Automating Aerospace Synthesis

Code Generation
A Tool for Generic Vehicle Design and Technology Forecasting

Thomas Peter Dominic McCall

December 2020

This dissertation is submitted in partial fulfililment of the requirements
for the degree of Doctor of Philosophy
to the
Faculty of the Graduate School of

THE UNIVERSITY OF TEXAS at ARLINGTON

Automating Aerospace Synthesis Code Generation
A Tool for Generic Vehicle Design and Technology Forecasting

Thomas Peter Dominic McCall

The following members of the Committee approve this
doctoral dissertation of Thomas Peter Dominic McCall.

Chair

Bernd Chudoba, PhD

Research Advisor

Department of Mechanical and Aerospace Engineering
University of Texas at Arlington

Dudley Smith, PhD
Department of Mechanical and Aerospace Engineering
University of Texas at Arlington

Robert Taylor, PhD
Department of Mechanical and Aerospace Engineering
University of Texas at Arlington

Donald Wilson, PhD
Department of Mechanical and Aerospace Engineering
University of Texas at Arlington

Paul Componation, PhD
Department of Industrial Engineering
University of Texas at Arlington

Copyright © 2020 Thomas Peter Dominic McCall

ALL RIGHTS RESERVED

ACKNOWLEDGEMENTS

Before we begin, | would like to take a moment to acknowledge and thank those who have
been directly or indirectly influential and assistive in my journey to complete this dissertation. I,
like all, do not walk the path of life alone. Firstly, I would like to acknowledge my supervising
professor, Dr. Bernd Chudoba. Without his assistance and direction, | would not be where | am
today. Secondly, | would like to acknowledge my many fellow researchers at the Aerospace
Vehicle Design Lab. So many of you have been there through it all and in particular 1 would like
to express my gratitude to Doug Coley, Vincent Ricketts, Loveneesh Rana, lan Maynard, Harin
Patel, and David Woodward. Additionally, it goes without saying, but thank you to my family and
parents for all your continuous support. Lastly, I would explicitly like to acknowledge and express
my sincere gratitude and appreciation to James Haley and Kiarash Seyed Alavi. These last few
years have been an adventure and | am glad to have been able to stand by your side and have your
company through it all. Through the good, the bad, and the ugly, we walked it together and we
will always have that. To my brothers, | thank you.

Thomas McCall
2020

ABSTRACT

The principal development and deliverable of the research presented herein is a generic
synthesis assembling decision support environment called AIDRA-DSS. The purpose of the system
is to develop further expertise and a baseline environment to test complex vehicle automated
synthesis architecture synthetization, which would be easily adaptable into a greater cognitive
system. This tool has been developed as a precursory and developmental task towards an ultimate
objective of an artificial intelligence design and research assistant peer.

The motivation for this research has been to explore the advancement of toolsets for the
decision maker and designer operating at the earliest planning and design phase of an aerospace
vehicle or program. In particular, the driving motivation of this research is a vision of a future
where in the designer is assisted by an artificial intelligence design peer. A vision of the future is
one where an artificial intelligent design peer assists the designer in tedious repetitive tasks, design
automation, knowledge retention, and more. The goal being reduction in tedious tasks such as data
handling, method handling/integration and improvement in time to solution, ease of non-traditional
concept consideration, tool reuse/integration, and improvement in design choice and design
knowledge extraction and continuation. Such an environment would be advantageous as the early
design phase—the conceptual design phase—is ultimately the most significant in determining the
success of a program but yet is the shortest in time and sees the least in allocated labor. However,
as the development of a true artificial design peer is beyond the scope of a single dissertation, it is
identified that a necessary component would include synthesis automation, and hence the principal
deliverable of this research.

To address immediate applicability, the system developed is an engineering environment that
arrives the user at an applicable synthesis solution toolset to solve a given problem through the
provision of standard feedback and decision aiding platforms. That is, it is a framework for
automated composable architecture formation that provides a concept, process and method fidelity
independent toolset for problem solving. It is a framework that allows engineers to analyze or size
any vehicle through a generic synthesis assembly approach. Giving the user the ability to compose
a vehicle from different elements, AIDRA-DSS creates a tailored sizing code based on the user-
designated requirements, removing the tedious task of synthesis architecture assembly from the
requirements of the user. The user only need specify what to analyze and the constructs of how to
accomplish the analysis.

The solution concept is founded on a decomposition-composition approach. It is a code
assembly concept utilizing a warehousing approach. Fundamentally, the user provides a set of
inputs specifying the vehicle to be considered, the process of analysis, the methods to use, and the
output presentation desired. From these instructions, a synthesizer routine gathers the necessary
code elements, both engineering methods and code processing (data handling, method handling,
etc.), and assembles the components into a functional synthesis architecture. The synthesis is
executed as prescribed by the user and the results are processed and returned to the user.

System functionality and applicability were demonstrated through the execution of a
verification case and an exploratory trade study case. The verification case utilized the GHV and
the X-51A. In comparison to known design parameter values, analysis results were resolved to less
than 5% error, with most error being less than 1%. Successful execution demonstrated proper
automated system assembly and method correctness.

The trade study case evaluated air launched airbreathing and non-airbreathing concepts for
consideration as reusable hypersonic vehicle research and development platforms. The GHV and
X-51A, in addition to the FDL-7/Model-176, served as baseline concepts and configurations for
the trade vehicles. In so doing, the blended-body and all-body were represented. Trade variables
include concept, configuration, geometric design parameters, payload, mission scenarios, and fuel
types. Through the range of trade conditions, a solution space for hypersonic test vehicles was
assembled, visualized, and discussed. The concept solutions were considered in light of carrier
vehicle geometric and weight constraints.

Vi

TABLE OF CONTENTS

ACKIN OV LED GEMENTS . oooiiiiiiiiitttttttetttteteeeteeeeaeeeeeeeeeeeeeeeeeeeeeeeeeeeeesssesesssesessesnnsnsnnnsennnnns v
A B S T R A C T ettt V
TABLE OF CONTENTS ..ottt aes s este e ees e s e sssesessessssssesensnsssnnnnnnnnnnnns VI
LIST OF FIGURES ..ottt tastas et st s e sts et eeses s s s eseesssenenennssnnnnnnnnen IX
LIST OF TABLES ... oottt eeee et eeee e e e e eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeenenenenenenenenens X1
NOMENCLATURE nnnnns XV
CHAPTER L INTRODUCT ION ..o, 1
I Y [0 1 1 107 1 [] TR 1
1.2 DESIGN PROCESS. . .ittiettttuisteeeeeteeetstaessseesteessstsstsseeetesees s rseeetetesssssnteseeeteessstnnrrreesseessssnnnns 2
1.3 PRODUCT LIFE CYCLE: DESIGN PHASES.....ccuvtuuiiiiieeieieeeiee e e e eeeteeetiesseeeesseeasstnnseeeesseessssnnnns 4
1.4 BACKGROUND AND REFINING RESEARCH SCOPEcootvvvtitieit et e e e e e et eeeesseessnnnnnns 7
1.5 RESEARCH OUTLOOK AND SCOPE ...t e e eeeeeeeeeee e ttee e e e e e e e e e e e tee e e e e e e e eeeeeaeeeeeeeeeeennnas 16
1.0 DOCUMENT OUTLINE ..ttt e e ettt e e e e e e e e et eeeaeeeeeeeeee e e e seeeeeeeen s s e eeeeeeseeennnaseeeeeeeennnnnnns 18
CHAPTER 2 LITERATURE REVIEW ...ttt 19
2.0 DESIGN CLASSES. .. eeetee et e e et eee e ee e e e e e et e ettt e e et e e e ee e et aaeeeeeeee e e e aeeeeeeeeeee e seeeereeeennnaaaeeeees 19
2.2 CLASSICAL DESIGN: TEXTS AND PROGRAMSoteeeeteeee ettt e e e e e teee e e e e e e e e e eeeeaneeees 20
2.3 MULTIDISCIPLINARY DESIGN OPTIMIZATION .. .cteteeiteeee e e e eeeeeeeaaaeeeeeeeeeetaaseeeeseeeeennnaaneeeees 25
2.4 SELECTED DESIGN SY STEMS .vtttteteeeeeeeeeeeeaeeeeeeeeeeateaasseeeseeeesteaaaseseeeeeesnaaaseeserereennaaaaeeeees 32
2.5 SUMMARY AND SPECIFICATIONS FOR FUTURE SYSTEMS .. ctiteeetteeeeeeeeeeeeteeeaeeeeereeeennnnaneeees 39
CHAPTER 3 SOLUTION CON CEPT ..ottt et e e e e e e e a e e 43
3.1 GENERAL SOLUTION CONCEPT ettt eteeeeeeeeee e e e e eee e eeaasseeeeeeeestasaseseseeeestaaaseesereeeennnaaaseeees 43
3.2 DECOMPOSITION CONCEPT tteettueeeteeeteeeeeteeeaeseeeeeeeentaaasseeeseseesteaaasesereeeentaaaseeserereennnaaaseeees 44
3.3 MAPPING AND SYNTHESIS GENERATIONuuteeeteteeeteeaeseeeeeseestsaasseseseseestnnasseeeseseessnnaaaseeees 52
B S ST EM RESUL TS e etittii et ettt ettt et e e ettt et et e e ettt e e et e e eeee et e ee et e s seeeeeeeentnn e s seeeseeeennnnaaeeees 54
3.5 CHAPTER SUMMARY L.euiiieiitttetttteie s e e e tteeesssassseesssteestssasseesteteestsa s seeetetesstsnasseeesseeesssnraseeess 55

vii

CHAPTER 4 CONCEPT IMPLEMENTATIONcccoiiiiiiiii i S7

4.1 DESCRIPTION, STRUCTURE, AND CORE COMPONENTStttttttusiereeereeessrnniseeesseessmrnseeeeeseeens 57
4,2 PROCESS TO PROBLEM SOLVING ...ctttivtttuiiieeeteeesstssssssssseessstsssssssessssssnisssessesssmsnteeeesseeen 62
4.3 FRONT-END: CORE COMPONENTS DESCRIPTION 11vuuuiteeeteeetstisieseesseessssnssessesseessssnseeeesseeens 64
4.4 BACK-END: SYNTHESIS ASSEMBLER AND ARCHITECTURE ..vuuuiiiieeieeeitiisieseeeseeesssnnsesessseenns 88
4.5 CHAPTER SUMMARY ..iitttttttuiteieeeteeesstssssssessessstsssssessesesstantsteesteessststreeeteessrreeereeen 97
CHAPTER 5 VERIFICATION AND APPLICATION ...t 99
DL PROBLEM ST ATEMENT ... eeeeiteeetttee e e e e e et eee e eeeeeeeeeeee e e et e aseeeeeeeesaneeasseeeeereennntasseseeeeeeennnnnnns 100
D 2 WEHICLE SELECTION ..tut e e eeteeee e ee e e e e e et ettt e e et e e e e e e e e et e aeseeeeeeee e e e e eeeeeeeeensntaeeeeeeeeeennnnnnnns 102
D .3 PROCESSES DEFINITION. ... ctttteetttuaet et e eeeeeeee i ee et e e e e e eee e et e aeeeeeeeeeeaneaaaseeeeeeeensntaseseeereeennnnnnns 104
5.4 MISSIONS DEFINITION ...t eeeee et eeeee e ee e et e e e et e e e et e e e e e e e e e e e et e e e e e e e e eeeeteeeeeeteeeeranaens 109
.5 IMIETHODS SELECTION ..t eeeeteeeeeee e e e e e et et e tee e e e e e e e ee e et eaeeeeeeeeee et aeseeeeeeeennntaeeeeeeereennnnnnnns 111
D00 TRADE IMIATRIX et eeeeee et e e ettt ee e e e e e e e ee e et eeeeeeeeeeee e eeeeeeeeeeennntaeeeeeeeeeennnnnnns 113
5.7 RESULTS: SINGLE POINT VERIFICATION CASE .. .oiteeeieeeee et e e e e e e e e e ee s 114
D . B RESULTS: TRADE STUDY CASE ...uiii e ettt e e e e e e e e ettt e e e e e e e e e e e eeeeeeeeeeeeennnns 115
5.0 CONCLUSION ... ettt e ettt ee e e e e e e e e e e e eeeeeeeeeeee e e e eeeeeeeeen e e eeeeeeeeennnnnnns 122
CHAPTER 6 CONCLUSION ..ottt ettt ettt ettt et e s s e e s e et eeasa s e reesseeesssnnnas 125
6.1 RESEARCH SUMMARY ...uiieiitetttttietstseetttesssssssssstssssstss s seessesesstssantessesteessstnttteeeteeessnn 125
6.2 RESEARCH CONTRIBUTION SUMMARY ..eeetttttiiieeettteesttiinsesssssessssnssssssseessstnissessseesssnn 126
6.3 RESEARCH AND DEVELOPMENT FOR FUTURE ENHANCEMENT ...vvvuiiieeeeeeeerriininseesseesssnnnnns 128
CHAPTER 7 BIBLIOGRAPHY oottt ettt e e e e e e et s e e e e e s eeennnnnas 131
APPENDIX A CASE STUDIES EXPANDED ..ottt e e neaeneeens 145
YN N I =100 2 G X 1Y A N 145
A.2 BLENDED BODY: ROAD RUNNER GENERIC HYPERSONIC VEHICLE ..cocevvvviiieeeeeeeeiiieneeeens 163

viii

LIST OF FIGURES

FIGURE 1-1 SYSTEM ENGINEERING PROCESScciiiiitittiiiiie e s siiitibries s e e s s sibbrres s s e e s s s ssaababasenssesssnsnns 2
FIGURE 1-2 DESIGN PHASES AND PRODUCT REFINEMENT ..eiiiiiiiiitiiriieeieesssiiibbreees e e e s s ssanabasesssesssnnnns 4
FIGURE 1-3 DESIGN CYCLE DESIGN KNOWLEDGE, DESIGN FREEDOM, AND DISCIPLINE

INTEGRATION ©.uuttttteiiieeeiiiitttteeeeeeessseisbbbesesssesssasbbbaresseeessssabb b basesesesssasabbbsaeesseeesssassbbrens 5
FIGURE 1-4 DESIGN PHASES AND PRODUCT REFINEMENT IN RELATION TO COST ...ccovviviirirriineieeeiiinns 6
FIGURE 1-5 CATEGORIES OF INTELLIGENT SYSTEMS AND TOOLS OF Al.....coivviiiiiiiiiiciiiiiieeee . 10
FIGURE 1-6 TYPICAL COMPONENTS OF A KNOWLEDGE-BASED SYSTEM.......coovittrriiieeeeeiiiiirnreneneeens 11
FIGURE 1-7 NASA’S DATA ANALYTICS AND MACHINE INTELLIGENCE CAPABILITY VISION............ 14
FIGURE 2-1 SYNTHESIS SYSTEMS REVIEW SUMMARY ...uutttiiiiiieiiiiiiiiiiieeieeessssnissrseesssessssssssnssesssssens 23
FIGURE 2-2 GENERIC MDQO BASED DESIGN SPACE EXPLORATION PROCESS.......uvvieieieeiiiiiiriieneeeens 26
FIGURE 2-3 ILLUSTRATION OF SYSTEM’S N2 ORGANIZATION DIAGRAM BEFORE AND AFTER

DECOMPOSITION AND REASSEMBLY ...cooivutvreiiiiieeissiisttreeeresesessssssrsresssssesssssssssssssessses 27
FIGURE 2-4 EXAMPLE OPTIMIZATION PROCEDURE FOR A NON-HIERARCHICAL SYSTEM.....vvvveee.... 28
FIGURE 2-5 PRINCIPLE COMPONENTS OF MIDO ..ottt ettt saavaree e 28
FIGURE 2-6 DUAL-FIDELITY OPTIMIZATION PROCESS....uutteiiiieeiiiiiirtrreeriieessssssssreeesssessssssssrsseseseses 34
FIGURE 2-7 DAPHNE ARCHITECTUREcooietttteiiieeeesssstsrtseeesesssssesabsbssessssssssssssssbssssssassssssssssseneseses 36
FIGURE 2-8 GENUS GRAPHICAL INTERFAGCE ..ecciiiiiiiiitiitieiie e e e s s sesbsbsees s s e e s s s ssssbtbeeesssesssssssrssenssesens 38
FIGURE 3-1 GENERAL SOLUTION CONCEPT .uttttiiiiieeiiiiiirtrereeeesssieiissrssesssessssssissssssssssessssinssssssseseses 44
FIGURE 3-2 THREE ELEMENTS OF A COMPLEX SYSTEM..uuttttiiiiiiiiiiitiiiieeeeeeessssisnsiseesssesssssssssssssesesens 45
FIGURE 3-3 PRODUCT DECOMPOSITIONuuuttttiiieieeiiiiiirsreeeeesessieiissrssesssesssssssssssesssssessssinssssssssseses 45
FIGURE 3-4 SYSTEM-OF-SYSTEMS STRUCTURAL TREE DECOMPOSITIONcoccvrrviiieieeiseiiireieeeeeeens 46
FIGURE 3-5 ILLUSTRATIVE EXAMPLE HIERARCHICAL STRUCTURAL DECOMPOSITION........cvvveeeneen. 46
FIGURE 3-6 FUNCTIONAL SUBSYSTEM DECOMPOSITION CATEGORIESccoviviiririiiieeeeesssiirrieeeee e 47
FIGURE 3-7 PROCESS DECOMPOSITION CATEGORIES .. .uuvvviiiieeeiiiiiiriiiieneeeessssssssreeesssesssssssrssesssssens 50
FIGURE 3-8 METHOD DECOMPOSITION CATEGORIES .. .uvvvviiiiiieiiiiiiiiiieeiseeesssssstbeeesssesssssssrssesssesens 51
FIGURE 3-9 NOTIONAL MAPPING OF DECOMPOSED ELEMENTSuuvvrtiiiiieeeisiiirrieieseeeesssssssssseneseeens 53
FIGURE 3-10 NOTIONAL SYNTHESIS GENERATIONuuttiiiiieeeeiiiiitiirienieeessssssssreeesssessssssssssesesesens 54
FIGURE 3-11 FIGURE GENERATION CONSTRUCTcciiiitttttiiieeeessseisbirrressseesssssssbbbeessssesssssssssssesssesens 55
FIGURE 4-1 SYSTEM ARCHITECTURE SUMMARYccoitiittttriiiieeessissssrseesseesssssssssseessssessssssssssssssseses 58
FIGURE 4-2 SYSTEM FRONT=END SUMMARY ..vttttiiieeiiiiiitrtreieeeessssssissrssesssssssssssssssesssssssssssssssssssssesens 59

FIGURE 4-3 SYSTEM BACK-END OVERVIEW.....ccittiiiiiieisiiieesiiiessiseessieessieessieesssseesssseessssesssssessssnees 59

FIGURE 4-4 PROJECT FOLDER-FILE STRUCTUREciotitttttiiieeeeisiiitirrreeeseessssssssrssesssessssssssssesesssens 61
FIGURE 4-5 RESULTS FOLDER-FILE STRUCTURE ON PROJECT BUILD .1vvviiieeiiiiiiriieeeeeee s seiinrnreeeee e 61
FIGURE 4-6 GENERAL EXECUTION PROCESS TO AIDRA-DSS. ... 62
FIGURE 4-7 REFERENCE LIBRARY LISTING AND START PAGEccoittttiiiiieeeisiiiittrreee e e e e s s ssinnsreeese e 65
FIGURE 4-8 REFERENCE INPUT AND DOCUMENTATION FORMcciturriiieieeeiiiiiinireeeeeeeessssnnnsneneseeens 65
FIGURE 4-9 METHODS LIBRARY BROWSERciiiiiiiiiiiiitiii ettt e s sabb e e s e sasbaran e s e 65
FIGURE 4-10 NEW METHOD FORM ..ccciciiiiiiitiitiiieee e ettt e e s s e s s et bbates s s e e s s s s sssbbbaaesssasssssssbabaneseseas 65
FIGURE 4-11 METHOD BUILDER—LOGIC DEFINITION TAB ..uutuvuvururerururssersrsrsssssnssssssssessssssrsressmenees 66
FIGURE 4-12 METHOD BUILDER—INPUT AND OUTPUTS (I/O) TAB.....eeiieieriieriieie e sieeniesiee e 67
FIGURE 4-13 METHOD BUILDER—APPLICATION TAB ...utttiiiiiieiiieiittirieiiieessssssssbeeesssessssssssrssesssesens 68
FIGURE 4-14 VEHICLE LIBRARY——VEHICLE BROWSER.......uuututuuuiiiiriiiininrsrrssssssssssssssssssssassere.. 69
FIGURE 4-15 VEHICLE LIBRARY——VEHICLE BUILDERcuuuuuuiuiiiiiiiiiiiiieisisssissssssrsesssessssssse.. 69
FIGURE 4-16 VEHICLE LIBRARY——NEW VEHICLE.......ccvtttiiieeiii ittt e e e e s s seistbeees s s e s s s sssvarenese e s 69
FIGURE 4-17 PROCESS LIBRARY—PROCESS BROWSERuuuuvuvurirururuiiisrsrsrssssssssssssssessssssres. 70
FIGURE 4-18 PROCESS LIBRARY—NEW PROCESS FORMccccoitiiitirriiiiieeessinisrieeenssessssssssssseneseeens 70
FIGURE 4-19 PROCESS LIBRARY—PROCESS BUILDER ...uttviiiiiiiiiiiiiiiieieiee s ssiiirries s e ssisnsrensse e 71
FIGURE 4-20 PROCESS BUILDER—OBJECTIVE FUNCTION VARIABLE SELECTION FORMcvveeue.... 71
FIGURE 4-21 PROCESS BUILDER—PROCESS DISCIPLINE SELECTION FORMuvvvviiiieeeiiiiinniieeeneens 72
FIGURE 4-22 AIDRA-DSS PROJECT BUILDER TAB SET w1ttviiiiiiiiiiiiiiiiieieieesssssissireessseessssnssnssssssssens 73
FIGURE 4-23 PROJECT BUILDER—BROWSERccciiiiiiitiiiiii ettt n s sisbarene e 74
FIGURE 4-24 PROJECT BUILDER—NEW PROJECT ...coiiiitiiiiiiiic ittt sabbaraee e 74
FIGURE 4-25 PROJECT BUILDER—ANALY SIS 11iiiiiiiiiiiiiirreiiie e s ieiitibrresese s st s sssbtbesesssesssssssssssssssesens 74
FIGURE 4-26 ANALYSIS—MISSION SELECTION WINDOW ...ccccciiiiiiiiiriiiieeeeisiiirtireeeeseessssnssssresesesens 75
FIGURE 4-27 ANALYSIS—VEHICLE SELECTION WINDOWccoiiiiiitiiriiiiieeessiiinrireeseseessssssssssesesesens 75
FIGURE 4-28 PROJECT BUILDER—INTEGRATIONcicitttriiiieieiiiiiitiirieeeee e s s s sestrbeeesssesssssssrasenesesens 76
FIGURE 4-29 INTEGRATION—PROCESS SELECTION AND ASSIGNMENT WINDOWccovvvnvrrenenennn. 77
FIGURE 4-30 INTEGRATION—METHOD SELECTION WINDOWcuvvrriiiiieeeisiiirrreiereeeesssssssvsseeesesens 78
FIGURE 4-31 INTEGRATION—FUNCTION ASSIGNMENT TAB.......ieitttrtieiiieeesssisrrreeeresesssssssssssensseees 78
FIGURE 4-32 PROJECT BUILDER—ITERATION PAGEuvttiiiiiiiiiieciiitiie e et savbaaee e 79
FIGURE 4-33 ITERATION—METHOD EXPANSION SECTIONcciiieirrreiiriieeesssesrrreeessseesssssssvssensseeens 80
FIGURE 4-34 ITERATION PAGE—FUNCTION MISSION BUILDER SECTIONccvvvviiiieeeeeieiirreieneeeenn 80
FIGURE 4-35 PROJECT BUILDER—CONVERGENCE PAGEc.ccoiiieittttiiiiie ettt sivrveee e 82
FIGURE 4-36 PROJECT BUILDER—SCREENING TAB S PAGEceecvvvtiiiiieeessseitttriens s e e s s s ssssssneeeseees 83
FIGURE 4-37 SCREENING PAGE—TRADE VARIABLE SELECTION WINDOWcvvvvviiieeeeeiiiivreieeeeeeens 84
FIGURE 4-38 PROJECT BUILDER—VISUALIZATION PAGEcooiieititeiiiiie et 85
FIGURE 4-39 VISUALIZATION—FIGURE VARIABLE SELECTION WINDOWccvvvveieieeeeiriiivreieeeeeeens 86
FIGURE 4-40 ASSESSMENT PAGE—DATA SUMMARY TABiiiiiiiiitirtiiiiiee e seiitrreer e e e s s ssisvsranese s 86
FIGURE 4-41 ASSESSMENT PAGE—VISUALIZATION TAB ...ciiiiiiiiiiiitirtieiiie e s s s ssiitireessseesssssissssesssesens 87
FIGURE 4-42 ASSESSMENT PAGE—RECOMMENDATION TAB......ioittttiiiiieeetsiiirtieeeee s e e s s s ssisrsreseseeens 87
FIGURE 4-43 CODE ASSEMBLY PROCESSuutttiiiiiieeiiiiisisreieeesessssiissbssesssessssssssssssssssssssssssssssssssseses 89
FIGURE 4-44 METHOD FILE PROCESSING FUNCTION PROCESS AND LAYOUT ...uvviiiiiiieeiiiiinrnieeneeen,s 91
FIGURE 4-45 EXAMPLE TRIGGER EVENT CALL AND LOCAL INSERTED CODEvvvviiiiieeiiiiiirrieneneen, 92

FIGURE 4-46 EXAMPLE TRIGGER EVENT INSERTED FUNCTIONcuttiitiieiiiiesieeesiieeessreessnveessineesneneas 92

FIGURE 4-47 SOLVER FUNCTION PROCESS AND LAYOUT 11vviiiiiiiiiiiitiiiieeeeeeesssiintiseeseseessssnsssssssesesens 92
FIGURE 4-48 SYNTHESIS SOLVER ITERATION PROCESS ...vvvviiiiieiiiiiitirrieeeeeeessssinssseesssesssssssssssssesesens 93
FIGURE 4-49 MAIN ANALYSIS FUNCTION PROCESS AND LAYOUT ...uuviiiiiieeeiiiiiiiireeeeeeessssnisnsneeeseeens 94
FIGURE 4-50 METHOD RESOLVE FUNCTION PROCESS AND LAYOUT .1vvvviieeiiiiiiiriirieeeeeessensinnnneeeseeens 95
FIGURE 4-51 SPECIAL CALL DATA RETURN FUNCTION PROCESSvvviiiiieeeiiiiiiriieieeeeeesssinnsnsnenenesens 96
FIGURE 4-52 PROCESS SPECIAL DATA FUNCTION PROCESS AND LAYOUT ...covvvvieiiieieeeseiirreieeeee e 96
FIGURE 5-1 ILLUSTRATION OF X-24C TEST VEHICLE AND B-52 CARRIER VEHICLE

CONSTRAINTS CONSIDERATIONScittttttieieeeeeeerstiiiinieeeeesessranasseeeseresstarareessersssrannn 101

FIGURE 5-2 EXAMPLE OF THE CLASSICAL PERFORMANCE MATCHING DIAGRAM DESIGN POINT.... 101
FIGURE 5-3 TRADE STUDY ILLUSTRATION VISUALIZED BY A SET OF PERFORMANCE

MATCHING DIAGRAM ...ttttii i ettt te e e e e s e e ettt s et e e e s e e ea et e s eeeseesssb st aeesseeessbabnaeeess 101

[TETU S A € o AV 103
(e B S I, G) R 103
FIGURE 5-6 MULTI-POINT TRADE STUDY BASELINE VEHICLES. ...cvvvvveiiieeeiiiiirrieiereee e e e s ssssvsveeeseeens 104
FIGURE 5-7 SIZING PROCESS, BOTH SINGLE-POINT AND MULTI-POINT SEQUENCE..........cccvvuvveeenns 106
FIGURE 5-8 VISUALIZATION OF THE STEPS TO A SOLUTION SPACEvviiiiiiiiiiiiiirieee e ssssiissreeeeeeens 108
FIGURE 5-9 MISSION PROFILE: EXTERNAL EXPENDABLE BOOSTER ..vvivviiiiiiiiiiiiiieeeieesssiiinnieeeneeens 109
FIGURE 5-10 MISSION PROFILE: INTEGRATED BOOSTERciiieiiiiiitriieieieeesssiiniirneesseesssssssssrssssesens 110
FIGURE 5-11 BOOSTED AIRBREATHING HYPERSONIC VEHICLE SOLUTION SPACE:

TOGM VS, SPUTL .o 116
FIGURE 5-12 BOOSTED NON-AIRBREATHING HYPERSONIC VEHICLE SOLUTION SPACE RP-1:

TOGM VS, SPIT . 117
FIGURE 5-13 BOOSTED NON-AIRBREATHING HYPERSONIC VEHICLE SOLUTION SPACE H2:

TOGM VS, SPUT oo 118
FIGURE 5-14 INTEGRATED NON-AIRBREATHING HYPERSONIC VEHICLE SOLUTION SPACE:

TOGM VS, SPUTL oo 119
FIGURE 5-15 AB FULL STACK PAYLOAD CONSTRAINED SOLUTION SPACE: TOGM vs. Splin........ 120
FIGURE 5-16 BB FULL STACK PAYLOAD CONSTRAINED SOLUTION SPACE: TOGM vs. Spin........ 120
FIGURE 5-17 BB VEHICLE GEOMETRIC CONSTRAINED SOLUTION SPACE: L VS. D wcoooeeevvviriiieennn. 121
FIGURE 5-18 AB VEHICLE GEOMETRIC CONSTRAINED SOLUTION SPACE: L VS. D .cooooeovvvivrreeennnn. 122
FIGURE A-1 X-51 CONFIGURATION AND FULL STACKuuuuvuuuuvrrrurrrsrsrsrssssesssssssssssssssesssssessssr. 145
FIGURE A-2 X-51 NOTIONAL MISSION......ccuuttteiiieeeiiiiitrreieeeseesssssssssesssessssssssssresesssessssssssssssseseses 146
FIGURE A3 X-51A ANALYSIS PAGE........ccctttetiieeesiisittteietssesssssssbasesssessssssssssrssesssesssssssssssssssesens 147
FIGURE A-4 X-51A INTEGRATION PAGE, (A) METHOD SELECTIONc..citriiriiriieieieieniesiesiesieanis 147
FIGURE A-5 X-51A INTEGRATION PAGE, (B) FUNCTION ASSIGNMENTcccoiiiiieieieienieniesiesiennns 147
FIGURE A-6 X-51A ITERATION PAGE.......ccctttttiiieeeiiiiititeietseeessssssbsresssesssssssssrssesssassssssssssessseses 147
FIGURE A-7 X-51A CONVERGENCE PAGEtvvtiiieeeiiiiititeieieeessssssssssesssesessssssssrssssssesssssssssssssssesens 148
FIGURE A-8 X-51A SCREENING PAGE......cccuttttiiieeeiiiiittieietsiee st s sssbasesssessssssssssbesesssessssssssssssssseses 148
FIGURE A-9 AB SCRAMJET ITERATION FINAL CONVERGENCEuvvviiiieeeiiiiirrieiineiesesssssssreenseees 149
FIGURE A-10 AB SCRAMJET ITERATION CONVERGENCE ERROR BY STEP.....ccctvvviiiiieeeiiiiirrieneneens 149
FIGURE A-11 AB BOOSTED ROCKET (RP1) ITERATION FINAL CONVERGENCEccovviiiveeiireainns 150
FIGURE A-12 AB BOOSTED ROCKET (RP1) ITERATION CONVERGENCE ERROR BY STEP 150

Xi

FIGURE A-13 AB BOOSTED ROCKET (H2) ITERATION FINAL CONVERGENCEccocvsierieaieneennees 151

FIGURE A-14 AB BOOSTED ROCKET (H2) ITERATION CONVERGENCE ERROR BY STEPcccv.... 151
FIGURE A-15 AB INTEGRATED ROCKET (RP1) ITERATION FINAL CONVERGENCEccccevvvruene. 152
FIGURE A-16 AB INTEGRATED ROCKET (RP1) ITERATION CONVERGENCE ERROR BY STEP.......... 152
FIGURE A-17 AB INTEGRATED ROCKET (H2) ITERATION FINAL CONVERGENCEccovvnvirienienne 153
FIGURE A-18 AB INTEGRATED ROCKET (H2) ITERATION CONVERGENCE ERROR BY STEP............ 153
FIGURE A-19 SELECTED ALL-BODY SOLUTIONS ILLUSTRATING H2 SOLUTION DOMINANCE:

SPDINVS TOGW .ot 155
FIGURE A-20 ALL-BODY CRUISER VEHICLE SOLUTIONS: SpIn VSTOGWccooooviiiiiiiiiiins 155
FIGURE A-21 BOOSTED ALL-BODY AIRBREATHING CRUISER SOLUTIONS: SpinVvSTOGW 156
FIGURE A-22 BOOSTED ALL-BODY H2 ROCKET CRUISER SOLUTIONS: Spln VSTOGW 156
FIGURE A-23 BOOSTED ALL-BODY RP-1 ROCKET CRUISER VEHICLE SOLUTIONS:

SPDINVS TOGW ..ottt are e 157
FIGURE A-24 INTEGRATED ALL-BODY H2 ROCKET CRUISER VEHICLE SOLUTIONS:

SPINVS TOGW ...ttt 157
FIGURE A-25 INTEGRATED ALL-BODY RP-1 ROCKET CRUISER VEHICLE SOLUTIONS:

SPDINVS TOGW .ottt bbb are e 158
FIGURE A-26 ALL-BODY FULL STACK SOLUTIONS: SPINVSTOGWccoovivieiiiiiiiieeeene 158
FIGURE A-27 BOOSTED ALL-BODY AIRBREATHING FULL STACK SOLUTIONS: Splnvs TOGW ... 159
FIGURE A-28 BOOSTED ALL-BODY H2 ROCKET FULL STACK SOLUTIONS: Splnvs TOGW 159

FIGURE A-29 BOOSTED ALL-BODY RP-1 ROCKET FULL STACK SOLUTIONS: SpinvS TOGW 160
FIGURE A-30 INTEGRATED ALL-BODY H2 ROCKET FULL STACK SOLUTIONS: Spinvs TOGW ... 160
FIGURE A-31 INTEGRATED ALL-BODY RP-1 ROCKET FULL STACK SOLUTIONS: Spln vSTOGW 161

FIGURE A-32 ALL-BODY FULL STACK SOLUTIONS: SPINLVS L....ooiiiiiiiiiiiieic e 161
FIGURE A-33 ALL-BODY FULL STACK SOLUTIONS: SPITLVS B ...vvviiiiiiiiiiciiie e 162
FIGURE A-34 GHV TOP VIEW WITH FEATURES INDICATEDcoiiuiiitiiaiiesiiesieesieesieesieesnieesseesneens 163
FIGURE A-35 GHV BOTTOM VIEW WITH FEATURES INDICATEDvviiiieitiesieesieesieesieeasieesieeseeens 163
FIGURE A-36 PROPULSIVE SYSTEM INTERNAL LAYOUT ...uveeiuiiiiiesieeaieesieesiessseessessseesnseesssessseens 163
FIGURE A-37 GHYV NOTIONAL MISSION PROFILE.....uuvieituteisirieaineesineesieeessesessseesssnesssssesssssessnnns 165
FIGURE A-38 GHY ANALYSIS PAGE ...eeitvteiuiieeisiieesiiieasisesasssesssssessssassssesssnsesssnsesssssesssssesssssessnsns 166
FIGURE A-39 GHV INTEGRATION PAGE, (A) METHOD SELECTIONcccveitieieiiiecieeiesreesteesee e 166
FIGURE A-40 GHV INTEGRATION PAGE, (B) FUNCTION ASSIGNMENTcoiviiieriieiesriesreeee s 166
FIGURE A-41 GHYV ITERATION PAGEcuvvtiiuiiieiiiieesiieeasiieeasssessstaessstaessseessnseessnseessnseessnseessssesssnns 166
FIGURE A-42 GHY CONVERGENCE PAGEuutiiiieeiiiieesiiessiteeasseessssssssnsesesseessssesssssesessssessssessnnns 166
FIGURE A-43 GHY SCREENING PAGEuutiiuiiieiiieeiiieasiieessssesssseeesssaessnseessnseessssesssnsesssssssssssessnsns 166
FIGURE A-44 BB SCRAMJET ITERATION FINAL CONVERGENCEcccvveiiiieiiieesieeesiieeesiveesssneesens 168
FIGURE A-45 BB SCRAMJET ITERATION CONVERGENCE ERROR BY STEP......ccteivieeiiiessiieeenieneeens 168
FIGURE A-46 BB BOOSTED ROCKET (RP1) ITERATION FINAL CONVERGENCEcccovvevieiiieeiens 169
FIGURE A-47 BB BOOSTED ROCKET (RP1) ITERATION CONVERGENCE ERROR BY STEP................ 169
FIGURE A-48 BB BOOSTED ROCKET (H2) ITERATION FINAL CONVERGENCEcccovevvieieeiiieainns 170
FIGURE A-49 BB BOOSTED ROCKET (H2) ITERATION CONVERGENCE ERROR BY STEPccccvue. 170
FIGURE A-50 BB INTEGRATED ROCKET (RP1) ITERATION FINAL CONVERGENCE.........cccveiveinnans 171
FIGURE A-51 BB INTEGRATED ROCKET (RP1) ITERATION CONVERGENCE ERROR BY STEP 171

xii

LIST OF TABLES

TABLE 1-1 SUMMARY OF A6 FIELDS ... uuttttitiieiiiiiiiiiieiieeeessissiiiissessseessssssbsresssssesssssssssssssssesssssssssssens 9
TABLE 2-1 SELECTED AIRCRAFT VEHICLE DESIGN TEXTS ...ciiiiittttteiiieeeiiiiiiirereesseessssssnsrsessssesssnnnns 20
TABLE 2-2 SELECTED SPACE ACCESS VEHICLE DESIGN TEXTS tuttretiieeeiiiiiiireieeeseesssissnnrseesssesssnnnns 21
TABLE 2-3 SELECTED AIRCRAFT VEHICLE DESIGN SOFTWARE TOOLS......cccitttiiiiieeeiniiiinreeeneeesssnnns 22
TABLE 2-4 SYNTHESIS SYSTEM EVALUATION CRITERIA ...ociiiiiiiiiiiiiie e siitirrree e s s ssibirsees s e s s nenns 24
TABLE 2-5 DATA MANAGEMENT SYSTEM EVALUATION CRITERIAccoiiieittreiiee e e e siitreeee e e e e 24
TABLE 2-6 COMPOSABLE SYSTEM SOFTWARE TOOLS ...eciiiiiiiiiitteieiiieeesssesssreeeessesssssssssseessesssssesnns 29
TABLE 31 IMISSION TYPES .. .utttttiieeiiiiiiirtreeeteeeessssssssresesssssssssssssssssssessssssssssresssssessssssssssesssesesssasns 48
TABLE 3-2 SPEED RANGE CATEGORIES. ...utvviiiieeiiiiiittreieieeessssssssbssesssessssssssssrssssssassssssssssssesssesssasns 49
TABLE 3-3 OPERATIONAL ALTITUDE ZONES......citteitttteiiieeeessisitsrrteeesesssssssssresssssesssssssssssssssesesssnsns 49
TABLE 4-1 AIDRA-DSS'S FRONT-END SYSTEMS ...uuttteiiiiieiiiiiitsrrieiiiesesssssssreeesssesssssssssssssssssesssnnns 59
TABLE 4-2 AIDRA'S PRIMARY BACK=-END FILESuttttiiiieeiiiiiiirrreeiieeeessissssreeesssesssssssssssssssssssssnins 60
TABLE 4-3 VISUALIZATION STANDARD PACKAGE FIGURE SET .uvvveiiieeeiiiiirrreeeeeieessssssssrsessssssssnsnns 85
TABLE 4-4 PRINCIPAL FUNCTION CATEGORIES OF THE BACK-END’S SYNTHESIS ASSEMBLER 90
TABLE 5-1 VERIFICATION STUDY VEHICLES......ututtuuueterererererererererererersrerererererererererersr.... 102
TABLE 5-2 VEHICLE SIZING AND GENERAL PARAMETER VALUEScooivittteieiiie e e sirtreee e e e 102
TABLE 5-3 VEHICLE MISSION SEGMENTS TOWARD TOTAL MISSION PROFILEccovvvvviiieieeeinnns 111
TABLE 5-4 VERIFICATION VEHICLES’ MISSION SEGMENT FLIGHT CONDITIONScooeivvviiieieeeinnns 111
TABLE 5-5 TRADE STUDY VEHICLES’ MISSION SEGMENT FLIGHT CONDITIONSccooeivvrviiieieeeinnns 111
TABLE 5-6 SUMMARY OF METHODS APPLIEDcccctttvieiiieeeiiiiintrreeeeesesssssssrssesssesssssssssssssssssesssnins 112
TABLE 5-7 METHODS PER VEHICLE APPLICATION SUMMARY ...vvtiiiiiieiiiiiiiiiieeeeeeessissssrseeessesssnnnns 113
TABLE 5-8 TRADE STUDY TRADE MATRIX 1eiiiiiiiiiiittiiiiiieeeessiiibtbeeesssesssssssbssesssesssssssssssssssssesssnsnns 114
TABLE 5-9 VERIFICATION CASE’S SIZING VARIABLES’ VALUE AND PERCENT ERROR.....cccvvieeiiinns 114
TABLE A-1 X-51A PRIMARY DIMENSIONSccciiiiitttiiiiieeeetiiiistrreresesesssssssbssesssesssssssssssssssssessssins 146
TABLE A-2 X-51A PRIMARY MASS PROPERTIESuttiiiiieiiiiiiittieiiieee e s ssstbbrten e s e e e s s siababenesssesssnians 146
TABLE A-3 SUMMARY OF X-51A NOTIONAL MISSION PROFILE ..vvcviiiiiiiiiiiiiiineeeeesssiistreeeeesee s 147
TABLE A-4 ALL-BODY TRADE MATRIXuuututtetutersreresessssseserersrsrererssessressrsrsrsresssesm.... 148
TABLE A-5 GHV FAMILY PRIMARY DIMENSIONSuvvitiiieeesiiiirtreiireeesssssissrsrerssesssssssssssesssesesssnins 164
TABLE A-6 GHV FAMILY PRIMARY MASS BREAKDOWNoecuvvieiiieeeesisirrrseereeeessssssssresesssesssnsns 164
TABLE A-7 GHY NOTIONAL MISSION CONDITIONS ..vvviiiieeiiiiisrrrereieeessssssssssesssessssssssssresssssssssnins 165

Xiii

TABLE A-8 BLENDED-BODY TRADE MATRIX

Xiv

NOMENCLATURE

Abbreviations

AB
AB2DS
ABRCKT
AFRL
Al
ARRMD
BB
BB3DS
BBRCKT
CAE
CD

Cl
DACE
DARPA
DBS
DD
DSM
ESA
GHV

IS

KB
KBE
KBS

KE

LB
MDA
MDAO
MDO
NASA
PD
PIDO

All Body

All-Body 2D Scramjet

All-Body Rocket

Air Force Research Laboratory

Acrtificial Intelligence

Affordable Rapid Response Missile Demonstrator
Blended Body

Blended-Body 3D Scramjet

Blended-Body Rocket

Computer Aided Engineering

Conceptual Design

Computational Intelligence

Design and Analysis of Computer Experiments
Defense Advanced Research Projects Agency
Databased Systems

Detailed Design

Distributed Satellite Missions

European Space Agency

Generic Hypersonic Vehicle

Intelligent Systems

Knowledge Base

Knowledge Based Engineering
Knowledge-Based Systems

Knowledge Engineering

Lifting Body

Multidisciplinary Design Analysis
Multidisciplinary Design Analysis and Optimization
Multidisciplinary Design Optimization
National Aeronautics and Space Administration
Preliminary Design

Process Integration and Design Optimization

XV

PLC Product Life Cycle

TSTO Two-Stage-To-Orbit
UAS Unmanned Aerial System
USAF United States Air Force
VA Virtual Assistant

wWB Wing Body

Greek Letters

Ug OEW Margin

Pppl Propellant Density

Ppay Payload Density

Variables

Ery Engine Thrust to Weight Ratio
foys System Weight to OEW
Iser Structural Index

Csys Fixed Systems Weight
Kerw Crew Volume Coefficient
ke Engine Volume Coefficient
ks System Volume Coefficient
Koy Void Volume Coefficient
K, Wetted Area vs Planform Area
Nerw Number of Crew

OEW Operating Empty Weight
OWE Operating Weight Empty
Spin Planform Area

TOGW Takeoff Gross Weight
T/W Thrust To Weight Ratio
Vocrw Crew Provision Volume
Weprv Crew Provisions Weight
WR Weight Ratio

W/S Wing Loading

W Crew Weight

Wiser Structural Weight

Wsys Systems Weight

Wpay Payload Weight

XVi

Chapter 1 INTRODUCTION

HE development and demonstration of a generic synthesis environment for improved

decision-making and automated synthesis creation is the principal topic and deliverable of
this research. This topic is arrived at and exists within a greater scope—artificial intelligence (Al).
This greater scope is the driving motivation for conducting the research presented. As such, this
chapter documents the principal motivation, the general background on the subject, and topic
refinement towards an original research topic (generic synthesis tool), and finalizes with the
specifications of the research objective, deliverables, scope, and document layout.

1.1 Motivation

Fundamentally, the motivation for this research is to explore the advancement of toolsets for
the decision maker and designer operating at the earliest planning and design phase of an aerospace
vehicle or program. From the early aerospace vehicle product gestation phase onwards, the future
projects engineer is challenged to develop a level of assurance when committing resources towards
a product aimed at achieving an envisioned impact on the future market years after conception.
The success of a product is dependent on the quality of the underlying early forecasts, requirement
definitions, technology selections, and initial concept and configuration selections. Consequently,
the forecasting team and future projects environment is responsible to identify the available
product solution space and risk topographies, resulting in the correct choice of the facilitating
technologies, baseline concept, and architecture.

It is well known that the designer is supplemented by his tools available. These include
software, experience, and knowledge. All are tools of the designer. However, software can be
expensive and cumbersome with inherent limitations and problem focus resulting in rigidity and
lack of flexibility in addressing non-standard designs. Knowledge and experience require time and
dedication. Furthermore, knowledge and experience can be lost. Education is a fundamental
approach to knowledge transfer but is frequently relegated to standardized fundamental knowledge
and not the particulars an individual acquires through a lifetime of experiences. So how could the
designer be better supplemented? How can knowledge be capture and reused? What are ways to
improve the decision maker and designer’s situation? Blair, in Launch Vehicle Design Process:

Introduction

Characterization, Technical Integration, and Lessons Learned [1], reflects on the situation

addressing areas of improvement:

“ ... Currently, any design synthesis or design update depends on the designer's ideas and
experience base on an ad hoc basis. Possible approaches to technology leaps in this area
include idea stimulus approaches; use of artificial intelligence and knowledge-based
systems to convert designer’s judgments and rules of thumb into algorithms; techniques for
visualization of the design space; multidisciplinary optimization; and automated synthesis

or inverse engineering. ”

Similar sentiments have been communicated by an AIAA technical committee in 1991, as stated
in AIAA Technical Committee on Multidisciplinary Design Optimization (MDQO) White Paper on

Current State of the Art [2]:

“ ... Multidisciplinary design optimization of aerospace vehicles cannot take place without
substantial contributions from supporting disciplines. The identified supporting disciplines
and methodologies are the Human Interface Aspects of Design, Intelligent and Knowledge-
based Systems, Computing Aspects of Design and Information Integration and

Management.”

These statements simply reflect the fundamental motivation of this research. To originally
contribute to supporting the decision maker and designer in the development of the aerospace
vehicle at the earliest of the design phase via the development of next generation design tools.
More specifically, it is envisioned that the aerospace designer and decision maker be augmented
by an artificial intelligent (Al) design and research assistant. The original creation of such a system

is the motivation of this research.

1.2 Design Process

1.2.1 Design

Engineering design, as stated by Calkins,
“... may be thought of as the arrangement of
elements that make up a machine or other
man-made system...” such that “... an
environment is created in which elemental
interactions produce a desired result.” [4]
More specifically, aerospace vehicle design
is the “... application of the fundamentals of
aerodynamics, structures, power plant,
stability and control, based upon certain
degree of judgement and experience of the
individual designer.” [5] The application of

- CoZ~ womOOoOxXo

Requirements ‘\‘
Analysis

A

A A
Loop

Verification

Requirements

Functional Analysis
and Allocation

N

Design
Loop

System Analysis
and Control
(Balance

N

1 Design Synthesi

PROCESS OUTPUT

Figure 1-1 System Engineering Process [3]

Design Process 3

this knowledge leads to the determination of the design variables that define the vehicle. Calkins
[4] further identifies two key elements to the design process, they are synthesis and analysis. These
are fundamental components to a design process. They are also a part of the systems engineering
processes as defined by Military Standard 499B, which outlines a general problem solving process.
[6] In this approach, there are two analysis categories: requirement and function. However, for the
discussion here in, it is limited to the simpler construct of analysis in general with the
understanding that analysis can be applied to the arena of requirements, function, performance, or
any other. For further details on the systems engineering process see refs: [3, 7].

1.2.2 Synthesis

The key element of any aerospace vehicle design methodology is the concept of synthesis. It
is the processes to develop concepts and designs where the product (concept/design) is an assembly
comprised of core base components; it is a creative activity or phase.[3, 4] It “... involves the
generation of one or more design solutions consistent with the requirements defined during
formulation of the design problem and any additional requirements identified during synthesis.”[8]
The output of synthesis is a product, a physical architecture.[3] The final product is a solution that
has been verified, through analysis, to meet the requirements and performance required. The
process, however, can be very time intensive and is “... one of the important areas to be considered
from the standpoint of automation.”[8]

1.2.3 Analysis

At its core, analysis is the examination of some element. It does not infer or necessitate
evaluation. As Calkins defines it, analysis is ... an examination of a complex system, its elements,
and their interactions.”[4] With the inclusion of evaluation, analysis is the examination of system
or element in relation to some given requirement. As such, analysis is “... any procedure that
ascertains whether a given design will meet certain specified objectives.”[9] Within the design
process, analysis is a core component of evaluating and verifying that the product of synthesis
satisfies the necessary function, performance, and requirements identified and set forth during the
design process. The result of analysis is a design update to meet better the function and
requirements defined or the verification that the product satisfies the requirements and objectives
as laid out.

Analysis includes the classical components of education and is most recognizable by the
general community. Different category sets include the classical disciplines: aerodynamics,
structural mechanics, propulsion, trajectory, etc. Classical analysis tools fall into the categories of
analytical, empirical, and numerical. Commonplace analysis tools/approaches, for example, would
include tools such as FEM or CFD.

4 Introduction

1.3 Product Life Cycle: Design Phases

An aerospace vehicle is a product of a
specific sequence of development, testing,
and operation. This sequence of product
development and operation is referred to as conceptual O _

. i E > What airframe and
the product life cycle (PLC). Adapted from Design & systems
Roskam [11], the product (vehicle) life cycle &: St o

ivided i : : N i best?
can be divided into four phases: (1) research synthesis (%\/ ., requirements bes

Baseline / Feasibility What scale of vehicle and
Design technology is required for
Synthesis the given mission?

and development, (2) manufacturing and

.] oV, How must the chosen
acqw_smon, (3) operation and support, and Preliminary = ':‘\”ﬂ\\\ configuration be
(4) disposal. The research and development Design : % / ;g"gg?éir:n a:ec:trﬁteined

phase itself comprises of the classical design Synthesis mission?
phases. There are three. They are conceptual Setail Finalize performance
; A ; etal 2% component design and
de3|gn (CD)i preliminary de5|gn. (PD), and Design % > begin prototyping for
detailed design (DD). The design phases flight testing
classically occur sequentially.! Each phase ‘
v Based on W. Heinze

represents a set of different inputs, tasks, and

. . . Figure 1-2 Design phases and product refinement, modified from
outputs—completion of which occurs with [10]
different toolsets and toolset fidelity. The
sequence of events occurring through the CD to DD phases refines the design options into a final
design product. This filtration and design convergence is conceptually illustrated in Figure 1-2.

» Conceptual Design (CD): This design phase involves the tasks of identifying and evaluating
sets of plausible concepts2 and configurations3 to satisfy the requirements given and
determined during analysis. Outcomes are the identification of a baseline solution concept with
principal shape, size, and layout. Lower fidelity toolsets, select small teams, and relatively
short turn around characterize this phase.

» Preliminary Design (PD): Refinement of the design arrived at during the CD phase. Minor
modifications to the external design are conducted, as necessary. A larger labor force is
introduced along with increased fidelity tools, optimization, and wind tunnel testing.

» Detailed Design (DD): The decision to manufacture has been made. This phase deals with the
generation of detailed part schematics, fabrication, and overall design finalization for

! The design cycle generally is considered to execute sequentially and before manufacturing. However, concurrent
engineering, which combines/interlays some phases to reduce time and ideally cost, is also popular and has gained
traction. Generally, the merged phases are DD and testing/manufacturing though testing and manufacturing can be
brought into the earlier phases as well.

2 A conceptisa “... product or system vision, idea, notion or mental image which maps form to function...” [12]

3 Configuration refers to “... the general layout, the external shape, dimensions and other relevant characteristics” of

the vehicle.[13]

Product Life Cycle: Design Phases 5

manufacturing of the vehicle. The configuration has been frozen; major design modifications
are minimized. This phase has the largest work force and usually the most time allocated.

1.3.1 Product Life Cycle Knowledge versus Design Freedom

The nature of design freedom and cost characterize the design phases. Knowledge and design
freedom during the PLC phases are variable. Design knowledge and design freedom are inversely
related. As depicted in Figure 1-3, the knowledge available is minimal initially during the
conceptual design phase and increases through the PLC phases. The design freedom is exactly the
opposite. The maximum design freedom available coincides with the point of minimum
knowledge, decreasing rapidly. As such the designer has abundant freedom to consider and
evaluate a plethora of design options and combinations, provided times and tools allow. However,
generally, neither do, or in the event one does the other does not. Frequently, design exploration
is so time costly that the time constraints do not permit it and the advantage of design freedom is
significantly reduced or lost. An objective within the community is to attempt to shift the curve
imbalance, to bring more design knowledge earlier into the design cycle and extend the design
freedom further into the design cycle.[2]

1.3.2 Discipline Integration

Classically the discipline integration across the PLC has also been imbalanced.[2] This is
reflected in the Figure 1-3. Classically, certain disciplines have taken precedence during each
design phase. Notably stability and control are one of the last to be addressed; aerodynamics and
performance are usually favored to the degree that many early designs are driven for maximum
performance at the detriment of operational cost and manufacturing. The lack of ability to account
for manufacturability, sustainment, and cost earlier in the design process (CD phase) has been an
identified issue and is an area for correcting.

100% 4 Conceptual 100% Preliminary 100% Detailed 100%

Knowledge about design

“Goal

; . Aerodynamics
| I L | Propulsion
[[S/ [Structures
[N % | Controls
L7 i Manufacturing
/. i Supportability
i i Cost

Design freedom

— Current - Goal

»
Ll

Time into design process

Figure 1-3 Design cycle design knowledge, design freedom, and discipline integration. Adapted from [2]

6 Introduction

1.3.3 Cost

The cost for significant design changes increases with PLC phase. Nicolai [14] states, “... the
cost of making a design change is small during conceptual design but is extremely large during
detail design.” This nature is reflected in Figure 1-4. In order to minimize potential cost, it is
imperative that the correct design be selected early during the design process, which principally
occurs during the CD phase. Approximately 80% of the total configuration is determined during
the CD phase.[15-17] These design decisions can account for 70% of the cumulative system cost
while only having incurred 1% of the total cost. Small teams, rapid turnaround, and short time
allocation characterize the CD phase. The result is that for a highly cost determinant event,
comparatively, the cost invested is minimal.

(Ballistic Missile System)

100
95%
Determined Cost 85%
75
70%
Cumulative 50k
Percent LCC 50%
Incurred Cost
25
18%
1% __— 79 Time ———
Concept Advanced Full Scale Production Operation
Developmeny” Developmen” Developmen and Support

Figure 1-4 Design phases and product refinement in relation to cost. Recreated from [2]
1.3.4 Significance of the Conceptual Design Phase

The CD phase is the phase in which the general design is selected. As Nicolai states, “ ... [t]he
fundamental objective of this conceptual design phase is to satisfy the designer and decision maker
that the selected concept is worthy of preliminary design continuation.”[14] Similarly, Torenbeek
reflects that ““ ... [t]he object of this conceptual design phase is to investigate the viability of the
project and to obtain a first impression of its most important characteristics.”[13] The CD phase
analysis results in the determination of the primary vehicle concept, configuration, and key design
parameters.[18] By the end of the CD phase, approximately 80% of the vehicle configuration is
established. As noted previously, approximately 70% of the program cost is established by the
decisions made. Given that the actions of the CD phase are so impactful to the total design and the
overall cost, the CD phase is critical to a successful program.

Background and Refining Research Scope 7

1.3.5 Program Exposure and Knowledge

The CD phase requires ideation and therefore creativity and experience. However, a very
interesting trend has developed; the project exposure an engineer experiences is decreasing
significantly. Half a century ago, an engineer could expect to work on a dozen or more projects.
Today, they may be lucky to see the completion of more than one.[19] The result of this
phenomenon is the reduction in design experience, knowledge, and exposure. All of which are
invaluable to a designer. This illustrates a situation necessitating a system of standardized
knowledge retention, transfer, and expression.

1.3.6 Lessons Learned

Due to the increased design freedom, low cost of significant design change, and ability to
impact the final product cost, performance, and therefore success, this leads to the conclusion that
the CD phase is the most significant and impactful place for the overall product definition and
eventual success. Therefore, this research is directly targeted at supporting the aerospace
community at this early design phase. The conceptual design phase is characterized by time
constraints and low manpower but simultaneously establishes directly or indirectly the probability
of success and cost of the program through functional solution identification. This necessitates that
the decision maker and designer be best armed during this phase.

1.4 Background and Refining Research Scope

In this chapter section, the research scope and the original contribution objectives are resolved.
They are arrived at through a consideration of intelligence; a definition is provided for both human
intelligence and artificial intelligence. In addition to the consideration of intelligence, the fields
and categories of artificial intelligence are introduced, and finally a general consideration of the
application of intelligent systems in aerospace vehicle design is provided. From this, the research
direction is identified and selected for this document.

1.4.1 Intelligence

Two questions are addressed. First, what is intelligence? Second, what is artificial intelligence?

1.4.1.1 Human Intelligence

The nature of intelligence is such that it is difficult to define. For millennia, it has been a point
of debate. Two definition groups are briefly addressed as they correlate well with the definitions
and constructs of artificial intelligence. A common interpretation of intelligence is the notion of
multiple intelligences. In the late 1930s, Thurstone [20] correlated intelligence to multiple abilities,
identifying nine categories (verbal comprehension, reasoning, perceptual, speed, numerical ability,
word fluency, associative memory, spatial visualization). Since Thurstone, Gardner [21] similarly
identified intelligence as multiple intelligences working together (visual-spatial, verbal-Linguistic,

8 Introduction

bodily-kinesthetic, logical-mathematical, interpersonal, musical, intrapersonal, naturalistic) to
which emotional intelligence has since been recognized as well.[22, 23] Gardner represents
perhaps the most notable author, him identifying intelligence as distinct categories each of which
an individual could be weak or strong in.

Intelligence has also been classified as attributes. Sternberg [24] identifies three attributes of
intelligence: (1) analytical intelligence, (2) creative intelligence, and (3) practical intelligence.
These attributes translate to applicable aspects as problem solving, application of past knowledge
to new situations, and adaptability to a new environment respectively. This concept correlates well
with that of artificial intelligence (Al).

Krishnakunar summarizes the several ways intelligence has been defined:

» “The ability to learn or understand from experience
» Ability to acquire and retain knowledge
» Mental ability, the ability to respond quickly and successfully to a new situation,

» Use of the faculty of reason in solving problems, directing conduct, etc. effectively”[25]

1.4.1.2 Atrtificial Intelligence

As with human intelligence, the definition of Al varies depending on the individual asked.
Acrtificial intelligence, in its broadest consideration, is the mimicking of human intelligence by a
computational means. The how, what, when, and where distinguish each concept. Harrison [26]
notes that, given the variety of Al concepts, the most agreed upon concept “ ... is that Al is the ‘the
mimicking, or emulating, of human techniques. ”. As stated by Munakata, Al is “... the study of
making computers do things that the human needs intelligence to do.”[27] Frequently, to act
intelligent infers some ability to reason. Harrison defines Al “... as the subfield of computer science
that attempts to use computers to emulate the way humans think and reason when solving
problems.” [26] Russel, a notable author in the field, further breaks the definition down based upon
thought process, reasoning, and behavior arriving at four distinct definition categories.[28] The
four definition categories are (1) systems that think like humans, (2) systems that act like humans,
(3) systems that think rationally, and (4) systems that act rationally, where a ... system is rational
if it does the ‘right thing,’ given what it knows.”[28] Krishnakumar [25] notes that “... the
intelligence of a system is characterized by its flexibility, adaptability, memory, learning, temporal
dynamics, reasoning, and the ability to manage uncertain and imprecise information.” The present
section provides general definitions of Al; in the following sections, what Al entails is refined
through identification of the fields and categories of Al.

Background and Refining Research Scope 9

1.4.2 Fields of Al

Al is a very large field. As Russel [28] points out “... Al systematizes and automates
intellectual tasks and is therefore potentially relevant to any sphere of human intellectual
activity...it is a truly universal field.” Al has been categorized into six primary fields: 1) natural
language processing, 2) knowledge representation, 3) automated reasoning, 4) machine learning,
5) computer vision, and 6) robotics.[28] Note that the fields generally match or correlate with the
attributes and categories of intelligence, as one would expect. A summary of each field is given in
Table 1-1.

Table 1-1 Summary of Al fields

Al Field Summary

Natural language Enable effective communication. [28]
processing

“Areas such as automatic text generation, text processing, machine translation, speech
synthesis and analysis, grammar and style analysis of text etc.”[8]

Knowledge Storage of knowledge. [28]
representation
“The process of structuring knowledge to be stored in a knowledge-based
system.”[29]
Automated Generate conclusions and answers to a problem from the stored knowledge[28]
reasoning

Machine learning Determine new patterns and adapt to changing environment [28]

“An adaptive mechanism that enable computers to learn from experience, learn by
example, and learn by analogy...[it is] the basis of adaptive systems.” [29]

Computer vision Physical object perception [28]

“This topic deals with intelligent visualization, scene analysis, image understanding
and processing and motion derivation” [8]

Robotics Machine mobility and manipulation of objects[28]

“This deals with the controlling of robots to manipulate or grasp objects and using
information from sensors to guide actions etc.” [8]

1.4.3 Tools of Al

The tools developed for the field of Al are many. They can be broken down into three
fundamental categories: computational intelligence, knowledge-based systems, and hybrid
systems.[30] The different categories are illustrated in Figure 1-5 and are summarized below. Note
that in the usage of the term Al in the remaining document, it is considered the inclusive form; that
is, on mention of Al, knowledge-based systems, computational intelligence systems, and hybrid
systems are all referenced.

1.4.3.1 Computational Intelligence

Computational Intelligence (Cl) is distinguishable from knowledge-based Al in that it does not
operate on the explicit representation of knowledge; rather it operates on numbers in an intelligent
sequence. ClI deals only with numerical data, has pattern recognition, does not use knowledge in
the same sense Al does, and exhibits adaptively, fault tolerance, and speed and error rates that

10 Introduction

approaches that of a human.[31] The building blocks of CI are fuzzy logic, neural networks,
evolutionary programming, and genetic algorithms.[31]

All software

Neural networks
Evolutionary algorithms
Simulated annealing

Computational
intelligence

Rule-based
systems

Bayesian updating,
certainty theory,
fuzzy logic

Objects, frames,
and agents

Knowledge-
based systems

Figure 1-5 Categories of intelligent systems and tools of Al, recreated from [30]

1.4.3.2 Knowledge Based Systems

A Knowledge-based systems (KBS) are computer system that are programmed to store a
representation of know-how knowledge about a particular task or field that is used to provide
advice, solve problems, and draw inferences.[32] Hopgood [33] notes that a knowledge-based
system (KBS) is distinguished from a conventional system (code/software) by its program
structure. In a standard software system, the knowledge and system process are intertwined.
Whereas in a knowledge-based system, the knowledge element and the control element are
separated into two distinctive modules: a knowledge base and an inference engine, respectively.
The knowledge base retains the actual knowledge and information in the form of rules, facts, and
relationships. The inference engine contains the information on how, when, and what to do with
the knowledge stored in the knowledge base.[33] The typical components of a knowledge-based
system are illustrated in Figure 1-6. A typical knowledge-based system is the Expert System. An
expert system is “... a type of knowledge-based system designed to embody expertise in a
particular specialized domain”.[33] A subset of KBS is Knowledge-Based Engineering (KBE);
its focus is on “...automation of the creation of the CAD geometry, the engineering analysis, and
generation of the support information.”[34]

Background and Refining Research Scope 11

extra frills, K led : X
commonin > nowledge explanation

expert systems acquisition module module <

\

(

knowledge base [< > inference engine

essential)> <
components \
L interface to the outside world <
humans hardware data other software

Figure 1-6 Typical components of a knowledge-based system[33]

1.4.3.3 Hybrid Systems

Hybrid systems are those systems that share components or methods of both knowledge-based
systems and computational intelligence. KB and CI techniques are not exclusive; they can operate
complimentarily within a system in order to address a complex problem with each being applied
to its specialized and best suited for the task.[33]

1.4.4 Al in Aerospace

Intelligent systems* are common within aerospace as Al and CI techniques are very useful. In
this way, intelligent computational applications have included air space management expert
systems [35, 36] and naval carrier decision support systems [35-38]. Additionally, methods are
applicable to flight performance estimation [39], systems health monitoring [40], and control
systems [41] and their design [42]. Intelligent systems have been applied to computer aided design
(CAD) and engineering (CAE) [43-46], early initial design generators [16, 47], multidisciplinary
design optimization [48-50] and subsystem or disciplinary optimization such as airfoil [51, 52]
and trajectory [53, 54]. As engineering is an intellectually arena, it is not surprising that intelligent
systems have been found applied across the aerospace industry, including endoatmospheric and
exoatmospheric situations.

In this section a brief sampling of intelligent systems in aerospace literature is given. The
following is a sampling of the Al and CI applications in aerospace design literature and is not
exhaustive as the field is quite large. Almost everything discussed could effectively be described
as a hybrid system as design is multidisciplinary and complex. The aerospace problem, both in

4 Krishnakumar [25] defines an intelligent system as “... one that emulates some aspects of
intelligence exhibited by nature. These include: learning, adaptability, robustness across problem
domains, improving efficiency (over time and/or space) information compression (data to
knowledge), extrapolation.”

12 Introduction

complexity and data availability, requires multiple tools to be integrated and utilized within the
design process. That said, the discussion is by knowledge-based systems (knowledge-based
engineering), optimization (computational intelligence), and virtual assistant. Though evident that
it is applicable across the domain, the topic is limited to aerospace vehicle design and relevant
applications with emphasis on the early CD design phase.

1.4.4.1 Optimization

Perhaps the most affluent region of applied artificial and computational intelligence is in the
solving of the optimization problem. Generally, the distinguishing factor is the technique applied
whether to the solver itself or the geometric formulation. The techniques have been applied in
multidisciplinary design optimization (MDO) of a complex system and to specific component
design, such as a structural member or airfoil. The techniques are applicable to the range of
aerospace vehicle design including rotary systems, unmanned aerial systems (UAS), high-speed
and space systems, in addition to the traditional vehicle configurations. Chae [55] develops and
demonstrates—with tip-jet-driven gyrodyne configuration—a conceptual design level fuzzy or
soft probabilistic evolutionary algorithm. Optimization application to UAS [56] for configuration
independent design space definition for design knowledge identification are demonstrated. UAV
wing multi-variable multidisciplinary design optimization with high fidelity CFD and FEA are
demonstrated [57] with an evolutionary algorithm. Lee [58] demonstrates the application of an
evolutionary algorithm for airfoil section and wing planform design and optimization for
aerodynamic performance and radar cross section reduction of combat UAS. Optimization of the
airfoil and wing are a significant subject area in literature, examples include [51, 59-62]. In regards
to high-speed and space systems, Viviani [63] demonstrates a conceptual design level self-shaping
re-entry vehicle configuration approach using genetic algorithm. Bayley [64] demonstrates a study
of space access systems including air-launched systems. Mosher [65] gives a tool development for
conceptual design of spacecraft that integrates genetic algorithm for design space search. As in the
case of the wing and airfoil, trajectory optimization is another area of significant literature. Huang
[66] surveys numerical methods including genetic algorithms, swarm, and ant-colony approaches
for hypersonic vehicles trajectory optimization. Zotes [54] provides an overview of Al application
to aerospace problems such as launch trajectory and interplanetary satellite trajectory optimization.

A common task within multi-objective optimization is data evaluation and knowledge
extraction for correct solution identification and general knowledge addition. In the case of multi-
objective design, to identify the correct solution from the optimal set requires datamining and
specifically to extract design knowledge to determine the best solution. Oyama [67] demonstrates
the application of datamining of solar observatory trajectory design solutions found by a multi-
objective evolutionary approach. Similarly, knowledge discovery through datamining of optimal
solution sets (determined with evolutionary algorithm) is demonstrated for transonic regional-jet
wing [68], transonic airfoil design [52], and two-stage-to-orbit (TSTO) fly-back booster wings
[69].

Background and Refining Research Scope 13

As in the evolutionary systems application, neural networks are similarly applied universally
within the design arena. They prove advantageous in acting as surrogate models for complex
systems reducing the optimization design time or improving rapid technique accuracy. Khurana
[61] demonstrates neural networks in conjunction with a swarm optimization approach for airfoil
shape optimization. Berke [70] similarly demonstrates the application of neural networks in the
approximation of new structural wing design. Khlopkov [71] employees their use in aerodynamic
approximation for improved stability and control evaluation in hypersonic vehicle shape based off
an optimal solution set.

1.4.4.2 Knowledge Based Systems

Knowledge based systems are generally applied to automate certain tasks within the design
process. Given the popularity of MDO over the last few decades and its dependency on a strong
geometry generation core, this area has seen significant application. Many modern KBS directly
support optimization or analysis. As such many KBS are integral parts of an IS for optimization.
These systems would be classifiable as hybrid, however, here the focus is on their KB element
consideration. KBS have been applied in the configuration and geometry definition phase of the
design process, also referred to as knowledge engineering (KE) or knowledge-based engineering
(KBE). Rentema [47] demonstrates a rule based approach for initial concept definition for
conventional systems. Similarly, Gong [16] demonstrates a KBE approach to missile design with
KE integration as an initial step in baseline configuration definition and evaluation step in an
optimization procedure. Similar examples of KBE applied for configuration and geometric model
definitions can be found in [44, 72, 73]. Component (part) design is supported by KBE as well
[74]. Similarly, as to setup a MDO study requires expertise, so too KBS are applied to support
MDO study setup[75]. Additionally, expert systems can be applied to the control and coordination
of optimization as demonstrated by Price [76].

1.4.4.3 Advisor (Virtual Assistant)

Up to this point, both optimization and application of knowledge-based systems in engineering
(KBE) have been considered. The next intelligent system considered are virtual assistants (VA).
The virtual assistant is distinguished from the standard expert advisory systems. A distinguishing
ability is natural language processing in particular for easy question-answer interfacing. Well
known and commercial virtual assistants include systems such as Amazon’s Alexa, Apple’s Siri,
Google Assistant, and Microsoft’s Cortana. A literature review of virtual assistants is given by
Martin [77]. He identifies several VAs, however none are within the aerospace vehicle design
domain. In the review of design literature, this author has not identified any aerospace design
specific VAs either; only three VAs (or VA research programs) related to the aerospace community
have been identified. They are NASA’s IBM Watson based systems [78], ESA’s DEA [79], and
Daphne [77, 80]. There are advisory system within the expert system domain such as the MDO
advisory system [75], however, they fall outside of the range of a modern VA. The vision of a VA

14 Introduction

would be one that would contain such a system within it in addition to many more system
capabilities.

NASA-Watson endeavor is NASA'’s stepwise research plan towards a more complete VA as
is indicated in the technology innovation plan vision, Figure 1-7. NASA has utilized IBM’s
Watson, a data analytics system. Current work has included the Watson Content Analytics, which
identifies trends, connections, and expertise by incorporating and analyzing thousands of
documents.[81] In addition, NASA conducted a proof of concept VA with the Watson Pilot and
Aerospace Innovation advisor proof of concept that “... generates leads to hard questions and
provide evidence for new paths... ’[81] Both are steps to the greater objective.

ESA’s DEA and Daphne target applicability is to the space domain with mission/trajectory
planning. DEA is “...an expert system to support decision-making at the early stages design of
spacecraft, a Knowledge Engine for mission design, facilitating Knowledge Management and
Reuse.”[79] Itis still in early development. Similar to DEA, Daphne is a virtual assistant to support
high level design of distributed satellite missions (DSM).[77] According to Virosi [77], Daphne
has a capacity of natural language interfacing for information quarry in addition to trade space
exploration tools. It has been tested at NASA. It is specifically for application in satellite mission
design.

Human Experts and Digital Experts
augmenting and learning from each

7 \". : : "“:
(? other in an organic way \ " = o
e Digital
- — Deep Q/A | Experts/
Deep Data Intensive “NASA Watson3”

_ Colleagues

A R Content Scientific Discovery >
Search \f‘"a'yﬁcs ~ Machine e 2035
Human 2020
2 2015
(Data Visualizati
Data Machine learning it Ly

x - . » Content
L Mining Semantics In-Situ Analysis Algorithms Ontologies Analytics
>

Global

Web sites Images Sources Distributed data stores
L Open web Documents Data sets Videos Databases Journals Blogs
e

Data Integration UaEIC P g
Digital Data Meta Data Remote

0 Notebook Data Curation Analytics Sent to Data Governance Tagging Access

Figure 1-7 NASA’s data analytics and machine intelligence capability vision [82]

Background and Refining Research Scope 15

1.4.5 The Great Problem

In Section 1.3 Product Life Cycle: Design Phases, the PLC was introduced and the CD phase
identified as a critical design phase where in design freedom is maximum but yet design knowledge
is minimum. An area of research within the community to attempt to alleviate some of the issues
within the CD phase is the automation of elements of the design process. Automation of the design
process requires computer software. Within the software domain, an applicable tool for automation
is Al. A consideration of Al in literature as applied to design and principally the CD phase is given.
Recall, that the research motivation has been to contribute to CD tool development through Al and
specifically advancement toward an artificial intelligent design and research assistant, which in
literature is representable by the virtual assistant. On consideration of the literature, it is evident
that research and development heavily focuses on design automation, particularly through
optimization systems (a more in-depth account of automation and design tools, in particular
multidisciplinary design optimization, is given in the proceeding chapter). On consideration of the
availability of systems within the virtual assistant domain (a class beyond the typical hybrid expert
system), there are few within the aerospace domain and even fewer (none?) within the conceptual
design domain applied to aerospace vehicle design and synthesis. In terms of potential to contribute
to research, this is excellent; however, to construct an entire virtual assistant for the CD phase is
beyond the scope of a single dissertation. As such, with the target identified and verified as a point
of research, it is necessary to identify what this construct could be and what system within that
could be addressed to move towards this final objective.

1.4.6 Vision and Research Scope Reduction

There primary research goal is to create a virtual assistant for aerospace vehicle design. The
virtual assistant envisioned is an intelligent system that is tasked to show many of the
characteristics of a cognitive system. A cognitive system is a system that “... performs the
cognitive work of knowing, understanding, planning, deciding, problem solving, analyzing,
synthesizing, assessing, and judging as they are fully integrated with perceiving and acting.”[83]
The system is envisioned to support the decision-making process by providing an intelligent,
adaptive, and parametric framework for systems design, strategic planning, and technology
forecasting. Emphasis is placed on non-traditional systems, high-speed systems, and space access
systems with a focus on the highly abstract CD phase. Envisioned capacity includes
simulation/analysis, synthesis, knowledge extraction and reuse, simulated flight-testing, full
modularity for ready future modification. Some system specifications include:

» knowledge generation and retention through dynamic knowledge base & data base
» scenario based multidisciplinary design analysis and optimization (MDAO)

» self-composing architecture capability with configuration, hardware, and mission
independence

» visualization and interpretation of design space topography

16 Introduction

» natural language interfacing

» rational action without human oversight.

On considering the architecture constructs specified, in light of past and current research within
the research group that this dissertational research is conducted, included research activities have
been synthesis system development [84-87], space program planning [88], technology portfolio
forecasting [89] in addition to current research by other research team member applied to vehicle
design data aggregation and knowledge extraction. Each topic area would be an element within a
virtual assistant. As such, a meaningful and impactful research direction could include
continuation of anyone system; for the purposes of this research, the topic area is synthesis system
development.

As such, this research is reduced from the domain of Al and VA development specifically, to
the development of a synthesis system implementation for future integration into this cognitive
system environment. However, until such point that this becomes plausible the system is required
to serve as a useful standalone implementation in the synthesis domain of conceptual design. Since
the current research endeavors and the necessity for integration within the greater VA system in
the near future, the synthesis system shall address and incorporate automation and within concept
construction incorporate potential for further automation.

1.5 Research Outlook and Scope

The research outlook includes four topics. They are problem statement, research objective,
research deliverables, and research scope. Each is considered.

1.5.1 Problem Statement

The aerospace domain has no virtual assistants for aerospace vehicle design. There should be
a virtual assistant for design. There are vast quantities of data and knowledge ready to be employed
in addition to analysis methods. Design data is unsurmountable and require computer assistance
for evaluation and knowledge extraction. Design cycle time is constrained, design process
elements need to be automated as much as feasible. A key element for aerospace vehicle design is
synthesis, any virtual assistant for aerospace vehicle design should incorporate automated design
synthesis.

1.5.2 Research Objective and Contribution

There are two research objectives aimed at originally contributing to aerospace science. They
relate to the principal deliverable and the application of the deliverable to a useful problem.

Research Outlook and Scope 17

Principle Objective:

» Development of a complex vehicle conceptual design synthesis tool to assist the decision
maker and designer in the analysis and evaluation of design options.

» Develop a synthesis assembly automation framework.
Secondary Objective:
» Demonstrate system operability through a reusable hypersonic test vehicle case study.

The principal objective is formulated with the intended future application of such a system in
a larger framework. Such frameworks could include but are not limited to intelligent systems,
technology portfolio planning systems, and program or architecture planning systems.
Fundamentally, the goal is to advance the decision-making and the design process through the
integration of rapid and flexible analysis capability earlier into the decision and design process.
The goal is to develop an adaptable synthesis design tool with general applicability and increased
transparency.

1.5.3 Research Deliverables

There are three principal deliverables from this research. They fall into the categories of tool
specification, tool development, and tool application. They are as follow.

» Specifications for an automated synthesis generation toolset.
» A decision support environment with an integral synthesis assembly tool for tailor made code.

» Solution topographies for air-launched and reusable hypersonic test vehicles.

1.5.4 Research Scope

The research topic itself is vast. The consideration of artificial intelligence, synthesis, vehicle
design, and optimization anyone topic can have any number of potential research topics and
approaches. This research however is conducted within the scope of addressing one specific area
and part that is common to all—synthesis architecting. Within the research environment that this
research is conducted, development areas include program planning [88], portfolio planning [89],
vehicle synthesis tool development [84-87], knowledge base [90] and database [91]. This research
is conducted within the evolution of and lessons learned from said research and specifically in
continuation of the work presented by [86, 87].

18 Introduction

1.6 Document Outline

To accomplish the objectives towards original contributions to aerospace science as identified,
the problem is addressed through a constructive sequence. The sequence follows the tasks of
situational illumination, solution identification, solution implementation, system verification, and
system application. Logically, this document is organized into this sequence.

» Chapter 1: Introduction — This chapter identifies the motivation and objectives of this research.
An introduction to principal topics is given. This includes intelligence, artificial intelligence,
and an envisioned Al research and design assistant framework and critical components. From
the identification of critical components, the research objectives and deliverables are defined.

» Chapter 2: Literature Review — In this chapter a review of engineering design synthesis tools
IS given. Emphasis is placed on design automation. Specifications for a generic synthesis
system are identified.

» Chapter 3: Solution Concept — A generic synthesis generating solution concept is given. The
critical conceptual components are identified and discussed.

» Chapter 4: Concept Implementation — The previous chapter identifies the fundamental solution
concept. This chapter documents the manifestation of the system concept into a functional
system.

» Chapter 5: Verification and Application — In this chapter the application of the tool is
demonstrated. Successful tool development is illustrated through a verification case and a trade
study case. The vehicles of consideration are air launched reusable hypersonic cruisers of both
airbreathing and non-airbreathing type.

» Chapter 6: Conclusion — Concluding statements are made. The research is summarized;
principal deliverables and contributions reiterated. Recommendations for areas for
advancement and improvements are given.

» Appendix A: Case Studies Expanded — This section contains expanded description of the
baseline vehicles and expanded results of the trade study not included in the main text. This
includes more details pertaining to the convergence behavior and selected enlarged solution
space and solutions.

Chapter 2 LITERATURE REVIEW

In this chapter, the design tools of the conceptual designer are considered. The objective is two
part. First, a consideration of the various tools employed in design. Second, the identification of
lessons learned and specifications for a future automated synthesis assembly and decision support
environment system.

2.1 Design Classes

The CD phase is characterized by decision-making. Synthesis or design tools are the closest
broad categories of toolsets available to the aerospace design engineer that assist the engineer in
making decisions. The designer employs the tool to a given problem in order to arrive at a condition
such that a designer can make an informed design decision.

Approaches to aerospace vehicle design can be categorized. Chudoba [17, 18] provides a
historical review of flight vehicle design synthesis systems and tracks their evolution. After
identifying over a hundred system, he identifies five classes of design. Class 1 — 5 correspond to
design by experimentation, manual design processes by means of design handbooks and texts,
automation through software (discipline specific and local optimization), automation through
multidisciplinary design optimization (MDO), and lastly configuration independent design with
Al integration (in particular Knowledge-based systems). The evolution of design through these
five generations of synthesis systems illustrates a level of increasing proficiency at and automation
of systems integration and design exploration.

Fundamentally, the classes identified can be narrowed into two groups. Design with
automation and design without automation. In this context, automation generally relates to the act
of executing a design process task in an automatic fashion, that is without human immediate
direction or minimal involvement. Note that we distinguish automated design and design
automation as automation can be applied either to the identification of a design through design
variable modulation (MDO) or to the automatic generation of synthesis codes that can themselves
include automated design search.

20 Literature Review

The following sections consider the different design approaches and tools involved. Particular
emphasis is placed on design automation and automation of design systems as an Al system of the
type prescribed would require automation at every level. Furthermore, automation of product
development tasks is key to increased productivity and reduction in time to market and costs.[44]
For completeness, the classic non-automated (texts) are considered as well as a point of reference.

2.2 Classical Design: Texts and Programs

Classical synthesis toolsets can be separated into two categories. The categories are text-based
(Class 2) and computer-based (Class 3-4). The text-based toolsets are generally either in the form
of design handbooks or textbooks. The computer based are software that have an implemented
process and analysis routine. The computer-based systems here are distinguished from the more
modern systems that are addressed in a later section.

2.2.1 Design Texts

Design texts chronical and attempt to communicate design knowledge and the multidiscipline
nature of the aerospace vehicle. The intent of the texts is to educate and communicate knowledge
in a transparent fashion. The design texts address the multidisciplinary reality of aerospace vehicle
design, generally addressing each principal discipline—aerodynamics, propulsion, stability and
control, cost, etc. Classically, they address the design through analytical and empirical
methodologies. As physics is a constant, many of the references share similarity in knowledge and
even methods directly. However, since many are founded on empirical/statistical methods, they
can be non-applicable or useless when addressing non-standard concepts where in the data and
experience does not exist.[92] A representative selection of aircraft and launch vehicle design texts
are presented in Table 2-1 and Table 2-2, respectively. Many of the texts are well-known aircraft
design texts in the community: Torenbeek, Raymer, Roskam, and Nicolai are standard design texts
in academic teaching environments.

Table 2-1 Selected aircraft vehicle design texts

Author Year Title Reference
Corning 1960 Supersonic and Subsonic, CTOL and VTOL, Airplane Design [93]
Wood 1964 Aerospace Vehicle Design Vol. 1, Aircraft Design [94]
Loftin 1980 Subsonic Aircraft: Evolution and the Matching of Size to Performance [95]
Torenbeek 1982 Synthesis of Subsonic Airplane Design [13]
Roskam 1985 Airplane Design [96]
Raymer 1989 Aircraft Design: A Conceptual Approach [97]
Stinton 1998 The Anatomy of the Airplane [98]
Anderson 1999 Aircraft performance and design [99]
Fielding 1999 Introduction to Aircraft Design [100]
Jenkinson 1999 Civil jet aircraft design [101]

Howe 2000 Aircraft Conceptual Design Synthesis [102]

Classical Design: Texts and Programs 21

Author Year Title Reference
Schaufele 2000 The Elements of Aircraft Preliminary Design [103]
Nicolai 2010 Fundamentals of aircraft and airship design Volume 1, Aircraft design [14]
Sadraey 2012 Aircraft Design: A Systems Engineering Approach [104]
Gudmundsson 2013 General Aviation Aircraft Design: Applied Methods and Procedures [105]
Sforza 2014 Commercial Airplane Design Principles [106]
Kundu 2019 Conceptual Aircraft Design: An Industrial Approach [107]

Table 2-2 Selected Space Access Vehicle design texts

Author Year Title Reference
White 1963 Flight Performance Handbook for Powered Flight Operations [108]
Wood 1963 Aerospace Vehicle Design Vol. 2, Spacecraft Design [109]

U.S. Air 1965 Space Planners Guide [110]
Force

Humble 1995 Space Propulsion Analysis and Design [111]
Logdson 1998 Orbital Mechanics: Theory and Applications [112]
Hammond 2001 Design Methodologies for Space Transportation Systems [113]
Suresh 2015 Integrated Design for Space Transportation Systems [114]

The principal concerns with design texts are that they focus on a particular topic and by
definition are static. Design texts (as do many software systems) are generally dedicated to a
particular concept or configuration and low speed. As a result, many non-traditional and high-
speed vehicles are not addressed. The classic textbook, though a significant general aid, serves as
an information and knowledge library for fundamental knowledge transfer and application as
necessary to low fidelity analysis or early design variable estimations. Although they represent
potential method libraries for rapid low-fidelity conceptual design and excellent educational
resources for the burgeoning student and engineer, they generally do not represent the state of the
art in terms of advanced computational approaches, design automation and optimization, nor
address non-traditional concepts. Note that these tools are still highly valuable and applicable in
certain situations and even are employed within computational systems as discussed next.

2.2.2 Design Computer Systems

With the advent of computer systems, naturally grew a community of aerospace vehicle design
software. Many design tools were built. Like the classical design texts, many early (and even
modern systems) tended to be highly focused and would tend towards a monolithic nature,
becoming difficult to maintain and modify, especially to address non-traditional concepts.
Additionally, many early systems would be distinguishable as being conducting discipline specific
or multidisciplinary analysis (MDA) but distinctly not integrating a multidisciplinary design
optimization (MDO) framework. Modern frameworks have generally transitioned to a modular
approach, allowing for improved system modification, adaptation, and method fidelity variance.

22 Literature Review

MDO has also become a heavily focused upon element and topic (perhaps to the detriment of
development in systems for early conceptual design and program planning where in the optimal
design identification is less important than the identification of what concept to even consider to
be optimized and for what conditions). Note however, that since these computer systems allow for
method fidelity variation, they lend to application beyond the conceptual level and are applied up
to a preliminary design synthesis level.[115]

Table 2-3 Selected aircraft vehicle design software tools [86]

Acronym Year Full Name Developer
AAA 1991 Advanced Airplane Analysis DARcorporation
ACSYNT 1987 AirCraft SYNThesis NASA
AVDS 2010 Aerospace Vehicle Design System Aerospace Vehicle
Design Laboratory
CADE 1968 Computer Aided Design Evaluation McDonnell Douglas
FLOPS 1994 FLight OPtimization System NASA Langley
Research Center
Model Center 1995 Model Center Integrate - Explore - Organize Phoenix Integration
Inc
ODIN 1974 Optimal Design Integration system for synthesis of aerospace NASA Langley
vehicles Research Center
PrADO 1986 Preliminary Aircraft Design and Optimization Technical University
Braunschweig
pyOPT 2012 Python-based object-oriented framework for nonlinear constrained Royal Military College
optimization of Canada
VDK/HC 2001 VDK/Hypersonic Convergence McDonnell Douglas,
Hypertec

2.2.3 Synopsis of Systems Reviews

In continuation of Chudoba’s review of synthesis approaches, Huang [84], Coleman [85],
Gonzalez [86], Omoragbon [87], and Oza [89] have conducted additional surveys of existing
aerospace vehicle synthesis tools with a focus on the legacy systems. Figure 2-1 summarizes the
sequence of reviews. As mentioned, Chudoba identified many conceptual design systems and
postulated a categorical classification scheme. Huang continued the system evaluation with
emphasis on considerations for space access vehicles. He surveyed 115 synthesis systems with
application to aircraft, helicopter, missile, and launch vehicle design, documenting them based on
development history, design logic, module evaluation, and software development, noting both the
advantages and disadvantages of each system. Huang noted an absence of system focus on space
access vehicles and recommended that future systems address generic design and modular
multidisciplinary design capability, multidisciplinary design optimization, data management
systems, and dedicated vehicle conceptual design knowledgebase.

Coleman [85] continued systems evaluation. He identified three stages within the conceptual
design process—parametric sizing, configuration layout, and configuration evaluation. He
evaluated the synthesis systems based on these three sub-phases of the conceptual design phase.
The survey forced him to identify the necessity for a readily available process and methods library
that would include direction on how and when to implement them. The intent of the libraries being

Classical Design: Texts and Programs 23

the allowance of necessary design elements (process and methods) for rapid adaptation to solve a
new problem. Colman goes on to document and populate a process and method library and
implement a parametric sizing tool based on this knowledge.

Synthesis Gen (1 - IV) COMPUTER-BASED COMPUTER-BASED COMPUTER-BASED
* Manual and Computer PrADO-Hy, SSSP Lawrence, ACES, ACSYNT, ASAP, AAA, AVDS, ACSYNT, CADE,
Based FLOPS, PrADO, HypConv FLOPS, PrADO, VDK/HC
« Applicability: Aircraft, MANUAL
Space Access Vehicles K.D. Wood, Czysz, MANUAL MANUAL
Hammond, Hunt Wood, Corning, Nicolai, Corning, Howe, Loftin,
Cass Design Develop Time l Loftin, Torenbeek, Stinton, Torenbeek, Roskam,
L Roskam, Raymer, Raymer, Schaufele, Wood..
s | Until 1905 = lenkinson, Howe, Schaufele
S weo [[] - = 5
i ‘ B RE —— (= oo EAERERIRRIEE R0
s 1999 Today e A \ [e - e | 1 1 i
< m O Tod : "T 1 1 I & ¢ "‘ ' !
Chass IV Multidisciplinary 1960 Today R — ot | { N
=6 A I Jits I
| 7= e S|
I CHUDOBA: SYNTHESIS ‘ HUANG: SAV SYNTHESIS I COLEMAN: ADAPTABLE I GOZALEZ/OMORAGBON/OZA: l
z 126 REVIEW SYSTEMS PARAMETRIC SIZING SYSTEM’S CAPABILITY REVIEW
= Five Generation Synthesis = Synthesis System Analysis * Reviews major design * Aerospace Vehicles as Complex
Evolution definition « Modular Structure synthesis methods Multidisciplinary Systems
* Collection of Classical and < Disciplines Based * N-Srepresentation *+ System Capability assessment
Modern Design Synthesis Modules * Discipline based methods = Integration & Connectivity
Methodologies < Data Management library o Interface Maturity
* Requirement and System * Parametric Sizing based o Scope of Applicability
Objectives of a Class V < MDA/MDO Assessment = Influence of New
Synthesis System * SAV Synthesis Breakdown + Applicable to A/C, Components or Environment
« AVDS-PrADO Capability in Disciplinary Modules Supersonic/Hyp Vehicles, o Prioritization of Technology
Overview SAVs Development Efforts

Figure 2-1 Synthesis systems review summary [116]

Gonzalez [86], Omoragbon [87], and Oza [89] evaluated several synthesis systems based on a
broad criteria set for future systems development. Emphasis transitioned in part from a traditional
synthesis and sizing system evaluation approach towards technology portfolio planning and
forecasting capacity review, or rather a review of systems in light of technology portfolio planning
and forecasting. Omoragbon notes, the review is conducted to “... understand the applicability of
existing synthesis systems to the acquisition problem.”[87] Gonzalez [86] states that the review
has centered on assessing aerospace synthesis system’s capability “... to characterize, analyze,
and solve classical and new/novel aerospace problems.” Table 2-4 specifies the capability
evaluation criteria. Additionally, evaluated are data handling capacities as outlined in Table 2-5.
Both text (by-hand) and computerized systems were considered.

24 Literature Review

Table 2-4 Synthesis system evaluation criteria [86, 87]

System Capability

1. Integration & Connectivity

Can assess each hardware technology independently

Can assess multiple disciplinary effects for each hardware
. Interface Maturity

a

b

2

a |Can combine hardware technologies to form avehicle
b |Can combine hardware technology disciplinary effects
3. Scope of Applicability

a |Conceptual design phase applicability

b |Product applicability

4. Influence of New Components or Environment
a

b

c

5

a

b

6

a

Modular hardware technologies
Modular mission types
Modular disciplinary analysis methods
. Prioritization of Technology Development Efforts
Able to match hardware technology disciplinary models to problem requirements
Data management capability
. Problem Input Characterization
|Meth0d0|og‘\ca\ problem requirements

Table 2-5 Data management system evaluation criteria [86, 87]

Data Management Criterion
Easy to create, change, delete, and view projects and project data.

Accommodates all project types and project information

Supports entry of annotative comments and appending documents, images, and links for project
Accommodates hundreds/thousands of projects

Supports data import from your existing systems and databases

Supports data exportto your existing systems and databases

Supports dependency links among projects

Provides data cut-and-paste, project cloning, and data roll-over

Provides completeness/error checks and data warnings

Allows multiple portfolios and portfolio hierarchies (parent-child links)
Allows dynamic portfolios (portfolios defined based on latest project data)
Provides search, filter, and sort

Provides data archiving

S 3 —®x— — TN -0 Q60 T o

Provides statistical analysis of historical data (e.g., trend analysis)

From the review, Gonzalez identifies the significance of the open-ended integration platforms
(presented in Section 2.3.4 Process Integration and Design Optimization Tools), in particular the
modularity, flexibility, and freedom they offer; however, he also identifies that the freedom comes
at the loss of a structured tool with method and processes selection and integration, as represented
by the classical monolithic systems. Gonzalez identifies a need for a bridge between the two
approaches. He describes this bridge environment as “... an environment with the adaptability of
an integration platform, while implementing the knowledge gained from classical conceptual
design methodologies to aid the user in the creation of synthesis systems tailor-made to solve given
problems.”[86] This leads him to identify the following system specifications:

» “Stores/implements classical design methodologies, both in terms of analytic process and
disciplinary methods

» Cross references hardware applicability to stored analytic processes and disciplinary methods

» Allows matching of the analysis framework to problem requirements

Multidisciplinary Design Optimization 25

» Allows visualization of the ability of the analysis framework to address problem
» Allows comparison of aerospace synthesis systems
» Allows measurement of the multidisciplinary integration level of the analysis framework”. [86]

The result of Gonzalez [86], Omoragbon [87], and Oza [89] research was a synthesis toolset
for composable systems. An overview is given in Section 2.4.6. Note that this research is a
continuation of their work.

2.3 Multidisciplinary Design Optimization

In the following section multidisciplinary design optimization (MDO) is addressed. The topic
itself is vast and a full treaty is beyond the scope of this work. For an in-depth review of MDO and
its architectures see references: [117-121]. The objective here is not to give a detailed account of
MDO and its processes or techniques. Rather, the goal is to obtain a general concept introduction
and insight into the world of MDO and identify system attributes and recommendations that would
be integral to future design systems. This section address defining MDO, specifying its
fundamental process, identifying significant components of MDO, integration tools, and lastly
lessons learned and specifications for a MDO environment.

2.3.1 What is MDO?

Sobieszczanski-Sobieski [117] defines MDO as a “methodology for the design of systems in
which strong interaction between disciplines motivates designers to simultaneously manipulate
variables in several disciplines.” Fundamentally, MDO is the application of an optimization
routine to a multidisciplinary design analysis (MDA) routine to find the best solution. At its core,
multidisciplinary design optimization facilitates the identification of hard to find design solutions
by balancing potentially non-intuitive tradeoffs between the subsystems of a complex system.[122]
By definition, MDO is distinctly different from a singular optimization approach. That is,
optimization applied to a trajectory or structural optimization problem does not infer MDO; MDO
requires more than one disciplinary interaction. Additionally, multidisciplinary design
optimization of the system does not provide that any one subsystem is optimal. As Rafique notes
the “multidisciplinary solution might not be the solution for any one discipline analyzed separate
from other disciplines, but is the best solution accounting for interactions.”[123]

MDO has become very popular. A reason for the impressive degree of applied MDO is that an
aerospace vehicle is a highly complex system with many interlacing disciplines and design
variables. It is well known that the aerospace vehicle is a complex system, is multidisciplinary by
nature, and as such, for the demanding criteria placed upon the designs, the system’s components
cannot be designed and developed in isolation.[124] It is necessary to have a design approach that
can account for the many interdependencies within the design scope.

26 Literature Review

2.3.2 Fundamental Process Components of MDO

Vandenbrande [122] describes the design space exploration through implementation of a MDO
process as comprising of three fundamental elements: a design explorer, a multidisciplinary design
analysis model, and a optimizer. The architecture is illustrated in Figure 2-2. The design explorer
is the component that controls the initialization and continuation of the exploration process by
generating a design point for the MDA model as denoted by (x4, x5, ..., x,,). The MDA model is
an analysis set that can analyze the generated design point for each discipline considered. The
output of the analysis is denoted by (fi, f2, ... f,) and feeds the optimizer. The optimizer is a
mathematical optimization scheme to search the design space for the best design solution, given
some design criteria and or constraints. The optimizer is closely coupled with the design explorer.

X1 fy
Design Explorer | (Xz M ielsepl sy - (fz
- > . Design Analysis > .
& Optimizer : :
X Response Model f

Figure 2-2 Generic MDO based design space exploration process [122]

2.3.3 Components of MDO

The above section provided a very top-level understanding of the MDO process and its core
components. However, the components of MDO can be further identified. Sobieszczanski-
Sobieski [125] initially proposed that MDO is formulated by six components. He identifies them
as approximations, system mathematical modeling, design-oriented analysis, decomposition,
design space search, human interface, and optimization procedures. The component tree is
illustrated in Figure 2-5. Each is summarized below. For further overview on the components of
MDO see [117, 125, 126].

» Approximation Concepts: a secondary approximate analysis method callable by a design space
search engine to approximate the solution with sufficient accuracy rapidly. Necessitated due
to excessive computation cost of the design-oriented analysis component; full analysis is called
as required to maintain prescribed error levels. This component correlates to the
Multidisciplinary Design Analysis Response Model element identified in the previous section.
The approximation approaches include polynomial functions, neural networks, surrogate
models, and metamodels. A current area of study for these approximation routines is referred
to as Design of Experiments (DOE).

» System Mathematical Modeling: set of engineering methods applied in a modular approach
and in an intelligent manner to reduce computational cost. Mathematical code models are
modular; the monolithic coding approach is avoided. Current research objectives include the
quantification of the non-classical design disciplines and phases such as manufacturing,

Multidisciplinary Design Optimization 27

»

»

»

sustainment, and flight-testing. To reduce data transfer points and computational costs,
methods are intelligently reduced or combined, and numerical methods guarantee matching
output to input nodal coordinates for synchronization of variable parameterization for reduced
workload on data processing and potential analysis grid (mesh) regeneration.

Design Oriented Analysis: a component consisting of engineering design analysis processes,
data management systems (database), and data visualization. Design analysis processes include
procedures for analysis execution including repetitive full analysis application to answer the
“what if” question, partial analysis execution for low-cost re-evaluations (re-execution of
certain modules as necessary dependent on input parameter variation and the reuse of non-
affected data), multi-fidelity analysis or fidelity analysis selection, and sensitivity analysis. In
regard to data management and storage, data should be stored in a manner for ready retrieval
and reuse by the system and designer as well as be communicated effectively visually.

Decomposition: the act of dividing a complicated optimization problem into less complicated
coordinated optimization tasks that can be solved while retaining the multidisciplinary
connections. This is illustrated in Figure 2-3. There are three decomposition approach
classes—hierarchical, non-hierarchical, and hybrid. In the hierarchical approach, the system is
a parent-child pyramidal process where in the data flows between a parent and a children set;
data does not directly traverse child-to-child. The non-hierarchical approach does not restrict
communication between the children, as such, no parent-children sets are discernable. A hybrid
system is one that consists of both hierarchical and non-hierarchical. Decomposition can be a
nontrivial task; tools such as genetic algorithms have been applied to the decomposition
problem.

i
!

| = B

=1 | | B
—-g“w‘:_ ! 8

n:::,:d ‘ 9
Figure 2-3 lllustration of system’s N2 organization diagram before and after decomposition and reassembly [127]

1
by

1

Design Space Search: Evaluation of the design space in search of the “best” or optimal solution
given the optimization criteria and design constraints. A mathematical solver seeks the
optimum solution. There are many optimizers available for use. The search algorithms include
control theory and computational intelligence (Al) based approaches.

28

Literature Review

»

»

Optimization Procedure: a procedure that organizes the here identified optimization elements
into a coherent execution format. There are many approaches and architectures, the selection
of which is dependent on the problem and computing resources at hand. An example process

is shown in Figure 2-4.

Human Interface: a means for the user to interact directly with the optimization process and
execution. It provides access to intermediate results for review and judgment as well as
intervention in process setup, execution, and termination. Generally, direct human involvement

Concurrent

| Initialize

|

[System analysis

}4____

1

Modular (disciplinary)
sensitivity analyses

|

Y

System sensitivity
equations

[Approximate analysis |

—

Optimizer

>

Human
decisions

Final design

Figure 2-4 Example optimization procedure for a Non-hierarchical system [125]

is required in setup and exaction; the setup and execution are not fully automated.

[MDO }— Computer H/W
. Design-oriented . Search Optimiz.
Approximations Math. modelling analysis Decompasition algorithms Human interface on ures
Derivative- Mon-physical Costvs, Hierarchic Stopping
- based H accuracy
axtrapol. Physical trads-off Mon-
hiararchic
Dasign | Inexpensive
of raanalysis
axpariment
| | Saensitivity
Taguchi analysis Fin. diff. L] Al expart
system aids
—l Meural nalsl parametrized | L Data mgmt. | Auto-diff. |.
I

Data Optim.
storage sensit. anal.
Data Quask-analyt.

visualization

For | |
reuse

Support
module-to-modula
communication

Disciplinary

Figure 2-5 Principle components of MDO [125]

Multidisciplinary Design Optimization 29

2.3.4 Process Integration and Design Optimization Tools

To assist in the optimization process, many commercial and open-source tools have been
developed. A common approach to high fidelity MDO design architecture creation is the use of
process integration and design optimization (PIDO) execution control software. PIDO system offer
a integration capacity of third-party software, optimization, visualization, statistical analysis, and
data management.[128] In regards to capability for third party code integration, pre and post
processing, and algorithm availability provided, the PIDO software provide similar
capability.[120] However, van Gent [129] notes that the PIDO platforms, though developed for
similar purposes, each can vary in their approach to user interaction, workflow concept, component
integration, distributed execution, derivatives, and convergence.

PIDO systems have been identified and summarized by van Gent [129], Riccardi [127], and
Simpson [120]. There are many commercial and open-source systems. Riccardi [127] performed
a literature review on the systems identifying and describing over twenty systems. Table 2-6 is a
exert from the review of PIDO systems. Simpson [120] likewise identifies and discusses PIDO
systems but with emphasis on system capability in both metamodeling and optimization. Riccardi
[127] notes that “...optimization strategies included are mostly the best known algorithms for
deterministic and stochastic optimization. Hybrid optimization approaches between the already
present strategies are not envisaged.” Common PIDO systems include CAFFE [130],
ModelCenter [131], Dakota [132], OPTIMUS [133], modeFRONTIER [134], and RCE [135].

Table 2-6 Composable system software tools, table excerpt from reference [127]

Software Main Features

AML, AMOpt, Interfaces with existing tools for structural analysis and post processes analysis. Generative

Technosoft, 2002 modeling. Integration of third party applications. XML data handling. Process Parallelization.
Visualization tools. Multiplatform.

BOSSQuiattro, Open design and optimization architecture for parametric analyses, design of experiments,

Samtech, 1997 multidisciplinary optimization and sensitivity analysis, statistic analyses and updating. It can make
use of internal solvers or integrate external optimization algorithms.

Caffe, Desktop Collaborative Optimization framework. Integration of existing code for analysis and optimization.

Aeronautics, 2000 Management of the design process on multiple distributed platforms. GUI. XML data handling.

DAKOTA, Sandia Flexible and extensible interface between simulation codes and analysis methods. Containing

Web, 2009 algorithm for deterministic and stochastic optimization, parameter estimation and sensitivity

analysis. Multilevel parallel object oriented framework.

iSIGHT, Dassault Capability of include commercial CAD/CAE software and internally developed programs.
Syst’emes Simulia, 2007 | Interfaces for custom applications and Excel spreadsheets. Design of Experiments, Optimization,
and Approximations technologies.

Kimeme, Cyber Platform for multi-objective and multidisciplinary design optimization. Coupled, by means of
Dyne, 2011 scripts, with third-party software. Integration of custom optimization and/or analysis algorithms.
Graphical design environment for problem definition, analysis and visualization of the results.
Software network infrastructure to distribute the computational load.

MDICE, Multidisciplinary Analysis. Interface with commercial software for computer aided design, grid
NASA, 1998 generation, computational fluid dynamics, computational structural dynamics. Visualization tools.
Computing environment for the concurrently and cooperatively operation of many computers.

30 Literature Review

ModelCenter, Visual environment. Workflow graphically constructed. Data Fitting. Quick wrapping of batch
PhoenixIntegration, 1998 | mode programs into the modeling environment. Up to 30 optimization algorithms with definition
of objectives, variables and constraints.

modeFRONTIER, Multi-disciplinary and multi-objective optimization and design environment. Coupling to many
ESTECO 1998 existing computer aided engineering tools. Post processing results analysis. Visual environment.
Simultaneous use of simulation software on different machines.

Nexus, iChrome, 2011 Linking to a list of third party commercial tools. Plugins for specific custom analysis tools. Trade-
off, design of experiments, statistical analyses, response surface and metamodelling studies. Multi-
objective optimisation algorithms. Visual environment.

OptiY, OptiY Multidisciplinary design environment. Providing direct and generic interfaces to many CAD/CAE
e.K., 2005 systems, intern codes and externs programs through predefined interfaces. Graphical workflow
editor. Modern optimization strategies, probabilistic algorithms for uncertainty, reliability,
robustness, sensitivity analysis, data-mining and meta-modeling.

OPTIMUS, Process Integration and Design Optimization software. Design of experiments and response surface
Noesis Solutions, 1996 modeling for design space exploration. Visual environment. Graphic workflow editor.

PASS, Desktop Applicable to Aircraft Design. Rapid analysis coupled with optimization tools. Wide range of
Aeronautics, 2005 appropriate, real-world constraints. It is built on a modular, extensible framework that allows for

the implementation of higher-fidelity analysis codes into the conceptual design process. Visual
environment.

HyperWorks - Design of experiments. Meta modeling approximations. Collection of single and multiobjective
HyperStudy, Altair algorithms. Stochastic studies. Post processing and Data Mining. Parameterization of analysis
Engineering, 1999 models.

VisualDOC Multidisciplinary design, optimization, and process integration software. Optimization, design of
Vanderplaats Research experiments, response surface approximation, and probabilistic (robust and reliability-based)
and Development, analysis. Integration of virtually any CAE analysis software. Graphic workflow editor.

1998

From the point of view of this research, the point of interest in these systems are their capacity
for tool integration, levels of system automation, and process flexibility. Optimization itself is not
the objective research rather automation of synthesis creation.

2.3.5 MDO System Specifications and Lessons Learned

MDO excellent for discipline integration, and search for optimum solutions within certain
bounds but is a solver not an approach for Al. It is a lower-level attribute that could be employed
but is not the driving core of a flexible, multi-problem agent. It would be a tool of a greater actor
just as it is for the current designer. However, MDO is a fundamental tool of the designer and must
be accounted for in any new design approach or system. As part of the review of literature on
MDO, specific focus and attention was applied on identifying the MDO tool / system requirements
for MDO in aerospace. In the following section, specifications are summarized.

2.3.5.1 Automation

Automation in paramount, as many systems as possible should be automated. This includes
automated data transfer between and execution of analysis, including high-fidelity.[136] The
system should automate or support the automation of the repetitive elements of the MDO process
and design.[72, 137, 138] Furthermore, automation should apply to the pre and post processing of

Multidisciplinary Design Optimization 31

data as well as its transfer between tools.[138] Automation is the key to reducing time-to-market
and cost, and increasing productivity.[44]

2.3.5.2 Early Concept Definition

A system should suggest an initial concept construct. The system should assist the designer in
identifying a proper starting point (initial concept) for the next design sequence.[47]

2.3.5.3 System of Systems (vehicle-of-vehicles)

Systems-of-systems represent a challenging as each component system can have its own
requirements and function. An optimal system-of-systems may result in non-optimal subsystems;
however, this is not necessarily a negative. When addressing system-of-systems, it is necessary to
ensure to address that the system-of-systems configuration is not constant, it can dynamically vary
with time.[139]

2.3.5.4 Multiple Concept and Design Phase Applicable

A system should be flexible such that it can adapt to different design cases and design phase.
[137] This includes flexibility in configuration and design phase process requirements.[138] In
particular, as geometric modeling is critical to many MDO systems, the geometry module should
not be a limiting factor to concept applicability. It should not limit application to traditional
configurations.[72] Fundamentally, “...it should be possible to design any type of aerospace
vehicle using any (appropriate) methodology...”.[115]

2.3.5.5 Tool Integration and Distributed Computing

A design tool should be capable of integrating design tools and in particular distributed design
tools.[136-138] This includes commercial off-the shelf, in-house tools, and legacy systems.[72,
128, 138] Integration should occur in a user friendly fashion.[128] As part of integration, the
system should grantee proper data handling/correctness between the various tools.[138]
Additionally, there should be no limited to the number of integrated systems, modules, or methods
accessible to the system.[115]

2.3.5.6 Variable Fidelity

Generally, the literature suggests fidelity variability. Systems should incorporate both high and
low fidelity analysis tools. [72, 115, 137, 138] It is additionally suggested to incorporate automated
fidelity variation as required.[72]

2.3.5.7 Robust

Robust system framework is necessary.[72] Automated design (MDO) tools can be complex
and brittle. By their nature they are established to address a specific problem and generally cannot
venture far, in terms of configuration evaluation, from the initial problem definition and is limited

32 Literature Review

to the constraints imposed in problem setup.[140] As such, systems should allow for easy
interactive user control and modification of the optimization problem setup.[128]

2.3.5.8 Transparency

It should go unsaid that a system should be transparent. However, many systems are not. In
particular the design process workflow should be visible.[72]

2.3.5.9 Geometry

Optimization is heavily dependent on the geometry being defined. As such, a MDO tool should
include parametric geometry generation and agile manipulation techniques.[136, 141]
Furthermore, the geometry model implementation should not limit the configuration applicability,
in particular it should not limit application to conventional configurations.[72]

2.3.5.10 Visualization and Solution Exploration

A critical component of a solution package should be a visualization capability. Visualization
of both the solution, solution space, sensitivities, and geometry should be available.[72, 142]
Visualization should be in an automated fashion.[47] It is necessary to support the decision
processes.

Significant to any design processes is the identification of the best solution. A systematic
approach to design space exploration is necessary to improve the design process.[122]
Additionally, an approach to identify why a particular solution is superior to another is needed
[128] In particular the incorporation of tools for risk assessment and mitigation is needed.
Mathematical optimal solutions are not always the best or correct solution.[136]

2.3.5.11 Software independent

Naturally, it is recommended to have the system software independent.[115, 140] That is, the
system should not depend on any one software, especially third party software. By retaining
software independence, the user maintains more control and reduces potential cost.

2.4 Selected Design Systems

In the following section, a consideration is given to specific more modern representative
systems that resemble or are of interest to the current research. In particular, they are considered
for their approaches to and application towards the conceptual design and design automation or
more importantly, automation of design synthesis.

Selected Design Systems 33

2.4.1 AIDA: Artificial Intelligence supported conceptual Design of Aircraft [47]

AIDA is an example case of an Al-KB approach to conceptual design. AIDA addresses the
early concept definition phase of the conceptual design. Many conceptual design tools focus
heavily on MDO and do not address well the initial concept definition and exploration phase (circa
2004), where in the concept itself is not necessarily even defined yet. AIDA attempts to define
concepts for the early conceptual design through the application of Al and investigate the
usefulness of various Al techniques in application to such a situation.

The solution logic is formed around addressing sequentially the author identified design cycle
phases: suggesting, simulating, evaluating, proposing modifications. It is a modular system; it
consists of four modules. A case-based reasoning (CBR) module for initial concept generation.
The Function module that utilizes rule-based reasoning (RBR) techniques and sensitivity analysis
to refine the initial concept into a feasible concept. Geometrical module to generate a CAD model
of the concept through feature-based techniques and constraint-based modelling. Lastly, the central
user interface, which controls system integration and data transfer. The system utilizes early
conceptual design level methods as seen in the classic text references such as Torenbeek [13] and
Roskam [96]. On consideration of the system, Rentema states that the system is “... useful for
‘configuration design’ type of design tasks, but is less suitable for innovative and creative design.”
This is inherent in its dependency on established rules and concept elements in its libraries.
Additionally, Rentema notes that such an implementation (CBR and RBR based approach)
requires significant experience and pre-processing effort in order to populate and operate the
system’s data and knowledge bases.

2.4.2 Aircraft Design Automation and Subscale Testing [143]

A framework for automating the design and manufacturing process of Micro Air Vehicles
(MAV) was developed at Linkdping University by Lundstrém [143]. The goal of the system is
described as “ ... fo find a method for MAV design and optimization from a holistic viewpoint, i.e.
not a method for optimizing single subsystems, such as motor or propeller, but a method that
embraces all disciplines of MAV design.”[143] Additionally, Lundstrom identifies two key drivers.
They are the utilization of off-the-shelf components where possible and geometric shape
optimization in view of aerodynamic properties, internal component layout, and stability criteria.

Like many design systems of its type, the system is modular. The systems control interface is
through a Microsoft Excel spreadsheet. Disciplinary and component subsystems formulate the rest
of the system. These include a geometry model, an aerodynamic model, and an off-the-shelf
propulsion parts database. The subsystems are integrated through modeFRONTIER, a PIDO
system. Design automation occurs through the use of an optimizer. The optimization routine is
sourced from modeFRONTIER. It utilizes a single-objective and a multi-objective GA for
optimization. A dual-stage optimization routine is enacted. The geometry and aerodynamic models
and analysis can be selected as either high or low fidelity. Low fidelity techniques are handled
within Excel. A high-fidelity geometry selection incorporates Catia; a high-fidelity aerodynamics

34 Literature Review

selection utilizes PANAIR, a panel method code. The output of the system is a CAD model and
part list. The CAD model can be passed to a 3D printer for manufacturing. Distributed computing
has also been demonstrated. Additionally, Lundstrém notes that the system could be considered a
hybrid system. That is, it employees both Cl and KB methods. He states that it employs heuristic
knowledge within the geometry tool expressed as rules and constraints. Additionally, the system
incorporates a GA optimization routine, which is categorized as CI.

One of the distinguishable features of the system is its dual fidelity optimization routine. It was
identified that for high fidelity optimization, the optimization routine would generate an excessive
number of non-feasible solutions. To rectify the problem a dual stage optimization approach was
implement. The optimization processes were separated into a low fidelity stage and a high-fidelity
stage. The low fidelity stage solutions, which have effectively been filtered for feasible solutions,
are used as a starting point in the high-fidelity stage. The routine proved to be robust and user
friendly.

No

OPTIMIZATION 1 OPTIMIZATION 2 RESULTS
FAST EXPENSIVE
Simple geometric and| /con Higher fidelity -
aerodynamic models geometric and X

aerodynamic models. Valid Yes /
| Predefined results? 2

FAST propulsion systems. #
|Systems and ’
performance models

Figure 2-6 Dual-fidelity optimization process [143]

The system demonstrates a class of Al hybrid (KB+Cl) systems. The general system is example
of very standard approach to tool creation found in literature. Multiple separate tools are integrated
with a PIDO tool and optimization conducted by means of a CI algorithm, frequently an
evolutionary type such as a Genetic Algorithm. Additionally, the system demonstrates a more
unique approach that is less common, which is the integration of an off-the-shelf parts library. The
system demonstrates a solution approach to handling the difficulty in feasible solution search,
employing a dual-fidelity approach. Similar approaches are taken in other tools but with variation
in the optimization algorithm. Furthermore, the concept for rapid prototyping, with a
demonstration of output to 3D printer for manufacture and subsequent testing is an interesting
concept.

2.4.3 GLADOS [140]

Genetic Learning Automated Design Optimization Software (GLADOS) “... represents a
flexible evolutionary algorithm based architecture intended to allow for the generation of
conceptual or preliminary design stage aircraft designs without any human beings in the loop.”
[140] The researchers’ objective was to develop a system to automate portions of the design
process to reduce human involvement and thereby reduce cost and time to completion. The original

Selected Design Systems 35

motivation for the system was to address the problem of multi-variant high modularity complex
system design through the application of an evolutionary algorithm. They identify and propose a
solution to three identified issues. They attempt to address design space biasing®, commonality or
modularity in complex system design, and the rigidness inherent in many MDO architectures®.
Addressing these issues resolves into “...the three most important traits are being able to naturally
search a much larger section of the design space, enable straightforward development of high
commonality and modular systems and be expressive enough to be capable of recursion and
therefore meta-level self-improvement.”[140] In [140] the authors provide a description of the ideal
concept and an account of a significantly reduced proof of concept. Of principle interest is the
ideal system concept.

The concept is a recursive tool that can generate potentially feasible design concepts from a
concept component library, populate the design variables, evaluate the design suggestion, and
identify potential solutions to be carried over to the next design evolution sequence. The authors
summarize GLADOS as:

. a large assembly of component, sub-system, sub-discipline and operational level
analysis modules wrapped in an evolutionary algorithm framework that ultimately selects
designs based on simulated natural selection, with fitness being assessed by operational
simulation of each trial design.[140]

The system concept consists of a: concept library, trial design synthesis subsystem, modeling and
analysis framework, fitness module, evolutionary framework, and artificial intelligence and
machine learning. The GLADQOS concept is built around an evolutionary routine for initial concept
generation and subsequent evolution. The concept employees a warehousing approach where in
an updateable concept warehouse of existing design elements can be queried and formulated into
an initial candidate design for further analysis and optimization. The generated concept constructs
are modified for correctness and filtered by evaluation of feasibility by the trial design synthesis
module. Each trial design is analyzed and modeled by a modeling and analysis framework that
includes optimization; the framework is characterized by a tiered analysis processes where in each
tier can incorporate greater design and analysis fidelity. A fitness module quantifies each trial
construct based on some evaluation criteria, which is utilized in the evolutionary algorithm to
populate the next evolution. A general inclusion of Al and CI methods are described as included
for system efficiency improvement including approximation routines as well as a capacity for self-
population of the concept library and analysis association. Self-population and analysis
discernment through a recursive approach is a key trait of the system concept.

The concept presented is interesting for its non-standard approach to the design automation
problem. Much of literature, for the optimization problem, shows a standard approach of problem

> Design space biasing is the event of experiencing or implementing bias into a proposed solution set due to underlying
experience, favoritism, or exposure to certain solutions, thereby not considering potential alternatives.

6 MDO architectures are generally setup to address specific problems, configurations, and solution space
boundaries/constraints, which restricts the architecture’s applicability; they are not generic design architectures.

36 Literature Review

specific code formation through PIDO systems integrating high fidelity third-party analysis
modules. The GLADOS concept presents an in-house approach to system integration with a user
created tier-based refining concept definition and analysis approach. When compared to the
concept for Aircraft Design Automation and Subscale Testing, the GLADOS concept proposes to
address initial design construct feasibility through a dedicated evaluation system, similar to AIDA.
The tiered optimization process is of note; tiers of analysis/optimization where in the user can
control the design freedom of each tier such that proper a natural evolution of design refinement
(similar to the conceptual to preliminary design tasks) can occur and thereby minimize computing
power required is a notable approach.

2.4.4 Daphne [77, 80]

Daphne is distinctly different from most other design tools. Daphne is a virtual assistant to
support high level design of distributed satellite missions (DSM); it is quite possibly the first of its
kind.[77] The objective of Daphne is ... to help system engineers reduce their cognitive load when
exploring large tradespaces for DSMs by providing them with easier and timely access to relevant
information.” [77] According to Virosi [77], Daphne has a capacity of natural language interfacing
for information quarry in addition to tradespace exploration tools such as scatter plots, model
inspection and explanation, and data mining.

An illustration of Daphne architecture is shown below. It has a user interface (a web front-
end), an architecting element (Daphne Brain) that controls user requests, software snippets (Roles)
that utilize the Backend and Data Sources to obtain the answer to the user’s quarry. Backends are
code elements that compute the information requested by the Roles using the data acquired from
the Data Sources. Data sources include three databases: an Expert Knowledge Database, a Design
Solutions Database, and a Historical Database.[77]

Web Interface FRONTEND

_______________________ Vo

l Daphne Brain 1

i |HTTPNVS Requests ‘ | WS Push ‘ ‘ QA System ‘ i

I A |

| |

I 1

: ‘ Engineer ‘ ‘ Analyst | | Explorer ‘ ‘ Historian ‘ | Aggregator ‘ } ROLES
| |

| |

| I
e

| |
| vassar | | FEeD | [moEA | | quenyBuilder |
| Expert Knowledge Base | ‘ Design Solutions Database | | Historical Database |

Figure 2-7 Daphne architecture [80]

Selected Design Systems 37

Daphne represents the interesting design aid of the virtual assistant. If one recalls the principal
motivation for this research—effectively a virtual assistant/peer—Daphne most resembles it at
least in general practice. In light of the research problem being addressed (automation of design
synthesis), in comparison to the Daphne architecture, this research addresses a task within the
“Engineer” role above. The “Engineer” role’s function is to “Evaluate new architectures” and
“Answer questions about architecture performance and cost.”[80]

2.4.5 GENUS [115]

Developed at Cranfield University by Szirozék [115], GENUS is a design framework that ...
provides a sufficiently generic platform that can be utilized for the conceptual level design of
specific classes of aircraft, including, but not limited to hypersonic transports, space launchers,
blended-wing-body and solar-powered aircraft.”[115] The motivation for the development of the
system was to assist the educational system, specifically university students and researchers. The
author notes that in university, programs have students spend a significant portion of their project
time on method development and integration with insufficient time to actually appreciate the end
result or conduct specialized feature analysis.” System requirements included: modularity,
expandability (unconstrained fidelity level and method count), flexibility (capacity to address any
vehicle; generic synthesis tool), independence (software independent, non-proprietary, source
code language with significant longevity prognosis), sustainability (easily maintained and
expandable), and performance (reasonable performance on a standard desktop or laptop).

GENUS is a design environment to provide a modular, flexible framework both for designers
to use existing and for researchers to develop new methods for aerospace vehicle design.
Fundamentally, it is a shell environment similar to the PIDO tools. That is, it itself is an integration
and optimization environment where in the user prescribes, through a transparent user interface,
the analysis modules, inputs, internal variables, objectives, and constraint. The system also
provides the results visually through the GUI and as text file. GENUS is based on a modular
(library, warehouse equivalent) framework. Modules are divided by the essential modules and the
non-essential or “special modules”. There are nine essential modules: Geometry, Mission
specification, Propulsion specification, Mass breakdown, Aerodynamics, Propulsion, Packaging
and CG, Performance, and Stability and Control. In addition to these there in the Atmosphere
module. It has a clean GUI, Figure 2-8, and is programed in Java. It has capacity for a single run
analysis and optimization. All iterative analysis occurs through the optimizer, there is no indication
of inherent automated trade study or sensitivity analysis. The analysis process is linear and rigid,
occurring in the order of the methods shown. In summary, GENUS provides a transparent
conceptual design method integration environment with single point analysis and optimization
capability; automation tasks include method integration through data handling and design space
search by the optimizer.

" As a former teaching assistant for the undergraduate aerospace engineering senior design course, the author can
concur with this sentiment.

38 Literature Review

(a) Module selection (b) Input specification

(c) Output results (d) Optimization setup and results
Figure 2-8 GENUS graphical interface [115]

2.4.6 AVDPBMS [86, 87, 89]

Aerospace Vehicle Design Database Management System (AVDPEMS) was developed at the
University of Texas in Arlington by Gonazlez [86], Omoragbon [87], and Oza [89]. The system
was developed to address two issues. First, as Gonazlez states it is “... a methodology for the
composition of complex multi-disciplinary systems (CMDS) through the automatic creation and
implementation of system and disciplinary method interfaces.”[86] It is an environment to alleviate
the difficulties in synthesis architecture creation and to diverge from the classic monolithic system
by assembling the synthesis architecture per problem definition. According to Gonzalez, it
attempts to bridge the gap between classical monolithic systems and the shell integration systems
(PIDO). The second reason it was conceived was to assist in technology forecasting and portfolio
definition—the object of Oza’s work—as to evaluate many potential concepts, requires a robust,
problem specific generation architecture. Within the literature of aerospace vehicle design and
design automation, this approach is distinctly different; rather than focusing on automating the
design search as in optimization routines, this approach automates portions of the creation of the
design tool itself, the synthesis architecture (this does not preclude that optimization does not occur
within the architecture either). AVDPBMS interface is MS Access, the system generates synthesis
architectures as MATLAB scripts.

The concept behind AVDPBMS js a decomposition-recomposition approach. The idea being that
systems (legacy monolithic codes) and vehicles can be decomposed into their base constructs
(process, methods, hardware, etc.) and placed into a repository where from a new system can be

Summary and Specifications for Future Systems 39

assembled from these parts and part associations to solve a new problem. The system’s foundations
are its databases and knowledgebase repositories. The system consists of a reference library,
variable library, methods library, process library, vehicle library, and the actual system interface
for problem architecture definition and assembly (referred here as Main System). Each has a GUI
interface for access and modification. Each library contains the decomposed elements according
to its name. The methods are associated to hardware applicability. The actual architecture
definition and assembly process occurs within the Main System GUI. The process is divided into
four stages. These stages are matching, selecting, arranging, and generating. Through these stages
the user selects a project vehicle, a project process, defines the trajectory profile, selects analysis
methods and resolves any system conflicts such as multiple disciplinary method associations per
hardware through the definition of method constraints. From these selections the system assembles
the methods and process into a syntactically correct sizing tool. The user then is free to use the
resulting tool to solve their specific problem. Note that the system does identify input, output, and
interdisciplinary variables, however all input value defining, synthesis tool execution, and post
processing occurs outside of the system and by the user. Once the architecture is generated, the
operation and actions of AVDPBMS are complete.

AVDPBMS represents a class of synthesis tools that itself does not solve the design problem but
rather generates the tool that is used to solve the design problem. AVDPEMS has been created to
provide the designer with a tool of tools; it is a tool to create tools that are tailor-made to the exact
problem at hand with the fidelity and robustness as determined by the user. It is different class of
automation; it automates the creation of the synthesis architecture rather than design automation
through automating the design search. Although this system represents a promising approach to
automation, it is noted that the system does not directly contain post processing, an input/output
interface, and is limited in vehicle decomposition level and limited in its process application. As
noted, this research is a continuation of the synthesis design effort at the AVD Lab at the University
of Texas at Arlington as represented by AVDPBMS, This system and the work by Gonzalez [86],
Omoragbon [87], and Oza [89] will be referenced more in the following chapters.

2.5 Summary and Specifications for Future Systems

2.5.1 Summary and Discussion

This research began with Al and design peer being identified as a probable solution to
dilemmas within design. However, a true design peer was determined infeasible for a single
researcher and as such a perceived necessary element, design automation (automation of synthesis)
was identified. This chapter has presented a review of design tools with particular emphasis on
design automation and the necessary components, in addition to a consideration of select
representative systems. The result is the identification and consideration of toolsets in literature
and the approaches to the design problem, in particular those applying automation.

40 Literature Review

Aerospace synthesis design approach is categorizable. A classification scheme was presented.
From the classes, of note are two classification groups: text-based systems and computer-based
systems. The text-based systems are representable by the classical design texts, by definition are
not automated, and represent libraries of knowledge and early conceptual design analysis methods.
The second classification set are computer systems that automate part of the design process. Two
types are distinguished, the monolithic and non-monolithic system. The classical computer
systems tended towards monolithic nature where in, though with highly impressive knowledge
integration and accuracy, they were compiled upon as new capability were added leading to lack
of maintainability, modifiability, and applicability to new concepts. The second type, non-
monolithic, are generally specifically design modular approaches where in the modules (including
third-party software) are integrated through some integration scheme and can be specifically
developed for the problem at hand. Within these system MDO has been a critical component as
well as focus in literature on design automation.

Within aerospace vehicle design literature, design automation generally infers MDO. It is the
process of automating the process of design refinement through solution space search. MDO is a
significant focus within the literature but is not the only solution nor necessarily the correct
solution in all situations, though from literature one would not be wrong to assume it were given
it is so widely applied and touted. Optimization tasks are frequently time consuming, can have
massive software and hardware requirements, and require expertise in and of itself to set up
properly. In effect, there has been a trade of one problem (the monolithic design codes) for another.
To assist in MDO execution process, many integration and process control software have been
developed both commercially and as open-source software; naturally, these systems are widely
used. A selection of systems available was given.

A conclusion that can be derived from literature is that there is a lack of focus on the early
conceptual design within tool development, specifically the initial problem gestation phase and
initial potential concept solution selection. Many systems/research/tool development jump quickly
to optimization without considering if the object they are optimizing is even the right choice or
starting point. Some systems attempt to address this through evolutionary algorithms and concept
part libraries but not all. This is similarly reflected in the literature on road mapping and program
planning, systems are advised but without numerical proof of why they should be in the first place.
There is a need to address the early conceptual design phase and even the pre-design phase. As
MDO has been praised for bringing better solutions and more accurate, higher fidelity approaches
earlier into the design process, perhaps it is necessary to improve analysis tools in the parametric
definition cycle of conceptual design and even into the pre-design operations as well. This calls
for rapid concept exploration environment, that is truly generic in vehicle consideration, which can
provide analysis capability of fidelity levels prescribed by the user and be operable quickly. This
leads to the specification of a generic conceptual design decision support environment.

Summary and Specifications for Future Systems 41

2.5.2 Specifications for a Future System

As noted, this research is in part a continuation of the work by Gonzalez, Omoragbon, and
Oza. AVDPBMS was a proof of concept with its own limitations. AVDPEMS demonstrated the ability
to have an environment in which, through user interaction, synthesis tools could be generated to
address a specific problem. However, the system had an inherent limit to the complexity of the
problem and as such an inherent limit to the cases in which the tool could be applied.[87]
Furthermore, the system exists in an MS Access environment, which does not lend well to
continuation, in particular towards Al—a primary research objective of the local research group.
(As a result, the research deliverable here in presented has been created to address these issues.)
As such, many of their identified solution construct requirements remain. In addition to those
identified, several are added here in order to address some of the short comings of AVDPEMS and
to advance the concept to a more capable place with potential for increased automation and
eventual adaptation into a greater cognitive framework. Based on the synthesis system review and
addressing issues identified in AVDPBMS, the following are identified as the primary guidelines
and requirements for a next-generation synthesis capability.

2.5.2.1 General Design System Guidelines

» Flexibility: modularity to handle various fidelity levels, unique concepts, and unique
configurations.

» Expandability: ability to and easy implementation in the expansion of the underlying
framework and capability when new data, knowledge, and processes are identified and require
addition.

» Transparency: transparent to the user of the operation of processes and systems, the methods,
underlying knowledge, data, etc.

» Rapidity: quick turnaround, able to adapt and keep up with a rapid environment and quick
turnaround deliverable times; minimal time of operation to output.

» Operability: low user learning-curve.

» Sustainability: system should be based on a coding language likely to continue into the
foreseeable future.

2.5.2.2 System Specific Specifications and Guidelines

The following specifications are shared in the specifications for AVDPEMS by Gonzalez [86]
and Omoragbon [87].

» Employ a decomposition-composition solution approach.

» Store and implement design analytical processes.

42

Literature Review

»

»

»

»

»

»

»

»

»

»

»

»

»

»

Store vehicle hardware concepts.

Store and implement engineering disciplinary analysis methods.

Associate hardware-method-process applicability.

Assemble synthesis architecture.

The following specifications are added to those identified by Gonzalez, and Omoragbon.
Architecture specifications occurs within a decision support environment (interface).

Improved system transparency in both method / process specifications and architecture
generation.

Architectures should be assembled as fully contained scripts.
Assembled architectures should be fully executable and distributable.
Include capability for system-of-systems (vehicle-of-vehicles) consideration.

Include capability for multiple design analysis processes association or a tiered processes
approach (sub-processes within a primary process).

Allows evaluation of results (data post processing and GUI return for assessment and inquiry).
Allows for specification and generation of standard or user defined solution visualizations.
Increased automation or capacity for automation of architecture generation process.

Allow for porting into a greater system and allows expansion and integration of data mining
and increased post processing towards a design recommender.

2.5.3 Document Outlook

The remaining document address the solution concept, the implementation of the concept, and

verification and demonstration of the concept implementation. As noted in Chapter 1, this research
is in continuation of the research endeavor by Gonzalez [86], Omoragbon [87], and Oza [89]. As
such, much parallelism is drawn between their research and solution concept presented and
developed in this research.

Chapter 3 SOLUTION CONCEPT

In this chapter, the solution concept is presented. A general solution concept for a general
synthesis automated generation decision support environment is given. For detailed manifestation
of the concepts presented here, see Chapter 4 Concept Implementation.

3.1 General Solution Concept

To address the requirements identified, the objective is to develop a decision support
environment for the aerospace domain, specifically targeting the conceptual design phase. Within
the frame of the decision support tool, it is necessary to implement a framework for automated
composable analysis architectures. That is, the system shall not be bound to any one vehicle
concept or configuration, nor shall it be bound by the process or objective function definition.
Furthermore, the tedious task of synthesis architecture assembly is removed from the requirements
of the user. The user only need specify what to analyze and the constructs of how to accomplish
the analysis. To accomplish this task, it is necessary to implement an auto coding approach. A top-
level solution for such a system is illustrated in Figure 3-1. The solution concept is founded on a
decomposition-composition approach. It is a non-graphical code assembly concept. The primary
components of the concept are the composable complex system components, the synthesis
generator, and system results. Fundamentally, the user provides a set of inputs specifying the
vehicle to be analyzed, the process of analysis, the methods to use, and the output presentation
desired. From these instructions, a synthesizer routine assimilates the necessary code elements,
both engineering methods and code processing (data handling, method handling, etc.), and
assembles the components into a functional synthesis architecture. The synthesis is executed as
prescribed by the user and the results are processed and returned to the user according to the user’s
deliverable specifications. Each core component is summarized below.

» Inputs: A collection of user selections during software interaction. They are acquired through
a GUI interface. They specify the components of the synthesis system as related to the
engineering analysis problem.

44

Solution Concept

»

»

»

Complex System Elements: It is a set of libraries populated with the building blocks necessary
to assemble a synthesis analysis code. It consists of three libraries: product, methods, and
processes. These follow the complex system decomposition approach described below.

Synthesis Generator: A collection of processes to assemble the base components (complex
system elements) into a functional synthesis analysis code based on the user’s inputs. Sub
processes include input mapping, library queries, component gathering, and component
assembly. The output of the process is a tailor made fully functional synthesis analysis code
for the specific problem at hand.

System Results: The system results group is a collection of processes to execute the synthesis
code, archive the results (data), process the results, and return the results to the user through
the DSS in a meaningful form. Part of the result return is the auto generation of meaningful
figures for design evaluation and insight.

Each principal component of the solution approach is discussed in detail in the following

sections.

Elements of a Complex System /

Libraries consisting of complex
system composition elements

Hardware Methods Process Decomposed el ements
Li brary Li brary Li brary : necessary for the system as
e e / specified are gathered for use
T—r Process, analyze, mine
Library R Gather data, and generate figures
uerries | |Components|
Qe T sysemResuts 7
Inouts il Input Assemble _» Execute | | Process | || Display §
P :| _Mapping Synthesis |i | Synthesis Results Results |:
‘Synthesis Generator ~~~ \ —m

Assemble decomposed elements into useful
synthesis tool based on the instructions
derivable from the input mapping

Figure 3-1 General solution concept

3.2 Decomposition Concept

As stated, this research and development effort has been conducted within the evolutionary

synthesis development arc of [84-87, 89]. In particular, this is a continuation and adaptation of the
concepts laid down by Omoragbon [87] and Gonzalez [86]. The following general description is
adapted from [87]. Note that in the following discussions the term complex system is used
frequently. The term is used in two connotations. First as the system being decomposed and being
labeled complex as it consists of the identified decomposition groups. The term is also used to
refer to a system-of-systems or what one would perceive natively as a complex system such as an
aircraft or ship. The discussion at hand indicates which construct is being used.

Decomposition Concept 45

For a given complex system, a tripartite decomposition routine is enacted. A complex system
is described by the product, process, and methods. Alternatively, the term complex architecture
could be used. The product is the physical description of the complex system; generally, this is the
vehicle of interest. A product is described according to what it is, what it does, when it does it, and
requirements or limitations of operation. These conditions define four categories of a product—
structure, function, operational event, and operational requirement. The process is the numerical
and organizational approach to solving the problem, and the methods are the analytical, numerical,
or empirical means and their dependencies to approximate a physical condition. Each category is
addressed in more detail in the following sections.

Complex System

[I
Product Process Methods

Figure 3-2 Three elements of a complex system
3.2.1 Product

The product is the complex system being considered. The system is defined according to
structural subsystem (structural decomposition), functional subsystem (functional decomposition),
operational event, and operational requirement. Omoragbon initially identified just three
classifications (functional subsystem, operational event, and operational requirement), however, a
fourth (structural subsystem) has been added to better handle the more complex situations (vehicle-
of-vehicles) and complex mission and operation description.

Product

Structural Functional Operational Operational
Subsystem Subsystem Event Requirement

Figure 3-3 Product decomposition

3.2.1.1 Structural Subsystem

The structural subsystem decomposing (hierarchical decomposition) is a standard
decomposition approach by parent-child system reduction. It is a mapping of the structural
components and their structural subcomponents, continuing in subcomponent layer refinement, as
necessary. For the solution concept discussed herein, the structural hierarchical decomposition
scheme is included in order to expand system capability to include the vehicle-of-vehicles case.
The vehicle-of-vehicles is a specific condition of the system-of-systems concept. A system of
systems is “ ... a set or arrangement of interdependent systems that are related or connected to
provide a given capability.”[144] Structural decomposition decomposes a system into its

46 Solution Concept

subsystems and the subsystems into their elements. Likewise, a vehicle-of-vehicles is a complex
system where in the parent vehicle is composed of sub-vehicles, which are composed of systems.
A parent vehicle can have any number of child vehicles. Furthermore, each vehicle is its own
complex system in the sense of the decomposition approach being discussed. Each one is its own
complex system with its oven product, process, and method decomposition. The complex system-
of-systems (vehicle-of-vehicles) structural hierarchical decomposition in general is illustrated in
Figure 3-4. In terms of an aerospace vehicle, this decomposition approach is illustrated in Figure
3-5.

System-
of-interest
1 |
System [System gés*t:n;t
| | \ 1 | |
System System System
[System | | element [System element | | element | || System
| S t\e Syst
Syst ystem ystem
elyen'?er:t [System Zi;teen.:t gfntf;:t System | | element | | element
| | |
System System System System System
element element element element | | element

Figure 3-4 System-of-systems structural tree decomposition [145]

Aircraft

Fuselage

Rectangular| | Elliptical Straight Cranked Straight Straight
cross-sect. | |cross-sect. tapered ranke tapered tapered

O 0003000000003 050d0

Assembly Part (O :feature —— :constraint

Figure 3-5 Illustrative example hierarchical structural decomposition [47]

Turbofan| [Turboprop

Decomposition Concept 47

3.2.1.2 Functional Subsystem

The functional subsystem represents the decomposition of a complex system’s product by
component function. Functional decomposition is the association of function (purpose) to the
systems element (hardware). Various functionality includes lift source, drag source, thrust source,
volume source, etc. Various function categories are illustrated in Figure 3-6. Within these
categories, one or more elements could be associated. For example, a thrust source can be
airbreathing, but within airbreathing there are many design options, the element could be a turbojet,
a turbofan, or even a ramjet or depending on the design criteria.

Functional
Subsystem
|
[[[[[[|
Landing Lift Sources Stability and Thermal Thrust Sources V°'“me ooo N-Function
Systems Control Protection Supplies
Parachute | -| Body | -| Directional | Active | Airbreathing| Fuselage |
Tric.ycle | -| Wing | -| Longitudinal | Pas.sive | airb’:le%r;;]inq Fuel Tank
. -| Secondary | -| Lateral | E .
N-Landig : :

Nt | Y Nsac |

Figure 3-6 Functional subsystem decomposition categories adapted from [87]

Omoragbon intentionally includes a functional decomposition approach to allow for a
synthesis system to better address, trade, and evaluate factors such as acquisition, TRL, and
maintainability. Furthermore, through functional decomposition, a complex system is describable
as a shell construct with certain attributes that are populated per unique design case. They are
product design details of which can be populated and traded dependent on the user’s intentions.
Such an approach allows for more readily the inclusion of more detail and analysis-oriented
approaches within the pre-conceptual design phase (road mapping, architecture and program
planning, etc.) or easier inclusion of manufacturing, servicing, sustainment and other like
constraints that manifest much later in the product life cycle but are integral to the success of a
program long-term.

3.2.1.3 Operational Event

The Operational Event describes the vehicle by environmental and operational conditions of
its use. The classification and description are in regard to the total system operation and is
distinguishable from its hardware. The Operational Event category is subcategorized by mission
type, flight profile, speed range, gravitational body, and altitude range.

3.2.1.3.1 Mission Type
A vehicle has an objective, that objective is accomplished through the execution of a specific
mission. The mission type is a label to describe mission and ultimately the objective of the vehicle.

48 Solution Concept

A vehicle can have more than one mission type. For example, an advanced single-stage-to-orbit
vehicle would perform a mission of (1) space access, (2) orbital operations, (3) Re-Entry, and,
potentially, (4) point-to-point. These and other possible mission types are identified and described
in Table 3-1.

Table 3-1 Mission types

Name Description
Point-to-Point Transportation of a cargo from one latitude and longitude to another,
generally atmospheric bound but not necessarily so;
Space Access Transportation of a good or service to space or the transfer of sufficient

energy from one system to another allowing the recipient to reach space;
the system does not have to achieve orbital conditions but could.

Sub-orbital Transportation of a cargo to space but in a manner in which the vehicle or
cargo does not have sufficient velocity to achieve orbit;

Re-Entry Vehicular atmospheric entry to a body of influence from orbital conditions
with a start condition outside of the effective atmosphere (space);

Orbital Exo-atmospheric (space) operation at sufficient speed and energy for a

vehicle to maintain an orbit;
* Space (outside of the effective atmosphere) for Earth is considered 100+ km.

3.2.1.3.2 Flight Profile

The mission flight profile is segmented into its constituents. These are the classical flight
profile components such as takeoff, cruise, climb, etc. It is common for a flight profile to be
segmented into its core components as it can make communication and analysis simpler. The flight
profile segments options are indicated below. These values are updatable and can be changed by
the user if a particular one is necessary and not currently available. The focus is on atmospheric
flight though elements can be readily expanded to include orbital operational elements.

» Warmup » Taxi » Takeoff » Climb
» Cruise » Loiter » Dash » Turn/Maneuver
» Descend » Deployment » Rendezvous » Re-Entry

In the consideration of the multi vehicle case, a vehicle system can comprise of multiple
distinct missions or flight profiles. It is possible for acomponent vehicle to have a different mission
and objective than the parent or other secondary component vehicles. This is especially true in the
case of two-stage-to-orbit (TSTO) or reusable launch systems such as the Falcon 9 or Falcon
Heavy. In these cases, the total system (all component vehicles acting as a single vehicle) act on a
single flight profile until the systems disengage and each execute separate flight profiles as
fragmented systems but each with uniquely different objectives, requirements, or flight profiles.

3.2.1.3.3 Speed Range

The speed range defines the operational speed range experienced by the vehicle. A vehicle,
within the definition of the problem, can have a combination of selections. For example, a
hypersonic vehicle can experience subsonic, transonic, supersonic, and hypersonic conditions. At
each speed condition, different phenomena can occur and as such, the vehicle’s complete
description would have to account for this (atmospheric dissociation, shock formation, variation

Decomposition Concept 49

in aerodynamic center, etc.). The speed is an indicated for many physical phenome occurrences.
The speed range values are indicated in Table 3-2. The speed ranges follow standard speed ranges
experienced within atmospheric flight; naturally, orbital conditions could be considered as well.

Table 3-2 Speed range categories

Name Speed Range (Mach Number)
Subsonic <0.8
Transonic 08-12
Supersonic 1.2-5.0
Hypersonic 5.0-10
High Hypersonic 10-25
Re-Entry 25>

3.2.1.3.4 Gravitational Body

The gravitational body is simply the specification of the principal body of gravitation that the
vehicle operates. The majority of aerospace problems are relegated to operating on Earth; however,
there are cases where in the principal body is not Earth but other bodies such as Mars. As such,
not to be constrained by the body of influence, this parameter is a necessary descriptor. The
gravitational body is not only applicable to the consideration of defining the gravitational
parameter but is also directly linked to the atmospheric model required. Atmospheric operation is
a consideration discussed in the “Altitude Range” descriptor.

3.2.1.3.5 Altitude Range

The altitude range is defined through the atmospheric operation zones. The atmospheric zones
are for Earth and are indicated in Table 3-3. Naturally, a vehicle can operate in any combination
of atmospheric zones, generally in a continues form. A vehicle, within the definition of the
problem, can have a combination of selections. Note, that the problem does not have to be limited
to Earth, but for this case, it is used as the principle gravitational and atmospheric zone of influence.

Table 3-3 Operational altitude zones

Zone Altitude
Troposphere 0-8(14.5) km
Stratosphere 8 (14.5) km - 50 km
Mesosphere 50 km - 85 km
Thermosphere 85 km - 600 km
Exosphere 600 km — 10,000 km
Exo-atmospheric 100 km > (Kéarman line)

3.2.1.4 Operational Requirement

The complex system exists and operates within limitations and requirements. The Operational
Event category describes the vehicle by the environment and operational conditions of what it does
whereas the Operational Requirement describes the limits in which the system is required to do
what it does. The limitations of the system can be categorized by (1) regulations, and (2)
specifications. Regulations are government restrictions or standards imposed upon the system.
Examples are safety standards, emission standards, noise regulations, etc. The operational

50 Solution Concept

requirement specifications are additional conditions mandated upon the system that are not
hardware, function, or regulation descriptors. Such mandates include human rated, vulnerability,
survivability, propellant, manned, unmanned, etc.

3.2.2 Process

After the product description, the next element in the decomposition of the complex system is
the process. The process is the analytical process to solve a given problem. A process is specified
independently of the product; the process description has no indication or direct connection to the
product. It is product independent. There are two types of processes: primary process and
secondary process. The primary process is the driving instructions for the total vehicle analysis. It
encompasses all process for a given complex system. The secondary process is a process that
executes within the operations of the primary process. There can be any number of secondary
processes but only one primary. Each process is decomposable by its system elements and its
disciplinary elements.

Process

|
[|

System Disciplinary
Elements Elements

Figure 3-7 Process decomposition categories

3.2.2.1 System Elements

The system elements describe the mathematical components of an analysis process if that
process has some objective function. The objective function specifies the mathematical criteria for
convergence or optimization. However, it is not necessary that a process have an objective
function; the absence of an objective function indicates a process that is not iterative. If the process
is not iterative, then there are no decomposable system elements. The system elements are
independent variable, dependent variable, and objective function. Each is described below.

» Objective function: the objective function is a mathematical expression that specifies the
process’ criteria for satisfactory termination. This is usually applied as a convergence or
optimization criteria. The process continues until the objective function is either satisfied or
determined unattainable. The objective function consists of dependent and independent
variables.

» Independent Variable: the objective function’s variables that are independent of the analysis
and are known (guessed) initially. They are the values searched for to converge or solve the
analysis process.

» Dependent Variable: the objective function’s variables that are computed through the
operations of the process and are an output of the analysis, as such they depend on the value

Decomposition Concept 51

of the independent variable. They must be output by the disciplinary operations as specified
by the disciplinary elements.

3.2.2.2 Disciplinary Elements

In addition to the objective functions as described previously, the process is composed of
disciplinary events and their order of operation. The disciplinary elements are the descriptive
elements that define the operational order of the process and categorize the analytical sub
processes. Each is described below.

» Disciplinary Event: the disciplinary events are the specification of an analysis set execution
that is categorized by a topic of analysis. Classically, the disciplinary events are the categories
aerodynamics, weight and balance, propulsion, geometry, stability and control, etc. However,
they are not limited to these and can be varied or added to depending on the process and the
overall topic being addressed. Disciplinary events can be constructed to have standard variable
outputs that the encompassed analysis is required to generate.

» Disciplinary Order: the disciplinary order of operation is the specification of the order of
process disciplinary events. The specification is linear; however, non-linear attributes are
accounted for through the internal operands of the disciplinary event.

3.2.3 Method

The method group is an assembly of descriptors identifying a particular analysis element. The
analysis element is what one would consider as an engineering analysis method. It can be
numerical, analytical, or empirical. A method is described by its product applicability, its variables,
and its analysis.

Method

[]
Product
Association

Variables Analysis

Figure 3-8 Method decomposition categories

3.2.3.1 Product Association

The product applicability follows the functional decomposition described in section 3.2.1
Product. A given method is applicable or associable to a particular hardware, hardware function,
mission, or operational event or requirement and is describe through these conditions. The method
is associated to the hardware, function, mission, operational event, and operational requirement in
the same manner as the product. Fundamentally, this is necessary for proper method selection and
system assembly and operation.

52 Solution Concept

3.2.3.2 Variables

The variables category encompasses the variables that define the methods inputs, outputs, and
constraints.

» Input: They are the variables required as inputs (known conditions) by the method in order to
operate properly and return the output.

» Output: They are the variables that are solved for within and returned from the method. They
may be required by other methods within the same discipline/discipline process or other
disciplinary methods.

» Constraints: The constraint variables are the variables that, if any, constrain the application of
the method to a specific variable value condition. An example would be Mach Number; a
subsonic method may be only applicable during Mach Numbers of 0 to 0.8 for example, and
so that method would be constrained to a given Mach Number range.

3.2.3.3 Analysis

The Analysis block contains the elements that describe the method according to process
discipline, assumptions, and analysis body. The process discipline is exactly that, it is the
specification and subsequently the mapping of the method to a specific discipline. Specifically, it
is the specification of the discipline event as categorized by the Disciplinary Element (section
3.2.2.2 Disciplinary Elements). The analysis assumptions are the specification of the assumptions
within the analysis itself. The analysis body comprises of the mathematical relations that makeup
the method. The assumptions and analysis body are not so much classifications as actual
description and embodiment of the method.

3.3 Mapping and Synthesis Generation

In the previous section, the decomposition of the complex system was described. The purpose
of executing a decomposition as laid out is to have the necessary information in a capacity to
identify and assimilate the necessary components to generate and execute a synthesis code. The
construction of a synthesis code occurs through the mapping of the selections and the assembly of
the decomposed elements based on the mapping function into a correctly composed code. This
section discusses the mapping concept and code assembly concept.

3.3.1 Decomposition-Composition Mapping

The system construct discussed in this chapter, is based on the concept of decomposition and
composition. For a composition to occur (the assembly of parts into a whole) the parts must exist.
As such, the parts for composition are the decomposed elements (product, method, process) that
must already exist within the framework. If it does not, it must be added. These points of product,

Mapping and Synthesis Generation 53

method, and process storage are the hardware, method, and process library as illustrated in Figure
3-1.

A mapping of inputs is the composition of the decomposition selections made by the user into
a coherent product, method, and process statement that is fundamentally the instructions for system
assembly. The decomposed elements (process objective function, disciplines, methods, product,
etc.) are mapped. Mapping of dependencies is the specification of the association of the parts in
the global picture. The mapping concept is notionally illustrated in Figure 3-9. For every vehicle,
its subsystem hardware, and the hardware’s functionality, place of function, process discipline
event, and the limitations and requirements placed upon it are associated. This is done for every
component identified. The mapping statement is utilized by the synthesis generation routine to
assemble a functional synthesis tool.

Structural Functional Mission & Operations & Requirements
Composition Composition Discipline Method Composition
Composition Composition
p A N A A N A A N
5 Mission Operations
; Mapping |: Mapping |[:
=== | [P -
XI/ Segment 1 \L Il OR1 :
Hardware || Function ' 'p{ | Constraint
i . Segment 2 ¢
Mapping ||| Mapping 9 . *(: OR2 : | Mapping
] I Foncion B = N2 |
Hardware 1 K+ Function 1 (/I \\ I Const. 1 |
: : M n" Segment[1{i|y n"OR |l | |
) Hardware 2 (| Function 2 gIN=—=——— — || t=—==—== I[ifil Const.2 |
Vehicle (] ————— = }/ |
I 3 \I| Disc.1 : L Method 1 1f B |
th ' N th : Y NHI K th
TS SR g ey
i (|1 5 M 5 'K
e
‘1] n"Disc.)I/\}\ n" Method [I]
o= I H I
Discipline Methgd
Mapping Mapping

Figure 3-9 Notional mapping of decomposed elements
3.3.2 Synthesis Generation

Synthesis generation occurs through the assembly of base components into a usable form. This
is illustrated in Figure 3-10. The base components include methods and processes. Each is a
readymade analysis file, description, template, or data file. The correct methods and processes are
selected based on the mapping of the user inputs on defining the product, methods, and process of
the complex system architecture they are building. Conceptually it is a simple notion. The details
of the implementation are in Chapter 4 Concept Implementation.

54 Solution Concept

Mission-Operation-
Requirement Map

System Process

System Specifications Component Libraries
—— 'i |—————=--" I
: Vehicle | : Product :

|
| |
| Process Map Ly Method :
|
| I+ | |
I Hardware-Function-Method- || : Process I
I I
| Lo |
| | I |

Extract Components |

Individual Processing
Component Instructions

Scripts @

Process Components

Final Result:
Self-contained
analysis codex

Figure 3-10 Notional synthesis generation

3.4 System Results

The system concept as defined has fundamentally three results. First, the system generates a
synthesis code—that is the first result. The second result is the numerical values generated from
the execution of the synthesis code generated. Lastly, the third system result, are the figures and
diagrams generated and returned to the user. Each is discussed in brief below.

3.4.1 Synthesis Code

The synthesis code is the fundamental system output. All other system results depend upon
this component. A system design decision is whether to assemble the synthesis code as a modular
system (dispersed files) or as a self-contained system. A goal of the system being developed is
transparency and ease of distribution. As such, the synthesis code is determined to be assembled
as a self-contained entity. That is, all necessary decomposable elements (product, methods, and
process) are contained within the synthesis file. This allows for ready distribution and control of
method and information disbursement.

3.4.2 Synthesis Execution Results

The execution of the synthesis code results in analysis data. The result data is the second
principal system output. The data is archived for later reference, mining, or reuse. The data is
stored in a database for easy retrieval. The data is saved with every successful design iteration in
the event of system or function error.

Chapter Summary 55

3.4.3 Return Results

The system data is processed and returned in a format for decision-making. The principal
deliverable is the solution-space topography. That is, a visualization of the results for the
identification of correct solutions and insights into the design problem. The solution concept
allows for the automated generation of diagrams at the behest of the user. Any design variable
could be visualized and assessed. A standard figure set is established. A standard set includes
execution summary (convergence report) and solution topographies by standard sizing variables.

Figure
Generation
Templates

Figure Generator

Analysis
Results

Figure 3-11 Figure generation construct
3.4.4 Recommendations

Although not implemented in the current evolution of the system generated, the solution
concept accounts for the possibility for the integration of some form of a design recommender
system. The recommender system would process the data, mine the results, evaluate the results,
and make some design suggestions for revision or best solution set identification. However, the
inclusion of a recommender system, given the other efforts of this research, is beyond the scope of
a single dissertation. This element is not addressed beyond the identification of its place and
usefulness.

3.5 Chapter Summary

In this chapter, the solution concept for a composable vehicle-of-vehicles synthesis assembly
decision support environment was presented and discussed. The overall arching DSS concept is a
semi-automated tool-of-tools. Its primary purpose is the assembly of methods into a sizing toolset
to better help in decision-making. Each sizing toolset is specifically generated to solve the problem
at hand.

The system is founded on the principles of system component decomposition and re-
composition. Core elements—products (vehicles), processes, and methods—are described in their
base components as specified by the decomposition approach. These core elements reside within
depositories until needed. Through operation of a DSS, the user’s inputs are translated into a
system assembly instruction function that, through a determined assembly routine, identifies,
extracts, and assembles the decomposed core elements into a newly composed synthesis

56 Solution Concept

architecture. The synthesis architecture is executable on assembly or stored for later use or
distribution. On execution, results are stored, processed, and presented to the user.

In the following chapter, this solution concept is flushed out into a functional toolset. The
details of the concept’s manifestation are given.

Chapter 4 CONCEPT IMPLEMENTATION

This chapter documents the product of the concepts discussed in the previous chapter. The
product is the principal deliverable of the research conducted. Recall, the product is a generic
synthesis tool for rapid sizing/analysis architecture generation ready for integration into a follow
on intelligent automated environment. The product is referred to as Artificial Intelligence Design
and Research Assistant Decision Support System (AIDRA-DSS). A general system description,
file system, component architecture setup, approach to system execution for problem solving, and
a consideration of the systems front-end and core back-end components are the topics addressed
in this chapter. Each is addressed sequentially in the following sections.

4.1 Description, Structure, and Core Components

Addressed in this section are ADIRA-DSS, its objective, and the general architecture of the
system. The system’s architecture includes the individual files and their organization as well as
the key environments: front-end and back-end.

4.1.1 Description and Objective

AIDRA-DSS is a framework for the selecting and processing of synthesis and design analysis
options for an identified vehicle of vehicles set, resulting in the generation of sizing or analysis
codex that can be executed externally or internally of the framework, resulting in the presentation
of standard or nonstandard decision supporting diagrams for rapid and substantiated decision
making. AIDRA-DSS is a tool designed to be an environment to assist the user through
accelerating design problem exploration and decision-making. The system is developed and
applied for aerospace; however, the system is topic independent. That is, it is in theory not limited
to anyone subject area. This system is not limited to aerospace and, as long as the designer carries
the proper methodologies and processes, a vehicle can be sized or analyzed, such as a car or ship.

AIDRA-DSS has two objectives. The first objective is to explore, develop, and prepare a
modular-synthesis-architecture-assembly tool for transition into a cognitive system or other Al
framework. This is the driving objective of this research. In this respect, the purpose of the system
is to develop further expertise and a baseline environment to test complex vehicle automated

58 Concept Implementation

synthesis architecture synthetization that would be easily adaptable into a greater cognitive system.
The second purpose is to serve as a useful engineering environment that arrives the user at a
synthesized solution toolset, based on user selections, to solve a given problem by providing
standard feedback and decision aiding platforms. The second objective one could consider as an
intermediate objective to provide immediate system utility while driving towards the greater
objective of a cognitive design and research assistant.

AIDRA-DSS is a computer software system. The general construction is illustrated in Figure
4-1. AIDRA-DSS has been developed in Python with GUIs written in QT. The system relies on
SQL based relational database sets. The system files can be broken into two types: those that
comprise the front-end and those that comprise the back-end. The front-end is the system’s GUISs.
The back-end is a collection of files that support the front-end in operation, such as database files
and execute other tasks in the compilation of design codes. In the following sections, the systems
architecture, including its files, are identified, described, and file location given.

Known: I:')
Q Vghigle Baseline Computer Output:
user Mission Concept Distributable User’
Front-End Project Builder synthesis architecture ¢ Sers
Start > End Anal It d Interaction
(AIDRA_DSS GUI) na yS|S resu t ata
Supporting figures
r-R-—- - —-—-—--—--"--"—--""“‘fT-—"———-—-————————— = = = — = N 7
Supporting libraries and Project Project data,
modules required for code . Library synthesis input
assembly to problem 4 values, etc.

specificaiton
Process
Library
Methods
Library
Vehicle
Library

Synthesis Assemble synthesis code
Assembler based on user selections

Project Builder Primary Output

Y Y Interation

Data Analysis
(Figure Generator)

Synthesis Code

Y

Analysis
Data

Analysis [\ Synthesis Output
Data h

Figure 4-1 System architecture summary

I
I
I
I
I
I
I
I
I
I
I
I L No User
I
I
I
I
I
I
I
I
I
I
I

Back-End

Description, Structure, and Core Components

59

4.1.2 Front-End

The front-end is the GUI. The front-end is summarized in
Figure 4-2. There are seven GUIs. Each GUI set corresponds to a
different system component or module. These subsystems are the
Project Builder, Variable Library, Reference Library, Methods
Library, Vehicle Library, and Process Library. Each is
summarized in Table 4-1. All front-end components are python
based. The GUI framework is QT. Note that the python files not
only contain the instructions for GUI formation but also the
instructions for front-end to back-end interfacing. That is, the files
contain non-GUI specific code that is required for proper GUI

B Front-End

— Functionality: GUI
— # of Systems: 7
— Primary: Project Builder

— Secondary: Libraries

— Language: Python, QT

Figure 4-2 System front-end summary

operation; this code is considered as back-end material. Front-end is limited to only the specific

graphical interface.

Table 4-1 AIDRA-DSS's front-end systems

GUI Description

File

Project Builder
execution and problem solution execution
Variable Library
development and project building
Reference Library

retention

Interface to add or remove system analysis methods
Interface to define or remove system vehicles
Interface to create processes for analysis and synthesis

Methods Library
Vehicle Library
Process Library

Primary GUI file for DSS operation. Interface for DSS
Interface to handle system variables used in method

Interface to a library of references that are used to support
method, processes, and vehicle definition and knowledge

projectBuilder.py
variableLibrary.py
referenceLibrary.py
methodsLibrary.py

vehicleLibrary.py
processLibrary.py

4.1.3 Back-End

The back-end files are categorize into database or operational B Back-End

files. The database files support the operation of the front-end. It
is sumarrized in Figure 4-3. The operational files are the files that
are required and contain the algorithms to properly operate the
front-end (distinctly different from the GUI definition syntax),
link the front-end with the back-end databases, and process the
front-end option selections into a cohesive and executable
sizing/analysis program. Each back-end specific file is listed in
the table below; included is a brief description, indication of file
type, and what front-end file it supoorts. As noted in the previouse

| Functionality: Data Storage &

Synthesis File Assembly

— # of Elements: 8
— Primary: Synthesis Assembler
— Secondary: Databases

— Language: Python, SQL
Figure 4-3 System back-end overview

section, the front-end python files also include the algorithms (considered as part of the back-end)
that conduct the linkage between the front-end and back-end as well as the algorithms required
during the operation of the GUI, such as dynamic filtering algorithms that are required to correctly

60 Concept Implementation

populate GUI elements. All backend elements are required, however, a uniquely different and
critical element is the Synthesis Assembler.

File Description Type Supports

projectDatabase.db Database to store option selections from Database projectBuilder.py
projectBuilder.py

variableLibrary.db Database to store option selections from Database variableLibrary.py
variableLibrary.py

methodsLibrary.db Database to store option selections from Database methodsLibrary.py
methodsLibrary.py

vehicleLibrary.db Database to store option selections from Database vehicleLibrary.py
vehicleLibrary.py

processLibrary.db Database to store option selections from Database processLibrary.py
processLibrary.py

referenceLibrary.db Database to store option selections from Database referenceLibrary.py
referenceLibrary.py

synthesisAssembler.py Set of algorithms to assemble the synthesis Operation projectBuilder.py

tool from the selections of Project Builder

Table 4-2 AIDRA's primary back-end files

The Synthesis Assembler is the element that, as the name implies, assembles the synthesis
code. A problem’s elements are defined during the principal operation of the Project Builder
(discussed in detail in later sections). Given the components of the problem, such as the vehicle
selections and decomposition, the processes, and the methods selection, the Synthesis Assembler
extracts the information from the systems databases and, using an auto-coding instruction
algorithm, assembles the synthesis code with correct order of operation and initialization. The code
is assembled automatically as per the user’s specifications. The result is a unique and tailor-made
synthesis code specific to the problem at hand. The Synthesis Assembler’s output is a single
aggregate file containing all necessary definitions and information required to execute the sizing
and analysis. The Synthesis Assembler is discussed in detail in section 4.4 Back-End: Synthesis
Assembler and Architecture

4.1.4 File Locations and Folder Tree Structure

AIDRA-DSS is built with relative file pathing. The system does not depend on a specific
location for initialization and operation. All subdirectories are created through the system’s
operation and are generated relative to the location of the main file (projectBuilder.py). The file
structure is discussed below.

AIDRA-DSS primary files’ structure is illustrated in Figure 4-4. The file folder structure is
relative to the main project folder. The main project folder is the folder that the user creates as the
primary place for system execution and contains all necessary source files and databases. The user
can indicate a specific file path for result output; however, the default structure is as illustrated.

» GUIs: Folder of system front-end GUI files.

» Databases: Folder containing databases for GUI operation.

Description, Structure, and Core Components 61

» Processes: Folder containing process pseudo code and function text files; the folder is
segmented into subfolders for each and named accordingly.

» Methods: Folder of the methods’ pseudo text file and python code file; subdirectories for each
category are created.

» Results: Folder containing all materials used and generated for and from the execution of a
project study.

The “Results” folder itself is separated into pre and post project execution. The folder and
subfolders are created on project synthesis code generation. For each project execution, a new
“Project Name” folder tree is created, and the “Project Name” folder renamed according to the
user specified project name. The organization scheme is depicted in Figure 4-5. The “Pre” folder
contains the subset material required and used for the specific project operation. It effectively is
an archival of the materials used in the project. The subset material includes the system databases,
methods, and processes used for the project build as well as the synthesis file generated during
system execution.

B ... | Project Folder B ... I Results

Figure 4-4 Project folder-file structure Figure 4-5 Results folder-file structure on project build

The “Post” folder contains the output of the project execution. This includes the data, figures,
and system logs; the folder organization follows the naming scheme. The naming scheme relates
the folder content and is self-evident to folder content; therefore, the matter will not be addressed
in further detail.

62 Concept Implementation

4.2 Process to Problem Solving

AIDRA-DSS execution to arrive at the
problem solution follows a specific sequence. This
is not to be confused with the procedure to execute
any specific code but rather the order of operation
of the system’s tools to arrive at the synthesis code
and ultimately synthesis results. The overall
problem-solving process is shown in Figure 4-6.
The overall process is constant for all problems.
Differentiation of projects occurs in the user’s Support Material Definition <—
selections during the process execution.

Start

Study Definition [«

S

Yes

Sub
Compnents
Exist?

No Change
Yes Definition?

A

Variable Library

The process to problem solution has four
action items. The process is illustrated in Figure
4-6. For any given problem where in this system is
utilized, the process steps are: define the study,
create the necessary supporting elements if they
are not already in system, create and execute
synthesis architecture for the given problem, and,
either based on initial study definition or on > Architecture Generation & Execution -
architecture execution results, iterate the definition Project Builder
itself or iterate system subcomponents, as
necessary. The process repeats until satisfactory Project lteration
completion of the user’s objective. The overall i
process is simple however each step is a process
unto itself. Each is briefly addressed below; a
detailed consideration of the components utilized
within the steps is given in Section 4.3 Front-End:
Core Components Description.

Process Library

Method Library

Vehicle Library

-
I
I
I
I
I
I

I<_|

—

|
|
|
|
“~—
|
|
|

Figure 4-6 General execution process to AIDRA-DSS

4.2.1 Study Definition

In the study definitin step the user user defines the problem. Problem definition includes the
identification of the overall objective of the study and the general elements of the study.
Specifically, these are the elements required to create a synthesis system through the use of the
Project Builder routine. They include, but are not limited to, the vehicle, process, mission,
trajectory, trade study, and even the mehods required. By the end of this step, the user has clearly
defined all system elements of a classical design study that are required to execute the Project
Builder—qgeneration and execution of a synthesis architecture. This is necessary as these elements
should exist within the system for rapid operation; determination if they exist and, if not, to add
them to the system is the subject of the next step—Support Material Definition. Note, however,

Process to Problem Solving 63

many principle components can be generated from within the Project Builder in the event that,
while operating, new requirments or study definition elements are determined necessary and yet
are not currently available or in the event that the user is unaware of what components already
exist in a usable form.

4.2.2 Support Material Definition

The Support Material Definition step involves the generation of the materials required for the
architecture generation step. Architecture generation occurs within Project Builder. The
supporting elements needed for architecture generation include the vehicles, processes, and
methods required for the problem at hand. These correlate to the Vehicle Library, Process Library,
and Methods Library. On identification of what is required to solve the problem in the Problem
Definition step, the user must now verify that the required library elementals exist. In the event
that they do not, the operator must initiate and execute the system’s libraries sub-processes as
necessary to add the required elements. The process is repeated as necessary per element required.

Additionally, to reiterate, any of the base elements identified during Problem Definition, can
be created during the operation of Project Builder during the Architecture Generation and
Execution step. In this way, if an element required was not foreseen, such as a particular method,
it can be added to the system during Project Builder operation. Each supporting library is
accessible through the Project Builder. Once the support libraries are populated to a critical level,
the user could move directly to the Project Builder with confidence that the base elements exist
and, if not, can be added, as necessary.

4.2.3 Architecture Generation and Execution

The Architecture Generation and Execution action item embodies the primary purpose of
AIDRA-DSS. This action item is the execution of a process to arrive at an architecture to solve the
given problem. The process to arrive at an architecture and its execution is the process of executing
Project Builder. The Project Builder, similar to the supporting libraries, has its own procedure of
execution. Project Builder’s process is discussed in detail in section 4.3 Front-End: Core
Components Description, however, a brief discussion of it is given below.

Given the problem definition and setup, the user executes the Project Builder to arrive at the
generation and execution of a synthesis architecture tailor made to address the problem as defined.
With the vehicle and process, as required by the problem definition and subsequent creation in the
support libraries, the user executes the Project Builder. The user selects the desired methods to
model the vehicles and uses these option selections, in addition to others such as trajectory options,
to assemble the core components of a synthesis architecture. The system is executed either in
system with results and visualization displayed to the operator or the architecture is generated and
executed later at the user’s digression. With the architectures generated and executed per the
problem definition, the user now considers if the problem definition has been satisfied, this takes
the user to the last step in the process—Project Iteration.

64 Concept Implementation

4.2.4 Project Iteration

On system execution and result accumulation and review, a study can be deemed either
complete or requiring iteration. A study is considered complete when the system is no longer
required and the study definition is satisfied in terms of system applicability. In the event that the
study is deemed complete, the system is no longer necessary and the process of system execution
ends. In the event that the study is not complete with the given processes sequence, then the process
repeats but with either a change in a design variable, element selection (such as the method or
process), or study definition. On identification of the iteration element, the process restarts at either
Problem Definition or Architecture Generation and Execution depending on if the definition or if
the architecture generation element selections require iteration, respectively.

4.3 Front-End: Core Components Description

Seven principal system modules form AIDRA-DSS. The systems are: Reference Library,
Methods Library, Vehicle Library, Process Library, and Project Builder. Each is addressed in the
following sections.

4.3.1 Reference Library

The Reference Library is a user interface to a database of references and file correlations for
both knowledge gathering and retention, and for system method, process, and vehicle referencing.
The database entry listings and new entry creation form are illustrated in Figure 4-7 and Figure
4-8 respectively.

The Reference Library is the least complicated of the system modules. Two tabs form the front-
end. The first—Figure 4-7—is the browser page; tabulated and shown is an aggregate of references
according to author and title. From this page, a reference can be selected for modification or
deletion, or a new reference entry procedure can be initiated. On both modify and new, the second
tab—Reference Builder—is shown. Figure 4-8 shows an example for the Reference Builder tab.
The tab’s form has two regions. First, the general reference information is displayed. If it does not
exist, as for a new entry, then the entry fields are empty and are awaiting for the information to be
added. The second half of the window is a non-editable region showing where the reference has
been applied, such as a project or method. Tracking the references application allows for easy
accountability for reference use in method, vehicle, or process building.

Front-End: Core Components Description

65

New View/Modfy | | Refresh Delste Close

X [u]

Reference Browser [EEEEY

ID: [185600007

185600001 Mosavi, Amir Multiple criteria decision-making preprocessing using dat

185600002 Sobieszczanski-Sobieski, Jaroslaw Bi-level integrated system synthesis for

fi
185600003 Altus, Troy Bi-level integrated system synthesis for
185600004 i
i

Phillips, Matthew i-level integrated system synthesis for

Sandusky, Robert Birlevel integrated system synthesis for concurrent and di

185600006 Wechsler, David The Mea:

ment and Appraisal of Adult Intelligence

185600007 Finger, Susan A review of re:

ch in mechanical engineering design. Pe

185600008 Dixon, John A review of research in mechanical en;

1

2

3

4

5 185600005
3

7

8 gineering design. P:
B

185600009 Wagner, William Trends in expert system development: A longitudinal con

10 185600010 Roth, Carl A study of artificial intelligence pla

11 185600011 Artificial Intelligence + Distributed Syste

]| save
Author: [Finger, susan] Hext
Title: [A review of research in mechanical engineering design. Part II: Representations, analysis, and design | | Previous
Year: = || cea
Topic: [Design, Engineering, Life Cycle, Non-Aero, Review, Survey, rank3, relevant, prio2] [Clos:
File Location: [fione I ope

Project Topic page

Number Notes

Figure 4-7 Reference Library listing and start page

4.3.2 Methods Library

The Methods Library is a database of
system analysis methods accessible to the
Project Builder for application in the
synthesis tool. The database entry listings
and new entry creation form are illustrated
in Figure 4-9 and Figure 4-10 respectively.
The Method Browser tab is the Methods
Library’s home screen. From here, a
method can be deleted, modified, or added.
A listing of all currently entered methods is
given. The methods are listed
alphabetically. Method ID numbers are
unique and automatically generated on
method creation. General method

Figure 4-8 Reference input and documentation form

7 Method Library

[Vethod Bronser (XS Rl g

searen: |

New

D Name

1 M176 Flatbottom_Lifting_Vehicle

2 Subsonic_Lifting_ Body

3 Transenic_Lifting_Body Aerodynamics
a Supersonic_Lifting Body Aerodynamics
5 Rocket Propulsion_Engine Modeling

6 Hypersonic_Lifting_Body_Weights

7 Std_Atmo_Earth

8 fitcon

9 Gliding Descent_maxD

0 Constant_Q_Climb

" Constant Mach Endurance

2 Constant Altitue Acceleration

3 Air_Launch

u Deboost_Circular_Orbit

1 Subsonic_Wing_and_Blended Body

7 Transonic_Supersonic Wing_and Blended_Body
19 GHV_Hypersonic_Airbreather Vehicle

Primary Discipline
Geometry.
Aerodynamics
Aerodynamics
Aerodynamics
Propulsion
Weight_Balance
Atmosphere Model
Atmosphere_Model
Trajectory
Trajectory
Trajectory
Trajectory
Trejectory
Trajectory
Aerodynamics
Aerodynamics

Geometry,

Secondary Discipline

Thru

Volume

Thrust

Lift

st

t

- a X
Refresh Delete <!
Autho

Thomas, Kiarash, James OpenVSP basec
Thomas, Kiarash Computes the z
Thomas, Kiarash

Thomas, Kiarash Supersanic and
Thomas, Kiarash Rocket engine t
Thomas, Kiarash Hypersonic lift
Thomas, Kiarash Standard atmos
Thomas, Kiarash Script to call ste
Kiarash, Thom: Gliding descent
Kiarash, Thomn Constant dynar
Kiarash, Thom Trajectory analy
Kiarash, Thom Trajectory analy
Kiarash, Thon Air Launch treje
Thomas This method co
Caitlin Aerodynamics Ar
Caitl Hypersonic Res
Sam

OpenVsP mode
v

Figure 4-9 Methods Library Browser

information is displayed including the discipline the method is associated to and a brief method

description.

To create a new method, the user clicks the “New”
button on the Method Browser tab. To view an existing ||

method, the user clicks a cell corresponding to the desired |

method’s row and selects “Modify”.

On selection of “New”, the user is presented with a
method entry form as shown in Figure 4-10. As evident in

the figure,

the user enters the method’s general
information such as a descriptive name and a general

(57 New variable

Name:

Author:

Description:

Save

Discipline

Primary:

Secondary:

o= 7 X

Reset Cancel

description. Additionally, the user selects the applicable
primary and secondary disciplines, such as aerodynamics or propulsion, thereby correlating the

Figure 4-10 New Method form

66 Concept Implementation

method to a discipline. The selection of a primary discipline is required. On save, the new method
information is saved to the back-end database and appropriate tables are created as well as blank
method script files that are discussed later. On completion, the user is taken to the Method Builder
tab—Figure 4-11—for further method specification. On modify, the user is directly shown the
Method Builder tab.

The Method Builder is where the method is fully described, entered, and associated. This task
is segmented into three subtabs in the Method Builder page labeled Logic, I/O, and Application;
they are shown in Figure 4-11, Figure 4-12, and Figure 4-13 respectively. The Logic tab is
organized into four fields. The left half of the page contains two fields for describing and
documenting the method. This includes the general information entered on the method creation
form and a field for selecting the references for the method. The user is to add the references to
support the method. The documenting of the references allows for an easy identification of source
material for later reference if necessary.

57 Methad Library - O X
Method Browser
D- ‘5 | Pseudo Code: E
Application ID: ‘Nona | This code was generated on 2015-07-10 22:11:01.885632 by Refresh ol
Thomas, Kiarash =
Name- ‘Rudﬂat_Peruls\Dn_EnglnE_MudEllng | Save 3
Select Engine specific data H
Author: \'rhomas, Kiarash | Build vectors correlating Thrust setting, ISP, and OF =4
Compute local and reference atmosphere conditions 3
Modification Date: [2019-07-10 22:11:01,885632 | Compute propulsive parameters: CPN, Cstar, AISP
Scale ISP according to scaling correlation factor
Description: Output propulsive variables
Rocket engine modeling based on Sutton for standard liquid rochet bell nozzie
types
Editor:
@Author: Seyed Alavi, Kiarash & McCall P, Thomas R Refresh
@Date: 2019-07-04T16:54:57-05:00
@Email: kiarash.seyedalavi@mavs.uta.edu Save
References: + # @Project: LOKI
@last modified by: Seyed Alavi, Kiarash & McCall P,
D Title Page# Thomas

@Last modified time: 2019-07-08T 16:29:23-05:00
@License: GNU
@Copyright: Kiarash Seyed Alavi & Thomas P McCall

impart numpy as np

from scipy.interpolate import interpid
from scipy.interpolate import griddata
from fitcon import =

£ from STD_ATMO import =

from method_py_Atmosphere_Model_fitcon_8 import =

v

nnnnnn

Add/Save Cancel Help Back Mext

Figure 4-11 Method Builder—Logic definition tab

The right half of the Logic tab’s page consists of two text fields for the method’s code
documentation: “Pseudo Code” and “Editor”. The ‘“Pseudo Code” section is a text field to
document—via pseudo code—the method script that is entered in the “Editor” text field below
“Pseudo Code” field, in the bottom right corner. The “Pseudo Code” is saved to a text file in the
back-end that is created on method creation. The “Editor” field is a text field as well. Within this
field, the user enters the method. The user must write in the “Editor” field in proper python syntax
(or paste a properly written script into the field). Similar to the “Pseudo Code” field and associated

Front-End: Core Components Description 67

file, the “Editor” associated file and entries are similarly created and saved to the back-end, but as
python script files. All method pseudo code and script files s are stored relative to the master folder
as described in the previous section. Both files are named according to the method name,
discipline, and 1D generated on method creation. On entering the information and selecting next,
all page information is saved to the back-end and the user is displayed the 1/O tab—Figure 4-12.

The 1/O page is the page in which the user identifies the method’s inputs and outputs. As is
visible, the page is separated into two regions. The left half is a list of all variables currently stored
in the system and is loaded from the Variable Library’s database. The right half of the page
contains tables for displaying the selected input and output variables. To add a variable to the
selection fields, the user must select the desired variable from the variable list and add them to
either the inputs or the outputs list by clicking the appropriate button: “Add to Inputs” or “Add to
Outputs”. On click, the currently selected variables in the variable list are added to the appropriate
list according to the button activated.

5 Method Library - m] X
Method Browser
5
Variable List Inputs: e
Variable Units Description A Variable
1 A s Speed of Sound 1AT 1
&
2 A_AD_BLDISPLA.. 2 ANENG §
3 ABASE m*2 Exit area for base drag 3 EMNGSELECT
4 ACAP m®2 Capture area 4 GO
5 ACAP_SPLN MNone Engine Geometric Capture Ar ... 5 THRL_VAR
6 ACS m*2 Wehicle Cross Section Area
7 AEAT
8 AEXT None Nozzle area ratio
o Outputs:
s AP kg/m*3 Propulsion index
Variable
10 AlSP s Specific impulse
1 AISP
11 AISP_AVAILV s Vector of available spedficim..
2 CFN
12 AISP_EFF s Effective Specific Impulse
3 CSTAR
13 AISP_EFF_V H Vector of effective spedificim. ..
4 FT_AVAIL
14 AISP_HW H Specific impulse for each har...
5 ISP_ISPAVAIL
15 AISP_REF H Specific impulse at reference ..
& OF
16 AISP_REQV H Vector of required specificim.
17 AISPV H Vector of spedfic impulses for... w
Open Library | |Add to Inputs| |Add to Gutputs Delete Save to File Help Back Next

Figure 4-12 Method Builder—Input and Outputs (1/O) tab

If the desired variable does not exist, the user can click the “Open Library” button, which will
open the Variable Library. Upon opening the Variable Library, the user shall add the desired
variable, after which, it will be available and displayed in the 1/O variable list.

Upon completion of specifying the input and output variables, the user clicks “Next”. On click
of “Next”, two operations occur. First, the selected variables are saved to the back-end in the
appropriate tables according to whether they are inputs or outputs. Second, the active tab changes
to Application, the last tab.

68 Concept Implementation

The Method Library’s Application tab—Figure 4-13—is where the user identifies the method’s
applicable conditions. The applicable conditions are those states in which the method is applicable
and, therefore, are requirement conditions that should be met for correct method application. By
selecting the appropriate condition field elements, the user will correctly define the applicability
of the method. These options are selected from the drop-down menus above each text field. The
text field displays the current selections and notifies the user on condition add or remove.

57 Method Library - m] X

Method Bromser

o/t 2Bm

Method Name: Rocket_Propulsion_Engine_Modeling

Concept Selection

Concept Log

Hardware Selection

Hardware Log

Operation Selection
Subsoenic

Operation Log

Current Selection:

Current Selection:

Current Selection:

Aircraft —Lifting Body —»Flat Thrust Source —»Non Airbreathing —>Rocket Bel

Speed -->Supersonic —->Supersonic
Nozzle

Speed -->Hypersonic —>Hypersonic

Added:
Speed-->» Orbital--> Orbital-->

Current Selection:

Speed--> Supersanic--> Supersonic—>
Speed--» Hypersonic--> Hypersonic-->
Speed--> Orbital--> Orbital—>

Added:

Speed--> Transonic--> Transonic-->

Current Selection:

Speed--> Supersonic—> Supersonic—->
Speed--> Hypersonic--> Hypersanic-->
Speed--> Orbital-> Orbital-->
Speed--» Transonic--» Transonic-->»
Added:

Speed--> Subsonic--> Subsonic-->

Current Selection:

Speed--> Supersonic—> Supersonic—->

Speed--> Hypersonic--> Hypersanic-->

Speed--> Orbital-> Orbital-->

Speed--» Transonic--» Transonic-->»

Speed--> Subsonic—> Subsonic—> v

Add/Save Clear

Help Back Daone!

Figure 4-13 Method Builder—Application tab

There are three condition fields. They are Concept, Hardware, and Operation. The Concept
field identifies the type of vehicle concept the method is applicable to, such as a TSTO launch
vehicle or a flat-bottom lifting vehicle. Similarly, the Hardware field is the collection of
decomposed system hardware components that assemble into a system-of-systems vehicle.
Hardware includes such elements as the landing gear and type, the engine and type, lifting surfaces,
etc. The Hardware are the physical components that assemble into the total system that the method
models. The Operation field identifies the operating conditions in which the method is applicable.

This would include, for example, man vs unmanned, subsonic vs supersonic, fuel and oxidizer
type, etc.

After the completion of the application condition selections, the user clicks “Done.” On doing
so, the information selected is saved to the back-end database, the method addition or modification
is complete, and the Method Library’s Browser tab is displayed, where in, the process can be
repeated for a new method or method modification, as necessary.

Front-End: Core Components Description 69

4.3.3 Vehicle Library

The Vehicle Library constitutes an interface and database for the creation and storage of
vehicles that are to be employed within the Project Builder. The Vehicle Library interface is the
means in which the user specifies the constituents composing the vehicle. Two tabs formulate the
Vehicle Library. They are Vehicle Browser and Vehicle Builder, each depicted in Figure 4-14 and
Figure 4-15 respectively.

-‘ ch ukder .~
Figure 4-14 Vehicle Library—Vehicle Browser Figure 4-15 Vehicle Library—Vehicle Builder
In opening the Vehicle Library, the user is presented wicees =
with the Vehicle Browser. This browser’s operation and yenicie name: P

layout is the same as all previously discussed browser W
pages. The user is presented a chronicle of all currently [
entered vehicles. From this page, the user can select to
modify, create, or delete a vehicle. To modify a vehicle the
user selects a cell in the desired vehicle’s row and selects
“View/Modify”. At this point, the user will be displayed the “Vehicle Builder” window (discussed
below). On the click of “New”, the user is presented a vehicle initialization window as shown in
Figure 4-16. As evident in the figure, the user enters a vehicle name, the vehicle type, and a vehicle
description. This information displays in the Vehicle Browser’s table of vehicles on continuation

as a new vehicle entry. On completion and save, the Vehicle Builder tab displays.

Figure 4-16 Vehicle Library—New Vehicle

The Vehicle Builder tab presents the interface in which the user specifies the specifics of the
vehicle and, in doing, defines the vehicle. The Vehicle Builder page is displayed in Figure 4-15;
the layout and operation are the same as that in the Methods Library’s Application subtab. The
user specifies the constituents composing, defining, and limiting the vehicle. This is accomplished
by specifying the vehicle’s Concept, Hardware, and Operation. The constituents are subsystem
components or conditions that specify the total system. These constituents are the same elements
within the condition fields of the Methods Library. If a vehicle has more than one of an element,

70

Concept Implementation

the user need only select it once. On click of “Next”, the information selected is saved and the user

is returned to the Vehicle Browser tab; this completes a vehicle build.

4.3.4 Process Library

The Process Library is the interface where in an analytical process is defined and stored. A
process can be either a secondary or a primary process. A secondary process is a process that
occurs within or in the context of a primary process. A primary process is a process that can be
executed independently or in conjunction with another defined system process (secondary
process). A primary process governs the total system; a secondary process must exist within a

primary process. The creation of each within the Process Library, follows the same procedure.

The Process Library’s approach is
consistent with the other libraries of
AIDRA-DSS. As in the other libraries, the
Process Library comprises of two principal
tabs: “Process Browser” and ‘Process
Builder”. The “Process Browser”—Figure
4-17—is the screen shown at library
initialization. A table presents the user with
all currently recorded processes. The user
is presented with each process’ identifying
information. This includes the process’
name, whether it is a primary or secondary
process, whether or not convergence

occurs within the process, and a process description. The identifying process information is entered
on process creation, see Figure 4-18. From the browser page, the user can select a process for
modification or deletion, or the user can initialize the creation of a new process. On the selection
of a process and clicking “View/Modify”, the user is taken to the Process Builder tab, Figure 4-19.

Figure 4-17 Process Library—Process Browser

On clicking “New” the new process entry form is presented, Figure 4-18.

The new process initialization form is shown in Figure 4-18.
On completion of this form, the new process is initialized within
the system. To begin, the user enters the process identifying
information: name, author, process type (primary or secondary),
convergence class (yes or no), and a brief description. On the click
of “Add/Save” the necessary tables for the new process are created
in the back-end and the information is saved, thereby initializing
the process. Additionally, this form closes and the user is

displayed an active Process Builder tab.

The Process Builder, Figure 4-19, is where the user defines or
edits a process. The tab’s page is setup in three columns. The first

m

Name: \

Author: |

Medification Date: [2019-09-08 16:32:20.430123

Primary Process O Yes O No
Secondary Process O Yes O No
Convergence O Yes O No
Description:

Add/Save Cancel

Figure 4-18 Process Library—New
Process form

Front-End: Core Components Description 71

column constitutes the general information describing the process. This includes the sections:
Process Details and Pseudo Code. The Process Details section is the process information added in
the new process form; it is not editable. The Pseudo Code section has a text field for the user to
specify in natural language the process. The text added here is saved in a text file in the back-end.

7 Process Library - u] X
Process Browser
Process Details Objective Function Process Disciplines
o s Vercic add o
MName: W_WS_convergence Independent: Primary:
Author: Kiarash, Thomas Variable Discipline G
Modification Date: 2015-07-11 17:14:09.809444 1 SPLN 1 Aerodynamics
Primary Process ves °© 2 Ws 2 Atmosphere M...
Secondary Process
3 Geomet
Convergence 4 hd
Description: Dependent: Secondary:
Generic process based on Hypersonic Convergence to calculate Variable "~ Discipline
WS and SPLM
1 OWEV
OWE_W
Pseudo Code: 2 -
This code was generated on 2019-07-11 Refresh 3 TOGW v
17:14:09.809444 by Kiarash, Thomas - -
Foer Process Functions: Primary Discipline Order:
Select Disciplines as:
1) G Equations Discipline Order ~
2) PERF 1-2-3-4-5
3we 1 WS- TOGW/SPLN 1 Aerodynamics 3
Hote: AERO and PROP are embeded in PERF 2 OWEV- OWEW 2 Atmosphere M... 1
functions
3 Geometry 2
4 Propulsion 4
5 Trajectory 5 v
Cancel Save to File Help Back Done!

Figure 4-19 Process Library—Process Builder

The second column contains the section Objective Function. If the process has a governing

objective equation(s), in this section the user specifies it. The process of specifying the objective
function has two parts. First, the user must add the independent and dependent function variables.
They are added by clicking “Add Variable”; at which a form to select the variables opens, see
Figure 4-20. The form has on the left a table of available variables to choose. On the right are two
tables, one for independent variable listing and a second for dependent variable listing. To add to
either table, and thereby make a variable an independent or dependent process variable, the user

selects the desired variable from the variable list and then selects either “Add to Ind.” or “Add to

2

Dep.” to add the variable to the
independent or dependent variable list,
respectively. When all necessary
variables are added, the user clicks
“Done”, at which point the form is

(57 Dialog

Variable List

me ? x

Independent:

Variable | Units
s

ABASE mh2
ACAP mn2

ACAP_SPLN MNone

1
2
3
4
5 ACS
6
7
8

Description
Speed of Sound
Exit area for ba.
Capture area

Engine Geomet...

A

Variable
1 SPLN

2 ws

Dependent:
closed, the selections saved to the back- | ™ " el
end, and the Process Builder tab’s page is Nemtearcsrate |2 OWEW
shown with the selected variables visible |° =

in the appropriate Primary or Secondary
tables.

Add to Ind. | | Add to Dep.

Delete Help Cancel Save/Close

Figure 4-20 Process Builder—Objective Function variable selection
form

72 Concept Implementation

The second part of the objective function specification process is to enter the objective function
itself. The objective function(s) are added in the Process Function table. On the selection of
independent variables, the Process Function table row count is set to the number of independent
variables. The user must type the objective functions into the newly created rows. Between all
objective functions entered, all independent and dependent variables must be used at least once.
The variable names must be entered as they appear in the Independent and Dependent tables. It is
upon the user to verify accuracy in entry and that all variables have been used. Additionally, all
objective functions should equate to zero. The system is current set only to solve for objective
functions in this form.

The form’s third column section is =
Process Disciplines. In this region, the USer ~ w1 sy por s
identifies the primary and secondary | " ™
disciplines, and the primary discipline = s ssicoms |5 semons
order of operation. The user first selectsthe ' ™™ = '"
disciplines and then specifies the order. To = |s weeer & wigh saance
select the disciplines, the user clicks “Add | ™™ "™ ;

Disc”. On clicking, the discipline selection ' [Femamss e secne b [(e [
form, Figure 4-21, is presented. Figure 4-21 Process Builder—Process Discipline Selection form

The form layout and the process of selecting disciplines, is similar to the variable selection
process. The form is organized with the disciplines (primary and secondary) available on the left
and those selected on the right. To add a discipline to the Selected Process Discipline tables, the
user selects the variable from either the Primary or the Secondary tables under the Process
Disciplines area and selects appropriately either “Add to Primary” or “Add to Secondary”. The
user cannot mix disciplines; that is, the user cannot add a primary discipline as a secondary
discipline or a secondary discipline as a primary discipline. To add or modify the list of available
disciplines, the user must adjust the appropriate table in the back-end database. On selecting the
desired disciplines, the user clicks “Save/Close”, at which point the user is presented with the
Process Builder window, where in the previously selected disciplines are shown in the appropriate
Primary and Secondary tables. To finalize the process build, the user need only award the
discipline order. The discipline execution is serial. In the third and right most column, under
Primary Discipline Order, the user is displayed a table populated with the primary disciplines. The
user must add a numerical value correlating to the disciplines order in the overall process. The
numbering must be integer based; the order will be executed in numerically increasing order. That
is, the discipline with the lowest numeric value will occur first in the process execution; the value
with the greatest numeric value will occurs last.

On completion of all form sections, the user completes the process creation and build by
clicking “Done”, at which point all entered information is appropriately written to the tables in the
back-end and the user is returned to the Process Browser.

Front-End: Core Components Description 73

4.3.5 Project Builder

The Project Builder is the primary component of AIDRA-DSS. This system is the DSS
environment. The Project Builder has seven discernable secondary components in addition to the
standard library browser. These components are the tabs of the DSS GUI. The tab breakdown is
illustrated in Figure 4-22, the order of operation is indicated by the numerals. The inspiration for
segmenting the system into the specific scheme what is called “the standard to design ladder” as
presented in [88]. Simply, the ladder is a symbolic representation of specific technical tasks that
should be present in a technically rigorous process of design and evaluation. Each tab has a unique
task to build towards the final deliverables and ultimately decision making. A summary of each
tab’s objectives is given below. This followed by an in-depth discussion of each tab as fabricated.

Project Builder

Figure 4-22 AIDRA-DSS Project Builder tab set
» Analysis: Selection of primary and secondary vehicles and corresponding trajectory segments
» Integration: Selection of architecture processes and assignment to the vehicle selections,

selection of hardware-discipline methods, and association of hardware function to mission
segment

» Iteration: Selection and specification of a method set for hardware requiring multiple methods
per discipline, and establishment of vehicle trajectory

» Convergence: Review of architecture processes selections including convergence
specifications, and specification of additional convergence criteria including the option for user
specific solver selection and solver option specification

» Screening: Specification of the study as single or multipoint, specification of trade variables
and ranges if a trade study, and specification of required input variable values

» Visualization: Selection of visualization materials to be generated to assist in design evaluation

» Assessment: Evaluation of study results for system accuracy and general design insights
towards the design problem at hand

4.3.5.1 Project Builder Browser

As in the case of the libraries, the Project Builder also starts with a browser window. The style
and operation are consistent with the other browsers. A table lists all currently started project
builds. From this vantage point, the user can delete, modify, or begin a project. The operation is

74

Concept Implementation

identical to the browser in the other libraries discussed earlier. The Project Builders browser tab
and new project window are shown in Figure 4-23 and Figure 4-24respectively.

W ALDRA (D55) - o

[[—————————

3
5s - al sackin
66 VIHL Spoce Access Thom, Siing stady o0 vertcsl takecff
L7 Theen sz sy inthesicing of 2 FDL 7 e 4
s 51 Thom, cr sty o 1S 1A Soht v, Purpose & it et bt oo e o e sy
T oHY Thomas e st of the G Case sty o syt verfton. Trae sty o schton oncept, GHY s o ve
ADFUA_DSS Projes Sulder 101 - GPL3 Lioense

i Dialog ? s

Name: | |
Author: | |
[2020-04-14 |

Creation Date:

Description:

Figure 4-24 Project Builder—New Project

Cancel

Figure 4-23 Project Builder—Browser

4.3.5.2 Analysis

The Analysis tab presents the page wherein the user identifies the principal system(s) for
analysis and the environment of analysis. The Analysis tab’s content is shown in Figure 4-25. The
page is separated into specific sections: Project Information, Analysis Details, Mission Segments,
Vehicle Selection, and Selected Vehicle Decomposition.

0
Browser [JJEJEH Integration Iteration Convergence Sreening Visulization Assessment
Project Information Vehicle Selection
- Primary & Secondary: <
MName: GHV D Name Type Description
Author: 19 RoadRunner_GHY Primary Air Force hypersonic vehicle family. Paper study for a generic hypersanic vehide family fo...
Creation Date: |2020-07-13
Analysis Details
Level of Autonomy: e
Select Vehide
O Ful O semi ® Manual
Degree of Freedom: Selected Vehicle Decomposition
3 hd Frimary & Secondary: | RoadRunner_GHV <
Primary Body of Influence
Concepts Hardware Operations
Earth <
- 1 Aircraft_BlendedBody BWB LandingSystem_Horizontal_GearSkid HumanRated_No_Autonomous
Flat - 2 LiftSource_ Wing_ChordTallessDelta Landing_Ground
Mission Segments 3 ThrustSource Airbreathing_ScramjetThreeD PayloadWeightClass Light Light
Segment 4 Speed_Hypersonic_Hypersonic
1 Booster Separation 5 Speed_Subsonic_Subsonic
2 Constant_Altitue_Acceleration 5 Speed_Supersonic_Supersonic
3 Constant_Mach_Endurance 7 TakeOff_Air
4 Gliding_Descent_maxLD
Mission Segments
Clear Help Back Next
ADRA-DSS Project Builder v 1.01 - GPL3 License

Figure 4-25 Project Builder—Analysis

Front-End: Core Components Description 75

The Project Information section, the top-left region of the page, contains the project specific
information as generated and created in the new project form. This information is not editable and
is repeated, in part, in the other tabs’ page for reference.

Below the general project information, is the Analysis Details section. In this section, the user
is required to select several analysis options. This includes the execution automation level
(currently full and semi are not functional), the celestial body that governs the gravitational and
atmospheric conditions, and the celestial body type assumption, that is, the case of flat, round, or
spherical body assumption. These selections will set the environment of the vehicle’s operation
and method analysis type. These option selections will participate in the governing of the methods
presented for selection in a later window.

Below the Analysis Details section,
is the Mission Segments section. In this
section, a table shows the mission
segments (trajectory segments) selected
for vehicle operation. To select the
mission segments, the user clicks o
“Mission Segments” and the mission | 7 sooue sepeion .
selection window opens, see Figure | s ooete |[vep [comed][sovefones
4-26. In this WindOW, the user selects Figure 4-26 Analysis—Mission Selection window
the desired missions in the same manner as previously discussed for similar selection windows.
The mission segments available directly correlate to the trajectory methods available. On save, the
window is closed, the back-end database updated, and the mission segment selections displays in
the Mission Segment section table.

Available Segments Selected Segments

Name ~ Name
Gliding_Descent_maxLD 1 Booster_Separation
Constant_Q_Climb 2 Constant_Altitue_Acceleration
Constant_Mach_Endurance 3 Constant_Mach_Endurance
Constant_Altitue_Acceleration 4 Gliding_Descent_maxLD

Air_Launch

T T TR R

The section Vehicle Selection (top- ...
right corner) displays the vehicle(s) = =~
selected for analysis. To select a
vehicle(s), the wuser clicks “Select
Vehicle”, at which point, the vehicle
selection window—Figure 4-27—
displays. On the left side of the window,
the vehicles available are shown. These
are the vehicles from the Vehicle Library. The user must select a vehicle. Multiple vehicles can be
selected; however, if multiple are selected, then there must be at least one primary vehicle. The
user must correctly select the vehicles as primary or secondary. A primary vehicle is a vehicle that
is independent but can consist of one or more secondary vehicles. A secondary vehicle is a vehicle
or a system that acts like a vehicle (a distinguishable sub element such as a first stage in a multi-
stage rocket) or is a distinguishable vehicle but is part of a total system that is considered itself as
a vehicle. For example, the Falcon Heavy would be considered a primary vehicle consisting of
multiple distinct secondary vehicles (the side stages, center core, and upper stage) that, in their

e Cancel Swekcome

Figure 4-27 Analysis—Vehicle Selection window

76 Concept Implementation

own-right, can be treated as distinct vehicles with their own secondary missions and sizing
processes. On completion of vehicle selection, the user clicks “save”, the data is added to the back-
end, the window closes, and the vehicles are added to the Vehicle Selection table.

The Selected Vehicle Decomposition section displays the elemental constructs of the vehicles
selected. The user can switch between the vehicles selected. The table displays the constructs
selected during the vehicle build. The vehicle’s concept, hardware, and operation selections are
shown. This is provided for self-review prior to moving to the next tab, Integration.

4.3.5.3 Integration

The Integration tab, Figure 4-28, contains three sections: Process Selection, Method Selection,
and Function Assignment. These sections lead to the selection of the analysis’ processes, the
selection of the analysis’ methods, and the association of hardware to function. The order of
operation is to select the processes first, followed by the methods, and lastly the hardware-function
assignment. Each is discussed next.

Browser Analysis |l e =l Tteration Convergence Screening Visualization Assessment

Project Information

ID: ‘16 ‘ Name: ‘GHV Primary Vehicle: |RosdRunner_GHV

Process Selection

[Name Vehicle Convergence Selected Process Type

14 W_WS_convergence RoadRunner GHV Yes Primary

Select Process

Function Assignment

Selected

Vehicle Hardware Discipline Method
1 RoadRunner_GHV LiftSource_Wing_CherdTallessDelta Geometry GHV_Hypersenic_Airbreather_Vehicle
2 RoadRunner_GHV LiftSource_Wing_CherdTallessDelta Weight_Balance Weight_Balance_Scramjet_Body_LandingSkids_OWE_Estimation

3 RoadRunner GHY ThrustSource Airbreathing ScramjetThreeD Propulsion Scramjet_GHV_Engine

Select Method

Save Clear Help Back Next

AIDRA-DSS Project Builder v 1.01 - GPL3 License

Figure 4-28 Project Builder—Integration

Front-End: Core Components Description 77

4.3.5.3.1 Process Selection

The user selects the analysis process in
the Process Selection and Assignment o e mwr e
window, Figure 4-29. Clicking the “Select ~|** =™ * = e i
Process” button will display the window. T
On the left side of the window is the
Process List. The Process List is an
itemization of the processes available for
selection. The right side of the window 'em s) S S
contains two windows—Primary and Figure 4-29 Integration—Process Selection and Assignment window
Secondary. The primary and secondary terms correspond to the vehicle class not the process class.
The process’ class (primary or secondary) is indicated in the Process List table. A process
classification can be either secondary or primary and can be assigned to either a primary or a
secondary vehicle. (Recall, a primary process is a process that governs the closure of a vehicle
design and can but is not required to contain a sub-process. A secondary process is a process that
operates within the bounds of a primary process.) To assign a process, the user selects the process
in the Process List table and then clicks either “Add to Pri.” or “Add to Sec.” to add the process to
the Primary or Secondary table, respectively. After selecting the process, the user assigns the
process to a vehicle by selecting the desired vehicle from the drop-down window available in the
Primary or Secondary table depending on the user’s selection. Only vehicles selected during the
Analysis page operation will be available as options to the user. When the process selection and
assignment to a vehicle is complete, the user selects “Save/Close” at which point the selections
made are saved to the back-end database and the window closes. The process-vehicle selections
made are displayed in the Integration page’s Process Selection table.

Secondary:

D Name Vehide

4.3.5.3.2 Method Selection

Method selection occurs through the Method Selection window—TFigure 4-30. The window is
accessed by selecting “Select Method” under the Method Selection tab. On button click, the
window displays and is populated.

Methods are assigned according to vehicle-hardware-discipline association. The vehicle(s)
previously selected and its hardware populates the Method Selection window. Each hardware has
the option to be assigned a single method per process discipline (if more than one method is
necessary, all hardware-discipline methods for that discipline should be assigned under the
Iteration tab). The methods available per hardware per discipline display in a dropdown menu in
the Method Name column. To assign a method and activate the analysis option, the user must
select a method from the menu in the Method Name column and select “Yes” under the Select
column. The user can decline a hardware-discipline analysis by selecting “No” under the Select
column; in this case, the method displayed in the Method Name column is non-consequential. By
reviewing the Select column’s entries, the user can review to what degree a given hardware is
being considered in the analysis (hardware-discipline accountability). On completion of method
assignment, the user selects “Save” and the user’s selections are saved to the back-end database,

78 Concept Implementation

the window closes, and the vehicle-hardware-method selections are displayed in the Integration
page’s “Selected” table section under the Method Selection tab.

B Method Selection ? X

Method Selection

Vehide fa ent Discipline Method Name Select ~
2 RoadRunner. " GHV LandingSystem } | GearSkid Atmosphere_Model |Std_Atmo_Earth No
3 RoadRunner. " GHV LandingSystem_Horizontal GearSkid Geometry GHV_Hypersonic_Airbreather_Vehicle No
4 RoadRunner GHV LandingSystem_Horizontal GearSkid Propulsion Scramjet_GHV_Engine o
5 RoadRunner_GHV LandingSystem_Horizontal GearSkid Trajectory Giding_Descent_max.D o
& RoadRunner GHV LandingSystem_Horizontal GearSkid Weight_Balance | Lifting_Body_OWE_Estimation o
7 RoadRunner GHV LiftSource Wing ChordTallessDelta Aerodynamics Subsonic_Lifting_Body o
& RoadRunner GHV LiftSource Wing ChordTallessDelta Atmosphere Model |5td_Atmo_Earth - Mo
s RoadRunner GHV LiftSource Wing ChordTallessDelta Geometry GHV_Hypersonic_Airbreather Vehide v tes
10 RoadRunner GHV' LiftSource Wing_ChordTallessDelta Propulsion v Mo
11 RoadRunner GHV' LiftSource Wing_ChordTallessDelta Trajectory v Mo
12 RoadRunner GHV' LiftSource Wing_ChordTallessDelta Weight Balance Weight Balance_Scramjet_Body LandingSkids OWE_Estimation M
13 GHY : Ai ing_Scrami i Subsonic Lifting_Body v N
14 - GHY : A ing_Scramij : Model Std_ Atmo_Earth ML
15 - GHY : A ing_Scramij Geometry M176_Flatbottom Lifing Vehide ML
16 - GHY : A ing_Scramij Propulsion e
17 RoadRunner. _GHV ThrustSource_Airbreathing_ScramjetThreeD Trajectory e
18 RoadRunner_ "_GHV ThrustSource_Airbreathing_ ScramjetThreeD Weight_Balance e ssion o ©
relp Cancel save

Figure 4-30 Integration—Method Selection window

4.3.5.3.3 Function Assignment

The Function Assignment tab—shown in Figure 4-31—is the interface for the user to assign a
vehicle’s hardware a function mode (its purpose) and assign that functionality to a given mission
segment. The function type is set in the Function column. A drop-down menu shows the available
functions (Lift Source, Thrust Source, TPS, etc.). If multiple hardware provides the same function
for the same mission, their order of operation (simultaneous or sequential) is assigned via the value
set in the Hardware Order column. The order is in ascending order, that is, the lower value
associated hardware function occurs first.

Additionally, this section indirectly sets the mission segments per vehicle. As such, the user
must assure that all required mission segments per vehicle are associated. The mission options
available are from the list selected in the Analysis tab. To add a row, and therefore a mission
segment, select “Assignment”. This will add a single row. Furthermore, note that there is a direct
dependency between mission segment and hardware function; this means that for all mission
segments the vehicle must have some hardware performing a function whether it be thrust, lift,
thermal protection, or some other.

Method Selection
Vehicle Mission Hardware Order Hardware Function ~
1 RoadRurner_GHV | Booster_Separation >l ~ | LiftSource_Wing_ChordTallessDelta ~ | Enviornmen t -
2 |RoadRumner GHV ¥ | Booster_Separation -1 ~ | LiftSource_Wing_ChordTallessDelta - | Lift Source -
3 RoadRumner GHV ¥ | Constant_Altitue_Acceleration ¥ | 1 | LiftSource_Wing_ChordTallessDelta ~ | Enviornmen t -
4 |RoadRumner_GHV ¥ | Constant_Altitue_Acceleration = | 1 ~ | LiftSource_Wing_ChordTallessDelta - | Lift Source -
5 |RoadRumner GHV ~ | Constant Altitie_Acceleraton ¥ 1 ~ | ThrustSource_Airbreathing_ScramjetThreeD ~ | Thrust Source -
6 |RoadRumner GHV ~ | Constant Mach Endurance = |1 ~ | Thrustsource _ScramjetThreeD ~ | Thrust Sour -
7 |RoadRumner GHV ¥ | Constant Mach Endurance ¥ 1 ¥ | LiftSource_Wing_ChordTallessDelta ~ | Enviornmen t v
v
Assignment

Figure 4-31 Integration—Function Assignment tab

By the completion of the Function Assignment tab, the vehicle has its mission segments
specified, hardware per mission segment operation type and variable range defined, and, in the

Front-End: Core Components Description 79

event of multiple hardware with the same function mode, the specification of operational order.
Not defined however, is the mission order. The mission order is set during the Iteration page
operation.

4.3.5.4 lteration:

The Iteration tab—Figure 4-32—is the environment in which the user defines the parameters
that refine the analysis process for proper code assembly. There are two primary objectives: (1)
expand methods per hardware per discipline if necessary and (2) formulize the trajectory. These
objectives are fulfilled by the interactions within the Method Expansion and Functional Mission
Builder sections, respectively.

Browser Analysis Integration [USEludy] Convergence Screening Visuslization Assessment

Project Information
ID: [18 | Name: [aHv Primary Vehicle: [Roachumer Gy |
Method Expansion Process Check
Vehicle Hardware Disc. ~ Vehicle Process Vehicle Grade Process Grade
1 |RoadRunner_GHV ¥ | LiftSource_Wing_ChordTallessDelta v | Aeradynamics 1 RoadRunner_GHV W_WS_convergence Primary Primary

2 RoadRunner_GHV ~ | ThrustSource_Airbreathing_ScramjetThreeD ~ | Aerodynamics

3 RoadRunner GHV | LiftSource_Wing_ChordTallessDelts ~ Aerody
4 RoadRunner_GHV | LiftSour ordTallessDelt ~ | Atmosphere_Model

5 |RoadRunner_GHV ¥ | LiftSou lessDelta ¥ | Atmosphere_Model

& RoadRunner_GHV ~ LiftSou lessDelta ~ Trajectory

7 |RoadRunner GHV | LiftSource_Wing_ChordTallessDelta v Trajectory
< >

Function Mission Builder

5 RosdRunner GHV ~ | NoSec. Veh. Required v | Constant_Altitue_Acceleration = 1 ~ | ThrustSource_Airbreathing_ScramjetThreeD | inp_DUCT_PRESSURE

Primary Vehicle Secondary Vehicle Mission Seqment Mission Order Hardware Trigger Var. Trig A
1 RoadRumner GHV | No Sec, Veh, Required ¥ | Booster_Separation w0 | LiftSource_Wing_ChordTallessDelia | inp_DUCT_PRESSURE -
2 RoadRunner GHV ~ | NoSec. Veh. Required | Booster_Separation -0 - | LiftSource_Wing_ChordTallessDelta | inp_DUCT_PRESSURE -
3 RoadRunner_GHV | NoSec. Veh.Requred ~ | Constant Altitue_Acceleraon ~ 1 | LiftSource_Wing_ChordTallessDeita ~ | inp_DUCT_PRESSURE -
4 RoacRunner GHY ¥ | No Sec. Veh, Required ¥ | Constant Altitue_Acceleration 7 | 1 | LiftSource_Wing_ChordTallessDelia | inp_DUCT_PRESSURE -

6 RoadRunner_GHV ¥ | NoSec. Veh. Required ¥ | Constant Mach_Endurance = |2 ~ | ThrustSource _Airbreathing_ScramjetThreeD ¥ | inp_DUCT_PRESSURE v

Method Delete | Method Add
Save Clear Help Back Next

AIDRA-DSS Project Builder v 1.01 - GPL3 License
Figure 4-32 Project Builder—Iteration Page

A secondary objective of the Iteration page is to verify the vehicle-process selection. This is
done by review of the information presented in the Process Check section. Here, the selected
vehicle and associated process’ grade are indicated (primary or secondary). All vehicles should
have a process and the primary vehicle must have a primary process associated. The user should
review the presented selections for correctness; this is a manual verification process.

4.3.5.4.1 Method Expansion

The Method Expansion section provides the user the option to add or assign multiple methods
to a vehicle-hardware-discipline association. As visible in Figure 4-33, the Method Expansion area
is a table populated with drop down menus for the user to associate a new method as in a similar
manner to previously done. However, the user must now address a new condition, the
conditionality of multiple methods per the same device. This is addressed through the selection of
a control variable and variable value.

80 Concept Implementation

The control variable is a method variable that controls the operational execution of the multiple
methods. The control variable is selectable from the method input variables. The methods
execution is controlled by the value of the control variable as set in the Value column. For example,
if there are three aerodynamic methods (subsonic, transonic, and supersonic) then a control
variable could be the Mach number with control variable values of 0.85, 1.25, and 7. In this case,
the subsonic method would execute so long as the Mach number is less than 0.85. The transonic
method would execute for Mach numbers between 0.85 and 1.25. The supersonic method would
execute for Mach number values greater than 1.25 and less than 7. In this way, the user controls
the application range of a method in a multi-method set.

Method Expansion

Vehicle Hardware Disc. Method Control Var. Value
1 wnner_GHY ~ | LiftSource_Wing_ChordTallessDelta = | Aerodynamics ~ | Subsonic_Wing_and_Blended_Body * AMACH ~ 0.5
2 unner_GHY ™ | LiftSource_Wing_ChordTallessDelta ~ | Aerodynamics ~ | Transonic_Supersonic_Wing_and_Blended_Body v AMACH ~ 1.8
3 qunner_GHV ¥ | LiftSource_Wing_ChordTallessDelta = | Aerodynamics + | Supersonic_Hypersonic_Wing_and_Blended_Body v AMACH ~* |15
4 unner_GHV | LiftSource_Wing_ChordTallessDelta = | Atmosphere_Model ~ |Std_Atmo_Earth - AT - | 100..
5 unner_GHY ™ | LiftSource_Wing_ChordTallessDelta ~ | Atmosphere_Model ~ | fitcon v AT - 9959
& unner_GHY * |LiftSource_Wing_ChordTallessDelta = |Trajectory - | Air_Launch T ATV v 9999
7 nner_GHV | LiftSource_Wing_ChordTallessDelta - | Trajectory ~ | Constant_Altitue_Acceleration * ATV v 9998
8 unner_GHY ™ | LiftSource_Wing_ChordTallessDelta ~ || Trajectory ~ | Constant_Mach_Endurance v | ALT_V - 9959
9 unner_GHY ¥ |LiftSource_Wing_ChordTallessDelta = |Trajectory ~ | Gliding_Descent_maxL.D T ATV v 9999
< >

Figure 4-33 Iteration—Method Expansion section
4.3.5.4.2 Function Mission Builder
The Function Mission Builder section is the area in which the user defines the vehicle’s
mission. The Function Mission Builder is populated with the mission segments selected in the
Integration page’s Function Assignment tab. In this section, the user specifies the parent-child
vehicle relationship, assigns a mission segment and order value to a vehicle, and specifies a trigger
condition if necessary.

Function Mission Builder

Primary Vehicle Secondary Vehicle Mission Segment Mission Order Hardware Trigger Var. Trig ™
1 |RoadRunner_GHY ~ | Mo Sec. Veh. Required ¥ | Booster_Separation o ¥ | LiftSource_Wing_ChordTallessDelta ¥ |inp_AR -
2 |RoadRunner_GHY ¥ Mo Sec, Veh, Required ¥ Booster Separation |0 ~ | LiftSource_Wing_ChordTallessDelta ~ |inp_AR -
3 |RoadRunner_GHY ~ | Mo Sec Veh, Required ¥ | Constant_Altitue_Acceleration ~ |1 | LiftSource_Wing_ChordTallessDelta ~ | inp_AR -
4 | RoadRunner_GHV ¥ | Mo Sec. Veh, Required ¥ |Constant_Altitue_Acceleration = | 1 | LiftSource_Wing_ChordTallessDelta ~ |inp_AR -
5 |RoadRunner_GHV ~ |MNo Sec. Veh. Required ~ | Constant_Altitue_Acceleration = | 1 ¥ | ThrustSource_Airbreathing_ScramjetThreeD |inp_AR -
& |RoadRunner_GHV ¥ | Mo Sec, Veh, Required ¥ | Constant_Mach_Endurance |2 ~ | ThrustSource_Airbreathing_ScramjetThreeD ~ | inp_AR - v
< >

Figure 4-34 Iteration Page—Function Mission Builder Section

The vehicle parent-child relationships are controlled through the Primary Vehicle and
Secondary Vehicle column selections. If the user selected more than one vehicle during the
operation of the Analysis tab, then here the user specifies the vehicle relationships. The primary
vehicle or parent is selected in the Primary Vehicle column. All vehicles are listed as options. The
secondary vehicle or child vehicle is specified in the Secondary Vehicle column. A secondary
vehicle can be a primary vehicle as well. During the operation of the Analysis tab, if only one

Front-End: Core Components Description 81

vehicle were selected, then the Second Vehicle column will display “No Sec. Veh. Required” and
the user must not make any selection. All vehicles and their dependencies must be assigned mission
segments.

For each mission segment, the user is required to assign a value for the Mission Order. The
mission order defines the order of mission segment occurrence in the total mission. The value
assigned expresses the order of operation; the lower the value the earlier the mission segment
occurs. The mission order per vehicle is sequential. In the case of the multi-vehicle, the values
need to coincide if the vehicles (primary and secondary) operate concurrently or as a single system.
At the point of a multi-vehicle disintegration, the mission segment and order per vehicle does not
need to agree. In this way, the user can define a system of vehicles that operates concurrently as a
single system for a specified set of mission segments, but that can also operate disintegrated as
independent individual systems—with unique mission segments—at a predetermined point in the
total mission trajectory.

The trigger variable is a user-selected variable that specifies a variable dependency for the
mission segment execution. The mission segment execution is controlled by the value of the trigger
variable. In this way, similar to the case of multiple methods for single hardware, the user can set
switches to control the mission segment analysis.

If a trigger variable is not required, then the user must set the Trigger Value entry to NA and
set the Trigger Var. to any variable, the Trigger Var. is nonconsequential. In this case, all mission
trajectory control will be accomplished through the standard method inputs for the mission
segment. The inputs are set in the Screening tab.

4.3.5.5 Convergence

The Convergence tab—Figure 4-35—has two purposes. The purpose is to display the process
information (as visible in the Process Information section) and, as visible in the Convergence Setup
section, present the user with a means to control more directly the convergence execution.

The Process Information section presents the user with three information portals: Independent
Variables, Convergence Functions, and Inter-Process Disciplinary Variables. These three portals
are setup for system transparency and system review. Recall that a developmental objective is
solution system transparency. As such, here the user is presented for review and edification, the
independent variables of the process, the convergence functions of the process selected, and the
process variables that are part of the multidisciplinary process (inter-disciplinary variables). The
interdisciplinary variables account for the interconnectivity of the disciplinary analysis and
changes with method selection. From this information, the user can track variable influence and
the degree of discipline dependencies. This is significant for identifying and tracking potential
design driving variables and allows for a means of assessment on method selection for
multidisciplinary variable integration into the concept design. The Process Information section

82

Concept Implementation

presents information; the user is required to review the information for impact, significance, and

correctness.

Browser Analysis Integration Iteration (@ UELC Screening Visualization Assessment

Project Information

ID: 18

| Name: [aHv

Process Information

Independent Variables

Primary Vehicle: |RoadRunner_GHV

Inter-Disciplnary Process.

Variables

Variable P

1 SPLN W_WS_conv

vvvvvv

2 Ws W_WS_convers

Vehicle

ergence RoadRunner GHY

gence RoadRunner GHY

Vehicle

1 WS- TOGW/SPLN RoadRunner_GHV

2 OWEV-OWEW ReadRunner GHV

1
2
3
A

Variable
DI&_BODY

WR

Input oun

Acrodynamics Geometr

Weight_Balance Trajecton
Aerodynamics Atmospt
Acrodynamics Geometr

Weinkt Ralance Genmetr ¥

Convergence Setup
Optmizer
O Yes
@ o

Qutput Style
O Mone
O Figure
@ DataFie

Solver Options
Solver Type.
fsolve

ie-6

Salver

Specific Options.

Save Clear Help Back Mext

ADRA-DSS Project Buider v 1.01 - GPL3 License:
Figure 4-35 Project Builder—Convergence Page

The Convergence Setup section is the interface for refining the convergence process and user
feedback. The user is able to select the convergence output style and specify solver options through
the Output Style and Solver Options sections respectively. The output style refers to how the
convergence output is handled in regard to the user; the user can select to receive no specific
feedback, a data file of the convergence function outputs per iteration, or a real-time plot of the
convergence data. The Solver Option section is where the user can specify a specific solver from
a set of options, specify the numerical zero value for the solver and user specific solver options.
The user specific options interface is a text input area; the text must be in proper python syntax for
the solver selected.

4.3.5.6 Screening

The Screening tab—Figure 4-36—is a significant action location. Three critical tasks are
accomplished: trade study specification, input variables’ value specification, and system
generation. The page’s tasks are categorized horizontally into three rows corresponding to each
task.

Front-End: Core Components Description

83

Browser Analysis Integration Iteration Convergenc

Project Information

e Bl Visualization Assessment

o[s | Name: [Primay Vhicle: ot]
Study Type Trade Variables
Select

Q) single Point
@ Muli Point Vehicle Hardware Disc. Method Min Max Steps
O sensitivity 1 RoadRunner. _GHV LiftSource Wing_ChordTallessDelta Weight Balance Lifting_Body OWE Estimation WCARGO 0 1000 2

2 RoadRunner GHY LiftSource Wing_ChordTallessDelta Geometry rbreather_Vehicle TAU 05 08 3
Run Style

3 RoadRunner_GHY LiftSource_Wing_ChordTallessDelta Trajectory ENDURANCE_CRUISE .1 600 3
® Code Orly
(O In System
Q) Both
Inputs

Vehicle Hardware Discipline Method Variable Value ~

19 RoadRunner GHV LiftSource Wing_ChordTallessDelta Trajectory Constant_Altitue_Acceleration TRAJAN_MIN a5
20 RoadRunner GHV LiftSource Wing_ChordTallessDetta Trajectory Constant_Altitue_Acceleration TRAJ_NSTER 20
21 RoadRunner GHV LiftSource_Wing_ChordTallessDetta Trajectory Constant_Altitue_Acceleration TRAJ_V_END 1750
22 RoadRunner GHV LiftSource Wing_ ChordTallessDeita Trajectory Constant_Altitue_Acceleration THRL VAR REQ_V_HW 1
23 RoadRunner. _GHV LiftSource_Wing_ChordTallessDelta Trajectory Constant_Mach_Endurance CDTW_COR 0
24 RoadRunner GHV LiftSource_Wing_ChordTallessDetta Trajectory Constant_Mach_Endurance ANENG 1

System Execution

Change Output Directory Generate Code Run Code

save Clear Help Back Next

Figure 4-36 Project Builder—Screening tab ’sﬁage .

4.3.5.6.1 Trade Study Specification

The first task is trade study specification. Trade study specification occurs through the Study
Type and Trade Variables sections selections and range specifications. The study type, selected in
the Study Type section, can be selected as single point, multi-point, or sensitivity. The first two
are self-explanatory. The sensitivity type is a type of multi-point but with a specific purpose of
identifying variables of high influence on the design solution and does not allow user selection of
trade variables.

For a multipoint study type, the trade study variable selection and specification occurs through
the operation of the Trade Variables section. There are two steps to setting up the trade study:
selecting the trade variables and identifying the trade variable range and step count.

The user must select the trade variables. The trade variables are selected through the Trade
Variable Selection window—Figure 4-37—that is opened by clicking “Select” in the Trade
Variables section. The Trade Variables Selection window presents the user with a list of available
variables—the left-hand table. From this list, the user selects the trade variables desired and clicks
“Add to Selected”. On click, the variables selected are displayed in the Selected Variables section’s
table. When all trade variables are selected, the user clicks “Save/Close” at which point the data is
saved and presented in the Trade Variables section’s table in the Screening tab.

The selecting of the variables completes the first step; the second step is to specify the variable
trade values. With the trade variables selected the user must enter the, the user enters the minimum,
maximum, and desired data points between the minimum and maximum specified (including the
boundary values). The user enters the values directly in the Trade Variables section’s table.

84 Concept Implementation

Figufé 4-37 Screenihg P'age—T'rade Variable Selection window

4.3.5.6.2 Input Value Specification

The second third of the Screening window comprises of a table of input variables, as
determined by the system, where in the user is to specify the values. Through an evaluation of all
methods selected and their place within the order of operations in the process selected, the system
determines which variables require an initial value from the user. These variables are uniquely
different from the interdisciplinary variables discussed previously in the Convergence tab. The
user enters values for each variable at this interface. On the click of “next” or any of the generation
buttons (discussed below) the input values entered by the user are saved to the backend database
and are automatically entered into the synthesis script on generation. However, if the user clicks
“back”, the data is not retained, as each time the Screening window is displayed the required input
variables are reevaluated and presented.

4.3.5.6.3 System Execution

The bottom third of the page contains the System Execution section. At this point, the user is
presented with a principal option. The user is able to generate the code as standalone but that is
not executed at the time of generation, or the user can generate the code and run it subsequently
but with no tasked figure generation. At this point all necessary elements to generate the synthesis
code have been specified. If the user chooses not to generate it at this point, it will be generated by
default after the Visualization tab’s page completion. Additionally, the user has the option to
change the output folder. By default, the output folder is relative to the location of the GUI’s script
file as described in the earlier folder tree discussion. There is the option to not generate the code
at this point if the user favors to set a desired result visualization scheme, which is set in the next
tab—Visualization. If the user decides to generate and execute the synthesis generation at this
point, then no result data analysis will be conducted automatically; a database of result data will
be generated for later evaluation and analysis upon synthesis code execution.

4.3.5.7 Visualization

The Visualization page is the interface in which the user identifies the decision-making support
figures to be generated. The page is shown in Figure 4-38. The user can specify the file type and
image resolution in the File Format and Resolution sections respectively (located on the left-hand
side of the page). The Visualization Package and Selected Variables sections are where in the user
defines the figures to be generated.

Front-End: Core Components Description 85

T ALDRA. (DSS) - o x

Bronser Analysic Integration Iteration Convergence Screening IR Assessmen it
Project Information

1D: [15 | ame: [ery | Primary Vehicle: [RoacRunner_gHv.

Output Visualization
ackage Selecte

o] axis y-axis z-axis
@ custon 1 SPLN BPLN 0O

Select Custom 2|spn AL |0

File Format. 3 SPLN TOGW 0
QO PNG
® e
O sve

Resolution
QO 72dpi
@ 300 dpi
() 600 dpi

Save Clear Help Back Next

AIDRA-DSS Project Buider v 1.01 - GPL3 License

Figure 4-38 Project Builder—Visualization Page

4.3.5.7.1 Visualization Package

In the Visualization Package section, the user has two options: Standard or Custom. These
options control the variables and figure types that are to be generated. The user can adjust the
standard package. Currently, the standard figures address study success (convergence iterations
per trade and final convergence error per iteration), in addition to geometric and weight design
variable depiction. Ideally, the standard package would contain a set of preselected figures that
should address some standard design questions for a given problem relevant to the conceptual
designer; this set could and would vary depending on the problem/vehicle type. Table 4-3
summarizes a standard figure package set. The Custom option is selected if the user wishes to
specify the visualization output exactly.

Table 4-3 Visualization Standard Package figure set

Field Description Type

Geometry/Weight Standard sizing figure of S,,,,, versus TOGW trade study inclusive Scatter-Line

Geometry Vehicle length versus span; trade study inclusive Scatter-Line

Convergence Depiction of convergence criteria per solver iteration; trade study Scatter-Line
inclusive; f(Process independent variable, error function value)

Study Summary Presentation of all converged and non-converged points and execution Bar

error log check; rapid identification of non-solution iterations

To initiate the custom output option, the user clicks “Select Custom”, at which point the
“Custom” radial option is set active and the variable selection window—TFigure 4-39—displays.
The window is separated into a table of variables available and the set of selected variables and
their corresponding figure axis assignment. The user can plot up to three different variables. The
user selects a variable from the “Variable List” and assigns it to an axis by clicking “Add to X”,
“Add to Y”, or “Add to Z” referring to the corresponding X, Y, and Z axis, respectively. On
completion of variable selection, the user clicks “Save/Close”; at this point the user’s selections

86

Concept Implementation

are saved to the backend database and then displayed in the Visualization tab’s Selected Variables

section.

4.3.5.7.2 Selected Variables

The Selected Variables
section presents to the user the
variables to be visualized and the
style of the visualization. Each
row corresponds to a single
figure. The variables for the x, vy,
and z axes are shown as selected
in the Visualization Variable
Selection form. The interaction

Variable List

K-Axis

Y-Axis

Z-Axis

82

83

84

85

86

<

Variable

BA_BASE

BENG
BENG_BENGMAX
BENG_MAX

BPLN

-~ rn

nnnnn

-
Ratio of B:
Width of E
Engine Wi
MAX Widt

Span of th

ke

1 SPLN
2 SPLN

3 SPLN

Variable

1 BPLN
2 AL

3 TOGW

Variable

Variable

Add to X

Add to Y

Add to Z

Delete

Help

Cancel

Save/Close

Figure 4-39 Visualization—Figure Variable Selection window

required from the user is to select the figure type. Here the user is given a drop-down menu in the
Style column, for each figure, where the user is to select the figure style. Style options include
Scatter, Line, Bar, Pie, Histogram, and Cluster. The user must select one.

4.3.5.8 Assessment

The Assessment tab, Figure 4-40, has the purpose of presenting the user with an interface for
reviewing results for accuracy, reviewing results for design insights, and reviewing design
recommendations. To accomplish this, the window contains three different tabs, each individually
addressing a purpose: Data Summary, Visualization, and Recommendations.

Bronser Analysis Integration Iteration Convergence Screening Visualization ESUEHY

Project Information

D: 18

| Name: [erv

visualzation Recommender

Design Data Summary

Primary Vehicle: |Roadrunner_GHV

Variables Vehicle Option

Value Units

Error Summar) i

Variables Output Value

Known Value

Known Comparison Vehicle

Open Folder | | Load Data

AIDRA-DSS Project Buider v 1.01 - GPL3 License:

Change Comparison

Figure 4-40 Assessment page—Data Summary tab

Vehicle

DONE!

Front-End: Core Components Description 87

4.3.5.8.1 Data Summary

The Data Summary tab—Figure 4-40—is separated into two sections: Design Data Summary
and Error Summary. The Design Data Summary is a section that contains a table that is populated
by the primary design data generated by the code. The significant design variables and their values
are shown. The Design Data Summary is a static display of the results for review by the user.

The Error Summary section is area in which principal design data is compared to a known
vehicle’s value. The percent difference between the known value and the output value are shown.
The primary purpose of this section is to present an easy view for evaluating the accuracy of the
system built. The user can select a specific vehicle for comparison by selecting it from the drop-
down menu next to the “Change Comparison Vehicle” label. The current comparison vehicle name
is displayed in the bottom left box at “Known Comparison Vehicle”. The system will automatically
select the nearest available vehicle available. If desired comparison vehicle is not available, then
the user must add it to the database or perform the comparison in an outside environment.

4.3.5.8.2 Visualization
The Visualization tab, see Figure 4-41, e s o B
displays the figures generated as previously _ﬂ
specified in the Visualization page. The tab is '
separated into two sections; each section is a figure
display area. Under each area is a separated drop-
down menu. From the drop-down menus, the user
can switch the figure displayed. The menu options
are the figures found in the figure folder for the
specific study. The user can change the default —
folder by selecting “Open Folder”. s

. Figure 4-41 Assessment page—Visualization tab
4.3.5.8.3 Recommendations

The Recommendation tab—*Figure 4-42— -~ "=
displays a set of design recommendations for the -
given project. This portion is underdevelopment
and is to be a research and development area for
another work. The purpose of this tab is to present
the user with computer recommendations for the
design problem. This can include the best design
point, the effect of different hardware on the
system, hardware combination recommendations,
and more.

pen e | | Lowsbutn e s e

ADRA.D8E Fec Butder 111 - GRL3 Lien

Figure 4-42 Assessment page—Recommendation tab

88 Concept Implementation

4.4 Back-End: Synthesis Assembler and Architecture

A general description of the back-end was given in section 4.1 Description, Structure, and
Core Components, however, a more indepth discussion of the Synthesis Assembler comonent is
necessary. The Synthesis Assembler is the element that, as the name implies, assembles the
synthesis code. Given the problem’s elements as defined during the operation of the Project
Builder, such as the vehicle selections and decomposition, the processes, and the method selection,
the Synthesis Assembler extracts the information from the systems databases and, using an
assembly instruction algorithm, assembles the synthesis code with correct order of operation and
initialization. The result is a unique and tailor-made synthesis code specific to the problem at hand.
The Synthesis Assembler’s output is a single aggregate file containing all necessary definitions and
information required to execute the analysis.

4.4.1 Synthesis File Structure

The synthesis code itself, as generated, has a specific structure. Every synthesis architecture is
assembled into a structure composing of specific algorithms, as necessary, which can be
categorized by task. Each is identified and described below.

» Process Cost Function: a definition that is the primary call for the solver routine. The function
contains a main analysis call and the objective function to be minimized. The primary output
is the objective function(s) error in the correct form for the solver used.

» Solver Iteration and Call: a definition set that is the primary analysis driver. It contains the
solver call and a routine for approximating the initial values or bounds for said solver. The
solver itself is variable and dependent on the user. In the current environment, both a general
nonlinear solver and an evolutionary global solver are used either individually or in tandem.

» Primary Disciplines Call: a definition containing the primary discipline function calls
(aerodynamics, propulsion, etc.). They are called according to the order of operation set by the
process selected. Interdisciplinary calls are handled appropriately as needed within the parent
discipline method.

» Input Sheet Call: a definition that contains and defines the variables and any associated values
of the input and outputs of each method.

» Mission and Hardware Definition: a definition that identifies the linkages and relevant
information between the mission segments and the functional hardware per mission segment.

» Trade Study Setup: a definition that identifies the trade variables and values for the trade study.
The related or affected vehicle, method, hardware, and discipline are identified as well.

» Data Process and Save: a set of definitions for preparing and saving the data to json database
files.

Back-End: Synthesis Assembler and Architecture 89

»

»

»

»

»

»

Variable Update Handling: a set of definitions that handle the duties of updating and
concatenating the variable data.

Hardware-Method Association: a definition that defines the linkages and constraints between
the various hardware and the principal methods applicable per function and discipline.

Multiple Method Resolve: a definition that, in the event a given hardware or discipline has
multiple associated methods, identifies which method to use in a given situation and the
necessary and/or current input values available to execute the identified correct method.

Multiple Hardware/Method Variable Handling: code set that identifies how to handle data in
the case that, for a given variable, the vehicle or hardware has multiple sources.

Main Analysis Methods: a set of functions that are the engineering analysis methods that are
called in the primary disciplines call block.

Driver Code Block: this code block is a set of code (standard to all synthesis architectures) that
initiates the program by calling the solver and iteration call definition (along with others). This
is standardized code that exists after the if _name__ == “_ main__ " block of python code.
This code handles the appropriate calls and setup of the problem dependent on the convergence

and iteration case selected.

4.4.2 Synthesis File Generation Process

The code generation process to assemble the code is shown in
Figure 4-43. The process is sequential. The process begins with the
querying of the project database for the project variable definitions.
These include the process(es), vehicle(s), and methods selected
along with the method constraints, mission definition, and
hardware-method-mission associations. Based on the process
variable data, the Process Library is queried for the process
information—primary disciplines, discipline order of operation, and
objective functions. The input variables and values are extracted
from the Project Builder’s database; recall that the input and
interdisciplinary variables were identified during the Project
Builder operation and the user has entered the variable values. With
the problem specific data available, the synthesis code is assembled.

The code is assembled into the parts as described previously. A
new code file is created. To it is added the principal analysis control
definitions (Process Cost Function Solver, Solver Iteration and Call,
Primary Discipline Call) in addition to the input values (Input Sheet
Call) and trade study definition (Trade Study Setup). Additionally,
the methods themselves are added. The methods are processed for

| Change Directory |

| Query DB for Primary Data |

| Identify Convergence State |

| Create Analysis Control File |

| Create Analysis Methods File |
4

| Join Files |
¥

| Add Python Import Calls |

| Add “Name Main” Condition |
Y
| Verify Product |

| Join Files |

End

Figure 4-43 Code assembly process

90 Concept Implementation

trigger events for automated code insertion based on the dependent (interdisciplinary) method calls
found within the source file. After processing, the updated methods are inserted into the file along
with additional templated code control algorithms, method resolve algorithms and data processing,
handling, and saving algorithms. On completion, the Synthesis Assembler has output a synthesis
code that can be executed externally or internally of the DSS and is fully distributable with all
uniquely necessary code included.

4.4.3 Synthesis File Generator Structure

The assembler code, the Synthesis Assembler, is a standard python script consisting of many
functions. The functions can be categorized by application. The categories are summarized in
Table 4-4. They, naturally, are similar to the synthesis code structure described previously, as they
are responsible for generating the synthesis file.

Table 4-4 Principal function categories of the back-end’s Synthesis Assembler

Category Description

Utility Methods Collection of supporting definitions not specific to any one condition

Directory Create Definitions that identify root directory and create project subdirectory folder, as necessary.
File Control Set of definitions for file name and path generation, and file copy to directory.

Import Inputs Set of definitions for input sheet import and trade variable setup to proper form.

Data Extract Set of definitions to query databases to extract primary data as selected and specified during

GUI operation. Data is harnessed into useful form. Such data includes the process and
methods selected, method limitations, mission definition, hardware-method-function-
mission association, etc.

File Generator Definition set to control synthesis code generation; calls to sub definitions for creation.
Creates file in structure as described in 4.4.1 Synthesis File Structure.

Part Generator Definition set that supports or executes specific subtasks within the file generation process
or are code templates utilized in file generation. Various definitions generally fall within the
code categories identified in 4.4.1 Synthesis File Structure.

Method Processing A definition set for processing engineering methods for trigger events, import calls, and
proper format. Definitions handle code injection for trigger events.

4.4.4 Selected Significant Algorithms

The Synthesis Assembler and resultant synthesis file comprise of many definitions. The
Synthesis Assembler script is about 4000 lines, and the synthesis file is not limited to any length.
There are several significant algorithms in both files. Many are shared in some form as one creates
the other and the Synthesis Assembler is in part a library of templated code. Several significant
definitions are selected for discussion and are summarized algorithmically. They are separated by
location—synthesis generation (Synthesis Assembler) and synthesis / analysis file.

Back-End: Synthesis Assembler and Architecture 91

4.4.4.1 Synthesis Assembler

The overall approach to file generation according to the Synthesis Assembler is given in
section 4.4.2 Synthesis File Generation Process. In this section, discussed specifically is the
processing of the methods file for insertion into the assembled code. There are two points of
discussion (1) method file processing in general and (2) trigger event processing.

4.4.4.1.1 Method File Processing

Figure 4-44 depicts the method processing process. The procedure begins with the
identification of the methods required for the given vehicle’s solution process. Each method is
transcribed into a temporary methods collection file. During the transcribing process, each
method's file is opened and read line by line. During the transcribing process, if a lines text satisfies
a specific regex condition, the line is processed, and an event occurs. Two specific conditions
searched for are the identification of a trigger event and the identification of an import call (python
element). Other secondary processing occurs but it is not critical to this discussion as it reshapes
the file into a desired layout and formatting style. If the line contains an import call, the import
call is saved to a list that, on completion of all method processing, is filtered for unique imports,
is joined with other required import calls specified elsewhere, and is inserted at the head of the
main synthesis file. If a trigger event is identified, the event call is decomposed, processed, and
the appropriate code is added to the method in the temporary file. The event is discussed in detail
below. After all methods are processed, the temporary methods collection file is appended to the
main synthesis file.

Algorithm Method File Process

Dependents: f (mainAnalysis)

Output: temporary methods file, appending to main synthesis file
for process

2 methods « get methods list

3 for meth in methods

4 line < get method line

6: if line is import line, store import call
7
8
9

if line is definition line, store definition information, write to temp. methods file
if line is trigger event
triggerEventinfo < process trigger event

10: Insert trigger evnet code according to triggerEventInfo into temp file
11: if no special condition, write line to temp. file
12: go to next line

13: Append temp.methods file to main synthesis file
14: Append unique import call list to head of synthesis file
Figure 4-44 Method File Processing function process and layout

4.4.4.1.2 Trigger Event Processing

Each method file, during transcribing, is processed for trigger events. A trigger event is a line
instructing for a certain code call to be inserted dynamically based on user selections. If a line
contains a trigger event call, the event call is decomposed into its core components—event type,
call discipline/function, call hardware, call local inputs, and call local output name. The type

92 Concept Implementation

indicates if it is a function or discipline call. The call indicates the specific discipline or function
of interest. The hardware term specifies whether the call applies to the total vehicle or a specific
subsystem, and the inputs/outputs are the names within the source code that are required to access
the output or input data for the call execution itself and the call results. Based on the event
specifications, the correct code is inserted to call the correct code specified by the event and to
create the correct function that is called. Figure 4-45 and Figure 4-46 are examples of the inserted
event call code and the generated function that is called. Additionally, the generated function is
dependent on a method resolution and variable processing function set, which is discussed in detail
in the next section. The new functions and event call code generated per trigger are transcribed
into the temporary method file as discussed previously.

missionSegmenthumber = inputs[missi egmentNumber*]

callData = ("discipline’ propul: 'totalvehicle', 'propinputs’, 'propdict’)
missionUserLocalInputs = locals()["propInputs"]

propDict, propDict_all = Funct hicle_method_py_Tr sta a(

Figure 4-45 Example trigger event call and local inserted code
def FunctionCall propulsion_totalvehicle_method py Trajectory_Constant_Q Climb_1e(callData, missionUserLocalInputs, missionSegmentNumber):
missionNumber = missionSegmentNumber

funcCallData = {'callData':callData, 'missionLocalInputs':missionUserLocalInputs, 'localMethodName':localMethodName}

vehiclesValuesSet_dct = specialCallDataReturn(N)

setProcMin, setProcSec, setProcFull, origDataSet = processSpecialData(, reduce = None)
return setProcFull, [setProcMin, setProcSec, origDataSet]

Figure 4-46 Example trigger event inserted function

4.4.4.2 Synthesis File

Section 4.4.1Synthesis File Structure summarized the principal function groups and general
file structure. In this section, the principal algorithms are addressed in more detail. Specifically
considered are the groups: Process Cost Function, Solver Iteration and Call, Primary Disciplines
Call, Multiple Method Resolve, and Multiple Hardware/Method Variable Handling. These
algorithms effectively form the spine of the analysis and solution finding process.

4.4.4.2.1 Process Cost Function
The process cost function is the function Algorithm: Process Cost Function (Solver Function)
targeted by the numerical solver; it computes and geft)e”‘t’e”“: f(mainAnalysis)
. . utput: e
returr_ls the _Value of the process _s objective 4 for var in indVarSet
functions given values for the independent 2 inputs[var] « update var val given x0,,;
process variables as shown in Figure 4-47. The 3' resutls = mainAnalysis(inputs)

: . . .4 in (indVarSet, depVarSet
function calls the main engineering analysis & /7 verin(ndVarset, depVarset)

) a) 5: var « extract var val from resutls[var]
function, computes the objective functions’ 6 for objFunc in objectiveFunctionSet
values, and returns the values. These values are 7 e; « objFunc(indVar,depVar)
used by the numerical solver to converge to 8
correct independent variable values.

return e
Figure 4-47 Solver function process and layout

Back-End: Synthesis Assembler and Architecture 93

4.4.4.2.2 Solver Iteration and Call

The Solver Iteration and Call consists of a function where in the Process Cost Function is called
as necessary until problem resolution. Figure 4-48 illustrates the process. The process occurs per
design or mission variable trade as shown by the first for loop. For each trade condition, the solver
is executed for n number of attempts (n4¢¢empe). With each attempt, a different initial condition is
utilized. It was found, for the hypersonic case study addressed in Chapter 5 Verification and
Application, that the success of the solver—convergence—could depend greatly on the initial
condition used.

Several initial guess approaches were implemented and are usable. Approaches include a
constant or random growth factor applied to the previous converged solution (a Monte Carlo type
approach), an evolutionary algorithm, and a simple grid search for an appropriate initial guess.
However, the standard approach is to begin each trade, with the previous converged state’s values
as the starting point of the initial guess for the independent process variable. The value is queried
from the result database using the initCondApprox function. The independent variable values are
adjusted according to the initial guess approach being utilized. Ultimately, with any approach used,
the result is an initial guess that is used by a nonlinear solver to solve for the independent variable.

Upon satisfactory solver completion or expiration due to reaching the attempt limit and
exhausting initial guess approaches, the result is either a converged or a not converged event. If
convergence does occur, the indent variables’ values solved for are passed into the main analysis
and the execution results are returned. The results are processed for form and are saved to a Jason
database file. If convergence does not occur, the final iteration result and solver state is saved for
record keeping. The process repeats for the next trade state.

Algorithm Solver Iteration and Call
Dependents: f(initCondApprox, runEvolSolver, solverFunc, mainAnalysis, jsonifier, jsonSave)
Output: main analysis data and summary

1: foriinngqgges do

2: for jinngsrempe do

3: ifi=1

4: X0 = Xoguess

5: else

6: Xinit < initCondApprox()

7: for var in x;,;;

8: X0;pni¢ < var * initGrowthVar

9: result « solver(solverFunc, x0;,;;)

10: if evalSolve = true and result.conv = False
11: result « runEvolvSolver(solverFunc)
12: X0 = result

13: result « solve(solverFunc, x0;y;;)

14: if result.conv == True

15: data = mainAnalysis()

16: conditionedData < jsonifier(data)

17: jsonFile « jsonSave(conditionedData)

Figure 4-48 Synthesis solver iteration process

94 Concept Implementation

4.4.4.2.3 Primary Disciplines Call

The Primary Disciplines Call, or main analysis, is rather strait forward. Figure 4-49 shows
algorithmically the approach. The function is responsible for executing the engineering analysis
as prescribed by the process. The analysis function is uniquely generated for each synthesis
architecture created according to the process, method, and vehicle/hardware selections made in
Project Builder. However, in most cases the main analysis is a linear sequence of discipline calls.
The analysis for most cases follows that depicted—a standard analysis process for a single vehicle.
For each vehicle’s primary process and the disciplines required the analysis executes per hardware
as required. The result is a dataset containing the input and output of each analysis method
executed.

Algorithm Primary Disciplines Call

Dependents: f(analysis methods)

Output: globalData

1. for discipline (disc) in primary process

2 for hardware (hard) in vehicle (veh)

3 if vehicle hardware associated to discipline

4 for method (meth) in disc per veh hard

5: inputs « get inputs, f (veh, hard, disc, meth)
6:
7
8

data < method(inputs)
globalData « update with local data
return globalData
Figure 4-49 Main Analysis function process and layout

4.4.4.2.4 Multiple Method Resolve and Data Processing

There are situations in which there is more than one method per hardware or function. To
determine the appropriate method and necessary inputs, a method resolve routine is necessary. The
processes to determine, execute, and process the results of a multiple method or multiple hardware
case is illustrated in Figure 4-50 through Figure 4-52. These processes correlate to three functions.
The three functions are referred to as the Method Resolve, Special Call Data Return, and Process
Special Data. These methods are contained within the Multiple Method Resolve, and Multiple
Hardware/Method Variable Handling groups discussed previously. Each is discussed next.

The Method Resolve implements a process to determine the appropriate method to execute
given multiple methods associated to a hardware for a given discipline or function. Upon
execution, the result is the correct method for the given situation. The correct method is determined
by the method’s type (driver method or not), the number of methods, and the methods’ control
variable’s value versus the variable’s current value. The process is depicted below. The function
returns the determined method’s name and function handler. The input (methodDataSet) is a list
of relevant methods, their data, and their handles. In the greater scheme, the Method Resolve is
called within the Special Call Data Return function, which is discussed next.

Back-End: Synthesis Assembler and Architecture 95

Algorithm Method Resolve

Dependents:

Input: methodDataSet

Output: methodUsePointer, methodUseName

1 names, pointers, contVar, contVarVal « decompose methodDataSet

2 if length(methods) == 1 and conVar ! = None and conVar ! = Driver

3 methodUse = methods[0]

4: elif driver method in methods

5: if count(drivermethod) > 1

6: raise exception "more than 1 driver method"

7 else

8 i « control method index

9: methodUse = methods][i]

10: elif length(methods) > 1 and driverMethod not in methods

11: while j < length(methods)

12: if j == length(methods) — 1

13: if currentControlVarVal < controlVarVal

14: methodUse = methodsl[j]

15: elif currentControlVarVal > controlVarVal

16: raise exception: "Current value exceeds methods ranges"
17: methodUse = None

18: else

19: raise exception: "No method meets constraints

20: methodUse = None

21: elif j ==

22: if currentControlVarVal < controlVarVal - methodUse = methods|j]
23: else j+=1

24: else

25: if controlVarVallj — 1] < currentControlVarVal < controlVarVal
26: methodUse = methods|j]

27: else

28: j+=1

29: return methodUsePointer, methodUseName
Figure 4-50 Method Resolve function process and layout

Special Call Data Return

The Special Call Data Return is the function set that identifies and executes the method given
a trigger event. The functions general structural procedure is shown in Figure 4-51. The Method
Resolve is called in this function. The principal output is the data generated from the resolved
method. The inputs are the trigger event data and the current variable data set at parent method
execution. The process executes based on the trigger events data: event type, event option call,
hardware call, specified local inputs, and specified output name. Per vehicle and per functional
hardware as prescribed by the call option and hardware, the procedure identifies the appropriate
method for the given state of the methods’ constraining variable and method types. The global
inputs, for the identified correct method, are updated with the specified local input variable values.
The updated values are inserted into the method, the method executes, and the results are returned.

96 Concept Implementation

Algorithm 2 Special Call Data Return
Dependents: f(methodResolve)
Input: trigger event information, inputData
Output: data
type, opt, hard, input, output « triggerEventData
disc, func « func2discMap(opt), disc2 funcMap(opt)
for veh in vehicleSet
hardwareSet « missionFunc2hardwareMap(mission, func)
for hard in hardwareSet
methodSetData « allMethsData[veh][hard][disc]
where methodSetData of type [name, pointer, controlVar, controlVarVal]
if currentMethod in methodSetData — pop method
locMethinputs « get current method input values from inputData
locinputs < get updated variable values from trigger event data
inputSet « update locMethInputs with locInputs
methodPointer, methodName « call methodResolve(methodSetData)
data < call methodPointer(inputSet[methodName])
return data
Figure 4-51 Special Call Data Return function process

R e
RrwdMkR O

Process Special Data

Process Special Data processes the data returned by Special Call Data Return prior to passing
the data back to the parent function that had initiated this cycle of events. The data for each function
source as related to the hardware and vehicle is returned as a set of data identifying the variable
values by hardware, vehicle, and total vehicle. In this way, all data states are available to the parent
analysis file for use. The necessity of a data processing event arises due to the potential for
multiplicity of vehicle or hardware and the necessity of situational awareness of the variable for
proper total variable value determination, for not all variable’s total is the simple sum of the
individual variable’s values (XT = Tiorqr but Ylsp # Isp,,,,,)- The simplest case is the single
vehicle and single hardware. In this case, the minimal condition (the single hardware’s functional
effect) is the total condition (the total vehicles functional effect on that variable). Figure 4-52
shows the process of the Process Special Data function. Each variable is treated according to its
type—simple average, simple sum, weighted average, or special case. The type and associated
handling rule must be identified for each variable.

Algorithm Process Special Data

Dependents: f(mainAnalysis)

Output: processedData, originalData

1: wvar data set « gather similar varialbes per hardware data set per vehicle
2: for each vehicle harware set and var in vehicle hardware set do

3 check var for special conditions (weighted average, sum, etc.)

4: process variable according to special condition and store in dictionary
5
6

for each veh and hardware, process var subsets into total system, local system, and local hardware sets
return processedData, originalData
Figure 4-52 Process Special Data function process and layout

Chapter Summary 97

4.5 Chapter Summary

4.5.1 General Summary

In this chapter, a presentation of the principal research objective—development of a decision
support framework for the CD phase—was given. The system is referred to as AIDRA-DSS. The
overall system was discussed. The general file structures, both front-end and back-end, were
presented. An in-depth presentation of the front-end and back-end was given. Identified and
discussed were the support libraries (Reference Library, Method Library, Process Library, and
Vehicle Library) as well as the primary DSS environment, the Project Builder, and principal
components and approach of synthesis code generation through the Synthesis Assembler. The
Project Builder is the principal element that the libraries support. A primary deliverable of the
system is a synthesis architecture.

AIDRA-DSS’s primary directive is the assembly, documentation, and standardization of sizing
architecture generation. The goal is transparency and accountability in the development of sizing
toolsets. AIDRA-DSS is a semi-automated tool-of-tools. Through a code assembly platform, given
the user’s specifications, the system assembles base components into a functional architecture for
a given problem. Its primary purpose is the assembly of methods into a sizing toolset to better help
in decision-making. This is model-based engineering, with a capacity to model any hardware’s
effect and contribution to any discipline within the design process, to assist in design evaluation
and decision-making. Each sizing toolset is specifically generated to solve the problem at hand.

With the system discussed, the next objective is to demonstrate proper system functionality
and potential. The next chapter will demonstrate the functionality of the system by presenting a
case study in both single point verification and multi-point trade study.

4.5.2 Contribution Statement

» Developed and presented a unique generic synthesis assembly tool founded on principles of a
vehicle-of-vehicle concept and problem definition by vehicle-hardware statement.

Chapter 5 VERIFICATION AND APPLICATION

Having specified the system concept and implementation, the next requirement is to
demonstrate functionality and application. The research conducted and elaborated on in this
document is of course of two parts. There is the tool developed and there is the output of the
execution of the tool and its utilization. Functionally, the system’s outputs are both the synthesis
code generated and the output of the synthesis code. The correctness of the synthesis code results
depends directly on the correctness of the code assembly.

Proper system code assembly is verified by manual inspection of code assembly and, more
significantly, is mostly inferred from correct output upon assembled synthesis system execution.
As of now, there is no automated or computerized intelligent verification of proper code assembly
aside from the assembly code executing without error. For the purposes of the following
discussion, the synthesis codes were manually checked for proper assembly. On inspection, all
codes were assembled as algorithmically specified. With this understanding, the condition of code
assembly is considered properly executed. Therefore, the criterion of manual verification of
synthesis code assembly based on user GUI selections is found to be complete. The remainder of
this chapter evaluates the code assembly by consideration of correctness of code output and
demonstrates system application.

Inference of correct assembly and demonstration of system application is accomplished
through the execution of a verification study and a trade study. The verification study and the trade
study are the subject addressed in this chapter. The problem setup and results of the case studies
selected are systematically presented in the following sections. Addressed first is a general
description of the problem and solution approach. The verification and case study are on the topic
of hypersonic reusable vehicle demonstrators.

100 Verification and Application

5.1 Problem Statement

The execution study is separated into two parts—uverification and application demonstration
through a trade exploration. The verification step is critical in establishing the correctness of GUI
to synthesis code operation and execution. The trade exploration takes the verification step a step
further. It serves as not only a system test and verification for the multipoint system execution
case, but is also a demonstration of the systems utility to a larger problem that is relevant. For the
purposes of this research, the objective is to demonstrate system operability for the single-vehicle
and the single process case.

5.1.1 System Verification

The verification and validation is presented in two parts. The approach can be broken into the
consideration of the single point and the multi-point cases. Both are conducted to verify proper
system execution. However, for the purposes of the discussion of verification, the single point case
is considered the primary focus here as it demonstrates the key system component of individual
vehicle execution on which any multi-point case is based upon. That is, the multi-point case is an
expansion of the single case (repeated execution of the single point case for a breath of varied input
values).

Single point verification occurs by executing the system for a known control vehicle and
comparing the resulting design output to known vehicle design variables’ values (legacy
verification data). System execution correctness is inferred based on the output versus known
variable comparison. Several vehicles are selected as representative cases. They are selected such
that the AIDRA-DSS system must execute several scenarios in which the process components
must be varied. Control vehicles are both, real world production or test vehicles, and concept case
study vehicles from other documented project (paper) studies.

The problem of verification is approached through a systematic buildup. To establish
verification, there is the establishing of the vehicle selections, the vehicles’ missions, the vehicles’
synthesis process, and the synthesis methods that culminates in the result evaluation and,
subsequently, satisfactory verification establishment. Each step is addressed in the following
chapter sections.

5.1.2 Trade Study

The trade study is an expansion of the single point verification case. The trade study entails
the variation of assumptions or input variables to arrive at many solutions that are presented to the
user as a space of solutions. The solution space is there to assist in the evaluation of the solutions’
responses to variations in design variables. Figure 5-3 illustrates simplistically a trade study as
multiple cases of a single point design case, Figure 5-2, with variation in a design variable.

The trade study serves two purposes. First, in terms of system operability, it demonstrates the
iterative multi-point analysis functionality. Second, it presents an opportunity to study a problem

Problem Statement 101

through the exploration of a solution space. In the multi-point case, it is possible to evaluate
selections in vehicle concept, configuration, hardware, and operational conditions. In the case
presented in this chapter, the single point verification vehicles are used as baseline concepts to
explore a hypersonic solution space.

The trade study identifies, synthesizes, and ¢ xzc

LONG BODY VS. SHORT BODY
WING LOCATION AND DIHEDRAL ANGLE

evaluates a representative baseline set of ANGLE OF INCIDENCE HOUNTD

hypersonic test vehicle concepts in terms of the

consideration of carrier vehicle constraints.

Figure 5-1 illustrates considerations for carrier CECTION SEAT pATH

vehicle constraints through the illustration of the on \;
. . . \

_ _ SPACE

X-24C gnd B-52 .combmatlon. _Basellne X\ ™\

configurations’ solution topographies are = '

FUSELAGE
CLEARANCE

JETWA KE—\

® X-24C CG LOCATION

identified through the evaluation of various —
vehicle operational requirements; as such, a .
trade matrix is identified. The multi-disciplinary o X

Study results are constrained with carrier Figure 5-1 Illustration of X-24C test vehicle and B-52 carrier
L. vehicle constraints considerations [146]

payload mass and geometry limitations. The

multi-disciplinary results provide physical insights into near-term hypersonic test vehicle design

variable relation to the carrier vehicle requirements.

The trade study case is similarly built up as the single point verification case. Due to significant
overlap between the two cases, both are addressed concurrently. As such, the multi-point case is
likewise documented through a systematic buildup addressing the establishment of the vehicle
selections, the vehicles” missions, the vehicles’ synthesis process, the synthesis methods, and the
additional identification of a trade matrix, which finalizes in result presentation and discussion.

A
Al h
s | | o
Feasible solution
space
0/2/ TOGW
/‘Y@
\\\\
Design Point
m;gnjg Igﬁgg‘lu; (0]}
- Min (TMW)ro
" Segment Climb OE| Min TOGW from AR
<G trade-study
ht a\\e"“
~ ./
(WiSho AR; AR, AR;
Figure 5-2 Example of the classical performance matching Figure 5-3 Trade study illustration visualized by a set of

diagram design point[85] performance matching diagram[85]

102 Verification and Application

5.2 Vehicle Selection

The vehicle concept and configurations selected for study are categorized by verification case
and multi-point trade study case. The vehicle selection of each is considered.

5.2.1 Verification Case

The verification vehicles include a mix of concept vehicles and flown vehicles. The vehicles
are hypersonic test vehicles. The hypersonic test vehicles selected are the USAF AFRL Road
Runner Generic Hypersonic Vehicle (GHV) [147] and X-51A [148]. Each vehicle represents a
different concept, blended-body versus all-body respectively. A range of vehicle concepts has been
selected in order to ensure that the methods for each discipline will have to change, thereby testing
for proper code generation. Note that the vehicles selected are high-speed (hypersonic). Low speed
(subsonic) vehicles could equally have been used. However, hypersonic systems are a current
research and development area of relevance to many governments and agencies. As such, the topic
serves as a relevant case study demonstration. Additionally, the trade study case is for hypersonic
systems, so the verification by hypersonic systems supports the trade study cases as well. Under
this condition, the system is tested for proper operation and synthesis code generation. Table 5-1
identifies each vehicle and summarizes each vehicle’s general classification.

Table 5-1 Verification study vehicles

Name Class Organization Mach Range Summary
GHV Hypersonic Test Air Force M=6 Blended-Body waverider with 3D inlet and nozzle air-
breathing scramjet powered cruise vehicle concept
X-51A Hypersonic Test DARPA M=6+ All-body 2D scramjet powered hypersonic test vehicle
Air Force

With the vehicles identified, the geometric and sizing variables for each vehicle are tabulated
in Table 5-2. Additional discussion of each vehicle can be found in Appendix A Case Studies
Expanded.

Table 5-2 Vehicle sizing and general parameter values [147, 148]

Units GHV(1x) GHV(2x) GHV(x) GHV(@4x) GHV(5x) X-51A
T - 0.0735 0.0698 0.0678 0.0674 0.0657 0.2075"
Viot m3 0.563 1.494 2.713 4111 5.642 0.705"
Spin m? 3.888 7.705 11.699 15.496 19.457 2.26"
l
Overall m 4.468 6.319 7.739 8.936 9.991 4.267
Fuselage m 4.313 6.100 7.471 8.627 9.645 -
d m 0.479 0.677 0.829 0.957 1.070 0.584
b m 1.488 2.104 2.577 2.975 3.327 0.702
Werow N 5430 11586 19386 27894 36456 6690
Wruet N 1099™ 3493 6658 10331 10331 1241
w/s N/m? 1397 1504 1657 1800 1874 2960"
* estimate

** usable fuel plus approximate non usable (launch weight less cruiser operating weight)

Vehicle Selection 103

The verification vehicles are illustrated below. The GHV and X-51 are shown in Figure 5-4,
Figure 5-5 respectively.

Figure 5-4 GHV Figure 5-5 X-51.

5.2.2 Trade Study Case

The vehicles from the verification case form a baseline vehicle set for the trade study case. As
in the verification case, the all-body (AB) and the blended-body (BB) concept types are
represented. Furthermore, the hypersonic test vehicle case is expanded to consider both
airbreathing and non-airbreathing systems. The GHV and X-51 are used both in their initial
airbreathing concept and in a modified non-airbreathing concept state. Figure 5-6 visualizes each
of the vehicle concepts. The blended-body concept is represented by the GHV vehicle class
concept. The X-51 concept represents the all-body class. Note that the all-body’s principle lift
generating source is its own body and, as such, is also referred to as a lifting-body (LB).

The GHV concept is an air-breathing blended-body vehicle. To address the rocket powered
blended-body concept (BBRKT), the GHV vehicle is transformed into an enclosed fuselage rocket
concept, Figure 5-6(b). The vehicles fuselage intake is closed off and a rocket system added. The
X-51 concept is the baseline for the AB airbreathing concept (AB2DS)—Figure 5-6(c). A rocket
class AB baseline (ABRKT)—Figure 5-6(d)—is modelled after the FDL-7 and McDonald
Douglas Model 176 and MRS, which predate the X-51 but share many similarities in configuration
and concept. The X-51’s configuration’s outer mold line is very similar to the FDL-7’s and Model
176’s configuration, but with the addition of a spatula nose and an underslung 2D scramjet in place
of the rocket propulsion system. Additionally, for low-speed landing, the AB concepts have an
internal swing-wing included (historically included in the FDL-7, Model 176, and MRS as well).
All systems concepts were originally designed for high Mach number operations. Note that the
objective herein is not to drive to an optimal vehicle configuration, but rather to realize a general
solution space. The vehicle concept perturbations are a representative spectrum incorporating both
near-term and mid-term propulsion systems.

104 Verification and Application

I

— o

(a) Air-breathing GHV baseline (BB3DS)

(c) Air-breathing X-51 baseline (AB2DS) (d) Rocket-powered Model-176 baseline (ABRKT)
Figure 5-6 Multi-point trade study baseline vehicles.

5.3 Processes Definition

In this section, the synthesis process implemented for each case study is discussed. Each case
study follows the same general process. The process implemented does not very and its variation
should not be misconstrued with the variation in methods selected from case-to-case. A process
coordinates the methods, and the methods can be variable while existing within the operation of
the same process. The methods are independent of the process and are discussed in a later section.
Presented in this section are the multi-disciplinary synthesis process, the convergence processes,
and the process to solution space formation.

5.3.1 Multi-Disciplinary Synthesis Process

The multi-disciplinary synthesis core process is shared between both the single-point and
multi-point case studies. Figure 5-7 illustrates the process. The dash-dot area sections the synthesis
core process. Both studies share this convergent process. It is discussed in detail below. The multi-
point process utilizes the same core synthesis process; however, appended to it is an iterative
feedback loop as indicated. In the multi-point case, the single point case is executed repeatedly to
identify a set of solutions; it is a trade study. In this process, the single point case is repeated with
different configurations, concepts, hardware, or operational conditions. All conditions of the single
point case’s processes remain; that is, the disciplinary execution, order of operation, and
convergence approach are maintained.

The synthesis process for all case studies implemented is converging. Convergence is
synonymous with the phrase: “closing the design.” A converging process is one in which some

Processes Definition 105

objective function or functions are satisfied in an iterative manner. Through this process, some
design variables value is searched for until a predetermined condition (objective function) is met.
A non-converging process is one in which no process objective function is met. In such a condition,
the design is not iterated to satisfy a predetermined design condition. In the non-converging
process, the resulting vehicle solution point would be considered not closed. The processes used
here are converging; therefore, all design points indicated herein are closed designs.

5.3.2 Convergence Process Description

The process is a series of steps. There are two primary parts: the disciplinary analysis and the
convergence loop. The disciplinary analysis exists within the convergence loop as indicated in
Figure 5-7. The convergence loop contains the analysis block and, in an iterative process of
analysis block execution, seeks convergence criteria satisfaction through analysis input variable
variation. The convergence iteration variables are planform area (S,;,,) and wing loading

(W /Spm)- The study sizing methodology is a weight and volume-based convergence process. The

process employed here considers the total vehicle volume required given the weight estimate. The
approach is adapted from references [85, 86].

The disciplinary analysis begins with the assumption of a baseline vehicle and mission profile.
A key geometric parameter—the vehicle volume coefficient (7 = V;,; /S;ﬁl)—is held constant for

each convergence cycle. (The variation of T allows for a volumetric scaling of the vehicle rather
than a simple pictorial scaling, which is more appropriate for hypersonic vehicles.) It is an input
into the geometry method and directly defines the other geometric parameters given the vehicle
configuration. With a geometric definition in place, the discipline specific analysis modules
execute. They are executed in the following order: aerodynamics, propulsion, trajectory, and
finally weight and volume. The aerodynamic and propulsion modules can be executed either: (1)
in the sequential series to generate aerodynamic and propulsion lookup maps for the vehicle at
different operating conditions, or (2) they can be called directly within the trajectory methods. In
the case studies executed here, the aerodynamic and propulsion disciplines are called directly in
the trajectory methods. The trajectory module utilizes the vehicle’s aerodynamic and propulsion
data in the analysis of the vehicle's trajectory. From the trajectory analysis, the vehicle's
performance parameters are determined, including the required weight ratio along the flight path.
The weight and volume module updates the weight and volume of the vehicle based on the
trajectory module’s output. On completion of a sequence of disciplinary module-based analysis
execution, the instance of analysis is complete. However, the overall vehicle has not necessarily
converged.

106 Verification and Application

Update Study

Study Definition |« Definition

v

> Geometry <

v

Aerodynamics

v

Propulsion Update Trade
Variables P Variable
Trajectory
Weights

I
I
I
I
I
|
|
|
|
| | Update Convergence
|
|
|
|
I
I
I
I
I
I

Converged

| Single-Point Sizing Sequence

€

Figure 5-7 Sizing process, both single-point and multi-point sequence

After the analysis block’s execution, the objective functions are tested for solution
convergence. Two objective functions are minimized simultaneously, see equations (5.1) and
(5.2). The first objective function, Eg. (5.1), is a function of operating weight empty by weight
analysis (OWE,,) and operating weight empty by volume analysis (OW E}/). This function closes
the vehicle’s weight and volume requirement simultaneously. The second objective function, Eq.
(5.2), is a function of wing loading (W /S,;,,), planform area (Sy;,,), and takeoff gross weight
(TOGW). In this function, the TOGW and planform area closes through an iteration of the wing
loading. The convergence process is complete when each cost function equates to zero. In other
words, the vehicle is said to be converged when its solution point is mathematically acceptable
because weight and volume converge with OWE,, = OWEy, and (W /S,1) = TOGW /Sy If

the objective functions are not satisfied, planform area and wing loading are iterated, and the
sequence repeats until both cost functions are minimized simultaneously. For further discussion of
this approach and the metrics used in the equations see Czysz [149], Coleman [85], and Gonzalez
[86].

Processes Definition 107

Obijective Function 1:

OWE, — OWE,, = 0 (5.1)
Objective Function 2:
(W) roew 0 5.2)
S guess Spln .
Weight Budget:
OWEy = OEW + W4y + Wepy, (5.3)
OEW = Lger - Ky - Spln + Csys + Vchrv +T/W - WR/ETW) (Wpay + VVcrw) (5 4)
1/ +pg) — fsys —T/W - -WR/Emy
VVolume Budget:
OWEV S Sélf‘t) (1 - kvv - kvs) - (V;ocrw - kcrw)) Ncrw - Wpay/ppay (5.5)

kye - WR-T/W + (WR —1)/pppi
5.3.3 Process to Solutions Space Formation (Multi-Point Case)

The subject of this section is the practical implementation of the processes into the
development of the multi-point case’s principal deliverable, the solution space visualization. This
is a frequently misunderstood process.

A solution space is simply a locus of single point designs that can be visualized. An examiner
formulates and visualizes a solution space to assist in evaluating trade options and solution
behavior in a multidisciplinary environment. The formation of the solution space is the multi-point
case’s process in action. To understand better the process and, more importantly, the outcome,
Figure 5-8 illustrates the process to arrive at the solution space definition. In this illustration, the
X-51 type lifting-body 2D scramjet concept configuration and the GHV blended-body 3D scramjet
concept configuration are used to give example process context. The example considers a three
variable trade scenario for each vehicle: cruise time, volume coefficient (), and payload mass.

Figure 5-8 illustrates the stepwise processes to the population of a solution space. This
illustrates pictorially the operational results of the process shown in Figure 5-7. Considering Figure
5-8, a solution space is a locus of single point designs, the manifestation of which begins with an
initial set of design point solutions. This first consideration is illustrated in Figure 5-8(a). Each
point is, in this case, a converged solution for a given set of inputs. The process to arrive at each
individual solution is the execution of the single point case’s process. The resulting solutions are

108 Verification and Application

mapped onto a plot, forming a simple solution space. In this example, each point plotted
corresponds to a different mission cruise time. The cruise time is indicated alphanumerically next
to each point. This set of points forms a mission cruise time trade for a given vehicle’s (X-51 class
AB) payload weight, and . Similarly, the cruise trade is executed for a new t, as illustrated in
Figure 5-8(b). The diagonal lines, highlighted by the callouts for the values of z, are lines of
constant vehicle z, with the maximum value (minimum slenderness) appearing on the left and the
minimum value (maximum slenderness) on the right.

Continuing with Figure 5-8 (c), another trade variable is introduced. The activities discussed
for figures (a) and (b) are repeated but with a new input variable condition (the trade variable). In
this example, trades in vehicle payload mass are conducted. The results are added to the plot. As
such, this one diagram now illustrates three different trades. Each separately bounded and shaded
solution space corresponds to a different payload mass mission of varying cruise endurance and
geometric parameter z. Any number of hardware or operational trade variables could be introduced
to expand the solution space, revealing additional design behavior of the concept and configuration
selected.

Finally, as illustrated in Figure 5-8(d), the trade option is expanded to include the vehicle
concept and configuration. All activities discussed in Figure 5-8(a)-(c) formulation are executed
again for the new concept and configuration. In this example, a vehicle of the GHV type is
introduced to the trade matrix. Now, represented in this individual figure, is the solution space as
given by the trade variables—cruise time, 7, and payload—for both a X-51 class and GHV class
vehicle, capturing the behaviors of an all-body 2D scramjet vehicle versus a blended-body 3D
scramjet vehicle. At this point, to derive further information from the illustration, constraints could
be added to the figure.

T T T T
i Cruise Endurance =0-750 s] Cruise Endurance =0-450s | 7
7 =0.1405 7=0.1405-0.2143
; r Payload Mass = 0 kg b ; r Payload Mass = 0 kg 1
31 18 -
— 750 o = o213 Ereasing T Increasing ¢
500 b B b A
s @ Increasing Cruise Time IZ y 4 ,/ .
L o B 3 0.1405 4 /7 / e 1
o S,Qv\ Single Converged Vehicle Solution
Planform Area Planform Area
(a) (b)
T T T T T T T
Cruise Endurance =0-750s Repea_t for E_ach
Hz = 0.1405 - 0.2143 A 4 - Configuration | J
Payload Mass = 0 — 4000 N S o -
L 750 J L < G @2«“‘%{“@;« J
% ‘ 2500 N 500 % & S (SN 0
- e 250 B - 4
(@) ABScramjet 900N ¢ @)
= 0s = 500 N
i T i 0 BB Scramjet]
Increasing Payload
+ Mass - L 4
0s Add design aids
Interpolate Between Points (Shading)
1 L L i L

Planform Area Planform Area
© ()
Figure 5-8 Visualization of the steps to a solution space

Missions Definition 109

5.4 Missions Definition

Addressed in this section are the various missions that occur within the verification and multi-
point case studies. The section concludes with the synopsis of the vehicles’ mission compositional
segments and flight conditions.

There are two distinct mission profiles for the hypersonic test vehicle. Both are characterized
by being air launched. The discriminating feature is whether an expendable or integrated
propulsion system accelerates the vehicle to the primary mission start condition (hypersonic
cruise). The air-breathing configurations are limited to the expendable rocket booster scenario. A
combined or dual cycle concept is not considered. The non-air breathing rocket configurations are
not limited; both mission launch scenarios (i.e. external expendable boost system and internal
reusable boost system) are applied to them. All scenarios start with an airdrop condition at Mach
0.8 and 12.2 km (40 kft.), and a horizontal gliding recovery at a landing site.

5.4.1 Expendable Booster Profile

The expendable external booster profile is a profile characterized by the state in which the
vehicle’s on-board propulsion system does not accelerate the vehicle to propulsive operational
conditions. Rather, an external device—an expendable booster rocket—accelerates the vehicle to
a condition in which the on-board propulsion can operate and take over as the primary propulsive
system. In the non-combined cycle propulsion system, this assistance is necessary, as the scramjet
and ramjet are not able to start at the subsonic airdrop conditions.

Figure 5-9 illustrates the external expendable booster mission profile. The vehicle is airdropped
from a carrier vehicle at 12.2 km (40 kft) and Mach 0.8. On release, the vehicle is boosted to the
test starting condition, the point for onboard propulsive operation at 22.96 km (75 kft) and Mach
4.5. After expenditure, the external booster separates, and the primary vehicle continues to
accelerate at constant altitude until it reaches the design cruise Mach number. Acceleration occurs
by means of the onboard propulsion system. After accelerating to the test cruise Mach number, the
vehicle executes a constant Mach cruise of some duration. On completion of the cruise segment,
the vehicle performs a gliding descent to the landing point. The conditions at which each event
occurs can vary as a trade variable. Cruise time specifically is a trade variable considered.

Constant Mach Cruise

Mach: 6
Const. Alt. Accel. Alt.: 22.86 + km
. Mach: 4.5-6
Air-Launch Booster Separation
Altitude: 12.2 km .
Mach 0.6 Mach: 4.5 AN ——
ach . Alt.: 22.86 km

Max L/D Gliding Descent

AN ——

Booster Accel. And Climb
Mach: 0.8 —4.5
% Alt.: 12.2 km - 22.86 km

Figure 5-9 Mission Profile: external expendable booster

110 Verification and Application

5.4.2 Internal Booster Profile

Unlike the expendable external booster case, the internally boosted case does not have an
external fall away propulsive system; rather the full mission profile is powered through the
onboard propulsion system. Given that the vehicle is launched at subsonic conditions, this flight
scenario is limited to only the rocket-powered vehicles. Illustrated in Figure 5-10 is the mission
scenario profile. The mission starts with an airdrop condition. After carrier vehicle release, the
hypersonic vehicle accelerates to its cruise condition by means of the integrated onboard rocket
system. The acceleration phase comprises of a constant altitude acceleration to a dynamic pressure
of 89.3 kPa (a dynamic pressure that correlates to Mach cruise condition at cruise altitude)
followed by a constant dynamic pressure climb to the cruise condition. Upon achieving the desired
cruise condition—altitude and Mach number—the vehicle ceases acceleration and executes a
constant Mach cruise for a predetermined cruise time. Upon completion of the cruise segment, the
engine is shutoff and the vehicle glides to a landing condition. This mission trajectory profile
mimics the profile of the externally boosted scenario.

As there is no drop-away external boost system, the test vehicle is its own accelerator. The
integrated onboard main engine powers acceleration and cruise. Significantly, this mission sizes
the vehicle to include the propulsive capacity previously provided by the external expendable
booster. In this regard, the all-rocket vehicles can be potentially fully reusable.

Constant Mach Cruise
Alt.: 22.86 + km
Mach: 6.0

Q: 89 kPa — 48 kPa

Air-Launch

Altitude: 12.2 km
Mach 0.8

% Const. Alt. Accel.
Altitude: 12.2 km

Max L/D Gliding Descent

BE—

Constant Q Climb
Alt.: 12.2 km - 22.86 km
Mach: 2.6 - 6.0

Mach: 0.8 - 2.6
Q: 89.3 kPa

| A ——

Figure 5-10 Mission Profile: integrated booster
5.4.3 Vehicle Mission Segment and Summary

With an understanding of the two mission scenarios considered, the mission profiles and
conditions of each vehicle are summarized in this section. As stated, the total mission profiles
comprise of individual mission segments. The mission segments correspond to specific flight
conditions and methods (the methods are discussed in section 5.5 Methods). It is, in part, for this
reason that the missions are decomposed into their primary constituents. For clarity and
convenience, the mission segments comprising the total mission for each vehicle are indicated in
Table 5-3. Both the verification and trade study cases are indicated.

Methods Selection 111

Table 5-3 Vehicle Mission Segments toward total mission profile

Verification Trade Study
GHV X-51 BB3DS AB2DS ABRKT BBRKT

Mission Type Non-Int. Int. Non-Int. Int.

External Boost Launch to Cruise . . . ° ° °

Internal Boost Launch to Cruise ° °
Mission Segments

Gliding Descent . ° °
Constant Mach Cruise . . . ° ° ° °
Constant q Climb ° ° °
Constant Altitude Acceleration ° ° ° ° ° ° ° °
Air Launched ° ° ° °

Table 5-3 indicates each vehicle’s mission segments, it does not, however; indicate the flight
conditions at each mission segment. Table 5-4 and Table 5-5 provide the mission segment flight
conditions for the verification and trade study cases, respectively. Note that for the BBRKT and
ABRKT integrate boost type case, the table columns do not correspond to mission order. The
constant altitude acceleration segment occurs prior to the boost segment as described previously.

Table 5-4 Verification vehicles” mission segment flight conditions

Vehicle Mission Type Start Condition Booster Acceleration Internal Propulsive Constant Mach Gliding Descent
and Climb Acceleration Cruise
Alt Speed Alt Speed Alt Speed Alt Speed Alt. Start Alt. End
GHV Boost Launch 15 0.8 20.6 4.5 20.6to 24.2 6 24.2+ 6 24.2+ 0
to Cruise
X-51 Boost Launch 15 0.8 18.3 45 18.3 6 18.3+ 6 18.3+ 0
to Cruise
All speed in Mach Number
All Alt. in km
Table 5-5 Trade study vehicles’ mission segment flight conditions
System Boost Type Start Condition Booster Acceleration Acceleration Constant Mach Gliding Descent
(Airdropped) and Climb Cruise
Alt Speed Alt Speed Alt Speed Alt Speed Alt. Start Alt. End
BB3DS, External 12.2 0.8 229 45 229 6 22.9+ 6 22.9+ 0
AB2DS
BBRKT, External 12.2 0.8 229 45 229 6 22.9+ 6 22.9+ 0
ABRKT |ntegrated ~ 12.2 08 22.9 6 12.2 26 22.9+ 6 22.9+ 0

All speed in Mach Number
All Alt. in km

5.5 Methods Selection

Continuing with addressing the problem setup, this section addresses the methods used for the
verification case study and the trade study case. As the trade study case uses the verification
vehicles as baselines, many methods are shared between cases. The methods are addressed in a top
overview approach; for details on select methods see the noted references.

112 Verification and Application

5.5.1 General Method Overview

A listing and general overview of the principal methods employed are presented in Table 5-6.
The methods are categorized by discipline. The disciplines are Geometry, Aerodynamics,
Propulsion, Trajectory, and Weight and VVolume. Each discipline consists of at least one method
and may contain more than one. Not all methods are applicable simultaneously nor necessary to a
single vehicle. The method-vehicle associations are given in section 5.5.2 Method Application

Summary.

Table 5-6 Summary of methods applied

Discipline Methods Description Reference
Geometry FDL-7/Model-176, GHV, Geometry analytical relations and look up table modules [147, 148,
GHV modified, and X-51 with data populated by configurations created in NASA 150]
baseline geometries openVSP
Aerodynamics Subsonic, Transonic, Empirical McDonald Douglas aerodynamic relations for [85, 151]
Supersonic, Hypersonic estimating lift-to-drag ratio (L/D)max, lift curve slope C;_,
(blended-body and lifting- induced drag factor L’, and zero lift-drag coefficient Cp,
body)
Propulsion Rocket Performance Off and on design point analytical relations for [152]
determination of I, and thrust available, T
2D Scramjet Performance Off and on design point analysis incorporating stream [153]
thrust analysis and CEA based fuel properties to determine
Igp, thrust available T, and fuel flow rates
3D Scramjet Performance Custom method derived from the GHV’s propulsion [147]
system
Trajectory Const. Alt. Acceleration Numerical method for small flight path angle atmospheric [154]
Const. q Climb flight.
Gliding Descent
Constant Mach Cruise
Air Launch / Booster
Separation
Weight Transatmospheric vehicle A set of empirical and analytical relations for the [85, 149,
& Volume sizing identifying of weight and volume of the vehicle and its 155]

subsystems

5.5.2 Method Application Summary

With the methods available presented, now the methods applied per vehicle is considered.
Since the vehicles share many trajectory segments and since the methods are very generic, many
of the methods are used across the vehicle spectrum. Table 5-7 shows the methods per vehicle
breakdown. The filled bullet indicates the application of the method to the given vehicle. Note that
the geometry method tool is the same across all vehicles; however, the individual method module’s
data is different per vehicle. The tool (openVSP and supporting script) is used to populate the data
necessary for the individual geometry method module.

Trade Matrix 113

Table 5-7 Methods per vehicle application summary

Verification Trade Study
GHV X-51 BB3DS AB2DS ABRKT BBRKT
Geometry Non-Int. Int. Non-Int. Int.
openVSP ° ° ° ° . . ° .
Aerodynamics*
Subsonic . ° ° ° ° ° ° °
Transonic ° ° ° ° ° ° ° °
Supersonic ° ° ° ° ° ° ° °
Hypersonic)))) ° ° ° °
Propulsion
Rocket Performance . . ° °
2D Scramjet Performance ° °
3D Scramjet Performance ° °
Trajectory
Gliding Descent ° ° °
Constant Mach Cruise ° ° °
Constant g Climb ° °
Constant Altitude Acceleration ° ° °
Air Launch ° ° ° °
Weight and Volume
Transatmospheric Sizing)) ° ° ° ° ° °

* A different module is used for each speed regime depending on if a BB or an AB

5.6 Trade Matrix

A trade matrix is established for the trade study case. There is no trade matrix for the
verification case; no vehicle properties are traded, rather, the goal is to arrive at the given vehicles
within reasonable error. As such, the trade matrix discussed herein is in regard to the trade study
case only.

The trade study case is an exploration of the air-launched reusable hypersonic test vehicle
solution space. The examination is for the growth vehicle case. That is, the vehicles trades are to
include increasing capability to identify how the vehicle size varies with capability variance. The
reader could consider the vehicles sized similar to those of hypersonic missiles of varying
capability. The trade matrix is given in Table 5-8. Observe that the concepts themselves are a trade.
For each concept, the mission variables are traded, specifically cruise time and payload. Additional
trades per concept configuration include geometric volume coefficient T and propulsion system
fuel (hydrogen and kerosene). The trade matrix indicates the range evaluated; however, note that
not all points converge under the convergence criteria specified, which in itself can be informative.
See Appendix A Case Studies Expanded for an account of the non-converged and converged trade
points.

114 Verification and Application

Table 5-8 Trade study trade matrix

Vehicle Baseline Propulsion Boost Fuel Tau Payload Endurance
Tag Vehicle System Type Type Range (N) Cruise (s)
BBRKT GHV Liquid Rocket ~ External H,/RP-1 0.09-0.12 0-4000 0-300
BBRKT GHV Liquid Rocket Internal H,/RP-1 0.09-0.12 0-4000 0-300
BB3DS GHV 3D Scramjet External Ethylene 0.0657-0.0735 0 0-750

ABRKT MODEL 176 Liquid Rocket External H,/RP-1 0.1405-0.2143 0-5000 0-500
ABRKT MODEL 176 Liquid Rocket Internal ~ H,/RP-1 0.1405-0.2143 0-5000 0-500

AB2DS X-51/ 2D Scramjet External JP-7 0.1405-0.2143 0-4000 0-750
MODEL 176
Scram

5.7 Results: Single Point Verification Case

The verification case was executed with satisfactory conclusion. The verification case
implemented the synthesis sizing code as established in the preceding chapter sections. Table 5-9
presents the sizing variable results. Both the calculated value and the percent error (% Error =
100 X (Actual — Calculated)/Actual) to the known value are given. Through the verification
case execution, the methods have been calibrated as well. The percent error has been reduced by
calibrating the method to better arrive at the known vehicle sizing variables’ values. The X-51 and
GHYV error values are all within 5% of the known values with the majority below 1%. This error
is acceptable at the early conceptual design stage where in speed to evaluate the largest possibility
of solutions concepts is paramount.

Table 5-9 Verification case’s sizing variables’ value and percent error

GHV 1X GHV-5X X-51A
Parameter Actual Calculated 9% Error Actual Calculated % Error Actual Calculated 9% Error
Tau, T 0.0735 0.0735 0.0 0.0657 0.0657 0 0.2074™ 0.2074 -
Planform Area, 3.88 3.895 -0.189 19.45 19.469 -0.062 2.26™ 2.266 -0.271
(Splna mZ)
Total Volume, 0.563 0.565 -0.368 5.642 5.644 -0.034 0.705™ 0.730 -3.587
Veots m3)
Length, 4.468 4471 -0.068 9.991 9.996 -0.048 4.267 4.273 -3.167
(l, m)
Span, 1.488 1.491 -0.189 3.327 3.333 -0.206 0.702 0.7029 -0.134
(b, m)
Takeoff Gross Weight, 5430 5552 -2.247 36456 36238 0.598 6690 6689 0.016
(TOGW, N)
Wing Loading, 1397 1425 -0.022 1874 1861 0.694 2960 2952 0.270
(W/Splnr N/mz)
“usable fuel

“estimate

With the execution of the synthesis modules and satisfactory arrival at minimal percent error
from the calculated value to the known value, the verification and calibration case study is
considered complete. From the execution of the synthesis code and arrival at satisfactory sizing
variable results, it is inferred that the AIDRA-DSS system executes correctly for the single vehicle
case. The verification case illustrates correct system execution and instills confidence in the system

Results: Trade Study Case 115

and the methods selected for the vehicles considered. The next task is to consider the trade study
case.

5.8 Results: Trade Study Case

The results of the trade study are presented in the following sections. The results are considered
individually according to boost scenario and propulsion type. The discussion closes with the
presentation of the total solution space with all scenarios shown with carrier vehicle constraints
considered. Note that the solution spaces presented include marked solutions (design points);
however, the reader should be aware that the problem at hand does not necessitate a unique
solution. The solutions presented here are not necessarily ‘optimal’ solutions. For the given design
trade combination, there could be any number of plausible and practical solutions. Here, a map of
the solutions arrived at are presented and probable areas of viable solutions are indicated.

5.8.1 External Booster

The externally boosted concepts include both airbreathing and non-airbreathing concepts. For
clarity, the solution space of each is presented separately. Figure 5-11 presents the airbreathing
vehicles’ solution space. Figure 5-12 and Figure 5-13 presents the non-airbreathing vehicles’
solution space for the RP-1 and H, based systems, respectively. For reference, in both figures, the
wing-loading of 3,413 N/m? is highlighted. This wing-loading corresponds to the landing design
requirement of the X-24C [146] (a test vehicle further along in the FDL family vehicle evolution).
Additionally, note that these solutions are for the cruiser only, the total stack is considered in a
following section.

The AB solutions converge along lines of higher wing-loading than those of the BB. The AB
airbreathing solutions converge along the 2,500 N /m? wing-loading line and are bracketed by the
3,300 N/m? and 1,650 N/m? lines. The BB solutions converge along approximately the 1,750
N /m? wing-loading line and are bracketed by the 1,900 N /m? and 1,200 N /m? lines. The wing-
loading is directly relatable to the stall speed and structural loads. Given that the AB solutions
converge along higher wing-loadings, the AB will have higher approach speeds unless
supplemented. Historically this configuration type (AB) has been equipped with a secondary
retractable lifting device for landing. It is for this reason that all AB concepts considered include
an integrated deployable low-speed wing. At lower wing-loadings, the BB concepts do not require
additional lifting support, overall representing an advantage.

The AB solutions for 0 to 4000 N payload and 0 to 750 second cruise time are indicated. In
general solution convergence occurs with ease and as such the problem is well behaved. The
solution areas expand vertically with mission variable trade, increasing in TOGW with minimal
expansion (comparatively) in the planform area per . This is the volumetric design behavior and
advantage of the AB configuration.

116 Verification and Application

The BB solutions for 0 N payload are also shown. Unlike the AB solutions, the BB solutions
expand significantly both vertically and horizontally with mission variable trade, increasing in
both TOGW and planform area. Note that the single zero payload cases span the entire planform
solution length as the AB solutions for 0 — 4000 N payload. It is noted however that the BB
solutions are initially under sized and require scaling to closer match known design points despite
the calibration of the methods. During operation, note that in some cases design point solutions
are non-unique; it is possible that additional smaller scale solutions can be found. It is warranted
that further investigation be conducted to verify if reduced vehicle size solutions do exist. As such,
due to the scaling factor, the higher endurance design points appear to suffer from overestimating
TOGW when compared to the reference GHV tool calibration vehicles in this region. In regard to
the general behavior of the solutions, the expansive nature in both planform area and TOGW with
increasing endurance is not unexpected given that the type of configuration does not share the
same geometric efficiency advantage of the AB. However, the BB does maintain a lower wing
loading given its trend towards larger planform area.

Airbreathing
Cruiser TOGW vs Cruiser Planform Area

40 = ‘

35] ? S < R " N ‘
—~ 30 -
5 9 ¥
~— 2; | 0.2143 0.0674 0.0698
3 = 01897 0.0735 0:0678 __00.0657 oW
O s
E 20 7 WF15-
ot
2 15 1 s
=
B
U 10 7 KNI

5 N 0.3 kN
0 L - T T : T T T T T
0 2 4 6 8 10 12 14 16
Cruiser Planform Area, Sy (m?)
I AB Airbreathing Il BB Airbreathing

Figure 5-11 Boosted airbreathing hypersonic vehicle solution space: TOGM vs. Sy,

Considering the non-airbreathing case of the kerosene (RP-1) and hydrogen (H,) systems as
shown in Figure 5-12 and Figure 5-13 respectively, the solutions in both cases overlap each other
significantly. Please note, the differences in payload and mission endurance. It is worth noting at
this point that the BB configuration do suffer from significant convergence issues, that is difficulty
in finding solutions, especially as compared to the AB case. The reader will notice differences in
trade variable ranges and points of no solutions for certain trade combinations (such as the 7 =
0.12 at 4000 N and 300s for the H, case in Figure 5-13). The AB case does not suffer as
significantly, though there are converged points that significantly exceed the solution trends as in

Results: Trade Study Case 117

the point in Figure 5-13 for T = 0.2143 and 5000 N. In regard to the RP-1 and H, solutions, they
both fall within the wing-loadings of 1,300 N/m? and 4,200 N/m?. The RP-1 solution field
indicates that the AB concept can offer a lighter and smaller solution for approximately all mission
design point cases, whilst the BB is showing only some possible advantage in size at the 0 payload
and 300 s endurance point. Overall, the AB growth to mission requirement increases was at a lower
rate than the BB. Additionally, and not unsurprisingly, due to having to carry oxidizer on board,
all solutions as compared to the air-breathing case, are greater in TOGW and Sy,,,.

Significantly, the fuel type directly impacts the vehicle’s TOGW and S,,;,,. For both, the AB
and BB, the H, cases offer only increased S,,;,, and TOGW for the same mission. Additionally, the
H, system grows very rapidly in both TOGW and S,,;,,, at a rate much greater than the RP-1 based

system per change in mission variable. The hydrogen-based BB grows rapidly in size, an entirely
undesirable behavior for the case at hand when evaluating of the trade space for carried
demonstrator vehicles. As such, per the solutions gained, the hydrogen fuel poses no benefit.

Boosted and Rocket Powered

% Inserted RP-1 Cruiser TOGW vs Planform Area

- o e AW
3 N L6 s y
< S “

40 -

30 A

20 -

2 F 15

Cruiser TOGW (kN)

10 A

0 R ; 1 1 T T
0 3 6 9 12 15

Cruiser Planform Area, Sy (m?)
I AB RP-1 Boosted I BB RP-1 Boosted

Figure 5-12 Boosted non-airbreathing hypersonic vehicle solution space RP-1: TOGM vs. Sy,

118 Verification and Application

Boosted and Rocket Powered
Inserted Hy Cruiser TOGW vs Planform Area

100 ‘
» 3005012 = oy o A
- a1 ~ £ ~ 5 2.1-14532 (HRC)—
wll oud - ,_ |
— » s - 1%
= Z
x % : = =
g 60 - i
o
A i
o 40 4 o~
8]
=
=
S
20 2 SF-15]
0 T 1 T I
0 6 12 18 24 30
Cruiser Planform Area, Sy (m?)
I AB H; Boosted I BB H; Boosted

Figure 5-13 Boosted non-airbreathing hypersonic vehicle solution space H,: TOGM vs. S,
5.8.2 Trade Study Solution Space: Launch Stack & Carrier Constraints

The previous section considers the cruiser case specifically. With the following, the total stack
is considered. The launch stack comprises of the booster, inter-stage, and flight vehicle. The stack
is sized based off the X-51A’s stack. The total stack is considered in terms of the carrier vehicle
constraints. At first, is considered the integrated versus boosted rocket system is considered. This
is followed by a general consideration of payload capacities and of geometric constraints where
available.

The evaluation of external versus onboard acceleration capacity systems indicates, that the
inclusion of full acceleration capacity system integration is not beneficial when judged by design
point TOGW and Sy,;,,. The figure below illustrates the two cases for the AB case. Note, that the
fully integrated systems prove to be a much more difficult problem to solve, in particular for the
BB case. Solutions indicate, not unexpectedly, the integrated cases are both heavier and larger than
their comparative non-integrated case. However, there are solution points in which the integrated
RP-1 system is more advantageous in both S,,,, and TOGW than the same mission design point
for the inserted hydrogen case. There are some cases for the zero cruise time in which the integrated
system solutions are less in both weight and area than the equivalent inserted system, which may
indicate that the booster rocket is oversized for the case, or that the onboard propulsive system is
more efficient then the accelerator motor. Naturally, the integrated hydrogen case has no
advantages over any other solution point. As such, in the evaluation of the design points by TOGW
and Sy, the integrated solutions show no advantage to the externally boosted vehicle except in
the case of an integrated RP-1 based solution being chosen over a hydrogen-based insert solution.

Results: Trade Study Case 119

However, if the criterion includes full reusability, the integrated case naturally satisfies the criteria
whereas the vehicle accelerated by expendable systems does not. Generally, for the same mission,
the integrated systems are approximately twice the GTOW and two-to-three times larger in S,

Boosted vs. Integrated
Stack TOGW vs Planform Area

E B-52 (HRC)|
X
o
=}
[t
=L

: B-1B-|
=
W

F-15—

C-204-]

0 T T T T
0 5 10 15 20 25
Cruiser Planform Area, Spjp (m?)
I AB RP-1 Boosted I AB RP-1 Integrated I AB H: Boosted I AB H: Integrated

Figure 5-14 Integrated non-airbreathing hypersonic vehicle solution space: TOGM vs. Sy,

In Figure 5-15 and Figure 5-16, the launch stack for the AB and BB are presented, illustrating
the solution space in regards to TOGW and S,,;,, versus known carrier vehicle payload limits. The
pylon hard-point payload limits for several classical vehicles including the B-52 (HRC), F-15, and
B-1B in addition to the Gulfstream C-20A, are indicated. Each system has either been used as a
launch platform for test systems or is being fitted to carry hypersonic systems. Limits are based on
publicly available hard point information or known carried hardware such as the 600 gallon fuel
tank for the F-15 midline hardpoint. The selected vehicles represent the lower, middle, and upper
limits of generally available carrier aircraft relevant to the hypersonic deployable system. Not
included but equally plausible launch platforms include launch vehicles and their components,
such as the Falcon 9 or Minotaur.

Considering the carrier vehicle constraints, it is observable that the majority of the solutions
arrived at for the inserted vehicles with payloads of < 5,000 N and cruse times of < 750 s, are
within the payload limits of the B-52 with upgraded hardware. The principal exception only being
hydrogen-based systems. The integrated solutions would exceed the B-52’s capacity quickly as
payload increases or cruise time beyond 250 — 500s depend on the fuel. However, almost all
solutions far exceed the capacity of the C-20A and F-15. The solution field applicable to the F-15
are the AB and BB low-end zero to 500 N payload case up to potentially 250s cruise time of the
RP-1 boosted design class and possibly a minimal performance airbreathing system. The B-1B

120

Verification and Application

offers a potential launch platform that can address approximately a third to half the solution space
identified. The max mission requirements considered do tax the considered carrier vehicle payload
capacities. For a growth test vehicle concept, vehicles of a mission requirement greater than that
selected, would rapidly exceed the B-52 limits and would require a new launch platform besides
the classical systems for hypersonic test systems application.

Stack TOGW (kN)

Stack TOGW (kN)

AB Stack TOGW vs Planform Area

B-1B—

F-15-]
C-20A—

0] 1 1
0 7 14 21 28 35
Planform Area, Sy (M 2)
I AB RP-1 Integrated I AB H; Integrated I AB RP-1 Boosted I AR H: Boosted I AB Airbreathing
Figure 5-15 AB full stack payload constrained solution space: TOGM vs. Sy,
3 BB Stack TOGW vs Planform Area
130

104 -

78

B-52 (HRC)

26

B-1B—

F-15-

C-20A-]

T T T

4 8 12 16 20
Planform Area, Sy (m?)
I BB RP-1 Integrated Il BB RP-1 Boosted Il BB H; Boosted I BB Airbreathing

Figure 5-16 BB full stack payload constrained solution space: TOGM vs. S,

Results: Trade Study Case 121

Figure 5-17 and Figure 5-18 illustrates the solution space in regard to the geometric dimensions
of launch stack overall length (1) and span (b) versus known carrier vehicle payload geometric
limits by BB and AB respectively. As in the previous figure, the B-52 (HCR), F-15, B-1B, and
CA-20 are used for payload limits. (The geometric limitations of each vehicle are defined by the
payload placement location. Limitations are set based on such parameters as landing gear location,
inboard distance between fuselage and engine nacelle, jet wake, and payload CG location.) All
vehicle solutions are represented in the figure. The practical solution spaces collapse down
significantly when considering length and span. As evident from the figure, the solutions’ span
values are below the first limiting vehicles span constraint—C-20A. In regard to overall length,
many do exceed the limits of F-15 and even the B-52. However, note that the accelerator was
assumed to be a single linear component; the accelerator could be potentially divided and placed
in parallel along the sides of the cruiser vehicle in order to reduce overall length at potentially the
cost of span. Unlike the payload weight limit, in the length limits case, the integrated systems are
indicated to have an advantage over the boosted systems, being of less length. Generally speaking,
all feasible or likely AB and BB design choices fall within the geometric limits of the B-52. Only
select BB solutions exceed the B-52 length limits, those being impractical hydrogen-based
systems. In the case shown, the limiting factor is the stack or vehicle length. However, this likely
could be solved through division of the accelerator into smaller elements fastened to the vehicle’s
fuselage rather than tail end.

Cruiser Stack Length vs. Span

20

o ¢
18 - ooy ® E-
£ 16 - . 2& ' . B-52
= 14 1 . “‘..‘- =]
£ » .
2 12 4 . vg','?"
=
= 10 - éfy
g oo
z 31 = . < F-15
2 67 Y 5
B - o
G5 4 - ° E
- o
2+ £ —
a B-52 limit —
0 T T T T T T T T T
0.0 0.5 1.0 1.5 2.0 25 3.0 3.5 4.0 4.5 5.0
Cruiser Stack Span, (b, m)
I BB RP-1 Integrated I BB RP-1 Boosted I BB H; Boosted I BB Airbreathing

Figure 5-17 BB vehicle geometric constrained solution space: [vs. b

122 Verification and Application

Cruiser Stack Length vs. Span
20

18 .
T 16 * . B-52
= 44 ° u°
= 14 R oo Y L
%‘D 12 A ¥ A ‘i. a®
3 TR o
= 104 F) -, K ? P
- by o’
: A <
g 61 . = i
E " - E
o 41 ‘,'. g

2 :

[G] B-52 limit —
0 T T T T T T T T
0.0 0.5 1.0 1.5 2.0 25 3.0 35 4.0 4.5 5.0
Cruiser Stack Span, (b, m)
[AB RP-1 Integrated I AB H3 Integrated I AB RP-1 Boosted I AB H; Boosted Bl AB Airbreathing

Figure 5-18 AB vehicle geometric constrained solution space: [vs. b

5.9 Conclusion

5.9.1 Study Summary

The principal intent of this chapter has been to demonstrate system functionality and
application. Functionality and applicability are shown through a verification case study and a trade
study. For system verification, two vehicles have been selected to be sized and the results
compared against each other. The vehicles are the X-51A and GHV. These vehicles represent the
hypersonic all-body and blended-body vehicle classes. The vehicles selected include both a flown
test vehicle and a paper concept study. The vehicles are entered into the AIDRA-DSS system.
Through user operation of the system, the result of the user selections via the user interface
represents the generation of unique synthesis codes, each addressing a specific vehicle. The
vehicles, processes, methods, and mission conditions for each have been presented. Upon synthesis
code generation, each has been executed. The result is a satisfactory arrival at sizing results very
near in value to the control vehicles known sizing variables’ value. The percent error is within 5%
for all sizing variables evaluated (most below 1%). The execution of the support system, the
execution of the resulting synthesis tools, and the evaluation of the results indicate that the tool
works properly. It is inferred that the system operates, that it uniquely assembles new synthesis
codes, and that it executes the codes correctly as confirmed by the correct outcomes of the
verification case.

Following the verification case, the systems applicability and functionality is demonstrated
through the execution of a trade study. Using the vehicle concepts from the verification case as
baseline vehicle concepts—with the addition of a rocket powered BB and AB concept—a trade
study has been executed. Trade variables include configuration and concept (the vehicle base lines
representing airbreathing and non-airbreathing blended-body and all-body concepts), payload,

Conclusion 123

mission scenarios, and fuel types. The trade study not only demonstrates system functionality in
terms of a multi-design point study, but also demonstrates system applicability. Through the range
of design trades, a solution space for hypersonic test vehicles is assembled and visualized. The
solutions are contextualized through the consideration of carrier vehicle geometric and weight
constraints.

5.9.2 Study Conclusions

In regard to the trade study itself, a few concluding statements can be made. First, for all cases
the AB solutions tended to have the advantage in in planform area, length, span, and even generally
weight as compared to the BB counterparts. The BB solutions tend towards being larger in
planform area for the same mission. Furthermore, the BB solution areas, for both airbreathing and
non-airbreathing concepts, expand with performance demand significantly more so than the AB
cases. Regarding the integrated systems, they show no advantage in overall weight, minor potential
advantages in overall length are identified. Moreover, the integrated system represents a fully
reusable system and for this reason could be more desirable than the other concepts for certain
research objectives. Lastly, considering the carrier vehicles, for the missions and performance
requirements selected, the B-52 could carry most probable near term systems identified. However,
the trades considered result in solutions that approach the limits of the B-52 and as such, for any
concepts that exceed those considered here in, an alternative launch platform or fully self-sustained
concept would be required. From the study, it can be concluded that for a growth test hypersonic
program of reusable systems, the carrier vehicle options are adequate for near term research but
are limited and necessitate being considered in program planning far beyond near term. However,
in consideration of the solutions as weapon or small-scale test systems and not growth research
and development systems, then vehicles of the payload class of the B-1 and B-52 can carry several
small systems simultaneously.

With the execution of these case studies, it has been shown that the system operates as expected
for the single process and single complex vehicle synthesis assembly and execution scenario.
Additionally, with the completion of the case studies, the capacity for trade study is demonstrated.
In conclusion, all verification and demonstration tasks as outlined at the start of this chapter have
been completed successfully.

5.9.3 Contribution Statement
» Verified single point and multi-point functionality of a new synthesis design tool.

» Solution space identification and visualization of all-body and blended-body airbreathing and
non-airbreathing reusable hypersonic air-launched vehicles for 0-750s cruise time at varying
payload, fuel type, and trajectory design.

Chapter 6 CONCLUSION

This document is concluded with the consideration of a research summary, a research
contributions summary, and a consideration of areas of research and development for future
enhancement of the concepts and system presented here in.

6.1 Research Summary

The principal development and deliverable of the research presented herein has been the
generic synthesis decision support environment as a precursor to an artificial intelligence design
and research assistant (AIDRA-DSS). AIDRA-DSS was developed in Python with an executable
GUI written in QT. It is a framework that allows engineers to design and size any vehicle through
a generic synthesis assembly approach. Additionally, the system is not limited to aerospace and,
as long as the designer carries the proper methodologies, a vehicle can be assembled. The ideology
behind AIDRA-DSS is a versatile system that can size and prototype vehicles in a fast-paced design
environment. Giving the user the ability to compose a vehicle from different elements, AIDRA-
DSS creates a tailored sizing code based on the user-designated requirements.

The systems functionality and applicability has been demonstrated successfully through the
execution of a verification case and a trade study. The verification case considered the GHV and
X-51A. Representing the blended-body and all-body configurations, these concepts and
configurations were used as baseline vehicles for the trade study. The trade study evaluated air
launched airbreathing and non-airbreathing concepts for consideration as reusable hypersonic
vehicle research and development platforms. Trade variables include configuration and concept,
payload, mission scenarios, and fuel types. Through the range of trade conditions, a solution space
for hypersonic test vehicles was assembled and visualized. To assist in evaluating concepts and
gleaning information from the results in pertinence to the carrier vehicle, the solutions were placed
into context with carrier vehicle geometric and weight constraints. From the study, it can be
concluded that for a growth test hypersonic program of reusable systems, the carrier vehicle
options are limited and necessitate being considered in program planning. The vehicle solutions
indicate plausible requirements for future carrier vehicles. Additionally, the all-body has shown

126 Conclusion

superior solution regions in terms of total weight and size, both of which are critical for carrier
vehicle consideration.

With the execution of the two case studies, it has been shown that the system operates as
expected for the single process and single complex vehicle synthesis assembly and execution
scenario. Additionally, with satisfactory execution of the case studies, the capacity for system
handling of said trade studies is demonstrated.

The development of the system has had two purposes. First, advancement toward modular
design synthesis assembly infusion into cognitive systems or other Al frameworks. This is the
driving motivation of this research. In this respect, the purpose of the system is to develop further
expertise and a baseline environment to test complex vehicle automated synthesis architecture
synthetization that would be easily adaptable into a greater cognitive system. The second purpose
is to serve as a useful engineering environment that arrives the user at an applicable synthesis
solution toolset, based on user selections, to solve a given problem by providing standard feedback
and decision aiding platforms. The second objective one could consider as an intermediate
objective to provide immediate system utility while driving towards the greater objective of a
cognitive design and research assistant.

Reiterating the statements of Chapter 1, fundamentally, the motivation for this research has
been to explore the advancement of toolsets for the decision maker and designer operating at the
earliest planning and design phase of an aerospace vehicle or program. The significance of the
decisions made at these early phases cannot be overstated. The level of success of a product is
dependent on the quality of the underlying early forecasts, requirement definitions, technology
selections, and initial concept and configuration selections. This research has been but one-step
towards a greater goal; the system itself could have additional immediate advancements through
follow on research and development. Some foreseen and suggestable areas of development are
discussed in section 6.3 Research and Development for Future Enhancement.

6.2 Research Contribution Summary

The research contributions are summarized below. The contributions are in the areas system
concept specification, system development, system demonstration, and trade study execution.

» Specification for a design decision support system environment concept for application to
aerospace vehicle design, with an approach emphasis for vehicle-of-vehicle design.

» Development of a modular and automated synthesis assembly toolset in the framework of a
transparent and user-friendly decision support environment.

» Demonstration of environment functionality through a verification case study.

» Identification of a reusable hypersonic demonstrator class solution space for all-body and
blended body vehicles of both airbreathing and non-airbreathing type.

Research Contribution Summary 127

The research undertaken has developed software to directly assist the early conceptual design
phase and even the activities of the pre-design phase, notably the program planning and road-
mapping activities that can include but are not limited to technology portfolio planning and
requirements identification. As such, principal tool development and its application does focus on
the parametric sizing phase, itself presenting the initial sub-phase of the conceptual design process.
Any design naturally follows a refining processes and, as such, demands that the synthesis software
increase its analysis fidelity successively as well. To accommodate this natural event of refinement
through increasing analysis fidelity, the system presented would approach the problem through the
generation of multiple architectures of varying analysis fidelity. As such, the fidelity of analysis is
variable, and the tool and approach are applicable to more than one design event within the design
process.

There are several additional advantages to the system’s approach as identified and developed.
First, through a transparent process of a dynamic method and analysis process definition and
selection sequence, a user can implement a design analysis process that directly reflects the needs
and requirements of the product at hand, as each product can have different criteria and design
initiation avenues. For example, in the classical design approach, a basic geometric definition is
the first step. However, it may not be necessary that a design initiates with this particular discipline
nor that a process be limited to certain disciplinary areas and sequences. The disciplines represent
an analysis type and the user is free to add any discipline to create and apply a new process as
necessary. Thus, the synthesis architecture process is moldable to arrange the order of analysis as
necessary to address the unique problem being solved. Modules can be added as needed to address
the necessary analysis including cost models, life support models, radar cross-section analysis
models, thermal heating models, etc. In summary, the process is user definable and not limited to
a specific disciplinary analysis module application nor order of operation. However, the user tends
to apply engineering best practice and knowledge in the design of a process to ensure correctness
and peer-acceptability in application and design.

The modular process definition underscores an additional advantage to this approach and
application, that is the ability to concurrently evaluate dissimilar concepts and configurations
conceived to address the same problem. A classical design problem is the inability to rapidly
compare uniquely different aerospace design configurations for the same mission in a timely
manner. The automated modular approach presented, through a library of various processes and
methods, permits the rapid assembly of architectures of consistent fidelity that each address
different design concepts allowing for the comparison of potentially very dissimilar solutions on
equal design evaluation footing.

A final notable benefit of the automated modular synthesis approach within an easy to use and
transparent user interface, is the savings in time. Time in two regards; first time in regard to
engineer training and time in regards to analysis deliverables. A key to learning is exposure. A
rapid architecture generation capacity—of a generic type—allows for increased engineer exposure
to various design processes, analysis methods, and aerospace concepts and configurations. The

128 Conclusion

automated approach can directly contribute to an enhanced learning environment through which a
novice engineer can rapidly gain exposure and design understanding. A synthesis architecture
generation system of a transparent nature that operates through synthesis assembly automation by
means of a modular design process and methods library, allows for the rapid introduction and
exposure of inexperienced personnel to the labyrinth of available knowledge and the design
processes of the institution. This subsequently permits increased design exposure and general
experience, such that the experience and knowledge available can be more readily directed and
passed on to the novice designer. Similarly, the same advantage is applicable to the university
environment, where student exposure to the actual evaluation and comprehension of the design
and the value of their work, is lost due to frequent lack in time for exposure and experimentation
after the initial generation of method analysis tools. A modular automated synthesis generation
approach allows for reduced time and effort in the design tool fabrication process, that if employed
would allow for increased time in analysis application, design understanding, and overall
improvement in an engineer’s education.

The second note on time savings is that of actual tool generation which has been hinted at in
the previous discussion. An automated synthesis architecture generation process permits for the
development and deployment of synthesis architectures rapidly. Time savings occur through the
automation of the tedious tasks of linking methods and data handling, in addition to identifying
and presenting to the user methods and processes available, with potential specification of the best
methods and tools for the hardware application and fidelity required in addition to other
requirements, ensuring proper method application. In the event of adequately populated libraries
(process, methods, and vehicles), input variable databases, and dependent on hardware
decomposition level, architectures can be rapidly generated within mere minutes and architectures
executed thereafter. Furthermore, they are additionally archivable and distributable with full access
to the methods involved allowing for reuse and modification, as necessary.

6.3 Research and Development for Future Enhancement

The work presented here has been an iteration of a vehicle decomposition and modular
synthesis assembly concept, with the goal of sequential development towards a cognitive design
and research assistant. This work has led to the development of a modular framework that can be
refined and inserted as a numerical analysis core into an Al framework with modification of course.
As such, some foreseen efforts for continuation and improvement of the design kernel include the
following.

Towards Architecture Planning:

» Vehicles as Trade Studies. The system current is set to treat each vehicle selected as a
component of a greater vehicle; however, this same implementation could readily be converted
to allow for trade study iterations to include the vehicles themselves. Vehicle trades could
occur in two manners. First, rather than setting a vehicle group as a subset of a parent vehicle,

Research and Development for Future Enhancement 129

»

they could be set to be individual independent concepts to be evaluated. Such a capacity would
support pre-phase or program and architecture planning. A second case, a parent vehicle’s
component sub-vehicles could be traded in addition to the classical trades such as aspect ratio
or fuel type. This would allow for a single project set up and run to evaluate many vehicle
concepts simultaneously.

Decomposed System Trades. In the same fashion as the point noted above, the individual
components of a vehicle—whether it be the vehicle itself, vehicles within the vehicle, or any
individual vehicle’s concept, hardware, or operational conditions—could be a trade option.
Traditionally trades are in specific input parameters; this system would allow a trade study to
be much more global in consideration.

Towards Increased and Improved Automation:

»

»

»

Natural Language Processing. The GUI itself is in place to benefit the user. However, for an
autonomous system, the GUI is not necessary. A plausible improvement could be a natural
language processor where in the instructions are given either verbally or via a standard
keyboard input (text). In such as sense the system could have an integrated chatbot like
interface. The GUI operations would be handled by the system without direct user interfacing
other than through basic instruction however being dependent on a sound expert system or
similar.

Database and Knowledgebase Expansion and Integration. Improved and increased
knowledgebase and database integration and population would directly benefit the system.
Furthermore, it is necessary for a true research and design assistant. Currently, the system is
limited to a selection of methods and references as the knowledge base and the project results
exist in fragmented result databases. Additional knowledge and data handling capacity could
be added through many means. For instance, the addition of a global projects results database
with datamining and data reuse could be integrated allowing for a mechanism for improved
convergence parameter initial guess values, input variables value assignment, or even new
method derivation through datamining. Furthermore, system execution could be enhanced
through an improved expert system or decision tree/process for automated method filtering
based on knowledge of the available methods such as method applicability, accuracy, speed,
or dependability. Given a concept statement, with the right knowledge and data, the system
could make the correct choices the user classically makes during GUI operation allowing for
time reduction in system operation and final product.

Design and Analysis Recommendations. The purpose of a decision support system is to help
the user arrive at the correct or best decision given the information available. The current
system assists the user by providing a transparent synthesis assembly tool allowing the user to
setup an analysis solution to the problem at hand that results in not only the analysis tool but
also design figures. The user is left, however, to derive conclusions based on the results and
figures presented. All though this may accelerate the problem solution process, it itself does

130 Conclusion

not give design recommendations. A system improvement would be a direct result analysis
process that arrives at and provides both intelligent design recommendations and intelligent
analysis recommendations (recommendations to rerun the analysis to better evaluate the
problem or new problems identified through the analysis, including changing methods).

» Improved Generative Coding. A primary deliverable of the DSS developed is a synthesis code
tailor made for the user given the user’s selections in system operation. The system generates
the synthesis code effectively through the use of code assembly rules and code block libraries.
The system could be further advanced through improvements to the code assembly process
such as through the utilization of agents or other auto-coding and generative techniques.

Chapter 7 BIBLIOGRAPHY

[1]

[2]

[3]

[4]

[5]

[6]

[7]

8]

[9]

[10]

[11]

Blair, J., Ryan, R., Schutzenhofer, L., and Humphries, W. "Launch Vehicle Design
Process: Characterization, Technical Integration, and Lessons Learned,” NASA/TP 2001-
210992, NASA, 2001.

Anon. "AlIAA Technical Committee on Multidisciplinary Design Optimization (MDO)
White Paper on Current State of the Art," 1991.

Defense Acquistion University Press. "Systems Engineering Fundamentals,” Department
of Defense Systems Management College, 2001.

Calkins, D. E., Gaevert, R. S., Michel, F. J., and Richter, K. J. "Aerospace System Unified
Life Cycle Engineering: Producibility Measurment Issues,” IDA Paper P-2151, Institute
for Defense Analyses, 1989.

Corning, G. Aerospace Vehicle Design, College Park, MD, 1964.

Space & Missile Systems Center. "SMC Systems Engineering Primer & Handbook:
Concepts, Processes, and Techniques,” U.S. Air Force, 2005.

Space & Missile Systems Center. "SMC Systems Engineering Primer & Handbook:
Concepts, Processes, and Techniques,” Vol. 1, U.S. Air Force, 2013.

Krishnamoorthy, C., and Rajeev, S. Artificial Intelligence and Expert Systems for
Engineers, Vol. 11, CRC press, 1996.

Suri, R., and Shimizu, M. "Design for Analysis: A New Strategy to Improve the Design
Process,” Research in Engineering Design, Vol. 1, 1989, pp. 105-120. doi:
10.1007/BF01580204

Heinze, W. "Ein Beitrag Zur Quantitativen Analyse Der Technischen Und Wirtschaftlichen
Auslegungsgrenzen Verschiedener Flugzeugkonzepte Fur Den Transport Grosser
Nutzlasten." TU Braunschweig, ZLR Forschungsbericht, 1994.

Roskam, J. Airplane Design Part VIII: Airplane Cost Estimation: Design, Development,
Manufacturing and Operating, DARcorporation, 1990.

132

Bibliography

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

de Weck, O. "16.842 Fundamentals of Systems Engineering.” Massachusetts Institute of
Technology: MIT OpenCourseWare, https://ocw.mit.edu., Fall 2015.

Torenbeek, E. "Synthesis of Subsonic Airplane Design,” Delft: Springer, 1982.

Nicolai, L. M., and Carichner, G. Fundamentals of Aircraft and Airship Design, AIAA
Educational Series, Vol. 1, American Institute of Aeronautics and Astronautics, Reston,
VA, 2010. doi: 10.2514/4.867538

Striz, A., Kennedy, B., Siddique, Z., and Neeman, H. "A Roadmap for Moderate Fidelity
Conceptual Design with Multilevel Analysis and MDO," 47th
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference,
AIAA 2006-1619, 2006. doi: 10.2514/6.2006-1619

Chun-Lin, G., Liang-Xian, G., Heng-Jun, L., and Jian-Ke, S. "KE and MDO Based
Intelligent Conceptual Design Method for Tactical Missile,” 2010 IEEE International
Conference on Intelligent Computing and Intelligent Systems, 2010. doi:
10.1109/ICICISYS.2010.5658668

Chudoba, B., and Heinze, W. "Evolution of Generic Flight Vehicle Design Synthesis," The
Aeronautical Journal, Vol. 114, No. 1159, 2010, pp. 549-567.

Chudoba, B. Stability and Control of Conventional and Unconventional Aircraft
Configurations: A Generic Approach, BoD—Books on Demand, 2001.

Chudoba, B. "Managerial Implications of Generic Flight Vehicle Design Synthesis," 44th
AIAA Aerospace Sciences Meeting and Exhibit, AIAA-2006-1178, 2006. doi:
10.2514/6.2006-1178

Thurstone, L. L. Primary Mental Abilities., Chicago, 1938.
Gardner, H. Frames of Mind: The Theory of Multiple Intelligences, Basic books, 1993.

Salovey, P., and Mayer, J. D. "Emotional Intelligence,” Imagination, Cognition and
Personality, Vol. 9, No. 3, 1990, pp. 185-211.

Goleman, D. P. Emotional Intelligence: Why It Can Matter More Than 1Q, New York:
Bantam Books, 2006.

Sternberg, R. J. Beyond 1Q: A Triarchic Theory of Human Intelligence, Cambridge
University Press, 1985.

Krishnakumar, K. "Intelligent Systems for Aerospace Engineering-an Overview," 2003.

Harrison, L., Saunders, P., and Janowitz, J. "Artificial Intelligence with Applications for
Aircraft.,"” 1994.

https://ocw.mit.edu/

Bibliography 133

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

Munakata, T. Fundamentals of the New Artificial Intelligence Neural, Evolutionary, Fuzzy
and More, 2 ed., Springer, 2008. doi: 10.1007/978-1-84628-839-5

Russell, S. J., Norvig, P., Canny, J. F., Malik, J. M., and Edwards, D. D. Artificial
Intelligence: A Modern Approach, 2 ed., Prentice Hall Upper Saddle River, 2003.

Negnevitsky, M. Artificial Intelligence: A Guide to Intelligent Systems, Pearson Education,
2005.

Hopgood, A. A. Intelligent Systems for Engineers and Scientists, CRC press, 2011.

Noor, A. K. "Computational Intelligence and Its Impact on Future High-Performance
Engineering Systems,” NASA Conference Publication 3323, National Aeronautics and
Space Administration, Langley Research Center, 1996.

Blount, G. N., Kneebone, S., and Kingston, M. R. "Selection of Knowledge-Based
Engineering Design Applications," Journal of Engeering Design, Vol. 6, No. 1, 1995, pp.
31-38. doi: 10.1080/09544829508907900

Hopgood, A. A. "The State of Artificial Intelligence,” Advances in Computers, Vol. 65,
2005, pp. 1 - 75.

Marx, W. J., Schrage, D. P., and Mavris, D. N. "An Application of Artificial Intelligence
for Computer-Aided Design and Manufacturing,” International Conference on
Computational Engineering Science; Supercomputting in Multidisciplinary Analysis and
Design, 1995.

Karppinen, N., Lucas, A., Ljungberg, M., and Repusseau, P. "Atrtificial Intelligence in Air
Traffic Flow Management," Proceedings of the International Aerospace Conference,
Technical Note 16, Melbourne, Australia, 1991.

Weigang, L., Alves, C. J. P., and Omar, N. "An Expert System for Air Traffic Flow
Management,” Journal of Advanced Transportation, Vol. 31, No. 3, 1997, pp. 343-361.

Ryan, J. C., Cummings, M., Roy, N., Banerjee, A., and Schulte, A. "Designing an
Interactive Local and Global Decision Support System for Aircraft Carrier Deck
Scheduling,” Infotech@ Aerospace 2011, AIAA 2011-1516, 2011. doi: 10.2514/6.2011-
1516

Richards, R. "Application of Multiple Artificial Intelligence Techniques for an Aircraft
Carrier Landing Decision Support Tool," 2002 IEEE World Congress on Computational
Intelligence. 2002 IEEE International Conference on Fuzzy Systems. FUZZ-IEEE'02.
Proceedings (Cat. No0.02CH37291), Vol. 1, 2002, ©pp. 7-11. doi:
10.1109/FUZZ.2002.1004950

Roy, A. G., and Peyada, N. "Aircraft Parameter Estimation Using Hybrid Neuro Fuzzy and
Acrtificial Bee Colony Optimization (HNFABC) Algorithm,"” Aerospace Science and
Technology, Vol. 71, 2017, pp. 772-782. doi: 10.1016/j.ast.2017.10.030

134

Bibliography

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

LalaJr, L. L., Wood, L. H., and Perrotta, C. D. "Intelligent Systems for Space Situational
Awareness,” Infotech@Aerospace 2011, AIAA 2011-1433, 2011. doi: 10.2514/6.2011-
1433

Calise, A. J. "Neural Networks in Nonlinear Aircraft Flight Control,” Aerospace and
Electronic Systems Magazine, IEEE, Vol. 11, No. 7, 1996, pp. 5-10.

Butyrin, S. A., Makarov, V., Mukumov, R., Somov, Y., and Vassilyev, S. "An Expert
System for Design of Spacecraft Attitude Control Systems,” Artificial Intelligence in
Engineering, Vol. 11, No. 1, 1997, pp. 49-59.

La Rocca, G. "Knowledge Based Engineering: Between Al and CAD. Review of a
Language Based Technology to Support Engineering Design,” Advanced Engineering
Informatics, Vol. 26, No. 2, 2012, pp. 159-179. doi: 10.1016/j.aei.2012.02.002

Amadori, K. "Geometry Based Design Automation: Applied to Aircraft Modelling and
Optimization," PhD Dissertation, Linkdping University, 2012.

La Rocca, G., and van Tooren, M. J. L. "A Knowledge Based Engineering Approach to
Support Automatic Generation of FE Models in Aircraft Design," 45th AIAA Aerospace
Sciences Meeting and Exhibit, AIAA 2007-967, 2007. doi: 10.2514/6.2007-967

Ledermann, C., Hanske, C., Wenzel, J., Ermanni, P., and Kelm, R. "Associative Parametric
CAE Methods in the Aircraft Pre-Design," Aerospace Science and Technology, Vol. 9, No.
7, 2005, pp. 641-651.

Rentema, D. "AIDA. Atrtificial Intelligence Supported Conceptual Design of Aircraft,”
PhD Dissertation, Delft University of Technology, 2004.

Tsuchiya, T., Takenaka, Y., and Taguchi, H. "Multidisciplinary Design Optimization for
Hypersonic Experimental Vehicle," AIAA Journal, Vol. 45, No. 7, 2007, pp. 1655-1662.

Tianyuan, H., and Xiongqging, Y. "Aerodynamic/Stealthy/Structural Multidisciplinary
Design Optimization of Unmanned Combat Air Vehicle," Chinese Journal of Aeronautics,
Vol. 22, No. 4, 2009, pp. 380-386.

Rao, C., Tsai, H., and Ray, T. "Aircraft Configuration Design Using a Multidisciplinary
Optimization Approach,” 42nd AIAA Aerospace Sciences Meeting and Exhibit, AIAA
2004-536, 2004. doi: 10.2514/6.2004-536

Shahrokhi, A., and Jahangirian, A. "Airfoil Shape Parameterization for Optimum Navier—
Stokes Design with Genetic Algorithm," Aerospace Science and Technology, Vol. 11, No.
6, 2007, pp. 443-450.

Oyama, A., Nonomura, T., and Fujii, K. "Data Mining of Pareto-Optimal Transonic Airfoil
Shapes Using Proper Orthogonal Decomposition,” Journal of Aircraft, Vol. 47, No. 5,
2010, pp. 1756-1762.

Bibliography 135

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

Alemany, K., and Braun, R. D. "Survey of Global Optimization Methods for Low-Thrust,
Multiple Asteroid Tour Missions,” AAS/AIAA Space Flight Mechanics Meeting, AAS 07-
211, 2007.

Zotes, F. A. "Application of Intelligent Algorithms to Aerospace Problems,” PhD
Dissertation, Universidad Nacional de Educacion a Distancia, 2011.

Chae, H. G. "A Possibilistic Approach to Rotorcraft Design through a Multi-Objective
Evolutionary Algorithm,” PhD Dissertation, Georgia Institute of Technology, 2006.

Neufeld, D., and Chung, J. "Unmanned Aerial Vehicle Conceptual Design Using a Genetic
Algorithm and Data Mining,” Infotech@Aerospoace, AIAA 2005-7051, 2005. doi:
10.2514/6.2005-7051

Damp, L., Gonzalez, L. F., and Srinivas, K. "Multi-Objective and Multidisciplinary Design
Optimisation (MDO) of UAV Systems Using Hierarchical Asynchronous Parallel
Evolutionary Algorithms," University of Sydney, School of Aerosapce, Mechanical, and
Mechatronic Engineering, 2007.

Lee, D., Gonzalez, L. F., Srinivas, K., Auld, D., and Wong, K. C. "Aerodynamic/RCS
Shape Optimisation of Unmanned Aerial Vehicles Using Hierarchical Asynchronous
Parallel Evolutionary Algorithms,” 24th AIAA Applied Aerodynamics Conference, AIAA
2006-3331, 2006.

Jones, B. R., Crossley, W. A., and Lyrintzis, A. S. "Aerodynamic and Aeroacoustic
Optimization of Rotorcraft Airfoils Via a Parallel Genetic Algorithm,” Journal of Aircratft,
Vol. 37, No. 6, 2000, pp. 1088-1096.

Carrese, R., Winarto, H., and Li, X. "Integrating User-Preference Swarm Algorithm and
Surrogate Modeling for Airfoil Design," 49th AIAA Aerospace Sciences Meeting including
the New Horizons Forum and Aerospace Exposition, AIAA 2011-1246, 2011.

Khurana, M. S., Winarto, H., and Sinha, A. K. "Application of Swarm Approach and
Artificial Neural Networks for Airfoil Shape Optimization,” 12th AIAA/ISSMO
Multidisciplinary Analysis and Optimization Conference, AIAA 2008-5954, 2008.

Rajagopal, S., and Ganguli, R. "Multidisciplinary Design Optimization of a UAV Wing
Using Kriging Based Multi-Objective Genetic Algorithm," 50th
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference,
AIAA 2009-2219, 2009.

Viviani, A., luspa, L., and Aprovitola, A. "An Optimization-Based Procedure for Self-
Generation of Re-Entry Vehicles Shape,” Aerospace Science and Technology, Vol. 68,
2017, pp. 123-134.

Bayley, D. J. "Design Optimization of Space Launch Vehivcles Using a Genetic
Algorithm," PhD Dissertation, Auburn University, 2007.

136

Bibliography

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

Mosher, T. "Conceptual Spacecraft Design Using a Genetic Algorithm Trade Selection
Process,” Journal of Aircraft, Vol. 36, No. 1, 1999, pp. 200-208.

Huang, G., Lu, Y., and Nan, Y. "A Survey of Numerical Algorithms for Trajectory
Optimization of Flight Vehicles," Science China Technological Sciences, Vol. 55, No. 9,
2012, pp. 2538-2560. doi: 10.1007/s11431-012-4946-y

Oyama, A., Kawakatsu, Y., and Hagiwara, K. "Data Mining of Pareto-Optimal Solutions
of a Solar Observatory Trajectory Design Problem,” Infotech@Aerospace, AIAA 2012-
2442, 2012.

Chiba, K., Obayashi, S., and Morino, H. "Knowledge Discovery for Transonic Regional-
Jet Wing through Multidisciplinary Design Exploration,"” Journal of Advanced Mechanical
Design, Systems, and Manufacturing, Vol. 2, No. 3, 2008, pp. 396-407.

Chiba, K., Jeong, S., Obayashi, S., and Yamamoto, K. "Knowledge Discovery in
Aerodynamic Design Space for Flyback-Booster Wing Using Data Mining,"” 14th
AIAA/AHI Space Planes and Hypersonic System and Technologies Conference, AIAA
2006-7992, 2006.

Berke, L., Patnaik, S., and Murthy, P. "Optimum Design of Aerospace Structural
Components Using Neural Networks," Computers & Structures, VVol. 48, No. 6, 1993, pp.
1001-1010.

Khlopkov, Y. I, Dorofeev, E. A., Myint, Z. Y. M., Khlopkov, A. Y., Polyakov, M. S., and
Agayeva, I. R. k. "Application of Artificial Neural Networks in Hypersonic Aerospace
System," Applied Mathematical Sciences, Vol. 8, No. 95, 2014, pp. 4729 - 4735. doi:
10.12988/ams.2014.46494

Rocca, G. L. "Knowledge Based Engineering Techniques to Support Aircraft Design and
Optimization," PhD Dissertation, Delft University of Technology, 2011.

Soulat, M. E. "Parametric Geometry Representation to Support Aircraft Design,” IEEE
Aerospace Conference, IEEEAC Paper 1745, Version 2, IEEE, 2012.

van der Laan, A. H. "Knowledge Based Engineering Support for Aircraft Component
Design,” PhD Dissertation, Delft University of Technology, 2008.

Hoogreef, M., and La Rocca, G. "An MDO Advisory System Supported by Knowledge-
Based Technologies,” 16th AIAA/ISSMO Multidisciplinary Analysis and Optimization
Conference, AIAA 2015-2945, 2015. doi: 10.2514/6.2015-2945

Price, A. R., Keane, A. J., and E. Holden, C. M. "On the Coordination of Multidisciplinary
Design Optimization Using Expert Systems,"” AIAA Journal, Vol. 49, No. 8, 2011, pp.
1778-1794.

Bibliography 137

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

Antoni Virosi, i. M., and Selva, D. "Daphne: A Virtual Assistant for Designing Earth
Observation Distributed Spacecraft Missions," IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, Vol. 13, 2020, pp. 30-48.

Velez, V. H. "Data Mining and Knowledge Discover-IBM Cognitive Alternatives for
NASA KSC," 2016.

Berquand, A., and Riccardi, A. "The Design Engineering Assistant Applying Ontology
Learning to the Generation of a Space Mission Ontology,” Space Systems Ontology
Brainstorming Workshop, 2019.

Martin, A. V., and Selva, D. "From Design Assistants to Design Peers: Turning Daphne
into an Al Companion for Mission Designers,” AIAA Scitech 2019 Forum, 2019. doi:
10.2514/6.2019-0402

Morrison, J. H., Ambur, M. Y., and Bauer, S. X. "Comprehensive Digital Transformation
NASA Langley Research Center," 2016.

Ambur, M. Y., Yagle, J. J., Reith, W., and McLarney, E. "Big Data Analytics and Machine
Intelligence Capability Development at NASA Langley Research Center: Strategy,
Roadmap, and Progress,” NASA/TM-2016-219361, 2016.

Lintern, G. "What Is Cognitive System?,” 2007 International Symposium on Aviation
Psychology, 2007.

Huang, X. "A Prototype Computerized Synthesis Methodology for Generic Space Access
Vehicle (SAV) Conceptual Designs,” PhD Dissertation, University of Oklahoma, 2006.

Coleman, G. "Aircraft Conceptual Design - an Adaptable Parametric Sizing Methodology,"
PhD Dissertation, The University of Texas At Arlington, 2010.

Gonzalez, L. "Complex Multidisciplinary Systemm Composition for Aerospace Vehicle
Conceptual Design," PhD Dissertation, The University of Texas at Arlington, 2016.

Omoragbon, A. "Complex Multidisciplinary Systems Decomposition for Aerospace
Vehicle Conceptual Design and Technology Acquisition,” PhD Dissertation, The
University of Texaas at Arlington, 2016.

Coley, M. D. "On Space Program Planning Quantifying the Effects of Spacefaring Goals
and Strategies on the Solution Space of Feasible Programs,” PhD Dissertation, The
University of Texas at Arlington, 2017.

Oza, A. "A Portfolio-Based Approach to Evaluate Aerospace R&D Problem Formulation
Towards Parametric Synthesis Tool Design,” PhD Dissertation, The University of Texas
at Arlington, 2016.

Peng, X. "Formalization of the Engineering Science Discipline-Knowledge Engineering,”
PhD Dissertation, The University of Texas at Arlington, 2015.

138

Bibliography

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]
[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

Haney, E. "Data Engineering in Aerospace Systems Design & Forecasting,” PhD
Dissertation, The Univeristy of Texas at Arlington, 2016.

LaRocca, G., and van Tooren, M. J. L. "Knowledge-Based Engineering to Support Aircraft
Multidisciplinary Design and Optimization,” 26th International Congress of the
Aeronautical Sciences, 2008.

Corning, G. Supersonic and Subsonic, CTOL and VTOL, Airplane Design, 4 ed., College
Park, MD, 1976.

Wood, K. D. Aerospace Vehicle Design Vol. 1, Aircraft Design, Johnson Publishing
Company, Boulder, CO, 1963.

Loftin Jr, L. K. "Subsonic Aircraft: Evolution and the Matching of Size to Performance,”
NASA RP-1060, Scientific and Technical Information Branch, NASA, Hampton, VA,
1980.

Roskam, J. Airplane Design, Vol. 1-8, DARcorporation, Ottawa, KS, 1990.

Raymer, D. P. Aircraft Design: A Conceptual Approach, AIAA Education Series, 3 ed.,
American Institute of Aeronautics and Astronautics, Reston, VA, 2018. doi:
10.2514/4.104909

Stinton, D. The Anatomy of the Airplane, 2 ed., John Wiley and Sons Ltd, Oxford, U.K.,
1998. doi: 10.2514/4.475146

Anderson, J. D. Aircraft Performance and Design, 1999.
Fielding, J. P. Introduction to Aircraft Design, 2 ed., Cambridge University Press, 2017.

Jenkinson, L. R., Rhodes, D., and Simpkin, P. Civil Jet Aircraft Design, AIAA Education
Series, Norwich, NY, 2006.

Howe, D. Aircraft Conceptual Design Synthesis, Aerospace Series, Wiley, Hoboken, NJ,
2005.

Schaufele, R. D. The Elements of Aircraft Preliminary Design, Aries Publications, Santa
Ana, CA, 2007.

Sadraey, M. H. Aircraft Design: A Systems Engineering Approach, John Wiley & Sons,
2012.

Gudmundsson, S. General Aviation Aircraft Design: Applied Methods and Procedures,
Butterworth-Heinemann, 2013.

Sforza, P. M. Commercial Airplane Design Principles, Elsevier, 2014.

Kundu, A. K., Price, M. A,, and Riordan, D. Conceptual Aircraft Design: An Industrial
Perspective, Aerospace Series, Wiley-Blackwell, Hoboken, NJ, 2018.

Bibliography 139

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

White, J. F. Flight Performance Handbook for Powered Flight Operations: Flight
Mechanics and Space Vehicle Design, Empirical Formulae, Analytic Approximations, and
Graphical Aids, Wiley, New York, 1963.

Wood, K. D. Aerospace Vehicle Design: Spacecraft Design, Vol. 2, Johnson Publishing
Company, Boulder, CO, 1964.

Harney, E. D. Space Planners Guide, Air Force Systems Command, United States Air
Force, Andrews Air Force Base, Washington, D.C., 1965.

Humble, R. W., Henry, G. N., and Larson, W. J. Space Propulsion Analysis and Design,
McGraw-Hill, New York, 2007.

Logsdon, T. Orbital Mechanics: Theory and Applications, John Wiley & Sons, New York,
1998.

Hammond, W. E. Design Methodologies for Space Transportation Systems, AIAA
Education Series, American Institute of Aeronautics and Astronautics, Reston, VA, 2001.

Suresh, B. N., and Sivan, K. Integrated Design for Space Transportation System, 1 ed.,
Springer, New Delhi, India, 2015. doi: 10.1007/978-81-322-2532-4

Sziroczak, D. "Conceptual Design Methodologies Appropriate to Hypersonic Space and
Global Transportation Systems,” PhD Dissertation, School of Aerospace, Transport and
Manufacturing, Cranfield University, 2015.

Rana, L., and Chudoba, B. "Demonstration of a Prototype Design Synthesis Capability for
Space Access Vehicle Design,” The Aeronautical Journal, Vol. 124, No. 1281, 2020, pp.
1761-1788. doi: 10.1017/aer.2020.55

Sobieszczanski-Sobieski, J., and Haftka, R. T. "Multidisciplinary Aerospace Design
Optimization: Survey of Recent Developments,” Structural Optimization, Vol. 14, No. 1,
1997, pp. 1-23.

Perez, R., Liu, H., and Behdinan, K. "Evaluation of Multidisciplinary Optimization
Approaches for Aircraft Conceptual Design,” 10th AIAA/ISSMO Multidisciplinary
Analysis and Optimization Conference, AIAA 2004-4537, 2004. doi: 10.2514/6.2004-4537

Yao, W., Chen, X., Luo, W., van Tooren, M., and Guo, J. "Review of Uncertainty-Based
Multidisciplinary Design Optimization Methods for Aerospace Vehicles," Progress in
Aerospace Sciences, Vol. 47, No. 6, 2011, pp. 450-479.

Simpson, T. W., Toropov, V., Balabanov, V., and Viana, F. A. C. "Design and Analysis of
Computer Experiments in Multidisciplinary Design Optimization: A Review of How Far
We Have Come or Not," 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization
Conference, AIAA 2008-5802, 2008. doi: 10.2514/6.2008-5802

140

Bibliography

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

Martins, J. R. R. A., and Lambe, A. B. "Multidisciplinary Design Optimization: A Survey
of Architectures,” AIAA Journal, Vol. 51, No. 9, 2013, pp. 2049-2075.

Vandenbrande, J. H., Grandine, T. A., and Hogan, T. "The Search for the Perfect Body:
Shape Control for Mulidisciplinary Design Optimization,” 44th AIAA Sciences Meeting
and Exhibit, AIAA 2006-928, 2006.

Rafique, A., LinShu, H., Zeeshan, Q., Nisar, K., and Xiaowei, W. "Hybrid Optimization
Method for Multidisciplinary Design of Air Launched Satellite Launch Vehicle," 45th
AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA 2009-5535, 20009.
doi: 10.2514/6.2009-5535

Hajela, P. "Soft Computing in Multidisciplinary Aerospace Design - New Directions for
Research,” Aerodynamic Design and Optimisation of Flight Vehicles in a Concurrent
Multi-Disciplinary Environmen, 1999.

Sobieszczanski-Sobieski, J. "Multidisciplinary Design Optimization: An Emerging New
Engineering Discipline,” NASA Technical Memorandum 107761, 1995.

Giesing, J., and Barthelemy, J.-F. "A Summary of Industry MDO Applications and Needs,"
7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and
Optimization, 1998. doi: 10.2514/6.1998-4737

Riccardi, A. "Multidisciplinary Design Optimization for Space Applications,” PhD
Dissertation, Universitat Bremen, 2012.

Frenzel, M., Heiserer, D., Keller, D., Schemat, M., Balabanov, V., Dreisbach, R.,
Georgiadis, S., and Trop, D. "Multidisciplinary Optimization and Integration
Requirements for Large-Scale Automotive and Aerospace Design Work," 11th World
Congress on Structural and Multidisciplinary Optimisation, 2015.

van Gent, I. "Agile MDAO Systems a Graph-Based Methodology to Enhance
Collaborative Multidisciplinary Design,” PhD Dissertation, Delft University of
Technology, 2019.

Berkeley Al Research. "Caffe,” URL: https://caffe.berkeleyvision.org/ [retrieved
December 21, 2020].

Phoenix Integration. "Modelcenter,” URL: https://www.phoenix-int.com/ [retrieved
December 21, 2020].

Sandia National Laboratories. "Dakota,” URL: https://dakota.sandia.gov/ [retrieved
December 21, 2020].

Noesis Solutions. "Optimus," URL.: https://www.noesissolutions.com/our-
products/optimus [retrieved December 21, 2020].

https://caffe.berkeleyvision.org/
https://www.phoenix-int.com/
https://dakota.sandia.gov/
https://www.noesissolutions.com/our-products/optimus
https://www.noesissolutions.com/our-products/optimus

Bibliography 141

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

Esteco. "Modefrontier,” URL.: https://www.esteco.com/modefrontier [retrieved December
21, 2020].

German Aerospace Center (DLR). "RCE,"” URL: https://rcenvironment.de/ [retrieved
December 21, 2020].

Bowcutt, K. G. "A Perspective on the Future of Aerospace Vehicle Design,” 12th AIAA
International Space Planes and Hypersonic Systems and Technologies, AIAA 2003-6957,
2003. doi: 10.2514/6.2003-6957

Schut, E. J. "Conceptual Design Automation Abstraction Complexity Reduction by
Feasilisation and Knowledge Engineering,” PhD Dissertation, Delft University of
Technology, 2010.

La Rocca, G., and van Tooren, M. J. "Knowledge-Based Engineering Approach to Support
Aircraft Multidisciplinary Design and Optimization,” Journal of Aircraft, Vol. 46, No. 6,
2009, pp. 1875-1885. doi: 10.2514/1.39028

de Weck, O., Agte, J., Sobieszczanski-Sobieski, J., Arendsen, P., Morris, A., and Spieck,
M. "State-of-the-Art and Future Trends in Multidisciplinary Design Optimization," 48th
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference,
AIAA 2007-1905, AIAA, 2007.

Duffy, M., Chung, S. J., and Bergman, L. "An Evolutionary Architecture for the Automated
Conceptual Design of Aerospace Systems," Infotech@Aerospace 2011, AIAA 2011-1632,
2011. doi: 10.2514/6.2011-1632

Wang, C. "Insights from Developing a Multidisciplinary Design and Analysis
Environment,” Computers in Industry, VVol. 65, No. 4, 2014, pp. 786—795.

Antoine, N. E., Kroo, I. M., Willox, K., and Barter, G. "A Framework for Aircraft
Conceptual Design and Environmental Performance Studies,” 10th AIAA/ISSMO
Multidisciplinary Analysis and Optimization Conference, AIAA 2004-4314, 2004. doi:
10.2514/6.2004-4314

Lundstrom, D. "Aircraft Design Automation and Subscale Testing: With Special Reference
to Micro Air Vehicles,” PhD Dissertation, LinkOping University, 2012.

Anon. "CJCSI 3170.01E Joint Capabilities Integration and Development System,"”
Chairman of the Joint Cheifs of Staff Instructions, 2005.

Anon. "Adoption of ISO/IEC 15288:2002, Systems Engineering-System Life Cycle
Processes,” IEEE Std 15288-2004 (Adoption of ISO/IEC Std 15288:2002), 2005. doi:
10.1109/IEEESTD.2005.96287

Combs, H. G., Campbell, D. H., Cassidy, M. D., Sumpter, C. D., Seitz, E., Kachel, B. J.,
James, R. P., Walters, J., Love, J., and Passon, R. T. "Configuration Development Study

https://www.esteco.com/modefrontier
https://rcenvironment.de/

142

Bibliography

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

of the X-24C Hypersonic Research Airplane Executive Summary,” NASA-CR-145274,
NASA Langley Research Center, 1977.

Ruttle, B., Stork, J., and Liston, G. "Generic Hypersonic Vehicles for Conceptual Design
Analyses," AFRL/RQHT, Wright-Patterson AFB OH, 2012.

Mutzman, R., and Murphy, S. "X-51 Development: A Chief Engineer's Perspective,” 17th
AIAA International Space Planes and Hypersonic Systems and Technologies Conference,
2011.

Czysz, P., and Vandenkerckhove, J. "Transatmospheric Launcher Sizing," Scramjet
Propulsion, Progress in Astronautics and Aeronautics, edited by Murthy, S. N. B., and
Curran, E. T., 2000, pp. 979-1103.

Chudoba, B. "MAE 4351 Aerospace Vehicle Design Il Design Project Next Generation
Military Spacecraft,"” MAE 4351 Course Notes. The University of Texas at Arlington, 2018.

McDonnell Aircraft Company. "Hypersonic Research Facilities Study. Volume 1l Part 2
Phase | Preliminary Studies Flight VVehicle Synthesis," NASA, 1970.

Sutton, G. P., and Biblarz, O. Rocket Propulsion Elements, 8 ed., John Wiley & Sons, 2010.

Heiser, W., Pratt, D., Daley, D., and Mehta, U. Hypersonic Airbreathing Propulsion,
American Institute of Aeronautics and Astronautics, Inc., 1994. doi: 10.2514/4.470356

Miele, A. Flight Mechanics: Volume 1: Theory of Flight Paths, Addison-Wesley, 1962.

Harloff, G. J., and Berkowitz, B. M. "HASA, Hypersonic Aerospace Sizing Analysis, for
the Preliminary Design of Aerospace Vehicles," NASA-Contractor Report 182226, NASA,
1988.

Hank, J., Murphy, J., and Mutzman, R. "The X-51A Scramjet Engine Flight Demonstration
Program,” 15th AIAA International Space Planes and Hypersonic Systems and
Technologies Conference, HYTSAP-8: Program Overview I, AIAA 2008-2540, 2008. doi:
10.2514/6.2008-2540

Anon. "X-51A Waverider,” U.S. Air Force, 2011, URL: https://www.af.mil/About-
Us/Fact-Sheets/Display/Article/104467/x-51a-waverider/ [retrieved 4/20/2020].

White, M., and Price, W. "Affordable Hypersonic Missiles for Long-Range Precision
Strike," Johns Hopkins APL Technical Digest, VVol. 20, No. 3, 1999, pp. 415-423.

Dolvin, D. "High Speed Flight Research Insight Briefing,” USAF AFOSR Industry
Program Review, Basic Research Innovation and Collaboration Center (BRICC),
Arlington VA, 2016.

https://www.af.mil/About-Us/Fact-Sheets/Display/Article/104467/x-51a-waverider/
https://www.af.mil/About-Us/Fact-Sheets/Display/Article/104467/x-51a-waverider/

Bibliography 143

[160] Bowecutt, K. G., Dolvin, D., Paull, A., and Smart, M. "HIFIRE: An International
Collaboration to Advance the Science and Technology of Hypersonic Flight," ICAS 2012
Congress, Brisbane, Australia, 2012.

Appendix A Case Studies Expanded

The following section provides additional documentation of the case studies ran. The order of
presentation follows the case studies—verification then trade study.

Al All Body: X-51A

A.1.1 Vehicle Description

The X-51A is a hypersonic scramjet
powered demonstrator vehicle. The
Boeing Company and Pratt & Whitney
Rocketdyne developed the vehicle for the

Cruiser

Modified ATACMS

Scramjet Engine Booster

US Air Force and DARPA. The X-51A is
a waverider concept designed for Mach 6+
flight and a powered flight time of 240
seconds. The vehicle has no onboard
subsonic propulsion and, as such, is

X-51 Vehicle Properties:
Vehicle stack: Length: 25 ft
Weight: 3,925 Ibs

Cruiser: Length: 14 ft
Weight: 1,480 Ibs (Fuel: 265 Ibs) [loW-Through

Max body width: 23 inches Inter-stage
Engine flow-path width: 9 inches

Figure A-1 X-51 configuration and full stack [156]

accelerated by a booster rocket to the

engine start condition. The X-51A is launched from a carrier vehicle, the B-52H. The X-51A
vehicle and stack is illustrated in Figure A-1. The vehicle is a spatula nosed concept derived from
the Affordable Rapid Response Missile Demonstrator (ARRMD) program[156]. On observation,
the configuration shares many similarities to the legacy lifting bodies FDL-7 and McDonnell
Douglas MRS. The vehicle is non-recoverable and is destroyed on mission completion. Four flight
vehicles were built and flown; the X-51A conducted its first scramjet powered flight on May 26,
2010 and its last test flight on May 1, 2013 with a peak speed of Mach 5.1.[157]. For additional
discussion on the X-51A see [148, 156, 157]. For a discussion on the ARRMD program see [158].

146

Case Studies Expanded

A.1.2 Vehicle Weights

The vehicles’ primary geometric parameters and weight breakdown are given in Table A-1 and

Table A-2 respectively.

Table A-1 X-51A primary dimensions, adapted from [148]

in m
AVD Stack Length 301 7.645
Cruiser Length 168 4.267
Max Body Width 23 0.584
Engine Flow-Path Width 9 0.229

Table A-2 X-51A Primary Mass Properties, adapted from [148]

1b,, kg N
Cruiser Operating Weight 1225 556 5449
Cruiser Launch Weight 1504 682 6690
JP-7 Fuel (Useable) 265 120 1179
Booster 2277 1033 10129
Interstage 160 73 712
Stack Gross Weight 3942 1788 17535
(Captive Carry)

A.1.3 Notional Mission

The X-51A mission is an Powered flight __— Engine off
airdropped non-reusable mission. -8oKtoook ~ experiment

The notional mission is illustrated
in Figure A-2. The mission is
described by references [156, 157].
The mission is very similar to the
GHV mission. The vehicle is
released from a B-52H at
approximately 49,500 ft. and Mach
0.8. Shortly after release, the rocket
booster ignites and burns for about
35 seconds, performing an
accelerating climb. The rocket

P Booster Burnout & Separation /
“ Scramijet Ignition

Altitude Unpowered flight
experiment (PIDs)
— Boost ~30 saconds {planned for flights 2-4)
40K to 50K

«—— Booster Ignition

\ Launch from B-52 Total Stack / Cruiser design
flight time ~ 800 seconds

Captive Carry

- N\ — e T T
Take-off End Flight

[Powered flight
! ~ 240 seconds

Figure A-2 X-51 notional mission[148]

| Unpowered flight |
l ~ 500 seconds !

|
|

accelerates the X-51A to approximately Mach 4.5+ and 60,000 ft. at which point the cruise vehicle
separates. The X-51A coasts until scramjet ignition. After ignition, the vehicle accelerates under
the power of the scramjet from approximately Mach 4.5 to the cruise condition of Mach 6 and
70,000+ ft. The scramjet continues operating until the usable fuel is consumed after which the
engine shuts off and the vehicle descends, performing unpowered experimental flight. The vehicle
is ditched in the ocean and is not recovered.

All Body: X-51A

147

Table A-3 Summary of X-51A notional mission profile

Mission Segment Mach Altitude Dynamic Pressure
ft. m psf kPa
Carrier Separation (booster ignition) 0.8 49,500 15,088 111 5
Initiation (booster separation) 45 60,000 18,288 2123 102
Acceleration and Climb 6 70,000 21,336 2336 112
Lifting Cruise 6 +70,000 21,336 2336 112

A.1.4 Project Builder Selections

This section documents the Project Builder selections. Depicted are each page’s selections.
The selection is organized according to the Project Builder’s tabs.

= 0 =
NNNNN 2o [o Ser——
o ndormaton et selaceon
o 5 [S——
Han 1 Hame Type peiar
Author [T o imary Hypes wopp o -
Creston Dot (253813
JU——
“ # Seloct Vehick
i
T —
conceps Vs
1 R gy Hot USmce Al Aoy
s 4 -
. bxo
s
3 Siding Descen
p—
- o [k
NORADS PretBulir 101 -GRL3 Lirss
o
ame: 1 [
- -
EoT—
B e
e P .
N ey
i ———
A e ———
=
- om I TS
A 11

Figure A-5 X-51A Integration page, (b) Function Assignment

Primary Venicie: 651

Sclct Process

3381 LiSoues AlBady Alicdy Weight Bdanse Hyparsani Liflng Body IWeights

‘Sa6ct Mg

sone e Hep Bk

HDRAOS Prect Bulder s 101 -GPL3 Lianse

Figure A-4 X-51A Integration page, (a) Method Selection

‘‘‘‘‘

o rice Mission Segmert Mision Grdes Yardure Trigger v Trigges Yslus.

s Comsart__cimb "

1wt Cansan_0_como I

1 W | Comstant och Endurnca |1 t

= o . v Comsar och_Erdrance |1 ol

=t o 502 v « | ung pescsm_maan + 2 <l

Method Dekte Method Add

s o b i -

AR 55 Promt Bk 1 e

Figure A-6 X-51A lteration page

148 Case Studies Expanded

staps

s ouar 3 = ot v ouar 3 =

(DR DSS Project Buldery 1.1 - GPL License. ADRADS Project Buldery 1.1 - GPL License.

Figure A-7 X-51A Convergence page Figure A-8 X-51A Screening page

A.1.5 Trade Study

The X-51A all-body concept, in addition to inspiration from the Model-176 and FDL-7, were
used as baseline concepts for a trade study of all-body hypersonic cruiser vehicles. This section
presents the trade study trade matrix, the convergence behavior and results, and the final
consideration of the results pictorially in context to potential carrier vehicles.

A.15.1 Trade Matrix

The all-body concept evaluation evolved around two concepts—airbreathing and non-
airbreathing. For each concept volume coefficient (7), cruise time (t,-ise), and payload weight
(Wpay) Were traded. For the non-airbreathing cases, the fuel type was traded as well. The fuels
traded were RP-1 and H,. The trade ranges are shown in Table A-4.

Table A-4 All-Body trade matrix
Vehicle Tag Baseline Vehicle Propulsion System Boost Type Fuel Type Tau Range Payload (N) Cruise Time (s)

AB2DS X-51/ MODEL 2D Scramjet External JP-7 0.14-0.2143 0-4000 0-750
176 Scram

ABRKT MODEL 176 Liquid Rocket External H, /RP-1 0.14-0.2143 0-5000 0-500

ABRKT MODEL 176 Liquid Rocket Internal H, /RP-1 0.14-0.2143 0-5000 0-500

A.15.2 Trade Convergence Summary: lteration Errors

The trades were executed as laid out. For reference, the final convergence error and
convergence error per independent variable iteration for each trade are presented pictorially below.
The order presented follows that of the row order in the trade matrix table. As can be seen, the
convergence for the airbreathing cases occurred much more readily and with no noticeable
difficulty. However, the problem solving became more laborious as the problem progressed
through the non-airbreathing cases and specifically the integrated (internal boost) case. Note that
for all trades, the all-body solutions converged, unlike the blended-body case.

All Body: X-51A

149

Trade lteration Number

Convergence Error

Trade Iteration Number vs Final Convergence Error

60

55

50

45

40

35

30

25

20

15

10

T T T
1077 1073 1073 1071
Final Convergence Error

Figure A-9 AB scramjet iteration final convergence

Convergence Error vs Iteration Number

105 A

103 ~

NN

AN
AR
W
10-3 - \ \
1075 4
1077 4 g

0 2 4 6 8 10 12
[teration

Figure A-10 AB scramjet iteration convergence error by step

150 Case Studies Expanded

Trade Iteration Number vs Final Convergence Error

60

55

50

45

40

35

30

25

Trade lteration Number

20

15

10

1 1
106 1074 1072 100 10?
Final Convergence Error

Figure A-11 AB boosted rocket (RP1) iteration final convergence

Convergence Error vs Iteration Number

10™

109 4

105 4

103 4

10°

Convergence Error

1072

10-6 -

T T T T T
0 50 100 150 200 250 300
Iteration

Figure A-12 AB boosted rocket (RP1) iteration convergence error by step

All Body: X-51A

151

Trade lteration Number

Convergence Error

Trade Iteration Number vs Final Convergence Error

60

55

50

45

40

35

30

25

20

15

10

1 1
10°° 1073 107!

Final Convergence Error

107° 1077

Figure A-13 AB boosted rocket (H,) iteration final convergence

Convergence Error vs Iteration Number

O = ——————

fry

-

10° 1

103 |

" \

107 4

1079 4

T T
0 20 40 60 80 100 120
Iteration

Figure A-14 AB boosted rocket (H,) iteration convergence error by step

T
140

T
160

152 Case Studies Expanded

Trade Iteration Number vs Final Convergence Error

45

40

35

30

25

20

Trade lteration Number

15

10

1 T T 1 1 ;
1077 1076 1073 1074 1073 1072 1071 10° 10! 10?
Final Convergence Error

Figure A-15 AB integrated rocket (RP1) iteration final convergence

Convergence Error vs Iteration Number

108

106 4

104 4

v

o~ \'A\.\J__.'A M)

\ \
W R

102 [|

100 |

Convergence Error

102

10—4 4

o
N

10—6 4

T T
0 20 40 60 80 100 120
Iteration

Figure A-16 AB integrated rocket (RP1) iteration convergence error by step

All Body: X-51A

153

Trade lteration Number

Convergence Error

Trade Iteration Number vs Final Convergence Error

60

55

50

45

40

35

30

25

20

15

10

T T
1073 1071

Final Convergence Error

1077 10°°

Figure A-17 AB integrated rocket (H,) iteration final convergence

Convergence Error vs Iteration Number

)

O = e

1011 .

108 ~

@
u
&

10 : il
I:: kl ’ 1 !

10—7 .

0 20 40 60 80
Iteration

——
100

——
120

Figure A-18 AB integrated rocket (H,) iteration convergence error by step

——
140

154 Case Studies Expanded

A.1.5.3 Trade Study Results: Solution Spaces

The solution spaces are considered by first, the reason for solution reduction in the main text,
second, the full solution set for cruise vehicle, and lastly the full solution set for the total launch
stack. While considering the solutions presented here in, the reader is encouraged to recall that
these solutions are not optimal in the generally recognized sense. Understand that these solutions
identify an area of mathematically plausible solutions but do not necessitate that they are the best
nor only solutions for the given case. Additionally, when reviewing the results, note the
significance that the t parameter has on the solutions. For a given payload and cruise time, the
solutions TOGW can be twice the value while comparing the minimum versus maximum t
solutions, underlining the significance of volumetric efficiency for the hypersonic case.

A.1.5.3.1Solution Space: Area Reduction

The hydrogen rocket AB class solution space grows rapidly in both weight and planform area
with increasing cruise time and in doing, it dominates the solution area. Consider the minimal case
of zero payload. Figure A-19 illustrates this case. As one can clearly see, the hydrogen-based
rocket dominates in terms of growth and total weight. The vehicle solutions rapidly exceed the B-
52’s capacities at 250s cruise time and even exceed the Cosmic Girl’s weight limit at the 750s
case. The vehicle grows rapidly due to the compounding nature of weight, volume, and
aerodynamic forces. In effect, the hydrogen all-body cases above the 250s mark represent solutions
more on par with a second or third vehicle iteration in a growth vehicle program. Many of these
solutions are not practical solutions for most air-launched scenarios. Rather, they would likely be
better suited operating as standalone vehicles or be accelerated atop a vertically launched rocket
such as a Minotaur or Falcon 9. Furthermore, these design points more readily represent upper
stage orbital class vehicles and should be viewed for that application. In fact, the Model-176 was
intended for this purpose. Lastly, due to the hydrogen solutions far exceeding the other trade
solutions in both weight and planform area, the solutions within the main text body are limited to
the solutions within the comparable range of the other trades and within practical carry vehicle
application (B-52 pylon limit). The full solution sets are shown here.

All Body: X-51A

155

TOGW vs Planform Area
600 100 (.(‘:J -‘I“{\‘ P!:.‘Im
” = o B /'U\\“
480 -
A Cosmic Girl
§ 360 =
B .
8 ,
= 240 o
120 _7,‘_,__,_.11k_m;"m?.-
B-52 (HRC)
B-1B
0 F-15-
100

AB H3 Integrated

Planform Area, Spin (m?)
I AB RP-1 Tntegrated

B AB RP-1 Boosled

I AB H; Boosted

I AB Airbreathing

Figure A-19 Selected All-Body solutions illustrating H, solution dominance: S, vs TOGW

A.1.5.3.2Solution Space: Cruiser

The solutions for the cruise vehicle are presented below. The cruise vehicle does not include
the expendable booster for the airbreathing and boosted rocket cases. All solutions are presented
in a singular figure first and are individually plotted thereafter in the order of airbreathing, inserted
vehicle (externally boosted), and lastly the integrated vehicle.

Cruiser TOGW vs Planform Area

600 — . _
& i P ~
I@ 5 g _%‘.;‘5‘:\ 5 0¥
s g
480]
’é‘ Cosmic Girl
s 360)_v;\w\&-‘*‘m
Q
8 240 i ___:‘(]\‘N;m)'"
1204/~ M T T ok
VAN | AESENT v TS S S B-52 (HRC)
B-1B
0 F-15-
96 120

I AB RP-1 Integrated

AB H; Integrated

Planform Area, Spyp (m?)

I 4B RP-1 Boosted

I AB H> Boosted

Figure A-20 All-Body cruiser vehicle solutions: S,;,, vs TOGW

I AB Airbreathing

156 Case Studies Expanded

Airbreathing
Cruiser TOGW vs Planform Area
40 — - -
7- AB Airbreathing & & o }:‘-“(\'\ '1\1“:'ng7

Planform Area, Sy (m?)
Figure A-21 Boosted All-Body airbreathing cruiser solutions: Sy, vs TOGW

Inserted H>
Cruiser TOGW vs Planform Area
].20 o A e ;\],,' 7) o e N L.
I ABH; goasled :é\Q Q\S\ kQ\&‘(\ ’D‘%\F\; /‘b““@;(ﬂ /’:\l&‘é.f‘r‘ /’)Q\g«m

96 ﬁ’" g ‘ : r = : S

"V,'i-ii\(‘f‘n‘z(t),

§ 27 J_,\.%‘Nmb
=
O

g 48 ------- 12 m

B-1B—

244/ e e e S e (;,(‘kt\léﬂ?l"

0+
0 5 10 15 20 25 30 35 40

Planform Area, Spn (m?2)
Figure A-22 Boosted All-Body H, rocket cruiser solutions: Sy, vs TOGW

All Body: X-51A

157

Inserted RP-1
Cruiser TOGW vs Planform Area
60 ~ A i i
B AB RP-1 Boosied }S \ﬁ@ ,\\;\;a N _b\’:\'\'m
= S 'y -
S &) L -
50 1 ';‘,' . - - ‘U‘ml.
—_— 40 -'/ \l]
S - ER-15
% 30 ‘/," ’//' Bl $ T 3 RN
= o A A .
20 i « i ——UA [
10 i R S 0.7 knNim?
0 48—
0 3 6 9 12 15
Planform Area, Sy (m?)
Figure A-23 Boosted All-Body RP-1 rocket cruiser vehicle solutions: Sy, vs TOGW
Integrated H>
Cruiser TOGW vs Planform Area
600 = — T
0 AB Hj Integrated & e ‘(‘-‘:“‘m
z oy o e
480 o e
= - - Cosmic Girl
i 360 o]
o
E 80y e e M
1204/ e T T 1.0 kKN/m*|
______________________________________ B-52 (HRC)
""""""""""""""""""""""""""""""""""" 11
O g T T :
48 72 96 120

Planform Area, Sy (m?2)

Figure A-24 Integrated All-Body H, rocket cruiser vehicle solutions: S, vs TOGW

158 Case Studies Expanded

Integrated RP-1
Cruiser TOGW vs Planform Area

350 , : - . —
I AB RP-1 Inlegrated & & 0 G e ~ 0
= & N o V¥ 0¥
€° ::_ \/\7 /,\&- ’/,\ 0.2143 ‘/,/

7 i

Planform Area, Spip (m?)
Figure A-25 Integrated All-Body RP-1 rocket cruiser vehicle solutions: S, vs TOGW

A.1.5.3.3Solution Space: Full Stack

The solutions for the full launch stack (cruise with external booster as necessary) are presented
below. The stack launch weight (TOGW) versus cruiser planform area (S,;,) solutions are
presented in a singular figure first and are individually plotted thereafter in the order of
airbreathing, inserted vehicle (externally boosted), and lastly the integrated vehicle. These are
followed by the illustration of cruiser span (b) and stack length (1) versus cruiser planform area.

TOGW versus Sy
Launch Weight vs Cruiser Planform Area
600 — ys —
f Ry ¢ -5";\ N
4 — : 7
80 o o
— Cosmie Girl
g 360 it
=
@
g 240 ______ 0 am
1204 / A : S ik 1.0 KNim? 4
> I S == B-52 (11RC)
e T S B-1B-]
0 el N,157
T
0 24 48 72 96 120
Cruiser Planform Area, Spjp (m?)
B AB RP-1 Integrated AB H; Integrated I AB RP-1 Boosted I ABH;> Boosted B AB Airbreathing

Figure A-26 All-Body full stack solutions: Sy, vs TOGW

All Body: X-51A

159

Stack TOGW (kN)

320

280

Airbreathing
Stack TOGW vs Cruiser Planform Area
100 — = T =
BN AB Airbreathing & & o™ o et
S & q@ R @® &b)
90 ~ = =) g[‘{_c)a

240

—
2

Stack TOGW (kN)
(=)

o)
<

[

o

<
I

Figure A-27 Boosted All-Body airbreathing full stack solutions: S,;,, vs TOGW

Cruiser Planform Area, Spin (m?)

Boosted H>

W vs Cruiser Planform Area

=
&

&

Stack TOG

4

e T
e
ot A ¥
NS id

)
-

IR 1B

T-154

Figure A-28 Boosted All-Body H, rocket full stack solutions: Sy;,, vs TOGW

10

15 20

Cruiser Planform Area, Sy, (m?)

35

160 Case Studies Expanded

Boosted RP-1
Stack TOGW vs Cruiser Planform Area
180 T — 77 7 =
-1 Boosle &) ‘.‘;':("‘ N _».'.!m
B ABRP-1B dé@ @?‘& Q@t(‘ ¥ ¥
< & R 02143
150 & -
§ 120
z
s 9
%
~
g 60
N
30 4—
0
Cruiser Planform Area, Spjn (M?)
Figure A-29 Boosted All-Body RP-1 rocket full stack solutions: S, vs TOGW
Integrated H>
Cruiser TOGW vs Planform Area
600 — — — - -
0 AB H; Integrated £ é;é‘ ﬂ@x\““ N_Q@“m
- P " T
480 o e
= sl B Cosmic Girl
i 360 oo i
= e
o
O 240 e M s
] 20 _____________________ 1.0 k‘,\}.’mz'
___ B-52 (HRC)
______________________________________ B-1B
O je F-15-
0 24 48 72 96 120

Planform Area, Sy (m?2)
Figure A-30 Integrated All-Body H, rocket full stack solutions: S, vs TOGW

All Body: X-51A 161

Integrated RP-1
Cruiser TOGW vs Planform Area

350

B AR RP-I h;l‘s’graled ,§\ @"(& ’ﬁéﬁ‘v b‘\\\ﬁﬁ? 4 \\q\,::\‘.“‘lx ’\“-u\.:ﬁl -
= & o o7 A - , 02183
] iy
a0
.60 \‘d‘l rﬂ?'""
»,.4.0\5&'““-2"
B-52 (HRC)|
_________________ 2.0 kKN/m?
B-1B
I-15-]
35
Planform Area, Spjn, (m?)
Figure A-31 Integrated All-Body RP-1 rocket full stack solutions: S,,;, vs TOGW
Span and Length:
Stack Length vs Planform Area
24
22 %
% 8 ® s 8 0% L3
20 . ®p &
o 8 8
g ; “’;% 2y ®% o
S 16 x }‘z ¢
= 14 : A ¢
"E | “‘ 0 "
ERPERE ¥, TR 8
) ¢ m 4 8 B
j 10 g g @
] # ®
g 8 m g °8 ° % ’
5] 6 . (T % 8 8
| .C.' e ° s ® "
4 e o 3-..
2
0
0 10 20 30 40 50 60 70 80 90 100
Cruiser Planform Area, Spjn (m?)
BB AB RP-1 Integrated 0 AB H; Integrated @B AB RP-1 Boosted BB AB H; Boosted @B AB Airbreathing

Figure A-32 All-Body full stack solutions: Sy, vs [

162 Case Studies Expanded

Cruiser Span vs Planform Area

6
8
5 % ® ® a® nu®
8
® %
€ T
8 8
=4 %
8
-Qn 8
=}
&
#
o X
2 ®
é % 8
@) ® 8 8
® & By ®
L 4
0 T
0 10 20 30 40 50 60 70 80 90 100
Cruiser Planform Area, Spjn (m?)
BB AB RP-1 Integrated 0 AB H, Integrated BB AB RP-1 Boosted BB AB H, Boosted BB AB Airbreathing

Figure A-33 All-Body full stack solutions: S,,;, vs b

A.2 Blended Body: Road Runner Generic Hypersonic Vehicle

A.2.1 Vehicle Description

The Road Runner Generic Hypersonic TP—
Vehicle (GHV) is a family of hypersonic
vehicles. The vehicles share the same concept
and configuration. The top view, bottom view, ==
and internal layout are illustrated in Figure
A-34, Figure A-35 and Figure A-36
respectively. Significant features are indicated.
The vehicle has a blended-body underside with
a distinct fuselage on the topside. A central
through flow scramjet system characterizes the Figure A-34 GHV top view with features indicated [147]
vehicle. The propulsion system is ethylene
based. The inlet and nozzle are both three- Inlet
dimensional. The combustor is axisymmetric.

The vehicle concept is the baseline for the
family of five vehicle sizes. The mass flow rate
scales the vehicle. The vehicle operates up to
Mach 6 and a dynamic pressure range of 1000
tO 2000 pSf. Bottom Waverider Ski

Waverider Tails

Top Waverider Skin

TPS

Waverider Flaps

The vehicle family was created with the
Intent to have a publlcly dlstrlbutable and FigureA-35GHVbottomviewwithfeatures indicated [147]
creditable hypersonic vehicle design case for research and development. As the study, see
reference [147], states:

[i]t was decided that a family of in-
house designs should be created which
would be publicly releasable and
relevant to current hypersonic projects.
AFRL would then be able to share these
designs and any data derived from
them with other government, academic
or industry partners and thereby foster :
greater collaboration within the area. :

The concepts were generated for improved Ballast

research, development, and collaboration. To Figure A-36 Propulsive system internal layout [147]
ensure a credible baseline hypersonic design

point, the concept has been based on credible vehicles. For instance, the GHV shares many
configuration similarities with the HIFIRE-6 and HIFIRE-8 [159, 160].

164 Case Studies Expanded

A.2.2 Vehicle Weights

The vehicles’ primary geometric parameters and weight breakdown are given in Table A-5 and
Table A-6 respectively. Mass flow rate scales the vehicle. The family set comprises of five scaled
designs; each is represented.

Table A-5 GHV family primary dimensions, adapted from [147]
Flow-Path Scale (X)
Element Units 1 2 3 4 5

Length Overall m 4.4681 6.3189 7.7390 8.9362 9.9910

Fuselage Length m 4.3134 6.1001 7.4711 8.6269 9.6451
Effective Fuselage Diameter - Nose m 0.2793 0.3951 0.4838 0.5587 0.6246
Effective Fuselage Diameter - Tail m 0.4786 0.6769 0.8290 0.9573 1.0703
Wing Span m 1.4877 2.1039 2.5767 2.9754 3.3265
Nose-to-root Offset m 0.2568 0.3632 0.4448 0.5136 0.5742
Root Chord m 4.1059 5.8066 7.1116 8.2118 9.1811
Tip Chord m 0.4884 0.6908 0.8460 0.9769 1.0922
Effective Leading Edge Sweep deg 80.6 80.6 80.6 80.6 80.6
Effective Trailing Edge Sweep deg 13.6 13.6 13.6 13.6 13.6
Table A-6 GHV family primary mass breakdown, adapted from [147]
Flow-Path Scale (X)
Mass (Kg) 1] 2 3 4 5
Structure | Total Skin 96.3 228.9 405.3 613.7 674.1
Flaps 215 58.7 110.0 166.1 233.6
Tails 7.9 214 39.5 59.6 83.4
TPS 15.3 40.1 73.4 110.0 153.3
Spars and Kneels 7.2 141 211 27.9 35.0
Inlet 12.8 24.7 36.4 48.0 59.6
Isolator 17.1 33.6 50.0 66.3 82.6
Combustor 423 83.6 124.6 165.7 206.6
Nozzle 54.2 101.2 156.0 200.4 2515
Fluids Usable Fuel 102.9 3274 624.0 968.2 1425.0
Residual Fuel 9.0 28.7 54.7 84.9 125.0
Nitrogen 1.9 6.0 115 17.9 26.3
Other Ballast 31.8 79.4 136.1 181.4 226.8
GN&C 1334 1334 1334 1334 133.4
Payload 0.0 0.0 0.0 0.0 0.0
Summary | Gross 553.5 1181.0 1976.1 28434 3716.3
Empty 450.6 853.7 1352.1 1875.2 2291.2
Dry 439.6 818.9 1285.9 1772.4 2139.9
Structure Mass 0.496 0.513 0.514 0.513 0.479
Fraction
Fluids Mass Fraction 0.206 0.307 0.349 0.377 0.424
Other Mass Fraction 0.298 0.180 0.136 0.111 0.097

Blended Body: Road Runner Generic Hypersonic Vehicle 165

A.2.3 Notional Mission

The GHV’s notional mission is illustrated in Figure A-37. The general mission segment
conditions are given in Table A-7. The vehicle is air-launched, and it is assumed that a rocket
booster accelerates the vehicle to the engine start condition—between 1500-2500 psf—at which
point the booster separates. On engine start, the vehicle accelerates from Mach 4 to Mach 6,
climbing in altitude as it does. At Mach 6, the vehicle levels out and performs a lifting cruise
segment. Powered cruise occurs at a dynamic pressure between 1000 — 2000 psf. The cruise
segment is optionally split by a maneuver execution. Maneuver options considered include an 180°
turn or a 45°-90°-45°witch back maneuver. In the event that no maneuver is executed, a straight
fly-out mission is executed. In this mission situation, no maneuvers are performed, only
acceleration-climb and cruise conditions are considered. After the cruise and optional maneuver,
the engine shuts off; this ends the powered segments of the mission. After engine shutoff, the
vehicle descends, during which it is able to perform unpowered tests. The vehicle is not reusable.

Maneuver

AN
Cruise Cruise

Acceleration Descend

Initiation Maneuver

Figure A-37 GHV notional mission profile [147]

Table A-7 GHV notional mission conditions, adapted from [147]

Mach Lift/Weight Dynamic Pressure
psf kPa
Initiation (booster separation) 4-5 1 2500 - 1500 120-70
Acceleration and Climb 4-6 >1 2500 - 1500 120-70
Cruise 6 1 2000 - 1000 96 - 48
Maneuver (#1 or #2) ~6 ~2 2000 - 1000 96 - 48
Cruise 6 1 2000 - 1000 96 - 48
Descend (powered) 6-4 <1 2000 - 3000 96 - 140
Descend (unpowered) 4-3 <1 2500 - 5000 120 - 240
Maneuver (unpowered) ~3 >1 5000 240

A.2.4 Project Builder Selections

This section documents the Project Builder selections. Depicted are each page’s selections.
The selection is organized according to the Project Builder’s tabs. The selections shown are for
the reverse sizing case however, the same general selections were made for the trade study as well.
The only significant variance being the mission profile and selected method (as laid out in Chapter
5 Section 5.4) in addition to the trade variable selections.

166 Case Studies Expanded

7 AI0RA DS5) = o x ¥ A10RA 55 = -~ o x
vowesee [Wosgratin, Reratin, Convergince Scraening Veualiaan Assesant orowvser ansyss (IR Reratin, Convergince Scraenn VEUIRN Assesmant

Froject tmformation ek Selecton Froject tmformation

o t] Primary & Secondary. - 015 | Name: [y | Primary Vetcle: [Thomas 1

Mame: 5L D Name Type Desciption Process Selectivn

Autror. [Moms | i xst orimany vypersonictes ehice, Airdropped and tested for each 8 figh. ° e — Commrgence Seecied rocess ype

Crestion Date: (20200518

14 V1S convsrgence. Roackuner GHY Ves ey
[res——
Lot s
Seiect Vet Sl Process

Ort Osen @ wonua

Degee ofFresdom Selocted Velile Dexcmpezbon [l 5ot o [—

3 - [RESPr—— o I

[——— r

" = Concepts Hardware Operstions. verds Harowane Discipling Method
s 3 Aicra LfingBccy it LitSaurce AlSod ARGody Humanated o tncmas T RoadRureer GHY LNSouce W ChORdTalesOts Geomelry GHW Jmersceic rbesathar Veice
ot 3 2 95 Actve Cosisnt Speed Hyperscei pypersceic : RaadRusmar GHY LftSaurc Wing ChardTalosdats Weght Ssance Hypersanic iling Body Weights
3 THS Passive Abistve Speed Supersanic_Supersoeic 3 RaadFusmer_GHY ThiustSource Akbreatbing_ScramjeiThreed Progulion Scramjet G Engine.
. o5 passivg, Tabac e
1 M Jamch 5 ThrustSource_Arbreathing ScramielTwaD
2 Booster Separation
Selet wethod
o 3 £ o 5w uar 3 £ o

AR DS Prject Bty 11 -GRLS License ADRADSS Prject Bults v 11 -GRLS License

Figure A-38 GHV Analysis page Figure A-39 GHYV Integration page, (a) Method Selection

w04 D551) - o «x T moRs D) = - o «x
svonaer anavse [RRIRRD Racate Convarptoce Scraene Veatzen Asesevart rmaer Anshes esarnce [N convarptoce Scraenng Veuatmon Asesevart
Project mfomation Project mfommation
o | Hame: are [rm—C—] o i | Hame: are [rm—C—]
Frocess Selction Hethod Expansion Process Check
o Name weice Comesgence Selected Process T bic Method - i Frocess vehide Grade acess Grade
" [P p—————— Py s[aweoeam | subsonc e 30 Danded Boy 1 RoadRunner GHY W WS comesgence pimary | Primary
B e ——— Ty
Sect rocss. 1
3 Agredyramics | Suparsonic_Hypersenic_Wing_and_Blnded_Bocy_HyFac_
s socn IS B ey Frpre
venie wission s Orcir Facavare Funcion =
1 RoBRUNNGT_GHY - Congtant_Q_Cmo. ~1 | URSauICe_Wing_Chord TakesData ~ U Sourcs ~
= = I - o | Trapecaoey | Consan_Q G -
2 Rosdner GV - Gt 0 O - |1 ~ | MhnstSouce asbesthing ScompetThoseD - Thiust Soce - . 5
[P ———— ———— O [Pop——— <t sewrn B ot s Do
s Roodbunner_GHV | Constant_Mach_Endurnce |1 | ThrustSource_Arbreathing_ScranmjetThieel ~ Thrust Source ! primary vehicke _ Secondary vehicle Mission Seqment Mission Order Hardheare Triggervar. Trid
i Ses—— v ——— [[Pe———— o J | Roathumens iy < | Sec. v, nomared ~ ot @ w0 [P —— Vo -
P P —— r—] S —————
3 RoadRunnar_GHV Mo SeC. Veh. ReQuisd | CONsTant_Mach Endurance ~ 1 | LAtSource_wing_Chond TakessDeta ~ P9_ADAT |
gt 4 RosdRuneec_GHY ~ | Mo Sec, Veh, Requred ~ Constet_Nach_Endurance ~ 1 ~ | TheustSource_Asbresthng_ScramjetThieeD ~ o ADA_T -
| A PO ———r— [[Pem——— Clegoar -
Iethod Dalete| Mathod Add
s o o sk o s o o sk o
AIDFA-DSS Project Bullder v 101 - GPLY License. AIDFA-DSS Project Bullder v 101 - GFLY License.

Figure A-40 GHV Integration page, (b) Function Assignment Figure A-41 GHYV lteration page

AIDRA D55 = - o ox T ALDRA 5 = - o x
Womser Anayss iegraton Reatee FEIRREER Scoenng Visakaten Asassmart Bromser Anayss Wegraiion Terion Convergence RSN Vieakition Asessmant
Project Information Project Information
0:[15 | Hame: [| Primary Vehicie: [Tromas. i0: 15 | Hame [ar | Primary Veticie: [Tromas.
Process Information Study Type “Trade Variables
hdspendect Varabies ‘Comeraance Functons ot Disciinan Process Varaties
- © Singha o c
Vacatle Process veniae Functions etice il out o] - e - e — e | v | e | e
R e . — 1980 acasmami: smasphere Model £
1SN WS convergence RondRmner GV | (1 WS - TOGW/SPLN RosdRummer GHY . SOty | Roscumer GH LftScurce Wing, ChoedTaSI0RRS TSCIOry Constint Mach Encurance ENDURANCE CRUSE 0001 500 5
. — oy~ S— 0 GEAR Asrosmamcs atmosphers. Model £
20 [o Tmar G [| OB RN Roackunmer, SV —— 2 RoadRunner GHY Liltsaurce Wi ChoedlTabessDela Geomelry GH Hypersanic Abbresther Vel Tal O
2 GER Fropusion Atmoshere Model F
22 MDOTO X Propukion Geamatry . ® cuda 00k
- B O I Gymem
OBath
convergence setup
aptinger Output Sty Soor Ontions npats
- 0 Sate T Sater Specic Opbons -
o e - S e srdnare Discpine Method vaable ~
@ @ rgre froke —
O oata e Comargsncs Limks 1 Rosdfunnes_GHY, LS ouree Wing CherclTallessDeks Aerodymamics Subsonic_Wingand| Blended Body -
[a— 2 Rosckunnes Gh LSoures Wi, CherdTabassDuka Aarcdmamics Transanic Sepersonic Wing,sed Sendact Sacy conw.con
3 RoadRue GHY LSCurce Wi ChordTalessDeta ARIOUTAMIS SUDFSONK HP4TSQNK WING.ane Blendia Bods. HyFa GHY COTW.CCR.
4 Roacumnes_GHY LtScurce Wi ChordTabessDeta harodimamics Subsonic Wing_and Slended Sady a0
5 FoadAummes GHY ifiSource Wina ChordTabessDeta herodmanics __ Subsonic Wina and Slended Bo Ecor v
‘Systen Exeartion
Crange Dutput Drectory. Generate Code. Fun Code
ES caar o s [ES caar o s [
AIDRADSS Prjec Bulder 1 - GFLY Licsnse AIDRADSS Prjec Bulder 1 - GFLY Licsnse

Figure A-42 GHV Convergence page Figure A-43 GHV Screening page

Blended Body: Road Runner Generic Hypersonic Vehicle 167

A.2.5 Trade Study

The GHV Blended-Body (BB) concept was used as a baseline concept for a trade study of
blended-body hypersonic cruiser vehicles. This section presents the trade study’s trade matrix, the
convergence behavior and results, and a consideration of the results pictorially in context to
potential carrier vehicles and general solution space behavior.

A.25.1 Trade Matrix

The blended-body concept evaluation evolved around two concepts—airbreathing and non-
airbreathing. For each concept volume coefficient (7), cruise time (t-ise), and payload weight
(Wpay) Were traded. For the non-airbreathing cases, the fuel type was traded as well. The fuels

traded were RP-1 and H,. The trade ranges are shown in Table A-8.

Table A-8 Blended-body trade matrix

Vehicle Tag Baseline Vehicle Propulsion System Boost Type Fuel Type Tau Range Payload (N) Cruise Time (s)
BB3DS GHV 3D Scramjet External Ethylene 0.0657 —0.0735 0 0-750
BBRKT GHV Liquid Rocket External H,/RP-1 0.09-0.12 0 - 4000 0-300
BBRKT GHV Liquid Rocket Internal H,/RP-1 0.09-0.12 0 - 4000 0-300

A.25.2 Trade Convergence Summary: lteration Errors

The trades were executed as laid out. For reference, the final convergence error and
convergence error per independent variable iteration for each trade are presented pictorially below.
The order presented follows that of the row order in the trade matrix table. As can be seen, the
convergence for the airbreathing cases occurred much more readily and with less noticeable
difficulty (as measured by total independent variable iterations to solution convergence).
Furthermore, the problem solving became exceedingly more laborious as the problem progressed
through the non-airbreathing cases and specifically the hydrogen-fueled cases, as the vehicle
increased in size due to mission parameters. Additionally, the solution finding could be
exceptionally sensitive to slight changes in independent variable value. The numerical solver
would frequently fall into local valleys of no solution. On repeated evaluation of the same point,
different solutions would occur as well, highlighting that the solutions are non-unique. Future
studies should rely on robust global solvers. Lastly, note that not all points converged, that is—for
the given process—the solutions would not close mathematically.

168 Case Studies Expanded

Trade Iteration Number vs Final Convergence Error
40

35

30

25

20

15

Trade Iteration Number

0 T T T i
w0’ 10 107 10 10
Final Convergence Error

Figure A-44 BB scramijet iteration final convergence

Convergence Error vs [teration Number

Convergence Error

0 50 100 150 200 250 300 350
Iteration

Figure A-45 BB scramjet iteration convergence error by step

Blended Body: Road Runner Generic Hypersonic Vehicle 169

Trade Iteration Number vs Final Convergence Error

Trade Iteration Number
S

0 ~ T T
10 10 10° 10 10 10
Final Convergence Error

Figure A-46 BB boosted rocket (RP1) iteration final convergence

Convergence Error vs Iteration Number

Convergence Error

e e e S e e e L e e B e e e e L LA e s w p s e s e e e

0 25 50 75 100 125 150 175 200
Iteration

Figure A-47 BB boosted rocket (RP1) iteration convergence error by step

170 Case Studies Expanded

Trade Iteration Number vs Final Convergence Error

Trade Iteration Number
.
i

U T T
107 10’ 107 10" 10 10°

Final Convergence Error

Figure A-48 BB boosted rocket (H,) iteration final convergence

Convergence Error vs Iteration Number

10° A
10° 4
. : {3
g i .
RN I Win "
51
g |
=1
B
z 0 \
=
Q
@]
} !
107 1

T T
0 50 100 150 200 250
Iteration

Figure A-49 BB boosted rocket (H,) iteration convergence error by step

Blended Body: Road Runner Generic Hypersonic Vehicle

171

Trade Iteration Number

Convergence Error

Trade Iteration Number vs Final Convergence Error

T
0"

T
10"

10 10 10 10 10
Final Convergence Error
Figure A-50 BB integrated rocket (RP1) iteration final convergence
Convergence Error vs Iteration Number
10" 1
10° 1) _
| - \
107
J l Lﬁ 7 th
0 . 7 1
10" L e e i L.,
2 89
i i :
10"
g4
g0
0 50 100 150 200 250 300 350 400
Iteration

Figure A-51 BB integrated rocket (RP1) iteration convergence error by step

	Automating Aerospace Synthesis Code Generation A Tool for Generic Vehicle Design and Technology Forecasting
	Acknowledgements
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Nomenclature
	Chapter 1 Introduction
	1.1 Motivation
	1.2 Design Process
	1.2.1 Design
	1.2.2 Synthesis
	1.2.3 Analysis

	1.3 Product Life Cycle: Design Phases
	1.3.1 Product Life Cycle Knowledge versus Design Freedom
	1.3.2 Discipline Integration
	1.3.3 Cost
	1.3.4 Significance of the Conceptual Design Phase
	1.3.5 Program Exposure and Knowledge
	1.3.6 Lessons Learned

	1.4 Background and Refining Research Scope
	1.4.1 Intelligence
	1.4.1.1 Human Intelligence
	1.4.1.2 Artificial Intelligence

	1.4.2 Fields of AI
	1.4.3 Tools of AI
	1.4.3.1 Computational Intelligence
	1.4.3.2 Knowledge Based Systems
	1.4.3.3 Hybrid Systems

	1.4.4 AI in Aerospace
	1.4.4.1 Optimization
	1.4.4.2 Knowledge Based Systems
	1.4.4.3 Advisor (Virtual Assistant)

	1.4.5 The Great Problem
	1.4.6 Vision and Research Scope Reduction

	1.5 Research Outlook and Scope
	1.5.1 Problem Statement
	1.5.2 Research Objective and Contribution
	1.5.3 Research Deliverables
	1.5.4 Research Scope

	1.6 Document Outline

	Chapter 2 Literature Review
	2.1 Design Classes
	2.2 Classical Design: Texts and Programs
	2.2.1 Design Texts
	2.2.2 Design Computer Systems
	2.2.3 Synopsis of Systems Reviews

	2.3 Multidisciplinary Design Optimization
	2.3.1 What is MDO?
	2.3.2 Fundamental Process Components of MDO
	2.3.3 Components of MDO
	2.3.4 Process Integration and Design Optimization Tools
	2.3.5 MDO System Specifications and Lessons Learned
	2.3.5.1 Automation
	2.3.5.2 Early Concept Definition
	2.3.5.3 System of Systems (vehicle-of-vehicles)
	2.3.5.4 Multiple Concept and Design Phase Applicable
	2.3.5.5 Tool Integration and Distributed Computing
	2.3.5.6 Variable Fidelity
	2.3.5.7 Robust
	2.3.5.8 Transparency
	2.3.5.9 Geometry
	2.3.5.10 Visualization and Solution Exploration
	2.3.5.11 Software independent

	2.4 Selected Design Systems
	2.4.1 AIDA: Artificial Intelligence supported conceptual Design of Aircraft [47]
	2.4.2 Aircraft Design Automation and Subscale Testing [143]
	2.4.3 GLADOS [140]
	2.4.4 Daphne [77, 80]
	2.4.5 GENUS [115]
	2.4.6 AVDDBMS [86, 87, 89]

	2.5 Summary and Specifications for Future Systems
	2.5.1 Summary and Discussion
	2.5.2 Specifications for a Future System
	2.5.2.1 General Design System Guidelines
	2.5.2.2 System Specific Specifications and Guidelines

	2.5.3 Document Outlook

	Chapter 3 Solution Concept
	3.1 General Solution Concept
	3.2 Decomposition Concept
	3.2.1 Product
	3.2.1.1 Structural Subsystem
	3.2.1.2 Functional Subsystem
	3.2.1.3 Operational Event
	3.2.1.3.1 Mission Type
	3.2.1.3.2 Flight Profile
	3.2.1.3.3 Speed Range
	3.2.1.3.4 Gravitational Body
	3.2.1.3.5 Altitude Range

	3.2.1.4 Operational Requirement

	3.2.2 Process
	3.2.2.1 System Elements
	3.2.2.2 Disciplinary Elements

	3.2.3 Method
	3.2.3.1 Product Association
	3.2.3.2 Variables
	3.2.3.3 Analysis

	3.3 Mapping and Synthesis Generation
	3.3.1 Decomposition-Composition Mapping
	3.3.2 Synthesis Generation

	3.4 System Results
	3.4.1 Synthesis Code
	3.4.2 Synthesis Execution Results
	3.4.3 Return Results
	3.4.4 Recommendations

	3.5 Chapter Summary

	Chapter 4 Concept Implementation
	4.1 Description, Structure, and Core Components
	4.1.1 Description and Objective
	4.1.2 Front-End
	4.1.3 Back-End
	4.1.4 File Locations and Folder Tree Structure

	4.2 Process to Problem Solving
	4.2.1 Study Definition
	4.2.2 Support Material Definition
	4.2.3 Architecture Generation and Execution
	4.2.4 Project Iteration

	4.3 Front-End: Core Components Description
	4.3.1 Reference Library
	4.3.2 Methods Library
	4.3.3 Vehicle Library
	4.3.4 Process Library
	4.3.5 Project Builder
	4.3.5.1 Project Builder Browser
	4.3.5.2 Analysis
	4.3.5.3 Integration
	4.3.5.3.1 Process Selection
	4.3.5.3.2 Method Selection
	4.3.5.3.3 Function Assignment

	4.3.5.4 Iteration:
	4.3.5.4.1 Method Expansion
	4.3.5.4.2 Function Mission Builder

	4.3.5.5 Convergence
	4.3.5.6 Screening
	4.3.5.6.1 Trade Study Specification
	4.3.5.6.2 Input Value Specification
	4.3.5.6.3 System Execution

	4.3.5.7 Visualization
	4.3.5.7.1 Visualization Package
	4.3.5.7.2 Selected Variables

	4.3.5.8 Assessment
	4.3.5.8.1 Data Summary
	4.3.5.8.2 Visualization
	4.3.5.8.3 Recommendations

	4.4 Back-End: Synthesis Assembler and Architecture
	4.4.1 Synthesis File Structure
	4.4.2 Synthesis File Generation Process
	4.4.3 Synthesis File Generator Structure
	4.4.4 Selected Significant Algorithms
	4.4.4.1 Synthesis Assembler
	4.4.4.1.1 Method File Processing
	4.4.4.1.2 Trigger Event Processing

	4.4.4.2 Synthesis File
	4.4.4.2.1 Process Cost Function
	4.4.4.2.2 Solver Iteration and Call
	4.4.4.2.3 Primary Disciplines Call
	4.4.4.2.4 Multiple Method Resolve and Data Processing

	4.5 Chapter Summary
	4.5.1 General Summary
	4.5.2 Contribution Statement

	Chapter 5 Verification and Application
	5.1 Problem Statement
	5.1.1 System Verification
	5.1.2 Trade Study

	5.2 Vehicle Selection
	5.2.1 Verification Case
	5.2.2 Trade Study Case

	5.3 Processes Definition
	5.3.1 Multi-Disciplinary Synthesis Process
	5.3.2 Convergence Process Description
	5.3.3 Process to Solutions Space Formation (Multi-Point Case)

	5.4 Missions Definition
	5.4.1 Expendable Booster Profile
	5.4.2 Internal Booster Profile
	5.4.3 Vehicle Mission Segment and Summary

	5.5 Methods Selection
	5.5.1 General Method Overview
	5.5.2 Method Application Summary

	5.6 Trade Matrix
	5.7 Results: Single Point Verification Case
	5.8 Results: Trade Study Case
	5.8.1 External Booster
	5.8.2 Trade Study Solution Space: Launch Stack & Carrier Constraints

	5.9 Conclusion
	5.9.1 Study Summary
	5.9.2 Study Conclusions
	5.9.3 Contribution Statement

	Chapter 6 Conclusion
	6.1 Research Summary
	6.2 Research Contribution Summary
	6.3 Research and Development for Future Enhancement

	Chapter 7 Bibliography
	Appendix A Case Studies Expanded
	A.1 All Body: X-51A
	A.1.1 Vehicle Description
	A.1.2 Vehicle Weights
	A.1.3 Notional Mission
	A.1.4 Project Builder Selections
	A.1.5 Trade Study
	A.1.5.1 Trade Matrix
	A.1.5.2 Trade Convergence Summary: Iteration Errors
	A.1.5.3 Trade Study Results: Solution Spaces

	A.1.5.3.1 Solution Space: Area Reduction
	A.1.5.3.2 Solution Space: Cruiser
	A.1.5.3.3 Solution Space: Full Stack

	A.2 Blended Body: Road Runner Generic Hypersonic Vehicle
	A.2.1 Vehicle Description
	A.2.2 Vehicle Weights
	A.2.3 Notional Mission
	A.2.4 Project Builder Selections
	A.2.5 Trade Study
	A.2.5.1 Trade Matrix
	A.2.5.2 Trade Convergence Summary: Iteration Errors

