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respiratory diseases

Mohammed Hameed Alharbi

The University of Texas at Arlington

Supervising Professor: Dr. Christopher Kribs

Abstract

The purpose of this dissertation is to use mathematical models to evaluate the impact

of characteristics of respiratory diseases like influenza and COVID-19 either alone or

co-circulating and how might influenza vaccine affect this interplay. First, we assess

the effects of matching and mismatching between vaccine strains and circulating strains

during the Hajj. Then we evaluate the impact of the proportion of asymptomatic COVID-

19 infections on the magnitude of an epidemic under three different behavior change

scenarios. Finally, we model the co-circulation of influenza and COVID-19 to investigate

whether the influenza vaccine increases the combined disease burden of influenza and

COVID-19 in a dual epidemic.

The influenza virus causes severe respiratory illnesses and deaths worldwide every year.

It spreads quickly in an overcrowded area like the annual Hajj pilgrimage in Saudi Arabia.
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Vaccination is the primary strategy for protection against influenza. Due to the occurrence

of antigenic shift and drift of the influenza virus, a mismatch between vaccine strains and

circulating strains of influenza may occur. We study the impact of mismatch between

vaccine strains and circulating strains during Hajj, which brings together individuals

from all over the globe. We develop deterministic mathematical models of influenza with

different populations and strains from the Northern and Southern hemispheres. Results

show that the existence and duration of an influenza outbreak during Hajj depend on

vaccine efficacy. In this concern, we discuss four scenarios: vaccine strains for both groups

match/mismatch circulating strains, and vaccine strains match their target strains and

mismatch the other strains. Further, a scenario where a novel pandemic strain arises.

Results show that as long as the influenza vaccines match their target strains, there will

be no outbreak of strain H1N1, and only a small outbreak of strain H3N2. Mismatching

for non-target strains causes about 10,000 new H3N2 cases, and mismatching for both

strains causes about 2,000 more new H1N1 cases and 6,000 additional H3N2 cases during

Hajj. Complete mismatch in a pandemic scenario may infect over 342,000 additional

pilgrims (13.75%) and cause more cases in their home countries.

SARS-CoV-2 has caused severe respiratory illnesses and deaths since late 2019 and

spreads globally. While asymptomatic cases play a crucial role in transmitting COVID-19,

they do not contribute to the observed prevalence, which drives behavior change during

the pandemic. We develop a new mathematical model to identify the effect of the propor-

tion of asymptomatic infections on the magnitude of an epidemic under behavior change

scenarios. In this interest, we discuss three different behavior change cases separately: con-

stant behavior change, instantaneous behavior change response to the disease’s perceived

prevalence, and piecewise constant behavior change response to government policies. Our

results imply that the proportion of asymptomatic infections which maximizes the spread

of the epidemic depends on the nature of the dominant force driving behavior changes.
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Demand for influenza vaccine rose as countries prepared for the second COVID-19

wave over the winter months of 2020-2021. High coverage of the influenza vaccine can

significantly reduce morbidity and mortality of the burden of influenza. Natural influenza

infection creates short-term non-specific immunity against respiratory viruses (virus inter-

ference). We model two viral diseases, both of the SEIR type, to investigate whether the

influenza vaccine increases the combined disease burden of influenza and COVID-19 in a

dual epidemic. We show that the combined disease burden’s behavior depends on virus in-

terference factors and the proportion of the population vaccinated against influenza. Our

results indicate that influenza vaccination only lowers the overall disease burden when net

virus interference is relatively low.
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Chapter 1

Introduction

Infectious diseases are well known in today’s era. Influenza, COVID-19, malaria, and

cholera are just a few recent outbreaks that are commonly seen in today’s news. Infectious

diseases can be transmitted in a variety of ways: airborne (COVID-19, influenza), food

or waterborne (cholera, botulism), vector-borne (malaria, dengue), to mention a few.

Modeling is a beneficial tool to provide the fundamental dynamics of a disease as it spreads

through populations. Mathematical models have been used for over a hundred years to

track and understand the mechanism of disease spread, predict the future of epidemics,

and identify strategies to protect human health. Many initial studies in mathematical

epidemiology are due to public health officials. In 1760, a famous mathematician, Daniel

Bernouilli, published a defense of vaccination against smallpox that was the first known

result in mathematical epidemiology. Modern mathematical models were developed from

the contributions of people such as Sir R.A. Ross, W.H. Hamer, A.G. McKendrick, and

W.O. Kermack. One of the especially illuminating contributions is the work of Sir R.A.

Ross on malaria. He was awarded the Nobel Prize in Medicine in 1902 for his work on

the transmission of malaria. He used differential equations to describe the change in time

in susceptible and infected human and mosquito populations and identified a threshold

mosquito density under which malaria could be eradicated. Years afterward, George
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Macdonald continued the work of Sir R.A. Ross. He introduced the basic reproductive

number (BRN), the average number of secondary cases caused by one primary infected

individual in a wholly uninfected population, of malaria [1, 2].

Our study uses compartmental models (SEIR, SEIR with vaccination) and nonlinear

ordinary differential equations (ODEs) to describe the population’s change in size and

predict diseases’ spread. Fundamental analysis techniques such as equilibria analysis and

calculations of the BRN, qualitative analysis, and quantitative analysis are used to analyze

each model in this dissertation.

Respiratory disease is the umbrella term for diseases of the lung, bronchi, tubes,

trachea, and larynx. These diseases range from mild to moderate to life-threatening

(bacterial pneumonia, common cold, influenza, MERS, or COVID-19, for example). Viral

respiratory diseases can be spread through airborne respiratory droplets (cough or sneeze),

skin-to-skin contact (handshakes or hug), saliva (kissing or shared drinks), or by touching

a tainted surface (blanket or doorknob). Influenza (or the flu) is a viral infection that

attacks the human respiratory system. The flu epidemics are responsible for 3 to 5 million

severe cases and 290,000 to 650,000 respiratory deaths worldwide every year [3]. For more

than 50 years, the influenza vaccine is the primary strategy for the protection against

influenza [4, 5]. Due to antigenic variations of influenza viruses, individuals are susceptible

to the new subtypes (strains) [6, 7, 8]. The influenza vaccine is updated every year by

the WHO based on the most common strains circulating from the previous season. The

influenza vaccine’s efficacy essentially varies depending on mismatching between influenza

vaccine strains and the circulating strains [9]. Coronavirus disease 2019 (COVID-19)

is a respiratory disease that belongs to a large family of viruses called coronaviruses.

COVID-19 was first identified in Wuhan, China, in December 2019. Since then, COVID-

19 has spread rapidly worldwide and has been declared a pandemic by the World Health

Organization (WHO) on March 11th, 2020. While COVID-19 shares some symptoms
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with influenza, it is essential to note that some individuals become infected and do not

develop any symptoms (asymptomatic infected) or feel ill [10, 11, 12, 13].

There are fundamental ways to prevent individuals from getting respiratory diseases,

whether vaccines or reducing contacts; however, sometimes, these prevention measures

have consequences that would not initially be intended. For instance, a mismatch that

occurs in the influenza vaccine is an unintended consequence of intervention measures. We

want to have some way to measure and evaluate those unintended consequences. Hence,

this thesis investigates the impacts of unique characteristics of respiratory viral diseases

like influenza and COVID-19, either alone or co-circulating, and how might influenza

vaccine affect this interplay. This goal is broken into three parts. First, in Chapter 2, we

evaluate the impact of mismatch between vaccine strains and circulating strains in Hajj

(Muslim pilgrimage). Mainly, we focus on a scenario where pilgrims from the northern

and southern hemispheres carry genetically different strains of infection. In Chapter 3,

we seek to identify the effect of the proportion of asymptomatic COVID-19 infections on

the magnitude of an epidemic under three different behavior change scenarios. Finally, in

Chapter 4, we model the co-circulation of influenza and COVID-19 to evaluate whether

the influenza vaccine increases the combined disease burden of influenza and COVID-19

in a dual epidemic.
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Chapter 2

A mathematical modeling study: assessing impact of

mismatch between influenza vaccine strains and

circulating strains in Hajj

2.1 Introduction

Influenza viruses circulating worldwide cause respiratory tract infection known as seasonal

influenza. In general, there are four types of influenza viruses, type A, B, C, and D.

Usually, influenza infections are caused by influenza A and B viruses. Seasonal influenza

presently infects one of each six people every year, with 3 to 5 million severe illness,

and 290,000 to 650,000 respiratory deaths worldwide. Influenza viruses can be spread by

airborne respiratory droplets (cough or sneeze), skin-to-skin contact (handshakes or hug),

saliva (kissing or shared drinks), or by touching a tainted surface (blanket or doorknob).

Seasonal influenza spreads readily in overcrowded areas like mass gatherings [3].

For more than a half-century, vaccination has been the primary strategy for protecting

and controlling influenza [4, 5], and influenza vaccines continue to decrease the impact

of infection [9]. However, individuals are repeatedly infected by seasonal influenza due

to two types of antigenic variation: antigenic drift and antigenic shift. These variations

make people susceptible to new subtypes that are genetically different enough from the

old ones, regardless of prior infection by other influenza subtypes. In other words, if the
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new strains of influenza are genetically different enough from the old strains, people will

be susceptible to them. If the genetic distance between the new strain and old strain is

not very big, then people will have partial immunity [6, 7, 8]. Hence, the influenza vaccine

is updated yearly based on the most common strains circulating from the previous season,

in order to match with new circulating strains that are predicted to cause infections [14].

WHO monitors influenza worldwide and recommends vaccine compositions twice each

year for the Northern and Southern hemisphere influenza seasons.

Mismatching or poor matching is defined to be the case if the strains that are included

in the vaccine are antigenically different from the circulating strains. The mismatch

between the vaccine strains and circulating strains may take place when a drifted virus

emerges after vaccine strains have been selected or a novel pandemic strain has spread

[3]. Vaccine effectiveness (VE) primarily varies depending on matching or mismatching

between influenza vaccine strains and the circulating strains [9]. A systematic review

shows that the VE was 77% (95% confidence interval (CI) 67% to 86%) for the live

attenuated influenza vaccine (LAIV) and 65% (95% CI 57% to 72%) for the trivalent

inactivated vaccine (TIV) when the vaccine strains and circulating strains are matched.

Furthermore, when the vaccine strains and circulating strains are mismatched, VE was

60% (95% CI 44% to 71%) for LAIV and 56% (95% CI 43% to 66%) for (TIV) [15].

These findings prove that there is cross-protection even when vaccine strains do not match

circulating strains. Kelly et al. demonstrated that the seasonal vaccine has no protection

against a pandemic influenza strain in any age group [16]. Vaccine failure or low efficacy

refers to poor matching between vaccine strains and circulating strains [17, 18]. Matching

and mismatching, in actuality, is not binary, i.e., vaccination is not a perfect match or a

perfect mismatch with the circulating strains.

Co-infection, i.e. infection by more than one strain of influenza, also known as concur-

rent infection, has been detected in seasonal influenza in different parts of the world (e.g.,
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[7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37]). Individuals

can be either infected by both strains at the same time [38] or infected by one strain and

then infected by the other before recovery from the first strain. The phenomenon of co-

infection is different from re-infection, where an individual who has been infected by one

strain and then recovered is then infected by another strain, usually called a secondary

infection.

Every year about three million Muslims perform Hajj to Makkah, Saudi Arabia. The

Hajj is an annual Muslim pilgrimage and a mandatory religious obligation for all Muslims

who are physically and financially capable of the commitment, the travel, and support of

their family during their absence. This obligation is only mandatory once in a lifetime.

The Hajj occurs during the last month (12th) of the Islamic calendar, and the Hajj ritual

is held within six specific days during the month. Some pilgrims come only for the Hajj

ritual, while others prefer to stay sometime before or after performing Hajj. At these

times, pilgrims are in such close contact that transmission of respiratory tract infection

is extremely high because of immense overcrowding.

The Hajj is epidemiologically significant because it brings together large numbers of

people from all over the world who may be carrying different strains of influenza that other

people may not be vaccinated against. Vaccination against influenza is recommended for

all pilgrims by the Saudi Ministry of Health [39]. A proportion of those people may come

to the Hajj while they are vaccinated against their home influenza circulating strains,

which are often different than strains circulating during Hajj. A detailed analysis at the

Hajj covering the period between 2003 and 2015 demonstrated that mismatching between

strains that included in the vaccine and the circulating strains is frequent [40]. Different

vaccines are made available for the Northern and Southern hemispheres due to significant

differences between strains circulating in the Northern and Southern hemispheres. In

this regard, Hajj is similar to events like the Olympics and World Cup, but it is unique
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in its extremely high population density, which generates homogeneous mixing in an

extraordinarily large population.

Many mathematical studies have been done to better understand the dynamics of

influenza transmission in one host population (since influenza is an air-borne disease)

and multi-strains of influenza with varying levels of cross-immunity [41, 42, 43, 44, 45,

46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56]. Some influenza mathematical models have

studied the dynamics of infection with two different populations and one strain of influenza

[57, 58]. Evaluating the role of cross-immunity and determining the condition(s) for co-

existence have been concentrated, overall, on these studies. Nune et al. demonstrated

that host isolation and cross-immunity may stimulate sustained periodic oscillations [52].

Bremermann and Thieme manifest the occurrence of competitive exclusion, where one

strain with the largest reproduction number persists and excludes the other strains [59].

The reproduction number of the 1918–1919 influenza pandemic and other seasonal strains

of influenza have been estimated to be in the range between 1.5 and 5.4 [55]. To the best

of our knowledge, there is no mathematical model that incorporates both: two different

populations, with the possibility that a proportion of each population is vaccinated, and

two different strains of influenza. Any vector-borne disease (VBD) models, however,

naturally involve two different populations (host and vector) that interact among each

other. Some VBD models have considered two populations and two strains [60, 61, 62],

or two diseases [63, 64].

The focus of our study is to assess the impact of matching and mismatching between

vaccine strains and circulating strains during the Hajj, in a scenario where pilgrims from

the Northern and Southern hemispheres carry genetically different strains of infection. A

new deterministic model will be built to attain this goal.
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2.2 Model Development

Because of the complexity of the model, we build up to it by adapting a basic SEIR model

with vaccination to first two strains, and then two populations.

2.2.1 Simple SEIR Model with Vaccination (One Population,

One or Two Strains)

We begin with a simple SEIR model with vaccination, see Fig. 2.1, to explain the un-

derlying assumptions and why we have different versions of it in the full model. In brief,

the population is classified into susceptible, vaccinated, exposed, infected, and recovered

classes (S, V , E, I, R). Susceptible and vaccinated individuals can be infected through

their contact with infected individuals in class I, with a reduced rate for vaccinated indi-

viduals due to the vaccine’s protection. Infected individuals are moving to exposed class,

E, and remaining noninfectious for an incubation period. Individuals in class E are mov-

ing to the infected class, I, and becoming infectious after the incubation period. Lastly,

individuals in class I are moving to recovered class, R, after recovery. For the simple

model, Fig. 2.1, there is only one class for each stage of the course of the infection. The

simple model can be applied to an influenza disease model that considers one population

and one strain.

Figure 2.1: Simple SEIR with vaccination.
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In order to include two different strains of influenza, multiple copies of the simple

model are required. Since the model describes a single mixing population with only

one type of vaccine, there remain only one Si class and one Vi class. However, those

vaccinated individuals infected by one strain retain partial protection against the other

strain, requiring a separate chain of exposed (Fij), infective (Kij), and recovered (Wij)

compartments for each strain. Thus vaccination history remains important until not the

first exposure (as in the one-strain model), but the second. Initial infection of the Si or Vi

population with strain 1 or 2 therefore leads to four SEIR chains, as in Fig. 2.2. Although

we are only considering one mixing population at this stage, we introduce the notation

that will be used in the final model: each compartment’s first subscript i designates the

population (1 or 2) to which it belongs, while a second subscript j indicates the strain (1

or 2) with which it has been infected.

To add the co-exposed classes and complete the model, each of the six pairs (E1j,

F1j), (I1j, K1j), (R1j, W1j), j = 1,2, in Fig. 2.2 will serve in the full model as the starting

points (corresponding to (S, V )) of an SEIR cycle. Since co-infection is incorporated,

there are classes exposed, E13, infected, I13, and recovered, R13, from both strains. Plus,

there are classes exposed by one strain and infected, L1j, or recovered, G1j by the other

strain and classes for infected by a strain and recovered from the other strain, J1j and

j = 1,2, see Fig. 2.3 when i=1 only.

2.2.2 Full Model (Two Populations, Two Strains)

We divide the population who attend Hajj into two groups: pilgrims from the Northern

hemisphere, i = 1, and pilgrims from the Southern hemisphere, i = 2, based on their

influenza vaccine strains. Each group is categorized into 23 compartments according to

vaccination and infection status for both strains, with total population for each group

denoted by Ni and the total population denoted by N . We define ni as the proportion
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Figure 2.2: Single-infection SEIR chains for one population (i) and two strains (1,2),
starting from susceptible or vaccinated

of the total population occupied by each group. Again, a compartment’s first subscript

indicates population or hemisphere of origin, i = 1 or 2, and any second subscript denotes

the strain of most recent infection, j = 1 or 2 (3 for co-infection). A complete list of the

state variables used in this model is shown in Table 2.1. A flow chart for the complete

model would include two copies of Fig. 2.3–one for each population of origin–coupled

only by the infection rates, which sum over all compartments infected with a given strain

in both populations.

Since we examine transmission during the short timeline of Hajj, we do not include

birth and death rates. The infection rate of susceptible individuals through their con-

tacts with infectives in the model is standard incidence since the contact rate in Hajj is

saturated, due to the large numbers of pilgrims. Furthermore, during the entire model,

we assume nearly all of the pilgrims’ contact time is with other pilgrims. Thus, we are

restricting our attention only to infections among pilgrims. We use multiple infection

rates, βmnj, for each combination of infecting group, receiving group, and strain types.

The infection rates, βmnj, are defined as the rate of infectious contacts from individuals

in a group m to individuals in a group n multiplied by the probability of transmission

10



of a strain j per contact. Susceptibles from both groups are at risk of getting infected

by either strain. Each group has a proportion of individuals who have received the vac-

cine for their region φi ∈ (0,1). Vaccinated individuals can be infected at a reduced rate

based on the matching/mismatching measures, qij. We assume that an individual can be

co-infected from both strains; to get that, he/she must first be infected by one strain and

then infected by the other. An individual will get permanent immunity from one strain

after recovery, but he/she will still be susceptible to the other strain. For an individual to

be permanently immunized from both strains, he/she must be infected by both strains,

either co-infected or one after another, and then recover from both of them. For each

strain, we assume there is a different recovery rate γj. We incorporate the idea of vaccine

matching as a parameter, qij, that can tune between 0 and 1. If qij = 1, that means

there is a complete mismatch, between vaccine strain i and circulating strain j, and no

protection at all. If qij = 0, it is a perfect match between vaccine strain i and circulating

strain j. In reality, it is going to be somewhere in between. A list of all parameters used

in the model is shown in Table 2.1.

We will consider three versions of this model. The first case, where individuals do not

arrive or leave (no recruitment or departure rates), is considered for the specific six days

of the Hajj ritual. Case two, where individuals arrive and depart at constant rates, is a

more complex approximation to Hajj pilgrims’ population dynamics. Case three, where

individuals arrive before the six days of Hajj rituals and leave after these six days, mirrors

the actual timeline at Hajj. In case three, there are three time periods. The first period,

the arrival phase, is when pilgrims arrive gradually, the 38 days before the Hajj worship.

The second period, the worship stage, is the actual intense six days of the Hajj ritual. The

third period, the departure stage, is when pilgrims leave, 27 days after the Hajj ritual.

Thus, we consider an approximate time frame of 90 days for the model.
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Notation Definition

Si Susceptible in group i who have never been infected or received
vaccine from either strains

Vi Individuals in group i who have received vaccine i
Eij Individuals in group i who have been exposed to strain j
Ei3 Individuals in group i who have been exposed to both strains
Fij Individuals in group i who have received vaccine i and exposed to

strain j
Iij Individuals in group i who have been infected by strain j

State Ii3 Individuals in group i who have been co-infected by both strains
variables Kij Individuals in group i who have received vaccine i and infected by

strain j
Lij Individuals in group i who have been infected by strain j and expose

to the other strain, ≠ j
Rij Individuals in group i who have recovered from strain j
Ri3 Individuals in group i who have recovered from both strains
Gij Individuals in group i who have been exposed to strain j and im-

munized by the other strain due to recovery
Jij Individuals in group i who have been infected by strain j and im-

munized by the other strain due to recovery
Wij Individuals in group i who have been immunized from strain j due

to recovery and received vaccine i
Ni Total population of group i

Λi Recruitment rate for group i ( individual
time )

µ Departure rate (time−1)
βmnj Individuals from group m to individuals from group n infection rate

by strain j (time−1)
Parameters ηj 1/Incubation period for strain j (time−1)

γj Influenza strain j recovery rate (time−1)
qij Mismatching reduced rate for group i strain j (Dimensionless)
φi The proportion of individuals who have received vaccine for group

i (Dimensionless)
pi Prevalence of influenza among individuals from group i who have

arrived (Dimensionless)

Table 2.1: State variable and parameter definitions and their units.

2.2.3 Model Equations

A flowchart of the three cases of this model is illustrated in Fig. 2.3. The solid arrows only

represent the case one model. The solid and dotted arrows represent cases two and three.

The system of equations for case one model is given by system (2.1), when Λi = µ = 0 and
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for cases two and three by system (2.1), when Λi and µ ≠ 0.

Figure 2.3: Compartmental diagram of the model for group i, i = 1,2. The diagram
without dotted arrows represents case one model, and the dotted arrows indicate incoming
infected pilgrims in cases two and three. Group 1 imports infections of strain one only
(green arrows) while group 2 imports strain two only (red arrows).
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dSi
dt

= (1 − pi)(1 − φi)Λi − di1Si − di2Si − µSi

dEi1
dt

=
pi
2
(1 − φi)Λi + di1Si − di2Ei1 − η1Ei1 − µEi1

dEi2
dt

=
pi
2
(1 − φi)Λi + di2Si − di1Ei2 − η2Ei2 − µEi2

dVi
dt

= (1 − pi)φiΛi − qi1di1Vi − qi2di2Vi − µVi

dFi1
dt

=
pi
2
φiΛi + qi1di1Vi − qi2di2Fi1 − η1Fi1 − µFi1

dFi2
dt

=
pi
2
φiΛi + qi2di2Vi − qi1di1Fi2 − η2Fi2 − µFi2

dEi3
dt

= di1Ei2 + di2Ei1 + qi1di1Fi2 + qi2di2Fi1 − (η1 + η2)Ei3 − µEi3

dIi1
dt

=
pi
2
(1 − φi)Λi + η1Ei1 − di2Ii1 − γ1Ii1 − µIi1

dIi2
dt

=
pi
2
(1 − φi)Λi + η1Ei2 − di1Ii2 − γ2Ii2 − µIi2

dKi1

dt
=
pi
2
φiΛi + η1Fi1 − qi2di2Ki1 − γ1Ki1 − µKi1

dKi2

dt
=
pi
2
φiΛi + η2Fi2 − qi1di1Ki2 − γ2Ki2 − µKi2

dLi1
dt

= η1Ei3 + di2Ii1 + qi2di2Ki1 − γ1Li1 − η2Li1 − µLi1

dLi2
dt

= η2Ei3 + di1Ii2 + qi1di1Ki2 − γ2Li2 − η1Li2 − µLi2

dIi3
dt

= η1Li2 + η2Li1 − (γ1 + γ2)Ii3 − µIi3

dJi1
dt

= η1Gi1 + γ2Ii3 − (γ1 + µ)Ji1,
dJi2
dt

= η2Gi2 + γ1Ii3 − γ2Ji2 − µJi2

dRi1

dt
= γ1Ii1 − di2Ri1 − µRi1,

dRi2

dt
= γ2Ii2 − di1Ri2 − µRi2

dWi1

dt
= γ1Ki1 − qi2di2Wi1 − µWi1,

dWi2

dt
= γ2Ki2 − qi1di1Wi2 − µWi2

dGi1

dt
= di1Ri2 + qi1di1Wi2 + γ2Li2 − η1Gi1 − µGi1

dGi2

dt
= di2Ri1 + qi2di2Wi1 + γ1Li1 − η2Gi2 − µGi2

dRi3

dt
= γ1Ji1 + γ2Ji2 − µRi3,

(2.1)
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where ”di1” and ”di2”, the infection rates, are given by

di1 =
2

∑
m=1

βmi1
Im1 +Km1 + Jm1 +Lm1 + Im3

N
,

di2 =
2

∑
m=1

βmi2
Im2 +Km2 + Jm2 +Lm2 + Im3

N
.

Case 1: Model with No Recruitment and Departure Rate

The system of nonlinear differential equations corresponding to the case one model is

depicted in Fig. 2.3 for group i, i = 1,2, without dotted arrows, and given by (2.1) for

all i = 1,2, with recruitment and departure rates are zeros. When i = 1, Λ1 = µ = 0, (2.1)

describe the compartments for the group one population, which represents pilgrims who

are coming from the Northern hemisphere. Group two population consisting of pilgrims

coming from the Southern hemisphere is described when i = 2, Λ2 = µ = 0 in (2.1). Further,

the initial conditions for all i = 1,2 in case one model are described as

Vi(0)

Si(0) + Vi(0)
= φi.

There are at most few individuals in the other classes. This would make Vi(0) approxi-

mately φiNi and Si(0) approximately (1 − φi)Ni.

Case 2: Model with Constant Recruitment and Departure Rates

The system of nonlinear differential equations corresponding to the cases two and three

is portrayed in Fig. 2.3 and given by (2.1), where recruitment rates (Λi, i = 1,2) and

departure rate (µ) for the case two are going to be constant rates. We assume that

strain one is only coming from Northern pilgrims (green arrows in Fig. 2.3 and terms

in (2.1)), and strain two from Southern pilgrims (red arrows in Fig. 2.3 and terms

only in (2.1)). Furthermore, there is a proportion of arriving infected pilgrims, namely
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prevalences of strain one and strain two are described as (p1) and (p2), respectively.

Moreover, the distributions of infected states of the arriving pilgrims are evenly separated

between infected (pi/2) and exposed (pi/2) compartments for both groups. Since infections

are considered only to be among pilgrims, initial conditions for cases two and three are

zero.

Case 3: Model with Non-Constant Recruitment and Departure Rates

Since the system of nonlinear differential equations corresponding to case three model is

going to be similar to case two equations, with non-constant recruitment (Λi, i = 1,2)

and departure (µ) rates, descriptions for the case three model will not be given. The

case three model mirrors the actual timeline of the Hajj season, which has three phases.

Phase one (arrival phase) occurs between day one and 38 of Hajj season, when individuals

are arriving, and no one is leaving. Phase two (the Hajj worship phase) mainly happens

between days 38 and 43 for the specific six days of the Hajj ritual, where everyone must

be there to complete their rites. In other words, this phase represents the case one model,

with no recruitment nor departure rates. Phase three (departure phase) mainly occurs

between days 43 and the end of the season. All pilgrims must leave Saudi Arabia after

the Hajj ritual no later than the 10th of Muharram of each year, which is 27 days after

the Hajj ritual [65]. In this phase, pilgrims have ended their worship and ready to go back

to their home country. Consequently, we will not have the departure rate (µ) for phase

one, and no recruitment rates (Λi,i = 1,2) for phase three, while we will have neither

recruitment rates nor departure rate for phase two. Thereupon, Λi equals Ni

38 , i = 1,2

when t goes from 0 to 38, zero everywhere else, and µ represents the reciprocal of average

time that pilgrims stay after Hajj worship ends, which we assume to be 1
27 day−1 for t

between 44 and 90, and zero everywhere else [65].
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2.3 Analysis

Although equilibria have little practical meaning in a study of short-term dynamics, we

nevertheless perform an equilibrium analysis in order to derive the control reproductive

number (CRN), which is a measure of whether the disease would spread or not. We will

study the infection’s ability to spread using CRN as a threshold quantity. It is called

CRN instead of basic reproductive number (BRN) because it includes vaccination as a

control measure. The point where the disease does not exist within the population is

called disease free equilibrium (DFE).

2.3.1 Control Reproduction Number for Case One Model

DFE occurs for the case one model equations when Iij = Kij = Lij = Jij = Ii3 = 0 ∀

i, j = 1,2. By setting all the nonlinear differential equations in case one model equations

equal to zero, we get E∗
ij = E

∗
i3 = F

∗
ij = G

∗
ij = 0 and infinitely many non-zero DFEs of the

form DFE = (S∗1 , S∗2 , V ∗
1 , V ∗

2 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, R∗
11,

R∗
12, R∗

21, R∗
22, R∗

13, R∗
23, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, W ∗

11, W ∗
12, W ∗

21, W ∗
22), where S∗i ,

V ∗
i , R∗

ij, R
∗
i3, W ∗

ij are free real valued variables ∀ i, j = 1,2 and

2

∑
j=1

[S∗i + V
∗
i +R

∗
ij +R

∗
i3 +W

∗
ij] = Ni.

(If equilibrium components are required to take on whole-number values, then the num-

ber of equilibria is finite but very large). Although the next generation methods normally

assume an isolated disease free equilibrium, by [1] it is sufficient to consider the disease

free equilibrium where everyone is susceptible. In order to derive the control reproduc-

tion number (CRN), denoted by Rc, for the case one model equations, we use the next

generation operator approach proposed by[66]. Rc is the spectral radius, the dominant

eigenvalue, of the next generation matrix (NGM) obtained from this method. Evaluating
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the NGM at DFE where everyone is susceptible, i.e. R∗
ij +R

∗
i3 =W

∗
ij = 0 for all i, j = 1,2,

and computing the spectral radius of the NGM, we have Rc = max{R1,R2} where:

R1 =
β111τ11 + β221τ21 +

√
(β111τ11 − β221τ21)

2 + 4β121β211τ11τ21

2γ1

,

R2 =
β112τ12 + β222τ22 +

√
(β112τ12 − β222τ22)

2 + 4β122β212τ12τ22

2γ2

.

τij refers to the average susceptibility for strain j in group i. Then by applying the initial

conditions for case 1, we get

τ∗ij =
S∗i + qijV

∗
i

N1 +N2

=
(1 − φi)Ni + qijφijNi

N1 +N2

=
(1 − (1 − qij)φi)Ni

N1 +N2

= σijni,

where

ni =
Ni

N1 +N2

,

σij = 1 − (1 − qij)φi.

2.3.2 Control Reproduction Number for Case Two Model

In order to compute CRN for case two model, we need to consider the special case when

both p1 and p2 equal zero. In this matter, DFE occurs for the case two model equations

when Iij = Kij = Jij = Lij = Ii3 = 0 ∀ i, j = 1,2. By setting all the equations equal to zero,

we get DFE = ((1 − φ1)N∗
1 , (1 − φ2)N∗

2 , φ1N∗
1 , φ2N∗

2 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
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0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) and where for all i = 1,2

N∗
i =

Λi

µ
.

Similarly, Rc for case 2 is calculated as the spectral radius of the NGM, where Rc =

max{R1,R2} and

R1 =
η1

µ + η1

β111n∗1σ11 + β221n∗2σ21 +
√

(β111n∗1σ11 − β221n∗2σ21)
2 + 4β121β211n∗1n

∗
2σ11σ21

2(µ + γ1)
,

R2 =
η2

µ + η2

β112n∗1σ12 + β222n∗2σ22 +
√

(β112n∗1σ12 − β222n∗2σ22)
2 + 4β122β212n∗1n

∗
2σ12σ22

2(µ + γ2)
,

where for all i, j = 1,2, we have:

n∗i =
N∗
i

N1 +N2

,

σij = 1 − (1 − qij)φi.

Lemma 2.3.1. Rc’s are equal for both cases as long as Ni approaches N∗
i for all i = 1,2

and µ goes to zero.

Proof. We notice that as Ni approaches N∗
i for all i = 1,2, we get

τij = σij
Ni

N1 +N2

= σij
N∗
i

N1 +N2

= σijn
∗
i .
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And as µ goes to zero, we have for all i = 1,2

ηj
µ + ηj

= 1.

Following the text of [1], we choose specifically the equilibrium where everyone is

susceptible. By the initial conditions, we suppose that Si = (1 − φi)Ni and Vi = φiNi.

From 2.3.1, we will have τij = σijn∗i . Then the CRN for both cases will be Rc = maxj

{Rj}, j = 1,2

Rj =
a11j + a22j +

√
(a11j − a22j)

2 + 4a12ja21j

2
,

and where

amnj =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

βmnjn
∗
mσmj

γj
case 1

βmnjn
∗
mσmj

(µ+γj)
case 2.

a11j refers to the transmission of influenza strain j within group one. Through pil-

grims’ interaction, susceptible and a proportion of vaccinated pilgrims become infected

by strain j, j = 1,2. In a similar way, a22j describes the rate of development of infected

individuals by strain j, j = 1,2 in group 2 through contact with other individuals in group

2. Infected individuals from either group are recruited through interaction with other

infected individuals from the same group, such as through accommodation in the same

place or walking with nearby infected individuals from the same group. Both terms, a11j

and a22j, are the primary ways that influenza strain j develops within the system. The
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other recruitment is given by the terms a12j and a21j. a12j is the transmission of strain j

from an infected pilgrim from group 1 to an individual from group 2, and vice-versa a21j.

This occurs everywhere in Hajj due to the overcrowding in every holy site area. For each

model, case 1 and case 2, the interpretation of the CRN for a strain j is the ability to

spread. Strain j is spreading with efficiency a11j in population one and spreading with

efficiency a22j in population two.

In order to interpret the CRN, we use two useful mathematical facts:

√
x + y ≤

√
x +

√
y,

max{x, y} =
x + y + ∣x − y∣

2

Applying these facts to the CRN we have

max
1≤k≤2

{a11j, a22j} ≤ Rj ≤ max
1≤k≤2

{a11j, a22j} +
√
a12ja21j].

The CRN is the ability of strain j to spread either in population one or in population

two. It makes sense that Rc should be at least as great as its ability to spread in either

population alone. In fact, it is greater because it is spreading in both populations. The

square root is the geometric mean of the ability of strain j to spread from group one

to group two and then back from group two to group one which is a complete cycle.

Geometric mean is sort of the average of that ability to spread from group one to group

two and then back or from group two to group one and then back. This is a form of R0

that has actually been seen lots of times before [67].

To obtain the basic reproductive number (BRN) from the CRN, we set φi = 0 for all
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i = 1,2. By doing this we get BRN, R0 = maxj {Rj}, j = 1,2

Rj =
a∗11j + a

∗
22j +

√
(a∗11j − a

∗
22j)

2 + 4a∗12ja
∗
21j

2
,

and where

a∗mnj =
βmnjn∗m
γj

.

2.3.3 Control Reproduction Number for Case Three Model

Since the case three model has three phases, it is not very easy to discuss the CRN.

Furthermore, the first phase of the case three model has no equilibria; thus, we cannot

compute CRN for the first phase. For the second phase, CRN is the same as the case one

model. Additionally, all equilibria for phase three are extinction equilibria, which means

CRN equals zero.

2.4 Parameter Estimates

To evaluate the impact of vaccine matching and mismatching, we provide some values

of each parameter. Before estimating those values, we need to choose specific strains to

consider. Since 1977, H1N1 and H3N2 have been co-circulating worldwide [68]. Therefore,

we take into account these two strains, respectively, in the model. Most of the model’s

parameters can be estimated directly from the literature, with the only exception being

the infection rates for which a more heuristic approach is required.

By carefully looking at studies of vaccination proportions in the last 20 years, we see

a massive variation from basically no one to everyone. To make sense of this variation,

despite there being some variation from country to country, however, what seems very
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important for us is variation by year. To that end, we notice that influenza 2009 pandemic

temporarily and permanently changed the way people view influenza vaccination. So

before 2009, the rate of influenza vaccine compliance was shallow, about 10.9% [69, 70,

71, 72, 73, 74, 75]. Then in 2009, the rate of compliance was very high. It was mandatory

by Saudi Arabia for pilgrims from some countries to receive the vaccine to obtain the

Hajj visa. The average rate of vaccine compliance from studies that we have seen with

data in 2009 was about 95.7% [76, 77, 78, 79]. After 2009, the compliance goes down, but

it goes down to still a much higher level than before 2009. The average rate of vaccine

compliance after 2009 was around 75% [80, 81, 82].

To estimate the total number of Northern and Southern pilgrims, we examine individ-

uals who attend Hajj based on their nationalities and the type of vaccine that has been

recommended in their home countries. We obtain the total number of pilgrims from Saudi

Arabia’s official records [83], and the type of recommended vaccine by WHO [84], and

then calculate the total number of pilgrims who came from countries where the vaccine

is Northern hemisphere vaccine and countries where the vaccine is Southern hemisphere

vaccine. The total estimate for the Northern pilgrims (N1) was 1771576, and for the

Southern pilgrims (N2) was 717830.

The estimation of the prevalence of influenza strain 1 (H1N1) among arrived pilgrims

was 0.2% and 0.1% in Hajj season 2009 and 2013, respectively; strain 2 (H3N2) was 0.2%

and 0.6% in Hajj season 2009 and 2013, respectively[85, 86].

To estimate infection rates, we used a two-part process: first, relating different infec-

tion rates to each other and then applying a back-estimation approach to estimate the

baseline values of each strain. We first observe that, for each strain, we have two distinct

infection rates: cross-group βmnj and within-group infection rate βmmj, for all m,n, j = 1,2

and m ≠ n. The nature of the contact while individuals are mixing, is different from the

nature of contact while they are not mixing. For instance, several individuals sitting
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around a table, talking, or eating generates potentially infectious contacts, but not as

many as when individuals are walking around the holy sites in the middle of intensive

crowds. To relate the different infection rates for each strain, we must estimate how

many hours per day individuals are mixing with individuals in the other group, sitting

with their group, not mixing, and sleeping. We may assume that on average, individuals

during Hajj spend 8 hours a day mixing with individuals in both groups, 8 hours a day

sitting with their group, not mixing, and 8 hours a day sleeping. The kind of contact

while they are mixing with individuals in the other group is so dense that their chance

of getting infected is twice as high as when they are not mixing, for the same amount

of time. Thereby, within-group infection rate (βmmj) would be expected to be 50% more

than the cross-group infection rate (βmnj, m ≠ n) because an individual would stay with

his/her group while mixing with individuals in both groups or sitting with their group,

not mixing. Consequently, we assume that cross-group infection rates (βmnj, m ≠ n) are

the baseline rates for each strain, and β12j = β21j, j = 1,2 (for simplification). Thus, the

infection rates are reduced from eight different rates to two distinct baseline rates, one

for each strain, and the other rates are described as follows: for all m,j = 1,2, we have

βmmj = 1.5β12j.

The back-estimation approach is an inverse problem where first, we compute the basic

reproductive number (R0) for a simple SEIR model for each strain. For the simple SEIR

model with no demographic change, Rj = β12j/γj. Then, by using the published values

of R0 and γj for each strain j, we calculate the baseline values of β121 and β122. The

median value of R0 for strain 1 (H1N1) is set to 1.46, and strain 2 (H3N2) is set to 1.8

[87]. Values for γj are taken from Table 2.2. The resulting estimates for β121 and β122
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Table 2.2: Summary of estimated model parameters

Par. (unit) Value Reference
N1 (People) 1771576 [83]
N2 (People) 717830 [83]
β121 (days−1) 0.4320 This study
β122 (days−1) 0.6570 This study
βmm1 (days−1) 0.6480 This study
βmm2 (days−1) 0.9855 This study
η1 (days−1) 1/2.62 [88]
η2 (days−1) 1/1.9 [89]
γ1 (days−1) 1/3.38 [88]
γ2 (days−1) 1/2.74 [89]

are 0.4320 and 0.6570 days−1, respectively. From these baseline values, we can estimate

the other infection rates. Table 2.2 shows parameter values and the estimated values of

infection rates.

2.5 Numerical Simulations

Rites of pilgrimage can be completed between 5-6 days, beginning from the 8th of Dhu’l-

Hijjah (12th month of Islamic Calendar), while the Hajj season starts on the first of

Dhu’l-Qadah (11th month of Islamic Calendar), where pilgrims begin arriving in Saudi

Arabia. In this section, we will consider the three cases: the first case is a simulation of the

specific six days, where there are no recruitment nor departure rates. The case two model

has pilgrims arriving and departing continuously. In this case, we will consider constant

rates for recruitment and departure. The case three model has pilgrims arriving and

departing during different periods. In this case, non-constant recruitment and departure

rates will be considered.

To address the goal of this study, we separate the model’s compartments as susceptible,

exposed, infected, and recovered for each strain. In this manner, the compartments that
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are susceptible to strain one (H1N1) are {S1, S2, V1, V2, E12, E22, F12, F22, I12, I22, K12,

K22, R12, R22, W12, W22}, exposed to strain one are {E11, E21, E13, E23, F11, F21, L12,

L22, G11, G21}, infected by strain one are {I11, I21, K11, K21, L11, L21, I13, I23, J11, J21}

and recovered from strain one are {R11, R21, W11, W21, G12, G22, J12, J22, R13, R23}.

Likewise, the compartments that are susceptible to strain two (H3N2) are {S1, S2, V1,

V2, E11, E21, F11, F21, I11, I21, K11, K21, R11, R21, W11, W21}, exposed to strain two are

{E12, E22, E13, E23, F12, F22, L11, L21, G12, G22}, infected by strain two are {I12, I22,

K12, K22, L12, L22, I13, I23, J12, J22} and recovered from strain two are {R12, R22, W12,

W22, G11, G21, J11, J21, R13, R23}.

Since the case one model is only applicable over six-day periods where pilgrims are

not coming nor leaving, it could be considered a particular case of the model of the case

three. We will not discuss the numerical simulation of case one here, but rather as part

of the case three simulation.

Numerical simulation will be provided for the case two and three models with section

4 parameter values, the post-2009 era for the proportion of individuals who have received

the vaccine (φi), and for the estimation of the prevalence of influenza strains one and two

(p1 and p2).

2.5.1 Case Two Model: Constant Arrival and Departure Rates

Pilgrims start arriving in Saudi Arabia from the 1st day of the Hajj season (38 days

before Hajj’s ritual started) til the 8th of Dual-Hijjah, which is the day when all pilgrims

gathered at Mena (a holy place near Makkah) to begin their pilgrimage journey. After the

pilgrimage’s rites finish on the 13th day of Dual-Hijjah, pilgrims begin to leave Makkah.

Pilgrims may stay in Makkah until the Hajj season ends. In this matter, we divide the

total number of northern pilgrims (N1) and southern pilgrims (N2) by the total number

of arrival days (38 days), which gives us recruitment rates (Λ1 and Λ2). For the departure
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rate (µ), since a pilgrim who comes on the first day of the Hajj season has to stay until

the Hajj rites finish (on the 44th day of the Hajj season), we may assume that 44 days is

the average time that pilgrims remain in Saudi Arabia.

We provide numerical simulations of case two model equations with constant recruit-

ment and departure rates. Figures 2.4(a) and 2.4(b) indicate how variations in vaccine

protections against strain 1 (q11 and q21) and strain 2 (q22 and q12) affect strain 1 and

strain 2, respectively, outbreaks during the Hajj. The horizontal axis is the mismatch

rate for the strain that the vaccine targets (qii), and (1− qii) represents the efficacy of the

strain i. The vertical axis is the mismatch rate for the other strain, and (1−qij) represents

the efficacy of the other strain. Figures 2.4(a) and 2.4(b) are created by incrementing

the target strain mismatch rate qii along the horizontal axis, and then for each value of

qii decreasing the non-target mismatch rate qij along the vertical axis until the threshold

behavior is observed for both strains. The first threshold, between regions I and II, is

whether the outbreak occurs for both strains. This corresponds to the CRN equaling 1;

below this threshold, although some new infections occur, increases come primarily from

imported cases, and the numbers of cases for both strains are concave down over time (see

Fig. 2.4(c)), unlike in the other regions. The second threshold is between regions II and

III, where the peak of the outbreak occurs on day 66 for both strains. The third threshold

is between regions III and IV for strain two only, where the peak of the outbreak occurs

on day 44. The fourth threshold is between regions IV and V for strain two only, where

the peak of the outbreak occurs on day 38. We assume that the efficacy of the target

strain is better than the efficacy of the other strain (i.e., qij > qii for all i,j=1,2). With

this in mind, our attention will be restricted above the diagonal line of Figs. 2.4(a) and

2.4(b). Figures 2.4(c) – 2.4(f) give a time series of data of infections over time for a given

strain.

Figures 2.4(a) and 2.4(b) consist of the final results of strain 1 (H1N1) and strain 2
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(H3N2), respectively, spread simulations with different amounts of mismatching reduced

rates (qij). They show that there are three regions for strain 1 (H1N1) and five regions

for strain 2 (H3N2) for the peak of the absolute number of cases. Under the conditions in

region I, there is no outbreak, and both strains will go extinct for any value of mismatching

reduced rates (qij) in this region (see Fig. 2.4(c)). The relatively low infection level in

Fig. 2.4(c) is caused by constant importation of infectives from the two hemispheres. This

behavior does not represent an outbreak because the growth is not due to transmission,

but to direct importation of infection. For parameter values in region II, there is a small

outbreak which peaks at the end of the season between day 66 and day 90 of the Hajj

season (see Fig. 2.4(d)). For parameter values in region III, there is an outbreak that

peaks after Hajj rites and before everyone goes back to their home country between day

44 and day 66 (see Fig. 2.4(e)). For parameter values in region IV, there is an outbreak

that peaks during Hajj rites, which is between day 38 and day 44 of the Hajj season,

where all pilgrims are arrived and practicing their rituals. For parameter values in region

V, there is an outbreak that peaks before Hajj rites started and before all pilgrims have

arrived, which is between day 35 and day 38 of the Hajj season (see Fig. 2.4(f)). Hence,

unless the vaccine efficacy is enormously high, there will be an outbreak of both influenza

strains. Approximately, the peak of an outbreak will occur before pilgrims return to their

home country if the vaccine efficacy is between 0% to 40% strain 2 (H3N2), and 0% to

10% for strain 1 (H1N1). Otherwise, if the vaccine efficacy is between 40% to 80%, the

peak of an outbreak will occur after pilgrims have gone home.

2.5.2 Case Three Model: Non-Constant Arrival and Departure

Rates

Figures 2.5(a) and 2.5(b) were generated similar to (Figs. 2.4(a) and 2.4(b)), and indicate

the different result regions for each strain for varying values of qii and qij ∀i, j = 1,2 and
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Figure 2.4: Case two: (a) Variations in mismatch rates (q11 and q21) against strain 1
(H1N1); (b) Variations in mismatch rates (q22 and q12) against strain 2 (H3N2); (c) For
qij ∀i, j = 1,2 in region I, no outbreak will occur for both strains; (d) For qij ∀i, j = 1,2 in
region II, a small outbreak will occur for both strains at the end of the Hajj season; (e)
For qij ∀i, j = 1,2 in region III, an outbreak will occur for both strains before everyone
has gone home ; (f) For q22 and q12 in region V, an outbreak will occur for H3N2 before
Hajj ritual started, before day 38 of the Hajj season.
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i ≠ j. Figures 2.5(c)–2.5(j) show the strain 1 (H1N1) and strain 2 (H3N2) simulation

with different qij, i, j = 1,2. The upper and lower figures of 2.5(c)–2.5(f) and 2.5(g)–2.5(j)

indicate the prevalence and the absolute number of cases, respectively, for H1N1 and

H3N2.

For parameter values in region I, there is no outbreak for both strains and they will

become extinct, since this region represents the values of qij, i, j = 1,2 such that CRN (for

phase two) is less than one (see Fig. 2.5(c)). For parameter values in region II, the peak

of the absolute number of cases occurs on the last day of the Hajj worship phase, day 43,

(see Fig. 2.5(h)), and the peak of prevalence occurs on last days of Hajj season, between

days 60 and the end of the season, (see Fig. 2.5(d)). For the parameter values in region

III, there is an outbreak whose peaks of the absolute number of cases and prevalence occur

after the Hajj worship phase, between day 43 and end of the season (see Figs. 2.5(e) and

2.5(i)). For the parameter values in region IV for H3N2, there is an outbreak whose peaks

of the absolute number of cases and prevalence occur at the same time during Hajj ritual

time, between days 38 and 43 (see Figs. 2.5(f) and 2.5(j)). For the parameter values in

region V for H3N2, there is an outbreak whose peak of the absolute number of cases and

prevalence occur during the arrival phase, between days 33 and 37.

For all parameter values (qij) in all regions, except region I, there will be an outbreak

of both strains of influenza. If vaccine efficacy (1−qij) for qij is in region II, then the peak

of an outbreak of the absolute number of cases occurs in the Hajj worship phase (see Fig.

2.5(h)), and the peak of prevalence occurs in the departure phase (see Fig. 2.5(d)). The

peak of an outbreak will occur in the departure phase for both strains on the condition

that the vaccine efficacy (1−qij) for parameter values qij lies in region III (see Figs. 2.5(e)

and 2.5(i)). In the sequel, the peak of an outbreak will occur in the worship phase and

the arriving phase for H3N2 if the vaccine efficacy (1 − qij) for parameter values (q22 and

q12) lies in regions IV and V, respectively (see Figs. 2.5(f) and 2.5(j)).
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Figure 2.5: Case three: (a) and (b) Variations in mismatch rates (q11 and q21) and (q22 and
q12) against H1N1 and H3N2, respectively; (c)–(f) prevalence, 2.5(g)–2.5(j) the absolute
number of cases of H1N1 and H3N2, respectively, for varying values of qii and qij ∀i, j = 1,2
and i ≠ j
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2.6 Discussion and Conclusions

Mathematical models are useful in forecasting disease dynamics and estimating significant

parameters that can be incorporated to resist the spread of disease. This study analyzed

deterministic models for two populations and two strains of influenza to evaluate the

impact of mismatch between influenza vaccine strains and circulating strains.

Based on this work, an outbreak occurs for both strains unless the vaccine’s effective-

ness is tremendously high for both populations (see Figs. 2.4(c) and 2.5(c)). Whether we

have an outbreak at the end of Hajj season (see Fig. 2.4(d)), during the Hajj ritual (see

Fig. 2.5(h)), or even before that (see Figs. 2.4(f) and 2.5(j)), depends on the vaccine’s

efficacy. When the case three model is considered, our results show that the peak of the

absolute number of cases occurs at the end of the Hajj ritual (the Hajj worship phase) for

region II for both strains with low prevalence at the end of the Hajj season. Further, if

the mismatch rates for both strains fall in region III, then the peak of absolute numbers

of cases and prevalence occurs in the departure phase (see Fig. 2.5(e)). Nonetheless, for

extremely low vaccine efficacy (between 0% to 20% for strain H3N2), we have a severe

outbreak that occurs during or a couple of days before the Hajj ritual (see Fig. 2.5(j)).

We study the CRN for the case one model, which is equivalent to phase two (the Hajj

worship phase) of the case three model. We show that any outbreak will be in the process

of dying out during phase two as long as the amount of mismatch reduced rates (qij) is

within region I (see Fig. 2.5(c)), which indicates that CRN is less than one. When CRN

is greater than one, we introduce region II, where averaged CRN is between 1 and 1.32 for

strain 1 (H1N1) and between 1 and 1.36 for strain 2 (H3N2). In this region, any outbreak

will peak during the Hajj worship phase (see Fig. 2.5(h)), with low prevalence peak at

the last days of the Hajj season (see Fig. 2.5(d)). Additionally, in region III, the averaged

CRN is between 1.32 and 1.90 for H1N1 and between 1.36 and 2.11 for H3N2. In this

region, an outbreak will occur in the departure phase, with a peak of prevalence at the
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same phase (see Fig. 2.5(i)). Ultimately, regions IV (see Figs. 2.5(f) and 2.5(j)) and V

for H3N2 only exhibit CRN values between 2.11 and 2.50, respectively. In these regions,

a severe outbreak will occur in phase two (during Hajj ritual) for region IV and during

the last days of the arrival phase for region V.

In conclusion, the existence and time of an outbreak of influenza in Hajj depend on

mismatch reduced rates (qij). In this situation, we may have different possible outcomes.

The best scenario has vaccine strains for both groups well match circulating strains, where

averaged vaccine effectiveness (VE) will be 71% (57% to 86%). In this scenario, mismatch

reduced rates will range from 0.14 to 0.43, with an average of 0.29, which places us in

region I for H1N1 and region II for H3N2. Hence, there will be no outbreak for H1N1,

and a small outbreak for H3N2 whose peak of the absolute number of cases occurs on the

last day of the Hajj worship phase, causing approximately 6500 new infections. Another

scenario has vaccine strains match their target strains and mismatch the other strains.

In this instance, average qii and qij will be 0.29 and 0.43, respectively (∀i, j = 1,2, i ≠

j), which places us at the same regions and peak occurrence for H1N1 and H3N2 with

approximately 10,000 additional infections for H3N2 than the first scenario. Furthermore,

we consider a scenario in which both strains included in the influenza vaccine for both

groups mismatch circulating strains, where averaged VE will be 57% (43% to 71%). Under

these circumstances, mismatch reduced rates will range from 0.29 to 0.57, with an average

of 0.43, which places us in region II for H1N1 and region III for H3N2. Consequently,

there will be an outbreak for both strains that peaks on the last day of the Hajj worship

phase with 2,000 new cases for H1N1, and at the departure phase with approximately

6,000 more infections for H3N2 than the second scenario. These numbers represent cases

in Saudi Arabia during Hajj before pilgrims leave. Additional numbers of cases will arise

in the pilgrims’ home countries.

However, if the next influenza pandemic arrives, then the VE would be at its worst
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case, and the seasonal vaccine will have no protection against novel pandemic strains

[16]. Hence, vaccination rates (φ1 and φ2) are irrelevant. In that connection, we may

witness a severe outbreak for H3N2 that peaks before everyone has arrived in Makkah

(regions IV and V) with approximately 235,500 additional infections, and for H1N1 that

peaks after the Hajj worship phase and before everyone returns home (regions III) with

approximately 116,000 additional infections (including over 9,000 co-infections).

As long as the influenza vaccines match their target strains, there will be no outbreak

of strain H1N1, and only a small outbreak of strain H3N2. In the case of mismatching for

non-target strains, it causes about 10,000 new H3N2 cases. In the case of mismatching

for both strains, it causes about 2,000 new H1N1 cases and 6,000 additional H3N2 cases.

Complete mismatch in a pandemic scenario may infect over 342,000 additional pilgrims

(13.75%) and cause more cases in their home countries. These numbers could help the

Saudi Ministry of Health (Saudi MOH) to estimate what additional primary health fa-

cilities are needed. Besides the size of an expected outbreak, Saudi MOH could make

the influenza vaccine mandatory for all pilgrims in order to obtain a Hajj VISA. Further,

Saudi MOH could require all arriving pilgrims to pass a health screening before entering

the country in order to minimize the number of infected pilgrims.

Our findings can help decision-makers to assess the risk of mismatching between the

influenza vaccine and circulating strains and choose containment strategies to mitigate

an outbreak. However, the results are limited by the assumption that pilgrims from the

Northern/Southern hemisphere have the same exposure. The heterogeneity of individuals

arriving for Hajj is more than merely whether they come from the Northern/Southern

hemisphere. Further, the amount of data available to estimate parameter values was

limited, and our parameter estimates could be better if we have more data to estimate.

In the future, a model can be developed to include more heterogeneity in the arriving

populations, such as tropical vs. temperate zones. Our model can also be extended to
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include several strains to apply to a broader range of influenza viruses. Furthermore, a

clinical work can be done to examine how genetically closely related two influenza strains

must be in order for the vaccine for one strain to make an individual more susceptible to

the other strain.
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Chapter 3

How the nature of behavior change affects the

impact of asymptomatic coronavirus transmission

3.1 Introduction

Beta coronavirus (β-CoV) has caused three severe epidemic outbreaks over the last 20

years (SARS-CoV, MERS-CoV, and COVID-19). β-CoV is one of four genera of coron-

avirus (CoV), (alpha-, beta-, gamma-, delta-CoV), and divided into four lineages: lineage

A (e.g., OC43 and HKU1), lineage B (e.g., SARS-CoV and SARS-CoV-2), lineage C

(e.g., MERS-CoV), and lineage D (e.g., HKU9) [11, 12, 13]. Coronavirus disease 2019

(COVID-19) is caused by a coronavirus called severe acute respiratory syndrome coron-

avirus 2 (SARS-CoV-2). It is spread through close contact from one individual to another

(within about 6 feet), airborne respiratory droplets (coughs, sneezes, or talks), and aerosol

transmission [10].

A serial interval is defined to be the duration from illness onset in a primary case

(infector/infective) to illness onset in a secondary case (infectee). An incubation period

is defined to be the period between infection and the emergence of symptoms [90, 91].

Recent studies showed that the median serial interval for COVID-19 was estimated at 4.0

days (95% credible interval [CrI]: 3.1, 4.9), and the median incubation period 5.2 days

(95% confidence interval [CI], 4.1 to 7.0) [92, 93]. Pre-symptomatic transmissions occur
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and may occur more often than symptomatic transmissions due to the serial interval being

shorter than the incubation period [92].

Asymptomatic cases are defined as patients who have shown no symptoms for the

whole course of the infection. There is mixed evidence on the proportion of asymptomatic

cases. Recent studies from Italy and China estimated the proportion of asymptomatic

infections at up to 75% and 80%, respectively [94, 95, 96]. Other studies have shown a

smaller proportion of asymptomatic infections: 41.6% among Japanese nationals evac-

uated from Wuhan [97], 18% among passengers on the Diamond Princess cruise ship

[98], and 10% among children [99]. Several studies have shown that asymptomatic and

symptomatic infections have the same relative infectivity [98, 100, 101, 102].

Asymptomatic infections are likely to play a significant role in the transmission of

COVID-19 for different reasons. First, to predict disease burden when the virus spreads

within a population, the proportion of asymptomatic infections is crucial [98]. Second,

comprehending how asymptomatic infections contribute to transmission is fundamental

to the success of control strategies [103]. In the initial spread of COVID-19, asymptomatic

cases can affect the estimated basic reproduction number [104].

Individuals change their behavior during an epidemic, and their behavior has been

intricately linked with the spread of infectious diseases historically [105]. Infected in-

dividuals may reduce their contact with others due to the physical weakening effects of

their illness or government officials’ orders to stay home to prevent new cases. Susceptible

individuals may take precautionary measures to reduce the number of contact with others

to avoid the risk of being infected. Mitigation strategies based on behavior changes are

possibly among the only options available in the early stages of an emerging epidemic. Ev-

idence on behavior changes had strong effects during past pandemics [106, 107, 108, 109].

The COVID-19 global pandemic has prompted researchers to analyze and predict its

evolution. Mathematical models are a useful tool that can help to predict the epidemic’s
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dynamic and control infectious diseases. Ndairou et al. have used a mathematical model,

with special focus on super-spreader individuals’ transmissibility, to try to replicate the

observed data in Wuhan, China [110]. An early study by Wu et al. presented an SEIR

meta-population model to simulate the COVID-19 infection across China. They included

non-infectious pre-symptomatic cases, but no transmission without symptoms [111]. An-

other study used the SEIR mathematical model with a quarantine class and governmental

intervention measures to mitigate disease transmission. They suggest that governmen-

tal intervention strategies can play an essential role in reducing COVID-19 transmission

[112].

A recent study by Dobrovolny determined the role of asymptomatic cases in the spread

of COVID-19 by using an SAIR mathematical model. Dobrovolny used a different infec-

tion rate for asymptomatic individuals determined by a proportionality constant, and a

fraction of individuals remain asymptomatic for the whole course of the infection. She

concluded that the relative infectiousness of individuals with no symptoms has more im-

pact than asymptomatic proportion on the time course and size of the epidemic [113].

Several recent studies have used mathematical models to illustrate the significant effect

of behavior change on the epidemic process. A recent systematic review showed that

individual-level models are increasingly used and useful to model behavior changes [114].

Del Valle et al. used simple and agent-based models to assess the impact of behavioral

changes in response to an emerging epidemic. They concluded that changes in behavior

can be effective in reducing the spread of disease, and a second wave of infection can occur

when interventions are stopped too soon [115]. Poletti et al. used a classic SIR model to

investigate spontaneous behavioral change, following cost/benefit considerations, on the

spread of an epidemic. They proved that their model accounts for multiple waves and

can show asymmetric waves when the behavioral changes and disease dynamics occur

on vastly different time scales. They also found that behavioral dynamics results in the
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reduction of the final attack rate [116]. Buonomo constructed an information index (an

additional state variable) that incorporates not only current prevalence but some degree

of exponentially decaying memory of recent prevalence, finding that when the information

coverage is high enough, the overall incidence is reduced [117].

In this theoretical study, we consider how varying the proportion of asymptomatic (but

equally infectious) cases in an epidemic may affect its size when individuals change their

risk behavior, using the current COVID-19 outbreak as a case study. Previous published

COVID-19 studies have described at most a single wave of preventive measures to the

best of our knowledge. Asymptomatic cases play an essential role in the transmission,

but they also do not contribute to the perceived disease prevalence, which drives behavior

change during an epidemic. Behavior change can be continuous in response to daily news,

or discrete as governments announce policies that last for a month or longer. We seek to

identify the theoretical impact of the proportion of asymptomatic COVID-19 infections

on the magnitude of an epidemic under three different behavior change scenarios. To this

end, we develop a compartmental model using a nonlinear dynamical system.

3.2 Model Development

We use a modified SEIR model, but with three possible courses of infection: [perma-

nently] asymptomatic, mild symptomatic, and severe symptomatic cases. All of these are

assumed equally infectious, but only severe cases go to a hospital. We distinguish between

asymptomatic (infectives who never develop any symptoms) and pre-symptomatic individ-

uals (who will eventually develop symptoms). We consider the case where asymptomatic

and symptomatic infections have the same relative infectivity. The constant population

size, N , is classified into eight epidemiological classes: susceptible class (S), exposed class

(E), infectious but pre-symptomatic class (AP ), infectious but asymptomatic class (AL),
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infected with mild symptoms class (IM), infected with severe symptoms class (IS), hos-

pitalized class (H), and recovery class (R, assumed permanent). The model is described

as follows (illustrated in Fig. 3.1):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt = Λ −

βS
N [θ(AL +AP ) + τ(IM + IS)] − µS,

dE
dt =

βS
N [θ(AL +AP ) + τ(IM + IS)] − (η + µ)E,

dAL

dt = pηE − (γA + µ)AL,

dAP

dt = (1 − p)ηE − (δ + µ)AP ,

dIM
dt = qδAP − (γM + µ)IM ,

dIS
dt = (1 − q)δAP − (ε + µ)IS,

dH
dt = εIS − (γH + µ)H,

dR
dt = γAAL + γMIM + γHH − µR,

(3.1)

where β is the human-to-human infection rate; θ and τ are average reduction factors

for asymptomatic and symptomatic infection. Here η is the rate at which an individual

departs the exposed class by becoming infectious (pre-symptomatic, symptomatic, or

asymptomatic); p is the proportion of infected individuals who remain asymptomatic for

the whole course of the infection. δ−1 is the mean time from onset of infectivity to onset

of symptoms, for those infectives who eventually develop symptoms; q is the proportion

of pre-symptomatic infected who eventually develop mild symptoms. ε is the average rate

at which infected with severe symptoms become isolated or hospitalized. γA, γM , and γH

are the recovery rates of asymptomatic, infected with mild symptoms, and hospitalized

individuals, respectively. To consider how the timespan of a potentially extended outbreak

affects the epidemic, we include some demographic effects in the model (not represented

in Fig. 3.1). There is a proportional natural mortality rate µ in each of the eight classes,

and Λ represents the constant inflow of susceptible individuals.
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Figure 3.1: Flowchart of model (3.1)

Notation Definition

S(t) Number of susceptible individuals at time t
E(t) Number of exposed individuals at time t
AL(t) Number of asymptomatic infected individuals who remain asymp-

tomatic for the whole course of infection at time t
State AP (t) Number of pre-symptomatic infected individuals at time t
variables IM(t) Number of symptomatic infected individuals with mild symptoms

at time t
IS(t) Number of symptomatic infected individuals with severe symptoms

at time t
H(t) Number of hospitalized infected individuals at time t
R(t) Number of recovered individuals at time t

Λ Recruitment rate (individual/time)
µ Per capita natural mortality rate (1/time)
β COVID-19 infection rate (1/time)
θ Reduction factor for asymptomatic infection (dimensionless)
τ Reduction factor for symptomatic infection (dimensionless)
p The proportion of individuals who remain asymptomatic for the

whole course of infection (dimensionless)
q The proportion of infected with mild symptoms (dimensionless)

Parameters η 1/The duration time from exposure to onset of infectivity (1/time)
δ 1/The infectiousness period while individuals are pre-symptomatic

(1/time)
ε 1/Average hospitalized period for infected with severe symptoms

(1/time)
γA Recovery rate of asymptomatic infected individuals (1/time)
γM Recovery rate of individuals infected with mild symptoms (1/time)
γH Recovery rate of hospitalized infected individuals (1/time)

Table 3.1: State variable and parameter definitions and their units.

Since there are not any measurements for how asymptomatic and symptomatic cases

react while they are infected, we assume that non-symptomatic individuals change their
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behavior less than symptomatic individuals do: non-symptomatic individuals reduce their

potentially infectious contact rate by a factor of θ, while symptomatic individuals reduce

it by a factor of τ , with 0 ≤ τ ≤ θ ≤ 1. We consider the two factors connected, θ(τ). These

factors may remain constant, or may vary over the course of an epidemic, due either to

individual reactions to news or to government policies, according to the different scenarios

to be considered. Also, we assume perfect isolation in the hospital compartment.

The relationship between behavior change in asymptomatic, θ, and behavior change in

symptomatic individuals, τ , is assumed to be as follows: when symptomatic individuals

reduce their contact by 50% (τ = 0.5), asymptomatic individuals only reduce their contact

by 1% (θ = 0.99). Furthermore, only when symptomatic individuals reduce their contact

by more than 50%, asymptomatic individuals reduce their contact significantly. Hence,

an exponentially decaying function is chosen to describe the relationship between θ and

τ and match points (0,0), (0.5,0.99) and (1,1), given as follows: (shown in Fig. 3.2):

θ = (1 − (1 − τ)6.6439) .

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

τ

θ

θ= (1-(1- )6.6439)

Figure 3.2: relationship between θ and τ

We consider three different behavior change scenarios in this study. Case one is con-
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stant reduction rates, where an environment that is not influenced by the gravity or the

magnitude of the epidemic is assumed. It is based on background information that the

community has, so it is a constant reduction. Case two assumes reduction rates as a func-

tion of the instantaneous prevalence. In this case, we have a completely individual-based

or media-based reduction rate, which models the impact of just individuals seeing the

news every day and making their decisions. Case three uses piecewise constant reduction

rates. This case reflects changes by government mandate, which typically do not bounce

back and forth instantaneously from one day to another. They tend to be rolled out in

phases.

In this type of model, individuals within the same compartments are considered homo-

geneous. That is, individuals do not differ based on characteristics such as infectiousness

period, behavior changes, age, and or other characteristics. In this model, we consider

population-level trends.

3.3 Analysis

The control reproduction number, Rc, is one of the most significant thresholds, which

measures the infection’s ability to spread. We use Rc instead of using the basic repro-

duction number, R0, because we incorporate control measures (τ and θ) in the model. In

this section, we perform an equilibrium analysis in order to derive the Rc for model (3.1).

For case two and three, in which behavior change only starts after the outbreak reaches a

certain level, the initial values of θ and τ are taken to be one, which simplifies Rc to R0

The point where no diseases is present in the population is called the disease-free equi-

librium (DFE), which occurs for model (3.1) when AL = AP = IM = IS = 0. Setting all dif-

ferential equations in (3.1) equal to zero, we find the DFE of the form (Λ
µ ,0,0,0,0,0,0,0).

To drive the Rc for model (3.1), we use the next-generation operator method proposed

43



by Diekmann and Heesterbeck [66]. We begin with separating the model’s classes into

uninfected (X), noninfectious infected (Y), and infectious (Z) classes;

X =

⎛
⎜
⎜
⎝

S

R

⎞
⎟
⎟
⎠

, Y =

⎛
⎜
⎜
⎝

E

H

⎞
⎟
⎟
⎠

, Z =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

AL

AP

IM

IS

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

After substituting the equilibrium values of the noninfectious infected classes (Y) into

the differential equations for the infectious (Z) classes, we compute the Jacobian matrix

A =
∂

∂Z
(
∂Z

∂t
) .

Computing A at the DFE for model (3.1), we obtain A= M - D, with

M =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

βηθp
η+µ

βηθp
η+µ

βηpτ
η+µ

βηpτ
η+µ

βηθ(1−p)
η+µ

βηθ(1−p)
η+µ

βη(1−p)τ
η+µ

βη(1−p)τ
η+µ

0 δq 0 0

0 δ(1 − q) 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

and

D =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

γA + µ 0 0 0

0 δ + µ 0 0

0 0 γS + µ 0

0 0 0 ε + µ

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The control reproduction number Rc is obtained as the spectral radius of M ⋅D−1,

precisely,
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Rc =
1

2
(a +

√
a2 + 4b) , (3.2)

where

a =
βηθp

(η + µ) (γa + µ)
+

βηθ(1 − p)

(δ + µ)(η + µ)
,

b =
βδη(1 − p)qτ

(δ + µ)(η + µ) (µ + γs)
+

βδη(1 − p)(1 − q)τ

(δ + µ)(η + µ)(µ + ε)
.

The first term of a refers to the contribution of asymptomatic individuals, who re-

main asymptomatic for the whole course of the infection, while the second term of a

refers to pre-symptomatic infection. Furthermore, the first and second terms of b refer to

the contribution to infection by individuals with mild and severe symptoms. Numerical

simulation will be performed on Rc in the next section using estimated parameter values.

3.4 Numerical simulation

We find parameter values either from previous literature or by estimation. We consider

three different behavior change cases, τ , in this section—the first case when τ is constant

over time, the second case when τ is continuously changing over time, and the third case

when τ is piecewise constant changing over time.

3.4.1 Parameter Estimates

Some parameter values were obtained directly from previously published studies, as listed

in Table 3.2, while the others were estimated in this study.
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Table 3.2: Summary of estimated model parameters

Par. (unit) Value Range
Λ (individual/day) 0 -

µ (days−1) 0 -
β (days−1) 0.399322 0.299216 – 0.530679
η (days−1) 0.668558 0.641876 – 0.822624
δ (days−1) 0.269961 0.183754 – 0.346695

q (dimensionless) 0.8 [118, 119] -
ε (days−1) 1/10 [120] -
γA (days−1) 1/7 1/9 – 1/6
γM (days−1) 1/21 -
γH (days−1) 1/14 -

The average time to recovery ranged from seven to 32 days for mild cases and 21 to

32 days for severe cases [119, 121, 122, 123, 124]. We pick seven days as the recovery time

for asymptomatic cases (γA = 1/7), 21 days for mild cases (γM = 1/21), and 24 days for

severe cases. After applying the average isolation days for severe cases (ε = 1/10), we get

γH = 1/14.

To estimate the remaining parameters in this model (β, η, and δ), we use the average

reported basic reproduction number (averaged from published estimates of R0 is 3.28

[125]), serial interval (estimated at 4.0 days [92]), and incubation period (estimated at 5.2

days [93]) for COVID-19. Then, we use a two-part process: first linking these parameters

to each other, then using a back-estimation approach to calculate those parameters. The

serial interval is the average waiting time before the first infection happens (1/β), adding

to the average duration time from exposure to infectivity onset (1/η). The incubation

period is 1/η, adding to the infectiousness period, while individuals are pre-symptomatic

(1/δ). Therefore, we use the relation 1
η +

1
β = 4 and 1

η +
1
δ = 5.2 to obtain β and δ as

functions of η. This made (3.2) an equation to a function of η alone (with τ = θ = 1). This

allows us to obtain estimates for η, β and δ. All the parameter estimates are summarized

in Table 3.2.
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Figure 3.3: Contour plot of CRN over p and τ

3.4.2 Case one: constant reduction in contact rates

When behavior change is constant, independent of the course of the epidemic, Rc provides

one measure of its initial growth. We, therefore, consider how Rc is affected by the

proportion of asymptomatic infections (p), in conjunction with the magnitude of behavior

change as represented by τ . By substituting parameter values from table 2 into CRN and

considering τ and p to be constants that vary between zero and one, contour plots of ∂Rc

∂p

and Rc over p and τ were generated, Figs. 3.3(a) and 3.3(b), respectively.

Figure 3.3(a) shows the contour plot of the partial derivative of Rc with respect to p

as τ and p vary. In this figure, there are three regions. Region one, when τ is between 0.5

and one, shows that as p increases, ∂Rc

∂p decreases with negative slopes. Region two, when

τ is between 0.05 and 0.5, indicates that ∂Rc

∂p goes up as p goes up with positive slopes.

Lastly, region three, when τ is between 0 and 0.05, depicts the same behavior as region

one.

Figure 3.3(b) shows the contour plot of Rc over p and τ . By applying the three

regions from Fig. 3.3(a), we get the top region where symptomatic individuals do not
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reduce their contacts by more than 50%, and almost no behavior change in individuals

with no symptoms (i.e., τ ∈ (0.5,1), θ ∈ (0.99,1)). In this region, we notice that Rc is the

highest when p = 0. Plus, as p increases, Rc decreases. In this connection, symptomatic

individuals are contributing more to the initial spread of the disease than asymptomatic

individuals.

In the next region, region two, as in reality, when people aware of the outbreak, symp-

tomatic individuals will be isolated more since initial recommendations were that people

who have symptoms should isolate themselves. In this matter, symptomatic individuals

are reducing their contacts more than 50%, while individuals with no symptoms are re-

ducing their contacts, but less than individuals with symptoms (τ ∈ (0.05,0.5) and θ ∈

(0.3,1)). In this region, we discern that as p increases, Rc increases. Thus, asymptomatic

individuals are contributing more to the initial spread of the disease than symptomatic

individuals. Further, symptomatic individuals are reducing their contacts by a higher

factor than their ability to spread the disease better.

In region three, individuals with symptoms are reducing their contacts by more than

95%, while asymptomatic individuals are reducing their contacts by more than 70% (τ

∈ (0,0.05) and θ ∈ (0,0.3)). In this setting, as p increases, Rc decreases. Further, symp-

tomatic individuals are contributing more than individuals with no symptoms.

We also perform numerical simulations of the model to see how the entire course of the

epidemic varies depending on p and τ , using our best estimates of the parameter values.

We computed the number of active cases throughout the outbreak, for different values

of p and τ . Figure 3.4 illustrates the range of results over time for all values of p, for

τ = 0.25, a representative value from region two in which symptomatic individuals reduce

their contact rate by a factor of four.

We have a couple of results that may appear to contradict the control reproduction

number (CRN). One is that the height of the peak of prevalence decreases with p (espe-
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Figure 3.4: Height of prevalence with different amount of p when τ = 0.25 for case one

cially, if τ ∈ region 2 see Fig. 3.4(a)). Further, the fraction of individuals who never get

infected increases with p for all values of τ (see Fig. 3.4(b) when τ ∈ region 2). These

results seem to contradict the contour plot of the CRN and what has been said about the

three regions (see Fig. 3.3(b)). However, the CRN describes the rate of spread of disease

at the edge of an outbreak. Figure 3.4(a) is representing the peak of an epidemic, which

is far away from the boundary of the epidemic. Namely, the CRN is not a good measure

of how well the disease spreads when there are many infected individuals. In addition to

that, the fraction of asymptomatic individuals is more significant away from the edge of

the epidemic. Thus, the CRN tells about the spread of the disease at the beginning of the

outbreak. The peak of prevalence and the final fraction of susceptibles depend on events

far away from the beginning of the epidemic. So, they do not necessarily follow the same

pattern as the CRN.

Therefore, there are multiple possible measures by which we may take an optimum

value of p. By saying an optimum value of p, we refer (implicitly) to the evolutionary

perspective of the pathogen. Hence, the optimum value of p means the most infection

possible, which is chosen to maximize the CRN, maximize the peak of prevalence, and

minimize the fraction of susceptibles at the final time. Consequently, the value of p
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that maximizes CRN is zero for τ in regions one and three and one for τ in region two.

However, to maximize the height of prevalence and minimize the fraction of susceptibles

at the final time, p should be zero for all values of τ .

Hence, most pathogen success measures are maximized when p is zero, which implies

that there are no asymptomatic infections, except when τ in region two. When τ is

in region two, p = 1 maximizes only the outbreak’s initial spread since asymptomatic

infections remain less infectious than symptomatic infections.

3.4.3 Case two: continuous infection reducing rates as a func-

tion of the prevalence

In this case, symptomatic reduction rate (τ) is considered as a function of the believed

prevalence (symptomatic infected prevalence). τ is assumed to be between 1 and 0.5 if

the believed prevalence is between 0 and 5%. τ is below 0.5 if the believed prevalence is

above 5% (see Fig. 3.5). A mathematical description for such a function that describes

the relationship between τ and the believed prevalence is

τ(t) = ek
I(t)
N(t) , (3.3)

where k is the fright parameter for an individual that matches the above description,

k = −13.2803. We choose k to fit the point when I
N = 0.05, τ = 0.5.

Figure 3.6(a) indicates the prevalence over time of all infected with varying proportions

of asymptomatic infections (p) between zero and one. The height of the peak of the

prevalence increases for p between 0 and 0.59, and then it decreases for higher p. For

lower p, we notice that the epidemic’s shape is asymmetric because most of the cases are

observed. Moreover, for high values of p, most of the cases are unobserved and, therefore,

there is not much behavior change; consequently, we see the shape of the epidemic is
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symmetric. The optimum value, p = 0.59, maximizes the highest peak of the epidemic

since behavior changes react to less than half of the infections. In contrast, when p = 0,

behavior changes work at the best capacity. Lastly, when p = 1, there are no behavior

changes.

Figure 3.6(b) illustrates the fraction of susceptibles, who never get infected, at the

final time with varying p between zero and one. The lower curve depicts the case with no

behavior change, which is similar to case one. The upper curve shows the case two with

behavior changes. In this case, the final fraction of susceptibles increases for p between

zero and 0.52, but then it turns around and gets low for higher p until it reaches the

lowest point at p = 0.885. For p between 0 and 0.52, behavior changes work well with

the gradual increases of p to minimize the final fraction of susceptibles. On the other

hand, when p is between 0.52 and 0.885, more than half of the infection is unobserved,

indicating fewer behavior changes. For p > 0.885, most of the infection is asymptomatic,

so the final fraction of susceptibles is approaching to match the case with no behavior

change. From the pathogen’s evolutionary perspective, the lower the uninfected fraction

at the final time, the stronger the outbreak was.

Unlike case one, we notice in case two that a higher peak does not necessarily mean

the worst outbreak, i.e., the height of the prevalence peaks when p = 0.59 whereas the
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Figure 3.6: Height of prevalence and fraction of susceptibles at final time with different
amount of p when τ varies over time with the perceived prevalence

lowest fraction of susceptibles is when p = 0.885. Behavior change reduces the infection

more when p is low since the symptomatic prevalence represents most of the infections.

The entire course of the epidemic produces the highest peak with the smallest overall

outbreak for p between 0.52 and 0.59. For p = 0.885, the epidemic displays a relatively

lower peak but with the largest overall outbreak. For p = 1, the epidemic exhibits both

the lowest peak and the smallest overall outbreak.

3.4.4 Case three: piecewise constant reduction in contact rates

In this case, we model the changes by government mandate policies. In the real world,

some asymptomatic cases will be diagnosed, but we assume an environment in which

testing is not universal. This model includes the hypothesis of limiting testing availability.

Here we assume, for simplification, the government does not know about any of the

asymptomatic cases, and policies are made based on the believed prevalence (symptomatic

infection prevalence only). The first phase of the outbreak occurs only at the beginning of

the infection, where the believed prevalence does not exceed 0.1% (the first threshold). In

this phase, there is no reduction in symptomatic infection (τ = 1). The second phase occurs
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once the believed prevalence exceeds 0.1% (the first threshold). Therefore, a lockdown

starts. The government policy is for symptomatic individuals to quarantine completely,

but we assume this quarantine (as implemented) is only 95% effective (τ = 0.05). The

lockdown remains activated until the believed prevalence rate goes below 0.01% (the

second threshold). Thenceforward the lockdown is released gradually, and the believed

prevalence rechecked every 30 days. For the first 30 days, τ = 0.1, and for the next 30

days (if the believed prevalence does not exceed the first threshold) τ = 0.2, etc. In this

manner, the lockdown will continue to be released gradually until the first threshold is

reached; thereafter, another lockdown will be activated.

Numerical simulations of the case three model are performed. We compute the total

infection prevalence with different amounts of the proportion of asymptomatic infection

(p) and the behavior changes (τ(t)) by government mandate policies.

Figure 3.7(a) indicates the total infection prevalence changes over time due to gov-

ernment policies (the lockdown). Regardless of the proportion of asymptomatic infected

(only if p < 1), the government policies invoked during a lockdown produce enough behav-

ior change (τ(t)) to pull down the total infections to the second threshold. When p = 0,

which means all infected individuals are symptomatic, government intervention policies

are well designed to the perceived prevalence. For p > 0.5, the policies are implemented

in response to half or less of the total infections. For higher p, since perceived prevalence

takes a longer time to reach the first threshold, government policies take a longer time

to be implemented. A higher value of p makes the initial peak higher and later than the

lower value of p because the government does not perceive the asymptomatic infections.

Also, a higher value of p means the epidemic takes longer to spread. However, the dura-

tion between waves is shorter when p is high because the asymptomatic infections do not

last as long as symptomatic ones. Furthermore, any effective government policies prolong

the outbreak for at least five years (if p ≤ 0.75), during which time there will continue to
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be regular peaks. Through the first five years, the peak of each wave is not diminishing.

This isolation behavior will continue for a long enough time scale that demographics will

start to be significant. For 0.99 < p < 0.997, there are at most two phases of govern-

ment lockdown, while for p > 0.9977, hardly any symptomatic infections are noticed, and

therefore no government policy is implemented.

Figure 3.7(b) shows the fraction of susceptibles, after the third wave of the infection,

with varying p between zero and one. In contrast to cases one and two, the fraction

of susceptibles decreases with p since the behavior change reacts less with more asymp-

tomatic infections. For p between zero and 0.75, the fraction of susceptibles decreases

slowly to reach 0.9 due to behavior changes, which indicates that only less than 10% of

individuals have been infected. Meanwhile, if 0.75 < p < 0.95, the fraction of susceptibles

decreases from 0.9 to 0.6 since the behavior changes only respond to less than 25% of

the total infection. For p > 0.9977, there is no behavior change, and the final fraction of

susceptibles is approaching the case with no behavior change.
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Figure 3.7: Height of prevalence and fraction of susceptibles at final time with different
amount of p when τ piecewise constant varies over time

We further compute the highest point of the first wave’s prevalence as a function of

the proportion of asymptomatic infections (p). Figure 3.8 shows that the general trend
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of the peak is going up with p. However, as p increases in a tiny amount, the peak goes

up and down, not in a monotone way because of the discretization of the lockdown’s

starting day. The lockdown day is not the exact instant of passing the first threshold;

it is at the next integer value day after. Moreover, as p increases in a tiny amount, the

increased proportion of asymptomatic cases reduces the first wave’s peak, making the

graph go down until the point where the government policy is implemented a day later

causing the sudden jump. The peak prevalence decreases gradually with small increases in

p because the asymptomatic infections spread the virus less than symptomatic infections.

However, at some point, the decrease in perceived prevalence postpones the onset of

behavior changes by a day, causing an abrupt jump in Fig. 3.8. Therefore, the time

elapsed between the instant in time when it passed the first threshold and the next day

when the census is taken varies as p varies in tiny amounts.
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When the proportion of asymptomatic infections (p) is low, the epidemic spreads

faster. This implies that the control measures are implemented relatively soon, and

the epidemic peak is relatively low. Then, as p increases, the epidemic spreads more

slowly initially, since asymptomatic infections spread it less. Besides, since fewer cases are
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observed, the lockdown starts even later, which indicates that the peak is more heightened.

Further, when p is high enough, there will never be enough perceived cases to initiate the

lockdown, and the epidemic matches the case with no behavior changes.

Although not shown here, we obtained qualitatively identical results for the depen-

dence of symptomatic prevalence and severe cases on p.

3.4.5 Sensitivity and uncertainty analysis

The goal of this subsection is to verify that our qualitative results are independent of

the parameter values. We performed a sensitivity analysis of the CRN (Fig. 3.9(a)) and

the fraction of susceptibles at final time (S∗tf) (Fig. 3.9(b)) to determine how variations

in parameter values impact Rc and S∗tf. Namely, we increase each parameter by 0.1%

(while preserving other parameters at the baseline values obtained in Table 3.2) and

calculate the normalized sensitivity index. The results of the sensitivity analysis shown

in Figs. 3.9 indicate the CRN is most sensitive to the infection rate (β), the reduction

factor for symptomatic infection (τ), 1/the infectious period while individuals are pre-

symptomatic (δ), the recovery rate of asymptomatic infected individuals (γA), and the

proportion of infected with mild symptoms (q). S∗tf is also influenced by β, q, τ , the

proportion of individuals who remain asymptomatic for the whole course of infection (p),

γA, and δ. Remarkably, both measures (CRN and S∗tf) are highly sensitive to τ and p,

which are scrutinized in this study. Among the parameters with higher sensitivity indices

to both (CRN and S∗tf), the proportion of infected with mild symptoms (q) is well-known

[118, 119, 126].

Using ranges for the serial interval, incubation period, and basic reproductive number

and the same method as section 4.1, we can estimate the ranges of parameter values

(shown in Table 3.2). Figure 3.10 indicates the S∗tf for case one (at the bottom of the

figure) and case two (at the top of the figure) with δ over its range. The qualitative results
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Figure 3.9: Sensitivity Analysis for Rc (3.9(a)) and S∗tf (3.9(b)): Sensitivity indices are
listed in order of decreasing magnitude

for all three cases remain the same, which shows that our results are not dependent

on parameter estimates. Hence, our qualitative results are robust and independent of

parameter values.
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Figure 3.10: S∗tf for case one (bottom) and case two (top) with δ over its range: dashed
lines indicate the lower bound for δ; dot-dashed lines indicate the upper bound for δ; solid
lines indicate the baseline value for δ

Figure 3.11(a) indicates three different functions representing the assumed relation-

ship between θ and τ . Indeed, the two new functions work as extreme cases. One is a less

reactive change where asymptomatic individuals only change their behavior when symp-
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tomatic individuals are already nearly wholly isolated, while the other is the least reactive

convex function possible. Figure 3.11(b) shows S∗tf with the different θ(τ) functions shown

in Fig. 3.11(a). The dot-dashed curve in Fig. 3.11(b) (represented by the piecewise linear

function (dot-dashed line in Fig. 3.11(a))) shows that the more asymptomatic individu-

als change their behavior relative to symptomatic individuals (θ(τ)), the more complex

the dependence on p for the size of the epidemic - specifically, the more pronounced the

non-monotone variation is for the epidemic size. All three functions describing the be-

havior change of asymptomatic individuals yield the same type of dependence of S∗tf on

p, showing that our qualitative results are robust.

θ τ) = min(1.98τ, 0.98+0.02τ)

θ(τ) = (1-(1-τ)6.6439
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Figure 3.11: 3.11(a) Different functions represent the relationship between θ and τ ; 3.11(b)
S∗tf for case two with different functions of θ(τ)

3.5 Conclusion

We analyzed a deterministic compartmental model to evaluate and predict the impact

of the proportion of asymptomatic infections (p) under three different behavior change

scenarios finding that p plays a large role in changing the size and the time of the epidemic.

Although the model is still too simplistic in directly guiding policymakers to mitigate

the effects of p, and it is not intended to do so, the qualitative trends predicted by
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our simulations can be beneficial in designing studies to quantify the influence of these

asymptomatic infections. Our parameter estimates suggest that symptomatic infections

spread the disease more than asymptomatic ones because the infectious period lasts longer,

even considering effective isolation following diagnosis.

If behavior change is considered constant, which may occur based on background

information that a community has, then the epidemic size is maximized, and the final

fraction of susceptibles is minimized, when p is low. On the other hand, a high value

of p maximizes only the outbreak’s initial spread when the behavior change (τ) ranges

between 0.05 and 0.5.

If, instead, behavior change occurs due to an instantaneous response to the disease’s

perceived prevalence, then the highest peak with the smallest overall outbreak occurs

when p is between 0.52 and 0.59. Further, the epidemic reveals a relatively lower peak

but with the largest overall outbreak when p = 0.885. The lowest peak with the smallest

epidemic is shown when p = 1.

Finally, if behavior change occurs in response to government policies, then a higher

value of p plays a significant role in changing the epidemic’s duration, and maximizes

the epidemic size. In contrast, a lower value of p means a significant behavior change is

implemented since most of the infected individuals are observed. Therefore, the epidemic

shows both the lowest peak and the smallest overall outbreak.

If p is high, that maximizes the epidemic size and plays a significant role in changing

the epidemic’s duration under scenario case three. Furthermore, a higher value of p

contributes only to the infection’s initial spread of the disease if the behavior change (τ)

remains constant and ranges between 0.05 and 0.5. Moreover, if the behavior change is

considered changing continually as in case two, then a higher value of p minimizes the

disease’s initial spread and the epidemic size.

A lower value of p maximizes the epidemic size if the behavior change (τ) is a constant
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(case one). Suppose τ is considered to be as in case two and three. In that case, a lower

value of p means a significant behavior change is implemented since most of the infected

individuals are observed. Therefore, the epidemic shows both the lowest peak and the

smallest overall outbreak.

Intermediate values of p, which are essential only under instantaneous behavior change,

produce the highest peak and minimize the epidemic size.

In reality, behavior change occurs through all three of these mechanisms. There is

a priori information. There are instantaneous behavior changes when individuals make

their own decisions. There are also behavior changes that individuals may make when

mandated by government policies. In this study, we have seen the effects of each of those

forces separately. As the COVID-19 pandemic has spread across the world, we have

seen government policies and individuals’ behavior vary significantly from one country

to another and from one state to another within the United States. It is essential to

understand that the pandemic will play out differently depending on the dominant force

behind people’s behavior change.

In [116], the authors used a time scale argument and asymptotic expansion to show

when the spontaneous behavioral changes and diseases dynamics occur on vastly different

time scales, then their model observes multiple epidemic waves. In our model, delays

in behavior change are necessary to show many waves within the same outbreak and

asymmetric shapes of the epidemic, i.e., rising and decaying phases of the epidemic are

different in shape, similar to [116]. Further, the present study model shows that the final

fraction of susceptibles varies as p varies with significant behavior change. Our results

are consistent with [115] that the second wave of infection, in case three, can occur when

interventions are stopped too soon.

One of the limitations of this study is that we have assumed a consistent government

policy. However, we have seen in the United States and some other countries that there are
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multiple waves, but they differ. The second wave is higher than the first one because the

government policies have been changing throughout the outbreak. Government policies

have been inconsistent, making the shape of the pandemic irregular. Another limitation

is that little to nothing was known about the characteristics of SARS-CoV-2 at the begin-

ning of the current outbreak, which has produced a great variety of estimates about the

disease’s epidemiological characteristics as recovery time and proportion of asymptomatic

infections. This limits the quantitative accuracy of our predictions, but the qualitative

results hold even for other parameter values. In the future, we hope to extend our model

to include two different diseases under different behavior change scenarios. Varying the

relative infectiousness between asymptomatic and symptomatic infection is also a poten-

tial extension of this study. An Agent-Based Model (ABM) can be developed to allow

such variations in individuals in epidemiological characteristics and behavioral. Further,

models like our case two model can be extended to include a degree of memory using such

an information index.
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Chapter 4

How influenza vaccination and virus interference may

impact combined influenza-coronavirus disease

burden

4.1 Introduction

The current pandemic of coronavirus disease 2019 (COVID-19) is caused by infection with

a new coronavirus (called SARS-CoV-2). Influenza (flu) is a contagious respiratory disease

caused by influenza viruses. Both diseases are infectious respiratory illnesses. There are

some critical differences between flu and COVID-19. COVID-19 differs from influenza in

the mortality rate, infectiousness by individuals with no symptoms, and spreading more

quickly. While there has long been a vaccine to protect against influenza, vaccines for

COVID-19 are just beginning to be distributed around the world.

Even though the influenza vaccine gives no protection against COVID-19 [127], de-

mand for influenza vaccine rose as countries planned for the second COVID-19 wave over

the winter months of 2020-2021. High coverage of the vaccine can significantly reduce

morbidity and mortality of the burden of influenza.

Although the influenza vaccine may protect against the risk of influenza, natural in-

fluenza infection may reduce the risk of noninfluenza respiratory viruses (NRV) by acti-

vating short-term non-specific immunity against these viruses, a phenomenon known as

virus interference. In other words, individuals who have received the influenza vaccine
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may be at higher risk for NRV infections than individuals who have had influenza in-

fections because they do not exhibit the non-specific immunity associated with natural

infection [128, 129, 130, 131, 132]. Studies in children and adults support the idea that

the influenza vaccine may increase the risk of NRV infections compared to individuals

recently recovered from influenza. A recent Dutch study among older adults showed an

increased incidence of NRV infections in vaccinated versus unvaccinated persons [133].

A study in children who received the influenza vaccine reported four times more NRV

infections [131]. In the case of adults, one study found a 36% increase in risk related to

coronavirus infections [134].

It is still not clear whether COVID-19 infection causes similar interference with in-

fluenza or other respiratory viruses. Further, there is no definitive evidence about whether

the influenza vaccine prevents virus interference with COVID-19. Limited knowledge has

been available regarding whether the influenza vaccine affects COVID-19 infection risk.

There are conflicting studies concerning this aspect. While some studies found that the

influenza vaccination coverage rates correlated negatively with all COVID-19 outcomes

[135, 136], other studies found that influenza vaccination coverage rates are associated

significantly with recently observed COVID-19 infection rates [137, 138].

Ozaras et al. demonstrated that COVID-19 and influenza co-infection is rare. During

their study period, 1103 patients were diagnosed with COVID-19. Among them, six

patients (0.54%) were diagnosed co-infected with influenza [139]. Ding et al. confirmed

that few patients were co-infected by both diseases. A total of 5 of the 115 patients

confirmed with COVID-19 were also diagnosed with influenza virus infection, with three

influenza A cases and two influenza B [140].

Mathematical models have been developed to improve our knowledge of respiratory

virus transmission and study different aspects of viral interference dynamics, such as

influenza-influenza interactions and influenza-NRV interactions. Despite the mounting
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evidence of influenza and NRV interactions, mathematical models on influenza and NRV

interference are rare [141]. A recent study by Velasco-Hernández et al. explained the

interaction observed between influenza and respiratory syncytial virus (RSV) by using an

SEIRS model and provided some evidence that RSV dominates influenza. Their model is

a superinfection model where RSV infection takes over influenza infection. Furthermore,

in their model, individuals already infected with influenza are less susceptible to RSV in-

fection than healthy individuals because the authors assume that infected individuals will

be taking some precautionary measures [142]. Merler et al. used a mathematical model

to illustrate the role of acute respiratory infections in the transmission dynamics of the

1918 influenza pandemic. The authors proposed that co-infection with other respiratory

pathogens leads to enhanced influenza transmission. Their model produced results that

agree with mortality excess data during 1918 pandemic influenza [143]. None of these

studies have to do with the virus interference phenomenon and vaccination. There is no

mathematical study that incorporates both virus interference and influenza vaccine to the

best of our knowledge.

This study aims to evaluate whether the influenza vaccine increases the combined

disease burden of influenza and COVID-19 in a dual epidemic by using a mathematical

compartmental model with differential equations. In this study, the well-known concept of

DALY (Disability-Adjusted Life Years) is used to measure the combined disease burden.

This calculation has two components for each disease: DALY for the survivals and DALY

for non-survivals. We use dynamical systems models as tools to compare the outcomes of

the influenza vaccine on the population.
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4.2 Model Development

The model is developed to analyze respiratory infection, in which we consider two distinct

diseases; disease 1 indicates influenza, and disease 2 indicates COVID-19. We divide the

total population into susceptible (S), vaccinated (V ), exposed (E1 and E2), infected (I1

and I2), and recovered (R1 and R2) compartments for each disease. Those vaccinated

individuals infected by COVID-19 retain partial protection against influenza, requiring a

separate chain of exposed (F2), infective (K2), and recovered (W2) compartments. Indi-

viduals who recovered from disease 1 or 2 remain susceptible to the other disease, also

requiring a separate chain of exposed (G1 and G2) and infective (J1 and J2) for each

disease and recovered (R3) compartments. Susceptible and vaccinated individuals can

be infected by disease 1 (with a reduced rate for vaccinated individuals because of the

vaccine’s protection) through their contact with infected individuals in classes I1 and J1,

or by disease 2 through their contact with infected individuals in classes I2, K2 and J2

(with no vaccine protection). Following the observation that co-infection is rare, we as-

sume that no one acquires a secondary infection during a primary infection. The model

is described as follows:
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⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt = (1 − φ)Λ − [β1

I1+J1
N + β2

I2+J2+K2

N + µ]S,

dV
dt = φΛ − [κβ1

I1+J1
N + β2

I2+J2+K2

N + µ]V,

dE1

dt = β1
I1+J1
N S + κβ1

I1+J1
N V − (η1 + µ)E1,

dE2

dt = β2
I2+J2+K2

N S − (η2 + µ)E2,

dF2

dt = β2
I2+J2+K2

N V − (η2 + µ)F2,

dI1
dt = η1E1 − (γ1 + µ)I1,

dI2
dt = η2E2 − (γ2 + µ)I2,

dK2

dt = η2F2 − (γ2 + µ)K2, ,

dR1

dt = γ1I1 − µR1 − τ1β2
I2+J2+K2

N R1,

dR2

dt = γ2I2 − µR2 − τ2β1
I1+J1
N R2,

dW2

dt = γ2K2 − µW2 − κτ2β1
I1+J1
N W2,

dG1

dt = τ2β1
I1+J1
N R2 + κτ2β1

I1+J1
N W2 − (η1 + µ)G1,

dG2

dt = τ1β2
I2+J2+K2

N R1 − (η2 + µ)G2,

dJ1
dt = η1G1 − (γ1 + µ)J1,

dJ2
dt = η2G2 − (γ2 + µ)J2,

dR3

dt = γ1J1 + γ2J2 − µR3,

(4.1)

where β1 and β2 are influenza and COVID-19 infection rates, respectively. These infections

are spreading in a large population; therefore, we assume that the contact rates are already

saturated. Hence, we use standard incidence in this model instead of mass action. κ is

the reduced susceptibility factor due to influenza vaccine protection, a dimensionless value

between zero and one. Here η1 and η2 are the rates at which an individual departs exposed

classes by becoming infectious. γ1 and γ2 are the recovery rates of influenza and COVID-
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19, respectively.
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Figure 4.1: Flowchart of model (4.1), where λ1 = β1
I1+J1
N and λ2 = β2

I2+J2+K2

N

We consider that individuals who recover from disease 1 or 2 (R1 or R2) will be less

susceptible to the other disease due to virus interference. We incorporate the phenomenon

of virus interference as parameters τ1 and τ2 that can tune between 0 and 1. τ1 (τ2) is

the factor by which individuals who have recovered from disease 1 (disease 2) are less

susceptible to a disease 2 (disease 1) infection.

By adding equation (4.1), we get

dN

dt
= Λ − µN

and

N(t) =
Λ

µ
+ e−µt (N0 −

Λ

µ
) ,
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Notation Definition

S(t) Number of susceptible individuals at time t
V (t) Number of individuals who have received the influenza vaccine at

time t
Ei(t) Number of individuals who have been exposed to disease i at time

t
Ii(t) Number of individuals who have been infected by disease i at time

t
F2(t) Number of individuals who have received the influenza vaccine and

exposed to disease 2 at time t
K2(t) Number of individuals who have received the influenza vaccine and

infected by disease 2 at time t
State Ri(t) Number of individuals who have recovered from disease i at time t
variables W2(t) Number of individuals who have received the influenza vaccine and

recovered from disease 2 at time t
Gi(t) Number individuals who have been exposed to disease 2 and im-

munized by the other disease due to recovery at time t
Ji(t) Number individuals who have been infected by disease i and im-

munized by the other disease due to recovery at time t
R3(t) Number of individuals who have recovered from both diseases at

time t

Λ Recruitment rate (Individual/Time)
µ Per capita natural mortality rate (1/Time)
βi disease i infection rate (1/Time)

Parameters φ The proportion of individuals who have received the flu vaccine
(Dimensionless)

κ Influenza vaccine efficacy. (Dimensionless)
κ Reduced susceptibility factor due to the flu vaccine protection (Di-

mensionless)
ηi 1/The duration time from exposure to onset of infectivity for disease

i (1/Time)
γi Disease i recovery rate (1/Time)
τi Virus interference reduced rate after recovery from disease i (Di-

mensionless)

Table 4.1: State variable and parameter definitions and their units.

where N0 is the initial total population of the system. Then, taking the limit as t→∞:

lim
t→∞

N(t) =
Λ

µ
.

Since we are aiming at a constant population and not interested in the demographic
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growth in this study, we assume that N is a constant population by taking N(0) = Λ
µ .

Therefore, the total population is constant for all t.

In this study, we have two additional differential equations to calculate the cumulative

number of infections of disease 1, C1(t), and disease 2, C2(t)

dC1

dt
= β1

I1 + J1

N
S + κβ1

I1 + J1

N
V + τ2β1

I1 + J1

N
R2 + κτ2β1

I1 + J1

N
W2,

dC2

dt
= β2

I2 + J2 +K2

N
S + β2

I2 + J2 +K2

N
V + τ1β2

I2 + J2 +K2

N
R1.

The combined disease burden can be estimated by using a cost function determined by

the cumulative number of infections and the total number of deaths for each disease. The

cost function determines the number of Disability Adjusted Life Years (DALY), which

can be considered a loss of healthy life. The DALY is formed of Years of Life lived with

Disability (YLD), resulting from infections, and Years of Life Lost (YLL) caused by death

[144]. To estimate DALY components, we have

Y LDi = (1 − di)Ci(t)DWi
1

γi
,

where di is the case fatality ratio for disease i, Ci(t) is the cumulative number of infections

for disease i at time t, 1
γi

is the average duration (in years) of infection for disease i, and

DWi is the disease weight. The term DWi is assumed to be one for each disease. Further,

we have

Y LLi = diCi(t)Li,

where Li is the standard life expectancy at the age of death for disease i (average life
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expectancy at birth − average age of infection). Therefore, for each disease i we have

DALYi = Y LDi + Y LLi

= (1 − di)Ci(t)DWi
1

γi
+ diCi(t)Li

= Ci(t)[(1 − di)DWi
1

γi
+ diLi].

Then, finally the combined disease burden cost function is

DB(t) = C1(t) [(1 − d1)DW1
1

γ1

+ d1L1] +C2(t) [(1 − d2)DW2
1

γ2

+ d2L2] .

4.3 Analysis

4.3.1 Disease Free Equilibrium and Control Reproductive Num-

bers

In this section, we compute the control reproductive number (CRN) which is one of the

most significant thresholds that measures the infection’s ability to spread. We use Rc

instead of using the basic reproduction number, R0, because it includes vaccination as a

control measure. In order to derive the Rc for model (4.1), we perform an equilibrium

analysis.

The disease-free equilibrium (DFE) is a point where no disease is present in the

population and occurs for model (4.1) when I∗i = J∗i = K∗
2 = 0 for all i = 1,2. By

setting all differential equations in (4.1) equal to zero, we find the DFE of the form

Λ
µ ((1 − φ), φ,0,0,0,0,0,0,0,0,0,0,0,0,0,0).

To determine under what conditions infection with disease 1 or disease 2 can persist
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in the population, we determine the control reproductive numbers for each infection. The

control reproductive number is a threshold condition defined to be the average number

of secondary infections caused by one primary infected individual in a wholly uninfected

population under a control strategy. We compute R1 for disease 1, R2 for disease 2, and

Rc for the presence of any infection with either disease.

To drive the various reproductive numbers of the diseases in the model, we use the

next-generation operator method [145]. We find Rc = max{R1,R2} where

R1 =
η1

η1 + µ

β1

γ1 + µ
[(1 − φ) + κφ] , R2 =

η2

η2 + µ

β2

γ2 + µ
.

The first two parts of R1 and R2 can be interpreted as the following. The first fraction

( ηi
ηi+µ

) is the proportion of exposed individuals who did not die before they progress to

infectious status. The second fraction ( βi
γi+µ

) is the product of the disease i infection rate

and the average time an individual remains infected with disease i. The additional part of

R1 is the proportion of vaccinated individuals (φ) times the reduced susceptibility factor

(κ) due to the vaccine effectiveness added to the proportion of individuals who have not

received the vaccine (1 − φ).

We see that reduced infection factors of recovered individuals due to virus interference

(τ1 and τ2) do not appear in the CRN because each of them occurs when the other infection

is persistent. In an initial outbreak scenario, neither infection would be persisting in the

population. Therefore, τ1 and τ2 should not be expected to appear in the CRN, but in

the invasion reproductive numbers (IRNs).
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4.3.2 Endemic Equilibria and Invasion Reproductive Numbers

We find another equilibrium when there is no infection with disease 2. In this case,

I∗2 = K∗
2 = J∗2 = 0. By setting all the nonlinear differential equations in model (4.1)

equations equal to zero, we get E∗
2 = F ∗

2 = G∗
2 = W ∗

2 = R∗
2 = G∗

1 = J∗1 = R∗
3 = 0 and the

equilibrium is EE1 =
Λ
µ (

1−φ
1+m ,

φ
1+κm ,

(γ1+µ)mµ
η1β1

,0,0, mµβ1 ,0,0,
γ1m
β1
,0,0,0,0,0,0,0), where

m =
κ(R1 − 1) − (1 − (1 − κ2)φ) +

√
((1 − (1 − κ2)φ) − κ(R1 − 1))2 + 4κ(1 − (1 − κ)φ)(R1 − 1)

2κ(1 − (1 − κ)φ)
.

Observe that this equilibrium makes biological sense only when R1 > 1. Further, the

sum of uninfected compartments at EE1 is 1+m(κ(1−φ)+φ)
(1+m)(1+κm) and infected compartments is

m(1−(1−κ)φ)
R1

.

The second single-disease equilibrium is found when there is no infection with disease

1. In this case, I∗1 = J∗1 = 0. By setting all differential equations in model 4.1 equal zero,

we get E∗
1 = G∗

1 = R
∗
1 = G

∗
2 = J

∗
2 = R∗

3 = 0 and and the equilibrium is EE2 = Λ
µ (1−φ

R2
, φ
R2

, 0,

(R2−1)(1−φ)(γ2+µ)µ
β2η2

, (R2−1)φ(γ2+µ)µ
β2η2

, 0, (R2−1)(1−φ)µ
β2

, (R2−1)φ(γ2+µ)µ
β2

, 0, (R2−1)(1−φ)γ2
β2

, (R2−1)φγ2
β2

,

0, 0, 0, 0, 0).

We observe that the total population at EE2 is Λ
µ (the sum of uninfected compartments

is 1
R2

and infected compartments is 1 − 1
R2

) . Further, this equilibrium makes biological

sense only when R2 > 1.

The invasion reproductive number (IRN), which is defined to be the average number

of secondary infections caused by one primary infected individual with one disease in

an environment where the other disease is endemic, measures the ability of a disease to

invade while another disease is present and at equilibrium [146, 60, 147, 148].

We define IRN R̃1 to be the average number of secondary disease 1 infections caused

by an infected individual introduced into a population at EE2. R̃2 is defined similarly.
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R̃1 is found through the next-generation operator method at EE2, where we calculate

the spectral radius of the matrix F1V −1
1 [145]. In this method, we assume implicitly that

R2 > 1. We compute the spectral radius of F1V −1
1 is given by

R̃1 = R1 [
1

R2

+ τ2 (
γ2

γ2 + µ

η2

η2 + µ
)(1 −

1

R2

)] .

We observe that R̃1 is essentially R1 multiplied by a term representing a weighted av-

erage susceptibility to infection: the uninfected proportion at EE2 ( 1
R2

) weighting relative

(unchanged) susceptibility 1, and the infected proportion (1− 1
R2

) weighting their average

susceptibility τ2 multiplied by the proportion of infecteds who do not die while infected

(since by assumption the infected are unavailable for infection until they recover).

We also consider the IRN R̃2. R̃2 represents the ability of disease 2 to invade a

susceptible population at EE1. R̃2 is found similar to R̃1 and given by

R̃2 = R2 [(
1 +m(κ(1 − φ) + φ)

(1 +m)(1 + κm)
) + τ1 (

γ1

γ1 + µ

η1

η1 + µ
)(

m(1 − (1 − κ)φ)

R1

)] .

R̃2 can be interpreted term by term similarly to those for R̃1. From this view, we

can see that R̃2 is R2 multiplied by a weighted average susceptibility to infection: the

uninfected proportion at EE1 (1+m(κ(1−φ)+φ)
(1+m)(1+κm) ) weighting relative (unchanged) susceptibil-

ity 1, and the infected proportion (m(1−(1−κ)φ)
R1

) weighting their average susceptibility τ1

multiplied by the proportion of infecteds who do not die while infected.
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Figure 4.2: Contour plot of IRN1 (IRN2) over φ and τ2 and (τ1)

4.4 Numerical Simulations

To address this study’s goal, we take parameter values directly from Table 3 of [149]

and Table 3.2. We consider disease 1 to be influenza H3N2 and disease 2 is COVID-19.

Further, we allow the proportion of individuals who have received the vaccine (φ) to vary

between 0 and 1 as a control measure.

For the estimation of parameter values of our cost function, we have the average age

of the infection of influenza in the U.S. as 32.36 [150] and COVID-19 as 41.1 [10], and

the average life expectancy at birth for the total U.S. population as 77.8 years [151].

That gives L1 = 77.8− 32.36 = 45.44 and L2 = 77.8− 41.1 = 36.7. We estimate case fatality

ratios for influenza and COVID-19 by calculating the case fatality ratio for each age group

from [150, 10] and then multiplying each age group’s case fatality ratio by the proportion

of the whole population in that age group, and summing the results [151], which gives

d1 = 0.031% and d2 = 1.96%. All these parameters give us an estimate of 0.02 DALY for

one average case of influenza and 0.73 DALY for one average case of COVID-19.

Figure 4.2(a) (Fig. 4.2(b)) is a contour plot of R̃1 (R̃2) over τ2 (τ1) and φ. First, for
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Fig. 4.2(a), we observed that R̃1 increases with τ2, which indicates that virus interference

plays a major role in reducing R̃1. Besides, R̃1 decreases with φ, indicating that as

the proportion of individuals who received the influenza vaccine increased, the ability of

influenza to spread becomes difficult. Then, for Fig. 4.2(b), we observed that R̃2 increases

with τ1 and φ, except if τ1 is close to one. R̃2 increases with φ can be interpreted as the

more individuals who have received the influenza vaccine results to the more of them are

available for infection with COVID-19. However, the closer φ to making R1 = 1, the fewer

individuals are infected with influenza. Therefore, the ability of virus interference to affect

COVID-19 transmission is irrelevant at the top of Fig. 4.2(b). τ1 describes an altered

characteristic of individuals who recovered from influenza; however, if φ is high enough,

there are no individuals infected with influenza (R1 < 1). Therefore, τ1 is pointless for

high values of φ.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.0

0.1

0.2

0.3

0.4

0.5

0.6

ϕ

F
r
a
c
ti
o
n
o
f
c
u
m
u
la
ti
v
e
fl
u
in
fe
c
te
d

Flu Cumul infected vs. ϕ

τ2=1

τ2=0.75

τ2=0.5

(a)

0.00 0.05 0.10 0.15 0.20 0.25

0.86

0.88

0.90

0.92

ϕ

F
r
a
c
ti
o
n
o
f
C
u
m
u
l
C
O
V
ID
in
fe
c
te
d

COVID19 Cumul infected vs. ϕ

τ1=1

τ1=0.5

τ1=0

(b)

Figure 4.3: Cumulative infected of disease 1 (disease 2) vs. φ with different amount of τ2

(τ1)

Figure 4.3(a) (Fig. 4.3(b)) indicates the cumulative proportion of infected with in-

fluenza (COVID-19) after 365 days of introducing one infected case with varying φ between

zero and one, and with different values of τ2 (τ1). For Fig. 4.3(a), we noticed that high

values of φ indicate that R1 < 1 and virus interference (τ2) is irrelevant since the influenza
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Figure 4.4: 4.4(a) Variations of virus interference factors (τ1 and τ2) against the combined
disease burden; 4.4(b) The combined disease burden vs. φ) with varying amounts of τ1

and τ2

is not going to spread, which is consistent with Fig. 4.2(a). Further, for lower values

of φ, τ2 plays a significant role in reducing the cumulative proportion of infected since

by preventing individuals who have had COVID-19 and recovered from getting influenza,

that is also preventing them from infecting other individuals. For Fig. 4.3(b), we observed

that as φ > 0.2, τ1 is irrelevant whereas if no one gets vaccinated (φ = 0), then natural

virus interference makes about 5% difference.

We provide numerical simulations of the combined disease burden with varying amounts

of influenza vaccine proportion (φ) and virus interference factors (τ1 and τ2). Figure 4.4(a)

indicates how variations in virus interference factors (τ1 and τ2) affect the combined dis-

ease burden characteristics when the amount of influenza vaccine proportion (φ) varies.

The horizontal axis is virus interference by influenza against COVID-19 (τ1). The vertical

axis is virus interference by COVID-19 against influenza (τ2). Figure 4.4(a) is created by

incrementing τ2 along the vertical axis, and then for each value of τ2 increasing τ1 along
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the horizontal axis until the threshold characteristic is observed. The first threshold,

between region I and II, is whether the disease burden exceeds the asymptotic line, i.e.,

the first point where the non-monotone increase occurs. The second threshold is between

region II and III, where the combined disease burden at φ = 0 exceeds the asymptotic line

for φ > 0.6.

Increasing φ from 0 to around 0.2 increases overall COVID-19 incidence due to reduced

virus interference; this increases the overall disease burden. At the same time, influenza

incidence is decreasing due to vaccination, but the decrease in overall disease burden

is outweighed by the increase in COVID-19 until the point where COVID-19 incidence

plateaus. After that, flu incidence decreases (as φ increases) until it drops to zero as R1

reaches 1. In region I, this occurs before COVID-19 incidence plateaus, but in regions II

and III there is a drop in overall disease burden after COVID-19 incidence plateaus. For

virus interference factors (τ1 and τ2) in region I, increasing φ always raises the combined

disease burden (see the solid curve in Fig. 4.4(b)). For τ1 and τ2 in region II, increasing

φ increases the combined disease burden until the point where the cumulative number

of COVID-19 infections stops rising, then combined disease burden decreases until it

reaches the asymptotic level, which is the point where the cumulative number of influenza

infections is zero. However, in this region, influenza vaccination always increases the

combined disease burden relative to vaccinating no one (see the dashed curve in Fig.

4.4(b)). For τ1 and τ2 in region III, increasing φ will share the same characteristics as in

region II. Still, vaccinating two-thirds or more of the population decreases the combined

disease burden relative to vaccinating no one (see the dash-dotted curve in Fig. 4.4(b)).

Another way to illustrate the net virus interference is by a mathematical description

r =
√

(1 − τ1)
2 + (1 − τ2)

2,
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where r is a measure of the net virus interference. (It is the Euclidean distance from (τ1,

τ2)=(1,1), the top right corner of Fig. 4.4(a), which represents no virus interference.)

Therefore, very roughly, region III is the region when r < 0.35, which can be described as

low net virus interference. Region II has r > 0.35 but τ2 > 0.6, which can be explained as

significant net virus interference but limited COVID-19-on-influenza interference. Finally,

region I has τ2 < 0.6, which can be described as high COVID-19-on-influenza interference.

4.5 Discussion and Conclusions

Mathematical models help forecast disease dynamics and estimate significant quantities

such as disease burden that can be incorporated to evaluate disease control measures

such as vaccination. This study analyzed deterministic models to investigate whether the

influenza vaccine increases the combined disease burden of influenza and COVID-19 in

a dual epidemic due to a virus interference phenomenon that reduces susceptibility to

secondary infections in those who recover from natural primary infections (rather than

being vaccinated). The control reproductive numbers R1 and R1 as well as the invasion

reproductive numbers R̃1 and R̃2 were computed in this study. Together, these quantities

measure a disease’s ability to spread in a completely susceptible population or to invade

while another disease is present and at equilibrium.

According to this study, the combined disease burden’s behavior depends on virus

interference factors (τ1 and τ2), representing reduced susceptibility, and on the propor-

tion of the population vaccinated against influenza (φ). Regardless of virus interference

levels, vaccinating two-thirds or more of the population against influenza eliminates the

flu outbreak (R1 < 1). In this case, the cumulative number of influenza infections drops

off, and the cumulative number of COVID-19 infections levels off in φ, so that for vaccine

coverage φ of 60% or more, there is effectively no change in the combined disease burden
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as virus interference levels vary (see Fig. 4.4(b)). However, virus interference still plays a

strategic role, as it affects disease burden at lower vaccine coverage levels, and thus affects

whether the combined disease burden is lower for high or low coverage. Depending on the

degree of virus interference, the combined disease burden either increases monotonically

in φ, or rises and then falls to an asymptotic level. As seen in Fig. 4.4(b), these effects

divide virus interference levels into three regions.

If τ1 and τ2 fall in region I, indicating that for all values of τ1 virus interference

by COVID-19 (τ2) gives a 40% or more protection against influenza, then the influenza

vaccine is always unhelpful, and the lowest value of the combined disease burden is when

no one has received the flu vaccine (φ = 0). In this region (region I), the combined

disease burden only increases when the vaccine coverage (φ) is between 0% and 20%

since, in this interval, the cumulative number of COVID-19 infections increases and the

cumulative number of flu infections dies out. Further, when the vaccine coverage (φ) is

more than 20%, there is no change in the combined disease burden due to no changes in

the cumulative number of flu and COVID-19 infections and (see the solid curve in Fig.

4.4(b)).

If τ1 and τ2 fall in region II, indicating that virus interference by the flu gives at least

30% protection against COVID-19 and virus interference by COVID-19 gives at most

40% protection against the flu, then influenza vaccine is not beneficial since the combined

disease burden is lower for no vaccine coverage φ = 0 than for vaccine coverage φ of

60%. Under this condition, the combined disease burden’s lowest value is when φ = 0.

In this region, the combined disease burden increases with φ when vaccine coverage (φ)

is between 0% and 20% since the cumulative number of COVID-19 infections increases

at a much larger scale than the cumulative number of flu infections decreases. Further,

when vaccine coverage (φ) is between 20% and 60%, the combined disease burden falls

approaching the asymptotic level since the cumulative number of flu infections decreases
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and no changes in the cumulative number of COVID-19 infections. However, the end

results in this region are that vaccinating no one is better than vaccinating two-thirds of

the population (see the dashed curve in Fig. 4.4(b)).

For low net virus interference (region III), influenza vaccination is only beneficial if

two-thirds of the population or more have received the influenza vaccine (φ > 0.6) because

the combined disease burden is lower for vaccine coverage φ of 60% or more than for no

vaccine coverage φ = 0. Under this condition, the combined disease burden shares the

same qualitative trends as in region II, but the lowest value is when φ ≥ 0.6 (see the

dash-dotted curve in Fig. 4.4(b)).

In general, influenza vaccination only lowers the overall disease burden when net virus

interference is relatively low (region III) and vaccine coverage is high enough that the

reduction in influenza cases more than compensates for any increase in COVID-19 cases.

Influenza vaccination may increase the overall disease burden because the average disease

burden for one case of COVID-19 is significantly higher than the average disease burden

for one case of influenza. Additionally, the actual degree of virus interference in each

direction remains a source of some debate, and further studies are needed to measure

these factors. However, according to [134], influenza-on-COVID-19 interference (τ1) is

0.64, which places us either in region I or region II, depending on what COVID-19-on-

influenza interference (τ2) is. Regardless of COVID-19-on-influenza interference (τ2), the

combined disease burden is always higher relatively when vaccinating two-thirds or more

of the population.

In cases where two co-circulating diseases have separate burdens and case fatality

ratios, vaccinating only a few individuals against one of the diseases may make the other

disease increase the combined disease burden more than the vaccine reduces due to virus

interference being a part of the cause. It is essential to get a proper amount of vaccine

coverage to overcome the range of increasing overall disease burden. The model structure
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that we developed could also be used to evaluate the risk of vaccination increasing disease

burden by preventing virus interference for other diseases. Hence, it would be important

to develop estimates for the degree to which the respective infections interfere with each

other by stimulating the body’s nonspecific immune response.

One of the limitations of this study is that the actual degree of virus interference is still

being debated. As all the epidemiological parameters in the study become better known,

we will have not just a better idea of where the region boundaries are, but a better idea

of which region we are in. In the future, a study can be extended to consider vaccination

in both diseases since vaccinating the world’s population against COVID-19 is currently

a primary focus of world public health. Only when a large proportion of the population

has been vaccinated will we begin to observe effects such as those outlined in this study.
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Chapter 5

Conclusion

In this dissertation, we used mathematical models to assess the effects of some character-

istics of respiratory diseases like influenza and COVID-19 either alone or co-circulating

and how might influenza vaccine affect this interplay. Our work in Chapter 2 is the first

to incorporate both: two different populations, with the possibility that a proportion of

each population is vaccinated, and two different strains of influenza. We illustrate how

the mismatch between vaccine strains and circulating strains affects the existence and

duration of an influenza outbreak during Hajj. Besides, the qualitative trends of Chapter

3 predicted by our simulations can help design studies to quantify the influence of these

asymptomatic infections.

In Chapter 2, we developed a deterministic model consisting of two populations and

two influenza strains to evaluate the impact of mismatch between influenza vaccine strains

and circulating strains. Our results showed that the existence and duration of an influenza

outbreak during Hajj depend on the influenza vaccine effectiveness. Hence, we considered

four scenarios: vaccine strains for both populations match/mismatch circulating strains,

and vaccine strains match their target strains and mismatch the other strains. Further, a

scenario where a novel pandemic strain arises. We showed that if the influenza vaccines

match their target strains, there will be only a small outbreak of strain H3N2 and no
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outbreak of strain H1N1. Mismatching for non-target strains causes about 10,000 new

H3N2 cases, and mismatching for both strains causes about 2,000 more new H1N1 cases

and 6,000 additional H3N2 cases during Hajj. Complete mismatch in a pandemic scenario

may infect over 342,000 additional pilgrims (13.75%) and cause more cases in their home

countries.

In Chapter 3, we analyzed a deterministic compartmental model to evaluate and pre-

dict the impact of the proportion of asymptomatic infections under three different behav-

ior change scenarios. We also see that the proportion of asymptomatic infection plays a

significant role in changing the size and the time of the epidemic. Further, it is essential

to understand that the pandemic will play out differently depending on the dominant

force behind people’s behavior change. Our results showed that a high proportion of

asymptomatic infections plays a vital role in changing the epidemic’s duration and maxi-

mizes the epidemic size if the behavior change occurs in response to government policies.

Further, an intermediate proportion of asymptomatic infections maximizes the epidemic

size in the case of continually adjusted behavior change. Finally, a low proportion of

asymptomatic infections maximizes the epidemic size in the case of constant behavior

change.

In Chapter 4, we analyzed deterministic models to investigate whether the influenza

vaccine increases the combined disease burden of influenza and COVID-19 in a dual epi-

demic due to a virus interference phenomenon that reduces susceptibility to secondary

infections in those who recover from natural primary infections (rather than being vac-

cinated). We showed that the combined disease burden’s behavior depends on virus

interference factors and the proportion of the population vaccinated against influenza.

Furthermore, influenza vaccination only lowers the overall disease burden when net virus

interference is relatively low, and vaccine coverage is high enough to reduce influenza cases

more than compensates for any increase in COVID-19 cases. Additionally, the actual de-
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gree of virus interference in each direction remains a source of some debate, and further

studies are needed to measure these factors.

Consolidating the various chapters of this dissertation leads to two conclusions on the

study of respiratory diseases and behavior changes. From Chapters 2 and 4, it is clear that

virus interference can occur in the influenza vaccine mismatch. Since the cause of virus

interference is not the vaccine failure but the natural influenza infection. Therefore, in the

influenza vaccine mismatch case, we expect that increasing the influenza vaccine coverage

will not increase the combined disease burden because the vaccine fails to protect against

natural influenza infection. From Chapters 3 and 4, behavior changes during a dual

outbreak of influenza and COVID-19 would reduce the number of infections since both

diseases are airborne diseases with the exact infection mechanisms. In addition to this,

in a significant behavior change that reduces contacts, we expect that virus interference

would be less crucial.
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