systems available was given.

A conclusion that can be derived from literature is that there is a lack of focus on the early

conceptual design within tool development, specifically the initial problem gestation phase and

initial potential concept solution selection. Many systems/research/tool development jump quickly

to optimization without considering if the object they are optimizing is even the right choice or

starting point. Some systems attempt to address this through evolutionary algorithms and concept

part libraries but not all. This is similarly reflected in the literature on road mapping and program

planning, systems are advised but without numerical proof of why they should be in the first place.

There is a need to address the early conceptual design phase and even the pre-design phase. As

MDO has been praised for bringing better solutions and more accurate, higher fidelity approaches

earlier into the design process, perhaps it is necessary to improve analysis tools in the parametric

definition cycle of conceptual design and even into the pre-design operations as well. This calls

for rapid concept exploration environment, that is truly generic in vehicle consideration, which can

provide analysis capability of fidelity levels prescribed by the user and be operable quickly. This

leads to the specification of a generic conceptual design decision support environment.

Summary and Specifications for Future Systems 41

2.5.2 Specifications for a Future System

As noted, this research is in part a continuation of the work by Gonzalez, Omoragbon, and

Oza. AVDDBMS was a proof of concept with its own limitations. AVDDBMS demonstrated the ability

to have an environment in which, through user interaction, synthesis tools could be generated to

address a specific problem. However, the system had an inherent limit to the complexity of the

problem and as such an inherent limit to the cases in which the tool could be applied.[87]

Furthermore, the system exists in an MS Access environment, which does not lend well to

continuation, in particular towards AI—a primary research objective of the local research group.

(As a result, the research deliverable here in presented has been created to address these issues.)

As such, many of their identified solution construct requirements remain. In addition to those

identified, several are added here in order to address some of the short comings of AVDDBMS and

to advance the concept to a more capable place with potential for increased automation and

eventual adaptation into a greater cognitive framework. Based on the synthesis system review and

addressing issues identified in AVDDBMS, the following are identified as the primary guidelines

and requirements for a next-generation synthesis capability.

2.5.2.1 General Design System Guidelines

» Flexibility: modularity to handle various fidelity levels, unique concepts, and unique

configurations.

» Expandability: ability to and easy implementation in the expansion of the underlying

framework and capability when new data, knowledge, and processes are identified and require

addition.

» Transparency: transparent to the user of the operation of processes and systems, the methods,

underlying knowledge, data, etc.

» Rapidity: quick turnaround, able to adapt and keep up with a rapid environment and quick

turnaround deliverable times; minimal time of operation to output.

» Operability: low user learning-curve.

» Sustainability: system should be based on a coding language likely to continue into the

foreseeable future.

2.5.2.2 System Specific Specifications and Guidelines

The following specifications are shared in the specifications for AVDDBMS by Gonzalez [86]

and Omoragbon [87].

» Employ a decomposition-composition solution approach.

» Store and implement design analytical processes.

42 Literature Review

» Store vehicle hardware concepts.

» Store and implement engineering disciplinary analysis methods.

» Associate hardware-method-process applicability.

» Assemble synthesis architecture.

The following specifications are added to those identified by Gonzalez, and Omoragbon.

» Architecture specifications occurs within a decision support environment (interface).

» Improved system transparency in both method / process specifications and architecture

generation.

» Architectures should be assembled as fully contained scripts.

» Assembled architectures should be fully executable and distributable.

» Include capability for system-of-systems (vehicle-of-vehicles) consideration.

» Include capability for multiple design analysis processes association or a tiered processes

approach (sub-processes within a primary process).

» Allows evaluation of results (data post processing and GUI return for assessment and inquiry).

» Allows for specification and generation of standard or user defined solution visualizations.

» Increased automation or capacity for automation of architecture generation process.

» Allow for porting into a greater system and allows expansion and integration of data mining

and increased post processing towards a design recommender.

2.5.3 Document Outlook

The remaining document address the solution concept, the implementation of the concept, and

verification and demonstration of the concept implementation. As noted in Chapter 1, this research

is in continuation of the research endeavor by Gonzalez [86], Omoragbon [87], and Oza [89]. As

such, much parallelism is drawn between their research and solution concept presented and

developed in this research.

Chapter 3 SOLUTION CONCEPT

In this chapter, the solution concept is presented. A general solution concept for a general

synthesis automated generation decision support environment is given. For detailed manifestation

of the concepts presented here, see Chapter 4 Concept Implementation.

3.1 General Solution Concept

To address the requirements identified, the objective is to develop a decision support

environment for the aerospace domain, specifically targeting the conceptual design phase. Within

the frame of the decision support tool, it is necessary to implement a framework for automated

composable analysis architectures. That is, the system shall not be bound to any one vehicle

concept or configuration, nor shall it be bound by the process or objective function definition.

Furthermore, the tedious task of synthesis architecture assembly is removed from the requirements

of the user. The user only need specify what to analyze and the constructs of how to accomplish

the analysis. To accomplish this task, it is necessary to implement an auto coding approach. A top-

level solution for such a system is illustrated in Figure 3-1. The solution concept is founded on a

decomposition-composition approach. It is a non-graphical code assembly concept. The primary

components of the concept are the composable complex system components, the synthesis

generator, and system results. Fundamentally, the user provides a set of inputs specifying the

vehicle to be analyzed, the process of analysis, the methods to use, and the output presentation

desired. From these instructions, a synthesizer routine assimilates the necessary code elements,

both engineering methods and code processing (data handling, method handling, etc.), and

assembles the components into a functional synthesis architecture. The synthesis is executed as

prescribed by the user and the results are processed and returned to the user according to the user’s

deliverable specifications. Each core component is summarized below.

» Inputs: A collection of user selections during software interaction. They are acquired through

a GUI interface. They specify the components of the synthesis system as related to the

engineering analysis problem.

44 Solution Concept

» Complex System Elements: It is a set of libraries populated with the building blocks necessary

to assemble a synthesis analysis code. It consists of three libraries: product, methods, and

processes. These follow the complex system decomposition approach described below.

» Synthesis Generator: A collection of processes to assemble the base components (complex

system elements) into a functional synthesis analysis code based on the user’s inputs. Sub

processes include input mapping, library queries, component gathering, and component

assembly. The output of the process is a tailor made fully functional synthesis analysis code

for the specific problem at hand.

» System Results: The system results group is a collection of processes to execute the synthesis

code, archive the results (data), process the results, and return the results to the user through

the DSS in a meaningful form. Part of the result return is the auto generation of meaningful

figures for design evaluation and insight.

Each principal component of the solution approach is discussed in detail in the following

sections.

Figure 3-1 General solution concept

3.2 Decomposition Concept

As stated, this research and development effort has been conducted within the evolutionary

synthesis development arc of [84-87, 89]. In particular, this is a continuation and adaptation of the

concepts laid down by Omoragbon [87] and Gonzalez [86]. The following general description is

adapted from [87]. Note that in the following discussions the term complex system is used

frequently. The term is used in two connotations. First as the system being decomposed and being

labeled complex as it consists of the identified decomposition groups. The term is also used to

refer to a system-of-systems or what one would perceive natively as a complex system such as an

aircraft or ship. The discussion at hand indicates which construct is being used.

Execute

Synthesis

Input

Mapping
Inputs

Process

Library

Methods

Library

Gather

Components

Hardware

Library

Library

Querries

Elements of a Complex System

Synthesis Generator

Decomposed elements

necessary for the system as

specified are gathered for use

Libraries cons isting of complex

system composit ion elements

Assemble decomposed elements into useful

synthesis tool based on the instructions

derivable from the input mapping

Assemble

Synthesis

Process

Results

Display

Results

Process, analyze, mine

data, and generate figures

System Results

Decomposition Concept 45

For a given complex system, a tripartite decomposition routine is enacted. A complex system

is described by the product, process, and methods. Alternatively, the term complex architecture

could be used. The product is the physical description of the complex system; generally, this is the

vehicle of interest. A product is described according to what it is, what it does, when it does it, and

requirements or limitations of operation. These conditions define four categories of a product—

structure, function, operational event, and operational requirement. The process is the numerical

and organizational approach to solving the problem, and the methods are the analytical, numerical,

or empirical means and their dependencies to approximate a physical condition. Each category is

addressed in more detail in the following sections.

Figure 3-2 Three elements of a complex system

3.2.1 Product

The product is the complex system being considered. The system is defined according to

structural subsystem (structural decomposition), functional subsystem (functional decomposition),

operational event, and operational requirement. Omoragbon initially identified just three

classifications (functional subsystem, operational event, and operational requirement), however, a

fourth (structural subsystem) has been added to better handle the more complex situations (vehicle-

of-vehicles) and complex mission and operation description.

Figure 3-3 Product decomposition

3.2.1.1 Structural Subsystem

The structural subsystem decomposing (hierarchical decomposition) is a standard

decomposition approach by parent-child system reduction. It is a mapping of the structural

components and their structural subcomponents, continuing in subcomponent layer refinement, as

necessary. For the solution concept discussed herein, the structural hierarchical decomposition

scheme is included in order to expand system capability to include the vehicle-of-vehicles case.

The vehicle-of-vehicles is a specific condition of the system-of-systems concept. A system of

systems is “ … a set or arrangement of interdependent systems that are related or connected to

provide a given capability.”[144] Structural decomposition decomposes a system into its

MethodsProcess

Complex System

Product

Operational

Requirement

Operational

Event

Product

Functional

Subsystem

Structural

Subsystem

46 Solution Concept

subsystems and the subsystems into their elements. Likewise, a vehicle-of-vehicles is a complex

system where in the parent vehicle is composed of sub-vehicles, which are composed of systems.

A parent vehicle can have any number of child vehicles. Furthermore, each vehicle is its own

complex system in the sense of the decomposition approach being discussed. Each one is its own

complex system with its oven product, process, and method decomposition. The complex system-

of-systems (vehicle-of-vehicles) structural hierarchical decomposition in general is illustrated in

Figure 3-4. In terms of an aerospace vehicle, this decomposition approach is illustrated in Figure

3-5.

Figure 3-4 System-of-systems structural tree decomposition [145]

Figure 3-5 Illustrative example hierarchical structural decomposition [47]

Decomposition Concept 47

3.2.1.2 Functional Subsystem

The functional subsystem represents the decomposition of a complex system’s product by

component function. Functional decomposition is the association of function (purpose) to the

systems element (hardware). Various functionality includes lift source, drag source, thrust source,

volume source, etc. Various function categories are illustrated in Figure 3-6. Within these

categories, one or more elements could be associated. For example, a thrust source can be

airbreathing, but within airbreathing there are many design options, the element could be a turbojet,

a turbofan, or even a ramjet or depending on the design criteria.

Figure 3-6 Functional subsystem decomposition categories adapted from [87]

Omoragbon intentionally includes a functional decomposition approach to allow for a

synthesis system to better address, trade, and evaluate factors such as acquisition, TRL, and

maintainability. Furthermore, through functional decomposition, a complex system is describable

as a shell construct with certain attributes that are populated per unique design case. They are

product design details of which can be populated and traded dependent on the user’s intentions.

Such an approach allows for more readily the inclusion of more detail and analysis-oriented

approaches within the pre-conceptual design phase (road mapping, architecture and program

planning, etc.) or easier inclusion of manufacturing, servicing, sustainment and other like

constraints that manifest much later in the product life cycle but are integral to the success of a

program long-term.

3.2.1.3 Operational Event

The Operational Event describes the vehicle by environmental and operational conditions of

its use. The classification and description are in regard to the total system operation and is

distinguishable from its hardware. The Operational Event category is subcategorized by mission

type, flight profile, speed range, gravitational body, and altitude range.

3.2.1.3.1 Mission Type

A vehicle has an objective, that objective is accomplished through the execution of a specific

mission. The mission type is a label to describe mission and ultimately the objective of the vehicle.

Thermal

Protection

Stability and

Control

Functional

Subsystem

Lift Sources
Landing

Systems
Thrust Sources

Volume

Supplies
N-Function

Parachute

Tricycle

N-Landing

Body

Wing

N-Lift

Directional

Longitudinal

Lateral

Active

Passive

N-TPS

Airbreathing

Non-

airbreathing

N-Thrust

Fuselage

Fuel Tank

N-Volume

N-S&C

Secondary

48 Solution Concept

A vehicle can have more than one mission type. For example, an advanced single-stage-to-orbit

vehicle would perform a mission of (1) space access, (2) orbital operations, (3) Re-Entry, and,

potentially, (4) point-to-point. These and other possible mission types are identified and described

in Table 3-1.

Table 3-1 Mission types

Name Description

Point-to-Point Transportation of a cargo from one latitude and longitude to another,

generally atmospheric bound but not necessarily so;

Space Access Transportation of a good or service to space or the transfer of sufficient

energy from one system to another allowing the recipient to reach space;

the system does not have to achieve orbital conditions but could.

Sub-orbital Transportation of a cargo to space but in a manner in which the vehicle or

cargo does not have sufficient velocity to achieve orbit;

Re-Entry Vehicular atmospheric entry to a body of influence from orbital conditions

with a start condition outside of the effective atmosphere (space);

Orbital Exo-atmospheric (space) operation at sufficient speed and energy for a

vehicle to maintain an orbit;

* Space (outside of the effective atmosphere) for Earth is considered 100+ km.

3.2.1.3.2 Flight Profile

The mission flight profile is segmented into its constituents. These are the classical flight

profile components such as takeoff, cruise, climb, etc. It is common for a flight profile to be

segmented into its core components as it can make communication and analysis simpler. The flight

profile segments options are indicated below. These values are updatable and can be changed by

the user if a particular one is necessary and not currently available. The focus is on atmospheric

flight though elements can be readily expanded to include orbital operational elements.

» Warmup » Taxi » Takeoff » Climb

» Cruise » Loiter » Dash » Turn/Maneuver

» Descend » Deployment » Rendezvous » Re-Entry

In the consideration of the multi vehicle case, a vehicle system can comprise of multiple

distinct missions or flight profiles. It is possible for a component vehicle to have a different mission

and objective than the parent or other secondary component vehicles. This is especially true in the

case of two-stage-to-orbit (TSTO) or reusable launch systems such as the Falcon 9 or Falcon

Heavy. In these cases, the total system (all component vehicles acting as a single vehicle) act on a

single flight profile until the systems disengage and each execute separate flight profiles as

fragmented systems but each with uniquely different objectives, requirements, or flight profiles.

3.2.1.3.3 Speed Range

The speed range defines the operational speed range experienced by the vehicle. A vehicle,

within the definition of the problem, can have a combination of selections. For example, a

hypersonic vehicle can experience subsonic, transonic, supersonic, and hypersonic conditions. At

each speed condition, different phenomena can occur and as such, the vehicle’s complete

description would have to account for this (atmospheric dissociation, shock formation, variation

Decomposition Concept 49

in aerodynamic center, etc.). The speed is an indicated for many physical phenome occurrences.

The speed range values are indicated in Table 3-2. The speed ranges follow standard speed ranges

experienced within atmospheric flight; naturally, orbital conditions could be considered as well.

Table 3-2 Speed range categories

Name Speed Range (Mach Number)

Subsonic < 0.8

Transonic 0.8 – 1.2

Supersonic 1.2 – 5.0

Hypersonic 5.0 – 10

High Hypersonic 10 – 25

Re-Entry 25 >

3.2.1.3.4 Gravitational Body

The gravitational body is simply the specification of the principal body of gravitation that the

vehicle operates. The majority of aerospace problems are relegated to operating on Earth; however,

there are cases where in the principal body is not Earth but other bodies such as Mars. As such,

not to be constrained by the body of influence, this parameter is a necessary descriptor. The

gravitational body is not only applicable to the consideration of defining the gravitational

parameter but is also directly linked to the atmospheric model required. Atmospheric operation is

a consideration discussed in the “Altitude Range” descriptor.

3.2.1.3.5 Altitude Range

The altitude range is defined through the atmospheric operation zones. The atmospheric zones

are for Earth and are indicated in Table 3-3. Naturally, a vehicle can operate in any combination

of atmospheric zones, generally in a continues form. A vehicle, within the definition of the

problem, can have a combination of selections. Note, that the problem does not have to be limited

to Earth, but for this case, it is used as the principle gravitational and atmospheric zone of influence.

Table 3-3 Operational altitude zones

Zone Altitude

Troposphere 0 – 8 (14.5) km

Stratosphere 8 (14.5) km - 50 km

Mesosphere 50 km - 85 km

Thermosphere 85 km - 600 km

Exosphere 600 km – 10,000 km

Exo-atmospheric 100 km > (Kármán line)

3.2.1.4 Operational Requirement

The complex system exists and operates within limitations and requirements. The Operational

Event category describes the vehicle by the environment and operational conditions of what it does

whereas the Operational Requirement describes the limits in which the system is required to do

what it does. The limitations of the system can be categorized by (1) regulations, and (2)

specifications. Regulations are government restrictions or standards imposed upon the system.

Examples are safety standards, emission standards, noise regulations, etc. The operational

50 Solution Concept

requirement specifications are additional conditions mandated upon the system that are not

hardware, function, or regulation descriptors. Such mandates include human rated, vulnerability,

survivability, propellant, manned, unmanned, etc.

3.2.2 Process

After the product description, the next element in the decomposition of the complex system is

the process. The process is the analytical process to solve a given problem. A process is specified

independently of the product; the process description has no indication or direct connection to the

product. It is product independent. There are two types of processes: primary process and

secondary process. The primary process is the driving instructions for the total vehicle analysis. It

encompasses all process for a given complex system. The secondary process is a process that

executes within the operations of the primary process. There can be any number of secondary

processes but only one primary. Each process is decomposable by its system elements and its

disciplinary elements.

Figure 3-7 Process decomposition categories

3.2.2.1 System Elements

The system elements describe the mathematical components of an analysis process if that

process has some objective function. The objective function specifies the mathematical criteria for

convergence or optimization. However, it is not necessary that a process have an objective

function; the absence of an objective function indicates a process that is not iterative. If the process

is not iterative, then there are no decomposable system elements. The system elements are

independent variable, dependent variable, and objective function. Each is described below.

» Objective function: the objective function is a mathematical expression that specifies the

process’ criteria for satisfactory termination. This is usually applied as a convergence or

optimization criteria. The process continues until the objective function is either satisfied or

determined unattainable. The objective function consists of dependent and independent

variables.

» Independent Variable: the objective function’s variables that are independent of the analysis

and are known (guessed) initially. They are the values searched for to converge or solve the

analysis process.

» Dependent Variable: the objective function’s variables that are computed through the

operations of the process and are an output of the analysis, as such they depend on the value

Disciplinary

Elements

Process

System

Elements

Decomposition Concept 51

of the independent variable. They must be output by the disciplinary operations as specified

by the disciplinary elements.

3.2.2.2 Disciplinary Elements

In addition to the objective functions as described previously, the process is composed of

disciplinary events and their order of operation. The disciplinary elements are the descriptive

elements that define the operational order of the process and categorize the analytical sub

processes. Each is described below.

» Disciplinary Event: the disciplinary events are the specification of an analysis set execution

that is categorized by a topic of analysis. Classically, the disciplinary events are the categories

aerodynamics, weight and balance, propulsion, geometry, stability and control, etc. However,

they are not limited to these and can be varied or added to depending on the process and the

overall topic being addressed. Disciplinary events can be constructed to have standard variable

outputs that the encompassed analysis is required to generate.

» Disciplinary Order: the disciplinary order of operation is the specification of the order of

process disciplinary events. The specification is linear; however, non-linear attributes are

accounted for through the internal operands of the disciplinary event.

3.2.3 Method

The method group is an assembly of descriptors identifying a particular analysis element. The

analysis element is what one would consider as an engineering analysis method. It can be

numerical, analytical, or empirical. A method is described by its product applicability, its variables,

and its analysis.

Figure 3-8 Method decomposition categories

3.2.3.1 Product Association

The product applicability follows the functional decomposition described in section 3.2.1

Product. A given method is applicable or associable to a particular hardware, hardware function,

mission, or operational event or requirement and is describe through these conditions. The method

is associated to the hardware, function, mission, operational event, and operational requirement in

the same manner as the product. Fundamentally, this is necessary for proper method selection and

system assembly and operation.

Analysis

Method

Variables
Product

Association

52 Solution Concept

3.2.3.2 Variables

The variables category encompasses the variables that define the methods inputs, outputs, and

constraints.

» Input: They are the variables required as inputs (known conditions) by the method in order to

operate properly and return the output.

» Output: They are the variables that are solved for within and returned from the method. They

may be required by other methods within the same discipline/discipline process or other

disciplinary methods.

» Constraints: The constraint variables are the variables that, if any, constrain the application of

the method to a specific variable value condition. An example would be Mach Number; a

subsonic method may be only applicable during Mach Numbers of 0 to 0.8 for example, and

so that method would be constrained to a given Mach Number range.

3.2.3.3 Analysis

The Analysis block contains the elements that describe the method according to process

discipline, assumptions, and analysis body. The process discipline is exactly that, it is the

specification and subsequently the mapping of the method to a specific discipline. Specifically, it

is the specification of the discipline event as categorized by the Disciplinary Element (section

3.2.2.2 Disciplinary Elements). The analysis assumptions are the specification of the assumptions

within the analysis itself. The analysis body comprises of the mathematical relations that makeup

the method. The assumptions and analysis body are not so much classifications as actual

description and embodiment of the method.

3.3 Mapping and Synthesis Generation

In the previous section, the decomposition of the complex system was described. The purpose

of executing a decomposition as laid out is to have the necessary information in a capacity to

identify and assimilate the necessary components to generate and execute a synthesis code. The

construction of a synthesis code occurs through the mapping of the selections and the assembly of

the decomposed elements based on the mapping function into a correctly composed code. This

section discusses the mapping concept and code assembly concept.

3.3.1 Decomposition-Composition Mapping

The system construct discussed in this chapter, is based on the concept of decomposition and

composition. For a composition to occur (the assembly of parts into a whole) the parts must exist.

As such, the parts for composition are the decomposed elements (product, method, process) that

must already exist within the framework. If it does not, it must be added. These points of product,

Mapping and Synthesis Generation 53

method, and process storage are the hardware, method, and process library as illustrated in Figure

3-1.

A mapping of inputs is the composition of the decomposition selections made by the user into

a coherent product, method, and process statement that is fundamentally the instructions for system

assembly. The decomposed elements (process objective function, disciplines, methods, product,

etc.) are mapped. Mapping of dependencies is the specification of the association of the parts in

the global picture. The mapping concept is notionally illustrated in Figure 3-9. For every vehicle,

its subsystem hardware, and the hardware’s functionality, place of function, process discipline

event, and the limitations and requirements placed upon it are associated. This is done for every

component identified. The mapping statement is utilized by the synthesis generation routine to

assemble a functional synthesis tool.

Figure 3-9 Notional mapping of decomposed elements

3.3.2 Synthesis Generation

Synthesis generation occurs through the assembly of base components into a usable form. This

is illustrated in Figure 3-10. The base components include methods and processes. Each is a

readymade analysis file, description, template, or data file. The correct methods and processes are

selected based on the mapping of the user inputs on defining the product, methods, and process of

the complex system architecture they are building. Conceptually it is a simple notion. The details

of the implementation are in Chapter 4 Concept Implementation.

Function 1

Function 2

nth Function

Function

Mapping

Hardware 1

Hardware 2

nth Hardware

Vehicle

Hardware

Mapping

Structural

Composition

Functional

Composition

Operations &

Method

Composition

Discipline

Mapping

Disc. 1

Disc. 2

nth Disc.

Mission &

Discipline

Composition

Mission

Mapping

Segment 1

Segment 2

nth Segment

Requirements

Composition

Operations

Mapping

OR 1

OR 2

nth OR

Constraint

Mapping

Const. 1

Const. 2

nth Const.

Method

Mapping

Method 1

Method 2

nth Method

54 Solution Concept

Figure 3-10 Notional synthesis generation

3.4 System Results

The system concept as defined has fundamentally three results. First, the system generates a

synthesis code—that is the first result. The second result is the numerical values generated from

the execution of the synthesis code generated. Lastly, the third system result, are the figures and

diagrams generated and returned to the user. Each is discussed in brief below.

3.4.1 Synthesis Code

The synthesis code is the fundamental system output. All other system results depend upon

this component. A system design decision is whether to assemble the synthesis code as a modular

system (dispersed files) or as a self-contained system. A goal of the system being developed is

transparency and ease of distribution. As such, the synthesis code is determined to be assembled

as a self-contained entity. That is, all necessary decomposable elements (product, methods, and

process) are contained within the synthesis file. This allows for ready distribution and control of

method and information disbursement.

3.4.2 Synthesis Execution Results

The execution of the synthesis code results in analysis data. The result data is the second

principal system output. The data is archived for later reference, mining, or reuse. The data is

stored in a database for easy retrieval. The data is saved with every successful design iteration in

the event of system or function error.

Final Result:

Self-contained

analysis codex

Extract Components

Hardware-Function-Method-

Mission-Operation-

Requirement Map

Vehicle

Process Map

System Specifications Component Libraries

Product

Method

Process

System Process

Process Components

Individual

Component

Scripts

Processing

Instructions

Chapter Summary 55

3.4.3 Return Results

The system data is processed and returned in a format for decision-making. The principal

deliverable is the solution-space topography. That is, a visualization of the results for the

identification of correct solutions and insights into the design problem. The solution concept

allows for the automated generation of diagrams at the behest of the user. Any design variable

could be visualized and assessed. A standard figure set is established. A standard set includes

execution summary (convergence report) and solution topographies by standard sizing variables.

Figure 3-11 Figure generation construct

3.4.4 Recommendations

Although not implemented in the current evolution of the system generated, the solution

concept accounts for the possibility for the integration of some form of a design recommender

system. The recommender system would process the data, mine the results, evaluate the results,

and make some design suggestions for revision or best solution set identification. However, the

inclusion of a recommender system, given the other efforts of this research, is beyond the scope of

a single dissertation. This element is not addressed beyond the identification of its place and

usefulness.

3.5 Chapter Summary

In this chapter, the solution concept for a composable vehicle-of-vehicles synthesis assembly

decision support environment was presented and discussed. The overall arching DSS concept is a

semi-automated tool-of-tools. Its primary purpose is the assembly of methods into a sizing toolset

to better help in decision-making. Each sizing toolset is specifically generated to solve the problem

at hand.

The system is founded on the principles of system component decomposition and re-

composition. Core elements—products (vehicles), processes, and methods—are described in their

base components as specified by the decomposition approach. These core elements reside within

depositories until needed. Through operation of a DSS, the user’s inputs are translated into a

system assembly instruction function that, through a determined assembly routine, identifies,

extracts, and assembles the decomposed core elements into a newly composed synthesis

Analysis
Results

Figure
Generation
Templates

Figure Generator

56 Solution Concept

architecture. The synthesis architecture is executable on assembly or stored for later use or

distribution. On execution, results are stored, processed, and presented to the user.

 In the following chapter, this solution concept is flushed out into a functional toolset. The

details of the concept’s manifestation are given.

Chapter 4 CONCEPT IMPLEMENTATION

This chapter documents the product of the concepts discussed in the previous chapter. The

product is the principal deliverable of the research conducted. Recall, the product is a generic

synthesis tool for rapid sizing/analysis architecture generation ready for integration into a follow

on intelligent automated environment. The product is referred to as Artificial Intelligence Design

and Research Assistant Decision Support System (AIDRA-DSS). A general system description,

file system, component architecture setup, approach to system execution for problem solving, and

a consideration of the systems front-end and core back-end components are the topics addressed

in this chapter. Each is addressed sequentially in the following sections.

4.1 Description, Structure, and Core Components

Addressed in this section are ADIRA-DSS, its objective, and the general architecture of the

system. The system’s architecture includes the individual files and their organization as well as

the key environments: front-end and back-end.

4.1.1 Description and Objective

AIDRA-DSS is a framework for the selecting and processing of synthesis and design analysis

options for an identified vehicle of vehicles set, resulting in the generation of sizing or analysis

codex that can be executed externally or internally of the framework, resulting in the presentation

of standard or nonstandard decision supporting diagrams for rapid and substantiated decision

making. AIDRA-DSS is a tool designed to be an environment to assist the user through

accelerating design problem exploration and decision-making. The system is developed and

applied for aerospace; however, the system is topic independent. That is, it is in theory not limited

to anyone subject area. This system is not limited to aerospace and, as long as the designer carries

the proper methodologies and processes, a vehicle can be sized or analyzed, such as a car or ship.

AIDRA-DSS has two objectives. The first objective is to explore, develop, and prepare a

modular-synthesis-architecture-assembly tool for transition into a cognitive system or other AI

framework. This is the driving objective of this research. In this respect, the purpose of the system

is to develop further expertise and a baseline environment to test complex vehicle automated

58 Concept Implementation

synthesis architecture synthetization that would be easily adaptable into a greater cognitive system.

The second purpose is to serve as a useful engineering environment that arrives the user at a

synthesized solution toolset, based on user selections, to solve a given problem by providing

standard feedback and decision aiding platforms. The second objective one could consider as an

intermediate objective to provide immediate system utility while driving towards the greater

objective of a cognitive design and research assistant.

AIDRA-DSS is a computer software system. The general construction is illustrated in Figure

4-1. AIDRA-DSS has been developed in Python with GUIs written in QT. The system relies on

SQL based relational database sets. The system files can be broken into two types: those that

comprise the front-end and those that comprise the back-end. The front-end is the system’s GUIs.

The back-end is a collection of files that support the front-end in operation, such as database files

and execute other tasks in the compilation of design codes. In the following sections, the systems

architecture, including its files, are identified, described, and file location given.

Figure 4-1 System architecture summary

Start

Project Builder Primary Output

Process
Library

Methods
Library

Project Builder

(AIDRA-DSS GUI)

Synthesis
Assembler

Vehicle
Library

Data Analysis
(Figure Generator)

End

User

Computer

Synthesis Code

Front-End

Back-End

Known:

Vehicle Baseline

Mission Concept
Output:

Distributable

synthesis architecture

Analysis result data

Supporting figures

Analysis
Data

Assemble synthesis code

based on user selections

Supporting libraries and

modules required for code

assembly to problem

specificaiton

Analysis

Data

Synthesis Output

Project
Library

Project data,

synthesis input

values, etc.

User s

Interaction

No User

Interation

Description, Structure, and Core Components 59

4.1.2 Front-End

The front-end is the GUI. The front-end is summarized in

Figure 4-2. There are seven GUIs. Each GUI set corresponds to a

different system component or module. These subsystems are the

Project Builder, Variable Library, Reference Library, Methods

Library, Vehicle Library, and Process Library. Each is

summarized in Table 4-1. All front-end components are python

based. The GUI framework is QT. Note that the python files not

only contain the instructions for GUI formation but also the

instructions for front-end to back-end interfacing. That is, the files

contain non-GUI specific code that is required for proper GUI

operation; this code is considered as back-end material. Front-end is limited to only the specific

graphical interface.

Table 4-1 AIDRA-DSS's front-end systems

GUI Description File

Project Builder Primary GUI file for DSS operation. Interface for DSS

execution and problem solution execution

projectBuilder.py

Variable Library Interface to handle system variables used in method

development and project building

variableLibrary.py

Reference Library Interface to a library of references that are used to support

method, processes, and vehicle definition and knowledge

retention

referenceLibrary.py

Methods Library Interface to add or remove system analysis methods methodsLibrary.py

Vehicle Library Interface to define or remove system vehicles vehicleLibrary.py

Process Library Interface to create processes for analysis and synthesis processLibrary.py

4.1.3 Back-End

The back-end files are categorize into database or operational

files. The database files support the operation of the front-end. It

is sumarrized in Figure 4-3. The operational files are the files that

are required and contain the algorithms to properly operate the

front-end (distinctly different from the GUI definition syntax),

link the front-end with the back-end databases, and process the

front-end option selections into a cohesive and executable

sizing/analysis program. Each back-end specific file is listed in

the table below; included is a brief description, indication of file

type, and what front-end file it supoorts. As noted in the previouse

section, the front-end python files also include the algorithms (considered as part of the back-end)

that conduct the linkage between the front-end and back-end as well as the algorithms required

during the operation of the GUI, such as dynamic filtering algorithms that are required to correctly

Figure 4-2 System front-end summary

Figure 4-3 System back-end overview

Functionality: GUI

of Systems: 7

Primary: Project Builder

Secondary: Libraries

Front-End

Language: Python, QT

Functionality: Data Storage &

Synthesis File Assembly

of Elements: 8

Primary: Synthesis Assembler

Secondary: Databases

Back-End

Language: Python, SQL

60 Concept Implementation

populate GUI elements. All backend elements are required, however, a uniquely different and

critical element is the Synthesis Assembler.

 Table 4-2 AIDRA's primary back-end files

The Synthesis Assembler is the element that, as the name implies, assembles the synthesis

code. A problem’s elements are defined during the principal operation of the Project Builder

(discussed in detail in later sections). Given the components of the problem, such as the vehicle

selections and decomposition, the processes, and the methods selection, the Synthesis Assembler

extracts the information from the systems databases and, using an auto-coding instruction

algorithm, assembles the synthesis code with correct order of operation and initialization. The code

is assembled automatically as per the user’s specifications. The result is a unique and tailor-made

synthesis code specific to the problem at hand. The Synthesis Assembler’s output is a single

aggregate file containing all necessary definitions and information required to execute the sizing

and analysis. The Synthesis Assembler is discussed in detail in section 4.4 Back-End: Synthesis

Assembler and Architecture

4.1.4 File Locations and Folder Tree Structure

AIDRA-DSS is built with relative file pathing. The system does not depend on a specific

location for initialization and operation. All subdirectories are created through the system’s

operation and are generated relative to the location of the main file (projectBuilder.py). The file

structure is discussed below.

AIDRA-DSS primary files’ structure is illustrated in Figure 4-4. The file folder structure is

relative to the main project folder. The main project folder is the folder that the user creates as the

primary place for system execution and contains all necessary source files and databases. The user

can indicate a specific file path for result output; however, the default structure is as illustrated.

» GUIs: Folder of system front-end GUI files.

» Databases: Folder containing databases for GUI operation.

File Description Type Supports

projectDatabase.db Database to store option selections from

projectBuilder.py

Database projectBuilder.py

variableLibrary.db Database to store option selections from

variableLibrary.py

Database variableLibrary.py

methodsLibrary.db Database to store option selections from

methodsLibrary.py

Database methodsLibrary.py

vehicleLibrary.db Database to store option selections from

vehicleLibrary.py

Database vehicleLibrary.py

processLibrary.db Database to store option selections from

processLibrary.py

Database processLibrary.py

referenceLibrary.db Database to store option selections from

referenceLibrary.py

Database referenceLibrary.py

synthesisAssembler.py Set of algorithms to assemble the synthesis

tool from the selections of Project Builder

Operation projectBuilder.py

Description, Structure, and Core Components 61

» Processes: Folder containing process pseudo code and function text files; the folder is

segmented into subfolders for each and named accordingly.

» Methods: Folder of the methods’ pseudo text file and python code file; subdirectories for each

category are created.

» Results: Folder containing all materials used and generated for and from the execution of a

project study.

The “Results” folder itself is separated into pre and post project execution. The folder and

subfolders are created on project synthesis code generation. For each project execution, a new

“Project Name” folder tree is created, and the “Project Name” folder renamed according to the

user specified project name. The organization scheme is depicted in Figure 4-5. The “Pre” folder

contains the subset material required and used for the specific project operation. It effectively is

an archival of the materials used in the project. The subset material includes the system databases,

methods, and processes used for the project build as well as the synthesis file generated during

system execution.

The “Post” folder contains the output of the project execution. This includes the data, figures,

and system logs; the folder organization follows the naming scheme. The naming scheme relates

the folder content and is self-evident to folder content; therefore, the matter will not be addressed

in further detail.

Figure 4-4 Project folder-file structure

Figure 4-5 Results folder-file structure on project build

GUIs

Databases

Processes

Methods

 / Project Folder

Pseudo Code

Python Code

Pseudo Code

Process Function

Results

Project Name

Post

Pre

Project Name

 / Results

Databases

Methods

Processes

Synthesis

Data

Figures

Log

62 Concept Implementation

4.2 Process to Problem Solving

AIDRA-DSS execution to arrive at the

problem solution follows a specific sequence. This

is not to be confused with the procedure to execute

any specific code but rather the order of operation

of the system’s tools to arrive at the synthesis code

and ultimately synthesis results. The overall

problem-solving process is shown in Figure 4-6.

The overall process is constant for all problems.

Differentiation of projects occurs in the user’s

selections during the process execution.

The process to problem solution has four

action items. The process is illustrated in Figure

4-6. For any given problem where in this system is

utilized, the process steps are: define the study,

create the necessary supporting elements if they

are not already in system, create and execute

synthesis architecture for the given problem, and,

either based on initial study definition or on

architecture execution results, iterate the definition

itself or iterate system subcomponents, as

necessary. The process repeats until satisfactory

completion of the user’s objective. The overall

process is simple however each step is a process

unto itself. Each is briefly addressed below; a

detailed consideration of the components utilized

within the steps is given in Section 4.3 Front-End:

Core Components Description.

4.2.1 Study Definition

In the study definitin step the user user defines the problem. Problem definition includes the

identification of the overall objective of the study and the general elements of the study.

Specifically, these are the elements required to create a synthesis system through the use of the

Project Builder routine. They include, but are not limited to, the vehicle, process, mission,

trajectory, trade study, and even the mehods required. By the end of this step, the user has clearly

defined all system elements of a classical design study that are required to execute the Project

Builder—generation and execution of a synthesis architecture. This is necessary as these elements

should exist within the system for rapid operation; determination if they exist and, if not, to add

them to the system is the subject of the next step—Support Material Definition. Note, however,

Figure 4-6 General execution process to AIDRA-DSS

Sub

Components

Exist?

No

Yes

Start

End

Yes

No

Study Definition

Change

Definition?

No

Yes

Project Builder

Architecture Generation & Execution

Process Library

Method Library

Variable Library

Vehicle Library

Support Material Definition

Project Iteration

Study Finished?

Process to Problem Solving 63

many principle components can be generated from within the Project Builder in the event that,

while operating, new requirments or study definition elements are determined necessary and yet

are not currently available or in the event that the user is unaware of what components already

exist in a usable form.

4.2.2 Support Material Definition

The Support Material Definition step involves the generation of the materials required for the

architecture generation step. Architecture generation occurs within Project Builder. The

supporting elements needed for architecture generation include the vehicles, processes, and

methods required for the problem at hand. These correlate to the Vehicle Library, Process Library,

and Methods Library. On identification of what is required to solve the problem in the Problem

Definition step, the user must now verify that the required library elementals exist. In the event

that they do not, the operator must initiate and execute the system’s libraries sub-processes as

necessary to add the required elements. The process is repeated as necessary per element required.

Additionally, to reiterate, any of the base elements identified during Problem Definition, can

be created during the operation of Project Builder during the Architecture Generation and

Execution step. In this way, if an element required was not foreseen, such as a particular method,

it can be added to the system during Project Builder operation. Each supporting library is

accessible through the Project Builder. Once the support libraries are populated to a critical level,

the user could move directly to the Project Builder with confidence that the base elements exist

and, if not, can be added, as necessary.

4.2.3 Architecture Generation and Execution

The Architecture Generation and Execution action item embodies the primary purpose of

AIDRA-DSS. This action item is the execution of a process to arrive at an architecture to solve the

given problem. The process to arrive at an architecture and its execution is the process of executing

Project Builder. The Project Builder, similar to the supporting libraries, has its own procedure of

execution. Project Builder’s process is discussed in detail in section 4.3 Front-End: Core

Components Description, however, a brief discussion of it is given below.

Given the problem definition and setup, the user executes the Project Builder to arrive at the

generation and execution of a synthesis architecture tailor made to address the problem as defined.

With the vehicle and process, as required by the problem definition and subsequent creation in the

support libraries, the user executes the Project Builder. The user selects the desired methods to

model the vehicles and uses these option selections, in addition to others such as trajectory options,

to assemble the core components of a synthesis architecture. The system is executed either in

system with results and visualization displayed to the operator or the architecture is generated and

executed later at the user’s digression. With the architectures generated and executed per the

problem definition, the user now considers if the problem definition has been satisfied, this takes

the user to the last step in the process—Project Iteration.

64 Concept Implementation

4.2.4 Project Iteration

On system execution and result accumulation and review, a study can be deemed either

complete or requiring iteration. A study is considered complete when the system is no longer

required and the study definition is satisfied in terms of system applicability. In the event that the

study is deemed complete, the system is no longer necessary and the process of system execution

ends. In the event that the study is not complete with the given processes sequence, then the process

repeats but with either a change in a design variable, element selection (such as the method or

process), or study definition. On identification of the iteration element, the process restarts at either

Problem Definition or Architecture Generation and Execution depending on if the definition or if

the architecture generation element selections require iteration, respectively.

4.3 Front-End: Core Components Description

Seven principal system modules form AIDRA-DSS. The systems are: Reference Library,

Methods Library, Vehicle Library, Process Library, and Project Builder. Each is addressed in the

following sections.

4.3.1 Reference Library

The Reference Library is a user interface to a database of references and file correlations for

both knowledge gathering and retention, and for system method, process, and vehicle referencing.

The database entry listings and new entry creation form are illustrated in Figure 4-7 and Figure

4-8 respectively.

The Reference Library is the least complicated of the system modules. Two tabs form the front-

end. The first—Figure 4-7—is the browser page; tabulated and shown is an aggregate of references

according to author and title. From this page, a reference can be selected for modification or

deletion, or a new reference entry procedure can be initiated. On both modify and new, the second

tab—Reference Builder—is shown. Figure 4-8 shows an example for the Reference Builder tab.

The tab’s form has two regions. First, the general reference information is displayed. If it does not

exist, as for a new entry, then the entry fields are empty and are awaiting for the information to be

added. The second half of the window is a non-editable region showing where the reference has

been applied, such as a project or method. Tracking the references application allows for easy

accountability for reference use in method, vehicle, or process building.

Front-End: Core Components Description 65

Figure 4-7 Reference Library listing and start page Figure 4-8 Reference input and documentation form

4.3.2 Methods Library

The Methods Library is a database of

system analysis methods accessible to the

Project Builder for application in the

synthesis tool. The database entry listings

and new entry creation form are illustrated

in Figure 4-9 and Figure 4-10 respectively.

The Method Browser tab is the Methods

Library’s home screen. From here, a

method can be deleted, modified, or added.

A listing of all currently entered methods is

given. The methods are listed

alphabetically. Method ID numbers are

unique and automatically generated on

method creation. General method

information is displayed including the discipline the method is associated to and a brief method

description.

To create a new method, the user clicks the “New”

button on the Method Browser tab. To view an existing

method, the user clicks a cell corresponding to the desired

method’s row and selects “Modify”.

On selection of “New”, the user is presented with a

method entry form as shown in Figure 4-10. As evident in

the figure, the user enters the method’s general

information such as a descriptive name and a general

description. Additionally, the user selects the applicable

primary and secondary disciplines, such as aerodynamics or propulsion, thereby correlating the

Figure 4-9 Methods Library Browser

Figure 4-10 New Method form

66 Concept Implementation

method to a discipline. The selection of a primary discipline is required. On save, the new method

information is saved to the back-end database and appropriate tables are created as well as blank

method script files that are discussed later. On completion, the user is taken to the Method Builder

tab—Figure 4-11—for further method specification. On modify, the user is directly shown the

Method Builder tab.

The Method Builder is where the method is fully described, entered, and associated. This task

is segmented into three subtabs in the Method Builder page labeled Logic, I/O, and Application;

they are shown in Figure 4-11, Figure 4-12, and Figure 4-13 respectively. The Logic tab is

organized into four fields. The left half of the page contains two fields for describing and

documenting the method. This includes the general information entered on the method creation

form and a field for selecting the references for the method. The user is to add the references to

support the method. The documenting of the references allows for an easy identification of source

material for later reference if necessary.

The right half of the Logic tab’s page consists of two text fields for the method’s code

documentation: “Pseudo Code” and “Editor”. The “Pseudo Code” section is a text field to

document—via pseudo code—the method script that is entered in the “Editor” text field below

“Pseudo Code” field, in the bottom right corner. The “Pseudo Code” is saved to a text file in the

back-end that is created on method creation. The “Editor” field is a text field as well. Within this

field, the user enters the method. The user must write in the “Editor” field in proper python syntax

(or paste a properly written script into the field). Similar to the “Pseudo Code” field and associated

Figure 4-11 Method Builder—Logic definition tab

Front-End: Core Components Description 67

file, the “Editor” associated file and entries are similarly created and saved to the back-end, but as

python script files. All method pseudo code and script files s are stored relative to the master folder

as described in the previous section. Both files are named according to the method name,

discipline, and ID generated on method creation. On entering the information and selecting next,

all page information is saved to the back-end and the user is displayed the I/O tab—Figure 4-12.

The I/O page is the page in which the user identifies the method’s inputs and outputs. As is

visible, the page is separated into two regions. The left half is a list of all variables currently stored

in the system and is loaded from the Variable Library’s database. The right half of the page

contains tables for displaying the selected input and output variables. To add a variable to the

selection fields, the user must select the desired variable from the variable list and add them to

either the inputs or the outputs list by clicking the appropriate button: “Add to Inputs” or “Add to

Outputs”. On click, the currently selected variables in the variable list are added to the appropriate

list according to the button activated.

Figure 4-12 Method Builder–Input and Outputs (I/O) tab

If the desired variable does not exist, the user can click the “Open Library” button, which will

open the Variable Library. Upon opening the Variable Library, the user shall add the desired

variable, after which, it will be available and displayed in the I/O variable list.

Upon completion of specifying the input and output variables, the user clicks “Next”. On click

of “Next”, two operations occur. First, the selected variables are saved to the back-end in the

appropriate tables according to whether they are inputs or outputs. Second, the active tab changes

to Application, the last tab.

68 Concept Implementation

The Method Library’s Application tab—Figure 4-13—is where the user identifies the method’s

applicable conditions. The applicable conditions are those states in which the method is applicable

and, therefore, are requirement conditions that should be met for correct method application. By

selecting the appropriate condition field elements, the user will correctly define the applicability

of the method. These options are selected from the drop-down menus above each text field. The

text field displays the current selections and notifies the user on condition add or remove.

There are three condition fields. They are Concept, Hardware, and Operation. The Concept

field identifies the type of vehicle concept the method is applicable to, such as a TSTO launch

vehicle or a flat-bottom lifting vehicle. Similarly, the Hardware field is the collection of

decomposed system hardware components that assemble into a system-of-systems vehicle.

Hardware includes such elements as the landing gear and type, the engine and type, lifting surfaces,

etc. The Hardware are the physical components that assemble into the total system that the method

models. The Operation field identifies the operating conditions in which the method is applicable.

This would include, for example, man vs unmanned, subsonic vs supersonic, fuel and oxidizer

type, etc.

After the completion of the application condition selections, the user clicks “Done.” On doing

so, the information selected is saved to the back-end database, the method addition or modification

is complete, and the Method Library’s Browser tab is displayed, where in, the process can be

repeated for a new method or method modification, as necessary.

Figure 4-13 Method Builder—Application tab

Front-End: Core Components Description 69

4.3.3 Vehicle Library

The Vehicle Library constitutes an interface and database for the creation and storage of

vehicles that are to be employed within the Project Builder. The Vehicle Library interface is the

means in which the user specifies the constituents composing the vehicle. Two tabs formulate the

Vehicle Library. They are Vehicle Browser and Vehicle Builder, each depicted in Figure 4-14 and

Figure 4-15 respectively.

In opening the Vehicle Library, the user is presented

with the Vehicle Browser. This browser’s operation and

layout is the same as all previously discussed browser

pages. The user is presented a chronicle of all currently

entered vehicles. From this page, the user can select to

modify, create, or delete a vehicle. To modify a vehicle the

user selects a cell in the desired vehicle’s row and selects

“View/Modify”. At this point, the user will be displayed the “Vehicle Builder” window (discussed

below). On the click of “New”, the user is presented a vehicle initialization window as shown in

Figure 4-16. As evident in the figure, the user enters a vehicle name, the vehicle type, and a vehicle

description. This information displays in the Vehicle Browser’s table of vehicles on continuation

as a new vehicle entry. On completion and save, the Vehicle Builder tab displays.

The Vehicle Builder tab presents the interface in which the user specifies the specifics of the

vehicle and, in doing, defines the vehicle. The Vehicle Builder page is displayed in Figure 4-15;

the layout and operation are the same as that in the Methods Library’s Application subtab. The

user specifies the constituents composing, defining, and limiting the vehicle. This is accomplished

by specifying the vehicle’s Concept, Hardware, and Operation. The constituents are subsystem

components or conditions that specify the total system. These constituents are the same elements

within the condition fields of the Methods Library. If a vehicle has more than one of an element,

Figure 4-14 Vehicle Library—Vehicle Browser

Figure 4-15 Vehicle Library—Vehicle Builder

Figure 4-16 Vehicle Library—New Vehicle

70 Concept Implementation

the user need only select it once. On click of “Next”, the information selected is saved and the user

is returned to the Vehicle Browser tab; this completes a vehicle build.

4.3.4 Process Library

The Process Library is the interface where in an analytical process is defined and stored. A

process can be either a secondary or a primary process. A secondary process is a process that

occurs within or in the context of a primary process. A primary process is a process that can be

executed independently or in conjunction with another defined system process (secondary

process). A primary process governs the total system; a secondary process must exist within a

primary process. The creation of each within the Process Library, follows the same procedure.

The Process Library’s approach is

consistent with the other libraries of

AIDRA-DSS. As in the other libraries, the

Process Library comprises of two principal

tabs: “Process Browser” and “Process

Builder”. The “Process Browser”—Figure

4-17—is the screen shown at library

initialization. A table presents the user with

all currently recorded processes. The user

is presented with each process’ identifying

information. This includes the process’

name, whether it is a primary or secondary

process, whether or not convergence

occurs within the process, and a process description. The identifying process information is entered

on process creation, see Figure 4-18. From the browser page, the user can select a process for

modification or deletion, or the user can initialize the creation of a new process. On the selection

of a process and clicking “View/Modify”, the user is taken to the Process Builder tab, Figure 4-19.

On clicking “New” the new process entry form is presented, Figure 4-18.

The new process initialization form is shown in Figure 4-18.

On completion of this form, the new process is initialized within

the system. To begin, the user enters the process identifying

information: name, author, process type (primary or secondary),

convergence class (yes or no), and a brief description. On the click

of “Add/Save” the necessary tables for the new process are created

in the back-end and the information is saved, thereby initializing

the process. Additionally, this form closes and the user is

displayed an active Process Builder tab.

The Process Builder, Figure 4-19, is where the user defines or

edits a process. The tab’s page is setup in three columns. The first

Figure 4-17 Process Library—Process Browser

Figure 4-18 Process Library—New

Process form

Front-End: Core Components Description 71

column constitutes the general information describing the process. This includes the sections:

Process Details and Pseudo Code. The Process Details section is the process information added in

the new process form; it is not editable. The Pseudo Code section has a text field for the user to

specify in natural language the process. The text added here is saved in a text file in the back-end.

The second column contains the section Objective Function. If the process has a governing

objective equation(s), in this section the user specifies it. The process of specifying the objective

function has two parts. First, the user must add the independent and dependent function variables.

They are added by clicking “Add Variable”; at which a form to select the variables opens, see

Figure 4-20. The form has on the left a table of available variables to choose. On the right are two

tables, one for independent variable listing and a second for dependent variable listing. To add to

either table, and thereby make a variable an independent or dependent process variable, the user

selects the desired variable from the variable list and then selects either “Add to Ind.” or “Add to

Dep.” to add the variable to the

independent or dependent variable list,

respectively. When all necessary

variables are added, the user clicks

“Done”, at which point the form is

closed, the selections saved to the back-

end, and the Process Builder tab’s page is

shown with the selected variables visible

in the appropriate Primary or Secondary

tables.

Figure 4-19 Process Library—Process Builder

Figure 4-20 Process Builder—Objective Function variable selection

form

72 Concept Implementation

The second part of the objective function specification process is to enter the objective function

itself. The objective function(s) are added in the Process Function table. On the selection of

independent variables, the Process Function table row count is set to the number of independent

variables. The user must type the objective functions into the newly created rows. Between all

objective functions entered, all independent and dependent variables must be used at least once.

The variable names must be entered as they appear in the Independent and Dependent tables. It is

upon the user to verify accuracy in entry and that all variables have been used. Additionally, all

objective functions should equate to zero. The system is current set only to solve for objective

functions in this form.

The form’s third column section is

Process Disciplines. In this region, the user

identifies the primary and secondary

disciplines, and the primary discipline

order of operation. The user first selects the

disciplines and then specifies the order. To

select the disciplines, the user clicks “Add

Disc”. On clicking, the discipline selection

form, Figure 4-21, is presented.

The form layout and the process of selecting disciplines, is similar to the variable selection

process. The form is organized with the disciplines (primary and secondary) available on the left

and those selected on the right. To add a discipline to the Selected Process Discipline tables, the

user selects the variable from either the Primary or the Secondary tables under the Process

Disciplines area and selects appropriately either “Add to Primary” or “Add to Secondary”. The

user cannot mix disciplines; that is, the user cannot add a primary discipline as a secondary

discipline or a secondary discipline as a primary discipline. To add or modify the list of available

disciplines, the user must adjust the appropriate table in the back-end database. On selecting the

desired disciplines, the user clicks “Save/Close”, at which point the user is presented with the

Process Builder window, where in the previously selected disciplines are shown in the appropriate

Primary and Secondary tables. To finalize the process build, the user need only award the

discipline order. The discipline execution is serial. In the third and right most column, under

Primary Discipline Order, the user is displayed a table populated with the primary disciplines. The

user must add a numerical value correlating to the disciplines order in the overall process. The

numbering must be integer based; the order will be executed in numerically increasing order. That

is, the discipline with the lowest numeric value will occur first in the process execution; the value

with the greatest numeric value will occurs last.

On completion of all form sections, the user completes the process creation and build by

clicking “Done”, at which point all entered information is appropriately written to the tables in the

back-end and the user is returned to the Process Browser.

Figure 4-21 Process Builder—Process Discipline Selection form

Front-End: Core Components Description 73

4.3.5 Project Builder

The Project Builder is the primary component of AIDRA-DSS. This system is the DSS

environment. The Project Builder has seven discernable secondary components in addition to the

standard library browser. These components are the tabs of the DSS GUI. The tab breakdown is

illustrated in Figure 4-22, the order of operation is indicated by the numerals. The inspiration for

segmenting the system into the specific scheme what is called “the standard to design ladder” as

presented in [88]. Simply, the ladder is a symbolic representation of specific technical tasks that

should be present in a technically rigorous process of design and evaluation. Each tab has a unique

task to build towards the final deliverables and ultimately decision making. A summary of each

tab’s objectives is given below. This followed by an in-depth discussion of each tab as fabricated.

Figure 4-22 AIDRA-DSS Project Builder tab set

» Analysis: Selection of primary and secondary vehicles and corresponding trajectory segments

» Integration: Selection of architecture processes and assignment to the vehicle selections,

selection of hardware-discipline methods, and association of hardware function to mission

segment

» Iteration: Selection and specification of a method set for hardware requiring multiple methods

per discipline, and establishment of vehicle trajectory

» Convergence: Review of architecture processes selections including convergence

specifications, and specification of additional convergence criteria including the option for user

specific solver selection and solver option specification

» Screening: Specification of the study as single or multipoint, specification of trade variables

and ranges if a trade study, and specification of required input variable values

» Visualization: Selection of visualization materials to be generated to assist in design evaluation

» Assessment: Evaluation of study results for system accuracy and general design insights

towards the design problem at hand

4.3.5.1 Project Builder Browser

As in the case of the libraries, the Project Builder also starts with a browser window. The style

and operation are consistent with the other browsers. A table lists all currently started project

builds. From this vantage point, the user can delete, modify, or begin a project. The operation is

Analysis IterationIntegration Convergence Screening Visualization Assessnent

Project Builder

1 2 3 4 5 6 7

74 Concept Implementation

identical to the browser in the other libraries discussed earlier. The Project Builders browser tab

and new project window are shown in Figure 4-23 and Figure 4-24respectively.

Figure 4-23 Project Builder—Browser

Figure 4-24 Project Builder—New Project

4.3.5.2 Analysis

The Analysis tab presents the page wherein the user identifies the principal system(s) for

analysis and the environment of analysis. The Analysis tab’s content is shown in Figure 4-25. The

page is separated into specific sections: Project Information, Analysis Details, Mission Segments,

Vehicle Selection, and Selected Vehicle Decomposition.

Figure 4-25 Project Builder—Analysis

Front-End: Core Components Description 75

The Project Information section, the top-left region of the page, contains the project specific

information as generated and created in the new project form. This information is not editable and

is repeated, in part, in the other tabs’ page for reference.

Below the general project information, is the Analysis Details section. In this section, the user

is required to select several analysis options. This includes the execution automation level

(currently full and semi are not functional), the celestial body that governs the gravitational and

atmospheric conditions, and the celestial body type assumption, that is, the case of flat, round, or

spherical body assumption. These selections will set the environment of the vehicle’s operation

and method analysis type. These option selections will participate in the governing of the methods

presented for selection in a later window.

Below the Analysis Details section,

is the Mission Segments section. In this

section, a table shows the mission

segments (trajectory segments) selected

for vehicle operation. To select the

mission segments, the user clicks

“Mission Segments” and the mission

selection window opens, see Figure

4-26. In this window, the user selects

the desired missions in the same manner as previously discussed for similar selection windows.

The mission segments available directly correlate to the trajectory methods available. On save, the

window is closed, the back-end database updated, and the mission segment selections displays in

the Mission Segment section table.

The section Vehicle Selection (top-

right corner) displays the vehicle(s)

selected for analysis. To select a

vehicle(s), the user clicks “Select

Vehicle”, at which point, the vehicle

selection window—Figure 4-27—

displays. On the left side of the window,

the vehicles available are shown. These

are the vehicles from the Vehicle Library. The user must select a vehicle. Multiple vehicles can be

selected; however, if multiple are selected, then there must be at least one primary vehicle. The

user must correctly select the vehicles as primary or secondary. A primary vehicle is a vehicle that

is independent but can consist of one or more secondary vehicles. A secondary vehicle is a vehicle

or a system that acts like a vehicle (a distinguishable sub element such as a first stage in a multi-

stage rocket) or is a distinguishable vehicle but is part of a total system that is considered itself as

a vehicle. For example, the Falcon Heavy would be considered a primary vehicle consisting of

multiple distinct secondary vehicles (the side stages, center core, and upper stage) that, in their

Figure 4-26 Analysis—Mission Selection window

Figure 4-27 Analysis—Vehicle Selection window

76 Concept Implementation

own-right, can be treated as distinct vehicles with their own secondary missions and sizing

processes. On completion of vehicle selection, the user clicks “save”, the data is added to the back-

end, the window closes, and the vehicles are added to the Vehicle Selection table.

The Selected Vehicle Decomposition section displays the elemental constructs of the vehicles

selected. The user can switch between the vehicles selected. The table displays the constructs

selected during the vehicle build. The vehicle’s concept, hardware, and operation selections are

shown. This is provided for self-review prior to moving to the next tab, Integration.

4.3.5.3 Integration

The Integration tab, Figure 4-28, contains three sections: Process Selection, Method Selection,

and Function Assignment. These sections lead to the selection of the analysis’ processes, the

selection of the analysis’ methods, and the association of hardware to function. The order of

operation is to select the processes first, followed by the methods, and lastly the hardware-function

assignment. Each is discussed next.

Figure 4-28 Project Builder—Integration

Front-End: Core Components Description 77

4.3.5.3.1 Process Selection

The user selects the analysis process in

the Process Selection and Assignment

window, Figure 4-29. Clicking the “Select

Process” button will display the window.

On the left side of the window is the

Process List. The Process List is an

itemization of the processes available for

selection. The right side of the window

contains two windows—Primary and

Secondary. The primary and secondary terms correspond to the vehicle class not the process class.

The process’ class (primary or secondary) is indicated in the Process List table. A process

classification can be either secondary or primary and can be assigned to either a primary or a

secondary vehicle. (Recall, a primary process is a process that governs the closure of a vehicle

design and can but is not required to contain a sub-process. A secondary process is a process that

operates within the bounds of a primary process.) To assign a process, the user selects the process

in the Process List table and then clicks either “Add to Pri.” or “Add to Sec.” to add the process to

the Primary or Secondary table, respectively. After selecting the process, the user assigns the

process to a vehicle by selecting the desired vehicle from the drop-down window available in the

Primary or Secondary table depending on the user’s selection. Only vehicles selected during the

Analysis page operation will be available as options to the user. When the process selection and

assignment to a vehicle is complete, the user selects “Save/Close” at which point the selections

made are saved to the back-end database and the window closes. The process-vehicle selections

made are displayed in the Integration page’s Process Selection table.

4.3.5.3.2 Method Selection

Method selection occurs through the Method Selection window—Figure 4-30. The window is

accessed by selecting “Select Method” under the Method Selection tab. On button click, the

window displays and is populated.

Methods are assigned according to vehicle-hardware-discipline association. The vehicle(s)

previously selected and its hardware populates the Method Selection window. Each hardware has

the option to be assigned a single method per process discipline (if more than one method is

necessary, all hardware-discipline methods for that discipline should be assigned under the

Iteration tab). The methods available per hardware per discipline display in a dropdown menu in

the Method Name column. To assign a method and activate the analysis option, the user must

select a method from the menu in the Method Name column and select “Yes” under the Select

column. The user can decline a hardware-discipline analysis by selecting “No” under the Select

column; in this case, the method displayed in the Method Name column is non-consequential. By

reviewing the Select column’s entries, the user can review to what degree a given hardware is

being considered in the analysis (hardware-discipline accountability). On completion of method

assignment, the user selects “Save” and the user’s selections are saved to the back-end database,

Figure 4-29 Integration—Process Selection and Assignment window

78 Concept Implementation

the window closes, and the vehicle-hardware-method selections are displayed in the Integration

page’s “Selected” table section under the Method Selection tab.

4.3.5.3.3 Function Assignment

The Function Assignment tab—shown in Figure 4-31—is the interface for the user to assign a

vehicle’s hardware a function mode (its purpose) and assign that functionality to a given mission

segment. The function type is set in the Function column. A drop-down menu shows the available

functions (Lift Source, Thrust Source, TPS, etc.). If multiple hardware provides the same function

for the same mission, their order of operation (simultaneous or sequential) is assigned via the value

set in the Hardware Order column. The order is in ascending order, that is, the lower value

associated hardware function occurs first.

Additionally, this section indirectly sets the mission segments per vehicle. As such, the user

must assure that all required mission segments per vehicle are associated. The mission options

available are from the list selected in the Analysis tab. To add a row, and therefore a mission

segment, select “Assignment”. This will add a single row. Furthermore, note that there is a direct

dependency between mission segment and hardware function; this means that for all mission

segments the vehicle must have some hardware performing a function whether it be thrust, lift,

thermal protection, or some other.

By the completion of the Function Assignment tab, the vehicle has its mission segments

specified, hardware per mission segment operation type and variable range defined, and, in the

Figure 4-30 Integration—Method Selection window

Figure 4-31 Integration—Function Assignment tab

Front-End: Core Components Description 79

event of multiple hardware with the same function mode, the specification of operational order.

Not defined however, is the mission order. The mission order is set during the Iteration page

operation.

4.3.5.4 Iteration:

The Iteration tab—Figure 4-32—is the environment in which the user defines the parameters

that refine the analysis process for proper code assembly. There are two primary objectives: (1)

expand methods per hardware per discipline if necessary and (2) formulize the trajectory. These

objectives are fulfilled by the interactions within the Method Expansion and Functional Mission

Builder sections, respectively.

A secondary objective of the Iteration page is to verify the vehicle-process selection. This is

done by review of the information presented in the Process Check section. Here, the selected

vehicle and associated process’ grade are indicated (primary or secondary). All vehicles should

have a process and the primary vehicle must have a primary process associated. The user should

review the presented selections for correctness; this is a manual verification process.

4.3.5.4.1 Method Expansion

The Method Expansion section provides the user the option to add or assign multiple methods

to a vehicle-hardware-discipline association. As visible in Figure 4-33, the Method Expansion area

is a table populated with drop down menus for the user to associate a new method as in a similar

manner to previously done. However, the user must now address a new condition, the

conditionality of multiple methods per the same device. This is addressed through the selection of

a control variable and variable value.

Figure 4-32 Project Builder—Iteration Page

80 Concept Implementation

The control variable is a method variable that controls the operational execution of the multiple

methods. The control variable is selectable from the method input variables. The methods

execution is controlled by the value of the control variable as set in the Value column. For example,

if there are three aerodynamic methods (subsonic, transonic, and supersonic) then a control

variable could be the Mach number with control variable values of 0.85, 1.25, and 7. In this case,

the subsonic method would execute so long as the Mach number is less than 0.85. The transonic

method would execute for Mach numbers between 0.85 and 1.25. The supersonic method would

execute for Mach number values greater than 1.25 and less than 7. In this way, the user controls

the application range of a method in a multi-method set.

4.3.5.4.2 Function Mission Builder

The Function Mission Builder section is the area in which the user defines the vehicle’s

mission. The Function Mission Builder is populated with the mission segments selected in the

Integration page’s Function Assignment tab. In this section, the user specifies the parent-child

vehicle relationship, assigns a mission segment and order value to a vehicle, and specifies a trigger

condition if necessary.

The vehicle parent-child relationships are controlled through the Primary Vehicle and

Secondary Vehicle column selections. If the user selected more than one vehicle during the

operation of the Analysis tab, then here the user specifies the vehicle relationships. The primary

vehicle or parent is selected in the Primary Vehicle column. All vehicles are listed as options. The

secondary vehicle or child vehicle is specified in the Secondary Vehicle column. A secondary

vehicle can be a primary vehicle as well. During the operation of the Analysis tab, if only one

Figure 4-33 Iteration—Method Expansion section

Figure 4-34 Iteration Page—Function Mission Builder Section

Front-End: Core Components Description 81

vehicle were selected, then the Second Vehicle column will display “No Sec. Veh. Required” and

the user must not make any selection. All vehicles and their dependencies must be assigned mission

segments.

For each mission segment, the user is required to assign a value for the Mission Order. The

mission order defines the order of mission segment occurrence in the total mission. The value

assigned expresses the order of operation; the lower the value the earlier the mission segment

occurs. The mission order per vehicle is sequential. In the case of the multi-vehicle, the values

need to coincide if the vehicles (primary and secondary) operate concurrently or as a single system.

At the point of a multi-vehicle disintegration, the mission segment and order per vehicle does not

need to agree. In this way, the user can define a system of vehicles that operates concurrently as a

single system for a specified set of mission segments, but that can also operate disintegrated as

independent individual systems—with unique mission segments—at a predetermined point in the

total mission trajectory.

The trigger variable is a user-selected variable that specifies a variable dependency for the

mission segment execution. The mission segment execution is controlled by the value of the trigger

variable. In this way, similar to the case of multiple methods for single hardware, the user can set

switches to control the mission segment analysis.

If a trigger variable is not required, then the user must set the Trigger Value entry to NA and

set the Trigger Var. to any variable, the Trigger Var. is nonconsequential. In this case, all mission

trajectory control will be accomplished through the standard method inputs for the mission

segment. The inputs are set in the Screening tab.

4.3.5.5 Convergence

The Convergence tab—Figure 4-35—has two purposes. The purpose is to display the process

information (as visible in the Process Information section) and, as visible in the Convergence Setup

section, present the user with a means to control more directly the convergence execution.

The Process Information section presents the user with three information portals: Independent

Variables, Convergence Functions, and Inter-Process Disciplinary Variables. These three portals

are setup for system transparency and system review. Recall that a developmental objective is

solution system transparency. As such, here the user is presented for review and edification, the

independent variables of the process, the convergence functions of the process selected, and the

process variables that are part of the multidisciplinary process (inter-disciplinary variables). The

interdisciplinary variables account for the interconnectivity of the disciplinary analysis and

changes with method selection. From this information, the user can track variable influence and

the degree of discipline dependencies. This is significant for identifying and tracking potential

design driving variables and allows for a means of assessment on method selection for

multidisciplinary variable integration into the concept design. The Process Information section

82 Concept Implementation

presents information; the user is required to review the information for impact, significance, and

correctness.

The Convergence Setup section is the interface for refining the convergence process and user

feedback. The user is able to select the convergence output style and specify solver options through

the Output Style and Solver Options sections respectively. The output style refers to how the

convergence output is handled in regard to the user; the user can select to receive no specific

feedback, a data file of the convergence function outputs per iteration, or a real-time plot of the

convergence data. The Solver Option section is where the user can specify a specific solver from

a set of options, specify the numerical zero value for the solver and user specific solver options.

The user specific options interface is a text input area; the text must be in proper python syntax for

the solver selected.

4.3.5.6 Screening

The Screening tab—Figure 4-36—is a significant action location. Three critical tasks are

accomplished: trade study specification, input variables’ value specification, and system

generation. The page’s tasks are categorized horizontally into three rows corresponding to each

task.

Figure 4-35 Project Builder—Convergence Page

Front-End: Core Components Description 83

4.3.5.6.1 Trade Study Specification

The first task is trade study specification. Trade study specification occurs through the Study

Type and Trade Variables sections selections and range specifications. The study type, selected in

the Study Type section, can be selected as single point, multi-point, or sensitivity. The first two

are self-explanatory. The sensitivity type is a type of multi-point but with a specific purpose of

identifying variables of high influence on the design solution and does not allow user selection of

trade variables.

For a multipoint study type, the trade study variable selection and specification occurs through

the operation of the Trade Variables section. There are two steps to setting up the trade study:

selecting the trade variables and identifying the trade variable range and step count.

The user must select the trade variables. The trade variables are selected through the Trade

Variable Selection window—Figure 4-37—that is opened by clicking “Select” in the Trade

Variables section. The Trade Variables Selection window presents the user with a list of available

variables—the left-hand table. From this list, the user selects the trade variables desired and clicks

“Add to Selected”. On click, the variables selected are displayed in the Selected Variables section’s

table. When all trade variables are selected, the user clicks “Save/Close” at which point the data is

saved and presented in the Trade Variables section’s table in the Screening tab.

The selecting of the variables completes the first step; the second step is to specify the variable

trade values. With the trade variables selected the user must enter the, the user enters the minimum,

maximum, and desired data points between the minimum and maximum specified (including the

boundary values). The user enters the values directly in the Trade Variables section’s table.

Figure 4-36 Project Builder—Screening tab’s page

84 Concept Implementation

Figure 4-37 Screening Page—Trade Variable Selection window

4.3.5.6.2 Input Value Specification

The second third of the Screening window comprises of a table of input variables, as

determined by the system, where in the user is to specify the values. Through an evaluation of all

methods selected and their place within the order of operations in the process selected, the system

determines which variables require an initial value from the user. These variables are uniquely

different from the interdisciplinary variables discussed previously in the Convergence tab. The

user enters values for each variable at this interface. On the click of “next” or any of the generation

buttons (discussed below) the input values entered by the user are saved to the backend database

and are automatically entered into the synthesis script on generation. However, if the user clicks

“back”, the data is not retained, as each time the Screening window is displayed the required input

variables are reevaluated and presented.

4.3.5.6.3 System Execution

The bottom third of the page contains the System Execution section. At this point, the user is

presented with a principal option. The user is able to generate the code as standalone but that is

not executed at the time of generation, or the user can generate the code and run it subsequently

but with no tasked figure generation. At this point all necessary elements to generate the synthesis

code have been specified. If the user chooses not to generate it at this point, it will be generated by

default after the Visualization tab’s page completion. Additionally, the user has the option to

change the output folder. By default, the output folder is relative to the location of the GUI’s script

file as described in the earlier folder tree discussion. There is the option to not generate the code

at this point if the user favors to set a desired result visualization scheme, which is set in the next

tab—Visualization. If the user decides to generate and execute the synthesis generation at this

point, then no result data analysis will be conducted automatically; a database of result data will

be generated for later evaluation and analysis upon synthesis code execution.

4.3.5.7 Visualization

The Visualization page is the interface in which the user identifies the decision-making support

figures to be generated. The page is shown in Figure 4-38. The user can specify the file type and

image resolution in the File Format and Resolution sections respectively (located on the left-hand

side of the page). The Visualization Package and Selected Variables sections are where in the user

defines the figures to be generated.

Front-End: Core Components Description 85

4.3.5.7.1 Visualization Package

In the Visualization Package section, the user has two options: Standard or Custom. These

options control the variables and figure types that are to be generated. The user can adjust the

standard package. Currently, the standard figures address study success (convergence iterations

per trade and final convergence error per iteration), in addition to geometric and weight design

variable depiction. Ideally, the standard package would contain a set of preselected figures that

should address some standard design questions for a given problem relevant to the conceptual

designer; this set could and would vary depending on the problem/vehicle type. Table 4-3

summarizes a standard figure package set. The Custom option is selected if the user wishes to

specify the visualization output exactly.

Table 4-3 Visualization Standard Package figure set

Field Description Type

Geometry/Weight Standard sizing figure of 𝑆𝑝𝑙𝑛 versus 𝑇𝑂𝐺𝑊; trade study inclusive Scatter-Line

Geometry Vehicle length versus span; trade study inclusive Scatter-Line

Convergence Depiction of convergence criteria per solver iteration; trade study

inclusive; 𝑓(𝑃𝑟𝑜𝑐𝑒𝑠𝑠 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒, 𝑒𝑟𝑟𝑜𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒)
Scatter-Line

Study Summary Presentation of all converged and non-converged points and execution

error log check; rapid identification of non-solution iterations

Bar

To initiate the custom output option, the user clicks “Select Custom”, at which point the

“Custom” radial option is set active and the variable selection window—Figure 4-39—displays.

The window is separated into a table of variables available and the set of selected variables and

their corresponding figure axis assignment. The user can plot up to three different variables. The

user selects a variable from the “Variable List” and assigns it to an axis by clicking “Add to X”,

“Add to Y”, or “Add to Z” referring to the corresponding X, Y, and Z axis, respectively. On

completion of variable selection, the user clicks “Save/Close”; at this point the user’s selections

Figure 4-38 Project Builder—Visualization Page

86 Concept Implementation

are saved to the backend database and then displayed in the Visualization tab’s Selected Variables

section.

4.3.5.7.2 Selected Variables

The Selected Variables

section presents to the user the

variables to be visualized and the

style of the visualization. Each

row corresponds to a single

figure. The variables for the x, y,

and z axes are shown as selected

in the Visualization Variable

Selection form. The interaction

required from the user is to select the figure type. Here the user is given a drop-down menu in the

Style column, for each figure, where the user is to select the figure style. Style options include

Scatter, Line, Bar, Pie, Histogram, and Cluster. The user must select one.

4.3.5.8 Assessment

The Assessment tab, Figure 4-40, has the purpose of presenting the user with an interface for

reviewing results for accuracy, reviewing results for design insights, and reviewing design

recommendations. To accomplish this, the window contains three different tabs, each individually

addressing a purpose: Data Summary, Visualization, and Recommendations.

Figure 4-39 Visualization—Figure Variable Selection window

Figure 4-40 Assessment page—Data Summary tab

Front-End: Core Components Description 87

4.3.5.8.1 Data Summary

 The Data Summary tab—Figure 4-40—is separated into two sections: Design Data Summary

and Error Summary. The Design Data Summary is a section that contains a table that is populated

by the primary design data generated by the code. The significant design variables and their values

are shown. The Design Data Summary is a static display of the results for review by the user.

The Error Summary section is area in which principal design data is compared to a known

vehicle’s value. The percent difference between the known value and the output value are shown.

The primary purpose of this section is to present an easy view for evaluating the accuracy of the

system built. The user can select a specific vehicle for comparison by selecting it from the drop-

down menu next to the “Change Comparison Vehicle” label. The current comparison vehicle name

is displayed in the bottom left box at “Known Comparison Vehicle”. The system will automatically

select the nearest available vehicle available. If desired comparison vehicle is not available, then

the user must add it to the database or perform the comparison in an outside environment.

4.3.5.8.2 Visualization

 The Visualization tab, see Figure 4-41,

displays the figures generated as previously

specified in the Visualization page. The tab is

separated into two sections; each section is a figure

display area. Under each area is a separated drop-

down menu. From the drop-down menus, the user

can switch the figure displayed. The menu options

are the figures found in the figure folder for the

specific study. The user can change the default

folder by selecting “Open Folder”.

4.3.5.8.3 Recommendations

The Recommendation tab—Figure 4-42—

displays a set of design recommendations for the

given project. This portion is underdevelopment

and is to be a research and development area for

another work. The purpose of this tab is to present

the user with computer recommendations for the

design problem. This can include the best design

point, the effect of different hardware on the

system, hardware combination recommendations,

and more.

Figure 4-41 Assessment page—Visualization tab

Figure 4-42 Assessment page—Recommendation tab

88 Concept Implementation

4.4 Back-End: Synthesis Assembler and Architecture

A general description of the back-end was given in section 4.1 Description, Structure, and

Core Components, however, a more indepth discussion of the Synthesis Assembler comonent is

necessary. The Synthesis Assembler is the element that, as the name implies, assembles the

synthesis code. Given the problem’s elements as defined during the operation of the Project

Builder, such as the vehicle selections and decomposition, the processes, and the method selection,

the Synthesis Assembler extracts the information from the systems databases and, using an

assembly instruction algorithm, assembles the synthesis code with correct order of operation and

initialization. The result is a unique and tailor-made synthesis code specific to the problem at hand.

The Synthesis Assembler’s output is a single aggregate file containing all necessary definitions and

information required to execute the analysis.

4.4.1 Synthesis File Structure

The synthesis code itself, as generated, has a specific structure. Every synthesis architecture is

assembled into a structure composing of specific algorithms, as necessary, which can be

categorized by task. Each is identified and described below.

» Process Cost Function: a definition that is the primary call for the solver routine. The function

contains a main analysis call and the objective function to be minimized. The primary output

is the objective function(s) error in the correct form for the solver used.

» Solver Iteration and Call: a definition set that is the primary analysis driver. It contains the

solver call and a routine for approximating the initial values or bounds for said solver. The

solver itself is variable and dependent on the user. In the current environment, both a general

nonlinear solver and an evolutionary global solver are used either individually or in tandem.

» Primary Disciplines Call: a definition containing the primary discipline function calls

(aerodynamics, propulsion, etc.). They are called according to the order of operation set by the

process selected. Interdisciplinary calls are handled appropriately as needed within the parent

discipline method.

» Input Sheet Call: a definition that contains and defines the variables and any associated values

of the input and outputs of each method.

» Mission and Hardware Definition: a definition that identifies the linkages and relevant

information between the mission segments and the functional hardware per mission segment.

» Trade Study Setup: a definition that identifies the trade variables and values for the trade study.

The related or affected vehicle, method, hardware, and discipline are identified as well.

» Data Process and Save: a set of definitions for preparing and saving the data to json database

files.

Back-End: Synthesis Assembler and Architecture 89

» Variable Update Handling: a set of definitions that handle the duties of updating and

concatenating the variable data.

» Hardware-Method Association: a definition that defines the linkages and constraints between

the various hardware and the principal methods applicable per function and discipline.

» Multiple Method Resolve: a definition that, in the event a given hardware or discipline has

multiple associated methods, identifies which method to use in a given situation and the

necessary and/or current input values available to execute the identified correct method.

» Multiple Hardware/Method Variable Handling: code set that identifies how to handle data in

the case that, for a given variable, the vehicle or hardware has multiple sources.

» Main Analysis Methods: a set of functions that are the engineering analysis methods that are

called in the primary disciplines call block.

» Driver Code Block: this code block is a set of code (standard to all synthesis architectures) that

initiates the program by calling the solver and iteration call definition (along with others). This

is standardized code that exists after the if __name__ == “__main__” block of python code.

This code handles the appropriate calls and setup of the problem dependent on the convergence

and iteration case selected.

4.4.2 Synthesis File Generation Process

The code generation process to assemble the code is shown in

Figure 4-43. The process is sequential. The process begins with the

querying of the project database for the project variable definitions.

These include the process(es), vehicle(s), and methods selected

along with the method constraints, mission definition, and

hardware-method-mission associations. Based on the process

variable data, the Process Library is queried for the process

information—primary disciplines, discipline order of operation, and

objective functions. The input variables and values are extracted

from the Project Builder’s database; recall that the input and

interdisciplinary variables were identified during the Project

Builder operation and the user has entered the variable values. With

the problem specific data available, the synthesis code is assembled.

The code is assembled into the parts as described previously. A

new code file is created. To it is added the principal analysis control

definitions (Process Cost Function Solver, Solver Iteration and Call,

Primary Discipline Call) in addition to the input values (Input Sheet

Call) and trade study definition (Trade Study Setup). Additionally,

the methods themselves are added. The methods are processed for

Figure 4-43 Code assembly process

Identify Convergence State

Create Analysis Control File

Query DB for Primary Data

Create Analysis Methods File

Join Files

Start

End

Change Directory

Add Python Import Calls

Add Name Main Condition

Verify Product

Join Files

90 Concept Implementation

trigger events for automated code insertion based on the dependent (interdisciplinary) method calls

found within the source file. After processing, the updated methods are inserted into the file along

with additional templated code control algorithms, method resolve algorithms and data processing,

handling, and saving algorithms. On completion, the Synthesis Assembler has output a synthesis

code that can be executed externally or internally of the DSS and is fully distributable with all

uniquely necessary code included.

4.4.3 Synthesis File Generator Structure

The assembler code, the Synthesis Assembler, is a standard python script consisting of many

functions. The functions can be categorized by application. The categories are summarized in

Table 4-4. They, naturally, are similar to the synthesis code structure described previously, as they

are responsible for generating the synthesis file.

Table 4-4 Principal function categories of the back-end’s Synthesis Assembler

Category Description

Utility Methods Collection of supporting definitions not specific to any one condition

Directory Create Definitions that identify root directory and create project subdirectory folder, as necessary.

File Control Set of definitions for file name and path generation, and file copy to directory.

Import Inputs Set of definitions for input sheet import and trade variable setup to proper form.

Data Extract Set of definitions to query databases to extract primary data as selected and specified during

GUI operation. Data is harnessed into useful form. Such data includes the process and

methods selected, method limitations, mission definition, hardware-method-function-

mission association, etc.

File Generator Definition set to control synthesis code generation; calls to sub definitions for creation.

Creates file in structure as described in 4.4.1 Synthesis File Structure.

Part Generator Definition set that supports or executes specific subtasks within the file generation process

or are code templates utilized in file generation. Various definitions generally fall within the

code categories identified in 4.4.1 Synthesis File Structure.

Method Processing A definition set for processing engineering methods for trigger events, import calls, and

proper format. Definitions handle code injection for trigger events.

4.4.4 Selected Significant Algorithms

The Synthesis Assembler and resultant synthesis file comprise of many definitions. The

Synthesis Assembler script is about 4000 lines, and the synthesis file is not limited to any length.

There are several significant algorithms in both files. Many are shared in some form as one creates

the other and the Synthesis Assembler is in part a library of templated code. Several significant

definitions are selected for discussion and are summarized algorithmically. They are separated by

location—synthesis generation (Synthesis Assembler) and synthesis / analysis file.

Back-End: Synthesis Assembler and Architecture 91

4.4.4.1 Synthesis Assembler

The overall approach to file generation according to the Synthesis Assembler is given in

section 4.4.2 Synthesis File Generation Process. In this section, discussed specifically is the

processing of the methods file for insertion into the assembled code. There are two points of

discussion (1) method file processing in general and (2) trigger event processing.

4.4.4.1.1 Method File Processing

Figure 4-44 depicts the method processing process. The procedure begins with the

identification of the methods required for the given vehicle’s solution process. Each method is

transcribed into a temporary methods collection file. During the transcribing process, each

method's file is opened and read line by line. During the transcribing process, if a lines text satisfies

a specific regex condition, the line is processed, and an event occurs. Two specific conditions

searched for are the identification of a trigger event and the identification of an import call (python

element). Other secondary processing occurs but it is not critical to this discussion as it reshapes

the file into a desired layout and formatting style. If the line contains an import call, the import

call is saved to a list that, on completion of all method processing, is filtered for unique imports,

is joined with other required import calls specified elsewhere, and is inserted at the head of the

main synthesis file. If a trigger event is identified, the event call is decomposed, processed, and

the appropriate code is added to the method in the temporary file. The event is discussed in detail

below. After all methods are processed, the temporary methods collection file is appended to the

main synthesis file.

Algorithm Method File Process

Dependents: 𝑓(𝑚𝑎𝑖𝑛𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠)

Output: temporary methods file, appending to main synthesis file

1: 𝑓𝑜𝑟 𝑝𝑟𝑜𝑐𝑒𝑠𝑠

2: 𝑚𝑒𝑡ℎ𝑜𝑑𝑠 ← 𝑔𝑒𝑡 𝑚𝑒𝑡ℎ𝑜𝑑𝑠 𝑙𝑖𝑠𝑡

3: 𝑓𝑜𝑟 𝑚𝑒𝑡ℎ 𝑖𝑛 𝑚𝑒𝑡ℎ𝑜𝑑𝑠

4: 𝑙𝑖𝑛𝑒 ← 𝑔𝑒𝑡 𝑚𝑒𝑡ℎ𝑜𝑑 𝑙𝑖𝑛𝑒

6: 𝑖𝑓 𝑙𝑖𝑛𝑒 𝑖𝑠 𝑖𝑚𝑝𝑜𝑟𝑡 𝑙𝑖𝑛𝑒, 𝑠𝑡𝑜𝑟𝑒 𝑖𝑚𝑝𝑜𝑟𝑡 𝑐𝑎𝑙𝑙

7: 𝑖𝑓 𝑙𝑖𝑛𝑒 𝑖𝑠 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛 𝑙𝑖𝑛𝑒, 𝑠𝑡𝑜𝑟𝑒 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛, write to temp. methods file

8: 𝑖𝑓 𝑙𝑖𝑛𝑒 𝑖𝑠 𝑡𝑟𝑖𝑔𝑔𝑒𝑟 𝑒𝑣𝑒𝑛𝑡

9: 𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝐸𝑣𝑒𝑛𝑡𝐼𝑛𝑓𝑜 ← 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑡𝑟𝑖𝑔𝑔𝑒𝑟 𝑒𝑣𝑒𝑛𝑡

10: 𝐼𝑛𝑠𝑒𝑟𝑡 𝑡𝑟𝑖𝑔𝑔𝑒𝑟 𝑒𝑣𝑛𝑒𝑡 𝑐𝑜𝑑𝑒 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜 𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝐸𝑣𝑒𝑛𝑡𝐼𝑛𝑓𝑜 𝑖𝑛𝑡𝑜 𝑡𝑒𝑚𝑝 𝑓𝑖𝑙𝑒

11: 𝑖𝑓 𝑛𝑜 𝑠𝑝𝑒𝑐𝑖𝑎𝑙 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛, 𝑤𝑟𝑖𝑡𝑒 𝑙𝑖𝑛𝑒 𝑡𝑜 𝑡𝑒𝑚𝑝. 𝑓𝑖𝑙𝑒

12: 𝑔𝑜 𝑡𝑜 𝑛𝑒𝑥𝑡 𝑙𝑖𝑛𝑒

13: 𝐴𝑝𝑝𝑒𝑛𝑑 𝑡𝑒𝑚𝑝. 𝑚𝑒𝑡ℎ𝑜𝑑𝑠 𝑓𝑖𝑙𝑒 𝑡𝑜 𝑚𝑎𝑖𝑛 𝑠𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑠 𝑓𝑖𝑙𝑒

14: 𝐴𝑝𝑝𝑒𝑛𝑑 𝑢𝑛𝑖𝑞𝑢𝑒 𝑖𝑚𝑝𝑜𝑟𝑡 𝑐𝑎𝑙𝑙 𝑙𝑖𝑠𝑡 𝑡𝑜 ℎ𝑒𝑎𝑑 𝑜𝑓 𝑠𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑠 𝑓𝑖𝑙𝑒

Figure 4-44 Method File Processing function process and layout

4.4.4.1.2 Trigger Event Processing

Each method file, during transcribing, is processed for trigger events. A trigger event is a line

instructing for a certain code call to be inserted dynamically based on user selections. If a line

contains a trigger event call, the event call is decomposed into its core components—event type,

call discipline/function, call hardware, call local inputs, and call local output name. The type

92 Concept Implementation

indicates if it is a function or discipline call. The call indicates the specific discipline or function

of interest. The hardware term specifies whether the call applies to the total vehicle or a specific

subsystem, and the inputs/outputs are the names within the source code that are required to access

the output or input data for the call execution itself and the call results. Based on the event

specifications, the correct code is inserted to call the correct code specified by the event and to

create the correct function that is called. Figure 4-45 and Figure 4-46 are examples of the inserted

event call code and the generated function that is called. Additionally, the generated function is

dependent on a method resolution and variable processing function set, which is discussed in detail

in the next section. The new functions and event call code generated per trigger are transcribed

into the temporary method file as discussed previously.

Figure 4-45 Example trigger event call and local inserted code

Figure 4-46 Example trigger event inserted function

4.4.4.2 Synthesis File

Section 4.4.1Synthesis File Structure summarized the principal function groups and general

file structure. In this section, the principal algorithms are addressed in more detail. Specifically

considered are the groups: Process Cost Function, Solver Iteration and Call, Primary Disciplines

Call, Multiple Method Resolve, and Multiple Hardware/Method Variable Handling. These

algorithms effectively form the spine of the analysis and solution finding process.

4.4.4.2.1 Process Cost Function

The process cost function is the function

targeted by the numerical solver; it computes and

returns the value of the process’s objective

functions given values for the independent

process variables as shown in Figure 4-47. The

function calls the main engineering analysis

function, computes the objective functions’

values, and returns the values. These values are

used by the numerical solver to converge to

correct independent variable values.

Algorithm: Process Cost Function (Solver Function)

Dependents: 𝑓(𝑚𝑎𝑖𝑛𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠)

Output: 𝑒

1: 𝑓𝑜𝑟 𝑣𝑎𝑟 𝑖𝑛 𝑖𝑛𝑑𝑉𝑎𝑟𝑆𝑒𝑡

2: 𝑖𝑛𝑝𝑢𝑡𝑠[𝑣𝑎𝑟] ← 𝑢𝑝𝑑𝑎𝑡𝑒 𝑣𝑎𝑟 𝑣𝑎𝑙 𝑔𝑖𝑣𝑒𝑛 𝑥0𝑖𝑛𝑖𝑡

3: 𝑟𝑒𝑠𝑢𝑡𝑙𝑠 = 𝑚𝑎𝑖𝑛𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠(𝑖𝑛𝑝𝑢𝑡𝑠)

4: 𝑓𝑜𝑟 𝑣𝑎𝑟 𝑖𝑛 (𝑖𝑛𝑑𝑉𝑎𝑟𝑆𝑒𝑡, 𝑑𝑒𝑝𝑉𝑎𝑟𝑆𝑒𝑡)

5: 𝑣𝑎𝑟 ← 𝑒𝑥𝑡𝑟𝑎𝑐𝑡 𝑣𝑎𝑟 𝑣𝑎𝑙 𝑓𝑟𝑜𝑚 𝑟𝑒𝑠𝑢𝑡𝑙𝑠[𝑣𝑎𝑟]

6: 𝑓𝑜𝑟 𝑜𝑏𝑗𝐹𝑢𝑛𝑐 𝑖𝑛 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑆𝑒𝑡

7: 𝑒𝑖 ← 𝑜𝑏𝑗𝐹𝑢𝑛𝑐(𝑖𝑛𝑑𝑉𝑎𝑟, 𝑑𝑒𝑝𝑉𝑎𝑟)

8: return e

Figure 4-47 Solver function process and layout

Back-End: Synthesis Assembler and Architecture 93

4.4.4.2.2 Solver Iteration and Call

The Solver Iteration and Call consists of a function where in the Process Cost Function is called

as necessary until problem resolution. Figure 4-48 illustrates the process. The process occurs per

design or mission variable trade as shown by the first for loop. For each trade condition, the solver

is executed for n number of attempts (𝑛𝑎𝑡𝑡𝑒𝑚𝑝𝑡). With each attempt, a different initial condition is

utilized. It was found, for the hypersonic case study addressed in Chapter 5 Verification and

Application, that the success of the solver—convergence—could depend greatly on the initial

condition used.

Several initial guess approaches were implemented and are usable. Approaches include a

constant or random growth factor applied to the previous converged solution (a Monte Carlo type

approach), an evolutionary algorithm, and a simple grid search for an appropriate initial guess.

However, the standard approach is to begin each trade, with the previous converged state’s values

as the starting point of the initial guess for the independent process variable. The value is queried

from the result database using the initCondApprox function. The independent variable values are

adjusted according to the initial guess approach being utilized. Ultimately, with any approach used,

the result is an initial guess that is used by a nonlinear solver to solve for the independent variable.

Upon satisfactory solver completion or expiration due to reaching the attempt limit and

exhausting initial guess approaches, the result is either a converged or a not converged event. If

convergence does occur, the indent variables’ values solved for are passed into the main analysis

and the execution results are returned. The results are processed for form and are saved to a Jason

database file. If convergence does not occur, the final iteration result and solver state is saved for

record keeping. The process repeats for the next trade state.

Algorithm Solver Iteration and Call

Dependents: f(initCondApprox, runEvolSolver, solverFunc, mainAnalysis, jsonifier, jsonSave)

Output: main analysis data and summary

1: 𝑓𝑜𝑟 𝑖 𝑖𝑛 𝑛𝑡𝑟𝑎𝑑𝑒𝑠 do

2: 𝑓𝑜𝑟 𝑗 𝑖𝑛 𝑛𝑎𝑡𝑡𝑒𝑚𝑝𝑡 do

3: if 𝑖 = 1

4: 𝑥0𝑖𝑛𝑖𝑡 = 𝑋0𝑔𝑢𝑒𝑠𝑠

5: else

6: 𝑥𝑖𝑛𝑖𝑡 ← 𝑖𝑛𝑖𝑡𝐶𝑜𝑛𝑑𝐴𝑝𝑝𝑟𝑜𝑥()

7: 𝑓𝑜𝑟 𝑣𝑎𝑟 𝑖𝑛 𝑥𝑖𝑛𝑖𝑡

8: 𝑥0𝑖𝑛𝑖𝑡 ← 𝑣𝑎𝑟 ∗ 𝑖𝑛𝑖𝑡𝐺𝑟𝑜𝑤𝑡ℎ𝑉𝑎𝑟

9: 𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝑠𝑜𝑙𝑣𝑒𝑟(𝑠𝑜𝑙𝑣𝑒𝑟𝐹𝑢𝑛𝑐, 𝑥0𝑖𝑛𝑖𝑡)

10: 𝑖𝑓 𝑒𝑣𝑎𝑙𝑆𝑜𝑙𝑣𝑒 = 𝑡𝑟𝑢𝑒 𝑎𝑛𝑑 𝑟𝑒𝑠𝑢𝑙𝑡. 𝑐𝑜𝑛𝑣 = 𝐹𝑎𝑙𝑠𝑒

11: 𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝑟𝑢𝑛𝐸𝑣𝑜𝑙𝑣𝑆𝑜𝑙𝑣𝑒𝑟(𝑠𝑜𝑙𝑣𝑒𝑟𝐹𝑢𝑛𝑐)

12: 𝑥0𝑖𝑛𝑖𝑡 = 𝑟𝑒𝑠𝑢𝑙𝑡

13: 𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝑠𝑜𝑙𝑣𝑒(𝑠𝑜𝑙𝑣𝑒𝑟𝐹𝑢𝑛𝑐, 𝑥0𝑖𝑛𝑖𝑡)

14: 𝑖𝑓 𝑟𝑒𝑠𝑢𝑙𝑡. 𝑐𝑜𝑛𝑣 == 𝑇𝑟𝑢𝑒

15: 𝑑𝑎𝑡𝑎 = 𝑚𝑎𝑖𝑛𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠()

16: 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑒𝑑𝐷𝑎𝑡𝑎 ← 𝑗𝑠𝑜𝑛𝑖𝑓𝑖𝑒𝑟(𝑑𝑎𝑡𝑎)

17: 𝑗𝑠𝑜𝑛𝐹𝑖𝑙𝑒 ← 𝑗𝑠𝑜𝑛𝑆𝑎𝑣𝑒(𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑒𝑑𝐷𝑎𝑡𝑎)

Figure 4-48 Synthesis solver iteration process

94 Concept Implementation

4.4.4.2.3 Primary Disciplines Call

The Primary Disciplines Call, or main analysis, is rather strait forward. Figure 4-49 shows

algorithmically the approach. The function is responsible for executing the engineering analysis

as prescribed by the process. The analysis function is uniquely generated for each synthesis

architecture created according to the process, method, and vehicle/hardware selections made in

Project Builder. However, in most cases the main analysis is a linear sequence of discipline calls.

The analysis for most cases follows that depicted—a standard analysis process for a single vehicle.

For each vehicle’s primary process and the disciplines required the analysis executes per hardware

as required. The result is a dataset containing the input and output of each analysis method

executed.

Algorithm Primary Disciplines Call

Dependents: 𝑓(𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 𝑚𝑒𝑡ℎ𝑜𝑑𝑠)

Output: 𝑔𝑙𝑜𝑏𝑎𝑙𝐷𝑎𝑡𝑎

1: 𝑓𝑜𝑟 𝑑𝑖𝑠𝑐𝑖𝑝𝑙𝑖𝑛𝑒 (𝑑𝑖𝑠𝑐) 𝑖𝑛 𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑝𝑟𝑜𝑐𝑒𝑠𝑠

2: 𝑓𝑜𝑟 ℎ𝑎𝑟𝑑𝑤𝑎𝑟𝑒 (ℎ𝑎𝑟𝑑) 𝑖𝑛 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 (𝑣𝑒ℎ)

3: 𝑖𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 ℎ𝑎𝑟𝑑𝑤𝑎𝑟𝑒 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑡𝑜 𝑑𝑖𝑠𝑐𝑖𝑝𝑙𝑖𝑛𝑒

4: 𝑓𝑜𝑟 𝑚𝑒𝑡ℎ𝑜𝑑 (𝑚𝑒𝑡ℎ) 𝑖𝑛 𝑑𝑖𝑠𝑐 𝑝𝑒𝑟 𝑣𝑒ℎ ℎ𝑎𝑟𝑑

5: 𝑖𝑛𝑝𝑢𝑡𝑠 ← 𝑔𝑒𝑡 𝑖𝑛𝑝𝑢𝑡𝑠, 𝑓(𝑣𝑒ℎ, ℎ𝑎𝑟𝑑, 𝑑𝑖𝑠𝑐, 𝑚𝑒𝑡ℎ)

6: 𝑑𝑎𝑡𝑎 ← 𝑚𝑒𝑡ℎ𝑜𝑑(𝑖𝑛𝑝𝑢𝑡𝑠)

7: 𝑔𝑙𝑜𝑏𝑎𝑙𝐷𝑎𝑡𝑎 ← 𝑢𝑝𝑑𝑎𝑡𝑒 𝑤𝑖𝑡ℎ 𝑙𝑜𝑐𝑎𝑙 𝑑𝑎𝑡𝑎

8: return 𝑔𝑙𝑜𝑏𝑎𝑙𝐷𝑎𝑡𝑎

Figure 4-49 Main Analysis function process and layout

4.4.4.2.4 Multiple Method Resolve and Data Processing

There are situations in which there is more than one method per hardware or function. To

determine the appropriate method and necessary inputs, a method resolve routine is necessary. The

processes to determine, execute, and process the results of a multiple method or multiple hardware

case is illustrated in Figure 4-50 through Figure 4-52. These processes correlate to three functions.

The three functions are referred to as the Method Resolve, Special Call Data Return, and Process

Special Data. These methods are contained within the Multiple Method Resolve, and Multiple

Hardware/Method Variable Handling groups discussed previously. Each is discussed next.

The Method Resolve implements a process to determine the appropriate method to execute

given multiple methods associated to a hardware for a given discipline or function. Upon

execution, the result is the correct method for the given situation. The correct method is determined

by the method’s type (driver method or not), the number of methods, and the methods’ control

variable’s value versus the variable’s current value. The process is depicted below. The function

returns the determined method’s name and function handler. The input (methodDataSet) is a list

of relevant methods, their data, and their handles. In the greater scheme, the Method Resolve is

called within the Special Call Data Return function, which is discussed next.

Back-End: Synthesis Assembler and Architecture 95

Algorithm Method Resolve

Dependents:

Input: methodDataSet

Output: 𝑚𝑒𝑡ℎ𝑜𝑑𝑈𝑠𝑒𝑃𝑜𝑖𝑛𝑡𝑒𝑟, 𝑚𝑒𝑡ℎ𝑜𝑑𝑈𝑠𝑒𝑁𝑎𝑚𝑒

1: 𝑛𝑎𝑚𝑒𝑠, 𝑝𝑜𝑖𝑛𝑡𝑒𝑟𝑠, 𝑐𝑜𝑛𝑡𝑉𝑎𝑟, 𝑐𝑜𝑛𝑡𝑉𝑎𝑟𝑉𝑎𝑙 ← 𝑑𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑒 𝑚𝑒𝑡ℎ𝑜𝑑𝐷𝑎𝑡𝑎𝑆𝑒𝑡

2: 𝑖𝑓 𝑙𝑒𝑛𝑔𝑡ℎ(𝑚𝑒𝑡ℎ𝑜𝑑𝑠) == 1 𝑎𝑛𝑑 𝑐𝑜𝑛𝑉𝑎𝑟 ! = 𝑁𝑜𝑛𝑒 𝑎𝑛𝑑 𝑐𝑜𝑛𝑉𝑎𝑟 ! = 𝐷𝑟𝑖𝑣𝑒𝑟

3: 𝑚𝑒𝑡ℎ𝑜𝑑𝑈𝑠𝑒 = 𝑚𝑒𝑡ℎ𝑜𝑑𝑠[0]

4: 𝑒𝑙𝑖𝑓 𝑑𝑟𝑖𝑣𝑒𝑟 𝑚𝑒𝑡ℎ𝑜𝑑 𝑖𝑛 𝑚𝑒𝑡ℎ𝑜𝑑𝑠

5: 𝑖𝑓 𝑐𝑜𝑢𝑛𝑡(𝑑𝑟𝑖𝑣𝑒𝑟𝑚𝑒𝑡ℎ𝑜𝑑) > 1

6: 𝑟𝑎𝑖𝑠𝑒 𝑒𝑥𝑐𝑒𝑝𝑡𝑖𝑜𝑛 "𝑚𝑜𝑟𝑒 𝑡ℎ𝑎𝑛 1 𝑑𝑟𝑖𝑣𝑒𝑟 𝑚𝑒𝑡ℎ𝑜𝑑"

7: 𝑒𝑙𝑠𝑒

8: 𝑖 ← 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑚𝑒𝑡ℎ𝑜𝑑 𝑖𝑛𝑑𝑒𝑥

9: 𝑚𝑒𝑡ℎ𝑜𝑑𝑈𝑠𝑒 = 𝑚𝑒𝑡ℎ𝑜𝑑𝑠[𝑖]

10: 𝑒𝑙𝑖𝑓 𝑙𝑒𝑛𝑔𝑡ℎ(𝑚𝑒𝑡ℎ𝑜𝑑𝑠) > 1 𝑎𝑛𝑑 𝑑𝑟𝑖𝑣𝑒𝑟𝑀𝑒𝑡ℎ𝑜𝑑 𝑛𝑜𝑡 𝑖𝑛 𝑚𝑒𝑡ℎ𝑜𝑑𝑠

11: 𝑤ℎ𝑖𝑙𝑒 𝑗 < 𝑙𝑒𝑛𝑔𝑡ℎ(𝑚𝑒𝑡ℎ𝑜𝑑𝑠)

12: 𝑖𝑓 𝑗 == 𝑙𝑒𝑛𝑔𝑡ℎ(𝑚𝑒𝑡ℎ𝑜𝑑𝑠) − 1

13: 𝑖𝑓 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑉𝑎𝑟𝑉𝑎𝑙 ≤ 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑉𝑎𝑟𝑉𝑎𝑙

14: 𝑚𝑒𝑡ℎ𝑜𝑑𝑈𝑠𝑒 = 𝑚𝑒𝑡ℎ𝑜𝑑𝑠[𝑗]

15: 𝑒𝑙𝑖𝑓 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑉𝑎𝑟𝑉𝑎𝑙 > 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑉𝑎𝑟𝑉𝑎𝑙

16: 𝑟𝑎𝑖𝑠𝑒 𝑒𝑥𝑐𝑒𝑝𝑡𝑖𝑜𝑛: "𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑣𝑎𝑙𝑢𝑒 𝑒𝑥𝑐𝑒𝑒𝑑𝑠 𝑚𝑒𝑡ℎ𝑜𝑑𝑠 𝑟𝑎𝑛𝑔𝑒𝑠"

17: 𝑚𝑒𝑡ℎ𝑜𝑑𝑈𝑠𝑒 = 𝑁𝑜𝑛𝑒

18: 𝑒𝑙𝑠𝑒

19: 𝑟𝑎𝑖𝑠𝑒 𝑒𝑥𝑐𝑒𝑝𝑡𝑖𝑜𝑛: "𝑁𝑜 𝑚𝑒𝑡ℎ𝑜𝑑 𝑚𝑒𝑒𝑡𝑠 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠

20: 𝑚𝑒𝑡ℎ𝑜𝑑𝑈𝑠𝑒 = 𝑁𝑜𝑛𝑒

21: 𝑒𝑙𝑖𝑓 𝑗 == 0

22: 𝑖𝑓 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑉𝑎𝑟𝑉𝑎𝑙 ≤ 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑉𝑎𝑟𝑉𝑎𝑙 → 𝑚𝑒𝑡ℎ𝑜𝑑𝑈𝑠𝑒 = 𝑚𝑒𝑡ℎ𝑜𝑑𝑠[𝑗]

23: 𝑒𝑙𝑠𝑒 𝑗+= 1

24: 𝑒𝑙𝑠𝑒

25: 𝑖𝑓 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑉𝑎𝑟𝑉𝑎𝑙[𝑗 − 1] < 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑉𝑎𝑟𝑉𝑎𝑙 ≤ 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑉𝑎𝑟𝑉𝑎𝑙

26: 𝑚𝑒𝑡ℎ𝑜𝑑𝑈𝑠𝑒 = 𝑚𝑒𝑡ℎ𝑜𝑑𝑠[𝑗]

27: 𝑒𝑙𝑠𝑒

28: 𝑗+= 1

29: return 𝑚𝑒𝑡ℎ𝑜𝑑𝑈𝑠𝑒𝑃𝑜𝑖𝑛𝑡𝑒𝑟, 𝑚𝑒𝑡ℎ𝑜𝑑𝑈𝑠𝑒𝑁𝑎𝑚𝑒

Figure 4-50 Method Resolve function process and layout

Special Call Data Return

The Special Call Data Return is the function set that identifies and executes the method given

a trigger event. The functions general structural procedure is shown in Figure 4-51. The Method

Resolve is called in this function. The principal output is the data generated from the resolved

method. The inputs are the trigger event data and the current variable data set at parent method

execution. The process executes based on the trigger events data: event type, event option call,

hardware call, specified local inputs, and specified output name. Per vehicle and per functional

hardware as prescribed by the call option and hardware, the procedure identifies the appropriate

method for the given state of the methods’ constraining variable and method types. The global

inputs, for the identified correct method, are updated with the specified local input variable values.

The updated values are inserted into the method, the method executes, and the results are returned.

96 Concept Implementation

Algorithm 2 Special Call Data Return

Dependents: 𝑓(𝑚𝑒𝑡ℎ𝑜𝑑𝑅𝑒𝑠𝑜𝑙𝑣𝑒)

Input: trigger event information, inputData

Output: 𝑑𝑎𝑡𝑎

1: 𝑡𝑦𝑝𝑒, 𝑜𝑝𝑡, ℎ𝑎𝑟𝑑, 𝑖𝑛𝑝𝑢𝑡, 𝑜𝑢𝑡𝑝𝑢𝑡 ← 𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝐸𝑣𝑒𝑛𝑡𝐷𝑎𝑡𝑎

2: 𝑑𝑖𝑠𝑐, 𝑓𝑢𝑛𝑐 ← 𝑓𝑢𝑛𝑐2𝑑𝑖𝑠𝑐𝑀𝑎𝑝(𝑜𝑝𝑡), 𝑑𝑖𝑠𝑐2𝑓𝑢𝑛𝑐𝑀𝑎𝑝(𝑜𝑝𝑡)

3: 𝑓𝑜𝑟 𝑣𝑒ℎ 𝑖𝑛 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑆𝑒𝑡

4: ℎ𝑎𝑟𝑑𝑤𝑎𝑟𝑒𝑆𝑒𝑡 ← 𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝐹𝑢𝑛𝑐2ℎ𝑎𝑟𝑑𝑤𝑎𝑟𝑒𝑀𝑎𝑝(𝑚𝑖𝑠𝑠𝑖𝑜𝑛, 𝑓𝑢𝑛𝑐)

5: 𝑓𝑜𝑟 ℎ𝑎𝑟𝑑 𝑖𝑛 ℎ𝑎𝑟𝑑𝑤𝑎𝑟𝑒𝑆𝑒𝑡

6: 𝑚𝑒𝑡ℎ𝑜𝑑𝑆𝑒𝑡𝐷𝑎𝑡𝑎 ← 𝑎𝑙𝑙𝑀𝑒𝑡ℎ𝑠𝐷𝑎𝑡𝑎[𝑣𝑒ℎ][ℎ𝑎𝑟𝑑][𝑑𝑖𝑠𝑐]

7: 𝑤ℎ𝑒𝑟𝑒 𝑚𝑒𝑡ℎ𝑜𝑑𝑆𝑒𝑡𝐷𝑎𝑡𝑎 𝑜𝑓 𝑡𝑦𝑝𝑒 [𝑛𝑎𝑚𝑒, 𝑝𝑜𝑖𝑛𝑡𝑒𝑟, 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑉𝑎𝑟, 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑉𝑎𝑟𝑉𝑎𝑙]

8: 𝑖𝑓 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑀𝑒𝑡ℎ𝑜𝑑 𝑖𝑛 𝑚𝑒𝑡ℎ𝑜𝑑𝑆𝑒𝑡𝐷𝑎𝑡𝑎 → 𝑝𝑜𝑝 𝑚𝑒𝑡ℎ𝑜𝑑

9: 𝑙𝑜𝑐𝑀𝑒𝑡ℎ𝐼𝑛𝑝𝑢𝑡𝑠 ← 𝑔𝑒𝑡 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑚𝑒𝑡ℎ𝑜𝑑 𝑖𝑛𝑝𝑢𝑡 𝑣𝑎𝑙𝑢𝑒𝑠 𝑓𝑟𝑜𝑚 inputData

10: 𝑙𝑜𝑐𝐼𝑛𝑝𝑢𝑡𝑠 ← 𝑔𝑒𝑡 𝑢𝑝𝑑𝑎𝑡𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑓𝑟𝑜𝑚 𝑡𝑟𝑖𝑔𝑔𝑒𝑟 𝑒𝑣𝑒𝑛𝑡 𝑑𝑎𝑡𝑎

11: 𝑖𝑛𝑝𝑢𝑡𝑆𝑒𝑡 ← 𝑢𝑝𝑑𝑎𝑡𝑒 𝑙𝑜𝑐𝑀𝑒𝑡ℎ𝐼𝑛𝑝𝑢𝑡𝑠 𝑤𝑖𝑡ℎ 𝑙𝑜𝑐𝐼𝑛𝑝𝑢𝑡𝑠

12: 𝑚𝑒𝑡ℎ𝑜𝑑𝑃𝑜𝑖𝑛𝑡𝑒𝑟, 𝑚𝑒𝑡ℎ𝑜𝑑𝑁𝑎𝑚𝑒 ← 𝑐𝑎𝑙𝑙 𝑚𝑒𝑡ℎ𝑜𝑑𝑅𝑒𝑠𝑜𝑙𝑣𝑒(𝑚𝑒𝑡ℎ𝑜𝑑𝑆𝑒𝑡𝐷𝑎𝑡𝑎)

13: 𝑑𝑎𝑡𝑎 ← 𝑐𝑎𝑙𝑙 𝑚𝑒𝑡ℎ𝑜𝑑𝑃𝑜𝑖𝑛𝑡𝑒𝑟(𝑖𝑛𝑝𝑢𝑡𝑆𝑒𝑡[𝑚𝑒𝑡ℎ𝑜𝑑𝑁𝑎𝑚𝑒])

14: 𝑟𝑒𝑡𝑢𝑟𝑛 𝑑𝑎𝑡𝑎

Figure 4-51 Special Call Data Return function process

Process Special Data

Process Special Data processes the data returned by Special Call Data Return prior to passing

the data back to the parent function that had initiated this cycle of events. The data for each function

source as related to the hardware and vehicle is returned as a set of data identifying the variable

values by hardware, vehicle, and total vehicle. In this way, all data states are available to the parent

analysis file for use. The necessity of a data processing event arises due to the potential for

multiplicity of vehicle or hardware and the necessity of situational awareness of the variable for

proper total variable value determination, for not all variable’s total is the simple sum of the

individual variable’s values (∑𝑇 = 𝑇𝑡𝑜𝑡𝑎𝑙 𝑏𝑢𝑡 ∑𝐼𝑠𝑝 ≠ 𝐼𝑠𝑝𝑡𝑜𝑡𝑎𝑙
). The simplest case is the single

vehicle and single hardware. In this case, the minimal condition (the single hardware’s functional

effect) is the total condition (the total vehicles functional effect on that variable). Figure 4-52

shows the process of the Process Special Data function. Each variable is treated according to its

type—simple average, simple sum, weighted average, or special case. The type and associated

handling rule must be identified for each variable.

Algorithm Process Special Data

Dependents: 𝑓(𝑚𝑎𝑖𝑛𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠)

Output: processedData, originalData

1: 𝑣𝑎𝑟 𝑑𝑎𝑡𝑎 𝑠𝑒𝑡 ← 𝑔𝑎𝑡ℎ𝑒𝑟 𝑠𝑖𝑚𝑖𝑙𝑎𝑟 𝑣𝑎𝑟𝑖𝑎𝑙𝑏𝑒𝑠 𝑝𝑒𝑟 ℎ𝑎𝑟𝑑𝑤𝑎𝑟𝑒 𝑑𝑎𝑡𝑎 𝑠𝑒𝑡 𝑝𝑒𝑟 𝑣𝑒ℎ𝑖𝑐𝑙𝑒

2: 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 ℎ𝑎𝑟𝑤𝑎𝑟𝑒 𝑠𝑒𝑡 𝑎𝑛𝑑 𝑣𝑎𝑟 𝑖𝑛 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 ℎ𝑎𝑟𝑑𝑤𝑎𝑟𝑒 𝑠𝑒𝑡 𝑑𝑜

3: 𝑐ℎ𝑒𝑐𝑘 𝑣𝑎𝑟 𝑓𝑜𝑟 𝑠𝑝𝑒𝑐𝑖𝑎𝑙 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 (𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑎𝑣𝑒𝑟𝑎𝑔𝑒, 𝑠𝑢𝑚, 𝑒𝑡𝑐.)

4: 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜 𝑠𝑝𝑒𝑐𝑖𝑎𝑙 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 and store in dictionary

5: 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑣𝑒ℎ 𝑎𝑛𝑑 ℎ𝑎𝑟𝑑𝑤𝑎𝑟𝑒, 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑣𝑎𝑟 𝑠𝑢𝑏𝑠𝑒𝑡𝑠 𝑖𝑛𝑡𝑜 𝑡𝑜𝑡𝑎𝑙 𝑠𝑦𝑠𝑡𝑒𝑚, 𝑙𝑜𝑐𝑎𝑙 𝑠𝑦𝑠𝑡𝑒𝑚, 𝑎𝑛𝑑 𝑙𝑜𝑐𝑎𝑙 ℎ𝑎𝑟𝑑𝑤𝑎𝑟𝑒 𝑠𝑒𝑡𝑠

6: return processedData, originalData

Figure 4-52 Process Special Data function process and layout

Chapter Summary 97

4.5 Chapter Summary

4.5.1 General Summary

In this chapter, a presentation of the principal research objective—development of a decision

support framework for the CD phase—was given. The system is referred to as AIDRA-DSS. The

overall system was discussed. The general file structures, both front-end and back-end, were

presented. An in-depth presentation of the front-end and back-end was given. Identified and

discussed were the support libraries (Reference Library, Method Library, Process Library, and

Vehicle Library) as well as the primary DSS environment, the Project Builder, and principal

components and approach of synthesis code generation through the Synthesis Assembler. The

Project Builder is the principal element that the libraries support. A primary deliverable of the

system is a synthesis architecture.

AIDRA-DSS’s primary directive is the assembly, documentation, and standardization of sizing

architecture generation. The goal is transparency and accountability in the development of sizing

toolsets. AIDRA-DSS is a semi-automated tool-of-tools. Through a code assembly platform, given

the user’s specifications, the system assembles base components into a functional architecture for

a given problem. Its primary purpose is the assembly of methods into a sizing toolset to better help

in decision-making. This is model-based engineering, with a capacity to model any hardware’s

effect and contribution to any discipline within the design process, to assist in design evaluation

and decision-making. Each sizing toolset is specifically generated to solve the problem at hand.

With the system discussed, the next objective is to demonstrate proper system functionality

and potential. The next chapter will demonstrate the functionality of the system by presenting a

case study in both single point verification and multi-point trade study.

4.5.2 Contribution Statement

» Developed and presented a unique generic synthesis assembly tool founded on principles of a

vehicle-of-vehicle concept and problem definition by vehicle-hardware statement.

Chapter 5 VERIFICATION AND APPLICATION

Having specified the system concept and implementation, the next requirement is to

demonstrate functionality and application. The research conducted and elaborated on in this

document is of course of two parts. There is the tool developed and there is the output of the

execution of the tool and its utilization. Functionally, the system’s outputs are both the synthesis

code generated and the output of the synthesis code. The correctness of the synthesis code results

depends directly on the correctness of the code assembly.

Proper system code assembly is verified by manual inspection of code assembly and, more

significantly, is mostly inferred from correct output upon assembled synthesis system execution.

As of now, there is no automated or computerized intelligent verification of proper code assembly

aside from the assembly code executing without error. For the purposes of the following

discussion, the synthesis codes were manually checked for proper assembly. On inspection, all

codes were assembled as algorithmically specified. With this understanding, the condition of code

assembly is considered properly executed. Therefore, the criterion of manual verification of

synthesis code assembly based on user GUI selections is found to be complete. The remainder of

this chapter evaluates the code assembly by consideration of correctness of code output and

demonstrates system application.

Inference of correct assembly and demonstration of system application is accomplished

through the execution of a verification study and a trade study. The verification study and the trade

study are the subject addressed in this chapter. The problem setup and results of the case studies

selected are systematically presented in the following sections. Addressed first is a general

description of the problem and solution approach. The verification and case study are on the topic

of hypersonic reusable vehicle demonstrators.

100 Verification and Application

5.1 Problem Statement

The execution study is separated into two parts—verification and application demonstration

through a trade exploration. The verification step is critical in establishing the correctness of GUI

to synthesis code operation and execution. The trade exploration takes the verification step a step

further. It serves as not only a system test and verification for the multipoint system execution

case, but is also a demonstration of the systems utility to a larger problem that is relevant. For the

purposes of this research, the objective is to demonstrate system operability for the single-vehicle

and the single process case.

5.1.1 System Verification

The verification and validation is presented in two parts. The approach can be broken into the

consideration of the single point and the multi-point cases. Both are conducted to verify proper

system execution. However, for the purposes of the discussion of verification, the single point case

is considered the primary focus here as it demonstrates the key system component of individual

vehicle execution on which any multi-point case is based upon. That is, the multi-point case is an

expansion of the single case (repeated execution of the single point case for a breath of varied input

values).

Single point verification occurs by executing the system for a known control vehicle and

comparing the resulting design output to known vehicle design variables’ values (legacy

verification data). System execution correctness is inferred based on the output versus known

variable comparison. Several vehicles are selected as representative cases. They are selected such

that the AIDRA-DSS system must execute several scenarios in which the process components

must be varied. Control vehicles are both, real world production or test vehicles, and concept case

study vehicles from other documented project (paper) studies.

The problem of verification is approached through a systematic buildup. To establish

verification, there is the establishing of the vehicle selections, the vehicles’ missions, the vehicles’

synthesis process, and the synthesis methods that culminates in the result evaluation and,

subsequently, satisfactory verification establishment. Each step is addressed in the following

chapter sections.

5.1.2 Trade Study

The trade study is an expansion of the single point verification case. The trade study entails

the variation of assumptions or input variables to arrive at many solutions that are presented to the

user as a space of solutions. The solution space is there to assist in the evaluation of the solutions’

responses to variations in design variables. Figure 5-3 illustrates simplistically a trade study as

multiple cases of a single point design case, Figure 5-2, with variation in a design variable.

The trade study serves two purposes. First, in terms of system operability, it demonstrates the

iterative multi-point analysis functionality. Second, it presents an opportunity to study a problem

Problem Statement 101

through the exploration of a solution space. In the multi-point case, it is possible to evaluate

selections in vehicle concept, configuration, hardware, and operational conditions. In the case

presented in this chapter, the single point verification vehicles are used as baseline concepts to

explore a hypersonic solution space.

The trade study identifies, synthesizes, and

evaluates a representative baseline set of

hypersonic test vehicle concepts in terms of the

consideration of carrier vehicle constraints.

Figure 5-1 illustrates considerations for carrier

vehicle constraints through the illustration of the

X-24C and B-52 combination. Baseline

configurations’ solution topographies are

identified through the evaluation of various

vehicle operational requirements; as such, a

trade matrix is identified. The multi-disciplinary

study results are constrained with carrier

payload mass and geometry limitations. The

multi-disciplinary results provide physical insights into near-term hypersonic test vehicle design

variable relation to the carrier vehicle requirements.

The trade study case is similarly built up as the single point verification case. Due to significant

overlap between the two cases, both are addressed concurrently. As such, the multi-point case is

likewise documented through a systematic buildup addressing the establishment of the vehicle

selections, the vehicles’ missions, the vehicles’ synthesis process, the synthesis methods, and the

additional identification of a trade matrix, which finalizes in result presentation and discussion.

Figure 5-1 Illustration of X-24C test vehicle and B-52 carrier

vehicle constraints considerations [146]

Figure 5-2 Example of the classical performance matching

diagram design point[85]

Figure 5-3 Trade study illustration visualized by a set of

performance matching diagram[85]

102 Verification and Application

5.2 Vehicle Selection

The vehicle concept and configurations selected for study are categorized by verification case

and multi-point trade study case. The vehicle selection of each is considered.

5.2.1 Verification Case

The verification vehicles include a mix of concept vehicles and flown vehicles. The vehicles

are hypersonic test vehicles. The hypersonic test vehicles selected are the USAF AFRL Road

Runner Generic Hypersonic Vehicle (GHV) [147] and X-51A [148]. Each vehicle represents a

different concept, blended-body versus all-body respectively. A range of vehicle concepts has been

selected in order to ensure that the methods for each discipline will have to change, thereby testing

for proper code generation. Note that the vehicles selected are high-speed (hypersonic). Low speed

(subsonic) vehicles could equally have been used. However, hypersonic systems are a current

research and development area of relevance to many governments and agencies. As such, the topic

serves as a relevant case study demonstration. Additionally, the trade study case is for hypersonic

systems, so the verification by hypersonic systems supports the trade study cases as well. Under

this condition, the system is tested for proper operation and synthesis code generation. Table 5-1

identifies each vehicle and summarizes each vehicle’s general classification.

Table 5-1 Verification study vehicles

Name Class Organization Mach Range Summary

GHV Hypersonic Test Air Force 𝑀 = 6 Blended-Body waverider with 3D inlet and nozzle air-

breathing scramjet powered cruise vehicle concept

X-51A Hypersonic Test DARPA

Air Force

𝑀 = 6 + All-body 2D scramjet powered hypersonic test vehicle

With the vehicles identified, the geometric and sizing variables for each vehicle are tabulated

in Table 5-2. Additional discussion of each vehicle can be found in Appendix A Case Studies

Expanded.

Table 5-2 Vehicle sizing and general parameter values [147, 148]

 Units GHV(1x) GHV(2x) GHV(3x) GHV(4x) GHV(5x) X-51A

𝜏 - 0.0735 0.0698 0.0678 0.0674 0.0657 0.2075*

𝑉𝑡𝑜𝑡 𝑚3 0.563 1.494 2.713 4.111 5.642 0.705*

𝑆𝑝𝑙𝑛 𝑚2 3.888 7.705 11.699 15.496 19.457 2.26*

𝑙

Overall 𝑚 4.468 6.319 7.739 8.936 9.991 4.267

Fuselage 𝑚 4.313 6.100 7.471 8.627 9.645 -

𝑑 𝑚 0.479 0.677 0.829 0.957 1.070 0.584

𝑏 𝑚 1.488 2.104 2.577 2.975 3.327 0.702

𝑊𝐺𝑇𝑂𝑊 𝑁 5430 11586 19386 27894 36456 6690

𝑊𝑓𝑢𝑒𝑙 𝑁 1099** 3493 6658 10331 10331 1241**

𝑊/𝑆 𝑁/𝑚2 1397 1504 1657 1800 1874 2960*

* estimate
** usable fuel plus approximate non usable (launch weight less cruiser operating weight)

Vehicle Selection 103

The verification vehicles are illustrated below. The GHV and X-51 are shown in Figure 5-4,

Figure 5-5 respectively.

Figure 5-4 GHV

Figure 5-5 X-51.

5.2.2 Trade Study Case

The vehicles from the verification case form a baseline vehicle set for the trade study case. As

in the verification case, the all-body (AB) and the blended-body (BB) concept types are

represented. Furthermore, the hypersonic test vehicle case is expanded to consider both

airbreathing and non-airbreathing systems. The GHV and X-51 are used both in their initial

airbreathing concept and in a modified non-airbreathing concept state. Figure 5-6 visualizes each

of the vehicle concepts. The blended-body concept is represented by the GHV vehicle class

concept. The X-51 concept represents the all-body class. Note that the all-body’s principle lift

generating source is its own body and, as such, is also referred to as a lifting-body (LB).

The GHV concept is an air-breathing blended-body vehicle. To address the rocket powered

blended-body concept (BBRKT), the GHV vehicle is transformed into an enclosed fuselage rocket

concept, Figure 5-6(b). The vehicles fuselage intake is closed off and a rocket system added. The

X-51 concept is the baseline for the AB airbreathing concept (AB2DS)—Figure 5-6(c). A rocket

class AB baseline (ABRKT)—Figure 5-6(d)—is modelled after the FDL-7 and McDonald

Douglas Model 176 and MRS, which predate the X-51 but share many similarities in configuration

and concept. The X-51’s configuration’s outer mold line is very similar to the FDL-7’s and Model

176’s configuration, but with the addition of a spatula nose and an underslung 2D scramjet in place

of the rocket propulsion system. Additionally, for low-speed landing, the AB concepts have an

internal swing-wing included (historically included in the FDL-7, Model 176, and MRS as well).

All systems concepts were originally designed for high Mach number operations. Note that the

objective herein is not to drive to an optimal vehicle configuration, but rather to realize a general

solution space. The vehicle concept perturbations are a representative spectrum incorporating both

near-term and mid-term propulsion systems.

104 Verification and Application

(a) Air-breathing GHV baseline (BB3DS)

(b) Rocket modified GHV baseline (BBRKT)

(c) Air-breathing X-51 baseline (AB2DS)

(d) Rocket-powered Model-176 baseline (ABRKT)

Figure 5-6 Multi-point trade study baseline vehicles.

5.3 Processes Definition

In this section, the synthesis process implemented for each case study is discussed. Each case

study follows the same general process. The process implemented does not very and its variation

should not be misconstrued with the variation in methods selected from case-to-case. A process

coordinates the methods, and the methods can be variable while existing within the operation of

the same process. The methods are independent of the process and are discussed in a later section.

Presented in this section are the multi-disciplinary synthesis process, the convergence processes,

and the process to solution space formation.

5.3.1 Multi-Disciplinary Synthesis Process

The multi-disciplinary synthesis core process is shared between both the single-point and

multi-point case studies. Figure 5-7 illustrates the process. The dash-dot area sections the synthesis

core process. Both studies share this convergent process. It is discussed in detail below. The multi-

point process utilizes the same core synthesis process; however, appended to it is an iterative

feedback loop as indicated. In the multi-point case, the single point case is executed repeatedly to

identify a set of solutions; it is a trade study. In this process, the single point case is repeated with

different configurations, concepts, hardware, or operational conditions. All conditions of the single

point case’s processes remain; that is, the disciplinary execution, order of operation, and

convergence approach are maintained.

The synthesis process for all case studies implemented is converging. Convergence is

synonymous with the phrase: “closing the design.” A converging process is one in which some

Processes Definition 105

objective function or functions are satisfied in an iterative manner. Through this process, some

design variables value is searched for until a predetermined condition (objective function) is met.

A non-converging process is one in which no process objective function is met. In such a condition,

the design is not iterated to satisfy a predetermined design condition. In the non-converging

process, the resulting vehicle solution point would be considered not closed. The processes used

here are converging; therefore, all design points indicated herein are closed designs.

5.3.2 Convergence Process Description

The process is a series of steps. There are two primary parts: the disciplinary analysis and the

convergence loop. The disciplinary analysis exists within the convergence loop as indicated in

Figure 5-7. The convergence loop contains the analysis block and, in an iterative process of

analysis block execution, seeks convergence criteria satisfaction through analysis input variable

variation. The convergence iteration variables are planform area (𝑆𝑝𝑙𝑛) and wing loading

(𝑊/𝑆𝑝𝑙𝑛). The study sizing methodology is a weight and volume-based convergence process. The

process employed here considers the total vehicle volume required given the weight estimate. The

approach is adapted from references [85, 86].

The disciplinary analysis begins with the assumption of a baseline vehicle and mission profile.

A key geometric parameter—the vehicle volume coefficient (𝜏 = 𝑉𝑡𝑜𝑡/𝑆𝑝𝑙𝑛
1.5)—is held constant for

each convergence cycle. (The variation of 𝜏 allows for a volumetric scaling of the vehicle rather

than a simple pictorial scaling, which is more appropriate for hypersonic vehicles.) It is an input

into the geometry method and directly defines the other geometric parameters given the vehicle

configuration. With a geometric definition in place, the discipline specific analysis modules

execute. They are executed in the following order: aerodynamics, propulsion, trajectory, and

finally weight and volume. The aerodynamic and propulsion modules can be executed either: (1)

in the sequential series to generate aerodynamic and propulsion lookup maps for the vehicle at

different operating conditions, or (2) they can be called directly within the trajectory methods. In

the case studies executed here, the aerodynamic and propulsion disciplines are called directly in

the trajectory methods. The trajectory module utilizes the vehicle’s aerodynamic and propulsion

data in the analysis of the vehicle's trajectory. From the trajectory analysis, the vehicle's

performance parameters are determined, including the required weight ratio along the flight path.

The weight and volume module updates the weight and volume of the vehicle based on the

trajectory module’s output. On completion of a sequence of disciplinary module-based analysis

execution, the instance of analysis is complete. However, the overall vehicle has not necessarily

converged.

106 Verification and Application

Figure 5-7 Sizing process, both single-point and multi-point sequence

After the analysis block’s execution, the objective functions are tested for solution

convergence. Two objective functions are minimized simultaneously, see equations (5.1) and

(5.2). The first objective function, Eq. (5.1), is a function of operating weight empty by weight

analysis (𝑂𝑊𝐸𝑤) and operating weight empty by volume analysis (𝑂𝑊𝐸𝑉). This function closes

the vehicle’s weight and volume requirement simultaneously. The second objective function, Eq.

(5.2), is a function of wing loading (𝑊/𝑆𝑝𝑙𝑛), planform area (𝑆𝑝𝑙𝑛), and takeoff gross weight

(𝑇𝑂𝐺𝑊). In this function, the TOGW and planform area closes through an iteration of the wing

loading. The convergence process is complete when each cost function equates to zero. In other

words, the vehicle is said to be converged when its solution point is mathematically acceptable

because weight and volume converge with 𝑂𝑊𝐸𝑊 = 𝑂𝑊𝐸𝑉 and (𝑊 𝑆𝑝𝑙𝑛⁄)

= 𝑇𝑂𝐺𝑊/𝑆𝑝𝑙𝑛. If

the objective functions are not satisfied, planform area and wing loading are iterated, and the

sequence repeats until both cost functions are minimized simultaneously. For further discussion of

this approach and the metrics used in the equations see Czysz [149], Coleman [85], and Gonzalez

[86].

Aerodynamics

Propulsion

Geometry

Trajectory

Weights

Converged

Start

End

Yes

No

Study Definition

Update Convergence

Variables

Study

Complete?

Trade study

definiton?

Update Trade

Variable

No

Yes

Yes

Update Study

Definition

No

Single-Point Sizing Sequence

Multi-Point Sizing Sequence

Processes Definition 107

Objective Function 1:

 𝑂𝑊𝐸𝑉 − 𝑂𝑊𝐸𝑊 = 0 (5.1)

Objective Function 2:

(

𝑊

𝑆
)

𝑔𝑢𝑒𝑠𝑠
−

𝑇𝑂𝐺𝑊

𝑆𝑝𝑙𝑛
= 0 (5.2)

Weight Budget:

 𝑂𝑊𝐸𝑊 = 𝑂𝐸𝑊 + 𝑊𝑝𝑎𝑦 + 𝑊𝑐𝑟𝑤 (5.3)

𝑂𝐸𝑊 =

𝐼𝑠𝑡𝑟 ∙ 𝐾𝑤 ∙ 𝑆𝑝𝑙𝑛 + 𝐶𝑠𝑦𝑠 + 𝑊𝑐𝑝𝑟𝑣 + 𝑇 𝑊⁄ ∙ 𝑊𝑅 𝐸𝑇𝑊⁄ ∙ (𝑊𝑝𝑎𝑦 + 𝑊𝑐𝑟𝑤)

1 (1 + 𝜇𝑎)⁄ − 𝑓𝑠𝑦𝑠 − 𝑇/𝑊 ∙ 𝑊𝑅/𝐸𝑇𝑊
 (5.4)

Volume Budget:

𝑂𝑊𝐸𝑉 = 𝜏 ∙

𝑆𝑝𝑙𝑛
1.5 ∙ (1 − 𝑘𝑣𝑣 − 𝑘𝑣𝑠) − (𝑉𝑝𝑐𝑟𝑤 − 𝑘𝑐𝑟𝑤) ∙ 𝑁𝑐𝑟𝑤 − 𝑊𝑝𝑎𝑦/𝜌𝑝𝑎𝑦

𝑘𝑣𝑒 ∙ 𝑊𝑅 ∙ 𝑇 𝑊⁄ + (𝑊𝑅 − 1) 𝜌𝑝𝑝𝑙⁄
 (5.5)

5.3.3 Process to Solutions Space Formation (Multi-Point Case)

The subject of this section is the practical implementation of the processes into the

development of the multi-point case’s principal deliverable, the solution space visualization. This

is a frequently misunderstood process.

A solution space is simply a locus of single point designs that can be visualized. An examiner

formulates and visualizes a solution space to assist in evaluating trade options and solution

behavior in a multidisciplinary environment. The formation of the solution space is the multi-point

case’s process in action. To understand better the process and, more importantly, the outcome,

Figure 5-8 illustrates the process to arrive at the solution space definition. In this illustration, the

X-51 type lifting-body 2D scramjet concept configuration and the GHV blended-body 3D scramjet

concept configuration are used to give example process context. The example considers a three

variable trade scenario for each vehicle: cruise time, volume coefficient (𝜏), and payload mass.

Figure 5-8 illustrates the stepwise processes to the population of a solution space. This

illustrates pictorially the operational results of the process shown in Figure 5-7. Considering Figure

5-8, a solution space is a locus of single point designs, the manifestation of which begins with an

initial set of design point solutions. This first consideration is illustrated in Figure 5-8(a). Each

point is, in this case, a converged solution for a given set of inputs. The process to arrive at each

individual solution is the execution of the single point case’s process. The resulting solutions are

108 Verification and Application

mapped onto a plot, forming a simple solution space. In this example, each point plotted

corresponds to a different mission cruise time. The cruise time is indicated alphanumerically next

to each point. This set of points forms a mission cruise time trade for a given vehicle’s (X-51 class

AB) payload weight, and 𝜏. Similarly, the cruise trade is executed for a new 𝜏, as illustrated in

Figure 5-8(b). The diagonal lines, highlighted by the callouts for the values of τ, are lines of

constant vehicle τ, with the maximum value (minimum slenderness) appearing on the left and the

minimum value (maximum slenderness) on the right.

Continuing with Figure 5-8 (c), another trade variable is introduced. The activities discussed

for figures (a) and (b) are repeated but with a new input variable condition (the trade variable). In

this example, trades in vehicle payload mass are conducted. The results are added to the plot. As

such, this one diagram now illustrates three different trades. Each separately bounded and shaded

solution space corresponds to a different payload mass mission of varying cruise endurance and

geometric parameter τ. Any number of hardware or operational trade variables could be introduced

to expand the solution space, revealing additional design behavior of the concept and configuration

selected.

Finally, as illustrated in Figure 5-8(d), the trade option is expanded to include the vehicle

concept and configuration. All activities discussed in Figure 5-8(a)-(c) formulation are executed

again for the new concept and configuration. In this example, a vehicle of the GHV type is

introduced to the trade matrix. Now, represented in this individual figure, is the solution space as

given by the trade variables—cruise time, 𝜏, and payload—for both a X-51 class and GHV class

vehicle, capturing the behaviors of an all-body 2D scramjet vehicle versus a blended-body 3D

scramjet vehicle. At this point, to derive further information from the illustration, constraints could

be added to the figure.

(a)

(b)

(c)

(d)

Figure 5-8 Visualization of the steps to a solution space

T
O

G
W

Planform Area

Cruise Endurance = 0 – 750 s

Payload Mass = 0 kg

τ = 0.1405

Single Converged Vehicle Solution

Increasing Cruise Time

750

500

250

0 s

T
O

G
W

Planform Area

Cruise Endurance = 0 – 450 s

Payload Mass = 0 kg

τ = 0.1405 – 0.2143

Increasing τIncreasing τ

0.1405

0.2143

T
O

G
W

Planform Area

Interpolate Between Points (Shading)

0 N

500 N

2500 N

Increasing Payload

Mass

AB Scramjet

4000 NPayload Mass = 0 – 4000 N

Cruise Endurance = 0 – 750 s

τ = 0.1405 – 0.2143

750 s

500 s

250 s

0 s T
O

G
W

Planform Area

Repeat for Each

Configuration

Add design aids

0 N

500 N

2500 N

AB Scramjet

4000 N

0 N
BB Scramjet

250 s

750 s

0 s

500 s

750 s

500 s

250 s

0 s

Missions Definition 109

5.4 Missions Definition

Addressed in this section are the various missions that occur within the verification and multi-

point case studies. The section concludes with the synopsis of the vehicles’ mission compositional

segments and flight conditions.

There are two distinct mission profiles for the hypersonic test vehicle. Both are characterized

by being air launched. The discriminating feature is whether an expendable or integrated

propulsion system accelerates the vehicle to the primary mission start condition (hypersonic

cruise). The air-breathing configurations are limited to the expendable rocket booster scenario. A

combined or dual cycle concept is not considered. The non-air breathing rocket configurations are

not limited; both mission launch scenarios (i.e. external expendable boost system and internal

reusable boost system) are applied to them. All scenarios start with an airdrop condition at Mach

0.8 and 12.2 km (40 kft.), and a horizontal gliding recovery at a landing site.

5.4.1 Expendable Booster Profile

The expendable external booster profile is a profile characterized by the state in which the

vehicle’s on-board propulsion system does not accelerate the vehicle to propulsive operational

conditions. Rather, an external device—an expendable booster rocket—accelerates the vehicle to

a condition in which the on-board propulsion can operate and take over as the primary propulsive

system. In the non-combined cycle propulsion system, this assistance is necessary, as the scramjet

and ramjet are not able to start at the subsonic airdrop conditions.

Figure 5-9 illustrates the external expendable booster mission profile. The vehicle is airdropped

from a carrier vehicle at 12.2 km (40 kft) and Mach 0.8. On release, the vehicle is boosted to the

test starting condition, the point for onboard propulsive operation at 22.96 km (75 kft) and Mach

4.5. After expenditure, the external booster separates, and the primary vehicle continues to

accelerate at constant altitude until it reaches the design cruise Mach number. Acceleration occurs

by means of the onboard propulsion system. After accelerating to the test cruise Mach number, the

vehicle executes a constant Mach cruise of some duration. On completion of the cruise segment,

the vehicle performs a gliding descent to the landing point. The conditions at which each event

occurs can vary as a trade variable. Cruise time specifically is a trade variable considered.

Figure 5-9 Mission Profile: external expendable booster

Booster Accel. And Climb

Mach: 0.8 – 4.5

Alt.: 12.2 km - 22.86 km

Booster Separation

Mach: 4.5

Alt.: 22.86 km

Const. Alt. Accel.

Mach: 4.5 – 6

Constant Mach Cruise

Mach: 6

Alt.: 22.86 + km

Max L/D Gliding Descent

Air-Launch

Altitude: 12.2 km

Mach 0.8

110 Verification and Application

5.4.2 Internal Booster Profile

Unlike the expendable external booster case, the internally boosted case does not have an

external fall away propulsive system; rather the full mission profile is powered through the

onboard propulsion system. Given that the vehicle is launched at subsonic conditions, this flight

scenario is limited to only the rocket-powered vehicles. Illustrated in Figure 5-10 is the mission

scenario profile. The mission starts with an airdrop condition. After carrier vehicle release, the

hypersonic vehicle accelerates to its cruise condition by means of the integrated onboard rocket

system. The acceleration phase comprises of a constant altitude acceleration to a dynamic pressure

of 89.3 kPa (a dynamic pressure that correlates to Mach cruise condition at cruise altitude)

followed by a constant dynamic pressure climb to the cruise condition. Upon achieving the desired

cruise condition—altitude and Mach number—the vehicle ceases acceleration and executes a

constant Mach cruise for a predetermined cruise time. Upon completion of the cruise segment, the

engine is shutoff and the vehicle glides to a landing condition. This mission trajectory profile

mimics the profile of the externally boosted scenario.

As there is no drop-away external boost system, the test vehicle is its own accelerator. The

integrated onboard main engine powers acceleration and cruise. Significantly, this mission sizes

the vehicle to include the propulsive capacity previously provided by the external expendable

booster. In this regard, the all-rocket vehicles can be potentially fully reusable.

Figure 5-10 Mission Profile: integrated booster

5.4.3 Vehicle Mission Segment and Summary

With an understanding of the two mission scenarios considered, the mission profiles and

conditions of each vehicle are summarized in this section. As stated, the total mission profiles

comprise of individual mission segments. The mission segments correspond to specific flight

conditions and methods (the methods are discussed in section 5.5 Methods). It is, in part, for this

reason that the missions are decomposed into their primary constituents. For clarity and

convenience, the mission segments comprising the total mission for each vehicle are indicated in

Table 5-3. Both the verification and trade study cases are indicated.

Max L/D Gliding Descent

Air-Launch

Altitude: 12.2 km

Mach 0.8

Constant Mach Cruise

Alt.: 22.86 + km

Mach: 6.0

Q: 89 kPa – 48 kPa

Constant Q Climb

Alt.: 12.2 km - 22.86 km

Mach: 2.6 - 6.0

Const. Alt. Accel.

Altitude: 12.2 km

Mach: 0.8 - 2.6

Q: 89.3 kPa

Methods Selection 111

Table 5-3 Vehicle Mission Segments toward total mission profile

 Verification Trade Study

 GHV X-51 BB3DS AB2DS ABRKT BBRKT

Mission Type Non-Int. Int. Non-Int. Int.

External Boost Launch to Cruise ● ● ● ● ● ●

Internal Boost Launch to Cruise ● ●

Mission Segments

Gliding Descent ● ● ● ● ● ● ● ●

Constant Mach Cruise ● ● ● ● ● ● ●

Constant q Climb ● ● ●

Constant Altitude Acceleration ● ● ● ● ● ● ● ●

Air Launched ● ● ● ● ● ● ● ●

Table 5-3 indicates each vehicle’s mission segments, it does not, however; indicate the flight

conditions at each mission segment. Table 5-4 and Table 5-5 provide the mission segment flight

conditions for the verification and trade study cases, respectively. Note that for the BBRKT and

ABRKT integrate boost type case, the table columns do not correspond to mission order. The

constant altitude acceleration segment occurs prior to the boost segment as described previously.

Table 5-4 Verification vehicles’ mission segment flight conditions

Vehicle Mission Type Start Condition Booster Acceleration

and Climb

Internal Propulsive

Acceleration

Constant Mach

Cruise

Gliding Descent

Alt Speed Alt Speed Alt Speed Alt Speed Alt. Start Alt. End

GHV Boost Launch

to Cruise

15 0.8 20.6 4.5 20.6 to 24.2 6 24.2+ 6 24.2+ 0

X-51 Boost Launch

to Cruise

15 0.8 18.3 4.5 18.3 6 18.3+ 6 18.3+ 0

All speed in Mach Number

All Alt. in km

Table 5-5 Trade study vehicles’ mission segment flight conditions

System Boost Type Start Condition

(Airdropped)

Booster Acceleration

and Climb

Acceleration Constant Mach

Cruise

Gliding Descent

Alt Speed Alt Speed Alt Speed Alt Speed Alt. Start Alt. End

BB3DS,

AB2DS

External 12.2 0.8 22.9 4.5 22.9 6 22.9+ 6 22.9+ 0

BBRKT,

ABRKT

External 12.2 0.8 22.9 4.5 22.9 6 22.9+ 6 22.9+ 0

Integrated 12.2 0.8 22.9 6 12.2 2.6 22.9+ 6 22.9+ 0

All speed in Mach Number

All Alt. in km

5.5 Methods Selection

Continuing with addressing the problem setup, this section addresses the methods used for the

verification case study and the trade study case. As the trade study case uses the verification

vehicles as baselines, many methods are shared between cases. The methods are addressed in a top

overview approach; for details on select methods see the noted references.

112 Verification and Application

5.5.1 General Method Overview

A listing and general overview of the principal methods employed are presented in Table 5-6.

The methods are categorized by discipline. The disciplines are Geometry, Aerodynamics,

Propulsion, Trajectory, and Weight and Volume. Each discipline consists of at least one method

and may contain more than one. Not all methods are applicable simultaneously nor necessary to a

single vehicle. The method-vehicle associations are given in section 5.5.2 Method Application

Summary.

Table 5-6 Summary of methods applied

Discipline Methods Description Reference

Geometry FDL-7/Model-176, GHV,

GHV modified, and X-51

baseline geometries

Geometry analytical relations and look up table modules

with data populated by configurations created in NASA

openVSP

[147, 148,

150]

Aerodynamics Subsonic, Transonic,

Supersonic, Hypersonic

(blended-body and lifting-

body)

Empirical McDonald Douglas aerodynamic relations for

estimating lift-to-drag ratio (L/D)max, lift curve slope 𝐶𝐿𝛼
,

induced drag factor 𝐿’, and zero lift-drag coefficient 𝐶𝐷0

[85, 151]

Propulsion Rocket Performance Off and on design point analytical relations for

determination of 𝐼𝑠𝑝 and thrust available, T

[152]

 2D Scramjet Performance Off and on design point analysis incorporating stream

thrust analysis and CEA based fuel properties to determine

𝐼𝑠𝑝, thrust available T, and fuel flow rates

[153]

 3D Scramjet Performance Custom method derived from the GHV’s propulsion

system

[147]

Trajectory Const. Alt. Acceleration

Const. q Climb

Gliding Descent

Constant Mach Cruise

Air Launch / Booster

Separation

Numerical method for small flight path angle atmospheric

flight.

[154]

Weight

& Volume

Transatmospheric vehicle

sizing

A set of empirical and analytical relations for the

identifying of weight and volume of the vehicle and its

subsystems

[85, 149,

155]

5.5.2 Method Application Summary

With the methods available presented, now the methods applied per vehicle is considered.

Since the vehicles share many trajectory segments and since the methods are very generic, many

of the methods are used across the vehicle spectrum. Table 5-7 shows the methods per vehicle

breakdown. The filled bullet indicates the application of the method to the given vehicle. Note that

the geometry method tool is the same across all vehicles; however, the individual method module’s

data is different per vehicle. The tool (openVSP and supporting script) is used to populate the data

necessary for the individual geometry method module.

Trade Matrix 113

Table 5-7 Methods per vehicle application summary

 Verification Trade Study

 GHV X-51 BB3DS AB2DS ABRKT BBRKT

Geometry Non-Int. Int. Non-Int. Int.

openVSP ● ● ● ● ● ● ● ●

Aerodynamics*

Subsonic ● ● ● ● ● ● ● ●

Transonic ● ● ● ● ● ● ● ●

Supersonic ● ● ● ● ● ● ● ●

Hypersonic ● ● ● ● ● ● ● ●

Propulsion

Rocket Performance ● ● ● ●

2D Scramjet Performance ● ●

3D Scramjet Performance ● ●

Trajectory

Gliding Descent ● ● ● ● ● ● ● ●

Constant Mach Cruise ● ● ● ● ● ● ● ●

Constant q Climb ● ● ●

Constant Altitude Acceleration ● ● ● ● ● ● ●

Air Launch ● ● ● ● ● ● ● ●

Weight and Volume

Transatmospheric Sizing ● ● ● ● ● ● ● ●

* A different module is used for each speed regime depending on if a BB or an AB

5.6 Trade Matrix

A trade matrix is established for the trade study case. There is no trade matrix for the

verification case; no vehicle properties are traded, rather, the goal is to arrive at the given vehicles

within reasonable error. As such, the trade matrix discussed herein is in regard to the trade study

case only.

The trade study case is an exploration of the air-launched reusable hypersonic test vehicle

solution space. The examination is for the growth vehicle case. That is, the vehicles trades are to

include increasing capability to identify how the vehicle size varies with capability variance. The

reader could consider the vehicles sized similar to those of hypersonic missiles of varying

capability. The trade matrix is given in Table 5-8. Observe that the concepts themselves are a trade.

For each concept, the mission variables are traded, specifically cruise time and payload. Additional

trades per concept configuration include geometric volume coefficient 𝜏 and propulsion system

fuel (hydrogen and kerosene). The trade matrix indicates the range evaluated; however, note that

not all points converge under the convergence criteria specified, which in itself can be informative.

See Appendix A Case Studies Expanded for an account of the non-converged and converged trade

points.

114 Verification and Application

Table 5-8 Trade study trade matrix

Vehicle

Tag

Baseline

Vehicle

Propulsion

System

Boost

Type

Fuel

Type

Tau

Range

Payload

(N)

Endurance

Cruise (s)

BBRKT GHV Liquid Rocket External H2 / RP-1 0.09 - 0.12 0 – 4000 0 – 300

BBRKT GHV Liquid Rocket Internal H2 / RP-1 0.09 – 0.12 0 – 4000 0 – 300

BB3DS GHV 3D Scramjet External Ethylene 0.0657 – 0.0735 0 0 – 750

ABRKT MODEL 176 Liquid Rocket External H2 / RP-1 0.1405 – 0.2143 0 – 5000 0 – 500

ABRKT MODEL 176 Liquid Rocket Internal H2 / RP-1 0.1405 – 0.2143 0 – 5000 0 – 500

AB2DS X-51 /

MODEL 176

Scram

2D Scramjet External JP-7 0.1405 – 0.2143 0 – 4000 0 – 750

5.7 Results: Single Point Verification Case

The verification case was executed with satisfactory conclusion. The verification case

implemented the synthesis sizing code as established in the preceding chapter sections. Table 5-9

presents the sizing variable results. Both the calculated value and the percent error (% 𝐸𝑟𝑟𝑜𝑟 =

100 × (𝐴𝑐𝑡𝑢𝑎𝑙 − 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑)/𝐴𝑐𝑡𝑢𝑎𝑙) to the known value are given. Through the verification

case execution, the methods have been calibrated as well. The percent error has been reduced by

calibrating the method to better arrive at the known vehicle sizing variables’ values. The X-51 and

GHV error values are all within 5% of the known values with the majority below 1%. This error

is acceptable at the early conceptual design stage where in speed to evaluate the largest possibility

of solutions concepts is paramount.

Table 5-9 Verification case’s sizing variables’ value and percent error

GHV 1X GHV-5X X-51A

Parameter Actual Calculated % Error Actual Calculated % Error Actual Calculated % Error

Tau, 𝜏 0.0735 0.0735 0.0 0.0657 0.0657 0 0.2074** 0.2074 -

Planform Area,

(𝑆𝑝𝑙𝑛, 𝑚2)

3.88 3.895 -0.189 19.45 19.469 -0.062 2.26** 2.266 -0.271

Total Volume,

(𝑉𝑡𝑜𝑡, 𝑚3)

0.563 0.565 -0.368 5.642 5.644 -0.034 0.705** 0.730 -3.587

Length,

(𝑙, 𝑚)

4.468 4.471 -0.068 9.991 9.996 -0.048 4.267 4.273 -3.167

Span,

(𝑏, 𝑚)

1.488 1.491 -0.189 3.327 3.333 -0.206 0.702 0.7029 -0.134

Takeoff Gross Weight,

(TOGW, 𝑁)

5430 5552 -2.247 36456 36238 0.598 6690 6689 0.016

Wing Loading,

(𝑊/𝑆𝑝𝑙𝑛, 𝑁/𝑚2)

1397 1425 -0.022 1874 1861 0.694 2960 2952 0.270

*usable fuel

**estimate

With the execution of the synthesis modules and satisfactory arrival at minimal percent error

from the calculated value to the known value, the verification and calibration case study is

considered complete. From the execution of the synthesis code and arrival at satisfactory sizing

variable results, it is inferred that the AIDRA-DSS system executes correctly for the single vehicle

case. The verification case illustrates correct system execution and instills confidence in the system

Results: Trade Study Case 115

and the methods selected for the vehicles considered. The next task is to consider the trade study

case.

5.8 Results: Trade Study Case

The results of the trade study are presented in the following sections. The results are considered

individually according to boost scenario and propulsion type. The discussion closes with the

presentation of the total solution space with all scenarios shown with carrier vehicle constraints

considered. Note that the solution spaces presented include marked solutions (design points);

however, the reader should be aware that the problem at hand does not necessitate a unique

solution. The solutions presented here are not necessarily ‘optimal’ solutions. For the given design

trade combination, there could be any number of plausible and practical solutions. Here, a map of

the solutions arrived at are presented and probable areas of viable solutions are indicated.

5.8.1 External Booster

The externally boosted concepts include both airbreathing and non-airbreathing concepts. For

clarity, the solution space of each is presented separately. Figure 5-11 presents the airbreathing

vehicles’ solution space. Figure 5-12 and Figure 5-13 presents the non-airbreathing vehicles’

solution space for the RP-1 and 𝐻2 based systems, respectively. For reference, in both figures, the

wing-loading of 3,413 𝑁/𝑚2 is highlighted. This wing-loading corresponds to the landing design

requirement of the X-24C [146] (a test vehicle further along in the FDL family vehicle evolution).

Additionally, note that these solutions are for the cruiser only, the total stack is considered in a

following section.

The AB solutions converge along lines of higher wing-loading than those of the BB. The AB

airbreathing solutions converge along the 2,500 𝑁/𝑚2 wing-loading line and are bracketed by the

3,300 𝑁/𝑚2 and 1,650 𝑁/𝑚2 lines. The BB solutions converge along approximately the 1,750

𝑁/𝑚2 wing-loading line and are bracketed by the 1,900 𝑁/𝑚2 and 1,200 𝑁/𝑚2 lines. The wing-

loading is directly relatable to the stall speed and structural loads. Given that the AB solutions

converge along higher wing-loadings, the AB will have higher approach speeds unless

supplemented. Historically this configuration type (AB) has been equipped with a secondary

retractable lifting device for landing. It is for this reason that all AB concepts considered include

an integrated deployable low-speed wing. At lower wing-loadings, the BB concepts do not require

additional lifting support, overall representing an advantage.

The AB solutions for 0 to 4000 N payload and 0 to 750 second cruise time are indicated. In

general solution convergence occurs with ease and as such the problem is well behaved. The

solution areas expand vertically with mission variable trade, increasing in TOGW with minimal

expansion (comparatively) in the planform area per 𝜏. This is the volumetric design behavior and

advantage of the AB configuration.

116 Verification and Application

The BB solutions for 0 N payload are also shown. Unlike the AB solutions, the BB solutions

expand significantly both vertically and horizontally with mission variable trade, increasing in

both TOGW and planform area. Note that the single zero payload cases span the entire planform

solution length as the AB solutions for 0 – 4000 N payload. It is noted however that the BB

solutions are initially under sized and require scaling to closer match known design points despite

the calibration of the methods. During operation, note that in some cases design point solutions

are non-unique; it is possible that additional smaller scale solutions can be found. It is warranted

that further investigation be conducted to verify if reduced vehicle size solutions do exist. As such,

due to the scaling factor, the higher endurance design points appear to suffer from overestimating

TOGW when compared to the reference GHV tool calibration vehicles in this region. In regard to

the general behavior of the solutions, the expansive nature in both planform area and TOGW with

increasing endurance is not unexpected given that the type of configuration does not share the

same geometric efficiency advantage of the AB. However, the BB does maintain a lower wing

loading given its trend towards larger planform area.

Figure 5-11 Boosted airbreathing hypersonic vehicle solution space: TOGM vs. 𝑆𝑝𝑙𝑛

Considering the non-airbreathing case of the kerosene (RP-1) and hydrogen (𝐻2) systems as

shown in Figure 5-12 and Figure 5-13 respectively, the solutions in both cases overlap each other

significantly. Please note, the differences in payload and mission endurance. It is worth noting at

this point that the BB configuration do suffer from significant convergence issues, that is difficulty

in finding solutions, especially as compared to the AB case. The reader will notice differences in

trade variable ranges and points of no solutions for certain trade combinations (such as the 𝜏 =

0.12 at 4000 N and 300s for the 𝐻2 case in Figure 5-13). The AB case does not suffer as

significantly, though there are converged points that significantly exceed the solution trends as in

Results: Trade Study Case 117

the point in Figure 5-13 for 𝜏 = 0.2143 and 5000 N. In regard to the RP-1 and 𝐻2 solutions, they

both fall within the wing-loadings of 1,300 𝑁/𝑚2 and 4,200 𝑁/𝑚2. The RP-1 solution field

indicates that the AB concept can offer a lighter and smaller solution for approximately all mission

design point cases, whilst the BB is showing only some possible advantage in size at the 0 payload

and 300 s endurance point. Overall, the AB growth to mission requirement increases was at a lower

rate than the BB. Additionally, and not unsurprisingly, due to having to carry oxidizer on board,

all solutions as compared to the air-breathing case, are greater in TOGW and 𝑆𝑝𝑙𝑛.

Significantly, the fuel type directly impacts the vehicle’s TOGW and 𝑆𝑝𝑙𝑛. For both, the AB

and BB, the 𝐻2 cases offer only increased 𝑆𝑝𝑙𝑛 and TOGW for the same mission. Additionally, the

𝐻2 system grows very rapidly in both TOGW and 𝑆𝑝𝑙𝑛, at a rate much greater than the RP-1 based

system per change in mission variable. The hydrogen-based BB grows rapidly in size, an entirely

undesirable behavior for the case at hand when evaluating of the trade space for carried

demonstrator vehicles. As such, per the solutions gained, the hydrogen fuel poses no benefit.

Figure 5-12 Boosted non-airbreathing hypersonic vehicle solution space RP-1: TOGM vs. 𝑆𝑝𝑙𝑛

118 Verification and Application

Figure 5-13 Boosted non-airbreathing hypersonic vehicle solution space 𝐻2: TOGM vs. 𝑆𝑝𝑙𝑛

5.8.2 Trade Study Solution Space: Launch Stack & Carrier Constraints

The previous section considers the cruiser case specifically. With the following, the total stack

is considered. The launch stack comprises of the booster, inter-stage, and flight vehicle. The stack

is sized based off the X-51A’s stack. The total stack is considered in terms of the carrier vehicle

constraints. At first, is considered the integrated versus boosted rocket system is considered. This

is followed by a general consideration of payload capacities and of geometric constraints where

available.

The evaluation of external versus onboard acceleration capacity systems indicates, that the

inclusion of full acceleration capacity system integration is not beneficial when judged by design

point 𝑇𝑂𝐺𝑊 and 𝑆𝑝𝑙𝑛. The figure below illustrates the two cases for the AB case. Note, that the

fully integrated systems prove to be a much more difficult problem to solve, in particular for the

BB case. Solutions indicate, not unexpectedly, the integrated cases are both heavier and larger than

their comparative non-integrated case. However, there are solution points in which the integrated

RP-1 system is more advantageous in both 𝑆𝑝𝑙𝑛 and TOGW than the same mission design point

for the inserted hydrogen case. There are some cases for the zero cruise time in which the integrated

system solutions are less in both weight and area than the equivalent inserted system, which may

indicate that the booster rocket is oversized for the case, or that the onboard propulsive system is

more efficient then the accelerator motor. Naturally, the integrated hydrogen case has no

advantages over any other solution point. As such, in the evaluation of the design points by 𝑇𝑂𝐺𝑊

and 𝑆𝑝𝑙𝑛, the integrated solutions show no advantage to the externally boosted vehicle except in

the case of an integrated RP-1 based solution being chosen over a hydrogen-based insert solution.

Results: Trade Study Case 119

However, if the criterion includes full reusability, the integrated case naturally satisfies the criteria

whereas the vehicle accelerated by expendable systems does not. Generally, for the same mission,

the integrated systems are approximately twice the 𝐺𝑇𝑂𝑊 and two-to-three times larger in 𝑆𝑝𝑙𝑛.

Figure 5-14 Integrated non-airbreathing hypersonic vehicle solution space: TOGM vs. 𝑆𝑝𝑙𝑛

In Figure 5-15 and Figure 5-16, the launch stack for the AB and BB are presented, illustrating

the solution space in regards to TOGW and 𝑆𝑝𝑙𝑛 versus known carrier vehicle payload limits. The

pylon hard-point payload limits for several classical vehicles including the B-52 (HRC), F-15, and

B-1B in addition to the Gulfstream C-20A, are indicated. Each system has either been used as a

launch platform for test systems or is being fitted to carry hypersonic systems. Limits are based on

publicly available hard point information or known carried hardware such as the 600 gallon fuel

tank for the F-15 midline hardpoint. The selected vehicles represent the lower, middle, and upper

limits of generally available carrier aircraft relevant to the hypersonic deployable system. Not

included but equally plausible launch platforms include launch vehicles and their components,

such as the Falcon 9 or Minotaur.

Considering the carrier vehicle constraints, it is observable that the majority of the solutions

arrived at for the inserted vehicles with payloads of ≤ 5,000 𝑁 and cruse times of ≤ 750 𝑠, are

within the payload limits of the B-52 with upgraded hardware. The principal exception only being

hydrogen-based systems. The integrated solutions would exceed the B-52’s capacity quickly as

payload increases or cruise time beyond 250 − 500𝑠 depend on the fuel. However, almost all

solutions far exceed the capacity of the C-20A and F-15. The solution field applicable to the F-15

are the AB and BB low-end zero to 500 N payload case up to potentially 250s cruise time of the

RP-1 boosted design class and possibly a minimal performance airbreathing system. The B-1B

120 Verification and Application

offers a potential launch platform that can address approximately a third to half the solution space

identified. The max mission requirements considered do tax the considered carrier vehicle payload

capacities. For a growth test vehicle concept, vehicles of a mission requirement greater than that

selected, would rapidly exceed the B-52 limits and would require a new launch platform besides

the classical systems for hypersonic test systems application.

Figure 5-15 AB full stack payload constrained solution space: TOGM vs. 𝑆𝑝𝑙𝑛

Figure 5-16 BB full stack payload constrained solution space: TOGM vs. 𝑆𝑝𝑙𝑛

Results: Trade Study Case 121

Figure 5-17 and Figure 5-18 illustrates the solution space in regard to the geometric dimensions

of launch stack overall length (𝑙) and span (𝑏) versus known carrier vehicle payload geometric

limits by BB and AB respectively. As in the previous figure, the B-52 (HCR), F-15, B-1B, and

CA-20 are used for payload limits. (The geometric limitations of each vehicle are defined by the

payload placement location. Limitations are set based on such parameters as landing gear location,

inboard distance between fuselage and engine nacelle, jet wake, and payload CG location.) All

vehicle solutions are represented in the figure. The practical solution spaces collapse down

significantly when considering length and span. As evident from the figure, the solutions’ span

values are below the first limiting vehicles span constraint—C-20A. In regard to overall length,

many do exceed the limits of F-15 and even the B-52. However, note that the accelerator was

assumed to be a single linear component; the accelerator could be potentially divided and placed

in parallel along the sides of the cruiser vehicle in order to reduce overall length at potentially the

cost of span. Unlike the payload weight limit, in the length limits case, the integrated systems are

indicated to have an advantage over the boosted systems, being of less length. Generally speaking,

all feasible or likely AB and BB design choices fall within the geometric limits of the B-52. Only

select BB solutions exceed the B-52 length limits, those being impractical hydrogen-based

systems. In the case shown, the limiting factor is the stack or vehicle length. However, this likely

could be solved through division of the accelerator into smaller elements fastened to the vehicle’s

fuselage rather than tail end.

Figure 5-17 BB vehicle geometric constrained solution space: 𝑙 vs. 𝑏

122 Verification and Application

Figure 5-18 AB vehicle geometric constrained solution space: 𝑙 vs. 𝑏

5.9 Conclusion

5.9.1 Study Summary

The principal intent of this chapter has been to demonstrate system functionality and

application. Functionality and applicability are shown through a verification case study and a trade

study. For system verification, two vehicles have been selected to be sized and the results

compared against each other. The vehicles are the X-51A and GHV. These vehicles represent the

hypersonic all-body and blended-body vehicle classes. The vehicles selected include both a flown

test vehicle and a paper concept study. The vehicles are entered into the AIDRA-DSS system.

Through user operation of the system, the result of the user selections via the user interface

represents the generation of unique synthesis codes, each addressing a specific vehicle. The

vehicles, processes, methods, and mission conditions for each have been presented. Upon synthesis

code generation, each has been executed. The result is a satisfactory arrival at sizing results very

near in value to the control vehicles known sizing variables’ value. The percent error is within 5%

for all sizing variables evaluated (most below 1%). The execution of the support system, the

execution of the resulting synthesis tools, and the evaluation of the results indicate that the tool

works properly. It is inferred that the system operates, that it uniquely assembles new synthesis

codes, and that it executes the codes correctly as confirmed by the correct outcomes of the

verification case.

Following the verification case, the systems applicability and functionality is demonstrated

through the execution of a trade study. Using the vehicle concepts from the verification case as

baseline vehicle concepts—with the addition of a rocket powered BB and AB concept—a trade

study has been executed. Trade variables include configuration and concept (the vehicle base lines

representing airbreathing and non-airbreathing blended-body and all-body concepts), payload,

Conclusion 123

mission scenarios, and fuel types. The trade study not only demonstrates system functionality in

terms of a multi-design point study, but also demonstrates system applicability. Through the range

of design trades, a solution space for hypersonic test vehicles is assembled and visualized. The

solutions are contextualized through the consideration of carrier vehicle geometric and weight

constraints.

5.9.2 Study Conclusions

In regard to the trade study itself, a few concluding statements can be made. First, for all cases

the AB solutions tended to have the advantage in in planform area, length, span, and even generally

weight as compared to the BB counterparts. The BB solutions tend towards being larger in

planform area for the same mission. Furthermore, the BB solution areas, for both airbreathing and

non-airbreathing concepts, expand with performance demand significantly more so than the AB

cases. Regarding the integrated systems, they show no advantage in overall weight, minor potential

advantages in overall length are identified. Moreover, the integrated system represents a fully

reusable system and for this reason could be more desirable than the other concepts for certain

research objectives. Lastly, considering the carrier vehicles, for the missions and performance

requirements selected, the B-52 could carry most probable near term systems identified. However,

the trades considered result in solutions that approach the limits of the B-52 and as such, for any

concepts that exceed those considered here in, an alternative launch platform or fully self-sustained

concept would be required. From the study, it can be concluded that for a growth test hypersonic

program of reusable systems, the carrier vehicle options are adequate for near term research but

are limited and necessitate being considered in program planning far beyond near term. However,

in consideration of the solutions as weapon or small-scale test systems and not growth research

and development systems, then vehicles of the payload class of the B-1 and B-52 can carry several

small systems simultaneously.

With the execution of these case studies, it has been shown that the system operates as expected

for the single process and single complex vehicle synthesis assembly and execution scenario.

Additionally, with the completion of the case studies, the capacity for trade study is demonstrated.

In conclusion, all verification and demonstration tasks as outlined at the start of this chapter have

been completed successfully.

5.9.3 Contribution Statement

» Verified single point and multi-point functionality of a new synthesis design tool.

» Solution space identification and visualization of all-body and blended-body airbreathing and

non-airbreathing reusable hypersonic air-launched vehicles for 0-750s cruise time at varying

payload, fuel type, and trajectory design.

Chapter 6 CONCLUSION

This document is concluded with the consideration of a research summary, a research

contributions summary, and a consideration of areas of research and development for future

enhancement of the concepts and system presented here in.

6.1 Research Summary

The principal development and deliverable of the research presented herein has been the

generic synthesis decision support environment as a precursor to an artificial intelligence design

and research assistant (AIDRA-DSS). AIDRA-DSS was developed in Python with an executable

GUI written in QT. It is a framework that allows engineers to design and size any vehicle through

a generic synthesis assembly approach. Additionally, the system is not limited to aerospace and,

as long as the designer carries the proper methodologies, a vehicle can be assembled. The ideology

behind AIDRA-DSS is a versatile system that can size and prototype vehicles in a fast-paced design

environment. Giving the user the ability to compose a vehicle from different elements, AIDRA-

DSS creates a tailored sizing code based on the user-designated requirements.

The systems functionality and applicability has been demonstrated successfully through the

execution of a verification case and a trade study. The verification case considered the GHV and

X-51A. Representing the blended-body and all-body configurations, these concepts and

configurations were used as baseline vehicles for the trade study. The trade study evaluated air

launched airbreathing and non-airbreathing concepts for consideration as reusable hypersonic

vehicle research and development platforms. Trade variables include configuration and concept,

payload, mission scenarios, and fuel types. Through the range of trade conditions, a solution space

for hypersonic test vehicles was assembled and visualized. To assist in evaluating concepts and

gleaning information from the results in pertinence to the carrier vehicle, the solutions were placed

into context with carrier vehicle geometric and weight constraints. From the study, it can be

concluded that for a growth test hypersonic program of reusable systems, the carrier vehicle

options are limited and necessitate being considered in program planning. The vehicle solutions

indicate plausible requirements for future carrier vehicles. Additionally, the all-body has shown

126 Conclusion

superior solution regions in terms of total weight and size, both of which are critical for carrier

vehicle consideration.

With the execution of the two case studies, it has been shown that the system operates as

expected for the single process and single complex vehicle synthesis assembly and execution

scenario. Additionally, with satisfactory execution of the case studies, the capacity for system

handling of said trade studies is demonstrated.

The development of the system has had two purposes. First, advancement toward modular

design synthesis assembly infusion into cognitive systems or other AI frameworks. This is the

driving motivation of this research. In this respect, the purpose of the system is to develop further

expertise and a baseline environment to test complex vehicle automated synthesis architecture

synthetization that would be easily adaptable into a greater cognitive system. The second purpose

is to serve as a useful engineering environment that arrives the user at an applicable synthesis

solution toolset, based on user selections, to solve a given problem by providing standard feedback

and decision aiding platforms. The second objective one could consider as an intermediate

objective to provide immediate system utility while driving towards the greater objective of a

cognitive design and research assistant.

Reiterating the statements of Chapter 1, fundamentally, the motivation for this research has

been to explore the advancement of toolsets for the decision maker and designer operating at the

earliest planning and design phase of an aerospace vehicle or program. The significance of the

decisions made at these early phases cannot be overstated. The level of success of a product is

dependent on the quality of the underlying early forecasts, requirement definitions, technology

selections, and initial concept and configuration selections. This research has been but one-step

towards a greater goal; the system itself could have additional immediate advancements through

follow on research and development. Some foreseen and suggestable areas of development are

discussed in section 6.3 Research and Development for Future Enhancement.

6.2 Research Contribution Summary

The research contributions are summarized below. The contributions are in the areas system

concept specification, system development, system demonstration, and trade study execution.

» Specification for a design decision support system environment concept for application to

aerospace vehicle design, with an approach emphasis for vehicle-of-vehicle design.

» Development of a modular and automated synthesis assembly toolset in the framework of a

transparent and user-friendly decision support environment.

» Demonstration of environment functionality through a verification case study.

» Identification of a reusable hypersonic demonstrator class solution space for all-body and

blended body vehicles of both airbreathing and non-airbreathing type.

Research Contribution Summary 127

The research undertaken has developed software to directly assist the early conceptual design

phase and even the activities of the pre-design phase, notably the program planning and road-

mapping activities that can include but are not limited to technology portfolio planning and

requirements identification. As such, principal tool development and its application does focus on

the parametric sizing phase, itself presenting the initial sub-phase of the conceptual design process.

Any design naturally follows a refining processes and, as such, demands that the synthesis software

increase its analysis fidelity successively as well. To accommodate this natural event of refinement

through increasing analysis fidelity, the system presented would approach the problem through the

generation of multiple architectures of varying analysis fidelity. As such, the fidelity of analysis is

variable, and the tool and approach are applicable to more than one design event within the design

process.

There are several additional advantages to the system’s approach as identified and developed.

First, through a transparent process of a dynamic method and analysis process definition and

selection sequence, a user can implement a design analysis process that directly reflects the needs

and requirements of the product at hand, as each product can have different criteria and design

initiation avenues. For example, in the classical design approach, a basic geometric definition is

the first step. However, it may not be necessary that a design initiates with this particular discipline

nor that a process be limited to certain disciplinary areas and sequences. The disciplines represent

an analysis type and the user is free to add any discipline to create and apply a new process as

necessary. Thus, the synthesis architecture process is moldable to arrange the order of analysis as

necessary to address the unique problem being solved. Modules can be added as needed to address

the necessary analysis including cost models, life support models, radar cross-section analysis

models, thermal heating models, etc. In summary, the process is user definable and not limited to

a specific disciplinary analysis module application nor order of operation. However, the user tends

to apply engineering best practice and knowledge in the design of a process to ensure correctness

and peer-acceptability in application and design.

The modular process definition underscores an additional advantage to this approach and

application, that is the ability to concurrently evaluate dissimilar concepts and configurations

conceived to address the same problem. A classical design problem is the inability to rapidly

compare uniquely different aerospace design configurations for the same mission in a timely

manner. The automated modular approach presented, through a library of various processes and

methods, permits the rapid assembly of architectures of consistent fidelity that each address

different design concepts allowing for the comparison of potentially very dissimilar solutions on

equal design evaluation footing.

A final notable benefit of the automated modular synthesis approach within an easy to use and

transparent user interface, is the savings in time. Time in two regards; first time in regard to

engineer training and time in regards to analysis deliverables. A key to learning is exposure. A

rapid architecture generation capacity—of a generic type—allows for increased engineer exposure

to various design processes, analysis methods, and aerospace concepts and configurations. The

128 Conclusion

automated approach can directly contribute to an enhanced learning environment through which a

novice engineer can rapidly gain exposure and design understanding. A synthesis architecture

generation system of a transparent nature that operates through synthesis assembly automation by

means of a modular design process and methods library, allows for the rapid introduction and

exposure of inexperienced personnel to the labyrinth of available knowledge and the design

processes of the institution. This subsequently permits increased design exposure and general

experience, such that the experience and knowledge available can be more readily directed and

passed on to the novice designer. Similarly, the same advantage is applicable to the university

environment, where student exposure to the actual evaluation and comprehension of the design

and the value of their work, is lost due to frequent lack in time for exposure and experimentation

after the initial generation of method analysis tools. A modular automated synthesis generation

approach allows for reduced time and effort in the design tool fabrication process, that if employed

would allow for increased time in analysis application, design understanding, and overall

improvement in an engineer’s education.

The second note on time savings is that of actual tool generation which has been hinted at in

the previous discussion. An automated synthesis architecture generation process permits for the

development and deployment of synthesis architectures rapidly. Time savings occur through the

automation of the tedious tasks of linking methods and data handling, in addition to identifying

and presenting to the user methods and processes available, with potential specification of the best

methods and tools for the hardware application and fidelity required in addition to other

requirements, ensuring proper method application. In the event of adequately populated libraries

(process, methods, and vehicles), input variable databases, and dependent on hardware

decomposition level, architectures can be rapidly generated within mere minutes and architectures

executed thereafter. Furthermore, they are additionally archivable and distributable with full access

to the methods involved allowing for reuse and modification, as necessary.

6.3 Research and Development for Future Enhancement

The work presented here has been an iteration of a vehicle decomposition and modular

synthesis assembly concept, with the goal of sequential development towards a cognitive design

and research assistant. This work has led to the development of a modular framework that can be

refined and inserted as a numerical analysis core into an AI framework with modification of course.

As such, some foreseen efforts for continuation and improvement of the design kernel include the

following.

Towards Architecture Planning:

» Vehicles as Trade Studies. The system current is set to treat each vehicle selected as a

component of a greater vehicle; however, this same implementation could readily be converted

to allow for trade study iterations to include the vehicles themselves. Vehicle trades could

occur in two manners. First, rather than setting a vehicle group as a subset of a parent vehicle,

Research and Development for Future Enhancement 129

they could be set to be individual independent concepts to be evaluated. Such a capacity would

support pre-phase or program and architecture planning. A second case, a parent vehicle’s

component sub-vehicles could be traded in addition to the classical trades such as aspect ratio

or fuel type. This would allow for a single project set up and run to evaluate many vehicle

concepts simultaneously.

» Decomposed System Trades. In the same fashion as the point noted above, the individual

components of a vehicle—whether it be the vehicle itself, vehicles within the vehicle, or any

individual vehicle’s concept, hardware, or operational conditions—could be a trade option.

Traditionally trades are in specific input parameters; this system would allow a trade study to

be much more global in consideration.

Towards Increased and Improved Automation:

» Natural Language Processing. The GUI itself is in place to benefit the user. However, for an

autonomous system, the GUI is not necessary. A plausible improvement could be a natural

language processor where in the instructions are given either verbally or via a standard

keyboard input (text). In such as sense the system could have an integrated chatbot like

interface. The GUI operations would be handled by the system without direct user interfacing

other than through basic instruction however being dependent on a sound expert system or

similar.

» Database and Knowledgebase Expansion and Integration. Improved and increased

knowledgebase and database integration and population would directly benefit the system.

Furthermore, it is necessary for a true research and design assistant. Currently, the system is

limited to a selection of methods and references as the knowledge base and the project results

exist in fragmented result databases. Additional knowledge and data handling capacity could

be added through many means. For instance, the addition of a global projects results database

with datamining and data reuse could be integrated allowing for a mechanism for improved

convergence parameter initial guess values, input variables value assignment, or even new

method derivation through datamining. Furthermore, system execution could be enhanced

through an improved expert system or decision tree/process for automated method filtering

based on knowledge of the available methods such as method applicability, accuracy, speed,

or dependability. Given a concept statement, with the right knowledge and data, the system

could make the correct choices the user classically makes during GUI operation allowing for

time reduction in system operation and final product.

» Design and Analysis Recommendations. The purpose of a decision support system is to help

the user arrive at the correct or best decision given the information available. The current

system assists the user by providing a transparent synthesis assembly tool allowing the user to

setup an analysis solution to the problem at hand that results in not only the analysis tool but

also design figures. The user is left, however, to derive conclusions based on the results and

figures presented. All though this may accelerate the problem solution process, it itself does

130 Conclusion

not give design recommendations. A system improvement would be a direct result analysis

process that arrives at and provides both intelligent design recommendations and intelligent

analysis recommendations (recommendations to rerun the analysis to better evaluate the

problem or new problems identified through the analysis, including changing methods).

» Improved Generative Coding. A primary deliverable of the DSS developed is a synthesis code

tailor made for the user given the user’s selections in system operation. The system generates

the synthesis code effectively through the use of code assembly rules and code block libraries.

The system could be further advanced through improvements to the code assembly process

such as through the utilization of agents or other auto-coding and generative techniques.

Chapter 7 BIBLIOGRAPHY

[1] Blair, J., Ryan, R., Schutzenhofer, L., and Humphries, W. "Launch Vehicle Design

Process: Characterization, Technical Integration, and Lessons Learned," NASA/TP 2001-

210992, NASA, 2001.

[2] Anon. "AIAA Technical Committee on Multidisciplinary Design Optimization (MDO)

White Paper on Current State of the Art," 1991.

[3] Defense Acquistion University Press. "Systems Engineering Fundamentals," Department

of Defense Systems Management College, 2001.

[4] Calkins, D. E., Gaevert, R. S., Michel, F. J., and Richter, K. J. "Aerospace System Unified

Life Cycle Engineering: Producibility Measurment Issues," IDA Paper P-2151, Institute

for Defense Analyses, 1989.

[5] Corning, G. Aerospace Vehicle Design, College Park, MD, 1964.

[6] Space & Missile Systems Center. "SMC Systems Engineering Primer & Handbook:

Concepts, Processes, and Techniques," U.S. Air Force, 2005.

[7] Space & Missile Systems Center. "SMC Systems Engineering Primer & Handbook:

Concepts, Processes, and Techniques," Vol. 1, U.S. Air Force, 2013.

[8] Krishnamoorthy, C., and Rajeev, S. Artificial Intelligence and Expert Systems for

Engineers, Vol. 11, CRC press, 1996.

[9] Suri, R., and Shimizu, M. "Design for Analysis: A New Strategy to Improve the Design

Process," Research in Engineering Design, Vol. 1, 1989, pp. 105–120. doi:

10.1007/BF01580204

[10] Heinze, W. "Ein Beitrag Zur Quantitativen Analyse Der Technischen Und Wirtschaftlichen

Auslegungsgrenzen Verschiedener Flugzeugkonzepte Fur Den Transport Grosser

Nutzlasten." TU Braunschweig, ZLR Forschungsbericht, 1994.

[11] Roskam, J. Airplane Design Part VIII: Airplane Cost Estimation: Design, Development,

Manufacturing and Operating, DARcorporation, 1990.

132 Bibliography

[12] de Weck, O. "16.842 Fundamentals of Systems Engineering." Massachusetts Institute of

Technology: MIT OpenCourseWare, https://ocw.mit.edu., Fall 2015.

[13] Torenbeek, E. "Synthesis of Subsonic Airplane Design," Delft: Springer, 1982.

[14] Nicolai, L. M., and Carichner, G. Fundamentals of Aircraft and Airship Design, AIAA

Educational Series, Vol. 1, American Institute of Aeronautics and Astronautics, Reston,

VA, 2010. doi: 10.2514/4.867538

[15] Striz, A., Kennedy, B., Siddique, Z., and Neeman, H. "A Roadmap for Moderate Fidelity

Conceptual Design with Multilevel Analysis and MDO," 47th

AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference,

AIAA 2006-1619, 2006. doi: 10.2514/6.2006-1619

[16] Chun-Lin, G., Liang-Xian, G., Heng-Jun, L., and Jian-Ke, S. "KE and MDO Based

Intelligent Conceptual Design Method for Tactical Missile," 2010 IEEE International

Conference on Intelligent Computing and Intelligent Systems, 2010. doi:

10.1109/ICICISYS.2010.5658668

[17] Chudoba, B., and Heinze, W. "Evolution of Generic Flight Vehicle Design Synthesis," The

Aeronautical Journal, Vol. 114, No. 1159, 2010, pp. 549–567.

[18] Chudoba, B. Stability and Control of Conventional and Unconventional Aircraft

Configurations: A Generic Approach, BoD–Books on Demand, 2001.

[19] Chudoba, B. "Managerial Implications of Generic Flight Vehicle Design Synthesis," 44th

AIAA Aerospace Sciences Meeting and Exhibit, AIAA-2006-1178, 2006. doi:

10.2514/6.2006-1178

[20] Thurstone, L. L. Primary Mental Abilities., Chicago, 1938.

[21] Gardner, H. Frames of Mind: The Theory of Multiple Intelligences, Basic books, 1993.

[22] Salovey, P., and Mayer, J. D. "Emotional Intelligence," Imagination, Cognition and

Personality, Vol. 9, No. 3, 1990, pp. 185–211.

[23] Goleman, D. P. Emotional Intelligence: Why It Can Matter More Than IQ, New York:

Bantam Books, 2006.

[24] Sternberg, R. J. Beyond IQ: A Triarchic Theory of Human Intelligence, Cambridge

University Press, 1985.

[25] Krishnakumar, K. "Intelligent Systems for Aerospace Engineering-an Overview," 2003.

[26] Harrison, L., Saunders, P., and Janowitz, J. "Artificial Intelligence with Applications for

Aircraft.," 1994.

https://ocw.mit.edu/

Bibliography 133

[27] Munakata, T. Fundamentals of the New Artificial Intelligence Neural, Evolutionary, Fuzzy

and More, 2 ed., Springer, 2008. doi: 10.1007/978-1-84628-839-5

[28] Russell, S. J., Norvig, P., Canny, J. F., Malik, J. M., and Edwards, D. D. Artificial

Intelligence: A Modern Approach, 2 ed., Prentice Hall Upper Saddle River, 2003.

[29] Negnevitsky, M. Artificial Intelligence: A Guide to Intelligent Systems, Pearson Education,

2005.

[30] Hopgood, A. A. Intelligent Systems for Engineers and Scientists, CRC press, 2011.

[31] Noor, A. K. "Computational Intelligence and Its Impact on Future High-Performance

Engineering Systems," NASA Conference Publication 3323, National Aeronautics and

Space Administration, Langley Research Center, 1996.

[32] Blount, G. N., Kneebone, S., and Kingston, M. R. "Selection of Knowledge-Based

Engineering Design Applications," Journal of Engeering Design, Vol. 6, No. 1, 1995, pp.

31-38. doi: 10.1080/09544829508907900

[33] Hopgood, A. A. "The State of Artificial Intelligence," Advances in Computers, Vol. 65,

2005, pp. 1 - 75.

[34] Marx, W. J., Schrage, D. P., and Mavris, D. N. "An Application of Artificial Intelligence

for Computer-Aided Design and Manufacturing," International Conference on

Computational Engineering Science; Supercomputting in Multidisciplinary Analysis and

Design, 1995.

[35] Karppinen, N., Lucas, A., Ljungberg, M., and Repusseau, P. "Artificial Intelligence in Air

Traffic Flow Management," Proceedings of the International Aerospace Conference,

Technical Note 16, Melbourne, Australia, 1991.

[36] Weigang, L., Alves, C. J. P., and Omar, N. "An Expert System for Air Traffic Flow

Management," Journal of Advanced Transportation, Vol. 31, No. 3, 1997, pp. 343–361.

[37] Ryan, J. C., Cummings, M., Roy, N., Banerjee, A., and Schulte, A. "Designing an

Interactive Local and Global Decision Support System for Aircraft Carrier Deck

Scheduling," Infotech@ Aerospace 2011, AIAA 2011-1516, 2011. doi: 10.2514/6.2011-

1516

[38] Richards, R. "Application of Multiple Artificial Intelligence Techniques for an Aircraft

Carrier Landing Decision Support Tool," 2002 IEEE World Congress on Computational

Intelligence. 2002 IEEE International Conference on Fuzzy Systems. FUZZ-IEEE'02.

Proceedings (Cat. No.02CH37291), Vol. 1, 2002, pp. 7–11. doi:

10.1109/FUZZ.2002.1004950

[39] Roy, A. G., and Peyada, N. "Aircraft Parameter Estimation Using Hybrid Neuro Fuzzy and

Artificial Bee Colony Optimization (HNFABC) Algorithm," Aerospace Science and

Technology, Vol. 71, 2017, pp. 772–782. doi: 10.1016/j.ast.2017.10.030

134 Bibliography

[40] Lala Jr, L. L., Wood, L. H., and Perrotta, C. D. "Intelligent Systems for Space Situational

Awareness," Infotech@Aerospace 2011, AIAA 2011-1433, 2011. doi: 10.2514/6.2011-

1433

[41] Calise, A. J. "Neural Networks in Nonlinear Aircraft Flight Control," Aerospace and

Electronic Systems Magazine, IEEE, Vol. 11, No. 7, 1996, pp. 5–10.

[42] Butyrin, S. A., Makarov, V., Mukumov, R., Somov, Y., and Vassilyev, S. "An Expert

System for Design of Spacecraft Attitude Control Systems," Artificial Intelligence in

Engineering, Vol. 11, No. 1, 1997, pp. 49–59.

[43] La Rocca, G. "Knowledge Based Engineering: Between AI and CAD. Review of a

Language Based Technology to Support Engineering Design," Advanced Engineering

Informatics, Vol. 26, No. 2, 2012, pp. 159–179. doi: 10.1016/j.aei.2012.02.002

[44] Amadori, K. "Geometry Based Design Automation: Applied to Aircraft Modelling and

Optimization," PhD Dissertation, Linköping University, 2012.

[45] La Rocca, G., and van Tooren, M. J. L. "A Knowledge Based Engineering Approach to

Support Automatic Generation of FE Models in Aircraft Design," 45th AIAA Aerospace

Sciences Meeting and Exhibit, AIAA 2007-967, 2007. doi: 10.2514/6.2007-967

[46] Ledermann, C., Hanske, C., Wenzel, J., Ermanni, P., and Kelm, R. "Associative Parametric

CAE Methods in the Aircraft Pre-Design," Aerospace Science and Technology, Vol. 9, No.

7, 2005, pp. 641–651.

[47] Rentema, D. "AIDA. Artificial Intelligence Supported Conceptual Design of Aircraft,"

PhD Dissertation, Delft University of Technology, 2004.

[48] Tsuchiya, T., Takenaka, Y., and Taguchi, H. "Multidisciplinary Design Optimization for

Hypersonic Experimental Vehicle," AIAA Journal, Vol. 45, No. 7, 2007, pp. 1655–1662.

[49] Tianyuan, H., and Xiongqing, Y. "Aerodynamic/Stealthy/Structural Multidisciplinary

Design Optimization of Unmanned Combat Air Vehicle," Chinese Journal of Aeronautics,

Vol. 22, No. 4, 2009, pp. 380–386.

[50] Rao, C., Tsai, H., and Ray, T. "Aircraft Configuration Design Using a Multidisciplinary

Optimization Approach," 42nd AIAA Aerospace Sciences Meeting and Exhibit, AIAA

2004-536, 2004. doi: 10.2514/6.2004-536

[51] Shahrokhi, A., and Jahangirian, A. "Airfoil Shape Parameterization for Optimum Navier–

Stokes Design with Genetic Algorithm," Aerospace Science and Technology, Vol. 11, No.

6, 2007, pp. 443–450.

[52] Oyama, A., Nonomura, T., and Fujii, K. "Data Mining of Pareto-Optimal Transonic Airfoil

Shapes Using Proper Orthogonal Decomposition," Journal of Aircraft, Vol. 47, No. 5,

2010, pp. 1756–1762.

Bibliography 135

[53] Alemany, K., and Braun, R. D. "Survey of Global Optimization Methods for Low-Thrust,

Multiple Asteroid Tour Missions," AAS/AIAA Space Flight Mechanics Meeting, AAS 07-

211, 2007.

[54] Zotes, F. A. "Application of Intelligent Algorithms to Aerospace Problems," PhD

Dissertation, Universidad Nacional de Educación a Distancia, 2011.

[55] Chae, H. G. "A Possibilistic Approach to Rotorcraft Design through a Multi-Objective

Evolutionary Algorithm," PhD Dissertation, Georgia Institute of Technology, 2006.

[56] Neufeld, D., and Chung, J. "Unmanned Aerial Vehicle Conceptual Design Using a Genetic

Algorithm and Data Mining," Infotech@Aerospoace, AIAA 2005-7051, 2005. doi:

10.2514/6.2005-7051

[57] Damp, L., Gonzalez, L. F., and Srinivas, K. "Multi-Objective and Multidisciplinary Design

Optimisation (MDO) of UAV Systems Using Hierarchical Asynchronous Parallel

Evolutionary Algorithms," University of Sydney, School of Aerosapce, Mechanical, and

Mechatronic Engineering, 2007.

[58] Lee, D., Gonzalez, L. F., Srinivas, K., Auld, D., and Wong, K. C. "Aerodynamic/RCS

Shape Optimisation of Unmanned Aerial Vehicles Using Hierarchical Asynchronous

Parallel Evolutionary Algorithms," 24th AIAA Applied Aerodynamics Conference, AIAA

2006-3331, 2006.

[59] Jones, B. R., Crossley, W. A., and Lyrintzis, A. S. "Aerodynamic and Aeroacoustic

Optimization of Rotorcraft Airfoils Via a Parallel Genetic Algorithm," Journal of Aircraft,

Vol. 37, No. 6, 2000, pp. 1088–1096.

[60] Carrese, R., Winarto, H., and Li, X. "Integrating User-Preference Swarm Algorithm and

Surrogate Modeling for Airfoil Design," 49th AIAA Aerospace Sciences Meeting including

the New Horizons Forum and Aerospace Exposition, AIAA 2011-1246, 2011.

[61] Khurana, M. S., Winarto, H., and Sinha, A. K. "Application of Swarm Approach and

Artificial Neural Networks for Airfoil Shape Optimization," 12th AIAA/ISSMO

Multidisciplinary Analysis and Optimization Conference, AIAA 2008-5954, 2008.

[62] Rajagopal, S., and Ganguli, R. "Multidisciplinary Design Optimization of a UAV Wing

Using Kriging Based Multi-Objective Genetic Algorithm," 50th

AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference,

AIAA 2009-2219, 2009.

[63] Viviani, A., Iuspa, L., and Aprovitola, A. "An Optimization-Based Procedure for Self-

Generation of Re-Entry Vehicles Shape," Aerospace Science and Technology, Vol. 68,

2017, pp. 123–134.

[64] Bayley, D. J. "Design Optimization of Space Launch Vehivcles Using a Genetic

Algorithm," PhD Dissertation, Auburn University, 2007.

136 Bibliography

[65] Mosher, T. "Conceptual Spacecraft Design Using a Genetic Algorithm Trade Selection

Process," Journal of Aircraft, Vol. 36, No. 1, 1999, pp. 200–208.

[66] Huang, G., Lu, Y., and Nan, Y. "A Survey of Numerical Algorithms for Trajectory

Optimization of Flight Vehicles," Science China Technological Sciences, Vol. 55, No. 9,

2012, pp. 2538–2560. doi: 10.1007/s11431-012-4946-y

[67] Oyama, A., Kawakatsu, Y., and Hagiwara, K. "Data Mining of Pareto-Optimal Solutions

of a Solar Observatory Trajectory Design Problem," Infotech@Aerospace, AIAA 2012-

2442, 2012.

[68] Chiba, K., Obayashi, S., and Morino, H. "Knowledge Discovery for Transonic Regional-

Jet Wing through Multidisciplinary Design Exploration," Journal of Advanced Mechanical

Design, Systems, and Manufacturing, Vol. 2, No. 3, 2008, pp. 396–407.

[69] Chiba, K., Jeong, S., Obayashi, S., and Yamamoto, K. "Knowledge Discovery in

Aerodynamic Design Space for Flyback–Booster Wing Using Data Mining," 14th

AIAA/AHI Space Planes and Hypersonic System and Technologies Conference, AIAA

2006-7992, 2006.

[70] Berke, L., Patnaik, S., and Murthy, P. "Optimum Design of Aerospace Structural

Components Using Neural Networks," Computers & Structures, Vol. 48, No. 6, 1993, pp.

1001–1010.

[71] Khlopkov, Y. I., Dorofeev, E. A., Myint, Z. Y. M., Khlopkov, A. Y., Polyakov, M. S., and

Agayeva, I. R. k. "Application of Artificial Neural Networks in Hypersonic Aerospace

System," Applied Mathematical Sciences, Vol. 8, No. 95, 2014, pp. 4729 - 4735. doi:

10.12988/ams.2014.46494

[72] Rocca, G. L. "Knowledge Based Engineering Techniques to Support Aircraft Design and

Optimization," PhD Dissertation, Delft University of Technology, 2011.

[73] Soulat, M. E. "Parametric Geometry Representation to Support Aircraft Design," IEEE

Aerospace Conference, IEEEAC Paper 1745, Version 2, IEEE, 2012.

[74] van der Laan, A. H. "Knowledge Based Engineering Support for Aircraft Component

Design," PhD Dissertation, Delft University of Technology, 2008.

[75] Hoogreef, M., and La Rocca, G. "An MDO Advisory System Supported by Knowledge-

Based Technologies," 16th AIAA/ISSMO Multidisciplinary Analysis and Optimization

Conference, AIAA 2015-2945, 2015. doi: 10.2514/6.2015-2945

[76] Price, A. R., Keane, A. J., and E. Holden, C. M. "On the Coordination of Multidisciplinary

Design Optimization Using Expert Systems," AIAA Journal, Vol. 49, No. 8, 2011, pp.

1778–1794.

Bibliography 137

[77] Antoni Virosi, i. M., and Selva, D. "Daphne: A Virtual Assistant for Designing Earth

Observation Distributed Spacecraft Missions," IEEE Journal of Selected Topics in Applied

Earth Observations and Remote Sensing, Vol. 13, 2020, pp. 30-48.

[78] Velez, V. H. "Data Mining and Knowledge Discover-IBM Cognitive Alternatives for

NASA KSC," 2016.

[79] Berquand, A., and Riccardi, A. "The Design Engineering Assistant Applying Ontology

Learning to the Generation of a Space Mission Ontology," Space Systems Ontology

Brainstorming Workshop, 2019.

[80] Martin, A. V., and Selva, D. "From Design Assistants to Design Peers: Turning Daphne

into an AI Companion for Mission Designers," AIAA Scitech 2019 Forum, 2019. doi:

10.2514/6.2019-0402

[81] Morrison, J. H., Ambur, M. Y., and Bauer, S. X. "Comprehensive Digital Transformation

NASA Langley Research Center," 2016.

[82] Ambur, M. Y., Yagle, J. J., Reith, W., and McLarney, E. "Big Data Analytics and Machine

Intelligence Capability Development at NASA Langley Research Center: Strategy,

Roadmap, and Progress," NASA/TM-2016-219361, 2016.

[83] Lintern, G. "What Is Cognitive System?," 2007 International Symposium on Aviation

Psychology, 2007.

[84] Huang, X. "A Prototype Computerized Synthesis Methodology for Generic Space Access

Vehicle (SAV) Conceptual Designs," PhD Dissertation, University of Oklahoma, 2006.

[85] Coleman, G. "Aircraft Conceptual Design - an Adaptable Parametric Sizing Methodology,"

PhD Dissertation, The University of Texas At Arlington, 2010.

[86] Gonzalez, L. "Complex Multidisciplinary Systemm Composition for Aerospace Vehicle

Conceptual Design," PhD Dissertation, The University of Texas at Arlington, 2016.

[87] Omoragbon, A. "Complex Multidisciplinary Systems Decomposition for Aerospace

Vehicle Conceptual Design and Technology Acquisition," PhD Dissertation, The

University of Texaas at Arlington, 2016.

[88] Coley, M. D. "On Space Program Planning Quantifying the Effects of Spacefaring Goals

and Strategies on the Solution Space of Feasible Programs," PhD Dissertation, The

University of Texas at Arlington, 2017.

[89] Oza, A. "A Portfolio-Based Approach to Evaluate Aerospace R&D Problem Formulation

Towards Parametric Synthesis Tool Design," PhD Dissertation, The University of Texas

at Arlington, 2016.

[90] Peng, X. "Formalization of the Engineering Science Discipline-Knowledge Engineering,"

PhD Dissertation, The University of Texas at Arlington, 2015.

138 Bibliography

[91] Haney, E. "Data Engineering in Aerospace Systems Design & Forecasting," PhD

Dissertation, The Univeristy of Texas at Arlington, 2016.

[92] La Rocca, G., and van Tooren, M. J. L. "Knowledge-Based Engineering to Support Aircraft

Multidisciplinary Design and Optimization," 26th International Congress of the

Aeronautical Sciences, 2008.

[93] Corning, G. Supersonic and Subsonic, CTOL and VTOL, Airplane Design, 4 ed., College

Park, MD, 1976.

[94] Wood, K. D. Aerospace Vehicle Design Vol. 1, Aircraft Design, Johnson Publishing

Company, Boulder, CO, 1963.

[95] Loftin Jr, L. K. "Subsonic Aircraft: Evolution and the Matching of Size to Performance,"

NASA RP-1060, Scientific and Technical Information Branch, NASA, Hampton, VA,

1980.

[96] Roskam, J. Airplane Design, Vol. 1-8, DARcorporation, Ottawa, KS, 1990.

[97] Raymer, D. P. Aircraft Design: A Conceptual Approach, AIAA Education Series, 3 ed.,

American Institute of Aeronautics and Astronautics, Reston, VA, 2018. doi:

10.2514/4.104909

[98] Stinton, D. The Anatomy of the Airplane, 2 ed., John Wiley and Sons Ltd, Oxford, U.K.,

1998. doi: 10.2514/4.475146

[99] Anderson, J. D. Aircraft Performance and Design, 1999.

[100] Fielding, J. P. Introduction to Aircraft Design, 2 ed., Cambridge University Press, 2017.

[101] Jenkinson, L. R., Rhodes, D., and Simpkin, P. Civil Jet Aircraft Design, AIAA Education

Series, Norwich, NY, 2006.

[102] Howe, D. Aircraft Conceptual Design Synthesis, Aerospace Series, Wiley, Hoboken, NJ,

2005.

[103] Schaufele, R. D. The Elements of Aircraft Preliminary Design, Aries Publications, Santa

Ana, CA, 2007.

[104] Sadraey, M. H. Aircraft Design: A Systems Engineering Approach, John Wiley & Sons,

2012.

[105] Gudmundsson, S. General Aviation Aircraft Design: Applied Methods and Procedures,

Butterworth-Heinemann, 2013.

[106] Sforza, P. M. Commercial Airplane Design Principles, Elsevier, 2014.

[107] Kundu, A. K., Price, M. A., and Riordan, D. Conceptual Aircraft Design: An Industrial

Perspective, Aerospace Series, Wiley-Blackwell, Hoboken, NJ, 2018.

Bibliography 139

[108] White, J. F. Flight Performance Handbook for Powered Flight Operations: Flight

Mechanics and Space Vehicle Design, Empirical Formulae, Analytic Approximations, and

Graphical Aids, Wiley, New York, 1963.

[109] Wood, K. D. Aerospace Vehicle Design: Spacecraft Design, Vol. 2, Johnson Publishing

Company, Boulder, CO, 1964.

[110] Harney, E. D. Space Planners Guide, Air Force Systems Command, United States Air

Force, Andrews Air Force Base, Washington, D.C., 1965.

[111] Humble, R. W., Henry, G. N., and Larson, W. J. Space Propulsion Analysis and Design,

McGraw-Hill, New York, 2007.

[112] Logsdon, T. Orbital Mechanics: Theory and Applications, John Wiley & Sons, New York,

1998.

[113] Hammond, W. E. Design Methodologies for Space Transportation Systems, AIAA

Education Series, American Institute of Aeronautics and Astronautics, Reston, VA, 2001.

[114] Suresh, B. N., and Sivan, K. Integrated Design for Space Transportation System, 1 ed.,

Springer, New Delhi, India, 2015. doi: 10.1007/978-81-322-2532-4

[115] Sziroczák, D. "Conceptual Design Methodologies Appropriate to Hypersonic Space and

Global Transportation Systems," PhD Dissertation, School of Aerospace, Transport and

Manufacturing, Cranfield University, 2015.

[116] Rana, L., and Chudoba, B. "Demonstration of a Prototype Design Synthesis Capability for

Space Access Vehicle Design," The Aeronautical Journal, Vol. 124, No. 1281, 2020, pp.

1761-1788. doi: 10.1017/aer.2020.55

[117] Sobieszczanski-Sobieski, J., and Haftka, R. T. "Multidisciplinary Aerospace Design

Optimization: Survey of Recent Developments," Structural Optimization, Vol. 14, No. 1,

1997, pp. 1–23.

[118] Perez, R., Liu, H., and Behdinan, K. "Evaluation of Multidisciplinary Optimization

Approaches for Aircraft Conceptual Design," 10th AIAA/ISSMO Multidisciplinary

Analysis and Optimization Conference, AIAA 2004-4537, 2004. doi: 10.2514/6.2004-4537

[119] Yao, W., Chen, X., Luo, W., van Tooren, M., and Guo, J. "Review of Uncertainty-Based

Multidisciplinary Design Optimization Methods for Aerospace Vehicles," Progress in

Aerospace Sciences, Vol. 47, No. 6, 2011, pp. 450–479.

[120] Simpson, T. W., Toropov, V., Balabanov, V., and Viana, F. A. C. "Design and Analysis of

Computer Experiments in Multidisciplinary Design Optimization: A Review of How Far

We Have Come or Not," 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization

Conference, AIAA 2008-5802, 2008. doi: 10.2514/6.2008-5802

140 Bibliography

[121] Martins, J. R. R. A., and Lambe, A. B. "Multidisciplinary Design Optimization: A Survey

of Architectures," AIAA Journal, Vol. 51, No. 9, 2013, pp. 2049-2075.

[122] Vandenbrande, J. H., Grandine, T. A., and Hogan, T. "The Search for the Perfect Body:

Shape Control for Mulidisciplinary Design Optimization," 44th AIAA Sciences Meeting

and Exhibit, AIAA 2006-928, 2006.

[123] Rafique, A., LinShu, H., Zeeshan, Q., Nisar, K., and Xiaowei, W. "Hybrid Optimization

Method for Multidisciplinary Design of Air Launched Satellite Launch Vehicle," 45th

AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA 2009-5535, 2009.

doi: 10.2514/6.2009-5535

[124] Hajela, P. "Soft Computing in Multidisciplinary Aerospace Design - New Directions for

Research," Aerodynamic Design and Optimisation of Flight Vehicles in a Concurrent

Multi-Disciplinary Environmen, 1999.

[125] Sobieszczanski-Sobieski, J. "Multidisciplinary Design Optimization: An Emerging New

Engineering Discipline," NASA Technical Memorandum 107761, 1995.

[126] Giesing, J., and Barthelemy, J.-F. "A Summary of Industry MDO Applications and Needs,"

7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and

Optimization, 1998. doi: 10.2514/6.1998-4737

[127] Riccardi, A. "Multidisciplinary Design Optimization for Space Applications," PhD

Dissertation, Universität Bremen, 2012.

[128] Frenzel, M., Heiserer, D., Keller, D., Schemat, M., Balabanov, V., Dreisbach, R.,

Georgiadis, S., and Trop, D. "Multidisciplinary Optimization and Integration

Requirements for Large-Scale Automotive and Aerospace Design Work," 11th World

Congress on Structural and Multidisciplinary Optimisation, 2015.

[129] van Gent, I. "Agile MDAO Systems a Graph-Based Methodology to Enhance

Collaborative Multidisciplinary Design," PhD Dissertation, Delft University of

Technology, 2019.

[130] Berkeley AI Research. "Caffe," URL: https://caffe.berkeleyvision.org/ [retrieved

December 21, 2020].

[131] Phoenix Integration. "Modelcenter," URL: https://www.phoenix-int.com/ [retrieved

December 21, 2020].

[132] Sandia National Laboratories. "Dakota," URL: https://dakota.sandia.gov/ [retrieved

December 21, 2020].

[133] Noesis Solutions. "Optimus," URL: https://www.noesissolutions.com/our-

products/optimus [retrieved December 21, 2020].

https://caffe.berkeleyvision.org/
https://www.phoenix-int.com/
https://dakota.sandia.gov/
https://www.noesissolutions.com/our-products/optimus
https://www.noesissolutions.com/our-products/optimus

Bibliography 141

[134] Esteco. "Modefrontier," URL: https://www.esteco.com/modefrontier [retrieved December

21, 2020].

[135] German Aerospace Center (DLR). "RCE," URL: https://rcenvironment.de/ [retrieved

December 21, 2020].

[136] Bowcutt, K. G. "A Perspective on the Future of Aerospace Vehicle Design," 12th AIAA

International Space Planes and Hypersonic Systems and Technologies, AIAA 2003-6957,

2003. doi: 10.2514/6.2003-6957

[137] Schut, E. J. "Conceptual Design Automation Abstraction Complexity Reduction by

Feasilisation and Knowledge Engineering," PhD Dissertation, Delft University of

Technology, 2010.

[138] La Rocca, G., and van Tooren, M. J. "Knowledge-Based Engineering Approach to Support

Aircraft Multidisciplinary Design and Optimization," Journal of Aircraft, Vol. 46, No. 6,

2009, pp. 1875–1885. doi: 10.2514/1.39028

[139] de Weck, O., Agte, J., Sobieszczanski-Sobieski, J., Arendsen, P., Morris, A., and Spieck,

M. "State-of-the-Art and Future Trends in Multidisciplinary Design Optimization," 48th

AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference,

AIAA 2007-1905, AIAA, 2007.

[140] Duffy, M., Chung, S. J., and Bergman, L. "An Evolutionary Architecture for the Automated

Conceptual Design of Aerospace Systems," Infotech@Aerospace 2011, AIAA 2011-1632,

2011. doi: 10.2514/6.2011-1632

[141] Wang, C. "Insights from Developing a Multidisciplinary Design and Analysis

Environment," Computers in Industry, Vol. 65, No. 4, 2014, pp. 786–795.

[142] Antoine, N. E., Kroo, I. M., Willox, K., and Barter, G. "A Framework for Aircraft

Conceptual Design and Environmental Performance Studies," 10th AIAA/ISSMO

Multidisciplinary Analysis and Optimization Conference, AIAA 2004-4314, 2004. doi:

10.2514/6.2004-4314

[143] Lundström, D. "Aircraft Design Automation and Subscale Testing: With Special Reference

to Micro Air Vehicles," PhD Dissertation, Linköping University, 2012.

[144] Anon. "CJCSI 3170.01E Joint Capabilities Integration and Development System,"

Chairman of the Joint Cheifs of Staff Instructions, 2005.

[145] Anon. "Adoption of ISO/IEC 15288:2002, Systems Engineering-System Life Cycle

Processes," IEEE Std 15288-2004 (Adoption of ISO/IEC Std 15288:2002), 2005. doi:

10.1109/IEEESTD.2005.96287

[146] Combs, H. G., Campbell, D. H., Cassidy, M. D., Sumpter, C. D., Seitz, E., Kachel, B. J.,

James, R. P., Walters, J., Love, J., and Passon, R. T. "Configuration Development Study

https://www.esteco.com/modefrontier
https://rcenvironment.de/

142 Bibliography

of the X-24C Hypersonic Research Airplane Executive Summary," NASA-CR-145274,

NASA Langley Research Center, 1977.

[147] Ruttle, B., Stork, J., and Liston, G. "Generic Hypersonic Vehicles for Conceptual Design

Analyses," AFRL/RQHT, Wright-Patterson AFB OH, 2012.

[148] Mutzman, R., and Murphy, S. "X-51 Development: A Chief Engineer's Perspective," 17th

AIAA International Space Planes and Hypersonic Systems and Technologies Conference,

2011.

[149] Czysz, P., and Vandenkerckhove, J. "Transatmospheric Launcher Sizing," Scramjet

Propulsion, Progress in Astronautics and Aeronautics, edited by Murthy, S. N. B., and

Curran, E. T., 2000, pp. 979-1103.

[150] Chudoba, B. "MAE 4351 Aerospace Vehicle Design II Design Project Next Generation

Military Spacecraft," MAE 4351 Course Notes. The University of Texas at Arlington, 2018.

[151] McDonnell Aircraft Company. "Hypersonic Research Facilities Study. Volume II Part 2

Phase I Preliminary Studies Flight Vehicle Synthesis," NASA, 1970.

[152] Sutton, G. P., and Biblarz, O. Rocket Propulsion Elements, 8 ed., John Wiley & Sons, 2010.

[153] Heiser, W., Pratt, D., Daley, D., and Mehta, U. Hypersonic Airbreathing Propulsion,

American Institute of Aeronautics and Astronautics, Inc., 1994. doi: 10.2514/4.470356

[154] Miele, A. Flight Mechanics: Volume 1: Theory of Flight Paths, Addison-Wesley, 1962.

[155] Harloff, G. J., and Berkowitz, B. M. "HASA, Hypersonic Aerospace Sizing Analysis, for

the Preliminary Design of Aerospace Vehicles," NASA-Contractor Report 182226, NASA,

1988.

[156] Hank, J., Murphy, J., and Mutzman, R. "The X-51A Scramjet Engine Flight Demonstration

Program," 15th AIAA International Space Planes and Hypersonic Systems and

Technologies Conference, HYTSAP-8: Program Overview I, AIAA 2008-2540, 2008. doi:

10.2514/6.2008-2540

[157] Anon. "X-51A Waverider," U.S. Air Force, 2011, URL: https://www.af.mil/About-

Us/Fact-Sheets/Display/Article/104467/x-51a-waverider/ [retrieved 4/20/2020].

[158] White, M., and Price, W. "Affordable Hypersonic Missiles for Long-Range Precision

Strike," Johns Hopkins APL Technical Digest, Vol. 20, No. 3, 1999, pp. 415-423.

[159] Dolvin, D. "High Speed Flight Research Insight Briefing," USAF AFOSR Industry

Program Review, Basic Research Innovation and Collaboration Center (BRICC),

Arlington VA, 2016.

https://www.af.mil/About-Us/Fact-Sheets/Display/Article/104467/x-51a-waverider/
https://www.af.mil/About-Us/Fact-Sheets/Display/Article/104467/x-51a-waverider/

Bibliography 143

[160] Bowcutt, K. G., Dolvin, D., Paull, A., and Smart, M. "HIFiRE: An International

Collaboration to Advance the Science and Technology of Hypersonic Flight," ICAS 2012

Congress, Brisbane, Australia, 2012.

 Case Studies Expanded

The following section provides additional documentation of the case studies ran. The order of

presentation follows the case studies—verification then trade study.

A.1 All Body: X-51A

A.1.1 Vehicle Description

The X-51A is a hypersonic scramjet

powered demonstrator vehicle. The

Boeing Company and Pratt & Whitney

Rocketdyne developed the vehicle for the

US Air Force and DARPA. The X-51A is

a waverider concept designed for Mach 6+

flight and a powered flight time of 240

seconds. The vehicle has no onboard

subsonic propulsion and, as such, is

accelerated by a booster rocket to the

engine start condition. The X-51A is launched from a carrier vehicle, the B-52H. The X-51A

vehicle and stack is illustrated in Figure A-1. The vehicle is a spatula nosed concept derived from

the Affordable Rapid Response Missile Demonstrator (ARRMD) program[156]. On observation,

the configuration shares many similarities to the legacy lifting bodies FDL-7 and McDonnell

Douglas MRS. The vehicle is non-recoverable and is destroyed on mission completion. Four flight

vehicles were built and flown; the X-51A conducted its first scramjet powered flight on May 26,

2010 and its last test flight on May 1, 2013 with a peak speed of Mach 5.1.[157]. For additional

discussion on the X-51A see [148, 156, 157]. For a discussion on the ARRMD program see [158].

Figure A-1 X-51 configuration and full stack [156]

146 Case Studies Expanded

A.1.2 Vehicle Weights

The vehicles’ primary geometric parameters and weight breakdown are given in Table A-1 and

Table A-2 respectively.

Table A-1 X-51A primary dimensions, adapted from [148]

in m

AVD Stack Length 301 7.645

Cruiser Length 168 4.267

Max Body Width 23 0.584

Engine Flow-Path Width 9 0.229

Table A-2 X-51A Primary Mass Properties, adapted from [148]

𝒍𝒃𝒎 kg N

Cruiser Operating Weight 1225 556 5449

Cruiser Launch Weight 1504 682 6690

JP-7 Fuel (Useable) 265 120 1179

Booster 2277 1033 10129

Interstage 160 73 712

Stack Gross Weight

(Captive Carry)

3942 1788 17535

A.1.3 Notional Mission

The X-51A mission is an

airdropped non-reusable mission.

The notional mission is illustrated

in Figure A-2. The mission is

described by references [156, 157].

The mission is very similar to the

GHV mission. The vehicle is

released from a B-52H at

approximately 49,500 ft. and Mach

0.8. Shortly after release, the rocket

booster ignites and burns for about

35 seconds, performing an

accelerating climb. The rocket

accelerates the X-51A to approximately Mach 4.5+ and 60,000 ft. at which point the cruise vehicle

separates. The X-51A coasts until scramjet ignition. After ignition, the vehicle accelerates under

the power of the scramjet from approximately Mach 4.5 to the cruise condition of Mach 6 and

70,000+ ft. The scramjet continues operating until the usable fuel is consumed after which the

engine shuts off and the vehicle descends, performing unpowered experimental flight. The vehicle

is ditched in the ocean and is not recovered.

Figure A-2 X-51 notional mission[148]

All Body: X-51A 147

Table A-3 Summary of X-51A notional mission profile

Mission Segment Mach Altitude Dynamic Pressure

ft. m psf kPa

Carrier Separation (booster ignition) 0.8 49,500 15,088 111 5

Initiation (booster separation) 4.5 60,000 18,288 2123 102

Acceleration and Climb 6 70,000 21,336 2336 112

Lifting Cruise 6 +70,000 21,336 2336 112

A.1.4 Project Builder Selections

This section documents the Project Builder selections. Depicted are each page’s selections.

The selection is organized according to the Project Builder’s tabs.

Figure A-5 X-51A Integration page, (b) Function Assignment

Figure A-6 X-51A Iteration page

Figure A-3 X-51A Analysis page

Figure A-4 X-51A Integration page, (a) Method Selection

148 Case Studies Expanded

Figure A-7 X-51A Convergence page

Figure A-8 X-51A Screening page

A.1.5 Trade Study

The X-51A all-body concept, in addition to inspiration from the Model-176 and FDL-7, were

used as baseline concepts for a trade study of all-body hypersonic cruiser vehicles. This section

presents the trade study trade matrix, the convergence behavior and results, and the final

consideration of the results pictorially in context to potential carrier vehicles.

A.1.5.1 Trade Matrix

The all-body concept evaluation evolved around two concepts—airbreathing and non-

airbreathing. For each concept volume coefficient (𝜏), cruise time (𝑡𝑐𝑟𝑢𝑖𝑠𝑒), and payload weight

(𝑊𝑝𝑎𝑦) were traded. For the non-airbreathing cases, the fuel type was traded as well. The fuels

traded were RP-1 and 𝐻2. The trade ranges are shown in Table A-4.

Table A-4 All-Body trade matrix

Vehicle Tag Baseline Vehicle Propulsion System Boost Type Fuel Type Tau Range Payload (N) Cruise Time (s)

AB2DS X-51 / MODEL

176 Scram

2D Scramjet External JP-7 0.14 – 0.2143 0 – 4000 0 – 750

ABRKT MODEL 176 Liquid Rocket External H2 / RP-1 0.14 – 0.2143 0 – 5000 0 – 500

ABRKT MODEL 176 Liquid Rocket Internal H2 / RP-1 0.14 – 0.2143 0 – 5000 0 – 500

A.1.5.2 Trade Convergence Summary: Iteration Errors

The trades were executed as laid out. For reference, the final convergence error and

convergence error per independent variable iteration for each trade are presented pictorially below.

The order presented follows that of the row order in the trade matrix table. As can be seen, the

convergence for the airbreathing cases occurred much more readily and with no noticeable

difficulty. However, the problem solving became more laborious as the problem progressed

through the non-airbreathing cases and specifically the integrated (internal boost) case. Note that

for all trades, the all-body solutions converged, unlike the blended-body case.

All Body: X-51A 149

Figure A-9 AB scramjet iteration final convergence

Figure A-10 AB scramjet iteration convergence error by step

150 Case Studies Expanded

Figure A-11 AB boosted rocket (RP1) iteration final convergence

Figure A-12 AB boosted rocket (RP1) iteration convergence error by step

All Body: X-51A 151

Figure A-13 AB boosted rocket (𝐻2) iteration final convergence

Figure A-14 AB boosted rocket (𝐻2) iteration convergence error by step

152 Case Studies Expanded

Figure A-15 AB integrated rocket (RP1) iteration final convergence

Figure A-16 AB integrated rocket (RP1) iteration convergence error by step

All Body: X-51A 153

Figure A-17 AB integrated rocket (𝐻2) iteration final convergence

Figure A-18 AB integrated rocket (𝐻2) iteration convergence error by step

154 Case Studies Expanded

A.1.5.3 Trade Study Results: Solution Spaces

The solution spaces are considered by first, the reason for solution reduction in the main text,

second, the full solution set for cruise vehicle, and lastly the full solution set for the total launch

stack. While considering the solutions presented here in, the reader is encouraged to recall that

these solutions are not optimal in the generally recognized sense. Understand that these solutions

identify an area of mathematically plausible solutions but do not necessitate that they are the best

nor only solutions for the given case. Additionally, when reviewing the results, note the

significance that the 𝜏 parameter has on the solutions. For a given payload and cruise time, the

solutions 𝑇𝑂𝐺𝑊 can be twice the value while comparing the minimum versus maximum 𝜏

solutions, underlining the significance of volumetric efficiency for the hypersonic case.

A.1.5.3.1 Solution Space: Area Reduction

The hydrogen rocket AB class solution space grows rapidly in both weight and planform area

with increasing cruise time and in doing, it dominates the solution area. Consider the minimal case

of zero payload. Figure A-19 illustrates this case. As one can clearly see, the hydrogen-based

rocket dominates in terms of growth and total weight. The vehicle solutions rapidly exceed the B-

52’s capacities at 250s cruise time and even exceed the Cosmic Girl’s weight limit at the 750s

case. The vehicle grows rapidly due to the compounding nature of weight, volume, and

aerodynamic forces. In effect, the hydrogen all-body cases above the 250s mark represent solutions

more on par with a second or third vehicle iteration in a growth vehicle program. Many of these

solutions are not practical solutions for most air-launched scenarios. Rather, they would likely be

better suited operating as standalone vehicles or be accelerated atop a vertically launched rocket

such as a Minotaur or Falcon 9. Furthermore, these design points more readily represent upper

stage orbital class vehicles and should be viewed for that application. In fact, the Model-176 was

intended for this purpose. Lastly, due to the hydrogen solutions far exceeding the other trade

solutions in both weight and planform area, the solutions within the main text body are limited to

the solutions within the comparable range of the other trades and within practical carry vehicle

application (B-52 pylon limit). The full solution sets are shown here.

All Body: X-51A 155

Figure A-19 Selected All-Body solutions illustrating 𝐻2 solution dominance: 𝑆𝑝𝑙𝑛 vs 𝑇𝑂𝐺𝑊

A.1.5.3.2 Solution Space: Cruiser

The solutions for the cruise vehicle are presented below. The cruise vehicle does not include

the expendable booster for the airbreathing and boosted rocket cases. All solutions are presented

in a singular figure first and are individually plotted thereafter in the order of airbreathing, inserted

vehicle (externally boosted), and lastly the integrated vehicle.

Figure A-20 All-Body cruiser vehicle solutions: 𝑆𝑝𝑙𝑛 vs 𝑇𝑂𝐺𝑊

156 Case Studies Expanded

Figure A-21 Boosted All-Body airbreathing cruiser solutions: 𝑆𝑝𝑙𝑛 vs 𝑇𝑂𝐺𝑊

Figure A-22 Boosted All-Body 𝐻2 rocket cruiser solutions: 𝑆𝑝𝑙𝑛 vs 𝑇𝑂𝐺𝑊

All Body: X-51A 157

Figure A-23 Boosted All-Body RP-1 rocket cruiser vehicle solutions: 𝑆𝑝𝑙𝑛 vs 𝑇𝑂𝐺𝑊

Figure A-24 Integrated All-Body 𝐻2 rocket cruiser vehicle solutions: 𝑆𝑝𝑙𝑛 vs 𝑇𝑂𝐺𝑊

158 Case Studies Expanded

Figure A-25 Integrated All-Body RP-1 rocket cruiser vehicle solutions: 𝑆𝑝𝑙𝑛 vs 𝑇𝑂𝐺𝑊

A.1.5.3.3 Solution Space: Full Stack

The solutions for the full launch stack (cruise with external booster as necessary) are presented

below. The stack launch weight (𝑇𝑂𝐺𝑊) versus cruiser planform area (𝑆𝑝𝑙𝑛) solutions are

presented in a singular figure first and are individually plotted thereafter in the order of

airbreathing, inserted vehicle (externally boosted), and lastly the integrated vehicle. These are

followed by the illustration of cruiser span (𝑏) and stack length (𝑙) versus cruiser planform area.

𝑇𝑂𝐺𝑊 versus 𝑆𝑝𝑙𝑛:

Figure A-26 All-Body full stack solutions: 𝑆𝑝𝑙𝑛 vs 𝑇𝑂𝐺𝑊

All Body: X-51A 159

Figure A-27 Boosted All-Body airbreathing full stack solutions: 𝑆𝑝𝑙𝑛 vs 𝑇𝑂𝐺𝑊

Figure A-28 Boosted All-Body 𝐻2 rocket full stack solutions: 𝑆𝑝𝑙𝑛 vs 𝑇𝑂𝐺𝑊

160 Case Studies Expanded

Figure A-29 Boosted All-Body RP-1 rocket full stack solutions: 𝑆𝑝𝑙𝑛 vs 𝑇𝑂𝐺𝑊

Figure A-30 Integrated All-Body 𝐻2 rocket full stack solutions: 𝑆𝑝𝑙𝑛 vs 𝑇𝑂𝐺𝑊

All Body: X-51A 161

Figure A-31 Integrated All-Body RP-1 rocket full stack solutions: 𝑆𝑝𝑙𝑛 vs 𝑇𝑂𝐺𝑊

Span and Length:

Figure A-32 All-Body full stack solutions: 𝑆𝑝𝑙𝑛 vs 𝑙

162 Case Studies Expanded

Figure A-33 All-Body full stack solutions: 𝑆𝑝𝑙𝑛 vs b

A.2 Blended Body: Road Runner Generic Hypersonic Vehicle

A.2.1 Vehicle Description

The Road Runner Generic Hypersonic

Vehicle (GHV) is a family of hypersonic

vehicles. The vehicles share the same concept

and configuration. The top view, bottom view,

and internal layout are illustrated in Figure

A-34, Figure A-35, and Figure A-36

respectively. Significant features are indicated.

The vehicle has a blended-body underside with

a distinct fuselage on the topside. A central

through flow scramjet system characterizes the

vehicle. The propulsion system is ethylene

based. The inlet and nozzle are both three-

dimensional. The combustor is axisymmetric.

The vehicle concept is the baseline for the

family of five vehicle sizes. The mass flow rate

scales the vehicle. The vehicle operates up to

Mach 6 and a dynamic pressure range of 1000

to 2000 psf.

The vehicle family was created with the

intent to have a publicly distributable and

creditable hypersonic vehicle design case for research and development. As the study, see

reference [147], states:

 [i]t was decided that a family of in-

house designs should be created which

would be publicly releasable and

relevant to current hypersonic projects.

AFRL would then be able to share these

designs and any data derived from

them with other government, academic

or industry partners and thereby foster

greater collaboration within the area.

The concepts were generated for improved

research, development, and collaboration. To

ensure a credible baseline hypersonic design

point, the concept has been based on credible vehicles. For instance, the GHV shares many

configuration similarities with the HIFiRE-6 and HIFiRE-8 [159, 160].

Figure A-34 GHV top view with features indicated [147]

Figure A-35 GHV bottom view with features indicated [147]

Figure A-36 Propulsive system internal layout [147]

164 Case Studies Expanded

A.2.2 Vehicle Weights

The vehicles’ primary geometric parameters and weight breakdown are given in Table A-5 and

Table A-6 respectively. Mass flow rate scales the vehicle. The family set comprises of five scaled

designs; each is represented.

Table A-5 GHV family primary dimensions, adapted from [147]

Flow-Path Scale (X)

Element Units 1 2 3 4 5

Length Overall 𝑚 4.4681 6.3189 7.7390 8.9362 9.9910

Fuselage Length 𝑚 4.3134 6.1001 7.4711 8.6269 9.6451

Effective Fuselage Diameter - Nose 𝑚 0.2793 0.3951 0.4838 0.5587 0.6246

Effective Fuselage Diameter - Tail 𝑚 0.4786 0.6769 0.8290 0.9573 1.0703

Wing Span 𝑚 1.4877 2.1039 2.5767 2.9754 3.3265

Nose-to-root Offset 𝑚 0.2568 0.3632 0.4448 0.5136 0.5742

Root Chord 𝑚 4.1059 5.8066 7.1116 8.2118 9.1811

Tip Chord 𝑚 0.4884 0.6908 0.8460 0.9769 1.0922

Effective Leading Edge Sweep 𝑑𝑒𝑔 80.6 80.6 80.6 80.6 80.6

Effective Trailing Edge Sweep 𝑑𝑒𝑔 13.6 13.6 13.6 13.6 13.6

Table A-6 GHV family primary mass breakdown, adapted from [147]

Flow-Path Scale (X)
Mass (Kg) 1 2 3 4 5

Structure Total Skin 96.3 228.9 405.3 613.7 674.1

 Flaps 21.5 58.7 110.0 166.1 233.6

 Tails 7.9 21.4 39.5 59.6 83.4

 TPS 15.3 40.1 73.4 110.0 153.3

 Spars and Kneels 7.2 14.1 21.1 27.9 35.0

 Inlet 12.8 24.7 36.4 48.0 59.6

 Isolator 17.1 33.6 50.0 66.3 82.6

 Combustor 42.3 83.6 124.6 165.7 206.6

 Nozzle 54.2 101.2 156.0 200.4 251.5

Fluids Usable Fuel 102.9 327.4 624.0 968.2 1425.0

 Residual Fuel 9.0 28.7 54.7 84.9 125.0

 Nitrogen 1.9 6.0 11.5 17.9 26.3

Other Ballast 31.8 79.4 136.1 181.4 226.8

 GN&C 133.4 133.4 133.4 133.4 133.4

 Payload 0.0 0.0 0.0 0.0 0.0

Summary Gross 553.5 1181.0 1976.1 2843.4 3716.3

 Empty 450.6 853.7 1352.1 1875.2 2291.2

 Dry 439.6 818.9 1285.9 1772.4 2139.9

 Structure Mass

Fraction

0.496 0.513 0.514 0.513 0.479

 Fluids Mass Fraction 0.206 0.307 0.349 0.377 0.424

 Other Mass Fraction 0.298 0.180 0.136 0.111 0.097

Blended Body: Road Runner Generic Hypersonic Vehicle 165

A.2.3 Notional Mission

The GHV’s notional mission is illustrated in Figure A-37. The general mission segment

conditions are given in Table A-7. The vehicle is air-launched, and it is assumed that a rocket

booster accelerates the vehicle to the engine start condition—between 1500-2500 psf—at which

point the booster separates. On engine start, the vehicle accelerates from Mach 4 to Mach 6,

climbing in altitude as it does. At Mach 6, the vehicle levels out and performs a lifting cruise

segment. Powered cruise occurs at a dynamic pressure between 1000 – 2000 psf. The cruise

segment is optionally split by a maneuver execution. Maneuver options considered include an 180o

turn or a 45o-90o-45oswitch back maneuver. In the event that no maneuver is executed, a straight

fly-out mission is executed. In this mission situation, no maneuvers are performed, only

acceleration-climb and cruise conditions are considered. After the cruise and optional maneuver,

the engine shuts off; this ends the powered segments of the mission. After engine shutoff, the

vehicle descends, during which it is able to perform unpowered tests. The vehicle is not reusable.

Figure A-37 GHV notional mission profile [147]

Table A-7 GHV notional mission conditions, adapted from [147]

Mach Lift/Weight Dynamic Pressure

 psf kPa

Initiation (booster separation) 4 – 5 1 2500 - 1500 120 - 70

Acceleration and Climb 4 – 6 >1 2500 - 1500 120 - 70

Cruise 6 1 2000 - 1000 96 - 48

Maneuver (#1 or #2) ~6 ~2 2000 - 1000 96 - 48

Cruise 6 1 2000 - 1000 96 - 48

Descend (powered) 6 – 4 <1 2000 - 3000 96 - 140

Descend (unpowered) 4 – 3 <1 2500 - 5000 120 - 240

Maneuver (unpowered) ~3 >1 5000 240

A.2.4 Project Builder Selections

This section documents the Project Builder selections. Depicted are each page’s selections.

The selection is organized according to the Project Builder’s tabs. The selections shown are for

the reverse sizing case however, the same general selections were made for the trade study as well.

The only significant variance being the mission profile and selected method (as laid out in Chapter

5 Section 5.4) in addition to the trade variable selections.

166 Case Studies Expanded

Figure A-38 GHV Analysis page

Figure A-39 GHV Integration page, (a) Method Selection

Figure A-40 GHV Integration page, (b) Function Assignment

Figure A-41 GHV Iteration page

Figure A-42 GHV Convergence page

Figure A-43 GHV Screening page

Blended Body: Road Runner Generic Hypersonic Vehicle 167

A.2.5 Trade Study

The GHV Blended-Body (BB) concept was used as a baseline concept for a trade study of

blended-body hypersonic cruiser vehicles. This section presents the trade study’s trade matrix, the

convergence behavior and results, and a consideration of the results pictorially in context to

potential carrier vehicles and general solution space behavior.

A.2.5.1 Trade Matrix

The blended-body concept evaluation evolved around two concepts—airbreathing and non-

airbreathing. For each concept volume coefficient (𝜏), cruise time (𝑡𝑐𝑟𝑢𝑖𝑠𝑒), and payload weight

(𝑊𝑝𝑎𝑦) were traded. For the non-airbreathing cases, the fuel type was traded as well. The fuels

traded were RP-1 and 𝐻2. The trade ranges are shown in Table A-8.

Table A-8 Blended-body trade matrix

Vehicle Tag Baseline Vehicle Propulsion System Boost Type Fuel Type Tau Range Payload (N) Cruise Time (s)

BB3DS GHV 3D Scramjet External Ethylene 0.0657 – 0.0735 0 0 – 750

BBRKT GHV Liquid Rocket External H2 / RP-1 0.09 - 0.12 0 – 4000 0 – 300

BBRKT GHV Liquid Rocket Internal H2 / RP-1 0.09 – 0.12 0 – 4000 0 – 300

A.2.5.2 Trade Convergence Summary: Iteration Errors

The trades were executed as laid out. For reference, the final convergence error and

convergence error per independent variable iteration for each trade are presented pictorially below.

The order presented follows that of the row order in the trade matrix table. As can be seen, the

convergence for the airbreathing cases occurred much more readily and with less noticeable

difficulty (as measured by total independent variable iterations to solution convergence).

Furthermore, the problem solving became exceedingly more laborious as the problem progressed

through the non-airbreathing cases and specifically the hydrogen-fueled cases, as the vehicle

increased in size due to mission parameters. Additionally, the solution finding could be

exceptionally sensitive to slight changes in independent variable value. The numerical solver

would frequently fall into local valleys of no solution. On repeated evaluation of the same point,

different solutions would occur as well, highlighting that the solutions are non-unique. Future

studies should rely on robust global solvers. Lastly, note that not all points converged, that is—for

the given process—the solutions would not close mathematically.

168 Case Studies Expanded

Figure A-44 BB scramjet iteration final convergence

Figure A-45 BB scramjet iteration convergence error by step

Blended Body: Road Runner Generic Hypersonic Vehicle 169

Figure A-46 BB boosted rocket (RP1) iteration final convergence

Figure A-47 BB boosted rocket (RP1) iteration convergence error by step

170 Case Studies Expanded

Figure A-48 BB boosted rocket (𝐻2) iteration final convergence

Figure A-49 BB boosted rocket (𝐻2) iteration convergence error by step

Blended Body: Road Runner Generic Hypersonic Vehicle 171

Figure A-50 BB integrated rocket (RP1) iteration final convergence

Figure A-51 BB integrated rocket (RP1) iteration convergence error by step

	Automating Aerospace Synthesis Code Generation A Tool for Generic Vehicle Design and Technology Forecasting
	Acknowledgements
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Nomenclature
	Chapter 1 Introduction
	1.1 Motivation
	1.2 Design Process
	1.2.1 Design
	1.2.2 Synthesis
	1.2.3 Analysis

	1.3 Product Life Cycle: Design Phases
	1.3.1 Product Life Cycle Knowledge versus Design Freedom
	1.3.2 Discipline Integration
	1.3.3 Cost
	1.3.4 Significance of the Conceptual Design Phase
	1.3.5 Program Exposure and Knowledge
	1.3.6 Lessons Learned

	1.4 Background and Refining Research Scope
	1.4.1 Intelligence
	1.4.1.1 Human Intelligence
	1.4.1.2 Artificial Intelligence

	1.4.2 Fields of AI
	1.4.3 Tools of AI
	1.4.3.1 Computational Intelligence
	1.4.3.2 Knowledge Based Systems
	1.4.3.3 Hybrid Systems

	1.4.4 AI in Aerospace
	1.4.4.1 Optimization
	1.4.4.2 Knowledge Based Systems
	1.4.4.3 Advisor (Virtual Assistant)

	1.4.5 The Great Problem
	1.4.6 Vision and Research Scope Reduction

	1.5 Research Outlook and Scope
	1.5.1 Problem Statement
	1.5.2 Research Objective and Contribution
	1.5.3 Research Deliverables
	1.5.4 Research Scope

	1.6 Document Outline

	Chapter 2 Literature Review
	2.1 Design Classes
	2.2 Classical Design: Texts and Programs
	2.2.1 Design Texts
	2.2.2 Design Computer Systems
	2.2.3 Synopsis of Systems Reviews

	2.3 Multidisciplinary Design Optimization
	2.3.1 What is MDO?
	2.3.2 Fundamental Process Components of MDO
	2.3.3 Components of MDO
	2.3.4 Process Integration and Design Optimization Tools
	2.3.5 MDO System Specifications and Lessons Learned
	2.3.5.1 Automation
	2.3.5.2 Early Concept Definition
	2.3.5.3 System of Systems (vehicle-of-vehicles)
	2.3.5.4 Multiple Concept and Design Phase Applicable
	2.3.5.5 Tool Integration and Distributed Computing
	2.3.5.6 Variable Fidelity
	2.3.5.7 Robust
	2.3.5.8 Transparency
	2.3.5.9 Geometry
	2.3.5.10 Visualization and Solution Exploration
	2.3.5.11 Software independent

	2.4 Selected Design Systems
	2.4.1 AIDA: Artificial Intelligence supported conceptual Design of Aircraft [47]
	2.4.2 Aircraft Design Automation and Subscale Testing [143]
	2.4.3 GLADOS [140]
	2.4.4 Daphne [77, 80]
	2.4.5 GENUS [115]
	2.4.6 AVDDBMS [86, 87, 89]

	2.5 Summary and Specifications for Future Systems
	2.5.1 Summary and Discussion
	2.5.2 Specifications for a Future System
	2.5.2.1 General Design System Guidelines
	2.5.2.2 System Specific Specifications and Guidelines

	2.5.3 Document Outlook

	Chapter 3 Solution Concept
	3.1 General Solution Concept
	3.2 Decomposition Concept
	3.2.1 Product
	3.2.1.1 Structural Subsystem
	3.2.1.2 Functional Subsystem
	3.2.1.3 Operational Event
	3.2.1.3.1 Mission Type
	3.2.1.3.2 Flight Profile
	3.2.1.3.3 Speed Range
	3.2.1.3.4 Gravitational Body
	3.2.1.3.5 Altitude Range

	3.2.1.4 Operational Requirement

	3.2.2 Process
	3.2.2.1 System Elements
	3.2.2.2 Disciplinary Elements

	3.2.3 Method
	3.2.3.1 Product Association
	3.2.3.2 Variables
	3.2.3.3 Analysis

	3.3 Mapping and Synthesis Generation
	3.3.1 Decomposition-Composition Mapping
	3.3.2 Synthesis Generation

	3.4 System Results
	3.4.1 Synthesis Code
	3.4.2 Synthesis Execution Results
	3.4.3 Return Results
	3.4.4 Recommendations

	3.5 Chapter Summary

	Chapter 4 Concept Implementation
	4.1 Description, Structure, and Core Components
	4.1.1 Description and Objective
	4.1.2 Front-End
	4.1.3 Back-End
	4.1.4 File Locations and Folder Tree Structure

	4.2 Process to Problem Solving
	4.2.1 Study Definition
	4.2.2 Support Material Definition
	4.2.3 Architecture Generation and Execution
	4.2.4 Project Iteration

	4.3 Front-End: Core Components Description
	4.3.1 Reference Library
	4.3.2 Methods Library
	4.3.3 Vehicle Library
	4.3.4 Process Library
	4.3.5 Project Builder
	4.3.5.1 Project Builder Browser
	4.3.5.2 Analysis
	4.3.5.3 Integration
	4.3.5.3.1 Process Selection
	4.3.5.3.2 Method Selection
	4.3.5.3.3 Function Assignment

	4.3.5.4 Iteration:
	4.3.5.4.1 Method Expansion
	4.3.5.4.2 Function Mission Builder

	4.3.5.5 Convergence
	4.3.5.6 Screening
	4.3.5.6.1 Trade Study Specification
	4.3.5.6.2 Input Value Specification
	4.3.5.6.3 System Execution

	4.3.5.7 Visualization
	4.3.5.7.1 Visualization Package
	4.3.5.7.2 Selected Variables

	4.3.5.8 Assessment
	4.3.5.8.1 Data Summary
	4.3.5.8.2 Visualization
	4.3.5.8.3 Recommendations

	4.4 Back-End: Synthesis Assembler and Architecture
	4.4.1 Synthesis File Structure
	4.4.2 Synthesis File Generation Process
	4.4.3 Synthesis File Generator Structure
	4.4.4 Selected Significant Algorithms
	4.4.4.1 Synthesis Assembler
	4.4.4.1.1 Method File Processing
	4.4.4.1.2 Trigger Event Processing

	4.4.4.2 Synthesis File
	4.4.4.2.1 Process Cost Function
	4.4.4.2.2 Solver Iteration and Call
	4.4.4.2.3 Primary Disciplines Call
	4.4.4.2.4 Multiple Method Resolve and Data Processing

	4.5 Chapter Summary
	4.5.1 General Summary
	4.5.2 Contribution Statement

	Chapter 5 Verification and Application
	5.1 Problem Statement
	5.1.1 System Verification
	5.1.2 Trade Study

	5.2 Vehicle Selection
	5.2.1 Verification Case
	5.2.2 Trade Study Case

	5.3 Processes Definition
	5.3.1 Multi-Disciplinary Synthesis Process
	5.3.2 Convergence Process Description
	5.3.3 Process to Solutions Space Formation (Multi-Point Case)

	5.4 Missions Definition
	5.4.1 Expendable Booster Profile
	5.4.2 Internal Booster Profile
	5.4.3 Vehicle Mission Segment and Summary

	5.5 Methods Selection
	5.5.1 General Method Overview
	5.5.2 Method Application Summary

	5.6 Trade Matrix
	5.7 Results: Single Point Verification Case
	5.8 Results: Trade Study Case
	5.8.1 External Booster
	5.8.2 Trade Study Solution Space: Launch Stack & Carrier Constraints

	5.9 Conclusion
	5.9.1 Study Summary
	5.9.2 Study Conclusions
	5.9.3 Contribution Statement

	Chapter 6 Conclusion
	6.1 Research Summary
	6.2 Research Contribution Summary
	6.3 Research and Development for Future Enhancement

	Chapter 7 Bibliography
	Appendix A Case Studies Expanded
	A.1 All Body: X-51A
	A.1.1 Vehicle Description
	A.1.2 Vehicle Weights
	A.1.3 Notional Mission
	A.1.4 Project Builder Selections
	A.1.5 Trade Study
	A.1.5.1 Trade Matrix
	A.1.5.2 Trade Convergence Summary: Iteration Errors
	A.1.5.3 Trade Study Results: Solution Spaces

	A.1.5.3.1 Solution Space: Area Reduction
	A.1.5.3.2 Solution Space: Cruiser
	A.1.5.3.3 Solution Space: Full Stack

	A.2 Blended Body: Road Runner Generic Hypersonic Vehicle
	A.2.1 Vehicle Description
	A.2.2 Vehicle Weights
	A.2.3 Notional Mission
	A.2.4 Project Builder Selections
	A.2.5 Trade Study
	A.2.5.1 Trade Matrix
	A.2.5.2 Trade Convergence Summary: Iteration Errors

