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Abstract 

Non-invasive Profiling of Molecular Markers in Brain Gliomas using Deep 

Learning and Magnetic Resonance Images 

 
Chandan Ganesh Bangalore Yogananda, Ph.D. 

The University of Texas at Arlington, 2021 

 
Supervising Professors: Dr. Joseph A. Maldjian & Dr. Hanli Liu 

Gliomas account for the most common malignant primary brain tumors in both pediatric and adult 

populations. They arise from glial cells and are divided into low grade and high-grade gliomas 

with significant differences in patient survival. Patients with aggressive high-grade gliomas have 

life expectancies of less than 2 years. Glioblastoma (GBM) are aggressive brain tumors classified 

by the world health organization (WHO) as stage IV brain cancer.  The overall survival for GBM 

patients is poor and is in the range of 12 to 15 months. These tumors are typically treated by 

surgery, followed by radiotherapy and chemotherapy. 

Gliomas often consist of active tumor tissue, necrotic tissue, and surrounding edema. Magnetic 

Resonance Imaging (MRI) is the most commonly used modality to assess brain tumors because of 

its superior soft tissue contrast. MRI tumor segmentation is used to identify the subcomponents as 

enhancing, necrotic or edematous tissue. Due to the heterogeneity and tissue relaxation differences 

in these subcomponents, multi-parametric (or multi-contrast) MRI is often used for accurate 

segmentation. Manual brain tumor segmentation is a challenging and tedious task for human 

experts due to the variability of tumor appearance, unclear borders of the tumor and the need to 

evaluate multiple MR images with different contrasts simultaneously. In addition, manual 
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segmentation is often prone to significant intra- and inter-rater variability. To address these issues, 

Chapter 2 of my dissertation aims at designing and developing a highly accurate, 3D Dense-Unet 

Convolutional Neural Network (CNN) for segmenting brain tumors into subcomponents that can 

easily be incorporated into a clinical workflow. 

Primary brain tumors demonstrate broad variations in imaging features, response to therapy, 

and prognosis.  It has become evident that this heterogeneity is associated with specific molecular 

and genetic profiles. For example, isocitrate dehydrogenase 1 and 2 (IDH 1/2) mutated gliomas 

demonstrate increased survival compared to wild-type gliomas with the same histologic grade. 

Identification of the IDH mutation status as a marker for therapy and prognosis is considered one 

of the most important recent discoveries in brain glioma biology.  Additionally, 1p/19q co-deletion 

and O6-methyl guanine-DNA methyltransferase (MGMT) promoter methylation is associated 

with differences in response to specific chemoradiation regimens. Currently, the only reliable way 

of determining a molecular marker is by obtaining glioma tissue either via an invasive brain biopsy 

or following open surgical resection. Although the molecular profiling of gliomas is now a routine 

part of the evaluation of specimens obtained at biopsy or tumor resection, it would be helpful to 

have this information prior to surgery.  In some cases, the information would aid in planning the 

extent of tumor resection.  In others, for tumors in locations where resection is not possible, and 

the risk of a biopsy is high, accurate delineation of the molecular and genetic profile of the tumor 

might be used to guide empiric treatment with radiation and/or chemotherapy. The ability to non-

invasively profile these molecular markers using only T2w MRI has significant implications in 

determining therapy, predicting prognosis, and feasible clinical translation. Thus, Chapters 3, 4 

and 5 of my dissertation focuses on developing and evaluating deep learning algorithms for non-

invasive profiling of molecular markers in brain gliomas using T2w MRI only. This includes 
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developing highly accurate fully automated deep learning networks for, (i) classification of IDH 

mutation status (Chapter 3), (ii) classification of 1p/19q co-deletion status (Chapter 4), and (iii) 

classification of MGMT promoter status in Brain Gliomas (Chapter 5). 

An important caveat of using MRI is the effects of degradation on the images, such as motion 

artifact, and in turn, on the performance of deep learning-based algorithms. Motion artifacts are an 

especially pervasive source of MR image quality degradation and can be due to gross patient 

movements, as well as cardiac and respiratory motion.  In clinical practice, these artifacts can 

interfere with diagnostic interpretation, necessitating repeat imaging. The effect of motion artifacts 

on medical images and deep learning based molecular profiling algorithms has not been studied 

systematically. It is likely that motion corruption will also lead to reduced performance of deep-

learning algorithms in classifying brain tumor images.  

Deep learning based brain tumor segmentation and molecular profiling algorithms generally 

perform well only on specific datasets. Clinical translation of such algorithms has the potential to 

reduce interobserver variability, and improve planning for radiation therapy, improve speed & 

response to therapy. Although these algorithms perform very well on several publicly available 

datasets, their generalization to clinical datasets or tasks have been poor, preventing easy clinical 

translation. Thus, Chapter 6 of my dissertation focuses on evaluating the performance of the 

molecular profiling algorithms on motion corrupted, motion corrected and clinical T2w MRI. This 

includes, (i) evaluating the effect of motion corruption on the molecular profiling algorithms, (ii) 

determining if deep learning-based motion correction can recover the performance of these 

algorithms to levels similar to non-corrupted images, and (iii) evaluating the performance of these 

algorithms on clinical T2w MRI before & after motion correction. This chapter is an investigation 

on the effects of induced motion artifact on deep learning-based molecular classification, and the 
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relative importance of robust correction methods in recovering the accuracies for potential clinical 

applicability. 

Deep-learning studies typically require a very large amount of data to achieve good 

performance. The number of subjects available from the TCIA database is relatively small when 

compared to the sample sizes typically required for deep learning. Despite this caveat, the data are 

representative of real-world clinical experience, with multiparametric MR images from multiple 

institutions, and represents one of the largest publicly available brain tumor databases. 

Additionally, the acquisition parameters and imaging vendor platforms are diverse across the 

imaging centers contributing data to TCIA. This study provides a framework for training, 

evaluating, and benchmarking any new artifact-correction architectures for potential insertion into 

a workflow. Although our results show promise for expeditious clinical translation, it will be 

essential to train and validate the algorithms using additional independent datasets. Thus, Chapter 

7 of my dissertation discusses the limitations and possible future directions for this work.  
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Chapter 1 

Introduction 

1.1. Brain Gliomas & Magnetic Resonance Imaging (MRI) 

Gliomas are the most common primary brain malignancy and represent a heterogenous set of 

tumors.1 They arise from glial cells and are classically divided into high-grade and low-grade 

tumors based on their histopathology, genetic subtyping, and immunohistochemistry.1 Magnetic 

Resonance (MR) imaging is the most commonly used modality to assess brain tumors because of 

its superior soft tissue contrast.2 It is routinely used in the clinical work-up of patients for brain 

tumor diagnosis, monitoring progression and treatment planning. Each MR imaging contrast 

provides specific information about different tissue sub-components of gliomas.2 For example, T1-

weighted images with intravenous contrast highlight the most vascular regions of the tumor, called 

‘enhancing tumor’, along with the ‘tumor core' that does not involve peri-tumoral edema. 

Conventional T2-weighted (T2W) and T2W-Fluid Attenuation Inversion Recovery (FLAIR) 

images are used to evaluate the tumor and peri-tumoral edema together defined as the ‘whole 

tumor’.2,3 Due to heterogeneity and tissue relaxation differences in these subcomponents, multi-

parametric (multi-contrast) MR images are often used simultaneously for precise segmentation.4 

Accurate image-based segmentation depends significantly on the ability to differentiate MRI 

signal of these subcomponents. Current MR image segmentation of gliomas is largely based on 

imaging correlates of histopathologic findings.1 MR images often contain complex imaging 

features and patterns making manual evaluation tedious and a time intensive task requiring a 

human expert to delineate components.1 As a result, manual tumor segmentation is often fraught 

with intra-rater and inter-rater variability, resulting in imprecise boundary demarcation.5,6 An intra-
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rater variability of 20% and an inter-rater variability of 28% has been reported for manual 

segmentation of brain tumors.3,7 

1.2. Genetic subtyping and molecular profiling 

Genetic subtyping and molecular profiling of gliomas have revolutionized the ability to 

determine optimal therapy and various strategies to enhance prognostic accuracy.8 The most 

compelling evidence supporting this paradigm is the 2016 revision of the World Health 

Organization’s (WHO) classification of gliomas.9 The glioma reclassification based on molecular 

profiling has subsequently been studied and three genetic alterations have been extensively 

validated: Isocitrate dehydrogenase (IDH) mutation status, 1p/19q co-deletion status and 

methylation status of O-6-methylguanine-DNA methyltransferase (MGMT) promoter.10 

Identifying these statuses as important markers for therapy & prognosis has been a major discovery 

in brain glioma biology.8 Currently, the only reliable way to profile a molecular marker requires 

the analysis of a glioma tissue obtained either via an invasive brain biopsy or following open 

surgical resection.11 A major limitation to the current approach is a brain glioma that is inaccessible 

for biopsy or resection due to a high risk of severe post-operative complications and impairment.11  

1.3. Deep Learning in Medical Imaging 

Recent advances in deep learning have achieved great success in several applications including 

brain tumor segmentation.12,13 This has led to a significant interest in advancing deep learning 

techniques for non-invasive, image-based molecular profiling of brain gliomas as well.8 The goal 

of this study is to develop and evaluate advanced deep learning algorithms that use MR images for 

(a) multi-class brain tumor segmentation and (b) non-invasive profiling of molecular markers in 

brain gliomas. Clinical implementation of brain tumor segmentation and non-invasive molecular 

profiling has significant implications in determining therapy and predicting prognosis.11 This 
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represents an important milestone towards using deep learning and MR images to predict glioma 

histology, prognosis, and appropriate treatment. Thus, developing deep learning algorithms for 

automatic feature extraction and segmentation has the potential to analyze large datasets while 

exploring important and meaningful insights to impact treatment decisions and patient care beyond 

the realm of research. 

1.4. Rationale of This Thesis 

One of the most important recent discoveries in brain glioma biology has been the use of 

molecular profiling as markers for therapy and prognosis. 1p/19q co-deletion status is the defining 

genomic marker for oligodendrogliomas and confers a better prognosis and treatment response 

than gliomas without it. Similarly, the IDH mutated form of a gene confers a better prognosis and 

treatment response than gliomas with the non-mutated or IDH wild-type form. Methylation of the 

O6-Methylguanine-DNA Methyltransferase (MGMT) promoter results in epigenetic silencing of 

the MGMT enzyme and confers improved prognosis and treatment response in gliomas. Currently, 

the only reliable way of determining the molecular profile requires analysis of glioma tissue 

obtained either via an invasive brain biopsy or following open surgical resection.  The ability to 

non-invasively profile the molecular markers has significant implications in determining therapy 

and predicting prognosis. 

The first aim was to design, develop & evaluate a deep learning algorithm for multi-class brain 

tumor segmentation using MR Images. The second aim was to design, develop & evaluate deep 

learning algorithms for non-invasive profiling of molecular markers in brain gliomas. This second 

aim of developing highly accurate fully automated deep learning networks has three parts 

including, (i) classification of IDH mutation status in Brain Gliomas, (ii) classification of 1p/19q 

co-deletion status in Brain Gliomas, and (iii) classification of MGMT promoter status in Brain 
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Gliomas. The third aim has two parts including (i) evaluating the effect of motion corruption and 

deep learning-based motion correction on the molecular profiling algorithms, and (ii) clinical 

translation of the molecular profiling algorithms.  

The innovation of this study includes, (i) developing deep learning networks (3D Dense-Unet) 

for image segmentation, (ii) implementing the 3D networks as a classification problem instead of 

a segmentation problem, (iii) implementing the networks to use minimal pre-processing steps 

preserving native image information without the need for any region-of-interest or tumor pre-

segmentation procedures, (iv) implementing the 3D networks as voxel-wise classifiers, providing 

a classification for each voxel in the image, and (v) using only T2w MR images making clinical 

translation much more straightforward. 

1.5. Organization of This Thesis 

This dissertation has 7 chapters, which consist of four peer reviewed publications (1 

publication each from Chapter 2, 3, 4 and 5), and one submitted manuscript (Chapter 6). Chapter 

1 is a brief introduction on Brain Gliomas & Magnetic Resonance Imaging, genetic subtyping & 

molecular profiling, and Deep Learning in medical imaging. Chapter 2 details the design, 

development, and evaluation of a deep learning algorithm for multi-class brain tumor segmentation 

using MR Images. Chapters 3, 4 and 5 details the design, development & evaluation of the 

molecular profiling algorithms for classification of IDH mutation status, classification of 1p/19q 

co-deletion status and classification of MGMT-promoter status, respectively. Chapter 6 evaluates 

the effect of motion corruption & deep learning-based motion correction on the molecular profiling 

algorithms, and clinical translation of all the molecular profiling algorithms. Chapter 7 discusses 

the limitations and possible future directions in non-invasive molecular profiling using deep 

learning. 
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Chapter 2 

To develop and evaluate a deep learning algorithm for multi-class brain 

tumor segmentation using MR Images 

This chapter is published at the journal Tomography, vol 6, issue 2, p. 186–193, 2020. 

Authorship: Chandan Ganesh Bangalore Yogananda, Bhavya R. Shah, Maryam Vejdani-Jahromi, 

Sahil S. Nalawade, Gowtham K. Murugesa1, Frank F. Yu, Marco C. Pinho, Benjamin C. Wagner, 

Kyrre E. Emblem, Atle Bjørnerud, Baowei Fei, Ananth J. Madhuranthakam, Joseph A. Maldjian 

2.1. Introduction 

Brain tumor segmentation of MR images is a critical step in providing objective measures of 

predicting aggressiveness and response to therapy in gliomas. It has valuable applications in 

diagnosis, monitoring, and treatment planning of brain tumors. Manual brain tumor segmentation 

is a challenging and tedious task for human experts due to the variability of tumor appearance, 

unclear borders of the tumor and the need to evaluate multiple MR images with different contrasts 

simultaneously.5 In addition, manual segmentation is often prone to significant intra and inter-rater 

variability.5,6 Hence, machine learning algorithms have been developed for tumor segmentation 

with high reproducibility and efficiency.5,6,14 Following the early success of Convolutional Neural 

Networks (CNNs)14,15, they are used as one of the major machine learning methods to achieve 

great success in clinical applications.12,13  

To address these shortcomings, automated machine learning algorithms have been developed 

to segment gliomas. Machine learning algorithms have been shown to improve glioma 

segmentation by decreasing variability and the time required for manual segmentation.5,6,14 Glioma 

segmentation is essentially a voxel-level classification task. Algorithms for voxel-level 
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classification can be broadly divided into classic machine learning techniques such as support 

vector machines (SVMs), and deep learning methods such as convolutional neural networks 

(CNNs). CNN-based methods have been shown to outperform classic machine learning 

methods.6,16-21 

The Multimodal Brain Tumor Image Segmentation Benchmark (BraTS) challenge was 

established in 2012 to gauge and facilitate the progress of automated glioma segmentation.22,23 The 

BraTS data set represents a valuable, publicly available data set for developing and evaluating 

tumor segmentation algorithms. The BraTS data set consists of multi-parametric MR scans of low- 

and high-grade glioma patients that have been manually segmented by expert raters. The BraTS 

data is provided with three ground truth labels including a) enhancing tumor (ET), b) non-

enhancing tumor including necrosis (NEN), and c) edema (ED). Evaluation of the various 

algorithms in the BraTS challenge is done based on label outputs of whole tumor (WT), tumor 

core (TC), and enhancing tumor (ET). Whole tumor consists of enhancing components, non-

enhancing components including necrosis, and edema (ET + NEN + ED). Tumor core (TC) 

consists of enhancing components and non-enhancing components including necrosis (ET + 

NEN). Enhancing tumor consists of just the enhancing component.  To evaluate the performance 

of an algorithm, data can be uploaded to the BraTS validation server which reports back DICE 

coefficients for TC, WT, and ET.24 

For the 2017 BraTS challenge, there were 46 cases provided in the BraTS validation dataset.  

In 2018, the validation set was expanded to 66 cases, including the previous 46. The training 

dataset remained the same between 2017 and 2018. As such, the BraTS 2018 data set allows 

developers to compare results to the top performers from 2017 and 2018. The BraTS validation 

server calculates DICE scores for WT, TC, and ET, but does not provide DICE scores for ED and 
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NEN. Although ED and NEN DICE scores are not reported by the BraTS server, they can be of 

value in comparing algorithmic performance. The BraTS challenge also evaluates performance on 

a held-out test data set, however this data is only available for a brief time period during the 

challenge. 

In this work, we developed a 3D Dense UNet CNN for glioma segmentation that can easily be 

incorporated into clinical workflow. The algorithm’s performance was evaluated using the BraTS 

validation server for WT, TC, and ET. The algorithm was also tested on an independent clinical 

dataset from Oslo University Hospital, Oslo, Norway and DICE scores for WT, TC, and ET are 

reported using expert segmentation as the ground truth. In addition, we also report DICE scores 

for ED and NEN for both datasets. 

2.2. Material and Methods 

2.2.1. BraTS Dataset 

Multi-parametric MRI data (T2w, T2w-FLAIR, T1, and T1 post-contrast) were obtained from the 

BraTS2018 dataset. The BraTS2018 dataset consisted of a total of 285 subjects: 210 subjects with 

high grade glioma (HGG) and 75 subjects with low grade glioma (LGG).3,7  The dataset included 

three ground truth labels for a) enhancing tumor, b) non-enhancing tumor including necrosis and 

c) edema. The BraTS data was already reoriented to the LPS (left posterior-superior) coordinate 

system, co-registered to T1C, registered to the SR124 template and resampled to 1 mm, skull 

stripped and N4bias corrected.23,25 The intensities were normalized to zero mean and unit variance 

before using the data. 

2.2.2. Oslo Dataset 

Multi-parametric MRI data (T2w, T2w-FLAIR, T1, and T1c/T1 post-contrast) were obtained from 

Oslo University Hospital.26,27 It consisted of 52 preoperative low- and high-grade glioma subjects 
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(age >18 years) scanned from 2003-2012. Most of the images were acquired with anisotropic 

voxels, typically used in routine clinical 2D images, characterized by high in-plane resolution (0.7 

– 0.9 mm) and low through-plane resolution (slice thickness varying between 5-6 mm).   

        The original DICOM images were converted to NifTI format for ease of processing. The Oslo 

dataset was manually segmented by an in-house neuroradiologist for the same three labels used in 

the BraTS data set (ED, NEN, and ET). Images from the Oslo dataset were pre-processed following 

the same steps used in the BraTS dataset. The pre-processing pipeline was developed using 

ANTS28, and included co-registration to the T1 post-contrast, registering to the SRI24 

template,23,25 resampling to 1 mm3
 isotropic resolution, skull stripping, N4BiasCorrection,29 and 

intensity normalization to zero-mean and unit variance.  

2.2.3. Network Architecture 

The histologic complexity of gliomas poses a challenge to automated tumor segmentation 

methods. In order to simplify the segmentation problem, a triple network architecture was designed 

(Figure 1). Each model was trained separately to predict whole tumor (WT-net), tumor core (TC-

net), and enhancing tumor (EN-net) as a binary task. The networks used a 3D patch-based 

approach. Multi-parametric images were passed through the Dense UNet (Figure 2A). The initial 

convolution generated 64 feature maps that were subsequently used to create dense blocks. Each 

dense block consisted of five layers (Figure 2B). Each layer included four sequentially connected 

sublayers: i) batch normalization, ii) rectified linear unit (ReLu), iii) 3D Convolution and iv) 3D 

spatial dropout. The first layer in dense block 1 had 32 features maps as its input. At each layer, 

the input was used to generate k feature maps which were then concatenated to the next layer input, 

which was then applied to create another k feature map. To generate the final dense block output, 

inputs from each layer were concatenated with the output of the last layer. At the end of each dense 
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block, the input to the dense block was also concatenated to the output of that dense block. The 

output of each dense block followed a skip connection to the adjacent decoder part. In addition, 

each dense block output went through a transition down block until the bottle neck block (Figure 

2C). With this connecting pattern, all feature maps were reused such that every layer in the 

architecture received a direct supervision signal.30 On the decoder side, a transition up block 

preceded each dense block until the final convolution layer, which was followed by a sigmoid 

activation layer.  

 

        In order to preserve a high number of convolution layers and fit the complex model into GPU 

memory, three additional steps were employed. (1) If a layer generated feature maps exceeding 

the initial number of convolution feature maps, then it was reduced to 1/4th of the total number of 

feature maps generated by that layer. (2) The total number of feature maps generated at the end of 

every dense block was reduced by a compression factor of 0.75. (3) A bottle neck block (Dense 

block 4 in Fig. 2A) was used to connect the encoder part of the network to the decoder part of the 

network. This bottle neck block reduced the feature maps generated by the encoder part of the 

Figure 1: Schematic representation of the developed algorithm.  

The input images included T1, T2, T2-FLAIR, and T1 post-contrast (T1C). Whole tumor (WT-net) segments the WT, 

tumor core (TC-net) segments the TC, and enhancing tumor (EN-net) segments the ET. The output segmented 

volumes from each of these networks are combined using a triple volume fusion to generate a multiclass 

segmentation volume. 
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network by the same compression factor of 0.75. Due to the large number of high-resolution 

feature-maps, a patch-based 3D Dense UNet approach was implemented. However, the higher  

resolution information was passed through the standard skip connections.  

 

2.2.4. Network Implementation & Cross-validation 

2.2.4.1. Cross-validation 

To generalize the network’s performance and evaluate its reliability, a 3-fold cross validation was 

performed on the BraTS2018 dataset (210 HGG and 75 LGG subjects). The data was randomly 

Figure 2: Schematic of the Dense UNet Architecture. 

Each network consisted of 7 dense blocks, 3 transition down blocks, and 3 transition up blocks (A). Each dense 

block was made of 5 layers connected to each other, with every layer having 4 sublayers connected sequentially (B). 

The transition-down block consisted of 5 layers connected sequentially (C). The transition-up block was a sequential 

connection of 4 layers (D). 
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shuffled and equally split into three groups as training, in-training validation and held-out testing 

(70 HGG and 25 LGG cases in each group). The in-training validation data set is used by the 

algorithm to test performance after each round of training, and update model parameters. Each fold 

of the cross-validation procedure represents a new training phase on a unique combination of the 

3 groups. Network performance is only reported on the held-out testing group for each fold. 

2.2.4.2. Training 

The 3-fold cross-validation procedure uses a relatively small sample of cases from the BraTS2018 

data set for training each fold (95 cases).  Prior to evaluation of the independent dataset, the 

networks were retrained on a larger sample of the BraTS2018 data set using ~70% of the cases for 

training (200 cases including 150 HGG and 50 LGG), ~20% for in-training validation (65 cases 

including 48 HGG and 17 LGG) and ~10% (20 cases including 12 HGG and 8 LGG) held out for 

testing. 75% overlapping patches were extracted from multi-parametric brain MR images that had 

at least one non-zero pixel on the corresponding ground truth patch. Subsequently, 20% of patches 

were used for in-training validation. Data augmentation steps included horizontal flipping, vertical 

flipping, random rotation, and translational rotation. Down sampled data (128x128x128) was also 

provided in the training as an additional data augmentation step. To eliminate the data leakage 

problem, no patch from the same subject was mixed in training, validation or testing.31,32 Labels 

of edema, enhancing tumor and non-enhancing tumor including necrosis were fused to create a 

whole tumor mask to train WT-net. A tumor core mask was created by fusing the labels of 

enhancing tumor and non-enhancing tumor including necrosis to train TC-net. Enhancing tumor 

labels were used separately to train EN-net. The networks were trained using Tensorflow33, the 

Keras34 python package and Pycharm IDEs with adaptive moment estimation (Adam)35 as the 
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optimizer. The initial learning rate was set to 10-5 with a batch size of 4 and maximal iteration of 

100. Training was implemented on Tesla P100, P40 or K80 NVIDIA-GPUs. 

2.2.4.3. Testing 

The final network was tested on the 20 held out cases. Patches of 32x32x32 were extracted and 

provided to the network for testing. All of the prediction patches were then reconstructed to obtain 

a full segmentation volume. After obtaining the three separate segmentation output volumes from 

the 3 networks, they were fused in two steps. First, a 3D connected components algorithm was 

applied to the WT-net output to generate a whole tumor mask. Next the outputs from TC-net and 

EN-net were multiplied by the output from WT-net. This procedure, referred to as multi-volume 

fusion (MVF), was designed to improve the prediction accuracy by removing false positives. The 

final network was also tested on 46 cases from BraTS2017 validation dataset, 66 cases from 

BRATS 2018 validation dataset and 52 cases from the Oslo dataset without any fine-tuning. 

2.2.4.4. Statistical Methods 

The performance of each network was evaluated using the Dice co-efficient 24, which determines 

the amount of spatial overlap between the ground truth segmentation (X) and the network 

segmentation (Y), as: 

𝐷𝑖𝑐𝑒 =
2|𝑋1 ⋂ 𝑌1|

|𝑋1| + |𝑌1|
 

These output labels are defined as follows: 

 WT = Edema + Enhancing Tumor + Non-Enhancing Tumor + Necrosis 

 TC = Enhancing Tumor + Non-Enhancing Tumor + Necrosis 

 ET = Enhancing Tumor  

 

Dice coefficients were also computed for: 

 Edema = WT – TC 

 Non-enhancing Tumor and Necrosis = TC – ET 
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2.3. Results 

2.3.1. Cross-validation 

Average dice-scores for the 3-fold cross validation using 75% overlapping patches were 0.90, 0.82 

and 0.79 for WT, TC and ET respectively. Average dice-scores for the 3-fold cross validation 

using 85% overlapping patches were 0.92, 0.84 and 0.80 for WT, TC and ET respectively. Detailed 

dice-scores are provided in the supplemental material section. 

2.3.2. Testing on 20 Held-out cases from BraTS2018 

The network achieved dice scores of 0.90, 0.84 and 0.80 with Hausdorff distance of 3.9 mm, 5.9 

mm and 3.5 mm for WT, TC and ET, respectively, on the 20 held-out cases (Figure 3). Sensitivities 

were 0.91, 0.85, and 0.81 for WT, TC, and ET, respectively with 100% specificity for all 

subcomponents. Dice-scores of 0.85 & 0.80 were obtained for edema, and non-enhancing tumor 

with necrosis, respectively. The MVF procedure increased accuracies across all assessments by 1-

2% (Table 1).  

2.3.3. BraTS2017 Validation dataset 

The network achieved dice scores of 0.90, 0.80 and 0.78 with Hausdorff distance of 6.5 mm, 8.7 

mm and 5.5 mm for WT, TC and ET respectively, on the BraTS2017 validation dataset (Table 2). 

Sensitivities were 0.90, 0.80, and 0.78 for WT, TC, and ET, respectively with 100% specificity for 

all subcomponents.  

2.3.4. BraTS2018 Validation dataset 

The network achieved dice scores of 0.90, 0.82 and 0.80 with Hausdorff distance of 6.0 mm, 7.5 

mm and 4.4 mm for WT, TC and ET respectively, on the BraTS2018 validation dataset (Table 2). 

Sensitivities were 0.91, 0.81, and 0.81 for WT, TC, and ET, respectively with 100% specificity for 

all subcomponents.  
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Table 1: Cross-Validation results & Mean dice-scores (across subjects) on 20 subjects held out dataset 

 

 
Table 2: Comparison with best performers of BraTS 2017 and BraTS 2018 Challenge 

 

Cross-Validation Results 

 Fold 1 Fold 2 Fold 3 AVERAGE 

Whole tumor 0.93 0.94 0.90 0.92 

Tumor Core 0.89 0.84 0.80 0.84 

Enhancing tumor 0.84 0.80 0.77 0.80 

Non-enhancing 

and Necrosis 
0.80 0.81 0.80 0.80 

Edema 0.85 0.86 0.85 0.85 

Results on 20 subjects held out dataset 

 Before TVF After TVF 

Whole tumor 0.89 0.90 

Tumor Core 0.82 0.84 

Enhancing tumor 0.78 0.80 

Non-enhancing 

and Necrosis 
0.79 0.80 

Edema 0.83 0.85 

Comparison to Best performers on BraTS 2017 Validation data 

Network type Whole Tumor Tumor Core Enhancing Tumor 

EMMA (val) 0.901 0.797 0.738 

Wang et.al (val) 

(Cascaded network) 

 

0.905 
 

0.837 
 

0.785 

Dense UNet (ours) (val) 0.907 0.804 0.787 

Comparison to Best performers on BraTS 2018 Validation data 

Network type Whole Tumor Tumor Core Enhancing Tumor 

NVIDIA (val) 0.910 0.866 0.823 

No New-Net (val) 0.908 0.854 0.810 

McKinley et. al (val) 0.900 0.853 0.794 

Dense Unet (ours) (val) 0.900 0.820 0.800 
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Figure 3: Example Segmentation results.  

High-grade glioma (HGG) and (A) low-grade glioma (LGG) (B). (a) A 2D slice of a postcontrast image, (b) ground 

truth image, (c) network output without multivolume fusion (MVF), and (d) network output with MVF. The arrows in 

(c) represent false positives that are successfully eliminated after MVF (d). Color Codes: red = ET, blue = TC (ET 

+ NEN), green = ED; whole tumor = green + blue + red. 
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2.3.5. Clinical validation dataset 

The network achieved dice scores of 0.85, 0.80 and 0.77 with Hausdorff distance of 5.74 mm, 5.94 

mm and 4.06 mm for WT, TC and ET respectively, on the Oslo clinical dataset (Table 3).  

Sensitivities were 0.86, 0.79, and 0.77 for WT, TC, and ET, respectively with 100% specificity for 

all subcomponents. 

Table 3: Mean dice-scores (across subjects) on clinical dataset 

Tumor type or sub-component Dice Scores 

Whole tumor 0.85 

Tumor Core 0.80 

Enhancing tumor 0.77 

Edema 0.80 

Necrosis 0.74 

 

2.4. Discussion 

Gliomas are the most common primary brain tumor. Currently, the vast majority of clinical and 

research efforts to evaluate response to therapy rely on gross geometric measurements. Manual 

tumor segmentation is a tedious, time intensive task that requires a human expert. Quantitative 

evaluations of manual tumor segmentations have revealed considerable disagreement reflected in 

Dice scores in the range 74%–85%.22  To address these shortcomings, automated machine learning 

algorithms have been developed to segment gliomas.5,6,14 

 

MRI-based glioma segmentation algorithms represent a method to reduce subjectivity and 

provide quantitative analysis. Accurate, reproducible, and efficient tumor segmentation has the 

potential to improve glioma management by being able to differentiate active tumor from necrotic 

tissue and edema. As a result, a significant effort has been made to facilitate the progress of 

automated glioma segmentation.  
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Our algorithm performed similarly to previously published high-performing algorithms in 

segmenting ET and WT (Table 2) on the BraTS2017 data set and was one of the top 3 performers 

in segmenting TC. The algorithm was also one of the top 3 performers in segmenting WT and ET 

on the BraTS 2018 dataset (Table 2). 

 

To generalize the network’s performance and evaluate its reliability, we also performed 3-fold 

cross validation, which demonstrated mean accuracies of 0.92, 0.84 and 0.80 for WT, TC and ET 

respectively. The results of this cross-validation are not comparable to the accuracies reported by 

the BraTS challenge, as our cross validation used one-third of the data for training, whereas most 

developers use all 285 cases to train their algorithm and cross-validation is not reported.  

The entire pipeline including all the pre-processing steps took approximately 5 minutes per 

subject for testing. The Dice scores were slightly reduced when validated on the clinical data set. 

This decrease in performance was expected due to practical considerations when utilizing clinical 

scans. For example, differences in field strength (1.5T vs 3T), clinical imaging sequence 

parameters and variability in post processing may account for the decreased performance. Despite 

these limitations our deep learning network was able to segment tumors and sub-components with 

excellent results without any fine-tuning and shows promise for incorporation into clinical 

workflow. 

Variable performance among CNNs can also be due to differences in the underlying network 

architecture. The triple network architecture described here has several advantages when compared 

to multi-label CNNs. Training three separate networks for individual binary segmentation tasks is 

less complex and less computationally challenging than training one network to perform multi-

class segmentations. Additionally, since all three networks are trained separately as binary 

segmentation problems, misclassification is also highly reduced, thereby reducing over-fitting. 
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The dense architecture also reduces false positives, because all feature maps are reused such that 

every layer in the architecture receives a direct supervision signal 30. The vanishing gradient 

problem is a challenge when using gradient-based learning methods to train neural networks. If 

the gradient is too small, the neural network weight will not change in value. As more layers with 

activation functions are added to the network, the gradient can approach zero, making it difficult 

to train the network. Our algorithm diminished the vanishing gradient problem by using dense 

networks, which use feature propagation through the dense connection to the subsequent layers. 

In order to overcome computational considerations when using a full size image, our algorithm 

used a patch based 3D Dense-Unet 30. An additional unique feature of our network was the 

procedure for TVF which effectively eliminated false positives (Figure 3). TVF improved network 

performance across all segmentations. Compared to previously published work on tumor 

segmentation, our networks employed minimal pre- and post-processing steps. 

2.5. Limitations 

A general limitation of deep-learning methods is the need for a large number of subjects to train 

the network. The BraTS server validation dataset does not provide dice coefficients for “non-

enhancing tissue + necrosis,” and edema labels. Even though our network was able to identify 

these components, the performance for these labels could not be evaluated using the BraTS 

validation server data set.  Memory and computation power limitations remain a consideration in 

deep learning methods. For instance, when overlapping patches were increased from 75% to 85% 

for our algorithm, the 3-fold cross validation results increased to 0.92, 0.84 and 0.80 for WT, TC 

and ET respectively. However, due to memory limitations, the 85% overlapping patches could not 

be implemented for training using all the 265 subjects. This suggests that the network has room 

for improvement with additional memory and computational power advancements.  
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2.6. Conclusion 

A 3D Dense UNet was developed for MRI-based segmentation of gliomas. The algorithm can 

easily be incorporated into a clinical workflow. Our algorithm outperformed the best performers 

for segmenting whole tumor and enhancing tumor. 
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Chapter 3 

A Novel Fully Automated MRI-based Deep Learning Method for 

Classification of IDH Mutation Status in Brain Gliomas 

This work is published at the journal Neuro Oncology, vol 22, issue 3, p. 402–411, Mar 5th,2020. 

Authorship: Chandan Ganesh Bangalore Yogananda, Bhavya R. Shah, Maryam Vejdani-Jahromi, 

Sahil S. Nalawade, Gowtham K. Murugesan, Frank F. Yu, Marco C. Pinho, Benjamin C. Wagner, 

Bruce Mickey, Toral R. Patel, Baowei Fei, Ananth J. Madhuranthakam, Joseph A. Maldjian 

3.1. Importance of the study 

One of the most important recent discoveries in brain glioma biology has been the identification 

of the isocitrate dehydrogenase (IDH) mutation status as a marker for therapy and prognosis.  The 

mutated form of the gene confers a better prognosis and treatment response than gliomas with the 

non-mutated or wild-type form.  Currently, the only reliable way to determine IDH mutation status 

is to obtain glioma tissue either via an invasive brain biopsy or following open surgical resection.  

The ability to non-invasively determine IDH mutation status has significant implications in 

determining therapy and predicting prognosis. We developed a highly accurate, deep learning 

network that utilizes only T2-weighted MR images and outperforms previously published 

methods. The high IDH classification accuracy of our T2w image only network (T2-net) marks an 

important milestone towards clinical translation. Imminent clinical translation is feasible because 

T2-weighted MR imaging is widely available and routinely performed in the assessment of 

gliomas. 
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3.2. Introduction 

Isocitrate dehydrogenase (IDH) mutation status has emerged as one of the most important markers 

for glioma diagnosis and therapy. Gliomas with this mutant enzyme have a better prognosis than 

tumors of the same grade with wild-type IDH.  This observation led the World Health Organization 

(WHO) to revise their classification of gliomas in 2016.9  IDH mutated tumors also have different 

management and therapeutic approaches than tumors with wild-type mutation status.  At the 

present time, the only way to definitively identify an IDH mutated glioma is to perform 

immunohistochemistry or gene sequencing on a tissue specimen, acquired through biopsy or 

surgical resection. Because the differences between IDH mutated and IDH wild-type gliomas may 

have critical treatment implications, there is great interest in attempting to distinguish between 

these two tumor types prior to surgery.  This becomes even more important for brain tumors that 

are inaccessible for biopsy or resection due to a high risk of severe post-operative complications 

and impairment. 

MR spectroscopy can potentially be used to determine IDH mutation status.  The mutant IDH 

enzyme catalyzes the production of the oncometabolite 2-hydroxyglutarate (2-HG).36  MR 

spectroscopic methods have been developed for identification of 2-HG37-40 noninvasively in brain 

tumors. While these methods appear to work well in a research setting, in the busy clinical 

environment, the spectroscopic imaging data are frequently uninterpretable due to artifact, patient 

motion, poor shimming, small voxel sizes, non-ideal tumor location, or presence of hemorrhage 

or calcification affecting measurements.  Even in the setting of good quality spectra, reliable 

clinical implementation using 2-HG spectroscopy is further compounded by the recently described 

high false positive rate of over 20% using this technique in the best hands.41 
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Early determination of IDH mutation status directly impacts treatment decisions.  Tumors that 

appear to be low-grade gliomas, but are IDH wild-type, are typically treated with early intervention 

rather than observation.  Specific chemotherapeutic interventions are more effective in IDH-

mutated gliomas (e.g., temozolomide).42-46 Additionally, surgical resection of non-enhancing 

tumor volume (beyond gross total resection of enhancing tumor components) in Grade III-IV IDH-

mutated tumors has been demonstrated to have a survival benefit.47  However, the determination 

of IDH mutation status continues to be performed using direct tissue sampling. Obtaining tumor-

rich tissue samples for determining IDH status can be a challenge. A TCGA report suggests that 

only 35% of biopsy samples contained sufficient tumor content for appropriate molecular 

characterization.48 The development of a robust non-invasive approach would be beneficial in the 

care of these patients. 

Advances in deep-learning methods are outperforming traditional machine-learning methods 

in predicting the genetic and molecular biology of tumors based on MRI. For example, Zhang et 

al. used a radiomics approach integrating a support vector machine (SVM)-based model and 

multimodal MRI features with an accuracy of 80% for IDH detection.49  In another study using 

multimodal MRI, clinical features, and a random forest machine learning algorithm, Zhang et al 

was able to obtain 86% accuracy in predicting IDH mutation status.50  In that study, the highest 

predictive features included age, parametric intensity, texture and shape features.  Recent studies 

by Chang et al., have used deep learning techniques to noninvasively determine IDH mutation 

status based on MRI, with accuracies of 94% using the TCIA database.51  Unfortunately, none of 

these methods are clinically viable, requiring either manual pre-segmentation of the tumor, 

extensive pre-processing, or multi-contrast acquisitions that are frequently affected by patient 

motion due to the long scan times.  Additionally, these existing methodologies use a 2D (slice-
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wise) classification approach.  A known limitation in designing and developing a slice-wise 

classification model is the data-leakage problem.31,32  2D slice-wise models working with cross-

sectional imaging data are particularly prone to data-leakage because they perform slice 

randomization across all subjects to generate the training, validation, and testing slices. As a result, 

adjacent slices from the same subject may be found in the training, validation, or testing data 

subsets. Because adjacent slices often share considerable information, this methodology may 

artificially boost accuracies by introducing bias in the testing phase. Previously reported studies 

do not appear to adhere to this caveat, potentially resulting in artificially boosted accuracies. 

The purpose of this study is to develop a highly accurate fully automated deep learning IDH-

classification 3D network using T2-weighted images only and compare its performance to a multi-

contrast 3D network.  The use of T2 images only provides strong clinical translation capability.  

T2 images are routinely acquired as part of any MRI brain tumor evaluation.  These images are 

robust to motion and can be obtained within 2 minutes.  On modern MRI scanners available in 

most clinical settings, high quality T2w images can be obtained even in the presence of active 

patient motion using commonly available motion resistant acquisition techniques.52 

3.3. Material and Methods 

3.3.1. Data and Pre-processing 

Multi-parametric brain MRI data of glioma patients were obtained from the Cancer Imaging 

Archive (TCIA)53 database. Genomic information was provided from TCGA (the cancer genome 

atlas) database.54  Only pre-operative studies were used.  Studies were screened for the availability 

of IDH status and T2w, T2w-FLAIR, and contrast enhanced T1-weighted (T1c) image series. The 

final dataset included 214 subjects (94 IDH-mutated, 120 IDH wild-type). TCGA subject IDs, IDH 
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mutation status, 1p/19q co-deletion status, histology, and clinical variables including age, gender, 

survival months, and Karnofsky performance scores are listed in Table 1 of the supplementary 

data. The average age of the cohort was 52  15 years with 48% female subjects. Histologically, 

49% of tumors were glioblastomas, 22% were oligodendrogliomas, 15% were astrocytomas, and 

14% were oligoastrocytomas, with 48% of tumors Grade IV, 27% grade III, and 24% grade II. In 

this cohort 56% of tumors were IDH wild-type, 42% were IDH-1 mutant, and 1.9% were IDH-2 

mutant. Since the vast majority of IDH mutations were IDH-1, both IDH-1 and IDH-2 mutants 

were considered as one group. 86% of the IDH mutated cases did not have 1p/19q codeletions, 

while 14% did.  IDH mutation status provided in the TCGA database was determined using Sanger 

sequenced DNA methods and exome sequencing of whole genome amplified DNA. The Sanger 

method is considered the gold-standard in genetic analysis.55,56 

Tumor masks for 87 subjects were available through previous expert segmentation.3,7 Tumor 

masks for the remaining 127 subjects were manually drawn and validated by in-house neuro-

radiologists. The tumor masks were used as the ground truth for the tumor segmentation in the 

training step. Ground truth whole tumor masks for IDH mutated type were labelled with 1s and 

the ground truth tumor masks for IDH wild-type were labelled with 2s (Figure 4).  Data 

preprocessing was minimal, including (a) N4BiasCorrection to remove RF inhomogeneity, (b) co-

registration of the multi-contrast data to the T1c (for TS-net only), and (c) intensity normalization 

to zero-mean and unit variance.29 The pre-processing was developed using the Advanced 

Normalization Tools (ANTS) software routines28 and took less than 5 minutes per dataset.  
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3.3.2. Network Details 

Two separate networks were developed.  These included a T2w image only network (T2-net) 

trained only on the T2w images (Figure 5A), and a 3-sequence network (TS-net) trained on multi-

contrast MR data including T2w images, T2w-FLAIR, and T1c. A 3D 32×32×32 patch-based 

training and testing approach was implemented for both networks. Dense-UNets were designed 

and trained for a voxel-wise dual-class segmentation of the whole tumor with Classes 1 and 2 

representing IDH-mutated and IDH-wild-type, respectively. The schematics for the network 

architecture is shown in Figure 5B. Each network consisted of seven dense blocks: three transition 

down blocks, three transition up blocks, an initial convolution layer, and a final convolution layer 

followed by an activation layer at the end. Each dense block was made up of five layers. Each 

layer was connected to every other layer in that particular dense block. This dense connection was 

implemented by concatenating the feature maps from one layer with feature maps from every other 

layer of that dense block. The input to a dense block was also concatenated with the output of that 

dense block. Every dense block on the encoder part of the network was followed by a transition 

down block, while every dense block on the decoder part of the network was preceded by a 

Figure 4: Ground truth whole tumor masks.  

Red voxels represent IDH mutated (value of 1) and green voxels represent IDH wild-type (value of 2). The ground 

truth labels have the same mutation status for all voxels in each tumor. 
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transition up block. The bottleneck block was used to keep the convolution layers to a smaller 

number in order to avoid having large convolution layers. With these connecting patterns, all 

feature maps were reused such that every layer in the architecture received a direct supervision 

signal.30  A detailed description of the network is depicted in Figure 6. 

 

Figure 5: (A) T2-net overview. Voxelwise classification of IDH mutation status is performed to create 2 volumes 

(IDH mutated and IDH wild-type). Volumes are combined using dual volume fusion to eliminate false positives and 

generate a tumor segmentation volume. Majority voting across voxels is used to determine the overall IDH mutation 

status. (B) Network architecture for T2-net and TS-net. 3D Dense-UNets were employed with 7 dense blocks, 3 

transition down blocks, and 3 transition up blocks. 
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3.3.3. Network Implementation and Cross-validation  

To generalize the reliability of the networks, a 3-fold cross-validation was performed on the 214 

subjects by randomly shuffling the dataset and distributing it into 3 groups (approximately 70 

subjects for each group).  During each fold of the cross-validation procedure, the 3 groups are 

alternated between training, in-training validation, and held-out testing.  Group 1 had 72 subjects 

(32 IDH mutated, 40 IDH wild-type), Group 2 had 71 subjects subjects (31 IDH mutated, 40 IDH 

wild-type), and Group 3 had 71 subjects (31 IDH mutated, 40 IDH wild-type). The in-training 

Figure 6: Detailed network architecture for T2-net and TS-net.  

3D-Dense-UNets were employed with 7 dense blocks, 3 transition down blocks, and 3 transition up blocks. Each dense block 

was made of 5 layers connected to each other with every layer having 4 sublayers connected sequentially. The transition down 

block consisted of 5 layers connected sequentially while the transition up block was a sequential connection of 4 layers. 
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validation set helps improve network performance during training.  Note that each fold of the 

cross-validation procedure represents a new training phase on a unique combination of the 3 

groups. Network performance is only reported however, on the held-out testing group for each 

fold (which is never seen by the algorithm during training for that fold). Table 1 of the 

supplementary data lists the group membership for each fold of the cross-validation.  The in-

training validation data set is used by the algorithm to test performance after each round of training, 

and update model parameters. It is not a true held-out data set because the algorithm adjusts its 

performance based on the results in each round from the in-training validation data set. Once the 

algorithm has completed all rounds of training, it is evaluated on the true held-out data set to 

determine performance. 

Seventy-five percent overlapping patches were extracted from the training and in-training 

validation subjects. To avoid the data leakage problem, no patch from the same subject was mixed 

with the training, in-training validation or testing datasets.31,32 The data augmentation steps 

included horizontal flipping, vertical flipping, random and translational rotation. Data 

augmentation provided a total of approximately 150,000 patches for training and 150,000 patches 

for in-training validation. Networks were implemented using Keras34 and Tensorflow33 with an 

Adaptive Moment Estimation optimizer (Adam).35 The initial learning rate was set to 10-5 with a 

batch size of 4 and maximal iterations of 100. Initial parameters were chosen based on previous 

work with Dense-UNets using brain imaging data and semantic segmentation.30,57 

Each network yields two segmentation volumes. Volume 1 provides the voxel-wise prediction 

of IDH mutated tumor and Volume 2 identifies the predicted IDH wild-type tumor voxels. A 

straightforward dual-volume fusion (DVF) approach was developed to combine the 2 

segmentation volumes. Both the volumes were combined, and the largest connected component 
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was obtained using a 3D connected component algorithm in MATLAB(R). The combined volumes 

provided a single tumor segmentation map. Majority voting over the voxel-wise classes of IDH-

mutated or IDH-wild-type provided a single IDH classification for each subject. Networks were 

implemented on Tesla P100, P40 and K80 NVIDIA-GPUs. The IDH classification process 

developed is fully automated, and a tumor segmentation map is a natural output of the voxel-wise 

classification approach. 

3.3.4. Statistical Analysis 

Statistical analysis was performed in MATLAB(R) and R for T2-net and TS-net separately. The 

accuracy of the two networks was evaluated with majority voting (i.e. voxel-wise cutoff of 50%). 

This threshold was then used to calculate the accuracy, sensitivity, specificity, positive predictive 

value (PPV), negative predictive value (NPV) of the model for each fold of the cross-validation 

procedure. To evaluate the performance of the networks for tumor segmentation, the Dice-score 

was used. The Dice-score determines the amount of spatial overlap between the ground truth and 

the network segmentation. A Receiver Operating Characteristic (ROC) curve was calculated for 

each fold. A detailed description of the ROC methodology is provided in the supplementary data.  

3.3.4.1. ROC methodology 

The network output classifies voxels in the tumor as IDH mutated or IDH wild-type.  The percent 

of IDH-mutated voxels was computed for the network output for each subject in the test set by 

dividing the predicted IDH mutated voxels by the total number of predicted voxels in each tumor.  

The percent mutated voxels can be viewed as a network output prediction likelihood of the tumor 

being IDH-mutated.  Note that, majority voting (the 50% threshold) was used to determine IDH 

prediction. For the ROC analysis, the percent of IDH mutated voxels was sorted and used as 

separate thresholds (cut-points) to determine IDH mutation status for the subjects across the test 
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set for each new cut-point. The resulting predicted IDH class membership was compared to the 

ground truth values to determine sensitivity (true positive rate) and 1- specificity (false positive 

rate) at each threshold.  The resulting values were plotted using R program & Matlab routines to 

obtain an ROC curve and determine the area under the curve (AUC). This procedure was repeated 

for each of the 3 test folds from the cross-validation procedure for T2-net & TS-net separately. 

Smoothed curves were used to facilitate display for the figure.   

3.4. Results 

3.4.1. T2-net  

T2-net achieved a mean cross-validation testing accuracy of 97.14% across the 3 folds (97.18%, 

97.14%, and 97.10%, standard dev=0.04).  Mean cross-validation sensitivity, specificity, PPV, 

NPV and AUC for T2-net was 0.97 ±0.03, 0.98 ±0.01, 0.98 ±0.01, 0.97 ±0.01 and 0.98 ±0.01, 

respectively. The mean cross-validation Dice-score for tumor segmentation was 0.85 ± 0.009. T2-

net misclassified 2 cases for each fold (6 total out of 214 subjects). Three subjects were 

misclassified as IDH mutated, and 3 as IDH wild-type. 

 

3.4.2. Multi-contrast TS-net  

The multi-contrast TS-net achieved a mean cross-validation testing accuracy of 97.12% across the 

3 folds (97.22%, 97.10%, and 97.05%, standard dev=0.09).  Mean cross-validation sensitivity, 

specificity, PPV, NPV and AUC for TS-net was 0.98 ±0.02, 0.97 ±0.001, 0.97 ±0.002, 0.97 ±0.001 

and 0.99 ±0.01, respectively. The mean cross-validation Dice-score for tumor segmentation was 

0.89 ± 0.006.  TS-net also misclassified 2 cases for each fold (6 total out of 214 subjects).  Three 

subjects were misclassified as IDH mutated, and 3 as IDH wild-type.  The misclassified subjects 

were not the same as those misclassified by T2-net. Classification accuracies and Dice scores for 

T2-net and TS-net are presented in Table 4. 
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Table 4: T2-net and TS-net cross-validation results 

Fold Description T2-net TS-net 

Fold Number % Accuracy Dice score % Accuracy Dice Score 

Fold 1 97.18 0.843 97.22 0.88 

Fold 2 97.14 0.86 97.10 0.883 

Fold 3 97.10 0.857 97.05 0.892 

Average 97.14 ± 0.04 0.853 ± 0.009 97.12 ± 0.09 0.885 ± 0.006 

 

3.4.3. ROC analysis  

The ROC curves for each cross-validation fold for T2-net and TS-net are provided in Figure 7.  

T2-net and TS-net demonstrated near identical performance curves with extremely high 

sensitivities and specificities. 

Figure 7: (A) ROC analysis for T2-net. (B) ROC analysis for TS-net.  

Separate curves are plotted for each cross-validation fold along with corresponding AUC value. 
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3.4.4. Voxel-wise classification 

Since these networks are voxel-wise classifiers, they perform a simultaneous tumor segmentation.  

Figures 8A and 8B show examples of the voxel-wise classification for an IDH wild-type, and IDH 

mutated case using T2-net. The DVF procedure was effective in removing false positives to 

increase accuracy. The DVF procedure removed approximately 16% and 17% of the classified 

voxels for T2-net and TS-net respectively. This procedure improved the dice-scores by 

approximately 3% for each network.  We also computed the voxel-wise accuracy for each network.  

The performance on the IDH wild-type subjects was very similar between the two networks, while 

for IDH mutated, the voxel-wise accuracies were better for TS-net. For T2-net, the mean voxel-

wise accuracies were 84.9% ±0.05 for IDH wild-type and 76.4% ±0.03 for IDH mutated.  For TS-

net, the mean voxel-wise accuracies were 85.7% ±0.04 and 84.7% ±0.01 for IDH wild-type and 

IDH mutated, respectively.  

 

3.4.5. Training and segmentation times  

Each network took approximately 2 weeks to train. The trained networks took approximately 3 

minutes to segment the whole tumor, implement DVF & predict the IDH mutation status for each 

subject. 

3.5. Discussion 

We developed two deep-learning MRI networks for IDH-classification of gliomas based on 

imaging features alone. Both our T2-network and the multi-contrast network outperformed IDH 

classification algorithms previously reported in the literature.49,51,58,59  When comparing the T2-

network with the multi-contrast network, our results suggest that similar performance can be 

achieved by using T2-weighted images only. The ability to use only T2-weighted images makes 

clinical translation much more straightforward and less prone to failures from image acquisition 
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artifacts.  The preprocessing used to prepare the data is also minimal. The time required for T2-

net to segment the whole tumor, implement DVF, and predict the IDH mutation status for one 

subject is approximately 3 minutes on a K80 or P40 NVIDA-GPU. 

Figure 8: (A) Example voxelwise segmentation for an IDH mutated tumor. Native T2 image (a). Ground 

truth segmentation (b). Network output without DVF (c) and after DVF (d). Yellow arrows in (C) indicate 

false positives. Red voxels correspond to IDH mutated class and green voxels correspond to IDH wild-type.  

(B) Example voxelwise segmentation for an IDH wild-type tumor. The sharp borders visible between IDH 

mutated and wild-type result from the patchwise classification approach. 
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There are several factors that may explain the higher performance achieved by our networks 

when compared to previously published results. First and foremost is the use of 3D networks, 

compared to previously reported 2D networks. Additionally, the 3D network architecture is 

advantageous as the dense connections carry information from all the previous layers to the 

following layers.30 These types of networks are easier to train and can reduce over-fitting.14  The 

Dual Volume Fusion (DVF) post-processing step also helps in effectively eliminating false 

positives while increasing the segmentation accuracy by excluding extraneous voxels that are not 

connected to the tumor. DVF improved the dice-scores by approximately 3% for each network. 

The 3D networks interpolate between slices to maintain inter-slice information more accurately. 

The networks use minimal preprocessing without any requirement for extraction of pre-engineered 

features from the images or histopathological data.58  

The 3D networks used here are voxel-wise classifiers, providing a classification for each voxel 

in the image.  This provides a simultaneous single-label tumor segmentation (e.g. the sum of voxels 

classified as IDH mutated and non-mutated provide the tumor label).  The cross validation single 

label whole tumor segmentation performance for these networks provided excellent Dice-scores 

of 0.85 and 0.89 for T2-net and the multi-contrast TS-net, respectively.  These tumor segmentation 

Dice-scores are similar to the top performers from BraTS2017 tumor segmentation challenge.14    

Both T2-net and TS-net achieved similar overall subject classification accuracies. This 

suggests that the information from the T2w images alone can provide a high classification 

confidence. For the IDH wild-type tumors, both networks incorrectly classified 2 subjects per fold.  

These 6 subjects were not the same between the networks. In reviewing these cases, there were no 

discriminating imaging features.  The majority of these cases had heterogeneous enhancement, 

with mixed T2 and FLAIR signal, and surrounding edema.  Although T2-net and TS-net 
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demonstrated similar performance on subject-wise IDH classification, the voxel-wise performance 

was different between the networks.  TS-net demonstrated similar accuracies in predicting IDH 

wild-type voxels (85.7% vs 84.9%), and slightly higher accuracies in predicting IDH mutated 

voxels (84.7% vs 76.4%).   

Since these networks are voxel-wise classifiers, there are portions within each tumor that are 

classified as IDH mutated, and other areas as IDH-wild-type.  Heterogeneous genetic expression 

can occur in gliomas over time and result in varied tumor biology.51,60 In the clinical setting, 

immunohistochemistry (IHC) evaluations are primarily used. IHC uses monoclonal antibodies to 

detect the most frequent IDH mutations (e.g. IDH1-R132H). Different cutoff values have been 

proposed to determine the IDH status of a tissue sample using IHC methods. While some advocate 

staining of more than 10% of tumor cells to confer IDH positivity, others suggest that one 

“strongly” staining tumor cell is sufficient. 61 Heterogeneity of staining with IHC has been reported 

where up to 46% of subjects showed partial uptake.62  In 2011 Perusser et al. reported that IDH1-

R132H expression may occur in only a fraction of tumor cells.63  Heterogeneity of the sample can 

also affect the sensitivity of genetic testing.64   IDH heterogeneity and reported false negativity in 

some gliomas have been explained by monoallelic gene expression, wherein only one allele of a 

gene is expressed even though both alleles are present. According to Horbinski, sequencing may 

not always be adequate to identify tumors that are functionally IDH1/2 mutated.63,65  Although 

heterogeneity of IDH status has been reported in histochemical and genomic evaluations of 

gliomas, we do not make the claim that the deep learning networks are detecting heterogeneous 

IDH mutation status in these tumors. Rather, the morphologic expression of the IDH mutation 

status is likely heterogeneous and reflected in the mixed classification outputs of IDH-mutated and 
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IDH-wild-type within a particular tumor. Regardless, the accuracies using this voxel-wise 

approach well outperform other methods. 

Although IHC methods are routinely used in the clinic, several exome sequencing studies have 

demonstrated that up to 15% of IDH-mutated gliomas remain undetected by traditional IDH1 

antibody testing.55,56  There are several molecular methods that can be used to determine IDH 

mutation status from tissue. The current gold-standard is the whole genome Sanger DNA 

sequencing method. This method, however, is limited by the amount of time, cost, and volume of 

tissue required to perform the genetic analysis. Next generation sequencing methods such as whole 

exome sequencing (WES) are able to determine mutation status much more rapidly, at decreased 

cost, and with reduced tissue volumes. However, these methods have false negative rates up to 6% 

and error rates approximately nine times that of whole genome sequencing.66 To further understand 

the cases that had been misclassified by T2-net, we reviewed the data from these cases in the 

Cancer Genome Atlas website (CGA). There were 3 cases from the cross-fold validation sets that 

were misclassified by T2-net as IDH mutated. Two of these three (TCGA-CS6669, TCGA-

020069) demonstrated small tissue volumes obtained during biopsy, limiting molecular 

characterization. This raises the possibility that the ground-truth determination of wild-type for 

these tumors may have been subject to tissue sampling bias (e.g., lack of an appropriate tissue 

sample or location of sampling).   

Another factor that may explain the higher performance achieved by our networks is that 

previous approaches required multi-contrast input which can be compromised due to patient 

motion from lengthier examination times, and the need for gadolinium contrast. High quality T2-

weighted images are almost universally acquired during clinical brain tumor diagnostic evaluation. 

Clinically, T2w images are typically acquired within 2 minutes at the beginning of the exam and 
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are relatively resistant to the effects of patient motion. On modern MRI scanners, high quality T2w 

images can even be obtained in the presence of patient motion.52  As such, the ability to use only 

T2w images is a significant advantage when considering clinical translatability. This method was 

inspired by a similar approach used for the identification of the O6–methylguanine-DNA 

methyltransferase (MGMT) methylation status and prediction of 1p/19q chromosomal arm 

deletion.67  Furthermore, our preprocessing steps preserve native image information without the 

need for any region-of-interest or tumor pre-segmentation procedures. Previous deep learning 

algorithms for MRI-based IDH classification use explicit tumor pre-segmentation steps.  These 

were accomplished either by manual delineation of the tumor, or by adding a separate deep 

learning tumor segmentation network. The use of these pre-segmentation steps adds unnecessary 

complexity to the classification process, and in the case of manual pre-segmentation, makes them 

unworkable as a robust automated clinical workflow. Our network uniquely performs a 

simultaneous tumor segmentation as a natural consequence of the voxel-wise segmentation 

process. 

3.6. Conclusion 

We developed two deep-learning MRI networks for IDH-classification of gliomas: i) a T2-network 

and ii) a multi-contrast network with high accuracy. Both networks outperformed the state-of-the-

art algorithms. We also demonstrate similar performance when comparing the T2-network with 

the multi-contrast network. The high accuracy of our network which utilizes only T2-weighted 

images will facilitate imminent clinical translation for this approach. 
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Chapter 4 

A novel fully automated MRI-based deep-learning method for classification of 

1p/19q co-deletion status in brain gliomas 

This work is published at the journal Neuro Oncology Advances, vol 2, issue 1, 

doi:10.1093/noajnl/vdaa066, 2020. 

Authorship: Chandan Ganesh Bangalore Yogananda, Bhavya R Shah, Frank F Yu, Marco C 

Pinho, Sahil S Nalawade, Gowtham K Murugesan, Benjamin C Wagner, Bruce Mickey, Toral R 

Patel, Baowei Fei, Ananth J Madhuranthakam, Joseph A Maldjian 

4.1. Importance of the study 

One of the most important recent discoveries in brain glioma biology has been the identification 

of the isocitrate dehydrogenase mutation and 1p/19q co-deletion status as markers for therapy and 

prognosis. 1p/19q co-deletion is the defining genomic marker for oligodendrogliomas and confers 

a better prognosis and treatment response than gliomas without it. Currently, the only reliable way 

to determine 1p/19q mutation status requires analysis of glioma tissue obtained either via an 

invasive brain biopsy or following open surgical resection. The ability to noninvasively determine 

1p/19q co-deletion status has significant implications in determining therapy and predicting 

prognosis. We developed a highly accurate, deep-learning network that utilizes only T2-weighted 

MR images and outperforms previously published image-based methods. The high classification 

accuracy of our T2w image-only network (1p/19q-net) in predicting 1p/19q co-deletion status 

marks an important step toward image-based stratification of brain gliomas. Imminent clinical 

translation is feasible because T2-weighted MR imaging is widely available and routinely 

performed in the assessment of gliomas. 
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4.2. Introduction 

Genetic profiling and molecular subtyping of glial neoplasms has revolutionized our ability to 

optimize therapeutic strategies and enhance prognostic accuracy. Perhaps the most compelling 

evidence supporting this paradigm is the 2016 revision of the World Health Organization’s (WHO) 

classification of gliomas which now includes genetic analysis. The impact of glioma 

reclassification based on molecular profiling has subsequently been studied and three genetic 

alterations have been extensively validated: O-6-methylguanine-DNA methyltransferase 

(MGMT), Isocitrate dehydrogenase (IDH), and 1p/19q co-deletion status.10 

MGMT is a DNA repair enzyme that protects normal and glioma cells from alkylating 

chemotherapeutic agents. Mutations that result in methylation of the MGMT promoter result in 

loss of function of the enzyme and its protective effect. Mutations of IDH alter the function of the 

enzyme to produce D-2-hydroxyglutarate instead of α-ketoglutarate. This altered function results 

in increased sensitivity of the glioma to radiation and chemotherapy. Gliomas that are IDH mutated 

can be further divided into gliomas with or without a 1p/19q co-deletion. The 1p/19q co-deletion 

is defined as the combined loss of the short arm of chromosome 1 (1p) and the long arm of 

chromosome 19 (19q). According to the 2016 WHO classification of gliomas, an IDH mutated 

glioma with a 1p/19q co-deletion is classified as an oligodendroglioma, whereas an IDH mutated 

glioma without a 1p/19q co-deletion is classified as a diffuse astrocytoma. Oligodendrogliomas 

have a better prognosis when compared to diffuse astrocytomas. Additionally, even patients with 

an IDH-mutated anaplastic oligodendroglioma (WHO grade III) have a longer median overall 

survival than IDH-wild type, 1p/19q non co-deleted, WHO grade II astrocytomas and are more 

responsive to chemotherapy.68 Therefore, determination of 1p/19q status in IDH mutated gliomas 

is critical for guiding therapy and predicting prognosis.  Currently, the only reliable way to 
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determine 1p/19q mutation status requires analysis of glioma tissue obtained either via an invasive 

brain biopsy or following open surgical resection. These diagnostic procedures carry the burden 

of implicit risk. Therefore, considerable attention has been dedicated to developing non-invasive, 

image-based diagnostic methods.   

Recent advances in deep-learning have led to a significant interest in advancing techniques for 

non-invasive, image-based molecular profiling of gliomas. Our group has previously demonstrated 

a highly-accurate, MRI-based, voxel-wise deep-learning IDH-classification network using only 

T2-weighted (T2w) MR images.69 T2w images facilitate clinical translation because they are 

routinely acquired, they can be obtained within 2 minutes, and high quality T2w images can even 

be obtained in the presence of active patient motion. Because the current standard of care for IDH 

mutated gliomas is heavily influenced by 1p/19q co-deletion status, the purpose of this study was 

to develop a highly accurate, fully automated deep-learning 3D network for 1p/19 co-deletion 

classification using T2-weighted images only.  

4.3. Material and Methods 

4.3.1. Data and Pre-processing 

Multi-parametric brain MRI data of glioma patients were obtained from the Cancer Imaging 

Archive (TCIA) database.53,70 Genomic information was provided from both the TCIA and TCGA 

(the cancer genome atlas) databases.53,54,70 Only pre-operative studies were used. Studies were 

screened for the availability of 1p/19q status and T2w image series. The final dataset of 368 

subjects included 268 low grade glioma (LGG, 130 co-deleted, 138 non co-deleted) and 100 high 

grade glioma (HGG, all non co-deleted) subjects. TCGA subject IDs, 1p/19q co-deletion status, 

and tumor grade are listed in Table 1 of the supplementary data. 
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Tumor masks for 209 subjects were available through previous expert segmentation. 3,7,69 

Tumor masks for the remaining 159 subjects were generated by the 3D-IDH network69 and 

validated by in-house neuro-radiologists. The tumor masks were used as ground truth for tumor 

segmentation in the training step. Ground truth whole tumor masks for 1p/19q co-deleted type 

were labelled with 1s and the ground truth tumor masks for 1p/19q non co-deleted type were 

labelled with 2s (Figure 9).  Data preprocessing steps included (a) co-registering the T2w image 

to SRI24 T2 template71 using ANTs affine registration28, (b) skull stripping using Brain Extraction 

Tool (BET)72 from FSL72-75, (c) N4BiasCorrection to remove RF inhomogeneity29, and (d) 

intensity normalization to zero-mean and unit variance. The pre-processing took less than 5 

minutes per dataset.  

 

4.3.2. Network Details 

Transfer learning was performed with the previously trained 3D-IDH network for 1p/19q 

classification.69 The decoder part of the network was fine-tuned for a voxel-wise dual-class 

segmentation of the whole tumor with Classes 1 and 2 representing 1p/19q co-deleted and 1p/19q 

Figure 9: Ground truth whole tumor masks. 

Red voxels represent 1p/19q co-deletion status (values of 1) and green voxels represent 1p/19q non-co-deletion 

status (values of 2). The ground truth labels have the same co-deletion status for all voxels in each tumor. 
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non co-deleted type respectively. The schematics for the network architecture are shown in Figure 

10B. A detailed description of the network is given in Figure 11. 

 

 

 

Figure 10: (A) 1p/19q-net overview.  

Voxel-wise classification of 1p/19q co-deletion status is performed to create 2 volumes (1p/19q co-deleted and 

1p/19q non-co-deleted). Volumes are combined using dual volume fusion to eliminate false positives and 

generate a tumor segmentation volume. Majority voting across voxels is used to determine the overall 1p/19q co-

deletion status.  

(B) Network architecture for 1p/19q-net.  

3D-Dense-UNets were employed with 7 dense blocks, 3 transition down blocks, and 3 transition up blocks. 

A B 
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4.3.3. Network Implementation and Cross-validation  

To generalize the reliability of the networks, a 3-fold cross-validation was performed on the 368 

subjects by randomly shuffling the dataset and distributing it into 3 groups (approximately 122 

subjects for each group). During each fold of the cross-validation procedure, the 3 groups were 

alternated between training, in-training validation and held-out testing.  Group 1 had 122 subjects 

(43 co-deleted, 79 non co-deleted), Group 2 had 124 subjects (44 co-deleted, 80 non co-deleted), 

Figure 11: A Detailed network architecture for the 1p/19q-net.  

The previously trained 3D IDH network was used. The left arm of the Dense U-net (striped red box) is the encoder 

part of the network, the right arm of the network (blue box) is the decoder part and the dense block (yellow box) is 

the bottle neck block. The encoder part of the network was frozen to retain the pre-trained weights from the 3D IDH 

network. The bottleneck block and the decoder part of the network was fine-tuned for a dual class segmentation with 

class 1 representing 1p/19q co-deleted type and class 2 representing 1p/19q non co-deleted type. 
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and Group 3 had 122 subjects (43 co-deleted, 79 non co-deleted). An in-training validation dataset 

helps the network improve its performance during training. Each fold of the cross-validation is a 

new training phase based on a unique combination of the 3 groups. However, network performance 

is only reported on the held-out testing group for each fold as it is never seen by the network.  The 

group membership for each cross-validation fold is listed in table 2 of the supplementary data.  

Seventy-five percent overlapping patches were extracted from the training and in-training 

validation subjects. No patch from the same subject was mixed with the training, in-training 

validation or testing datasets in order to avoid the data leakage problem.31,32 The Data 

augmentation steps included vertical flipping, horizontal flipping, translation rotation, random 

rotation, addition of Gaussian noise, addition of salt & pepper noise and projective transformation. 

Additionally, all images were down-sampled by 50% and 25% (reducing the voxel resolution to 

2mm x 2mm x 2mm & 4mm x 4mm x 4mm) and added to the training and validation sets. Data 

augmentation provided a total of approximately 300,000 patches for training and 300,000 patches 

for in-training validation for each fold. Networks were implemented using Keras76 and 

Tensorflow33 with an Adaptive Moment Estimation optimizer (Adam).35 The initial learning rate 

was set to 10-5 with a batch size of 15 and maximal iterations of 100. Initial parameters were chosen 

based on previous work with Dense-UNets on brain imaging data & semantic segmentation.57,69,77 

1p/19q-net yields two segmentation volumes. Volume 1 provides the voxel-wise prediction of 

1p/19q co-deleted tumor and Volume 2 identifies the predicted 1p/19q non co-deleted tumor 

voxels. A single tumor segmentation map is obtained by fusing the two volumes and obtaining the 

largest connected component using a 3D connected component algorithm in MATLAB(R). 

Majority voting over the voxel-wise classes of co-deleted type or non co-deleted type provided a 

single 1p/19q classification for each subject. Networks were implemented on Tesla V100s, P100, 
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P40 and K80 NVIDIA-GPUs. The 1p/19q classification process developed is fully automated, and 

a tumor segmentation map is a natural output of the voxel-wise classification approach. 

4.3.4. Statistical Analysis  

MATLAB(R) and R were used for statistical analysis of the network’s performance. Majority 

voting (i.e. voxel-wise cutoff of 50%) was used to evaluate the accuracy of the network. The 

accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value 

(NPV) of the model for each fold of the cross-validation procedure were calculated using this 

threshold. A Dice-score was used to evaluate the performance of the networks for tumor 

segmentation. The Dice-score calculates the amount of spatial overlap between the ground truth 

segmentation and the network segmentation. A Receiver Operating Characteristic (ROC) curve 

was also generated for each fold. 

4.3.4.1. ROC methodology 

The network output classifies voxels in the tumor as 1p/19q co-deleted or non co-deleted type.  

The percent of co-deleted voxels was computed for the network output for each subject in the test 

set by dividing the predicted co-deleted voxels by the total number of predicted voxels in each 

tumor.  The percent co-deleted voxels can be viewed as a network output prediction likelihood of 

the tumor being 1p/19q co-deleted. Note that majority voting (the 50% threshold) was used to 

determine 1p/19q co-deletion status prediction.  For the ROC analysis, the percent of co-deleted 

voxels was sorted and used as separate thresholds (cut-points) to determine 1p/19q co-deletion 

status for the subjects across the test set for each new cut-point. The resulting predicted 1p/19q 

class membership was compared to the ground truth values to determine sensitivity (true positive 

rate) and 1- specificity (false positive rate) at each threshold.  The resulting values were plotted 

using Matlab to obtain an ROC curve (true positive rate against false positive rate). Matlab routines 
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were used to fit the curves and determine the area under the curve (AUC). This procedure was 

repeated for each of the 3 test folds from the cross-validation procedure for the 1p/19q-net, 

providing a total of 3 ROC curves from the cross-validation.   

4.4. Results 

4.4.1. 1p/19q-net 

The network achieved a mean cross-validation testing accuracy of 93.46% across the 3 folds 

(93.4%, 94.35%, and 92.62%, standard dev=0.8).  Mean cross-validation sensitivity, specificity, 

PPV, NPV and AUC for 1p/19q-net was 0.90 ±0.003, 0.95 ±0.01, 0.91 ±0.02, 0.95 ±0.0003 and 

0.95 ±0.01 respectively (Table 5). The mean cross-validation Dice-score for tumor segmentation 

was 0.80 ± 0.007. The network misclassified 8, 7 and 9 cases for each fold respectively (24 total 

out of 368 subjects).  Twelve subjects were misclassified as non co-deleted, and 12 as co-deleted.    

Table 5: 1p/19q-net Cross-Validation Results 

Fold Description 1p/19q-net 

Fold Number %Accuracy AUC Dice-score 

Fold 1 93.4  0.9571 0.8151 

Fold 2 94.35 0.9688 0.8057 

Fold 3 92.62 0.9351 0.8000 

AVERAGE 93.46 +/- 0.86 0.953 +/- 0.01 0.801 +/- 0.007 

  

4.4.2. ROC Analysis 

The ROC curves for each cross-validation fold for the network is provided in Figure 12. The 

network demonstrated very good performance curves with high sensitivities and specificities. 
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4.4.3. Voxel-wise classification 

Since the network is a voxel-wise classifier, it performs a simultaneous tumor segmentation.  

Figures 13A and 13B show examples of the voxel-wise classification for a co-deleted type, and 

non co-deleted type respectively using the network. The volume fusion procedure was effective in 

removing false positives to increase accuracy. This procedure improved the dice-scores by 

approximately 4% for the network.  We also computed the voxel-wise accuracy for the network. 

The mean voxel-wise accuracies were 85.86% ±0.01 for non co-deleted type and 80.51% ±0.01 

for co-deleted type. 

 

4.4.4. Training and Segmentation times 

It took approximately 1 week to fine-tune the decoder portion of the network. The trained network 

took approximately three minutes to segment the whole tumor and predict the 1p/19qco-deletion 

status for each subject. 

Figure 12: ROC analysis for 1p/19q-net.  

Separate curves are plotted for each cross-validation fold along with corresponding area under the curve value 
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4.5. Discussion 

We developed a fully-automated, highly accurate, deep-learning network that outperforms 

previously reported 1p/19q co-deletion status classification algorithms.51,78-80 When comparing our 

T2-network with previous work, our results suggest that algorithm accuracy can be improved by 

using T2-weighted images only. Clinical translation becomes much simpler using only T2 

weighted images because these images are routinely acquired and are robust to motion.  When 

compared to previously published algorithms, our methodology is fully-automated. The time 

required for 1p/19q-net to segment the whole tumor and predict the 1p/19q co-deletion status for 

one subject is approximately 3 minutes on a K80, P40, P100 or V100s NVIDA-GPU.      

The higher performance achieved by our network when compared to previous work is likely 

due to several factors. Similar to our IDH classification network we employed 3D networks 

whereas prior attempts at 1p/19q co-deletion status classification have relied on 2D networks.78 

Figure 13: (A) Example of voxel-wise segmentation for a 1p/19q co-deleted tumor: native T2 image (a), ground 

truth segmentation (b), and network output after DVF (c). Red voxels correspond to 1p/19q co-deleted class and 

green voxels correspond to 1p/19q non-co-deleted class. (B) Example of voxel-wise segmentation for a 1p/19q 

non-co-deleted tumor. The sharp borders visible between co-deleted and non-co-deleted types result from the patch-

wise classification approach. 
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The dense connections in a 3D network architecture are advantageous because they carry 

information from all the previous layers to the following layers.77 Additionally, 3D networks are 

easier to train and can reduce over-fitting.81 As we previously reported, the Dual Volume Fusion 

(DVF) post-processing step helps in effectively eliminating false positives while improving the 

segmentation accuracy by excluding extraneous voxels not connected to the tumor. DVF improved 

the dice-scores by approximately 4% for the network. The 3D networks interpolate between slices 

to maintain inter-slice information more accurately. The network does not require extraction of 

pre-engineered features from the images or histopathological data.58 Our approach also uses voxel-

wise classifiers and provides a classification for each voxel in the image. This provides a 

simultaneous single-label tumor segmentation. Another factor that may explain the higher 

performance achieved by our network is that previous approaches required multi-contrast input 

which can be compromised due to patient motion from lengthier examination times, and the need 

for gadolinium contrast.  High quality T2-weighted images are almost universally acquired during 

clinical brain tumor diagnostic evaluation. Clinically, T2w images are typically acquired within 2 

minutes at the beginning of the exam and are relatively resistant to the effects of patient motion. 

Several of the previous 1p/19q deep learning studies were trained and tested on only low-grade 

gliomas achieving accuracies ranging from 65.9% - 87.7%.78-80  Our algorithm was trained and 

evaluated on a mix of high grade and low-grade gliomas, which is a better representative of real-

world performance and potential clinical utilization. 

In the clinical setting, histologic evaluation remains the gold standard for genetic profiling of 

gliomas. Several different methods to detect 1p/19q co-deletion have been employed: fluorescence 

in-situ hybridization (FISH), array comparative genomic hybridization, multiplex ligation 

dependent probe amplification, and PCR-based loss of heterozygosity analysis.82 FISH is the most 
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routinely performed method.83 FISH relies on fluorescent labeled DNA probes to directly detect 

chromosomal abnormalities on a tissue slide in interphase nuclei.84 The fraction of nuclei that 

demonstrate a deletion or relative deletion (in cases with polysomy) are summed and a percentage 

is calculated.85 When the percentage of “deleted” nuclei exceeds a pre-determined cut-off, the 

tumor is classified as 1p/19q co-deleted.85 A drawback of FISH is that it lacks standardized criteria 

for analysis of 1p/19qco-deletion status.83 For example, there is no consensus on what cut-off level 

to use when classifying co-deletion status. As a result, variability in institutional-based cut-off 

values can span from 20% to 70% and can affect accurate diagnosis.85 This limitation affects the 

sensitivity, specificity, PPV, and NPV of 1p/19q detection by FISH based on the cut-off value 

selected.85  

There are interesting parallel considerations when studying our deep-learning method of 

1p/19q determination. Our network is a voxel-wise classifier and as a result some portions within 

each glioma are classified as 1p/19 co-deleted while other areas are 1p/19q non co-deleted. The 

overall determination of 1p/19q co-deletion status is based on the majority of voxels in the tumor. 

Given the variability in the cut-off values for FISH detection of 1p/19q co-deletion, we performed 

a Youden’s statistical index analysis to determine if the optimal cut-off for our deep learning 

algorithm was different than majority voting (>50%). The analysis demonstrated that maximum 

accuracy, sensitivity, specificity, PPV, and NPV were obtained at an optimal cut-off of 50%, the 

same as majority voting.  

The algorithm misclassified 24 cases: 12 subjects were misclassified as non co-deleted and 12 

as co-deleted. Despite these misclassifications, our network achieved a mean cross-validation 

testing accuracy of 93.46% which is similar to what is reported for FISH.85 However, our 

sensitivity, specificity, PPV, and NPV were significantly better than when compared to FISH.30 
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While FISH requires tissue to be obtained from an invasive procedure and subsequent tissue 

processing for at least 48 hours, our deep learning algorithm can segment the entire glioma and 

provide a 1p/19q co-deletion status in 3 minutes. The deep learning algorithm can also be fine-

tuned to variations in institutional MRI scanners, while FISH analysis currently lacks 

standardization as mentioned above.  

The limitations of our study are that deep learning studies require large amounts of data and 

the relative number of subjects with 1p/19q co-deletions is small. Additionally, acquisition 

parameters and imaging vendor platforms vary across imaging centers that contribute data. Despite 

these caveats our algorithm demonstrated high 1p/19q co-deletion classification accuracy.  

4.6. Conclusion 

We demonstrate high 1p/19q co-deletion classification accuracy using only T2-weighted MR 

images. This represents an important milestone toward using MRI to predict glioma histology, 

prognosis, and response to treatment. 
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5.1. Introduction 

O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation is a molecular 

biomarker of gliomas that has prognostic and therapeutic implications. Unlike isocitrate 

dehydrogenase (IDH) mutations and 1p/19q co-deletions, MGMT promoter methylation is an 

epigenetic event. Epigenetic events are functionally relevant but do not involve a change in the 

nucleotide sequence. Therefore, while MGMT promoter methylation is an important prognostic 

marker, it does not define a distinct subset of gliomas. MGMT is a DNA repair enzyme that 

protects normal and glioma cells from alkylating chemotherapeutic agents. The methylation of the 

MGMT promoter is an example of epigenetic silencing which results in loss of function of the 

MGMT enzyme and its protective effect on glioma cells. The survival benefit incurred by MGMT 

promoter methylation in patients treated with temozolomide (TMZ) was determined in 2005.86 

Subsequent work by Stupp et al. has shown that in patients who received both radiation and 

temozolomide, MGMT promoter methylation improved median survival as compared to patients 

with unmethylated gliomas (21.7 months vs 12.7 months).87,88 Long-term follow-up from that 
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initial study has further substantiated the survival benefit.87,88 As a result, determining MGMT 

promoter methylation status is an important step in predicting survival and determining treatment.  

Currently, the only reliable way to determine MGMT promoter methylation status requires 

analysis of glioma tissue obtained either via an invasive brain biopsy or following open surgical 

resection. Surgical procedures carry the risk of neurologic injury and complications. Therefore, 

considerable attention has been dedicated to developing non-invasive, image-based diagnostic 

methods to determine MGMT promoter methylation status. A meta-analysis of MRI features 

demonstrated that glioblastomas with methylated MGMT promoters were associated with less 

edema, high apparent diffusion coefficient (ADC), and low perfusion. However, the summary 

sensitivity and specificity of these clinical features was only 79% and 78% respectively.89 

Although multiple radiomic approaches have also been attempted for MGMT prediction, none to 

date have achieved accuracies sufficient for clinical viability.67,90-93 Sasaki et al. attempted to 

establish an MRI-based radiomic model for predicting MGMT promoter status of the tumor but 

only reached a predictive accuracy of 67%.94 Wei et al. extracted radiomic features from the tumor 

and peritumoral edema using multi-sequence, post-contrast MRI but only achieved an accuracy of 

51-74% in predicting MGMT promoter methylation status in astrocytomas.95 Drabycz performed 

texture analysis on MRI images to predict MGMT promoter methylation status in glioblastoma 

but only reached an accuracy of 71%.90 Korfiatis combined texture features with supervised 

classification schemes as potential imaging biomarkers for predicting the MGMT methylation 

status of GBM but only achieved a sensitivity and specificity of 0.803 and 0.813 respectively.67 

Ahn used dynamic contrast-enhanced MRI and diffusion tensor imaging to predict MGMT 

promoter methylation in glioblastoma but this method only achieved a sensitivity and specificity 

of 56.3% and 85.2% respectively.92  
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Recent advances in deep-learning methods have also been used for non-invasive, image-based 

molecular profiling. Our group has previously demonstrated highly-accurate, MRI-based, voxel-

wise deep-learning networks for determining IDH-classification and 1p/19q co-deletion status 

using only T2-w MR images.69,96 The benefits of using T2-w images are that they are routinely 

acquired, they can be obtained quickly, and high quality T2-w images can even be obtained in the 

setting of motion degradation. Because MGMT promoter methylation in gliomas is such an 

important biomarker, we sought to develop a highly accurate, fully automated deep-learning 3D 

network for MGMT promoter methylation status determination using T2-w images only. 

5.2. Material and Methods 

5.2.1. Data and Pre-processing 

Multi-parametric MR Images of brain glioma patients were obtained from the TCIA (The Cancer 

Imaging Archive) database.53,97 The genomic information was obtained from both TCGA (the 

cancer genome atlas) and TCIA databases.53,54,70 Subject datasets were screened for the availability 

of pre-operative MR images, T2-w images and known MGMT promoter status. The final dataset 

of 247 subjects included 163 methylated cases and 84 unmethylated cases. TCGA subject IDs, 

MGMT status, and tumor grade are listed in Table 1 of the supplementary data.  

Tumor masks for 179 subjects were available through previous expert segmentation.3,7,69 

Tumor masks for the remaining 68 subjects were generated by our previously trained 3D-IDH 

network and were reviewed by 2 neuroradiologists for accuracy.69 These tumor masks were used 

as ground truth for tumor segmentation in the training step. Ground truth whole tumor masks for 

methylated and unmethylated MGMT promoter type were labelled with 1s & 2s respectively 

(Figure 14). Data preprocessing steps included (a) ANTs affine co-registration28 to the SRI24 T2 

template71, (b) skull stripping using the Brain Extraction Tool (BET)72 from FSL72-75, (c) 
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Removing RF inhomogeneity using N4BiasCorrection29, and (d) normalizing intensity to zero-

mean and unit variance. The pre-processing took less than 5 minutes per dataset.  

 

5.2.2. Network Details 

Transfer learning for MGMT promoter status determination was implemented using our previously 

trained 3D-IDH network.69 The decoder part of the network was fine-tuned for a voxel-wise dual-

class segmentation of the whole tumor with Classes 1 and 2, representing methylated & 

unmethylated MGMT promoter type, respectively. The network architecture is shown in Figure 

15B. A detailed schematic of the network is provided in Figure 16. 

 

 

 

 

Figure 14: Ground truth whole tumor masks. 

Red voxels represent methylated MGMT promoter status (values of 1) and blue voxels represent unmethylated 

MGMT promoter status (values of 2). The ground truth labels have the same MGMT promoter status for all voxels 

in each tumor. 
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5.2.3. Network Implementation and Cross-validation  

To generalize the network’s performance, a 3-fold cross-validation was performed. The dataset of 

247 subjects was randomly shuffled and distributed it into 3 groups (approximately 82 subjects for 

each group). Group 1 had 82 subjects (54 methylated, 28 unmethylated), Group 2 had 83 subjects 

(55 methylated, 28 unmethylated), and Group 3 had 82 subjects (54 methylated, 28 unmethylated). 

The 3 groups were alternated between training, in-training validation, and held-out testing groups 

such that each fold of the cross-validation was a new training phase based on a unique combination 

Figure 15: (A) MGMT-net overview. Voxel-wise classification of MGMT promoter status is performed to create 2 

volumes (methylated and unmethylated MGMT promoter). Volumes are combined using dual volume fusion to 

eliminate false positives and generate a tumor segmentation volume. Majority voting across voxels is used to 

determine the overall MGMT promoter status. 

(B) Network architecture for MGMT-net. 3D-Dense-UNets are employed with 7 dense blocks, 3 transition down 

blocks, and 3 transition up blocks. 
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of the 3 groups. The network uses the in-training validation dataset to evaluate its learning after 

each training round and update model parameters to improve performance. However, the network 

performance is only reported on the held-out testing group for each fold as it is never seen by the 

network.  The group membership for each cross-validation fold is listed in table 3 of the 

supplementary data.  

Seventy-five percent overlapping 3D patches (size: 32x32x32) were extracted from the training 

and in-training validation dataset. The patch extraction was performed as a translation in the x-y-

z plane. During training, only patches with at least 1 tumor voxel were included, thus the number 

of patches included per training case varied depending on the size of the tumor. For testing 

however, the entire image was sampled including background masked voxels (of value 0). To 

prevent the problem of data leakage, no patch from the same subject was mixed with the training, 

in-training validation or testing datasets.31,32 Data augmentation steps included horizontal & 

vertical flipping, random & translational rotation, addition of salt & pepper noise, addition of 

Gaussian noise, and projective transformation. Additional data augmentation steps included down-

sampling images by 50% and 25% (reducing the voxel resolution to 2mm3 and 4mm3). The data 

augmentation provided a total of approximately 300,000 patches for training and 300,000 patches 

for in-training validation for each fold. The networks were implemented using Tensorflow33 

backend engine, Keras76 python package, and an Adaptive Moment Estimation optimizer 

(Adam).35 The initial learning rate was set to 10-5 with a batch size of 15 and maximal epochs of 

100 for each fold. 

MGMT-net outputs two segmentation volumes (V1 and V2), which are combined to generate 

the voxel-wise prediction of methylated & unmethylated MGMT promoter tumor voxels, 

respectively. The two volumes are fused, and the largest connected component (3D-connected 
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component algorithm in MATLAB(R)) is obtained as the single tumor segmentation map. Majority 

voting over the voxel-wise classes of methylated or unmethylated type provided a single MGMT 

promoter classification for each subject. Tesla V100s, P100, P40 and K80 NVIDIA-GPUs were 

used to implement the networks. This MGMT promoter determination process is fully automated, 

and a tumor segmentation map is a natural output of the voxel-wise classification approach. 

 

 

Figure 16: A Detailed network architecture for the MGMT-net.  

The previously trained 3D IDH network was used. The left arm of the Dense U-net (striped red box) is the encoder 

part of the network, the right arm of the network (blue box) is the decoder part and the dense block (yellow box) is 

the bottle neck block. The encoder part of the network was frozen to retain the pre-trained weights from the 3D IDH 

network. The bottleneck block and the decoder part of the network was fine-tuned for a dual class segmentation with 

class 1& 2 representing methylated & unmethylated MGMT promoter status respectively. 
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5.2.4. Statistical Analysis 

Statistical analysis of the network’s performance was performed in MATLAB(R) and R. Network 

accuracies were evaluated using majority voting (i.e. voxel-wise cutoff of 50%). The accuracy, 

sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of 

the model for each fold of the cross-validation procedure were calculated using this threshold. 

Dice-scores were calculated to evaluate the tumor segmentation performance of the networks. The 

Dice-score calculates the spatial overlap between the ground truth segmentation and the network 

segmentation. Receiver Operating Characteristic (ROC) curves for each fold were generated 

separately. 

5.2.4.1. ROC methodology 

The network output classifies voxels in the tumor as methylated or unmethylated MGMT promoter 

type.  The percent of methylated voxels was computed for the network output for each subject in 

the test set by dividing the predicted methylated voxels by the total number of predicted voxels in 

each tumor. The percent methylated voxels can be viewed as a network output prediction 

likelihood of the tumor being MGMT methylated. Note that majority voting (the 50% threshold) 

was used to determine MGMT promoter status.  For the ROC analysis, the percent of methylated 

voxels was sorted and used as separate thresholds (cut-points) to determine the MGMT promoter 

status for the subjects across the test set for each new cut-point. The resulting predicted MGMT 

promoter class membership was compared to the ground truth values to determine sensitivity (true 

positive rate) and 1- specificity (false positive rate) at each threshold.  The resulting values were 

plotted using R to obtain an ROC curve (true positive rate against false positive rate).  R routines 

were used to fit the curves and determine the area under the curve (AUC). This procedure was 



60 
 

repeated for each of the 3 test folds from the cross-validation procedure for the MGMT-net, 

providing a total of 3 ROC curves from the cross-validation.   

5.3. Results 

5.3.1. MGMT-net  

The network achieved a mean cross-validation testing accuracy of 94.73% across the 3 folds 

(95.12%, 93.98%, and 95.12%, standard dev=0.66). Mean cross-validation sensitivity, specificity, 

PPV, NPV and AUC for MGMT-net was 96.31% ±0.04, 91.66% ±2.06, 95.74% ±0.95, 92.76% 

±0.15 and 0.93 ±0.03 respectively. The mean cross-validation Dice-score for tumor segmentation 

was 0.82 ± 0.008 (Table 6). The network misclassified 4 cases for fold one, 5 cases for fold two, 

and 4 cases for fold three (13 total out of 247 subjects).  Six subjects were misclassified as 

unmethylated, and 7 as methylated. 

Table 6: MGMT-net Cross-validation results 

Fold Description MGMT-net 

Fold Number % Accuracy AUC Dice-score 

Fold 1 95.12 0.9574 0.8140 

Fold 2 93.98 0.8978 0.8165 

Fold 3 95.12 0.9390 0.8291 

AVERAGE 94.73 +/- 0.66 0.93 +/- 0.03 0.82 +/- 0.008 

 

 

5.3.2. ROC analysis  

The ROC curves for each cross-validation fold for the network is provided in Figure 17. The 

network demonstrated very good performance with high sensitivities and specificities. 
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5.3.3. Voxel-wise classification 

The network is a voxel-wise classifier with the tumor segmentation map being a natural output.  

Figures 18A and 18B show examples of the voxel-wise classification for a methylated, and 

unmethylated MGMT promoter type respectively. The volume fusion procedure was effective in 

removing false positives and improving the dice-scores by approximately 6%.  We also computed 

the voxel-wise accuracy for the network.  The mean voxel-wise accuracies were 81.68% ±0.02 for 

methylated type and 70.83% ±0.04 for unmethylated type. 

 

5.3.4. Training and segmentation times  

Fine-tuning the network took approximately one week. The trained network took approximately 

three minutes to segment the whole tumor and determine the MGMT status for each subject. 

 

Figure 17: ROC analysis for MGMT-net.   

Separate curves are plotted for each cross-validation fold along with corresponding AUC value. 
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5.4. Discussion 

We developed a fully-automated, highly accurate, deep-learning network for determining the 

methylation status of the MGMT promoter that outperforms previously reported algorithms.51,98,99 

Our network is able to determine MGMT promoter methylation status from T2-w images alone. 

This eliminates potential failures from image acquisition artifacts and makes clinical translation 

straightforward because T2-w images are routinely obtained as part of standard clinical brain MRI. 

Previous approaches have required multi-contrast input which can be compromised due to patient 

motion from lengthier examination times, and the need for gadolinium contrast.  Obviating the 

need for intravenous contrast makes our algorithm applicable to patients with contrast allergies 

and renal failure. When compared to previously published algorithms, our methodology is fully 

automated and utilizes minimal preprocessing. The time required for MGMT-net to segment the 

Figure 18: (A) Example of voxel-wise segmentation for a tumor with a methylated MGMT promoter. 

 Native T2-w image (a). Ground truth segmentation (b). Network output after DVF (dual volume fusion) (c). Red 

voxels correspond to MGMT methylated class and blue voxels correspond to MGMT unmethylated class. 

(B) Example of voxel-wise segmentation for a tumor with an unmethylated MGMT promoter. The sharp borders 

visible between methylated and unmethylated type result from the patch-wise classification approach. 
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whole tumor and predict the MGMT promoter methylation status for one subject is approximately 

3 minutes on a K80 or P40 NVIDA-GPU. 

Other groups have also proposed deep-learning methods for non-invasive, image-based 

MGMT molecular profiling but each of these has significant limitations. Korfiatis et al 

implemented a 2D-based slice-wise network, pre-selecting only GBM cases for training and 

prediction.67  While they achieved a high slice-wise accuracy, their average subject-wise MGMT 

prediction accuracy was only 90%. Importantly, in clinical practice the tumor grade is unknown a 

priori. Thus, the Korfiatis approach is a non-viable clinical method from the outset. Our approach 

of using a mix of LGG and HGG is a better approximation of the real-work clinical workflow 

where tissue is not yet available.67 Similar to the Korfiatis work, Chang et al. also implemented a 

2D-network, but instead used a case mix like ours (LGG and HGG from the TCIA/TCGA).  

However, they were only able to achieve an MGMT prediction accuracy of 83% (range of 76%-

88%) and their network required tumor pre-segmentation.51 Our algorithm far outperformed the 

Chang approach on a similar data set without the need for pre-segmentation.  Additionally, it is 

unclear if either the Korfiatis or the Chang  2D algorithms addressed the issue of “data 

leakage”.31,32 This is a potentially significant limitation for 2D networks that can occur during the 

slice-wise randomization process if different slices of the same tumor from the same subject are 

mixed between training, validation, and testing data sets. Unless this is explicitly addressed during 

the slice randomization procedure, the reported accuracies can be upwardly biased. Our approach 

outperforms all prior reports on noninvasive determination of MGMT status and is the first to 

achieve tissue-level performance, representing a milestone in the clinical viability of MRI-based 

MGMT promoter status prediction. 
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The higher performance achieved by our network compared to previous image-based 

classification studies can be explained by several factors. The dense connections in our 3D network 

architecture are easier to train, carry information from the previous layers to the following layers, 

and can reduce over-fitting.77,81 3D networks also interpolate between slices to maintain inter-slice 

information more accurately. The Dual Volume Fusion (DVF) post-processing step improved the 

dice-scores by approximately 6% by eliminating extraneous voxels not connected to the tumor. 

Our approach also uses voxel-wise classifiers and provides a classification for each voxel in the 

image. This provides a simultaneous single-label tumor segmentation. The cross validation single 

label whole tumor segmentation performance for the MGMT network provided excellent Dice-

scores of 0.82 +/- 0.008. 

The ability to determine MGMT promoter methylation status based on MR images alone is 

clinically significant because it helps determine whether the glioma will be susceptible to 

temozolomide (TMZ). Alkylating agents such as TMZ, damage DNA by methylating the oxygen 

at position 6 of the guanine nucleotide (O6-methylguanine). The process by which many DNA 

repair enzymes remove O6-methylguanine, results in DNA breaks culminating in cell death. 

However, MGMT works differently by restoring the normal guanine residue and rescuing the 

glioma cell. Therefore, MGMT activity leads to resistance to therapy. Methylation of the MGMT 

promoter leads to inactivation of MGMT and loss of resistance of glioma cells to alkylating agents. 

The MGMT protein is encoded on the long arm of chromosome 10 at position 26 (10q26). 

Transcription of the MGMT gene is regulated by several promoters.29  

Although incompletely understood, at least nine specific regions within the promoter’s gene 

determine whether a cell will express or not express MGMT.29 However, some regions have been 

shown to be more important for loss of MGMT expression.100 In the clinical setting, methods for 
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determining MGMT methylation focus on these regions in the promoter’s gene. The four most 

prevalent methods to detect MGMT methylation are: immunohistochemistry (IHC), 

pyrosequencing (PYR), quantitative methylation-specific PCR (qMSP), and methylation-specific 

PCR (MSP). PYR is considered the theoretical “gold-standard” but is not readily available, and 

although it is quantitative, there is no agreement on what “cut-off” values to use when determining 

MGMT promoter methylation status.30 Therefore, although it is not quantitative, MSP is the most 

widely used method.101 Additionally, most centers perform MGMT methylation detection on 

formalin-fixed or paraffin embedded tissue specimens. These methods have several limitations. 

Evaluating multiple different methylation sites is technically challenging on a single tissue 

specimen.101 Tumor heterogeneity poses a substantial limitation for these methods because 

sampling-bias can lead to inaccurate determinations. The presence of hemorrhage, necrosis, or 

nonmalignant cells contaminate the specimen101. Therefore, some institutions mandate that at least 

50% of the sample to be analyzed contains tumor cells. Prior to PCR, several tissue processing 

steps are required. Bisulfite treatment is the most critical step because it will produce the modified 

DNA that will be used for PCR; however, it also degrades the amount of DNA available and 

incomplete treatments can lead to false-positive results.101 The reported sensitivity and specificity 

of MSP is 91% and 75% respectively, while the reported sensitivity and specificity of PYR is 78% 

and 90%.32  

Our non-invasive, MRI based deep learning algorithm outperformed these methods with a 

sensitivity and specificity of 96.3% and 91.6% respectively. The overall determination of MGMT 

promoter methylation status is based on the majority of voxels in the tumor. Given the variability 

in the cut-off values for pyrosequencing-based detection, we performed a Youden’s statistical 

index analysis to determine if the optimal cut-off for our deep learning algorithm was different 
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than majority voting (>50%). The analysis demonstrated that maximum accuracy, sensitivity, 

specificity, PPV, and NPV were obtained at an optimal cut-off of 50%, the same as majority voting.  

Our algorithm was trained on ground-truth obtained from the TCGA database. The TCGA uses 

Infinium assays to determine MGMT promoter methylation status.102-104 Infinium assays are an 

immunofluorescence method that uses next generation high-throughput microchip arrays and 

probes. While these methods have been reported to be more sensitive and specific than the most 

widely available clinical assays, these methods require pre-existing probes to detect specific 

methylation sites.104 The sensitivity and specificity values change depending on the probe and 

analytical model used to interpret the results.104 The sensitivities for the best probes range from 

87.5-90.6% while the specificity is 94.4%.104 The overall accuracy of these probes with an 

optimized analytical model ranges from 91.24%-93.6%.34 The accuracy of the commercially 

available Infinium assay with the best analytical model is 92%.34 Our algorithm outperforms this 

assay with a mean cross-validation testing accuracy of 94.73%. While the algorithm appears to 

outperform the ground truth, there are additional factors that need to be considered for this dataset. 

The TCGA database used very stringent tissue screening prior to molecular testing, including 

review of tissue to ensure a minimum of 80% tumor nuclei and a maximum of 50% necrosis with 

additional quality control measurements of the extracted DNA and RNA prior to analyses.  

Additionally, the MGMT determinations made in the TCGA database were verified by a secondary 

test.48  Thus, the reported Infinium assay accuracy is not necessarily comparable to the accuracy 

in the TCIA/TCGA dataset.  It is also possible that the algorithm learns features that allow it to 

perform better than the single-site tissue-biopsy sample ground truth performance, since the 

algorithm “samples” the entire tumor and learns imaging features that are specific to MGMT 

mutation.  
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Tissue based methods for determining MGMT promoter methylation status remain a complex, 

multi-step process that is susceptible to failure and inaccuracy even after an adequate tissue sample 

has been obtained. As such, the ability to determine MGMT promoter methylation status based on 

routine T2-w images alone is highly desirable.  Additionally, because our algorithm was trained 

and evaluated on the multi-institutional TCIA database it is a better representative of algorithm 

robustness, real-world performance, and potential clinical utilization than previously reported 

methods.25  

The algorithm misclassified 13 cases: six subjects were misclassified as unmethylated and 7 

as methylated. Despite these misclassifications, our network achieved a mean cross-validation 

testing accuracy of 94.73% which is higher than for the MSP, PYT, and Infinium assays.104 While 

these tissue based methods require an invasive procedure and subsequent tissue processing for at 

least 48 hours, our deep learning algorithm can segment the entire glioma and determine MGMT 

promoter methylation status in 3 minutes. The deep learning algorithm can also be fine-tuned to 

variations in institutional MRI scanners, while other tissue-based methods currently lack 

standardization as mentioned above.  

The limitations of our study are that deep learning studies require large amounts of data and 

the relative number of subjects with MGMT promoter methylation is small in the TCGA database. 

While the number of subjects may seem small, it should be noted that we used a patch-based 

algorithm with data augmentation, which provided well over 300,000 samples (patches) for 

training and validation.  Additionally, acquisition parameters and imaging vendor platforms vary 

across imaging centers that contribute data, although this may also be a regarded as a desirable 

aspect for the generalizability of the approach.  Our current classification approach uses a largest 

connected component step to limit false positives. As a consequence, multifocal tumors represent 
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a potential limitation. Despite these caveats our algorithm demonstrated high accuracy in 

determining MGMT promoter methylation status approaching tissue-level performance.  

5.5. Conclusion 

We demonstrate high accuracy in determining MGMT promoter methylation status using only T2-

w MR images. This represents an important milestone toward using MRI to predict glioma 

histology, prognosis, and appropriate treatment. 
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Chapter 6 

To evaluate the performance of molecular profiling algorithms on motion 

corrupted, motion corrected and clinical T2w Magnetic Resonance Images 

 
6.1. To evaluate the effect of motion corruption and deep learning-based motion correction 

on the molecular profiling algorithms (IDH, 1p/19q and MGMT). 

This chapter is currently under review at the Journal of Medical Imaging - SPIE. 

6.1.1. Introduction 

Primary brain tumors are known to demonstrate a broad diversity in their physical appearance, MR 

imaging features, response to therapy, and prognosis. This heterogeneity can be associated with 

specific genetic and molecular profiles.  For example, isocitrate dehydrogenase 1 & 2 (IDH 1/2) 

mutated gliomas demonstrate increased survival compared to wild-type gliomas.105  Additionally, 

1p/19q codeletion status and O6-methyl guanine-DNA methyltransferase (MGMT) promoter 

methylation status are generally associated with differences in response to specific types of 

chemoradiation.106,107 

Molecular profiling of gliomas has now become a routine part of the evaluation of specimens 

obtained via brain biopsy or surgical resection. However, obtaining this information prior to 

surgery can aid in planning the extent of tumor resection. In some cases, for tumors in locations 

where resection is not possible, and the risk of a biopsy is high, accurate delineation of the 

molecular profile of the tumor can be used to guide empiric treatment with radiation and/or 

chemotherapy.   
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Recently, there have been advances in classifying tumor profiles using non-invasive 

imaging.11,108 These classification algorithms can be designed based on linear regression models, 

classical machine learning, and, deep learning networks.109-112 Deep learning-based methods have 

shown promise, outperforming other approaches, including classical machine learning. Using 

tumor maps and molecular labels as ground truth, the imaging features that help classify the tumor 

molecular subtype are learned by the algorithm using convolutional layers.113,114 Our 3D-IDH 

network achieved 97% accuracy for classifying IDH mutation status in primary brain tumors 

utilizing T2w MR images alone.11 We extended this approach with T2w images to 1p/19q and 

MGMT, achieving accuracies of 93% and 95%, respectively, rivaling tissue characterization.115 

An important caveat of using MRI is the effect of degradation on the input images, such as 

motion artifact. Motion artifacts are an extensive source of MR image quality degradation. They 

can be due to gross patient movements, as well as physiologic cardiac and respiratory motion.116,117 

In clinical practice, these artifacts can interfere with diagnostic interpretation, impacting image 

quality in 10-42% of brain MR examinations, and necessitating repeat imaging in up to 20% of 

cases.118,119  It is also not guaranteed that a patient will be able to hold motionless during repeat 

imaging, and often the diagnostic quality remains impaired. This can incur substantial financial 

costs to the health care system. The effect of motion artifacts on the performance of deep learning-

based classifiers has not been studied systematically. It is likely that motion corruption will also 

lead to reduced performance of deep-learning algorithms in classifying brain tumor images.,  

The goals of this study were: 1) to evaluate the effect of motion corruption on deep learning-

based molecular marker classification accuracy in gliomas, and 2) to determine if deep learning 

motion correction can recover classification accuracies to levels similar to non-corrupted images.  

A novel deep learning-based network for motion correction was developed to remove motion 
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artifact from T2w brain images across a broad range of motion corruption in glioma patients. To 

assess the effects of motion artifact corruption on classification accuracies, our three top-

performing molecular profiling algorithms were used.11,120 These networks use only T2w images 

and have provided the highest MRI-based classification accuracies reported to date, approaching 

invasive tissue-based methods. The purpose of this study is to perform an initial investigation on 

the effects of induced motion artifact on deep learning-based molecular classification, and the 

relative importance of robust correction methods in recovering the accuracies for potential clinical 

applicability.   

6.1.2. Materials and Methods 

6.1.2.1. Data and Pre-processing 

Individual subject imaging data were retrieved from the TCIA database 121, while 

corresponding tumor genomic information was obtained from the TCGA database. 122  Only 

preoperative cases with T2w images were included. The final IDH dataset consisted of 214 

subjects (94 IDH-mutated and 120 IDH wild-type).  Imaging and genomic data from 368 subjects 

with 1p/19q co-deletion status (130 1p/19q co-deleted and 238 non-co-deleted) and 247 subjects 

with MGMT methylation status (163 MGMT methylated and 84 unmethylated) were also obtained 

from the TCIA and TCGA databases. The TCGA subject IDs, molecular profile, age, and sex are 

provided in the Supplementary Data (Tables 1, 2, and 3).  

Minimal preprocessing was applied to the imaging datasets, consisting of (1) co-registration 

of the T2w images to the SR124 T2w template25 using Advanced Normalization Tools (ANTS) 

software123 (2) skull stripping of the T2w images using the Brain Extraction Toolkit (FMRIB 

software library) 124 (3) N4 Bias Field Correction to remove radiofrequency pulse inhomogeneity, 
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and (4) Image intensity normalization by performing zero mean and unit variance.  The 

preprocessing steps required less than 5 minutes per subject. 

6.1.2.2. Motion Simulation 

K-space data were obtained after applying a 2D inverse Fourier transformation to the T2w 

image. Motion artifacts were simulated by incorporating additional phase to the k-space data along 

the phase encoding direction according to equation 1.125  

𝑆𝑀𝑥𝑦(𝑘𝑦) = 𝑀𝑥𝑦(ky) × 𝑒(−𝑖2𝜋𝑘𝑦𝜃(𝑘𝑦)) ;  {
𝑘𝑦 = −

𝑁𝑦

2
 𝑡𝑜 −

(𝑁𝑦− 𝑁)

2

𝑘𝑦 = +
(𝑁𝑦−𝑁)

2
 𝑡𝑜 +

𝑁𝑦

2
 
  (1) 

ky represents the k-space data along the phase encoding direction, Mxy(ky) is the original k-

space, SMxy(ky) is the motion simulated k-space, and θ(ky) is the phase induced by motion. This 

approach closely simulates the additional phase induced by translational patient movements.126   

The total number of corrupted k-space lines is given by N, such that the outermost N/2 lines on 

either side of k-space are corrupted. The corruption rate (CR) represents the percentage of 

corrupted k-space (Figure 19), where CR = N/Ny with Ny being the total number of phase encoding 

lines (e.g., Ny = 240).  In our study, the number of corrupted k-space lines (N) ranged from 10, 20, 

60, 80, 100, 120, 140, 150, 160, 180, 220, and 240 which corresponded to CRs of 4%, 8%, 25%, 

33%, 42%, 50%, 58%, 63%, 67%, 75%, 83%, 92%, and 100%.  These CR values were selected to 

represent a broad range of motion artifacts, from minimal to highly corrupted images. 

CR = 50%Ground Truth CR = 67% CR = 83% CR = 100%

Figure 19: Example of simulated motion data.   

From left to right, ground truth T2w image (column 1) and corrupted images for CR=50%, 67%, 83% and 

100% (columns 2 -5). 
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6.1.2.3. Network Architecture 

The motion correction algorithm is adapted from a 2D Dense-Unet architecture (Figure 20).127  It 

consists of 4 transition down blocks, 4 transition up blocks with an initial and a final convolution 

layer. Each transition down block consists of a dense block and a pooling block, while each 

transition up block consists of an up-sampling block and dense block. Each dense block has 5 

densely connected convolutional layers 128, where each layer is connected to every other layer in 

the dense block. The feature maps of all the convolutional layers in the dense block were 

concatenated to the output of the block, providing a dense connection. The output of the dense 

block was also concatenated with the input. 

Input

Output

Input Output

2D Convolution Layer

Conv Layer

Transition Down  Block 

Dense Block

Transition Up Block

DB 1

Skip connection 2D Deconvolution Layer

Dense Block (DB) Upsampling Block (UB) Pooling Block (PB) 

2D Spatial Dropout

2D Deconvolution

Activation layer

Normalization Layer

Activation Layer

2D Convolution

2D Spatial Dropout

MaxPooling 2D

2D Convolution Layer

Batch Normalization

Activation Layer

2D Convolution

2D Spatial Dropout

Normalization Layer

Transition Up 

Block (TUB)

DB

Conv Layer 1

Conv Layer 2

Conv Layer 3

Conv Layer 4

Conv Layer 5

Upsampling Block Pooling Block

TDB 1

TDB 2

TDB 3

TDB 4

Conv Layer

TUB 1

TUB 2

TUB 3

TUB 4

Transition Down  

Block  (TDB)

DB

PBUB

Figure 20: Network Architecture of the Motion correction algorithm. 
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6.1.2.4. Training 

The network was trained using a combined dataset of 446 unique subjects from all three 

molecular marker groups (IDH, 1p/19q, and MGMT).  This combined dataset was randomly 

shuffled into three groups to perform a 3-fold cross-validation.  For each of the three folds, the 

groups were alternated between training, in-training validation, and held-out testing sets (~149 

subjects per set).  The 2D slices were separated by subject for each of the cross-validation folds to 

eliminate the problems of subject duplication and data leakage. 31,32 

Data augmentation was performed on the input T2w images, including horizontal and vertical 

flipping, to increase training quality and diversity, which helps for training models with limited 

data. The networks were implemented on NVIDIA Tesla V100 GPUs using Keras, a python 

package with Tensorflow129 as the backend, with an adaptive moment optimizer. The initial 

learning rate of the optimizer was set at 1x10-5.   

6.1.2.5. Testing 

The performance of the models was evaluated using SSIM, PSNR, and normalized mean 

squared error (NMSE). The motion correction network retrained on the combined dataset was 

evaluated on the held-out testing set for each of the three cross-validation folds.  The results from 

each fold were averaged across all subjects for each corruption level. The testing time for each 

subject was less than 60 seconds. 

Molecular classification accuracies for IDH, 1p/19q, and MGMT promoter were then 

evaluated using the retrained best-performing motion correction network. Accuracies were 

determined using the ground truth uncorrupted images and at each of the image corruption levels 

(from 4% to 100% CR) for each cross-validation fold using our previously trained deep learning 
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molecular classification networks.11  The results were averaged across folds to provide a mean 

classification accuracy for each molecular marker at each corruption level.  This process was then 

repeated on the motion-corrected images for IDH, 1p/19q, and MGMT at each corruption level to 

determine if the ground truth accuracies could be recovered.  Note that the cross-validation folds 

for the motion correction training network were designed to exclude the subjects in the molecular 

marker testing folds to avoid bias in determining accuracy recovery. 

6.1.3. Results 

6.1.3.1. Motion Correction 

Table 7 shows the SSIM, PSNR, and NMSE metrics for the motion correction algorithm. Figure 

21 shows the motion-corrected output images generated by the three networks for a single subject 

at high levels of motion corruption (corruption rate104 = 83% and 100%). 

Table 7: Motion correction algorithm performance averaged across 3-fold cross-validation 

 

 

Model 
SSIM PSNR NMSE SSIM PSNR NMSE SSIM PSNR NMSE 

Output for CR = 100% Output for CR = 92 % Output for CR = 83 % 

Motion 

correction 

algorithm 

99.47 44.39 0.01 99.72 49.62 0.00 99.76 50.95 0.00 

Ground Truth Input    CR=50%   Output Input    CR=92%   OutputInput    CR=67%   Output

Figure 21: Example motion correction performance for a single subject.  

From left to right, ground truth image (column 1), 50% CR input and corrected output (columns 2 and 3), 67% CR 

input and output (columns 4 and 5), 92% CR input and output (columns 6 and 7). 
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6.1.3.2. Classification of molecular markers.  

The motion correction network was trained and tested on a larger combined dataset. The 

performance of all the molecular profiling algorithms (IDH, 1p/19q co-deletion, & MGMT) were 

evaluated on both the motion corrupted and motion corrected images.  

 

Figure 22 depicts the IDH, 1p/19q co-deletion, and MGMT methylation status classification 

performance on the motion corrupted images, and recovery of accuracy using the motion corrected 

network after it was trained on the larger combined dataset. The classification accuracy on the 

corrupted images declined at 42% CR for both IDH and 1p/19q, while MGMT performance 

declined at 63% CR. For the corrected images, IDH classification was maintained at 97% accuracy 

out to 92% CR, and recovered to 94% accuracy even at 100% CR.  More remarkably, for correction 

Figure 22: IDH, 1p/19q, and MGMT classification 

accuracies for uncorrected motion corrupted (blue 

lines) and motion corrected images (orange lines) 

averaged across the 3-folds for each molecular marker. 

Recovery of accuracy was best for IDH classification, 

achieving 99% accuracy at low levels of motion, and 

recovering the original 97% accuracy out to 92% 

corruption level. 
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of the native images and at lower levels of image corruption (0%-33%), IDH classification 

accuracy exceeded the performance of the uncorrupted images achieving up to 99% accuracy.   For 

both 1p/19q and MGMT, 82% accuracy was recovered out to 100% CR. 

In the case of IDH, we also investigated the change in voxel-wise Dice scores (Figure 23).  The 

motion-corrected images demonstrated improved voxel-wise Dice scores across motion levels 

compared to the uncorrupted images. For the uncorrupted images, voxel-wise Dice scores were 

0.86 and 0.87 for mutated and wild-type, respectively.  Following correction, the IDH mutated 

Dice score increased to 0.88 at up to 25% corruption. Both IDH wild-type and IDH mutated dice 

scores were increased relative to the uncorrupted images even at 100% image corruption. Figure 

23 shows the voxel-wise Dice scores across different corruption levels for IDH mutated, IDH wild-

type, and for the whole tumor segmentation (IDH mutated + IDH wild-type).  

Figure 23: IDH mutated, IDH wildtype, and whole tumor 

voxel-wise Dice scores for motion corrupted (blue lines) 

and motion corrected images (orange lines). IDH 

mutated and IDH wildtype Dice scores improve following 

motion correction. 
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6.1.3.3. ROC analysis 

The ROC curves for IDH mutation status, 1p/19q co-deletion status and MGMT promoter status 

on ground truth images are provided in Figure 24. After motion correction, the T2-net yielded 

higher classification accuracy and improved ROC curve. However, the performance of 1p/19q-net 

before and after motion correction was similar. Although the classification accuracy of MGMT-

net could not be fully recovered after motion correction, the network demonstrated improved ROC 

performance with a higher AUC value. 

Figure 24: ROC analysis for the 3 molecular profiling 

algorithms on TCGA datasets. 

 Separate curves are plotted for each network along with 

the corresponding AUC value. 
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6.1.4. Discussion 

The motion correction study demonstrates that the performance of the molecular profiling 

algorithms (IDH mutation, 1p/19q co-deletion, and MGMT methylation) were adversely affected 

by motion corruption.  Although it was expected that the molecular classification accuracy would 

be degraded due motion corruption, the molecular profiling algorithms were resilient to motion 

corruption and retained their original accuracies up to & beyond 40% corruption levels. However, 

the algorithms demonstrated progressive loss in accuracy with increasing motion corruption. 

Although the networks never saw any motion corrected imaging or tumor features during its 

training, the classification accuracies could still be recovered or significantly improved after 

applying a deep learning-based motion correction, even at very high levels of motion corruption. 

In the case of IDH classification, an accuracy of 99% was achieved following motion correction, 

exceeding the performance of IDH algorithms on native ground truth images.11 

The TCIA dataset used to train the networks (i) represents one of the largest publicly available 

brain tumor databases, (ii) surpasses the size of the training datasets used in any other molecular 

profiling and/or motion correction studies, (iii) has a variety of gliomas with different biological 

behaviors, and (iv) has multi-institutional representation using different MRI vendor platforms 

with a variety of image acquisition parameters. Additionally, in contrast to prior motion correction 

studies which used a fixed or limited sets of motion corruption levels (Duffy et al.130 limited 

corruption to 30 lines of k-space), our motion correction network was trained using a broad range 

of motion corruption levels, from minimal (4%) to severely distorted (100% of k-space lines 

affected). This approach better captures real-world conditions where there is a mixture of motion 

artifacts, from mild motion that largely preserves diagnostic information to more severe cases that 

are effectively uninterpretable. Furthermore, the molecular profiling algorithms were trained on 
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the TCIA datasets which included both relatively motion/artifact free images (~90% of the data), 

and images with visible level of the motion/artifact (~10% of the data). All these factors together 

account for the robustness of the molecular profiling algorithms in retaining the classification 

accuracy up to a corruption level of CR=42% and the improved performance of IDH algorithm on 

motion corrected ground truth images. 

The IDH algorithm had misclassified 6 cases before motion correction. An important 

observation in the IDH motion correction study was that none of the images with visible 

motion/artifact were misclassified before motion correction, and all the 6 misclassified cases had 

no visible motion/artifact. After motion correction, all the 6 misclassified cases were correctly 

classified. However, the IDH network misclassified 2 new cases out of which 1 case belonged to 

the group of images with visible level of motion/artifact. Reduction in the number of misclassified 

cases after motion correction is a serendipitous observation that the motion correction network 

boosted the IDH classification accuracy to an astounding 99%, representing a new benchmark for 

IDH classification. This also suggests that the presence of latent image artifacts within some of the 

ground truth images may have obscured important image features for classification of IDH status, 

which were then removed by the motion correction algorithm. There was also an improvement in 

IDH mutant voxel-wise Dice scores following motion-correction compared to the uncorrupted 

native images, providing increased confidence for the subject-wise classification.  This also points 

to a potential new strategy for boosting deep learning classifier performance using motion or 

artifact correction networks, even where there is no visible motion.  

While deep-learning motion correction can be regarded as a preprocessing step in the 

classification pipeline, an alternative approach would be to intentionally train the molecular 

classifier networks using corrupted imaging data. A potential caveat for such a strategy is that it 
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could lead to the networks erroneously learning incorrect imaging features (in the form of motion 

corrupted imaging features or the motion artifacts themselves) as the basis for classifying the 

molecular markers.  As such, deep learning image-based classification studies have excluded data 

with significant artifacts from their training database.108,131,132  Alternatively, conventional non-

machine-learning based motion correction strategies could be utilized before applying the 

molecular classification algorithms. However, a key advantage to our deep learning approach is 

that it may be applied retrospectively to any previously acquired image without the need for any 

additional acquisition time, special scanner preparatory steps, or additional input data.  

The TCIA dataset has a variety of gliomas with different biological behaviors, including 

glioblastoma, anaplastic astrocytoma, low-grade glioma, and oligodendroglioma, with their 

associated variations in IDH mutation, 1p/19q co-deletion, and MGMT methylation status. 

Importantly, the motion correction network was able to not only remove the motion artifacts but 

also preserve the key MR imaging features of the tumors necessary for accurate classification.  

This was evidenced by the full recovery of classification accuracy for the IDH network extending 

out to a corruption level of 92%, and markedly improved accuracies for 1p/19q co-deletion and 

MGMT methylation networks following the application of the motion correction algorithm.  These 

compelling results support the routine use of a deep learning-based image artifact removal step for 

imaging-based deep learning applications to classify glioma molecular profiles.  We demonstrated 

that this implementation enhances the robustness of the classification pipeline to real-world 

challenges, which facilitates its potential clinical feasibility and implementation. 

6.1.5. Conclusion 

The effect of simulated translational motion artifacts on glioma molecular classification 

networks and the ability of rudimentary motion correction networks to recover classification 
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accuracy was evaluated.  This work demonstrates that high-performing classification networks for 

IDH mutation status, 1p/19q co-deletion, and MGMT methylation progressively lose accuracy 

with increasing motion-related image degradation.  However, by incorporating motion correction 

prior to the classification step, recovery of classification network accuracy was possible even at 

the highest degrees of motion disruption, indicating that not only was the network successful at 

removing artifacts but also in recovering crucial imaging features of the tumors.  After training the 

motion correction network on a larger dataset composed of all three glioma markers, an accuracy 

of 99% was achieved for IDH classification, representing a new benchmark in non-invasive image 

based IDH classification performance. More remarkably, classification accuracy was boosted even 

in the absence of added simulated motion in the native images. This provides a potential new 

strategy for boosting deep learning classifier performance by including the use of motion or artifact 

correction networks, even where there is no visible motion.  

 

 

 

 

 

 

 

 

 

 

 

 

 



83 
 

6.2. Clinical translation of the molecular profiling algorithms. 

6.2.1. Background and Purpose 

Automated brain tumor segmentation and classification algorithms generally perform well only on 

specific datasets.133 Clinical translation of such automated algorithms has the potential to improve 

speed and response to therapy, reducing interobserver variability, and improving treatment 

planning.133 Although these automated algorithms perform very well on specific training sets, their 

generalization to clinical datasets have been poor, preventing easy clinical translation.133 The 

purpose of this study was to evaluate the performance of our  molecular profiling algorithms (IDH, 

1p/19q and MGMT) on clinically acquired MR images. 

6.2.2. Material and Methods 

6.2.2.1. Data and Pre-processing 

The UT southwestern glioma database consists of approximately 500 clinical MRI studies acquired 

between 2008-2018. Most of the MR images were acquired with anisotropic voxels, typically used 

in routine clinical 2D images, characterized by high in-plane resolution (0.6 – 1.0 mm) and low 

through-plane resolution (slice thickness varying between 3-5 mm).  

Ground truth molecular status was obtained from the UT Southwestern electronic health 

records. The final datasets included 234 cases (77 IDH mutant & 167 IDH wild-type) with multi-

contrast MRI, 283 T2w MR images (93 IDH mutant & 190 IDH wild-type), 79 T2w MR images 

(40 1p/19q co-deleted & 39 1p/19q non co-deleted), and 57 T2w MR images (16 MGMT 

methylated & 41 MGMT unmethylated). Data preprocessing included (a) ANTs affine co-

registration28 to the SRI24 template71, (b) skull stripping using the Brain Extraction Tool (BET)72 

from FSL72-75, (c) removal of RF inhomogeneity using N4BiasCorrection29, and (d) normalizing 
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signal intensity to zero-mean and unit variance. The pre-processing took approximately 5 minutes 

per dataset. 

 

6.2.2.2. Testing and segmentation times  

Molecular classification accuracies for IDH, 1p/19q, and MGMT promoter status were evaluated 

using the pre-trained networks on the TCGA data. The clinical data were then provided to the pre-

trained motion correction algorithm from section 6.1 and molecular classification accuracies were 

re-evaluated. The trained networks took approximately seven minutes to pre-process the data, 

segment the whole tumor, implement DVF and profile the molecular markers for each subject. 

Each molecular profiling algorithm yields two segmentation volumes. A majority voting over 

the voxel-wise classes of the two volumes provided a single molecular marker status for each 

subject. The dual-volume fusion (DVF) approach was used to combine the 2 segmentation 

volumes, and the largest connected component was obtained using the 3D connected component 

algorithm in MATLABI. The combined volumes provided a single tumor segmentation map. 

6.2.2.3. Statistical Analysis  

Statistical analysis was performed in R for all the algorithms. The accuracy of the networks was 

evaluated with majority voting (i.e. voxel-wise cutoff of 50%). This threshold was then used to 

calculate the accuracy, sensitivity, and specificity of the algorithms. A Receiver Operating 

Characteristic (ROC) curve was also calculated separately for each network. 
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6.2.3. Results 

6.2.3.1. Classification of IDH mutation status 

6.2.3.1.1. Multi-contrast TS-net 

The multi-contrast TS-net achieved a testing accuracy of 90.17%. The sensitivity, specificity, PPV, 

NPV and AUC for TS-net was 0.86, 0.92, 0.85, 0.93 and 0.90, respectively.  

6.2.3.1.2.  T2-net : Before Motion correction 

Before motion correction, the T2-net achieved a testing accuracy of 91.52%. The sensitivity, 

specificity, PPV, NPV and AUC for T2-net was 0.84, 0.95, 0.90, 0.92 and 0.91, respectively.  

6.2.3.1.3.  T2-net : After Motion correction 

After motion correction, the T2-net achieved a testing accuracy of 92.23%. The sensitivity, 

specificity, PPV, NPV and AUC for T2-net was 0.90, 0.93, 0.86, 0.95 and 0.90, respectively.  

Table 8 : IDH classification accuracies for multi-contrast TS-net, T2-net before motion correction and T2-net after 

motion correction 

 

Network type Accuracy Sensitivity Specificity PPV NPV AUC 

Multi-contrast TS-net 90.17% 0.86 0.92 0.85 0.93 0.90 

T2-net 

(Before motion correction) 

91.52% 0.84 0.95 0.90 0.92 0.91 

T2-net  

(After motion correction) 

92.23% 0.90 0.93 0.86 0.95 0.90 

 

6.2.3.2. Classification of 1p/19q co-deletion status 

6.2.3.2.1. 1p/19q-net: Before motion correction 

1p/19q-net achieved a testing accuracy of 89.87%. The sensitivity, specificity, PPV, NPV and 

AUC for TS-net was 0.82, 0.97, 0.97, 0.84 and 0.86, respectively.  
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6.2.3.2.2. 1p/19q-net: After motion correction 

After motion correction, 1p/19q-net achieved a testing accuracy of 91.14%. The sensitivity, 

specificity, PPV, NPV and AUC for TS-net was 0.93, 0.90, 0.90, 0.92 and 0.90, respectively. 

Table 9: 1p/19q classification accuracies before and after motion correction 

Network type Accuracy Sensitivity Specificity PPV NPV AUC 

1p/19q-net  

(Before motion correction) 

89.87% 0.82 0.97 0.97 0.84 0.86 

1p/19q-net 

(After motion correction) 

91.14% 0.93 0.90 0.90 0.92 0.90 

  

6.2.3.3. Classification of MGMT promoter status 

6.2.3.3.1. MGMT-net: Before motion correction 

MGMT-net achieved a testing accuracy of 89.74%. The sensitivity, specificity, PPV, NPV and 

AUC for TS-net was 0.81, 0.92, 0.81, 0.93 and 0.82, respectively.  

6.2.3.3.2. MGMT-net: Before motion correction 

After motion-correction MGMT-net achieved a testing accuracy of 89.74%. The sensitivity, 

specificity, PPV, NPV and AUC for TS-net was 0.81, 0.92, 0.81, 0.93 and 0.82, respectively. 

Table 10: MGMT classification accuracies before and after motion correction 

Network type Accuracy Sensitivity Specificity PPV NPV AUC 

MGMT-net  

(Before motion correction) 
89.47 % 0.81 0.93 0.91 0.93 0.82 

MGMT-net 

(After motion correction) 
89.47% 0.88 0.90 0.78 0.95 0.82 
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6.2.3.4. ROC analysis 

The ROC curves for the 3 classification networks and the clinical data are provided in Figure 25.  

 

 

 

 

 

 

Figure 25: ROC analysis for the 3 molecular profiling 

algorithms on clinical datasets. 

 Separate curves are plotted for each network along with 

the corresponding AUC value. 
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6.2.4 Discussion 

The IDH classification algorithms achieved classification accuracies of 90.17% (TS-net) and 

91.52% (T2-net) on the clinical data. The 1p/19q-net and MGMT-net achieved classification 

accuracies of 89.87% and 89.47% respectively before motion correction. After motion correction, 

the classification accuracies of T2-net (IDH) and 1p/19q-net improved to 92.23% and 91.14%. 

However, the performance of MGMT-net before and after motion correction remained the same.  

Although the IDH T2-net after motion correction yielded higher classification accuracy, the 

ROC curves remained similar both before and after motion correction and compared to TS-net.  

TS-net was not evaluated after motion correction as we did not train a multi-contrast motion 

algorithm.  The 1p/19q-net after motion correction demonstrated improved classification accuracy, 

a better ROC curve and higher AUC. Although the classification accuracy of MGMT-net remained 

constant for before & after motion correction, the after-motion correction demonstrated an 

improved ROC curve with a higher AUC. 

For IDH and 1p/19q classification, the motion correction step improved the performance of 

T2-net & 1p/19q-net on the clinical data. The network trained on the TCIA database (for both 

classification and motion correction) provided high accuracy with the clinical data. This further 

supports the idea that latent image artifacts within the native images can obscure important image 

features required for molecular profiling, which can be removed by a motion correction algorithm. 

The implementation of these algorithms is retrospective in nature and therefore does not require 

novel any change in MR acquisition. These approaches represent significant advancements which 

may ultimately improve clinical workflow and patient care while reducing overall costs. 

 



89 
 

6.2.5 Conclusion 

This study demonstrates that by incorporating a motion correction algorithm prior to the 

classification step, it is possible to improve the molecular classification accuracy in gliomas. The 

motion correction can be retrospectively applied and does not require additional scan time or 

change in image acquisition, which further facilitates potential clinical implementation. 
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Chapter 7 

Limitations and Future work 

Deep learning studies typically require a very large amount of data to achieve good performance.  

The number of subjects with MR images and ground truth molecular marker statuses available 

from the TCIA is relatively small compared to the sample-sizes typically required for deep 

learning.  Despite this caveat, the TCIA data are representative of real-world clinical experience, 

with multi-parametric MR images from multiple institutions and is one of the largest publicly 

available brain tumor databases. Additionally, the acquisition parameters and imaging vendor 

platforms are diverse across the imaging centers contributing data to the TCIA dataset. This may 

is a desirable aspect for the generalizability of the approach. Our current classification approach 

uses a largest connected component step to limit false positives. As a consequence, multifocal 

tumors represent a potential limitation. Despite these caveats our algorithms demonstrated high 

classification accuracy in profiling the molecular markers approaching tissue-level performance.  

Although the results show promise for clinical translation, performance of these algorithms 

will need to be further evaluated on larger clinical datasets. This study provides a framework for 

training, evaluating, and benchmarking any new artifact-correction architectures for potential 

insertion into a workflow. However, before using this approach in an actual clinical environment, 

it will be essential to train and validate the algorithms using additional independent datasets. It is 

important to note that the motion correction study was an initial evaluation and not meant to be an 

exhaustive study of artifacts and artifact correction networks on molecular classifier performance.  

For this initial proof-of-principle, the focus was on the effect of translational motion artifacts in 

MR images on deep learning molecular classification, although it is recognized that other artifacts 

such as rotational motion artifacts, magnetic field inhomogeneity, Gaussian noise, and 
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radiofrequency spikes can also affect MR image quality. Similarly, the motion correction networks 

were only trained to recover translational motion for this proof-of-principle. Adapting this 

approach to address these artifacts would not require significant modifications, and many of these 

can be simulated retrospectively on previously acquired imaging data for training. 

Although the IDH molecular profiling algorithm performed better using motion-corrected 

images compared to motion-corrupted images, the classification accuracies of the 1p/19q and 

MGMT algorithms could not be restored fully. These findings indicate that the three classification 

algorithms differed in terms of their resilience to motion artifact.  Both the 1p/19q and MGMT 

networks were based on the trained IDH network architecture, with fine-tuning to the decoder part 

of the network to adjust classification weightings without changes to the encoder part.  This led to 

faster training and resultant excellent classification accuracies using uncorrupted images but, 

appears to have also rendered the networks less robust to image corruption compared to the fully 

trained IDH network.  While the motion correction network achieved superior results compared to 

previous studies, subtle residual artifacts within the image appear to have been sufficient to affect 

the molecular classification performance.  It is possible that performance could be enhanced with 

modifications to the motion correction network architecture. A 2D network design was chosen due 

to the associated lower computational resource demands, as well as the fact that the TCIA database 

contained 2D T2w images.  However, recent advances in deep learning network using 3D 

architectures, could be adapted in the future.  

The molecular profiling algorithms were trained on skull-stripped and pre-processed data in 

template space (SRI24). The motion simulated data, the ground truth data for training and testing 

the motion corruption network was also in template space. However, in a real-world scenario, a 

motion corrupted MR image in native space may fail the pre-processing steps itself before it gets 
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to the point of either skull stripping, motion correction or molecular profiling. Furthermore, the 

pre-processing steps of co-registration to template space introduces changes to the raw data. To 

address these issues, a multi-dimensional input 2D/3D segmentation and motion correction 

algorithm can be developed. Such a network would deal with the raw native T2w images, with 

skull, which essentially gives the network raw information to train on.  
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SUPPLEMENTARY DATA 

  

Supplementary Table 1: Subject wise IDH mutation status, clinical variables, and group 

membership for each fold of the cross-validation. 

SUBJECT ID  Age  Gender  Histology  Grade  

IDH  

status  

IDH  

Allele  

1p/19q co-

deletion  

Survival 

(months)  

Karnofsky 

Performance 

score  

Cross-

validation 

group 

TCGA-02-0003 50 male glioblastoma G4 WT N/A non-codel 4.7311 100 1 

TCGA-02-0006 56 female glioblastoma G4 WT N/A non-codel 18.333 80 3 

TCGA-02-0009 61 female glioblastoma G4 WT N/A non-codel 10.5793 80 1 

TCGA-02-0011 18 female glioblastoma G4 WT N/A non-codel 20.6986 80 1 

TCGA-02-0027 33 female glioblastoma G4 WT N/A non-codel 12.1563 100 2 

TCGA-02-0033 54 male glioblastoma G4 WT N/A non-codel 2.8255 100 1 

TCGA-02-0034 60 male glioblastoma G4 WT N/A non-codel 14.1276 80 3 

TCGA-02-0037 74 female glioblastoma G4 WT N/A non-codel 3.614 80 1 

TCGA-02-0046 61 male glioblastoma G4 WT N/A non-codel 6.8667 60 1 

TCGA-02-0047 78 male glioblastoma G4 WT N/A non-codel 14.719 80 1 

TCGA-02-0048 80 male glioblastoma G4 WT N/A non-codel 3.2198 NaN 2 

TCGA-02-0054 44 female glioblastoma G4 WT N/A non-codel 6.5381 80 3 

TCGA-02-0060 66 female glioblastoma G4 WT N/A non-codel 6.0124 80 1 

TCGA-02-0064 50 male glioblastoma G4 WT N/A non-codel 19.7129 100 3 

TCGA-02-0068 57 male glioblastoma G4 WT N/A non-codel 26.4153 80 1 

TCGA-02-0069 31 female glioblastoma G4 WT N/A non-codel 28.6823 80 2 

TCGA-02-0070 70 male glioblastoma G4 WT N/A non-codel 25.0354 80 2 

TCGA-02-0075 63 male glioblastoma G4 WT N/A non-codel 20.83 80 2 

TCGA-02-0085 63 female glioblastoma G4 WT N/A non-codel 51.2865 80 3 

TCGA-02-0086 45 female glioblastoma G4 WT N/A non-codel 8.8051 100 1 

TCGA-02-0102 42 male glioblastoma G4 WT N/A non-codel 27.0067 100 1 

TCGA-06-0119 81 female glioblastoma G4 WT N/A non-codel 2.6941 NaN 2 

TCGA-06-0122 84 female glioblastoma G4 WT N/A non-codel 6.1439 NaN 3 

TCGA-06-0127 67 male glioblastoma G4 WT N/A non-codel 3.9754 60 1 

TCGA-06-0128 66 male glioblastoma G4 Mutant IDH1 non-codel 22.7027 80 1 

TCGA-06-0129 30 male glioblastoma G4 Mutant IDH1 non-codel 33.6434 100 1 

TCGA-06-0130 54 male glioblastoma G4 WT N/A non-codel 12.9448 80 3 

TCGA-06-0132 49 male glioblastoma G4 WT N/A non-codel 25.3311 NaN 3 

TCGA-06-0133 64 male glioblastoma G4 WT N/A non-codel 14.2919 NaN 1 

TCGA-06-0137 63 female glioblastoma G4 WT N/A non-codel 26.6782 NaN 3 

TCGA-06-0138 43 male glioblastoma G4 WT N/A non-codel 24.2141 80 1 

TCGA-06-0139 40 male glioblastoma G4 WT N/A non-codel 11.8935 60 1 

TCGA-06-0142 81 male glioblastoma G4 WT N/A non-codel 2.2013 NaN 2 

TCGA-06-0143 58 male glioblastoma G4 WT N/A non-codel 11.7292 60 2 
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TCGA-06-0145 53 female glioblastoma G4 WT N/A non-codel 2.3327 NaN 3 

TCGA-06-0147 51 female glioblastoma G4 WT N/A non-codel 17.7745 NaN 2 

TCGA-06-0154 54 male glioblastoma G4 WT N/A non-codel 13.9305 100 2 

TCGA-06-0157 63 female glioblastoma G4 WT N/A non-codel 3.1869 40 2 

TCGA-06-0158 73 male glioblastoma G4 WT N/A non-codel 10.8093 80 1 

TCGA-06-0166 51 male glioblastoma G4 WT N/A non-codel 5.8482 NaN 1 

TCGA-06-0168 59 female glioblastoma G4 WT N/A non-codel 19.6472 100 2 

TCGA-06-0174 54 male glioblastoma G4 WT N/A non-codel 3.2198 80 2 

TCGA-06-0176 34 male glioblastoma G4 WT N/A non-codel 51.3194 80 2 

TCGA-06-0184 63 male glioblastoma G4 WT N/A non-codel 40.3458 80 2 

TCGA-06-0185 54 male glioblastoma G4 WT N/A non-codel 36.9946 100 3 

TCGA-06-0187 69 male glioblastoma G4 WT N/A non-codel 27.2039 60 3 

TCGA-06-0188 71 male glioblastoma G4 WT N/A non-codel 28.4523 100 1 

TCGA-06-0189 55 male glioblastoma G4 WT N/A non-codel 15.4089 NaN 1 

TCGA-06-0190 62 male glioblastoma G4 WT N/A non-codel 10.415 80 2 

TCGA-06-0192 58 male glioblastoma G4 WT N/A non-codel 18.3002 100 3 

TCGA-06-0213 55 female glioblastoma G4 WT N/A non-codel 0.52568 NaN 3 

TCGA-06-0237 75 female glioblastoma G4 WT N/A non-codel 13.6348 NaN 1 

TCGA-06-0238 46 male glioblastoma G4 WT N/A non-codel 13.3062 80 2 

TCGA-06-0241 65 female glioblastoma G4 WT N/A non-codel 14.949 100 1 

TCGA-06-0644 71 male glioblastoma G4 WT N/A non-codel 12.3206 80 1 

TCGA-06-0645 55 female glioblastoma G4 WT N/A non-codel 5.7496 NaN 3 

TCGA-06-0646 60 male glioblastoma G4 WT N/A non-codel 5.7496 80 2 

TCGA-06-0648 77 male glioblastoma G4 WT N/A non-codel 9.7908 80 3 

TCGA-06-0649 73 female glioblastoma G4 WT N/A non-codel 2.1027 NaN 3 

TCGA-06-1806 47 male glioblastoma G4 WT N/A non-codel 15.3104 90 2 

TCGA-06-2570 21 female glioblastoma G4 Mutant IDH1 non-codel 9.3636 100 1 

TCGA-06-5408 54 female glioblastoma G4 WT N/A non-codel 11.7292 80 3 

TCGA-06-5412 78 female glioblastoma G4 WT N/A non-codel 4.534 80 2 

TCGA-06-5413 67 male glioblastoma G4 WT N/A non-codel 8.8051 60 3 

TCGA-06-5417 45 female glioblastoma G4 Mutant IDH1 NA 5.0925 80 2 

TCGA-06-6389 49 female glioblastoma G4 Mutant IDH1 non-codel 7.7866 100 2 

TCGA-08-0390 69 male glioblastoma G4 WT N/A non-codel 13.9633 60 3 

TCGA-12-0616 36 female glioblastoma G4 WT N/A non-codel 14.719 100 2 

TCGA-12-0829 75 male glioblastoma G4 WT N/A non-codel 20.5672 80 2 

TCGA-12-1093 66 female glioblastoma G4 WT N/A non-codel 15.9675 80 3 

TCGA-12-1598 75 female glioblastoma G4 WT N/A non-codel 15.6389 NaN 2 

TCGA-12-1601 NaN NA glioblastoma NA WT N/A NA NaN NaN 1 

TCGA-12-1602 58 male glioblastoma G4 WT N/A non-codel 6.7681 60 1 

TCGA-12-3650 46 male glioblastoma G4 WT N/A non-codel 10.9407 80 1 

TCGA-14-0789 54 male glioblastoma G4 WT N/A non-codel 11.2364 40 3 



102 
 

TCGA-14-1456 23 male glioblastoma G4 Mutant IDH1 non-codel 40.9372 80 2 

TCGA-14-1794 59 male glioblastoma G4 WT N/A non-codel 0.98565 NaN 3 

TCGA-14-1829 57 male glioblastoma G4 WT N/A non-codel 7.1624 60 2 

TCGA-14-3477 38 female glioblastoma G4 WT N/A non-codel 3.7783 80 1 

TCGA-19-1388 58 male glioblastoma G4 WT N/A non-codel 12.9448 NaN 1 

TCGA-19-1390 63 female glioblastoma G4 WT N/A non-codel 25.364 60 1 

TCGA-19-1789 69 female glioblastoma G4 WT N/A non-codel 3.2526 60 2 

TCGA-19-2624 51 male glioblastoma G4 WT N/A non-codel 0.16427 NaN 3 

TCGA-19-2631 74 female glioblastoma G4 WT N/A non-codel 6.9981 60 2 

TCGA-19-5954 72 female glioblastoma G4 WT N/A non-codel 7.9509 60 3 

TCGA-19-5958 56 male glioblastoma G4 WT N/A non-codel 5.3882 80 2 

TCGA-27-1835 53 female glioblastoma G4 WT N/A non-codel 21.29 80 2 

TCGA-27-1838 59 female glioblastoma G4 WT N/A non-codel 11.4992 80 2 

TCGA-76-4926 68 male glioblastoma G4 WT N/A non-codel 4.534 80 3 

TCGA-76-4932 50 female glioblastoma G4 WT N/A NA 47.9024 80 2 

TCGA-76-4934 66 female glioblastoma G4 WT N/A non-codel 2.5298 80 3 

TCGA-76-4935 52 female glioblastoma G4 WT N/A non-codel 10.7764 80 3 

TCGA-76-6191 57 male glioblastoma G4 WT N/A non-codel 16.6903 80 1 

TCGA-76-6192 74 male glioblastoma G4 WT N/A non-codel 3.2855 80 1 

TCGA-76-6193 78 male glioblastoma G4 WT N/A non-codel 2.6941 60 1 

TCGA-76-6280 57 male glioblastoma G4 WT N/A non-codel 11.3678 80 2 

TCGA-76-6282 63 male glioblastoma G4 WT N/A non-codel 17.0517 80 2 

TCGA-76-6285 64 female glioblastoma G4 WT N/A non-codel 8.3451 80 2 

TCGA-76-6656 66 male glioblastoma G4 WT N/A non-codel 4.8297 60 3 

TCGA-76-6657 74 male glioblastoma G4 WT N/A non-codel 5.0268 80 1 

TCGA-76-6661 54 male glioblastoma G4 WT N/A non-codel 0.22998 60 3 

TCGA-76-6662 58 male glioblastoma G4 WT N/A non-codel 9.2651 80 1 

TCGA-76-6663 44 female glioblastoma G4 WT N/A non-codel 7.7209 80 1 

TCGA-76-6664 49 female glioblastoma G4 WT N/A non-codel 7.7866 80 1 

TCGA-CS-4941 67 male astrocytoma G3 WT N/A non-codel 7.688 90 3 

TCGA-CS-4942 44 female astrocytoma G3 Mutant IDH1 non-codel 43.8613 90 2 

TCGA-CS-4943 37 male astrocytoma G3 Mutant IDH1 non-codel 18.1359 50 3 

TCGA-CS-4944 50 male astrocytoma G2 Mutant IDH1 non-codel 10.6121 90 1 

TCGA-CS-5393 39 male astrocytoma G3 Mutant IDH1 non-codel 40.1487 100 2 

TCGA-CS-5395 43 male oligodendroglioma G2 WT N/A non-codel 20.9943 90 3 

TCGA-CS-5396 53 female oligodendroglioma G3 Mutant IDH1 codel 9.955 90 2 

TCGA-CS-5397 54 female astrocytoma G3 WT N/A non-codel 6.3739 80 2 

TCGA-CS-6186 58 male oligoastrocytoma G3 WT N/A non-codel 17.6759 90 3 

TCGA-CS-6188 48 male astrocytoma G3 WT N/A non-codel 23.8198 90 3 

TCGA-CS-6290 31 male astrocytoma G3 Mutant IDH1 non-codel 17.9388 90 2 

TCGA-CS-6665 51 female astrocytoma G3 Mutant IDH1 non-codel 12.4192 90 3 
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TCGA-CS-6666 22 male astrocytoma G3 Mutant IDH1 non-codel 8.4766 90 1 

TCGA-CS-6667 39 female astrocytoma G2 Mutant IDH1 non-codel 7.5566 90 1 

TCGA-CS-6668 57 female oligodendroglioma G2 Mutant IDH1 codel 8.0166 90 1 

TCGA-CS-6669 26 female oligodendroglioma G2 WT N/A non-codel 7.3924 90 1 

TCGA-DU-5849 48 male oligodendroglioma G2 Mutant IDH1 codel 14.5547 NaN 2 

TCGA-DU-5851 40 female oligoastrocytoma G3 Mutant IDH1 non-codel 17.446 90 3 

TCGA-DU-5852 61 female oligoastrocytoma G3 WT N/A non-codel 6.7353 80 2 

TCGA-DU-5853 29 male oligoastrocytoma G2 Mutant IDH1 non-codel 13.3719 100 1 

TCGA-DU-5854 57 female astrocytoma G3 WT N/A non-codel 8.4437 90 1 

TCGA-DU-5855 49 female oligoastrocytoma G3 Mutant IDH1 non-codel 6.801 100 2 

TCGA-DU-5871 37 female oligoastrocytoma G2 Mutant IDH1 non-codel 18.9244 100 3 

TCGA-DU-5872 43 female oligoastrocytoma G2 Mutant IDH1 non-codel 17.4788 NaN 1 

TCGA-DU-5874 62 female oligodendroglioma G2 Mutant IDH1 codel 15.1461 100 1 

TCGA-DU-6395 31 male oligoastrocytoma G2 Mutant IDH1 non-codel 48.9867 NaN 1 

TCGA-DU-6397 45 male oligodendroglioma G3 Mutant IDH1 codel 46.0297 NaN 3 

TCGA-DU-6399 54 male oligodendroglioma G2 Mutant IDH1 non-codel 65.7098 NaN 1 

TCGA-DU-6400 66 female oligodendroglioma G2 Mutant IDH1 codel 1.2156 NaN 3 

TCGA-DU-6401 31 female oligodendroglioma G2 Mutant IDH1 non-codel 87.394 NaN 1 

TCGA-DU-6404 24 female oligodendroglioma G3 WT N/A non-codel 133.6537 100 3 

TCGA-DU-6405 51 female astrocytoma G3 WT N/A non-codel 19.8772 90 1 

TCGA-DU-6407 35 female oligodendroglioma G2 Mutant IDH1 non-codel 94.4578 90 2 

TCGA-DU-6408 23 female oligodendroglioma G3 Mutant IDH1 non-codel 114.0065 90 2 

TCGA-DU-6542 25 male oligoastrocytoma G3 Mutant IDH1 non-codel 7.7209 NaN 1 

TCGA-DU-7008 41 female oligodendroglioma G2 Mutant IDH1 non-codel 156.1265 NaN 3 

TCGA-DU-7010 58 female astrocytoma G3 Mutant IDH1 non-codel 14.9818 NaN 2 

TCGA-DU-7015 41 female oligodendroglioma G2 Mutant IDH1 non-codel 90.7124 90 1 

TCGA-DU-7018 57 female oligodendroglioma G3 Mutant IDH1 codel 30.6536 90 2 

TCGA-DU-7019 39 male oligoastrocytoma G3 Mutant IDH1 non-codel 26.2839 100 3 

TCGA-DU-7294 53 female oligodendroglioma G2 Mutant IDH1 codel 94.2607 100 3 

TCGA-DU-7298 38 female astrocytoma G3 Mutant IDH1 non-codel 18.9244 80 2 

TCGA-DU-7299 33 male astrocytoma G3 Mutant IDH1 non-codel 43.9927 90 3 

TCGA-DU-7300 53 female oligodendroglioma G3 Mutant IDH1 codel 61.9643 90 3 

TCGA-DU-7301 53 male oligodendroglioma G2 Mutant IDH1 non-codel 25.8897 100 1 

TCGA-DU-7302 48 female oligodendroglioma G3 Mutant IDH1 codel 60.2559 90 2 

TCGA-DU-7304 43 male oligoastrocytoma G3 Mutant IDH1 non-codel 23.2941 80 2 

TCGA-DU-7306 67 male oligoastrocytoma G2 Mutant IDH1 non-codel 41.9557 100 2 

TCGA-DU-7309 41 female oligodendroglioma G3 Mutant IDH2 non-codel 2.7598 90 3 

TCGA-DU-8162 61 female oligoastrocytoma G3 WT N/A non-codel 14.5876 80 2 

TCGA-DU-8163 29 male oligoastrocytoma G3 Mutant IDH1 non-codel 20.6657 90 3 

TCGA-DU-8164 51 male oligodendroglioma G2 Mutant IDH1 codel 21.3885 NaN 3 

TCGA-DU-8165 60 female oligodendroglioma G3 WT N/A non-codel 19.1216 90 3 



104 
 

TCGA-DU-8166 29 female oligoastrocytoma G2 Mutant IDH1 non-codel 16.9531 NaN 3 

TCGA-DU-8167 69 female oligoastrocytoma G2 Mutant IDH1 non-codel 15.4747 100 2 

TCGA-DU-8168 55 female oligodendroglioma G3 Mutant IDH1 codel 14.1605 70 2 

TCGA-DU-A5TP 33 male astrocytoma G3 Mutant IDH1 non-codel 14.2262 70 1 

TCGA-DU-A5TR 51 male oligoastrocytoma G2 Mutant IDH1 non-codel 12.5834 90 1 

TCGA-DU-A5TS 42 male oligodendroglioma G2 Mutant IDH1 non-codel 15.1133 100 2 

TCGA-DU-A5TT 70 male oligodendroglioma G3 WT N/A non-codel 4.9611 NaN 1 

TCGA-DU-A5TU 62 female astrocytoma G2 Mutant IDH1 non-codel 3.6469 50 1 

TCGA-DU-A5TW 33 female astrocytoma G3 Mutant IDH1 non-codel 5.651 100 1 

TCGA-DU-A5TY 46 female astrocytoma G3 WT N/A non-codel 12.1892 NaN 2 

TCGA-DU-A6S2 37 female oligodendroglioma G2 Mutant IDH1 codel 8.6408 70 3 

TCGA-DU-A6S3 60 male oligodendroglioma G2 Mutant IDH1 codel 2.6941 NaN 3 

TCGA-DU-A6S6 35 female oligoastrocytoma G2 Mutant IDH1 codel 77.9318 90 1 

TCGA-DU-A6S7 27 female astrocytoma G3 Mutant IDH1 non-codel 7.2281 90 1 

TCGA-DU-A6S8 74 female oligodendroglioma G3 Mutant IDH1 codel 5.9796 90 3 

TCGA-FG-5964 62 male oligodendroglioma G2 Mutant IDH1 codel 34.3334 NaN 3 

TCGA-FG-6688 59 female astrocytoma G3 WT N/A non-codel 18.7601 80 2 

TCGA-FG-6689 30 male astrocytoma G2 Mutant IDH1 non-codel 14.9161 70 3 

TCGA-FG-6690 70 male oligodendroglioma G2 Mutant IDH1 non-codel 24.9697 90 2 

TCGA-FG-6691 23 female astrocytoma G2 Mutant IDH1 non-codel 23.9512 100 2 

TCGA-FG-6692 63 male oligodendroglioma G3 WT N/A non-codel 18.4316 NaN 3 

TCGA-FG-7634 28 male oligodendroglioma G2 Mutant IDH1 codel 15.3432 NaN 3 

TCGA-FG-7643 49 female oligoastrocytoma G2 WT N/A non-codel 20.0743 NaN 2 

TCGA-FG-8189 33 female oligodendroglioma G2 Mutant IDH2 non-codel 11.8606 70 2 

TCGA-FG-A4MT 27 female oligodendroglioma G2 Mutant IDH1 non-codel 38.2431 100 1 

TCGA-FG-A6IZ 60 male oligodendroglioma G2 Mutant IDH1 codel 4.2054 NaN 2 

TCGA-FG-A713 74 female oligoastrocytoma G2 Mutant IDH1 codel 5.2239 60 3 

TCGA-HT-7473 28 male oligoastrocytoma G2 Mutant IDH1 non-codel 16.526 NaN 1 

TCGA-HT-7475 67 male oligoastrocytoma G3 Mutant IDH1 non-codel 17.4131 70 2 

TCGA-HT-7602 21 male oligodendroglioma G2 Mutant IDH1 non-codel 29.8322 NaN 3 

TCGA-HT-7604 50 male astrocytoma G2 Mutant IDH1 non-codel 107.8626 NaN 1 

TCGA-HT-7605 38 male oligodendroglioma G2 Mutant IDH1 codel 4.5668 NaN 1 

TCGA-HT-7608 61 male oligoastrocytoma G2 Mutant IDH1 codel 22.0456 NaN 3 

TCGA-HT-7616 75 male oligodendroglioma G3 Mutant IDH1 codel 0.22998 NaN 3 

TCGA-HT-7680 32 female astrocytoma G2 WT N/A non-codel 0.75566 NaN 3 

TCGA-HT-7686 29 female astrocytoma G3 Mutant IDH1 non-codel 42.7114 NaN 3 

TCGA-HT-7690 29 male oligoastrocytoma G3 Mutant IDH1 non-codel 0.098565 NaN 2 

TCGA-HT-7692 43 male oligoastrocytoma G2 Mutant IDH1 codel 2.9569 100 2 

TCGA-HT-7693 51 female oligodendroglioma G2 Mutant IDH1 non-codel 17.5117 90 1 

TCGA-HT-7694 60 male oligodendroglioma G3 Mutant IDH1 codel 6.8995 90 3 

TCGA-HT-7855 39 male astrocytoma G3 Mutant IDH1 non-codel 19.2201 NaN 2 
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TCGA-HT-7856 35 male oligodendroglioma G3 Mutant IDH2 codel 39.0645 NaN 2 

TCGA-HT-7860 60 female astrocytoma G3 WT N/A non-codel 0.49282 NaN 2 

TCGA-HT-7874 41 female oligodendroglioma G3 Mutant IDH1 codel 37.126 NaN 3 

TCGA-HT-7879 31 male oligoastrocytoma G3 Mutant IDH1 non-codel 3.6797 NaN 3 

TCGA-HT-7882 66 male oligodendroglioma G3 WT N/A non-codel 3.7126 NaN 1 

TCGA-HT-7884 44 female astrocytoma G2 Mutant IDH1 non-codel 11.2692 80 1 

TCGA-HT-8018 40 female oligoastrocytoma G2 Mutant IDH1 non-codel 21.4871 NaN 3 

TCGA-HT-8105 54 male oligodendroglioma G3 Mutant IDH1 codel 6.2424 NaN 2 

TCGA-HT-8106 53 male astrocytoma G3 Mutant IDH1 non-codel 0.098565 NaN 1 

TCGA-HT-8107 62 male oligodendroglioma G2 WT N/A non-codel 0.45997 NaN 3 

TCGA-HT-8111 32 male oligoastrocytoma G3 Mutant IDH1 non-codel 0.22998 NaN 3 

TCGA-HT-8113 49 female oligodendroglioma G2 Mutant IDH2 non-codel 29.5694 NaN 1 

TCGA-HT-8114 36 male oligoastrocytoma G3 Mutant IDH1 non-codel 3.8769 NaN 1 

TCGA-HT-8563 30 female astrocytoma G3 Mutant IDH1 non-codel 16.0332 NaN 2 

TCGA-HT-A5RC 70 female astrocytoma G3 WT N/A non-codel 5.3225 40 3 

TCGA-HT-A61A 20 female oligodendroglioma G2 Mutant IDH1 non-codel 6.3739 80 1 

 

Supplementary Table 2: Subject wise 1p/19q co-deletion status, clinical variables, and group 

membership for each fold of the cross-validation. 

SUBJECT ID Age Gender Histology Grade 
Data 

Collection 

   IDH 

Status  

IDH  

Allele 

 1p/19q 

co-

deletion  

Cross-

validat

ion 

group 

TCGA-02-0003 50 male glioblastoma G4 HGG WT N/A non-codel 2 

TCGA-02-0006 56 female glioblastoma G4 HGG WT N/A non-codel 3 

TCGA-02-0009 61 female glioblastoma G4 HGG WT N/A non-codel 1 

TCGA-02-0011 18 female glioblastoma G4 HGG WT N/A non-codel 1 

TCGA-02-0027 33 female glioblastoma G4 HGG WT N/A non-codel 1 

TCGA-02-0033 54 male glioblastoma G4 HGG WT N/A non-codel 1 

TCGA-02-0034 60 male glioblastoma G4 HGG WT N/A non-codel 3 

TCGA-02-0037 74 female glioblastoma G4 HGG WT N/A non-codel 2 

TCGA-02-0046 61 male glioblastoma G4 HGG WT N/A non-codel 2 

TCGA-02-0047 78 male glioblastoma G4 HGG WT N/A non-codel 3 

TCGA-02-0048 80 male glioblastoma G4 HGG WT N/A non-codel 3 

TCGA-02-0054 44 female glioblastoma G4 HGG WT N/A non-codel 1 

TCGA-02-0060 66 female glioblastoma G4 HGG WT N/A non-codel 3 

TCGA-02-0064 50 male glioblastoma G4 HGG WT N/A non-codel 3 

TCGA-02-0068 57 male glioblastoma G4 HGG WT N/A non-codel 2 

TCGA-02-0069 31 female glioblastoma G4 HGG WT N/A non-codel 1 

TCGA-02-0070 70 male glioblastoma G4 HGG WT N/A non-codel 2 

TCGA-02-0075 63 male glioblastoma G4 HGG WT N/A non-codel 2 
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TCGA-02-0085 63 female glioblastoma G4 HGG WT N/A non-codel 3 

TCGA-02-0086 45 female glioblastoma G4 HGG WT N/A non-codel 1 

TCGA-02-0102 42 male glioblastoma G4 HGG WT N/A non-codel 2 

TCGA-06-0119 81 female glioblastoma G4 HGG WT N/A non-codel 2 

TCGA-06-0122 84 female glioblastoma G4 HGG WT N/A non-codel 3 

TCGA-06-0127 67 male glioblastoma G4 HGG WT N/A non-codel 1 

TCGA-06-0128 66 male glioblastoma G4 HGG Mutant IDH1 non-codel 1 

TCGA-06-0129 30 male glioblastoma G4 HGG Mutant IDH1 non-codel 3 

TCGA-06-0132 49 male glioblastoma G4 HGG WT N/A non-codel 2 

TCGA-06-0133 64 male glioblastoma G4 HGG WT N/A non-codel 3 

TCGA-06-0137 63 female glioblastoma G4 HGG WT N/A non-codel 2 

TCGA-06-0138 43 male glioblastoma G4 HGG WT N/A non-codel 2 

TCGA-06-0139 40 male glioblastoma G4 HGG WT N/A non-codel 2 

TCGA-06-0142 81 male glioblastoma G4 HGG WT N/A non-codel 3 

TCGA-06-0143 58 male glioblastoma G4 HGG WT N/A non-codel 3 

TCGA-06-0145 53 female glioblastoma G4 HGG WT N/A non-codel 3 

TCGA-06-0147 51 female glioblastoma G4 HGG WT N/A non-codel 1 

TCGA-06-0154 54 male glioblastoma G4 HGG WT N/A non-codel 2 

TCGA-06-0157 63 female glioblastoma G4 HGG WT N/A non-codel 1 

TCGA-06-0158 73 male glioblastoma G4 HGG WT N/A non-codel 3 

TCGA-06-0166 51 male glioblastoma G4 HGG WT N/A non-codel 1 

TCGA-06-0168 59 female glioblastoma G4 HGG WT N/A non-codel 1 

TCGA-06-0174 54 male glioblastoma G4 HGG WT N/A non-codel 2 

TCGA-06-0176 34 male glioblastoma G4 HGG WT N/A non-codel 2 

TCGA-06-0184 63 male glioblastoma G4 HGG WT N/A non-codel 3 

TCGA-06-0185 54 male glioblastoma G4 HGG WT N/A non-codel 1 

TCGA-06-0187 69 male glioblastoma G4 HGG WT N/A non-codel 3 

TCGA-06-0188 71 male glioblastoma G4 HGG WT N/A non-codel 3 

TCGA-06-0189 55 male glioblastoma G4 HGG WT N/A non-codel 1 

TCGA-06-0190 62 male glioblastoma G4 HGG WT N/A non-codel 2 

TCGA-06-0192 58 male glioblastoma G4 HGG WT N/A non-codel 1 

TCGA-06-0213 55 female glioblastoma G4 HGG WT N/A non-codel 2 

TCGA-06-0237 75 female glioblastoma G4 HGG WT N/A non-codel 2 

TCGA-06-0238 46 male glioblastoma G4 HGG WT N/A non-codel 2 

TCGA-06-0241 65 female glioblastoma G4 HGG WT N/A non-codel 1 

TCGA-06-0644 71 male glioblastoma G4 HGG WT N/A non-codel 3 

TCGA-06-0645 55 female glioblastoma G4 HGG WT N/A non-codel 1 

TCGA-06-0646 60 male glioblastoma G4 HGG WT N/A non-codel 1 

TCGA-06-0648 77 male glioblastoma G4 HGG WT N/A non-codel 1 

TCGA-06-0649 73 female glioblastoma G4 HGG WT N/A non-codel 2 

TCGA-06-1806 47 male glioblastoma G4 HGG WT N/A non-codel 2 
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TCGA-06-2570 21 female glioblastoma G4 HGG Mutant IDH1 non-codel 1 

TCGA-06-5408 54 female glioblastoma G4 HGG WT N/A non-codel 2 

TCGA-06-5412 78 female glioblastoma G4 HGG WT N/A non-codel 3 

TCGA-06-5413 67 male glioblastoma G4 HGG WT N/A non-codel 1 

TCGA-06-6389 49 female glioblastoma G4 HGG Mutant IDH1 non-codel 2 

TCGA-08-0390 69 male glioblastoma G4 HGG WT N/A non-codel 3 

TCGA-12-0616 36 female glioblastoma G4 HGG WT N/A non-codel 1 

TCGA-12-0829 75 male glioblastoma G4 HGG WT N/A non-codel 3 

TCGA-12-1093 66 female glioblastoma G4 HGG WT N/A non-codel 2 

TCGA-12-1598 75 female glioblastoma G4 HGG WT N/A non-codel 2 

TCGA-12-1602 58 male glioblastoma G4 HGG WT N/A non-codel 2 

TCGA-12-3650 46 male glioblastoma G4 HGG WT N/A non-codel 3 

TCGA-14-0789 54 male glioblastoma G4 HGG WT N/A non-codel 3 

TCGA-14-1456 23 male glioblastoma G4 HGG Mutant IDH1 non-codel 2 

TCGA-14-1794 59 male glioblastoma G4 HGG WT N/A non-codel 3 

TCGA-14-1829 57 male glioblastoma G4 HGG WT N/A non-codel 1 

TCGA-14-3477 38 female glioblastoma G4 HGG WT N/A non-codel 2 

TCGA-19-1388 58 male glioblastoma G4 HGG WT N/A non-codel 1 

TCGA-19-1390 63 female glioblastoma G4 HGG WT N/A non-codel 1 

TCGA-19-1789 69 female glioblastoma G4 HGG WT N/A non-codel 2 

TCGA-19-2624 51 male glioblastoma G4 HGG WT N/A non-codel 3 

TCGA-19-2631 74 female glioblastoma G4 HGG WT N/A non-codel 1 

TCGA-19-5954 72 female glioblastoma G4 HGG WT N/A non-codel 3 

TCGA-19-5958 56 male glioblastoma G4 HGG WT N/A non-codel 1 

TCGA-27-1835 53 female glioblastoma G4 HGG WT N/A non-codel 3 

TCGA-27-1838 59 female glioblastoma G4 HGG WT N/A non-codel 2 

TCGA-76-4926 68 male glioblastoma G4 HGG WT N/A non-codel 3 

TCGA-76-4934 66 female glioblastoma G4 HGG WT N/A non-codel 2 

TCGA-76-4935 52 female glioblastoma G4 HGG WT N/A non-codel 3 

TCGA-76-6191 57 male glioblastoma G4 HGG WT N/A non-codel 3 

TCGA-76-6192 74 male glioblastoma G4 HGG WT N/A non-codel 1 

TCGA-76-6193 78 male glioblastoma G4 HGG WT N/A non-codel 3 

TCGA-76-6280 57 male glioblastoma G4 HGG WT N/A non-codel 2 

TCGA-76-6282 63 male glioblastoma G4 HGG WT N/A non-codel 2 

TCGA-76-6285 64 female glioblastoma G4 HGG WT N/A non-codel 2 

TCGA-76-6656 66 male glioblastoma G4 HGG WT N/A non-codel 3 

TCGA-76-6657 74 male glioblastoma G4 HGG WT N/A non-codel 1 

TCGA-76-6661 54 male glioblastoma G4 HGG WT N/A non-codel 1 

TCGA-76-6662 58 male glioblastoma G4 HGG WT N/A non-codel 1 

TCGA-76-6663 44 female glioblastoma G4 HGG WT N/A non-codel 1 

TCGA-76-6664 49 female glioblastoma G4 HGG WT N/A non-codel 2 
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TCGA-CS-4941 67 male astrocytoma G3 LGG WT N/A non-codel 2 

TCGA-CS-4942 44 female astrocytoma G3 LGG Mutant IDH1 non-codel 2 

TCGA-CS-4943 37 male astrocytoma G3 LGG Mutant IDH1 non-codel 2 

TCGA-CS-4944 50 male astrocytoma G2 LGG Mutant IDH1 non-codel 3 

TCGA-CS-5393 39 male astrocytoma G3 LGG Mutant IDH1 non-codel 3 

TCGA-CS-5395 43 male oligodendroglioma G2 LGG WT N/A non-codel 2 

TCGA-CS-5396 53 female oligodendroglioma G3 LGG Mutant IDH1 codel 2 

TCGA-CS-5397 54 female astrocytoma G3 LGG WT N/A non-codel 3 

TCGA-CS-6186 58 male oligoastrocytoma G3 LGG WT N/A non-codel 1 

TCGA-CS-6188 48 male astrocytoma G3 LGG WT N/A non-codel 1 

TCGA-CS-6290 31 male astrocytoma G3 LGG Mutant IDH1 non-codel 3 

TCGA-CS-6665 51 female astrocytoma G3 LGG Mutant IDH1 non-codel 2 

TCGA-CS-6666 22 male astrocytoma G3 LGG Mutant IDH1 non-codel 3 

TCGA-CS-6667 39 female astrocytoma G2 LGG Mutant IDH1 non-codel 1 

TCGA-CS-6668 57 female oligodendroglioma G2 LGG Mutant IDH1 codel 2 

TCGA-CS-6669 26 female oligodendroglioma G2 LGG WT N/A non-codel 1 

TCGA-DU-5849 48 male oligodendroglioma G2 LGG Mutant IDH1 codel 1 

TCGA-DU-5851 40 female oligoastrocytoma G3 LGG Mutant IDH1 non-codel 3 

TCGA-DU-5852 61 female oligoastrocytoma G3 LGG WT N/A non-codel 1 

TCGA-DU-5853 29 male oligoastrocytoma G2 LGG Mutant IDH1 non-codel 3 

TCGA-DU-5854 57 female astrocytoma G3 LGG WT N/A non-codel 2 

TCGA-DU-5855 49 female oligoastrocytoma G3 LGG Mutant IDH1 non-codel 1 

TCGA-DU-5871 37 female oligoastrocytoma G2 LGG Mutant IDH1 non-codel 2 

TCGA-DU-5872 43 female oligoastrocytoma G2 LGG Mutant IDH1 non-codel 1 

TCGA-DU-5874 62 female oligodendroglioma G2 LGG Mutant IDH1 codel 2 

TCGA-DU-6395 31 male oligoastrocytoma G2 LGG Mutant IDH1 non-codel 1 

TCGA-DU-6397 45 male oligodendroglioma G3 LGG Mutant IDH1 codel 2 

TCGA-DU-6399 54 male oligodendroglioma G2 LGG Mutant IDH1 non-codel 2 

TCGA-DU-6400 66 female oligodendroglioma G2 LGG Mutant IDH1 codel 1 

TCGA-DU-6401 31 female oligodendroglioma G2 LGG Mutant IDH1 non-codel 3 

TCGA-DU-6404 24 female oligodendroglioma G3 LGG WT N/A non-codel 3 

TCGA-DU-6405 51 female astrocytoma G3 LGG WT N/A non-codel 3 

TCGA-DU-6407 35 female oligodendroglioma G2 LGG Mutant IDH1 non-codel 3 

TCGA-DU-6408 23 female oligodendroglioma G3 LGG Mutant IDH1 non-codel 3 

TCGA-DU-7008 41 female oligodendroglioma G2 LGG Mutant IDH1 non-codel 2 

TCGA-DU-7010 58 female astrocytoma G3 LGG Mutant IDH1 non-codel 1 

TCGA-DU-7015 41 female oligodendroglioma G2 LGG Mutant IDH1 non-codel 3 

TCGA-DU-7018 57 female oligodendroglioma G3 LGG Mutant IDH1 codel 1 

TCGA-DU-7019 39 male oligoastrocytoma G3 LGG Mutant IDH1 non-codel 2 

TCGA-DU-7294 53 female oligodendroglioma G2 LGG Mutant IDH1 codel 2 

TCGA-DU-7298 38 female astrocytoma G3 LGG Mutant IDH1 non-codel 1 
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TCGA-DU-7299 33 male astrocytoma G3 LGG Mutant IDH1 non-codel 1 

TCGA-DU-7300 53 female oligodendroglioma G3 LGG Mutant IDH1 codel 3 

TCGA-DU-7301 53 male oligodendroglioma G2 LGG Mutant IDH1 non-codel 2 

TCGA-DU-7302 48 female oligodendroglioma G3 LGG Mutant IDH1 codel 3 

TCGA-DU-7304 43 male oligoastrocytoma G3 LGG Mutant IDH1 non-codel 1 

TCGA-DU-7306 67 male oligoastrocytoma G2 LGG Mutant IDH1 non-codel 1 

TCGA-DU-7309 41 female oligodendroglioma G3 LGG Mutant IDH2 non-codel 3 

TCGA-DU-8162 61 female oligoastrocytoma G3 LGG WT N/A non-codel 2 

TCGA-DU-8163 29 male oligoastrocytoma G3 LGG Mutant IDH1 non-codel 3 

TCGA-DU-8164 51 male oligodendroglioma G2 LGG Mutant IDH1 codel 1 

TCGA-DU-8165 60 female oligodendroglioma G3 LGG WT N/A non-codel 3 

TCGA-DU-8166 29 female oligoastrocytoma G2 LGG Mutant IDH1 non-codel 2 

TCGA-DU-8167 69 female oligoastrocytoma G2 LGG Mutant IDH1 non-codel 2 

TCGA-DU-8168 55 female oligodendroglioma G3 LGG Mutant IDH1 codel 3 

TCGA-DU-A5TP 33 male astrocytoma G3 LGG Mutant IDH1 non-codel 2 

TCGA-DU-A5TR 51 male oligoastrocytoma G2 LGG Mutant IDH1 non-codel 2 

TCGA-DU-A5TS 42 male oligodendroglioma G2 LGG Mutant IDH1 non-codel 1 

TCGA-DU-A5TT 70 male oligodendroglioma G3 LGG WT N/A non-codel 2 

TCGA-DU-A5TU 62 female astrocytoma G2 LGG Mutant IDH1 non-codel 2 

TCGA-DU-A5TW 33 female astrocytoma G3 LGG Mutant IDH1 non-codel 2 

TCGA-DU-A5TY 46 female astrocytoma G3 LGG WT N/A non-codel 2 

TCGA-DU-A6S2 37 female oligodendroglioma G2 LGG Mutant IDH1 codel 2 

TCGA-DU-A6S3 60 male oligodendroglioma G2 LGG Mutant IDH1 codel 3 

TCGA-DU-A6S6 35 female oligoastrocytoma G2 LGG Mutant IDH1 codel 1 

TCGA-DU-A6S7 27 female astrocytoma G3 LGG Mutant IDH1 non-codel 3 

TCGA-DU-A6S8 74 female oligodendroglioma G3 LGG Mutant IDH1 codel 1 

TCGA-FG-5964 62 male oligodendroglioma G2 LGG Mutant IDH1 codel 2 

TCGA-FG-6688 59 female astrocytoma G3 LGG WT N/A non-codel 1 

TCGA-FG-6689 30 male astrocytoma G2 LGG Mutant IDH1 non-codel 1 

TCGA-FG-6690 70 male oligodendroglioma G2 LGG Mutant IDH1 non-codel 3 

TCGA-FG-6691 23 female astrocytoma G2 LGG Mutant IDH1 non-codel 1 

TCGA-FG-6692 63 male oligodendroglioma G3 LGG WT N/A non-codel 3 

TCGA-FG-7634 28 male oligodendroglioma G2 LGG Mutant IDH1 codel 2 

TCGA-FG-7643 49 female oligoastrocytoma G2 LGG WT N/A non-codel 1 

TCGA-FG-8189 33 female oligodendroglioma G2 LGG Mutant IDH2 non-codel 2 

TCGA-FG-A4MT 27 female oligodendroglioma G2 LGG Mutant IDH1 non-codel 2 

TCGA-FG-A6IZ 60 male oligodendroglioma G2 LGG Mutant IDH1 codel 3 

TCGA-FG-A713 74 female oligoastrocytoma G2 LGG Mutant IDH1 codel 1 

TCGA-HT-7473 28 male oligoastrocytoma G2 LGG Mutant IDH1 non-codel 3 

TCGA-HT-7475 67 male oligoastrocytoma G3 LGG Mutant IDH1 non-codel 3 

TCGA-HT-7602 21 male oligodendroglioma G2 LGG Mutant IDH1 non-codel 3 
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TCGA-HT-7604 50 male astrocytoma G2 LGG Mutant IDH1 non-codel 1 

TCGA-HT-7605 38 male oligodendroglioma G2 LGG Mutant IDH1 codel 3 

TCGA-HT-7608 61 male oligoastrocytoma G2 LGG Mutant IDH1 codel 3 

TCGA-HT-7616 75 male oligodendroglioma G3 LGG Mutant IDH1 codel 2 

TCGA-HT-7680 32 female astrocytoma G2 LGG WT N/A non-codel 1 

TCGA-HT-7686 29 female astrocytoma G3 LGG Mutant IDH1 non-codel 2 

TCGA-HT-7690 29 male oligoastrocytoma G3 LGG Mutant IDH1 non-codel 3 

TCGA-HT-7692 43 male oligoastrocytoma G2 LGG Mutant IDH1 codel 3 

TCGA-HT-7693 51 female oligodendroglioma G2 LGG Mutant IDH1 non-codel 1 

TCGA-HT-7694 60 male oligodendroglioma G3 LGG Mutant IDH1 codel 1 

TCGA-HT-7855 39 male astrocytoma G3 LGG Mutant IDH1 non-codel 1 

TCGA-HT-7856 35 male oligodendroglioma G3 LGG Mutant IDH2 codel 1 

TCGA-HT-7860 60 female astrocytoma G3 LGG WT N/A non-codel 1 

TCGA-HT-7874 41 female oligodendroglioma G3 LGG Mutant IDH1 codel 1 

TCGA-HT-7879 31 male oligoastrocytoma G3 LGG Mutant IDH1 non-codel 3 

TCGA-HT-7882 66 male oligodendroglioma G3 LGG WT N/A non-codel 2 

TCGA-HT-7884 44 female astrocytoma G2 LGG Mutant IDH1 non-codel 1 

TCGA-HT-8018 40 female oligoastrocytoma G2 LGG Mutant IDH1 non-codel 1 

TCGA-HT-8105 54 male oligodendroglioma G3 LGG Mutant IDH1 codel 3 

TCGA-HT-8106 53 male astrocytoma G3 LGG Mutant IDH1 non-codel 3 

TCGA-HT-8107 62 male oligodendroglioma G2 LGG WT N/A non-codel 3 

TCGA-HT-8111 32 male oligoastrocytoma G3 LGG Mutant IDH1 non-codel 2 

TCGA-HT-8113 49 female oligodendroglioma G2 LGG Mutant IDH2 non-codel 2 

TCGA-HT-8114 36 male oligoastrocytoma G3 LGG Mutant IDH1 non-codel 2 

TCGA-HT-8563 30 female astrocytoma G3 LGG Mutant IDH1 non-codel 3 

TCGA-HT-A5RC 70 female astrocytoma G3 LGG WT N/A non-codel 3 

TCGA-HT-A61A 20 female oligodendroglioma G2 LGG Mutant IDH1 non-codel 1 

LGG-104 NaN NaN Oligoastrocytoma G3 LGG NaN NaN codel 1 

LGG-203 NaN NaN Astrocytoma G3 LGG NaN NaN non-codel 1 

LGG-210 NaN NaN Oligoastrocytoma G2 LGG NaN NaN non-codel 1 

LGG-216 NaN NaN Oligoastrocytoma G2 LGG NaN NaN codel 2 

LGG-218 NaN NaN Oligodendroglioma G2 LGG NaN NaN codel 1 

LGG-219 NaN NaN Astrocytoma G3 LGG NaN NaN non-codel 3 

LGG-220 NaN NaN Oligodendroglioma G2 LGG NaN NaN codel 1 

LGG-223 NaN NaN Oligodendroglioma G3 LGG NaN NaN codel 1 

LGG-225 NaN NaN Oligoastrocytoma G2 LGG NaN NaN codel 2 

LGG-229 NaN NaN Oligodendroglioma G2 LGG NaN NaN codel 2 

LGG-231 NaN NaN Oligoastrocytoma G3 LGG NaN NaN codel 1 

LGG-233 NaN NaN Oligodendroglioma G2 LGG NaN NaN codel 3 

LGG-234 NaN NaN Oligodendroglioma G3 LGG NaN NaN non-codel 3 

LGG-240 NaN NaN Astrocytoma G3 LGG NaN NaN non-codel 3 
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LGG-241 NaN NaN Oligoastrocytoma G2 LGG NaN NaN non-codel 2 

LGG-246 NaN NaN Oligoastrocytoma G3 LGG NaN NaN codel 3 

LGG-249 NaN NaN Oligodendroglioma G2 LGG NaN NaN codel 3 

LGG-254 NaN NaN Oligodendroglioma G3 LGG NaN NaN codel 2 

LGG-260 NaN NaN Oligodendroglioma G3 LGG NaN NaN codel 1 

LGG-261 NaN NaN Oligodendroglioma G2 LGG NaN NaN codel 1 

LGG-263 NaN NaN Oligoastrocytoma G3 LGG NaN NaN non-codel 3 

LGG-269 NaN NaN Oligodendroglioma G3 LGG NaN NaN codel 3 

LGG-273 NaN NaN Oligoastrocytoma G3 LGG NaN NaN non-codel 1 

LGG-274 NaN NaN Oligoastrocytoma G2 LGG NaN NaN codel 2 

LGG-277 NaN NaN Astrocytoma G2 LGG NaN NaN non-codel 3 

LGG-278 NaN NaN Oligoastrocytoma G2 LGG NaN NaN codel 2 

LGG-280 NaN NaN Oligoastrocytoma G2 LGG NaN NaN non-codel 3 

LGG-282 NaN NaN Oligoastrocytoma G3 LGG NaN NaN codel 2 

LGG-285 NaN NaN Oligoastrocytoma G2 LGG NaN NaN non-codel 2 

LGG-286 NaN NaN Oligodendroglioma G2 LGG NaN NaN non-codel 1 

LGG-288 NaN NaN Oligoastrocytoma G3 LGG NaN NaN codel 1 

LGG-289 NaN NaN Oligodendroglioma G2 LGG NaN NaN codel 2 

LGG-293 NaN NaN Oligoastrocytoma G2 LGG NaN NaN non-codel 3 

LGG-295 NaN NaN Oligoastrocytoma G3 LGG NaN NaN codel 3 

LGG-296 NaN NaN Oligodendroglioma G2 LGG NaN NaN codel 2 

LGG-297 NaN NaN Oligoastrocytoma G2 LGG NaN NaN non-codel 3 

LGG-298 NaN NaN Oligoastrocytoma G3 LGG NaN NaN codel 3 

LGG-303 NaN NaN Oligodendroglioma G2 LGG NaN NaN codel 1 

LGG-304 NaN NaN Oligodendroglioma G2 LGG NaN NaN codel 3 

LGG-305 NaN NaN Oligodendroglioma G2 LGG NaN NaN codel 3 

LGG-306 NaN NaN Astrocytoma G3 LGG NaN NaN non-codel 3 

LGG-307 NaN NaN Oligoastrocytoma G3 LGG NaN NaN codel 2 

LGG-308 NaN NaN Oligodendroglioma G2 LGG NaN NaN codel 3 

LGG-310 NaN NaN Oligoastrocytoma G2 LGG NaN NaN codel 2 

LGG-311 NaN NaN Astrocytoma G2 LGG NaN NaN non-codel 3 

LGG-313 NaN NaN Oligoastrocytoma G2 LGG NaN NaN non-codel 2 

LGG-314 NaN NaN Oligoastrocytoma G2 LGG NaN NaN non-codel 1 

LGG-315 NaN NaN Oligodendroglioma G2 LGG NaN NaN codel 2 

LGG-316 NaN NaN Oligodendroglioma G3 LGG NaN NaN codel 1 

LGG-320 NaN NaN Oligoastrocytoma G2 LGG NaN NaN codel 1 

LGG-321 NaN NaN Oligoastrocytoma G2 LGG NaN NaN non-codel 2 

LGG-325 NaN NaN Oligoastrocytoma G2 LGG NaN NaN codel 3 

LGG-326 NaN NaN Oligoastrocytoma G2 LGG NaN NaN codel 1 

LGG-327 NaN NaN Oligoastrocytoma G2 LGG NaN NaN non-codel 3 

LGG-330 NaN NaN Oligoastrocytoma G3 LGG NaN NaN codel 3 
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LGG-331 NaN NaN Oligodendroglioma G2 LGG NaN NaN codel 2 

LGG-333 NaN NaN Oligoastrocytoma G3 LGG NaN NaN codel 2 

LGG-334 NaN NaN Oligoastrocytoma G2 LGG NaN NaN non-codel 2 

LGG-337 NaN NaN Oligoastrocytoma G2 LGG NaN NaN codel 1 

LGG-338 NaN NaN Oligoastrocytoma G3 LGG NaN NaN non-codel 3 

LGG-341 NaN NaN Oligoastrocytoma G3 LGG NaN NaN codel 2 

LGG-343 NaN NaN Oligoastrocytoma G2 LGG NaN NaN non-codel 2 

LGG-344 NaN NaN Oligodendroglioma G2 LGG NaN NaN codel 1 

LGG-345 NaN NaN Oligoastrocytoma G3 LGG NaN NaN codel 3 

LGG-346 NaN NaN Astrocytoma G3 LGG NaN NaN non-codel 2 

LGG-348 NaN NaN Oligoastrocytoma G2 LGG NaN NaN codel 1 

LGG-350 NaN NaN Oligoastrocytoma G2 LGG NaN NaN codel 1 

LGG-351 NaN NaN Oligoastrocytoma G2 LGG NaN NaN non-codel 1 

LGG-352 NaN NaN Oligodendroglioma G2 LGG NaN NaN codel 2 

LGG-354 NaN NaN Oligoastrocytoma G3 LGG NaN NaN non-codel 1 

LGG-355 NaN NaN Astrocytoma G3 LGG NaN NaN codel 1 

LGG-357 NaN NaN Oligoastrocytoma G2 LGG NaN NaN codel 1 

LGG-359 NaN NaN Oligodendroglioma G2 LGG NaN NaN codel 3 

LGG-360 NaN NaN Oligodendroglioma G2 LGG NaN NaN codel 3 

LGG-361 NaN NaN Oligoastrocytoma G2 LGG NaN NaN codel 1 

LGG-363 NaN NaN Oligoastrocytoma G2 LGG NaN NaN non-codel 2 

LGG-365 NaN NaN Oligoastrocytoma G3 LGG NaN NaN codel 3 

LGG-367 NaN NaN Oligoastrocytoma G2 LGG NaN NaN codel 3 

LGG-371 NaN NaN Astrocytoma G3 LGG NaN NaN non-codel 1 

LGG-373 NaN NaN Oligoastrocytoma G3 LGG NaN NaN codel 2 

LGG-374 NaN NaN Oligoastrocytoma G2 LGG NaN NaN non-codel 3 

LGG-375 NaN NaN Oligoastrocytoma G2 LGG NaN NaN non-codel 2 

LGG-377 NaN NaN Oligodendroglioma G3 LGG NaN NaN codel 1 

LGG-380 NaN NaN Oligoastrocytoma G3 LGG NaN NaN codel 1 

LGG-383 NaN NaN Oligoastrocytoma G2 LGG NaN NaN codel 3 

LGG-385 NaN NaN Oligoastrocytoma G3 LGG NaN NaN codel 2 

LGG-387 NaN NaN Oligoastrocytoma G3 LGG NaN NaN codel 2 

LGG-388 NaN NaN Oligoastrocytoma G2 LGG NaN NaN codel 1 

LGG-391 NaN NaN Oligoastrocytoma G2 LGG NaN NaN non-codel 1 

LGG-394 NaN NaN Oligodendroglioma G3 LGG NaN NaN codel 3 

LGG-395 NaN NaN Oligoastrocytoma G3 LGG NaN NaN codel 1 

LGG-396 NaN NaN Oligoastrocytoma G2 LGG NaN NaN codel 1 

LGG-492 NaN NaN Oligoastrocytoma G2 LGG NaN NaN codel 2 

LGG-500 NaN NaN Oligoastrocytoma G2 LGG NaN NaN non-codel 1 

LGG-506 NaN NaN Oligoastrocytoma G2 LGG NaN NaN non-codel 1 

LGG-515 NaN NaN Oligoastrocytoma G2 LGG NaN NaN codel 3 
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LGG-516 NaN NaN Oligoastrocytoma G3 LGG NaN NaN non-codel 2 

LGG-518 NaN NaN Astrocytoma G3 LGG NaN NaN non-codel 3 

LGG-519 NaN NaN Oligoastrocytoma G2 LGG NaN NaN non-codel 1 

LGG-520 NaN NaN Oligodendroglioma G2 LGG NaN NaN codel 2 

LGG-525 NaN NaN Oligodendroglioma G2 LGG NaN NaN codel 2 

LGG-527 NaN NaN Oligoastrocytoma G2 LGG NaN NaN codel 3 

LGG-532 NaN NaN Oligoastrocytoma G3 LGG NaN NaN non-codel 3 

LGG-533 NaN NaN Oligoastrocytoma G2 LGG NaN NaN non-codel 1 

LGG-537 NaN NaN Oligoastrocytoma G2 LGG NaN NaN non-codel 2 

LGG-545 NaN NaN Oligoastrocytoma G2 LGG NaN NaN non-codel 1 

LGG-547 NaN NaN Oligodendroglioma G2 LGG NaN NaN codel 2 

LGG-550 NaN NaN Oligoastrocytoma G3 LGG NaN NaN codel 3 

LGG-552 NaN NaN Astrocytoma G3 LGG NaN NaN non-codel 2 

LGG-558 NaN NaN Oligoastrocytoma G2 LGG NaN NaN non-codel 1 

LGG-561 NaN NaN Oligoastrocytoma G3 LGG NaN NaN codel 2 

LGG-563 NaN NaN Oligodendroglioma G2 LGG NaN NaN codel 2 

LGG-565 NaN NaN Oligoastrocytoma G2 LGG NaN NaN codel 3 

LGG-566 NaN NaN Oligoastrocytoma G2 LGG NaN NaN codel 3 

LGG-570 NaN NaN Oligoastrocytoma G2 LGG NaN NaN codel 2 

LGG-572 NaN NaN Astrocytoma G3 LGG NaN NaN codel 3 

LGG-573 NaN NaN Oligoastrocytoma G2 LGG NaN NaN codel 1 

LGG-574 NaN NaN Oligodendroglioma G2 LGG NaN NaN non-codel 1 

LGG-576 NaN NaN Oligoastrocytoma G2 LGG NaN NaN codel 1 

LGG-579 NaN NaN Oligoastrocytoma G2 LGG NaN NaN codel 1 

LGG-581 NaN NaN Oligoastrocytoma G2 LGG NaN NaN codel 2 

LGG-582 NaN NaN Oligodendroglioma G2 LGG NaN NaN codel 2 

LGG-585 NaN NaN Astrocytoma G2 LGG NaN NaN non-codel 3 

LGG-587 NaN NaN Oligodendroglioma G3 LGG NaN NaN codel 3 

LGG-589 NaN NaN Oligoastrocytoma G2 LGG NaN NaN non-codel 2 

LGG-590 NaN NaN Oligoastrocytoma G2 LGG NaN NaN codel 1 

LGG-591 NaN NaN Astrocytoma G3 LGG NaN NaN non-codel 1 

LGG-593 NaN NaN Oligodendroglioma G3 LGG NaN NaN codel 1 

LGG-594 NaN NaN Oligoastrocytoma G3 LGG NaN NaN non-codel 2 

LGG-597 NaN NaN Oligoastrocytoma G2 LGG NaN NaN codel 1 

LGG-600 NaN NaN Oligoastrocytoma G3 LGG NaN NaN codel 3 

LGG-601 NaN NaN Astrocytoma G3 LGG NaN NaN non-codel 3 

LGG-604 NaN NaN Oligoastrocytoma G2 LGG NaN NaN codel 2 

LGG-607 NaN NaN Oligodendroglioma G2 LGG NaN NaN codel 3 

LGG-609 NaN NaN Oligoastrocytoma G2 LGG NaN NaN non-codel 2 

LGG-610 NaN NaN Oligoastrocytoma G2 LGG NaN NaN non-codel 3 

LGG-612 NaN NaN Oligodendroglioma G2 LGG NaN NaN codel 2 
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LGG-613 NaN NaN Oligoastrocytoma G2 LGG NaN NaN non-codel 1 

LGG-614 NaN NaN Oligodendroglioma G2 LGG NaN NaN codel 3 

LGG-616 NaN NaN Oligoastrocytoma G2 LGG NaN NaN codel 3 

LGG-620 NaN NaN Oligodendroglioma G2 LGG NaN NaN codel 3 

LGG-622 NaN NaN Oligoastrocytoma G2 LGG NaN NaN non-codel 2 

LGG-624 NaN NaN Oligoastrocytoma G3 LGG NaN NaN non-codel 2 

LGG-625 NaN NaN Oligoastrocytoma G2 LGG NaN NaN non-codel 2 

LGG-626 NaN NaN Astrocytoma G3 LGG NaN NaN codel 2 

LGG-630 NaN NaN Oligodendroglioma G2 LGG NaN NaN codel 3 

LGG-631 NaN NaN Oligoastrocytoma G2 LGG NaN NaN non-codel 1 

LGG-632 NaN NaN Oligoastrocytoma G2 LGG NaN NaN codel 2 

LGG-634 NaN NaN Oligodendroglioma G3 LGG NaN NaN codel 2 

LGG-637 NaN NaN Oligodendroglioma G2 LGG NaN NaN codel 1 

LGG-639 NaN NaN Oligoastrocytoma G2 LGG NaN NaN codel 1 

LGG-642 NaN NaN Oligodendroglioma G3 LGG NaN NaN codel 2 

LGG-647 NaN NaN Oligoastrocytoma G2 LGG NaN NaN non-codel 3 

LGG-648 NaN NaN Astrocytoma G2 LGG NaN NaN codel 3 

LGG-651 NaN NaN Oligodendroglioma G2 LGG NaN NaN codel 3 

LGG-658 NaN NaN Oligodendroglioma G3 LGG NaN NaN codel 3 

 

Supplementary Table 3: Subject wise MGMT promoter status, clinical variables, and group 

membership for each fold of the cross-validation. 

Subject ID Age Gender Histology Grade 
TCGA Data 

Collection 

IDH 

mutation 

Status 

1p/19q co-

deletion 

status 

MGMT 

promoter 

status 

Cross-

validation 

group 

TCGA-02-0003 50 male glioblastoma G4 TCGA-GBM WT non-codel Unmethylated 2 

TCGA-02-0006 56 female glioblastoma G4 TCGA-GBM WT non-codel Unmethylated 2 

TCGA-02-0009 61 female glioblastoma G4 TCGA-GBM WT non-codel Unmethylated 2 

TCGA-02-0011 18 female glioblastoma G4 TCGA-GBM WT non-codel Methylated 2 

TCGA-02-0027 33 female glioblastoma G4 TCGA-GBM WT non-codel Unmethylated 2 

TCGA-02-0033 54 male glioblastoma G4 TCGA-GBM WT non-codel Methylated 1 

TCGA-02-0034 60 male glioblastoma G4 TCGA-GBM WT non-codel Unmethylated 1 

TCGA-02-0037 74 female glioblastoma G4 TCGA-GBM WT non-codel Unmethylated 1 

TCGA-02-0046 61 male glioblastoma G4 TCGA-GBM WT non-codel Methylated 1 

TCGA-02-0047 78 male glioblastoma G4 TCGA-GBM WT non-codel Unmethylated 1 

TCGA-02-0060 66 female glioblastoma G4 TCGA-GBM WT non-codel Methylated 2 

TCGA-02-0064 50 male glioblastoma G4 TCGA-GBM WT non-codel Methylated 3 

TCGA-02-0069 31 female glioblastoma G4 TCGA-GBM WT non-codel Methylated 2 

TCGA-02-0075 63 male glioblastoma G4 TCGA-GBM WT non-codel Methylated 2 

TCGA-02-0086 45 female glioblastoma G4 TCGA-GBM WT non-codel Unmethylated 2 
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TCGA-02-0102 42 male glioblastoma G4 TCGA-GBM WT non-codel Unmethylated 1 

TCGA-06-0119 81 female glioblastoma G4 TCGA-GBM WT non-codel Methylated 2 

TCGA-06-0122 84 female glioblastoma G4 TCGA-GBM WT non-codel Unmethylated 2 

TCGA-06-0128 66 male glioblastoma G4 TCGA-GBM Mutant non-codel Methylated 3 

TCGA-06-0129 30 male glioblastoma G4 TCGA-GBM Mutant non-codel Methylated 1 

TCGA-06-0133 64 male glioblastoma G4 TCGA-GBM WT non-codel Unmethylated 2 

TCGA-06-0137 63 female glioblastoma G4 TCGA-GBM WT non-codel Unmethylated 2 

TCGA-06-0142 81 male glioblastoma G4 TCGA-GBM WT non-codel Unmethylated 1 

TCGA-06-0143 58 male glioblastoma G4 TCGA-GBM WT non-codel Unmethylated 1 

TCGA-06-0145 53 female glioblastoma G4 TCGA-GBM WT non-codel Methylated 1 

TCGA-06-0147 51 female glioblastoma G4 TCGA-GBM WT non-codel Methylated 2 

TCGA-06-0148 76 male glioblastoma G4 TCGA-GBM WT non-codel Unmethylated 1 

TCGA-06-0881 50 male glioblastoma G4 TCGA-GBM WT non-codel Unmethylated 1 

TCGA-06-1806 47 male glioblastoma G4 TCGA-GBM WT non-codel Unmethylated 2 

TCGA-06-2570 21 female glioblastoma G4 TCGA-GBM Mutant non-codel Methylated 1 

TCGA-06-5408 54 female glioblastoma G4 TCGA-GBM WT non-codel Unmethylated 3 

TCGA-06-5412 78 female glioblastoma G4 TCGA-GBM WT non-codel Methylated 2 

TCGA-06-5413 67 male glioblastoma G4 TCGA-GBM WT non-codel Unmethylated 1 

TCGA-06-5417 45 female glioblastoma G4 TCGA-GBM Mutant NA Methylated 3 

TCGA-06-6389 49 female glioblastoma G4 TCGA-GBM Mutant non-codel Methylated 3 

TCGA-12-0829 75 male glioblastoma G4 TCGA-GBM WT non-codel Methylated 2 

TCGA-12-1093 66 female glioblastoma G4 TCGA-GBM WT non-codel Unmethylated 1 

TCGA-12-1598 75 female glioblastoma G4 TCGA-GBM WT non-codel Methylated 3 

TCGA-12-1601 NaN NA NA NA TCGA-GBM WT NA Unmethylated 2 

TCGA-12-1602 58 male glioblastoma G4 TCGA-GBM WT non-codel Methylated 2 

TCGA-12-3650 46 male glioblastoma G4 TCGA-GBM WT non-codel Unmethylated 3 

TCGA-14-0789 54 male glioblastoma G4 TCGA-GBM WT non-codel Methylated 2 

TCGA-14-1456 23 male glioblastoma G4 TCGA-GBM Mutant non-codel Unmethylated 3 

TCGA-14-1794 59 male glioblastoma G4 TCGA-GBM WT non-codel Unmethylated 2 

TCGA-14-1829 57 male glioblastoma G4 TCGA-GBM WT non-codel Unmethylated 2 

TCGA-14-3477 38 female glioblastoma G4 TCGA-GBM WT non-codel Unmethylated 3 

TCGA-19-1390 63 female glioblastoma G4 TCGA-GBM WT non-codel Methylated 1 

TCGA-19-1789 69 female glioblastoma G4 TCGA-GBM WT non-codel Methylated 2 

TCGA-19-1791 82 female glioblastoma G4 TCGA-GBM WT non-codel Unmethylated 1 

TCGA-19-2620 70 male glioblastoma G4 TCGA-GBM WT non-codel Methylated 3 

TCGA-19-2624 51 male glioblastoma G4 TCGA-GBM WT non-codel Unmethylated 1 

TCGA-19-2631 74 female glioblastoma G4 TCGA-GBM WT non-codel Methylated 3 

TCGA-19-5953 58 male glioblastoma G4 TCGA-GBM WT non-codel Methylated 1 

TCGA-19-5954 72 female glioblastoma G4 TCGA-GBM WT non-codel Methylated 3 
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TCGA-19-5958 56 male glioblastoma G4 TCGA-GBM WT non-codel Unmethylated 1 

TCGA-27-1830 57 male glioblastoma G4 TCGA-GBM WT non-codel Unmethylated 2 

TCGA-27-1835 53 female glioblastoma G4 TCGA-GBM WT non-codel Methylated 1 

TCGA-27-1836 33 female glioblastoma G4 TCGA-GBM WT non-codel Methylated 1 

TCGA-27-1838 59 female glioblastoma G4 TCGA-GBM WT non-codel Unmethylated 3 

TCGA-76-4925 76 male glioblastoma G4 TCGA-GBM WT non-codel Methylated 2 

TCGA-76-4926 68 male glioblastoma G4 TCGA-GBM WT non-codel Unmethylated 3 

TCGA-76-4927 58 male glioblastoma G4 TCGA-GBM WT NA Unmethylated 2 

TCGA-76-4928 85 female glioblastoma G4 TCGA-GBM WT non-codel Methylated 1 

TCGA-76-4929 76 female glioblastoma G4 TCGA-GBM WT non-codel Methylated 3 

TCGA-76-4931 70 female glioblastoma G4 TCGA-GBM WT non-codel Unmethylated 3 

TCGA-76-4932 50 female glioblastoma G4 TCGA-GBM WT NA Methylated 3 

TCGA-76-4934 66 female glioblastoma G4 TCGA-GBM WT non-codel Methylated 1 

TCGA-76-4935 52 female glioblastoma G4 TCGA-GBM WT non-codel Methylated 2 

TCGA-76-6191 57 male glioblastoma G4 TCGA-GBM WT non-codel Unmethylated 3 

TCGA-76-6192 74 male glioblastoma G4 TCGA-GBM WT non-codel Unmethylated 2 

TCGA-76-6193 78 male glioblastoma G4 TCGA-GBM WT non-codel Unmethylated 2 

TCGA-76-6280 57 male glioblastoma G4 TCGA-GBM WT non-codel Methylated 1 

TCGA-76-6282 63 male glioblastoma G4 TCGA-GBM WT non-codel Unmethylated 2 

TCGA-76-6285 64 female glioblastoma G4 TCGA-GBM WT non-codel Unmethylated 3 

TCGA-76-6286 60 male glioblastoma G4 TCGA-GBM WT non-codel Unmethylated 1 

TCGA-76-6656 66 male glioblastoma G4 TCGA-GBM WT non-codel Methylated 3 

TCGA-76-6657 74 male glioblastoma G4 TCGA-GBM WT non-codel Methylated 2 

TCGA-76-6661 54 male glioblastoma G4 TCGA-GBM WT non-codel Unmethylated 3 

TCGA-76-6662 58 male glioblastoma G4 TCGA-GBM WT non-codel Unmethylated 1 

TCGA-76-6663 44 female glioblastoma G4 TCGA-GBM WT non-codel Unmethylated 3 

TCGA-76-6664 49 female glioblastoma G4 TCGA-GBM WT non-codel Methylated 3 

TCGA-CS-4938 31 female astrocytoma G2 TCGA-LGG Mutant non-codel Unmethylated 3 

TCGA-CS-4941 67 male astrocytoma G3 TCGA-LGG WT non-codel Methylated 1 

TCGA-CS-4942 44 female astrocytoma G3 TCGA-LGG Mutant non-codel Unmethylated 1 

TCGA-CS-4943 37 male astrocytoma G3 TCGA-LGG Mutant non-codel Methylated 3 

TCGA-CS-4944 50 male astrocytoma G2 TCGA-LGG Mutant non-codel Methylated 2 

TCGA-CS-5390 47 female oligodendroglioma G2 TCGA-LGG Mutant codel Methylated 2 

TCGA-CS-5393 39 male astrocytoma G3 TCGA-LGG Mutant non-codel Methylated 2 

TCGA-CS-5394 40 male astrocytoma G3 TCGA-LGG Mutant non-codel Methylated 1 

TCGA-CS-5395 43 male oligodendroglioma G2 TCGA-LGG WT non-codel Unmethylated 1 

TCGA-CS-5396 53 female oligodendroglioma G3 TCGA-LGG Mutant codel Methylated 3 

TCGA-CS-5397 54 female astrocytoma G3 TCGA-LGG WT non-codel Unmethylated 2 

TCGA-CS-6186 58 male oligoastrocytoma G3 TCGA-LGG WT non-codel Unmethylated 1 
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TCGA-CS-6188 48 male astrocytoma G3 TCGA-LGG WT non-codel Unmethylated 2 

TCGA-CS-6290 31 male astrocytoma G3 TCGA-LGG Mutant non-codel Methylated 1 

TCGA-CS-6665 51 female astrocytoma G3 TCGA-LGG Mutant non-codel Methylated 3 

TCGA-CS-6666 22 male astrocytoma G3 TCGA-LGG Mutant non-codel Methylated 2 

TCGA-CS-6667 39 female astrocytoma G2 TCGA-LGG Mutant non-codel Methylated 1 

TCGA-CS-6668 57 female oligodendroglioma G2 TCGA-LGG Mutant codel Methylated 1 

TCGA-CS-6669 26 female oligodendroglioma G2 TCGA-LGG WT non-codel Unmethylated 3 

TCGA-DU-5849 48 male oligodendroglioma G2 TCGA-LGG Mutant codel Methylated 1 

TCGA-DU-5851 40 female oligoastrocytoma G3 TCGA-LGG Mutant non-codel Unmethylated 3 

TCGA-DU-5852 61 female oligoastrocytoma G3 TCGA-LGG WT non-codel Methylated 3 

TCGA-DU-5853 29 male oligoastrocytoma G2 TCGA-LGG Mutant non-codel Methylated 2 

TCGA-DU-5854 57 female astrocytoma G3 TCGA-LGG WT non-codel Unmethylated 2 

TCGA-DU-5855 49 female oligoastrocytoma G3 TCGA-LGG Mutant non-codel Methylated 2 

TCGA-DU-5871 37 female oligoastrocytoma G2 TCGA-LGG Mutant non-codel Methylated 3 

TCGA-DU-5872 43 female oligoastrocytoma G2 TCGA-LGG Mutant non-codel Methylated 2 

TCGA-DU-5874 62 female oligodendroglioma G2 TCGA-LGG Mutant codel Methylated 3 

TCGA-DU-6395 31 male oligoastrocytoma G2 TCGA-LGG Mutant non-codel Methylated 1 

TCGA-DU-6397 45 male oligodendroglioma G3 TCGA-LGG Mutant codel Methylated 2 

TCGA-DU-6399 54 male oligodendroglioma G2 TCGA-LGG Mutant non-codel Methylated 1 

TCGA-DU-6400 66 female oligodendroglioma G2 TCGA-LGG Mutant codel Methylated 3 

TCGA-DU-6401 31 female oligodendroglioma G2 TCGA-LGG Mutant non-codel Methylated 3 

TCGA-DU-6404 24 female oligodendroglioma G3 TCGA-LGG WT non-codel Unmethylated 3 

TCGA-DU-6405 51 female astrocytoma G3 TCGA-LGG WT non-codel Methylated 3 

TCGA-DU-6407 35 female oligodendroglioma G2 TCGA-LGG Mutant non-codel Methylated 3 

TCGA-DU-6408 23 female oligodendroglioma G3 TCGA-LGG Mutant non-codel Methylated 1 

TCGA-DU-7008 41 female oligodendroglioma G2 TCGA-LGG Mutant non-codel Methylated 1 

TCGA-DU-7010 58 female astrocytoma G3 TCGA-LGG Mutant non-codel Methylated 3 

TCGA-DU-7013 59 male astrocytoma G3 TCGA-LGG WT non-codel Unmethylated 1 

TCGA-DU-7015 41 female oligodendroglioma G2 TCGA-LGG Mutant non-codel Methylated 2 

TCGA-DU-7018 57 female oligodendroglioma G3 TCGA-LGG Mutant codel Methylated 1 

TCGA-DU-7019 39 male oligoastrocytoma G3 TCGA-LGG Mutant non-codel Methylated 1 

TCGA-DU-7294 53 female oligodendroglioma G2 TCGA-LGG Mutant codel Methylated 1 

TCGA-DU-7298 38 female astrocytoma G3 TCGA-LGG Mutant non-codel Methylated 2 

TCGA-DU-7299 33 male astrocytoma G3 TCGA-LGG Mutant non-codel Methylated 3 

TCGA-DU-7300 53 female oligodendroglioma G3 TCGA-LGG Mutant codel Methylated 3 

TCGA-DU-7301 53 male oligodendroglioma G2 TCGA-LGG Mutant non-codel Methylated 3 

TCGA-DU-7302 48 female oligodendroglioma G3 TCGA-LGG Mutant codel Methylated 1 

TCGA-DU-7304 43 male oligoastrocytoma G3 TCGA-LGG Mutant non-codel Methylated 3 

TCGA-DU-7306 67 male oligoastrocytoma G2 TCGA-LGG Mutant non-codel Methylated 1 
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TCGA-DU-7309 41 female oligodendroglioma G3 TCGA-LGG Mutant non-codel Methylated 3 

TCGA-DU-8158 57 female astrocytoma G3 TCGA-LGG WT non-codel Unmethylated 3 

TCGA-DU-8162 61 female oligoastrocytoma G3 TCGA-LGG WT non-codel Unmethylated 1 

TCGA-DU-8164 51 male oligodendroglioma G2 TCGA-LGG Mutant codel Methylated 1 

TCGA-DU-8165 60 female oligodendroglioma G3 TCGA-LGG WT non-codel Unmethylated 1 

TCGA-DU-8166 29 female oligoastrocytoma G2 TCGA-LGG Mutant non-codel Methylated 2 

TCGA-DU-8167 69 female oligoastrocytoma G2 TCGA-LGG Mutant non-codel Methylated 3 

TCGA-DU-8168 55 female oligodendroglioma G3 TCGA-LGG Mutant codel Methylated 3 

TCGA-DU-A5TP 33 male astrocytoma G3 TCGA-LGG Mutant non-codel Methylated 2 

TCGA-DU-A5TR 51 male oligoastrocytoma G2 TCGA-LGG Mutant non-codel Methylated 2 

TCGA-DU-A5TS 42 male oligodendroglioma G2 TCGA-LGG Mutant non-codel Methylated 2 

TCGA-DU-A5TT 70 male oligodendroglioma G3 TCGA-LGG WT non-codel Methylated 2 

TCGA-DU-A5TU 62 female astrocytoma G2 TCGA-LGG Mutant non-codel Methylated 1 

TCGA-DU-A5TW 33 female astrocytoma G3 TCGA-LGG Mutant non-codel Methylated 2 

TCGA-DU-A5TY 46 female astrocytoma G3 TCGA-LGG WT non-codel Methylated 2 

TCGA-DU-A6S2 37 female oligodendroglioma G2 TCGA-LGG Mutant codel Methylated 2 

TCGA-DU-A6S3 60 male oligodendroglioma G2 TCGA-LGG Mutant codel Methylated 3 

TCGA-DU-A6S6 35 female oligoastrocytoma G2 TCGA-LGG Mutant codel Methylated 1 

TCGA-DU-A6S7 27 female astrocytoma G3 TCGA-LGG Mutant non-codel Methylated 2 

TCGA-DU-A6S8 74 female oligodendroglioma G3 TCGA-LGG Mutant codel Methylated 2 

TCGA-FG-5963 23 male astrocytoma G3 TCGA-LGG WT non-codel Unmethylated 2 

TCGA-FG-5964 62 male oligodendroglioma G2 TCGA-LGG Mutant codel Methylated 1 

TCGA-FG-6688 59 female astrocytoma G3 TCGA-LGG WT non-codel Methylated 2 

TCGA-FG-6689 30 male astrocytoma G2 TCGA-LGG Mutant non-codel Methylated 3 

TCGA-FG-6690 70 male oligodendroglioma G2 TCGA-LGG Mutant non-codel Methylated 2 

TCGA-FG-6691 23 female astrocytoma G2 TCGA-LGG Mutant non-codel Unmethylated 3 

TCGA-FG-6692 63 male oligodendroglioma G3 TCGA-LGG WT non-codel Methylated 1 

TCGA-FG-7634 28 male oligodendroglioma G2 TCGA-LGG Mutant codel Methylated 1 

TCGA-FG-7637 49 male oligoastrocytoma G2 TCGA-LGG Mutant non-codel Methylated 1 

TCGA-FG-8189 33 female oligodendroglioma G2 TCGA-LGG Mutant non-codel Methylated 3 

TCGA-FG-A4MT 27 female oligodendroglioma G2 TCGA-LGG Mutant non-codel Methylated 2 

TCGA-FG-A4MU 58 male oligoastrocytoma G3 TCGA-LGG WT non-codel Methylated 1 

TCGA-FG-A6IZ 60 male oligodendroglioma G2 TCGA-LGG Mutant codel Methylated 3 

TCGA-FG-A6J1 44 female oligodendroglioma G2 TCGA-LGG Mutant codel Methylated 2 

TCGA-FG-A713 74 female oligoastrocytoma G2 TCGA-LGG Mutant codel Methylated 3 

TCGA-FG-A87N 37 female astrocytoma G3 TCGA-LGG Mutant non-codel Methylated 3 

TCGA-HT-7468 30 male oligodendroglioma G3 TCGA-LGG Mutant codel Methylated 1 

TCGA-HT-7469 30 male oligodendroglioma G3 TCGA-LGG WT non-codel Methylated 1 

TCGA-HT-7471 37 female oligodendroglioma G3 TCGA-LGG Mutant codel Methylated 2 
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TCGA-HT-7472 38 male oligodendroglioma G2 TCGA-LGG Mutant non-codel Methylated 1 

TCGA-HT-7473 28 male oligoastrocytoma G2 TCGA-LGG Mutant non-codel Unmethylated 3 

TCGA-HT-7475 67 male oligoastrocytoma G3 TCGA-LGG Mutant non-codel Methylated 3 

TCGA-HT-7476 26 male astrocytoma G2 TCGA-LGG Mutant non-codel Methylated 1 

TCGA-HT-7478 36 male astrocytoma G2 TCGA-LGG Mutant non-codel Unmethylated 1 

TCGA-HT-7481 39 male oligodendroglioma G2 TCGA-LGG Mutant codel Methylated 2 

TCGA-HT-7602 21 male oligodendroglioma G2 TCGA-LGG Mutant non-codel Methylated 2 

TCGA-HT-7603 29 male oligodendroglioma G2 TCGA-LGG Mutant non-codel Methylated 2 

TCGA-HT-7605 38 male oligodendroglioma G2 TCGA-LGG Mutant codel Methylated 3 

TCGA-HT-7606 30 female astrocytoma G2 TCGA-LGG Mutant non-codel Unmethylated 1 

TCGA-HT-7608 61 male oligoastrocytoma G2 TCGA-LGG Mutant codel Methylated 2 

TCGA-HT-7616 75 male oligodendroglioma G3 TCGA-LGG Mutant codel Methylated 3 

TCGA-HT-7680 32 female astrocytoma G2 TCGA-LGG WT non-codel Unmethylated 3 

TCGA-HT-7684 58 male oligoastrocytoma G3 TCGA-LGG Mutant non-codel Methylated 3 

TCGA-HT-7686 29 female astrocytoma G3 TCGA-LGG Mutant non-codel Methylated 3 

TCGA-HT-7690 29 male oligoastrocytoma G3 TCGA-LGG Mutant non-codel Methylated 3 

TCGA-HT-7692 43 male oligoastrocytoma G2 TCGA-LGG Mutant codel Methylated 1 

TCGA-HT-7693 51 female oligodendroglioma G2 TCGA-LGG Mutant non-codel Methylated 1 

TCGA-HT-7694 60 male oligodendroglioma G3 TCGA-LGG Mutant codel Methylated 2 

TCGA-HT-7695 29 female oligodendroglioma G2 TCGA-LGG Mutant codel Methylated 1 

TCGA-HT-7854 62 male astrocytoma G2 TCGA-LGG WT non-codel Unmethylated 3 

TCGA-HT-7855 39 male astrocytoma G3 TCGA-LGG Mutant non-codel Methylated 2 

TCGA-HT-7856 35 male oligodendroglioma G3 TCGA-LGG Mutant codel Methylated 2 

TCGA-HT-7860 60 female astrocytoma G3 TCGA-LGG WT non-codel Methylated 2 

TCGA-HT-7874 41 female oligodendroglioma G3 TCGA-LGG Mutant codel Methylated 1 

TCGA-HT-7877 20 female oligodendroglioma G2 TCGA-LGG Mutant codel Methylated 3 

TCGA-HT-7879 31 male oligoastrocytoma G3 TCGA-LGG Mutant non-codel Methylated 1 

TCGA-HT-7880 30 male oligoastrocytoma G2 TCGA-LGG Mutant non-codel Methylated 3 

TCGA-HT-7882 66 male oligodendroglioma G3 TCGA-LGG WT non-codel Methylated 2 

TCGA-HT-7884 44 female astrocytoma G2 TCGA-LGG Mutant non-codel Methylated 1 

TCGA-HT-7902 30 female oligoastrocytoma G2 TCGA-LGG Mutant non-codel Methylated 3 

TCGA-HT-8010 64 female oligodendroglioma G2 TCGA-LGG Mutant codel Methylated 3 

TCGA-HT-8013 37 female oligoastrocytoma G2 TCGA-LGG Mutant non-codel Methylated 1 

TCGA-HT-8015 21 male astrocytoma G2 TCGA-LGG WT non-codel Unmethylated 1 

TCGA-HT-8018 40 female oligoastrocytoma G2 TCGA-LGG Mutant non-codel Methylated 3 

TCGA-HT-8019 34 female oligodendroglioma G3 TCGA-LGG WT non-codel Unmethylated 1 

TCGA-HT-8105 54 male oligodendroglioma G3 TCGA-LGG Mutant codel Methylated 3 

TCGA-HT-8106 53 male astrocytoma G3 TCGA-LGG Mutant non-codel Methylated 1 

TCGA-HT-8107 62 male oligodendroglioma G2 TCGA-LGG WT non-codel Methylated 2 
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TCGA-HT-8108 26 female oligodendroglioma G2 TCGA-LGG Mutant non-codel Methylated 1 

TCGA-HT-8111 32 male oligoastrocytoma G3 TCGA-LGG Mutant non-codel Methylated 2 

TCGA-HT-8113 49 female oligodendroglioma G2 TCGA-LGG Mutant non-codel Methylated 3 

TCGA-HT-8114 36 male oligoastrocytoma G3 TCGA-LGG Mutant non-codel Methylated 2 

TCGA-HT-8558 29 female oligodendroglioma G2 TCGA-LGG WT non-codel Unmethylated 2 

TCGA-HT-8563 30 female astrocytoma G3 TCGA-LGG Mutant non-codel Unmethylated 3 

TCGA-HT-8564 47 male astrocytoma G3 TCGA-LGG WT non-codel Unmethylated 2 

TCGA-HT-A4DS 55 female astrocytoma G3 TCGA-LGG WT non-codel Unmethylated 2 

TCGA-HT-A5R5 33 female oligodendroglioma G2 TCGA-LGG Mutant non-codel Methylated 2 

TCGA-HT-A5RB 24 male astrocytoma G2 TCGA-LGG Mutant non-codel Methylated 1 

TCGA-HT-A5RC 70 female astrocytoma G3 TCGA-LGG WT non-codel Unmethylated 2 

TCGA-HT-A616 36 female astrocytoma G2 TCGA-LGG Mutant non-codel Methylated 3 

TCGA-HT-A61A 20 female oligodendroglioma G2 TCGA-LGG Mutant non-codel Methylated 3 

TCGA-HT-A61B NaN NaN NaN NaN TCGA-LGG Mutant non-codel Methylated 2 

W1_19961025 NaN NaN NaN NaN NaN NaN NaN Unmethylated 2 

W10_19970429 NaN NaN NaN NaN NaN NaN NaN Methylated 1 

W12_19970620 NaN NaN NaN NaN NaN NaN NaN Unmethylated 3 

W13_19970822 NaN NaN NaN NaN NaN NaN NaN Unmethylated 3 

W16_19971015 NaN NaN NaN NaN NaN NaN NaN Unmethylated 1 

W18_19971110 NaN NaN NaN NaN NaN NaN NaN Methylated 1 

W2_19961101 NaN NaN NaN NaN NaN NaN NaN Methylated 3 

W20_19970516 NaN NaN NaN NaN NaN NaN NaN Unmethylated 1 

W21_19980105 NaN NaN NaN NaN NaN NaN NaN Unmethylated 2 

W22_19980102 NaN NaN NaN NaN NaN NaN NaN Methylated 1 

W29_19980521 NaN NaN NaN NaN NaN NaN NaN Unmethylated 3 

W30_19980608 NaN NaN NaN NaN NaN NaN NaN Methylated 2 

W31_19980629 NaN NaN NaN NaN NaN NaN NaN Unmethylated 3 

W32_19980701 NaN NaN NaN NaN NaN NaN NaN Methylated 3 

W33_19980704 NaN NaN NaN NaN NaN NaN NaN Methylated 3 

W34_19980713 NaN NaN NaN NaN NaN NaN NaN Unmethylated 2 

W36_19980714 NaN NaN NaN NaN NaN NaN NaN Unmethylated 1 

W38_19980910 NaN NaN NaN NaN NaN NaN NaN Methylated 2 

W39_19980919 NaN NaN NaN NaN NaN NaN NaN Methylated 1 

W5_19961211 NaN NaN NaN NaN NaN NaN NaN Unmethylated 3 

W54_20000902 NaN NaN NaN NaN NaN NaN NaN Unmethylated 3 

W7_19961218 NaN NaN NaN NaN NaN NaN NaN Methylated 1 

W9_19970410 NaN NaN NaN NaN NaN NaN NaN Unmethylated 3 

 


