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Abstract 

REAL-TIME MATERIAL STATE ASSESSMENT OF COMPOSITES USING 

ARTIFICIAL INTELLIGENCE AND ITS CHALLENGES 

Muthu Ram Prabhu Elenchezhian 

Supervising Professor: Kenneth Reifsnider 

Over several decades of careful experimental investigation and exhaustive 

development of discrete damage analysis methods including integrated computational 

mechanics methods, our community knows a great deal about how discrete defects such 

as matrix cracks and defect growth (e.g. delamination) can be predicted in structural 

composites.  For many practical situations controlled by laminated multiaxial composite 

structures, the loss of performance and “sudden death” end of life is controlled by defect 

coupling which becomes a precursor to fracture plane development.  These interaction 

sequences are highly dependent on local details of manufacture, design configurations, 

and loading for a given application material and influenced by small variations in loading 

history and other applied conditions.   

Therefore, it is difficult to create a general analysis approach which relates real time 

measurements of a material variable which can be directly related to remaining strength 

and life.  The solution to this puzzle requires a two-step advance in the reliability analysis 

and active control of in-service structural composites.  First, a material state variable has 

to be identified that is easily measured and directly, precisely, and uniquely related to the 

coupling process that defines remaining strength and life.  And second, a methodology 
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must be defined to use that variable to calculate remaining strength and life in real time, 

for arbitrary loading types and histories.   

 The present research work addresses both of these challenges by identifying 

dielectric response as a material state variable that is easily measured on composite 

structures in real time and uniquely related to the defect coupling process that marks “the 

beginning of the end”, and then by proposing an Artificial Intelligence (AI) method of 

using a continuous real-time record of that variable to predict residual strength and life, 

and further achieve real time control and system reliability. This is achieved by using the 

Broadband Dielectric Spectroscopy method and Fiber Optic distributed Sensors to 

measure the dielectric property and strain respectively. These state variables are used to 

establish a method to identify damage in the composite material, predict the characteristic 

damage state (CDS) and residual strength, life of material with uncertainty estimates. 

Interpretable machine learning methods are utilized to identify the contributing features 

to model and explain the predictions. 
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INTRODUCTION 

1.1 Problem Statement 

The Term "Composite" means "made up of two or more different parts." A composite 

material contains two or more elements which are combined in a macroscopic scale. The 

material formed can have the performance and properties superior to those of the constituent 

material acting independently. Composite materials typically have the most superior properties 

such as light weight, excellent corrosion, and high strength to weight ratio, fatigue resistance 

and ease of manufacturing compared to the traditional materials. Advanced Composites are 

widely used as an alternative to metallic structures. 

The characteristics of composites such as high specific strength, low density, and high 

specific stiffness make composites highly desirable in primary and secondary structures of both 

civilian and military aircraft. The strongest sign of acceptance of composites in civil aviation 

is its extensive use in the world’s largest airliner, Airbus A380 and also used in the Boeing 

787. Approximately, Composite materials account for 50% of the weight of the Boeing 787, 

including most of the fuselage and wings. 

Over several decades of careful experimental investigation and exhaustive development of 

discrete damage analysis methods including integrated computational mechanics methods, our 

community knows a great deal about how discrete defects such as matrix cracks and defect 

growth (e.g. delamination) can be predicted in structural composites.  For many practical 

situations controlled by laminated multiaxial composite structures, the loss of performance and 

“sudden death” end of life is controlled by defect coupling which becomes a precursor to 

fracture plane development.  These interaction sequences are highly dependent on local details 
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of manufacture, design configurations, and loading for a given application material and 

influenced by small variations in loading history and other applied conditions.   

Therefore, it is difficult to create a general analysis approach which relates real time 

measurements of a material variable which can be directly related to remaining strength and 

life.  The solution to this puzzle requires a two-step advance in the reliability analysis and 

active control of in service structural composites.  First, a material state variable has to be 

identified that is easily measured and directly, precisely, and uniquely related to the coupling 

process that defines remaining strength and life.  And second, a methodology must be defined 

to use that variable to calculate remaining strength and life in real time, for arbitrary loading 

types and histories.  The present research work addresses both of these challenges by 

identifying a material state variable that is easily measured on composite structures in real time 

and uniquely related to the defect coupling process that marks “the beginning of the end”, and 

then by proposing an Artificial Intelligence (AI) method of using that variable to predict 

remaining strength and life, and further achieve real time control and system reliability. 

1.2 Motivation and Background 

Predictive Maintenance, also called Condition Based Monitoring (CBM) of aircraft and 

spacecraft structural components is a well-developed field with foundations in non-destructive 

testing (NDT) and Structural Health Monitoring (SHM) methods that were adopted by the 

industry in the early 1990s. Several excellent review articles document the extensive work in 

this field and the breadth and scope of the results. This prior work includes computational 

analysis, a variety of physical methods of condition monitoring, and some work on data 

analysis and interpretation including some artificial intelligence and pattern recognition.  This 

is a strong foundation for can be said to be an excellent record of safety and reliability of, for 
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example, commercial aircraft produced and maintained by the leading OEMs in several 

countries. 

What it does not provide (as evidenced by recent in-flight failures) is an in-flight system 

or reliable methodology for assessing structural integrity and expected performance that can 

predict the risk of continued operation of aging equipment of this type.  That is the objective 

of the present work. 

Under various applied field conditions, heterogeneous materials i.e. composites degrade 

progressively. To evaluate such changes in material state, Broadband Dielectric Spectroscopy 

(BbDS) is a unique robust tools which extracts the material-level information, including the 

morphology changes caused by micro-defect generation and the orientation and connectivity 

of those defects. A literature review on BbDS has shown that under the application of a vector 

electric field, with varying material state the dielectric properties of the material system also 

change. The uniqueness of this technique is that it is capable of interacting with the local details 

of the material system and can project the intensity of damage.  

Also, Understanding how engineering structures respond to loads and their environment is 

of paramount importance for their successful design and reliable operation. Analyzing the 

strains, stresses, temperatures, and deflections in a bridge during rush hour, a composite 

aircraft’s wing spar during a storm, or a high end bicycle during the Tour de France is what 

allows engineers to predict a structure’s lifetime, increase its safety, and optimize its 

performance. Armed with a complete picture of these quantities from the early design stages 

to the end of a product’s lifecycle, designers would undoubtedly create safer, stronger, and 

more efficient engineering structures. A fiber optic sensing instrument is capable of providing 

this information in real time. This distributed sensing technology enables monitoring of strains, 



 

4 

temperatures, stresses, out of plane deflections, and three dimensional shape using a small and 

lightweight package.  

Both the Broadband Dielectric Spectroscopy method and Fiber Optic Sensing system, have 

proved to be excellent CBM and SHM techniques. Hence, coupling these methods properly 

with artificial intelligence, we would be able to achieve our goal of real-time inflight 

monitoring systems 

The currency of these AI methods is the data that are generated by a physical system.  

Unfortunately, if we are uncertain about the physics of the system, we also do not know the 

level of uncertainty in the data that we use to represent it.  In this research, the nature of the 

physical data retrieved and recorded is also critical.  What physical dielectric observables best 

represent the ‘state of material’ in the specimen, and at regions of the material. However, based 

on our research, these data are direct estimates of material strength, not analogues that then 

require analytical interpretations. Also in future, this research AI model is applied to a history 

of loading after we have “trained” it.  That history might include, for example, a series of high 

amplitude fatigue loading followed by a series of low amplitude fatigue cycles, compared to a 

reversed sequence (low to high); we know from prior experimental experience that the 

remaining strength of such specimens is very different.  Constructing this ‘validation’ for more 

general loading histories is a challenge. Hence, proper Uncertainty Quantification methods are 

also to be established, for us to understand the predictions made by the artificial intelligence 

models.  
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1.3 Objective of the Dissertation 

The primary objective of this research is to use reliable state of the art sensor technologies 

which includes dielectric sensor and fiber optics, for integrated SHM/ CBM to collect data 

defining the material state and hence predict the damage mode, remaining strength and life of 

the material. The goals are listed as follows: 

• Use real-time measurements of dielectric parameters through the thickness of the 

laminate that are directly related to the material state, measured by BbDS and strain, and 

temperature collected point wise along their length measured by fiber optic sensors to directly 

predict responses such as the strength and life from its material state being assessed via 

Machine learning models and Recurrent Neural Network interpretations, for a composite 

laminate aeronautical structure under service loading that varies in time 

• Introduce changes in loading history and other variations in applied conditions to 

sort out the effect of “real life” load history effects, i.e., to support “tail number” (individual 

vehicle, structure, or specimen) prediction of strength or life in real time at any instance during 

its life, and provide a real time risk assessment. 

• Using progressive defect analysis (PDA) we will identify the defining features of 

such data, especially the changes that predict accelerating damage and impending structural 

failure. 

• Evaluate and establish the feasibility of the proposed approach as the first step in a 

sequence of Feasibility, Development, and Implementation, which can be further integrated 

via transfer of our learning to an Industrial Internet of Things (IIOT) 

The global objective of this research to develop a Cure on the Fly – Intelligent Prognostic 

Health Management System (COTF-IPHMS) for Composite materials. The COTF-IPHMS 
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aims to continuously monitor the composite structure by SHM techniques to collect the MS in 

real-time and use AI to predict the material properties, remaining strength and life based on its 

current and previous MS, as well as provide control measures and decisions for the safe 

operation of the structure. 

1.4 Outline of the Dissertation 

This dissertation is outlined as follows: 

Chapter 1 describes the problem statement, brief motivation and background and gives the 

objective of this dissertation.  

Chapter 2 deals with the in-depth literature review of composites and its complexities ; 

diagnostics and prognostics methods in composites which includes the review on the 

electrochemical impedance methods and fiber optic sensor systems ; use of artificial intelligence 

methods in these diagnostics and prognostics ; uncertainty quantification methods in aircraft 

structural prediction systems, use of interpretable machine learning methods and  finally identifies 

the gaps in the literature, proposing the contribution work. 

Chapter 3 describes the various technologies used in this dissertation in detail, which 

includes the composites manufacturing processes, broad band dielectric spectroscopy, fiber optic 

sensing system, artificial intelligence algorithms, and interpretable machine learning process. 

Chapter 4 presents the research work done on dielectric assessment of the damage states in 

composites, which are caused by introducing foreign object defects during manufacturing process. 

It also describes the prediction of these defects using machine learning algorithms, and helps us 

identify which dielectric parameters are contributing towards the prediction by using interpretable 

machine learning processes.  
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Chapter 5 presents the research work on using artificial intelligence methods for identifying 

the damage precursors in composites, under quasi-static loading conditions using the dielectric 

spectroscopy data.  

Chapter 6 presents the research work done on the residual strength and life prediction in 

composites using the dielectric and strain data collected from the sensors, and development of the 

artificial intelligence models for these predictions. It also describes the uncertainty quantification 

processes using the interpretable machine learning models.  

Chapter 7 provides the conclusion of all the results obtained through this research work 

and further provides the direction for future work in the field of diagnostics and prognostics of 

composites using artificial intelligence.  
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LITERATURE REVIEW 

The outline of this chapter is as follows: Section 2.1 describes the basics of composites, 

various composite configurations, types of damage modes and the entire variations that make each 

material and its property unique. Section 2.2 introduces AI (Artificial Intelligence) and its 

methods. Section 2.3 describes the current SHM and CBM – diagnostics and prognostics methods 

used in the composite structures, and the sub-sections of 2.3 also identifies the major literatures 

where AI, data-driven methods are used in composites SHM, NDT, prognostics. As per the focus 

of this dissertation, the in-depth literature for Fiber Optic Sensing systems and the Broadband 

Dielectric Spectroscopy (BbDS) are provided in the sub-sections 2.3.1.3 and 2.3.1.4 Section 2.4 

indicates the uncertainty and reliability associated with these methods. Section 2.5 briefly outlines 

the public datasets available for data researchers, scientists working in composites. Section 2.6 

describes the proposed application of Cure On The Fly – Integrated Prognostics Health 

Management System (COTF-IPHMS) with the Industrial Internet of Things (IIoT) that concludes 

our review with the future work and recommended measures for researchers developing such 

methodologies for real-time prognosis in composite materials. 

It is to be mentioned that parts of this chapter are published in a review article [1]. 

2.1 Composites and its Complexity  

Composite materials, are essentially made up of two or more constituents, primarily consisting 

of a fiber and matrix in the present discussion. However, each polymer composite could be 

manufactured with so many variations as shown in the Figure 2.1. 
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Figure 2.1: Composite materials and their variations 

 

For example, 5 architectures, 4 material types, 4 resin systems, 4 orientation laminate types, 

make a combination of 320 varieties of composites. Considering the layup alone, a 16 ply laminate 

could have 7 angles (0,15,30,45,60,75,90) in each layer and hence could make a 112 combinations. 

The most amazing fact about composite materials is that each small variation could influence the 

property of the material, and hence it is complex in nature to predict the strength and life of the 

material. Another important parameter to consider is that these predictions are also influenced by 

the environmental, operating conditions that are unexpected. The behavior of these complex 

material systems is dependent on the interaction of constituents in the micro (local) scale and 

interaction of the laminae at large on the global scale. Unlike metals, composites are designed to 

develop distributed damage and so that the initiation of a single microscopic crack does not 

individually affect the strength/life of these materials. Therefore, the primary interest is not in 

single local events but in the process of interaction of multiple events that have a collective global 
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effect on the material behavior. The interaction of these local events are interpreted using ‘state’ 

of the material by the means of ‘state’ variables e.g. strength, stiffness etc. and the evolution of 

these state variables with life was used as the measure of durability.  

A vast amount of literature is available on different damage modes, and their progression; 

damage could initiate because of defects during processing or could develop during service as 

shown below [2–4]. 

 

 

Figure 2.2: Defect types typically observed in structural composite materials[5]. 

Reifsnider et al observed that the evolution is more of a sudden death phenomenon as shown 

in Figure 2.3a. The damage development shown in Figure 2.3a depicts the progression of damage 

in unidirectional composites during fatigue [6]. As observed, the initiation of damage starts with 

matrix micro cracking followed by debonding between fiber-matrix or debonding between fiber-

matrix leading to micro cracking [3]. These matrix cracks initiate at different sites along the length 

of the specimen until a saturation state referred to as the characteristic damage state (CDS) is 
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obtained [6]. CDS is most often referred to a state where in the crack spacing reaches a saturation 

value after which no more individual cracks are developed in the current ply. At this state, there is 

generally a significant drop in stiffness but not in the strength as shown in the Figure 2.3b. This is 

then followed by creation of secondary cracks that are transverse to the primary cracks in the 

neighboring plies, followed by coupling of these primary and secondary cracks at the free edge of 

the sample to initiate edge delaminations. These secondary cracks are created at various sites along 

the width of the specimen and initiate local interior delaminations which differ from edge 

delaminations. In the final state of damage development, these secondary cracks interact and grow 

at a rapid ‘rate’ such that the locally failed regions find a path which then (aided by fiber fractures) 

lead to sudden drop in the strength and to final failure. 

 

  

Figure 2.3: (a) Typical damage development stages in a multiaxial composite laminate during 

tensile loading (b) Changes in global strength and stiffness during damage development 

 

As discussed above, the evolution of damage can be classified in to three stages: Damage 

Initiation, Damage Accumulation & Growth and Damage Interaction as shown above in Figure 
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2.3.  It can be observed that even though the damage development is progressive, the evolution of 

remaining strength isn’t proportionately progressive and is more typically a sudden death 

phenomenon. 

The modes of damage in woven composites are different then what is observed in uni-

directional composites. The response to loading in the fiber directions can often be approximated 

as linear. However, the response to off-axis loading orientations is highly complex and 

significantly non-linear with typically very high strain to failure. Figure 2.4 shows the typical 

response of a [+/-45°] tension specimen [7]. The response can be described in four zones based on 

applied strain; a different type of behavior is observed in each zone. As loading begins, an initial 

elastic (mostly) response is observed (zone 1) up to approximately 0.5% strain. At this point, 

matrix cracks begin to occur (zone 2) and on continuous loading, the density of these matrix cracks 

keeps increasing, and the response becomes non-linear. Around 4% strain (zone 3), the density of 

matrix cracks saturates and very few new single cracks are formed (CDS). Once a state of crack 

saturation is attained, the non-linearity resulting from matrix cracking is no longer prevalent. In 

this zone, the behavior is dominated by the fibers which have a tendency to reorient towards the 

loading direction. This behavior is referred to as trellising wherein the angle between 

reinforcement directions changes from 90°. The result of this is a stiffening response as observed 

in zone 3. Fiber trellising continues until about 13% strain, where the fibers eventually begin to 

fail (zone 4). The final non-linearity is the likely result of statistically based fiber failure over a 

range of axial strain 
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Figure 2.4: Constitutive response of an off-axis woven composite [7] 

From literature, it is evident that the evolution of the material state is not uniformly progressive 

in nature even though the damage progression is progressive. Given the complexity of damage 

modes; the location of the damage is mostly internal. Using advanced non-destructive evaluation 

(NDE) techniques one can accurately determine the location and nature of damage; however by 

the time that information is obtained the structure would have already lost its load bearing 

capability as shown in Figure 2.5. Hence as an engineer, it is important to predict the state of the 

material to avoid catastrophic failures. Different research groups have used various SHM and 

condition-based monitoring techniques coupled with AI to identify and predict the material state 

and will be discussed in the coming sections.  

Throughout this dissertation, the term “damage modes” refer to one or multiple of the damage 

modes mentioned in Fig 4a, the term “damage state” refers to manually created levels of damage 

by various researchers, based on load levels, or sensor readings and the term “damage type” refers 

to other types of damage such in indentations, bond failure, surface cracks and impact damage.  
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Figure 2.5: Capabilities of current SHM techniques to capture damage in composites during 

service life[8] 

2.2 Artificial Intelligence  

The concept of “data driven” grew out of the general subject of data analytics, especially in the 

business world. The classical sequence shown below in Figure 2.6 illustrates the general contents 

of the concept.  

 

 

Figure 2.6: Data Driven Methodology  
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AI is the new “electricity,” which powers millions of digital systems. AI can be defined by 

3 different kinds:  

1. When the training data generated for optimal decision making are of geometry only, i.e., 

AI with no physics involved, such as to train a machine to play chess.  

2. When the training data are of geometry and known physics, such as Newton’s law, such as 

GPS applications, tracking the trajectories of rockets, satellites.  

3. When the training sets do not have enough physics and depend on the past and current data 

to fit a model to predict results, such as driver-less cars, autopilot planes, SHM of 

structures.  

 

AI methods are deterministic and non-deterministic. Common AI tools can be classified by 

type of approach such as machine learning, evolutionary computation methods, and probabilistic 

methods - Statistical AI.  Machine learning is the most non-deterministic AI in application. The 

commonly used methods of machine learning are  

 Supervised learning – both input and prediction data are provided 

 Unsupervised learning – only input data is provided. No explicit output labels are 

provided, and hence the algorithm finds relationships among the input data  

 Deep learning – a machine learning algorithm, supervised or unsupervised or 

reinforcement learning based with several layer of NNs, to obtain higher level 

features from input data 

 Reinforcement learning – The process to train algorithms to make sequence of 

decisions, where the agent learns the methods to achieve a goal in an uncertain 
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complex environment. This agent is allowed to learn the behavior to achieve such 

goals by trial and error.  

 

A few of the most commonly used types of AI models with composites are shown in Figure 2.7.  

 

Figure 2.7: Classification of Artificial Intelligence techniques  

Recent developments in these AI methods, have established several intelligent systems for 

aerospace applications. In addition, the advancements in sensor technologies and data acquisition 

methods allow complex structures to be equipped with several sensors, which can analyze 
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quantities such as structural responses, like deformation and environmental behavior such as 

temperature and humidity. Regardless of this development of the sensing methods, interpretation 

of this big-data of measurements to obtain useful information on structural conditions remains a 

challenge. This leads to a massive need for developing a good data-driven AI system by applying 

the proper methods to learn and understand such data to make proper decisions.   

In the context of machine learning, the most important elements of the method are the 

prediction algorithms, which give the predictions of the defining probabilities based on the trained 

data. As general regression modeling deals with the linear equations, using models such as ANNs, 

and polynomial input features, gives the ability to derive complex non-linear equations, 

particularly useful to model the composite.  

2.3 Diagnostics and Prognostics in Composites 

 AI has first been implemented in composites for material design[9–16]. Early in 1991, an 

expert system called EXCOCOM was developed by Torbaghan et al.,[9] which is an adequate tool 

for composite materials design and optimization. To design and manufacture the composites, 

proper components of fiber, resin system and other parameters need to be selected, from which the 

desired mechanical properties can be obtained, which is done by the EXCOCOM. Precise 

explanations on the manual process in designing of composite materials and the need for the expert 

system in composite material such as fiber expert and resin expert, and the manufacturing expert 

have been proposed and  this routine design of composites was replaced by developing AI 

techniques [10]. AI has also been developed for obtaining the elastic modulus without the need to 

perform depth sensing indentation as NDT[11]. Yang et al., [12] used CNN to predict material 

properties such as stiffness, strength and toughness, which are obtained by the FEM models, and 

used as a demonstration of deep learning (DL) to accelerate the composite design optimization. 
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The researchers compared CNN with LR and RFR and attempted to open the Black Box of DL, 

visualizing the features. A detailed review on design of composites by using machine learning 

techniques has also been summarized[13].  

AI methods are also used a lot in the manufacturing, optimization and inspection of 

composites [17–26].Hong et al.,[17] built a time dependent RNN with the experimental and 

computational data for evaluating and predicting the degree of cure in the composite material. 

Hsiao et al.,[18] implemented a  Streamlined Intelligent RTM, which consists of two parts – the 

design software VIMDS-LCM and the automation control system Auto-RTM. The VIMDS-LCM 

contains AI, Simulation Engine, and its own database. It designs the Intelligent RTM by planning 

the sensing and control strategies to counteract the disturbances in RTM. Tsao et al.,[19] proposed 

an approach integrating ANN with Taguchi method to predict and evaluate thrust force and surface 

roughness in drilling of composites. It was observed that the thrust force was influenced by the 

feed rate and drill diameter whereas surface roughness estimates were influenced by the specimen 

feed rate and spindle speed. Recently, Oromiehie [20] used ANN to predict the inter-laminar shear 

strength, elastic modulus, flexural stress and strain, based on the input of layup speed, hot gas troch 

heat source and consolidation force. The complex relationships between the input and the output 

were established. Sacco [21,22] used a ML algorithm - CNN to locate and characterize the defects 

from profilometry scans. This proposed technique can accelerate the process while keeping and 

informing the human inspector to be integrated and in control, and increases the speed of 

inspection, and robustness of the human checking to be missed or misclassified. They deployed 

the models by developing a User Interface for the end user. Finally, as a summary of all 

manufacturing and inspection methods in AI, Scott Blake [23] presented the elements and 

mechanisms for applying AI to composites fabrication. It is also mentioned that AI can not only 
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be implemented in inspection, but also for prognostic methods too. A CNN has been used in 

inspection to detect Foreign Object Defects (FOD) in aircraft structures. The CNN was trained 

using a small dataset, by using transfer-learning method. Blake has represented the closed loop 

manufacturing process as the model shown in Figure 2.8. 

 

 

Figure 2.8: Closed loop manufacturing process[23]. 

2.3.1 Diagnostics Paradigm  

Traditional methods of diagnosing damage involves interpreting the data acquired from sensors 

to obtain meaningful information about the type of damage. However, in many cases these are 

human biased, and becomes more complex, as the human cannot validate the source of damage, 

or accurately identify it. Hence, integration of AI with the sensor data, will reduce the human error, 

and will be purely based on the current and past data. These integrating algorithms work by 

identifying the deviations, which are associated with damage.  

In this section, the literature articles are categorized as per the sensors used by the SHM and 

NDT methods.  Figure 2.9a represents the number of papers published on the SHM and prognostics 

of composites using the AI methods. It is clearly visible that the development of “intelligent smart 
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structures” and “intelligent health monitoring systems” started early in 1990s. However, it was 

only recently in the last decade that the application of AI in composites has been blooming with 

development of high performance computing machines. Also, it should also be noted that, the field 

of prognostics is not paid as much attention as SHM. 

 

The figures are based only on the publications considered in the literature review. A few of the 

publications do have multiple sensor systems, hence they were counted once for each category. In 

addition, a few publications are from same team of researchers, and have the same datasets, hence 

they were counted only once for accurate estimates.   
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Figure 2.9: (a) Number of publications on SHM and Prognostics of composites using AI and (b) 

Pie-Chart on SHM and NDT Sensor systems used along with AI in Composites. 
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2.3.1.1 Acoustic Emission (AE)  

Wirtz carried out fatigue and bending tests on carbon/epoxy samples, while integrating with 

AE based SHM and classified the damage mechanisms using SVM. However it was stated that 

such approaches of SHM are more complex as the relations among methods, test conditions, 

sensors were more scattered and a direct relationship could not be established[27]. Argus proposes 

using AE techniques on omega profile composite structures, and uses the PZT sensors time-wave 

data in an ANN system to detect the location of the damage. Their proposed technique uses a low-

cost hardware system, for capturing the data, and training the model using Raspberry Pi devices. 

These kind of systems are well suitable platforms for experiments which can be used with different 

ANN configurations and sensing methods [28]. Another intelligent SHM system was proposed by 

Staszewski to use ANN using the Acousto-ultrasonic wavelet data and Optical fiber strain data to 

identify the damage in composite laminates. Proper procedures on implementation of the system 

are proposed.  [29]. Also, a new type of AE sensor made from fiber optics, was developed as Fiber 

Optic Acoustic Emission Sensor (FOAES), and ANN was used to identify the AE source 

localizations in CFRP composite materials. [30]. Alternatively, Voth et al., have used a 

mathematical approach of Short Term Fourier Transform (STFT) to identify the damage 

mechanisms based on AE signals. They claim that this method isolates the frequencies of wave 

modes, hence can provide specific characteristics of sources and damage mechanisms that initiate 

acoustic events. Also this  physical relationship has a benefit of AE analysis that cannot be 

achieved through complex ANN and clustering techniques [31]. Banerjee et al., used the Kalman 

filter and particle filter – conventional data driven methods to identify the delamination region 

from PZT wafers data of AE guide waves on fatigues tests. These delamination regions were 
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validated by the optical transmission scans and the future damage areas were accurately predicted 

with 95% confidence intervals [32]. 

Unlike supervised learning, most of the researchers have used the un-supervised learning 

methods using the AE-SHM techniques. The failure modes and growth of crack was predicted by 

Kohonen-SOM, MLP - hybrid AI algorithms using the AE signals data collected during fatigue 

tests of tensile and notched carbon epoxy specimens. Surprisingly the variations in type of load, 

orientation, layup did not have a huge influence on their damage mode estimates from AE signals 

[33].  Dia has used hybrid composite materials made with aluminum and glass fibers, and 

performed quasi-static and fatigue tests on the tensile coupons. They have used 8 different input 

parameters to identify and predict the damage, using PCA, K-means and CART algorithms. To 

categorize the damage mechanisms, the most relevant AE parameters were identified as amplitude, 

frequency, duration and counts to peak [34]. Fracture toughness tests were carried out by Oskouei 

et al., on double cantilever beam specimens and the damage classes were classified by the fuzzy 

c-means algorithm based on the energy, amplitude, the rise time, the counts, the peak frequency 

and the duration of the signals obtained from AE with PZT. The values of their AE data, were 

correlated with the values obtained from the literature to obtain the respective damage mechanism 

[35]. Doan et al., carried out fatigue testing on composite split disks, and collected the AE data. 

These data were used by clustering algorithms after noise reduction and fast feature extraction 

techniques, to identify AE clusters. A mahalanobis distance based noise modeling approach was 

used. They identified the loading and unloading phases during the mechanical tests. However, the 

AE clusters were not validated against damage modes, and other complementary NDT and future 

experiments need to be performed to understand these clusters [36,37]. Crivelli et al., and Jumaili 

et al., performed fatigue tests on composite panels to predict the fatigue damage mechanisms - 
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matrix cracking and delamination damage mechanisms using unsupervised neural networks, 

clustering, Delta T mapping, and parameter correction techniques. These damage mechanisms 

were identified by ultrasonic C-scans [38,39]. Boussetta et al., used the K-means and Kohonen 

Self Organizing Map (SOM) to identify the damage behavior using the AE signals in glass-

polyester filament wound composite [40]. Ramasso et al., used the consensus clustering 

unsupervised learning algorithm to predict the early signs of failure, based on the AE time series 

data obtained from tensile tests of ring shaped composite split disk specimens. The damage states 

were predicted with good accuracies even in these complex configured structures and high 

emissivity [41]. Also several other unsupervised learning models such as k-means, hierarchal, 

fuzzy c-means, Gaussian methods, incremental clustering were all performed using the AE 

features obtained to predict the damage mechanisms on tensile and bending tests [42,43]. The real-

time structures such as wind turbine blades were exposed to fatigue testing for 21 days and the AE 

data, from PZT sensors were collected by Tang et al., These data were used to develop hybrid 

models of unsupervised and supervised learning.  The unsupervised clusters created were 

correlated with fracture mechanisms by detailed analysis. This method helps to generate the dataset 

for supervised pattern recognition method, and new data were classified accurately [44]. Nair et 

al., used the K-means, PCA, MLP and SVM methods to identify the damage mechanisms in GFRP 

coupons and CFRP- RC beams using the AE features data. The data were first classified using the 

unsupervised learning and correlated to damage mechanisms , and then trained into supervised 

learning for making predictions [45,46]. 
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Figure 2.10 Method of Using Unsupervised along with Supervised Learning[43] 

 

2.3.1.2 Piezoelectric Guided Wave Sensing  

  The guided wave sensing method can be used for identify defects like foreign bodies, and 

also for identifying the damage in the material. But the characterization of the damage mechanism 

using the Piezoelectric Transducer (PZT) sensors is very difficult, which builds the path for AI to 

play a role.  

 Schillemans et al., used pattern recognition algorithms such as K-nearest, potential function 

classifier, linear classifier, F-machine and modified K-nearest in identifying the defects of foreign 

bodies like aluminum and Teflon in carbon epoxy panels using the time domain PZT signals. 

Classifying error is lower order than classifying in random, hence the pattern recognition reduces 

the manual human work and has great potential [47].  

 Many researchers have used the ANN to identify the damage type using the ultrasonic 

system with PZT sensors [48–51]. Su et al., used ANN with the data generated by FEA and PZT 

to predict the position, geometric identity, and orientation of the damage and Kral used the ANN 
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combined with SOM, to identify the initial onset of damage by placing piezoelectric wafers in 

Carbon/Epoxy laminate panels [48,50]. A hybrid learning approach of ANN with Neuro-Fuzzy 

technology was implemented to detect and locate the impact damage in the carbon epoxy laminates 

embedded with PZT. The phase, frequency and magnitude data were used. This adaptive system 

has a significantly short training procedure [49]. Another hybrid algorithm called Radial Basis 

Function Neural Network (RBFNN) was applied to identify the impact damage in CFRP tensile 

coupons using the piezoelectric signals[51].  

 Decision tree algorithms were used by Talaie et al., on the PZT data, along with dielectric, 

optical fiber data to monitor the curing of glass fiber laminate, and hence identify its physical and 

mechanical properties [52]. The PZT time wave data was used to detect the induced damage modes 

of vibration tests on carbon epoxy coupons by using the SVM and K-Nearest Means algorithm by 

Das et al.,. They also classified the anomalies based on the unusual patterns [53]. SVM was also 

used to predict the location of the load based on the PZT signals on a carbon epoxy panel, subjected 

to surface to response excitation analysis[54].  

 In a study by Manson et.al, the damage in composite panels subjected to environmental 

changes such as humidity and temperature were obtained by using PZT lamb waves. By 

performing PCA and outlier analysis, it was observed that damage-sensitive features are more 

sensitive to temperature in comparison to humidity, hence  data normalization techniques are 

required to cover all normal operations of a damage-free structure[55]. Tibaduiza et al., developed 

hierarchical nonlinear PCA, fine and weighted K-nearest neighbors algorithms for damage 

prediction in carbon epoxy plates and sandwich structures[56].  

 CNN has been used on the ultrasonic wave images obtained from carbon epoxy laminates 

to identify the impact location and classify it by Tabian et al., The impact energies were classified 
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into different categories as safe, alert and danger. The model had excellent accuracies of 98.3% 

demonstrating it as a reliable method. However, thresholds of the risk categories must be 

established from experiments, or from material properties [57].  

  

 

Figure 2.11: Passive sensing with embedded wireless sensor networks mounted on a aircraft and 

CNN for impact detection[57]. 

2.3.1.3 Fiber Optic Sensing  

Fiber Optic Sensors (FOS) are widely used in SHM due to its various advantages due to its 

immune nature to electromagnetic interference, corrosion resistance, collecting multiple material 

states and easier installation compared to the traditional strain gauges. 

Miller et al., installed the FOS on a straight tapered composite wing at NASA, to calculate 

the distributed vertical shear, bending moment and torque loads along the wingspan. The results 

were compared with the conventional foil strain gauges and demonstrated the advantages in using 
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FOS for providing distributed wing load information, reducing instrumentation weight and 

reducing load test calibration complexity [58].  

 As a combined manufacturing and SHM process, Talaie et al., have used optical fibers 

along with dielectric and PZT sensors, simultaneously embedded in composites for cure 

monitoring and hence therefore predicting the class of laminate and its physical and mechanical 

properties, by monitoring the strain and temperature and developing a decision tree based AI 

algorithm [52]. Oliviera et al., have used the ANN and SOM algorithms using the strain data to 

detect the damage – matrix cracking, delamination and fiber breakage on glass-polyester laminate 

panels subjected to tensile loading. They have used the optical fibers with FBG’s and 

interferometer, and also AE based sensing for validation [59]. Another AI application of damage 

detection using embedded FBG’s was implemented on glass epoxy tensile coupons subjected to 

mode I tension compression testing, and static tests. An SVM algorithm was developed using the 

FBG wavelets [60]. Datta et al., used least square support vector regression to predict the impact 

of damage and estimate the energy using the strain data obtained in carbon epoxy laminates 

subjected to drop test[61].    

 Panopoulou et al., and Loutas et al., have developed ANN and SVM algorithms 

respectively[62,63] using the fiber optic data obtained by varying vibration analyses on carbon 

epoxy thin panels, and honeycomb sandwich panel – stiffened panels. The inputs were strain data 

in frequency and time domains. The structural damage types were predicted. Lu et al., used the 

FBG wavelength data to identify the damage in carbon epoxy plates using Fourier transform, 

PCA,SVM,C-SVC[64].   

 Perez et al., Montoya et al., [65–67] have used the fiber optic sensors in the real-time UAV 

wing sections. They have performed bending tests, real-time flight tests under various flight 
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conditions and have collected the strain data. These strain data have been used by different 

algorithms such as PCA, SOM, and unsupervised algorithms such as Fuzzy C-Means and 

Gustafson Kessel to accurately predict the damage in the composite wing structure with high 

accuracies. The UAV wing structures are made up of carbon-epoxy material, and with balsa as a 

hybrid structure. Guemes and Perez conducted impact drop tests on CFRP composite panels, 

Isogrid structures and real-size wind turbine blades, with embedded fiber optic sensors to collect 

the strain data. A PCA algorithm was used to predict the damage index in the structure. Ultrasonic 

C-scans were used to validate the damage in the composite panel[68]. The researchers have 

proposed the use of unsupervised learning followed by supervised learning. As it is possible to 

have data from all the different operational conditions for a composite structure and, therefore, 

construct a model (e.g. statistical) from these data. Such developed models may be too general and 

some data from damage conditions may fit into the model and, subsequently, be classified as a 

normal condition. One successfully-proved approach is to use unsupervised-learning, density-

based classification to create clusters according to the operational condition and, then, build 

models for each specific cluster. 

2.3.1.4 Computational Finite Element Analysis (FEA) models and its validations 

 Early in 1994, Ramu et al., developed an AI algorithm by integrating fuzzy logic with ANN 

to identify, categorize and assess the extent of damage on composite materials. They used the 

displacement data, obtained by FEA models using vibration analysis and experimental data from 

literature to validate their model. However they concluded that obtaining a huge number of data 

to include in the training is cumbersome. Also, developing a trained network is a heuristic and 

laborious process with no knowledge of theoretical foundation and convergence takes a huge 

amount of time with the available computational resources [69]. Anderson et al., developed an 



 

30 

electric potential based damage detection technique using an ANN to detect the size and location 

of damage. A MATLAB based boundary element method tool was developed and validated against 

ANSYS FEM code results. The damage was defined by the reduction in electrical  

conductivity[70]. Another ANN model was developed using the input as Lamb wave’s data 

obtained using 3D FEA modelling. The model was validated using PZT Lamb waves and the 

position, geometric identity and orientation of the defects were identified [48]. Kesavan et al., 

developed FE models of composite beam and composite T-joints made up of E-Glass fabric 

materials, to the strain data along the bond line during delamination. These FEA models were 

validated with the experimental models. More data points were obtained from FEA models, and 

an ANN was constructed to assess the presence of damage, the size and location of delamination’s 

with an acceptable level of accuracy[71]. Other ANN models with FEA data were developed by 

Nasiri et al., where they have used the frequency response and modal analysis data obtained during 

vibration analysis of glass epoxy laminates to detect and localize the delamination [72]. Agosto et 

al., used FEA models to obtain curvature and thermal data to develop a neural network model for 

a sandwich composite beam. These models were validated with experimental data obtained by 

vibrometer and IR sensors [73]. Gomes et al., identified and predicted the structural delamination 

by conducting an inverse optimization problem using GA and ANN. It was performed on the 

vibration testing data of CFRP plates through FEA analysis [74].  

 An interesting case study on composite airfoil was carried out to assess the robustness of 

the ANN SHM system, when the ANN was exposed to a noisy input. This study investigates the 

manufacturing uncertainty in SHM. The predictions were increased to above 90% with signal to 

noise (SN) weighting data and the noise in the data accounts for the thickness uncertainties. The 

FE model was developed in Abaqus and validated against the experimental data for a hybrid 
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laminate of Glass, PVC foam and carbon epoxy. In the performed case study by Teimouri et al., a 

suitable SN ratio was determined for noisy damage data for each input neuron [75]. 

 An SVM approach to predict the damage class, life, and as a foundation to take prognostics 

measures on helicopter rotor blades was developed by using a physics-based model and FEA aero 

elastic analysis. The vibratory hub loads were utilized as the input to the model. The SVM based 

blade damage detection approach maintains a substantial stand in the online damage detection 

system owing to its capability to provide optimal performance with a limited training data [76]. 

Khatkhate et al., used FEA methods to obtain the strain values for a composite box constructed 

with stiffeners, and the FEA model was validated with experimental data, using FBG sensors. A 

study on the sensor failure detection was carried out [77].  A more complete survey for 

identification and optimization in composites using FEA computational techniques, identifying the 

inverse problem are given by Gomes et al.,[78]. However, all of these computational methods may 

be used as a support to implement the SHM on composites, on finding optimization location points 

for sensors, but they will need another sensor-based system to validate the techniques.   

2.3.1.5 Electrochemical Impedance Spectroscopy Methods  

 Using electrical methods to monitor structural integrity of composites has been around 

since 1970’s. Several dielectric damage indicators have been derived from the electrical resistance, 

impedance, conductivity and permittivity values. Robinson studied the change in resistivity of 

carbon fiber reinforced composites (CFRP) (on-axis) loaded in tension and compression and 

correlated the increase in resistance to damage in fibers and discussed the possibility of insitu 

measurements of resistance during flight to warn the pilot of impending failure; but emphasized 

the importance of uncertainty and reliability in measurements with a confidence interval [79]. 

Schulte et al. performed similar measurements of resistance change in on-axis CFRP during fatigue 
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loading to continuously monitor the condition of structure [80]. Irving et al. performed insitu 

electrical resistance measurements during fatigue and concluded that significant resistance 

changes observed during initial cycles corresponded to lower fatigue life and may be used as a 

basis for life estimation for in-plane fatigue [81,82]. Schueler et al. used electrical conductivity 

mapping by developing electrical impedance tomography (EIT) methods for orthotropic materials 

to detect damage in CFRP using a series of network resistors to determine the change in resistance 

along a damage region [83]. Todoroki et al. identified delamination using variation of resistance 

measurements taken from multiple co-cured electrodes on the surface of a composite [84]. Wang 

et al. observed that during fatigue the resistance increased suddenly when delamination was 

initiated as it decreases the chance that fibers in adjacent layers touch each other. Under continued 

fatigue, another sudden increase was observed followed by noisy response due to the percent 

increase in area of delamination [85,86]. Several other research groups have used the electrical 

resistance measurement methods to monitor structural integrity [87,88]. Abry et al. examined the 

dielectric properties of [+45;-45]8s laminates and found non-linearity in the complex impedance 

response[89,90]. However, a key point to consider is that the electrical resistance measurements 

depend on the change in resistivity of the material system due to damage and hence works well 

with CFRP. However, for glass fiber reinforced composites (FRP) the use of carbon black fillers 

in matrix or embedded carbon nano tubes (CNT) have been implemented to obtain these 

measurements.. 

 Historically, EIS has been used to monitor moisture absorption and induced damage in 

composites. Glass et al. used EIS to monitor damage in CFRP due to moisture absorption. They 

observed that with increase in moisture absorption the capacitance increases because of the 

opening of matrix cracks due to swelling and with time the capacitance started to decrease due to 
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loss of active surface area. However, they observed that with increase in uptake of moisture the 

shear strength decreased as well and during ex-situ measurement the capacitance also decreased 

because of broken fibers that isolated the areas of composite exposed to moisture [91]. Bekas et 

al. used EIS to monitor damage in nano-enhanced composites and found direct correlation of 

change in impedance to damage events [92]. Fazzino et al. used EIS with woven composites and 

showed that the micro cracking due to fatigue changed the impedance measurements dramatically 

and definitively. They induced surface-initiated damage using end-loaded bending. The samples 

were soaked in 5M NaCl solution and this ionic solution filled the micro cracks and penetrated 

through the surface to the interior of the sample leading to conductive regions leading to a decrease 

in impedance. During continuous fatigue, these micro cracks coupled through the thickness and 

created a path (fracture plane) filled with this ionic solution resulting in a significant decrease in 

impedance measurements [93]. 

Using BbDS, Raihan et al. studied insitu dielectric response of off axis woven composites 

during tensile loading and observed that the dielectric permittivity rapidly increased in the 

beginning owing to matrix micro cracking resulting in creation of new surfaces (interfacial 

polarization), followed by saturation of permittivity due to crack saturation, gradual decrease due 

to coupling and fiber trellising, and final decrease with increased slope during the initiation of fiber 

fracture [94]. They categorized the response into various damages. They postulated that the 

decrease in permittivity during coupling is because of transition from surface to volume effects. 

Further, Reifsnider et al. calculated the second variation of strain energy and the second 

variation of the measured capacitance with strain; normalizing both of those plots by the initial 

value, it was observed that the two variations were remarkably similar. They concluded that the 

physics of damage initiation (micro-crack formation) events drives corresponding changes in strain 
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energy and dielectric response measured in the laboratory, i.e., that those observables are dual 

responses to the process of damage development . Several other researchers have used the BbDS 

technique for damage monitoring in composites and observed variation in the dielectric properties 

during damage development [95–98]. 

 Seo et al., used ANN to predict the stiffness degradation and hence the fatigue life, based 

on the change in electrical resistance observed by dielectric sensors. Simple instruments could 

obtain this electrical resistance change. The ANN model overcomes the  limitation of electrical 

resistance damage models which showed better results for predicting the stiffness degradation.[99] 

Eumetric 100A dielectric sensors were used in a composite laminate manufacturing process for 

monitoring the cure of the glass fiber epoxy laminates, obtaining its permittivity values. These 

permittivity values, along with strain and dielectric loss value, are used in a decision tree pattern 

recognition techniques to predict the class of the laminate, its mechanical and physical 

properties[52].     

2.3.1.6 Strain Measurements  

 Early in 1993, Grady et al., used strain gauges to obtain strain data for carbon epoxy 

composite materials subjected to vibration testing. These strain data were used by pattern 

recognition techniques to identify the damage modes and delamination of the material. These 

researchers from NASA presented a framework of the monitoring technology using feature 

extraction and learning, and requirements for the data base needed to build such methodologies 

[100]. This article serves as one of the very first research efforts as per the author’s knowledge for 

an AI based structural health monitoring system. Kesavan et al., has used the strain gauges on the 

experimental testing to obtain strain values and to validate with FEA models. These data were used 

by ANN to predict the damage size and location of composite beams and T-joint structures [71]. 
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2.3.1.7 CT Scans, X-Rays 

 Delelegn used the CT scans to detect, identify and characterize the cracks and 

delaminations in carbon fiber composite laminate panels subjected to static and monotonic 

indentation tests. CNN has been used as the AI algorithm with digital image processing methods 

to make the predictions. This method will allow researchers to utilize volumetric models for a 

sound understanding of the propagation of damage in materials, which result in design 

optimizations that avert catastrophic failures. The researcher also suggests that the future work 

should include optimizing the algorithms for fast predictions, developing  improved and automated 

contrast enhancement algorithms, identifying and labeling the different types of anomalies 

detected within an image, and expanding the training data sets to include more types of damage, 

porosity, wrinkles [101]. X-ray images of the composite materials have been used by a wide range 

of researchers, mainly as a validation tool, to validate the other sensor data. Few researchers have 

used the images in CNN based AI algorithms to make predictions. However, CT scans and X-Rays 

can be used as a research tool with AI, but cannot be implemented to make real time predictions 

during the in-service flight of the aircraft. Such AI research tools can be used by NDT inspectors 

to inspect the aircraft during regular maintenance intervals, and will reduce the human error.  

 

2.3.1.8 Other SHM methods with AI 

 In one study, a hybrid carbon epoxy beam with urethane was subjected to vibration and 

thermal analysis by experimental and FEA methods. Laser Doppler Vibrometer and IR camera 

sensors were used in the experimental analysis. ANN was developed to predict the damage. When 

both sensor data were used together with a Bayesian probabilistic neural network, curvature and 
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thermal base analysis complemented each other to augment the damage detection capabilities [73]. 

Marani et al., used thermography NDT inspection on glass epoxy composite panels to identify the 

defects, holes using the unsupervised H-Clustering algorithm. The heat maps of laminates were 

input to the model. Results have been compared with other well-known techniques and clearly 

prove the capability of the proposed method to detect defects underneath the specimen surface, 

also lowering the number of false positives [102].  

 Another new technology called the mechanoluminescence, which is the phenomenon of 

light emission from organic / inorganic materials due to the mechanical stimuli, was used as an 

SHM method. This method has difficulty in mapping the physical characteristics of the structure 

with relevant sensor data using mathematical models or physics based approaches. The elastic 

modulus of a structure was predicted based on the input parameters such as stress and measured 

output light, using a multivariate regression model [103]. Farhangdoust et al., developed an ANN 

to predict the bond damage location using the heterodyne effect for bonds based on the amplitude 

response obtained. The defects in bonds creates new frequencies[104].    

 2.3.2 Prognostics Paradigm 

There have been several researchers around the world, who have worked on improving the 

SHM methods to the next advanced level - prognostics, and implementing real-time prognostics 

measures. Since these involve continuing research work and improvements on the diagnostics and 

prognostic approaches, these sections are classified based on the research group and their 

contributions in this field.  
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2.3.2.1 Fatigue Life Modelling 

 The fatigue life modelling of composites is not a structural health monitoring or prognostics 

application, as the input data are not from a sensing system, but as they predict the fatigue life 

based on the material property and load conditions, these models could help reduce the 

experimental testing cost and time by implementing them to model various composite material 

behavior and their fatigue life. It will also serve as guidelines to choose AI models wisely to predict 

the remaining life.  

A team of researchers from UAE led by H. El Kadi has performed a series of experiments, 

and have contributed a lot to the field of data driven analysis in prognostics of fatigue life. The 

experiments consisted of the tension-tension and tension compression fatigue testing of glass 

fiber/epoxy composites. Specimens were fabricated at five different orientation angles (0, 19, 45, 

71 and 90). The input to the ML/AI models where the fiber orientation angle, maximum stress and 

stress ratio (R = 0.5, 0.-1) of fatigue testing and the output was the number of cycles to failure. 

Several AI models, which included ANN, Adaptive Neuro-Fuzzy model, Feed Forward Neural 

Network, Modular Neural Network (MNN), Polynomial classifiers (PC), Radial basis function 

networks, Recurrent Neural Network, Self-Organizing Feature Maps (SOFM), Principal 

Component Analysis networks were developed. Kadi et al., also used strain energy alone as the 

input to predict the fatigue failure using the ANN and MNN models. They also studied different 

composite materials and their fatigue life data from literature, and predicted the fatigue life by 

using a PC algorithm.  

As per these researchers, AI is not recommended to determine the relationship of input and 

output since it represents linguistic and subjective descriptions. When a large number of data are 

available, using techniques like SOFM for clustering the input data with neighboring preserving 
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predicts accurate fatigue life. Also huge amount of data is required to obtain good predictions. 

Using PC produces repeatable results with less computational requirements. The scatter in fatigue 

life data negatively influences the estimates from ANN or PC. The researchers aim to predict the 

fatigue failure of multidirectional laminate from the data of unidirectional lamina using ANN. The 

authors recommend reading the review paper by Kadi for more detailed insights [105–112].  

The number of cycles to failure of composite coupons were predicted by using various AI 

algorithms such as ANN, ANFIS, GP, RNN, RBFNN, FFNN, and GRNN. The inputs to these 

models were the fiber orientation angle, maximum stress, applied stress, stress ratio, thickness of 

the plies [113–115]. Vassilopoulos et al., demonstrated that using 50% of the experimental data 

was enough to model the fatigue life, and build constant life diagrams for multiple material systems 

using ANN. These data were obtained from constant amplitude fatigue loading of multidirectional 

laminates [113]. Mini et al., carried out the fatigue analysis using FEA to predict the fatigue life 

using ANN [114]. For a more extensive literature on modelling the fatigue life, authors recommend 

the book chapter on computational intelligence methods by Vassilopoulos et al., [116] 

 

2.3.2.2 Remaining Useful Life (RUL) Predictions  

2.3.2.2.1 NASA Prognostics Dataset 

 The researchers from Prognostic Center of Excellence (PCoE) of NASA Ames Research 

Center along with Stanford Structures and Composites Laboratory (SACL) carried out run-to-

failure experiments on CFRP panels with periodic measurements to capture internal damage 

growth under tension-tension fatigue. Monitoring data consists of lamb wave signals from a 

network of 16 piezoelectric (PZT) sensors and multiple tri-axial strain gages. Additionally, 

periodic x-rays were taken to characterize internal damage as ground truth information. Three 
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different layups were tested. Based on this dataset, both physics-based and data-driven AI based 

algorithms have been developed.  

 Saxena et al., initiated the accelerated aging experiments for composites materials and 

extracted the damage growth Condition Indicators (CI) as Change in Power Spectral Density 

(PSD), Scatter Energy, and Time of Flight (TOF). They also proposed to use the Bayesian Filtering 

Gaussian Process regression algorithm. These CI’s characterized the damage growth with their 

monotonically increasing. Later a key contribution was made by Peng et al.,  as the inclusion of 

micro-scale damage evolution models acting as a state transition equation that are hierarchically 

connected to a macro-scale stiffness reduction model into a Bayesian filtering algorithm that 

sequentially updates both damage states and model parameters as time evolves. Through stochastic 

embedding, these deterministic models are converted to probabilistic models by introducing a 

modeling error term. This modeling error term is controlled by a probability density function 

whose parameters are sequentially estimated in addition to the rest of model parameters. Larossa 

et al., used 9 features - TOF, Amplitude (A), Energy (E), PSD peak, PSD rate, PSD change 

(PSDchange), TOF/PSDchange, PSDchange/TOF, A/TOF, in a Gaussian Discriminant analysis 

that was based ML algorithms on the same experiments. Their results had an error rate of 21%, 

high precision and recall values and it was sensitive to layup configuration. Another framework 

predicting the balance of release strain energies from competing damage modes to establish a 

reference threshold for prognostics was also introduced. Later again, the Bayesian framework was 

extended to support multiple damage mechanisms and it estimated the damage growth and fatigue 

life [117–123].  

However these models consider a number of hypotheses and assumptions. The framework 

assumes that the damage data were given in form of matrix micro cracks, which is considered to 
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be the dominant damage mode and hence other possible damage modes like delaminations and 

fiber-breakage among others, were not explicitly modeled. Also the model completely relied on 

normalized effective load and stiffness measurements which defines the energy release rate.  

 

Figure 2.12:In-Situ Fatigue Life Prognosis model [121]  

  

 Apart from the team from NASA, since NASA Prognostic center published it as an Open 

access dataset, it was available to other researchers to develop data-driven models. Lahmadi et al., 

used the load, cycles and degradation data to predict the RUL using RNN. Liu et al., developed 

Linear, SVM, Random Forests, Adaboost, Gradient Boosting, extra trees, Ensemble Learning 

models using the time of flight (TOF), power spectral density (PSD), interrogation frequency, path 

number and usage cycle from the dataset to predict the delamination crack growth. These AI 

models had learning capabilities but not excellent prediction accuracies [124–126]. The 

researchers consider that the global damage effect on the lamb wave propagation, lack of complete 

experimental data causes the high error rate.   

 In summary, both physics based and AI based models have been developed to this dataset 

for RUL of composites; however, there was no research combining, forming hybrid models. Also, 
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the parameters of those physics based models depend on the shape, orientation, failure type, 

applied loads and hence it limits the applicability of these models.  

 

2.3.2.2.2 Prognosis of Composites based on SHM - ReMAP – European Project 

 A team of researchers from Europe – TU Delft and University of Patras – Loutas, 

Zarouchas and Eleftheroglou along with a team have worked on in-situ prognosis of composites 

using data-driven AI methods. This team is currently working on a project called ReMAP 

(https://h2020-remap.eu/) for certification of Condition Based Maintenance of Aircraft structures. 

They propose to use four different SHM technologies, which are dynamic strain measurements 

(vibrations) with FBGs; AE measurements; static strain measurements with FBGs and distributed 

sensing; Acousto-ultrasonic measurements with PZT sensor networks.  

 The initial experiments consisted of constant amplitude fatigue tests of open-hole carbon-

epoxy composite coupons. AE data was recorded using PZT sensors during in-situ fatigue testing. 

The damage model was developed based on non- homogeneous hidden semi Markov (NHHSMM) 

approach using the input data. Also an ANN model was developed. The predictions were made 

with the confidence intervals.  NHHSMM provides much less volatile predictions its confidence 

intervals shorten as more data come into play. Also recently data fusion methodology was 

proposed combing the AE and Digital Image Correlation (DIC) data. They have also established 

new prognostic performance metrics called the Modified Mann-Kendal (MMK) monotonicity 

metric and Confidence Intervals Distance Convergence (CIDC) metric.  

Based on their initial experiments they observed a large scatter of the experimental data 

and a strong stochastic behavior of fatigue damage. These prognostic models are dynamic and 

utilize all data points from beginning of fatigue loading and make real-time predictions. Also, there 

https://h2020-remap.eu/
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is a need to consider the autogenously heating effect during the fatigue tests and how it will affect 

the RUL of the coupons with increase in stresses or strains. However this heating effect does not 

affect the performance of the model. The temperature rise may indeed decrease the actual RUL by 

accelerating the damage initiation and propagation in the material, but this is expected to be 

captured by the AE measurements, and thus, it is indirectly reflected in the predictions. Hence, this 

gives a flavor of in-service conditions where temperature changes are anticipated. 

 

Figure 2.13: Adaptive Prognostics Methodology  

The results from their recent experiments concludes that the DIC RUL estimations scored 

better in all prognostic performance metrics. Consequently, when compared with the AE and 

fusion data, DIC data was the optimum prognostic performance data. However, the authors have 

not discussed the limitations on using DIC as real-time sensors as it could be used as a correlation 

method only. More recently, an extension to NHHSMM, called the Adaptive NHHSMM or 

ANHHSMM has been proposed. This ANHHSMM, was tested on unseen events, and has proven 

to adapt to unexpected events and make prognostics of RUL. Also it has the capability to learn and 
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update its weights in real-time. It is also recommended to consult the book chapter by Zarouchas 

and Eleftheroglou for more reading into their work [127–132].  

2.3.2.2.3 Other Prognostics of Remaining Strength and Life 

 Teti et al., have predicted the residual strength of glass epoxy notched coupons using the 

AE and load data in Neural Networks. Their results obtained emphasize the usefulness of neural 

network processing in materials technology problems where analytic solutions are not available 

[133]. Choi et al., developed an ANN model to predict the longitudinal split growth under tension 

dominated fatigue testing of carbon-epoxy notched specimens. Their ANN model is found to work 

better than the power law model as a predictive tool for split growth [134]. Another ANN model 

with a Levenberg-Marquardt learning algorithm was developed to predict the stress on the CFRP 

and GFRP composite coupons belonging to the same resin system, based on the strain and the 

material properties[135]. A research effort for predicting the fatigue crack growth was attempted 

by deploying the two sided cumulative sum model on fatigue testing of notched coupons. The load 

and crack size were considered as the input parameters. This data is time step based data as the 

prediction depends on the previous state and serves as a model-based prognosis method[136]. Also 

damage precursors were identified based on the AE signals, temperature data and the dissipated 

energy using dynamic Bayesian network, combined with particle filtering and SVM on 

glass/epoxy samples in fatigue bending tests. However the non-homogeneity of data was not taken 

into account [137]. .  

 Liu et al., have predicted the damage state and RUL of carbon epoxy coupons subjected to 

uniaxial and biaxial fatigue loading. They used the time series data of PZT and AE sensors on 

PCA and Gaussian process based systems. The prognosis algorithm initiates after a certain damage 

level to collect sufficient previous damage state information. On-line damage state prediction and 
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remaining useful life estimation showed good correlation with experimental data at later stages of 

fatigue life. They predicted future damage states with 95% confidence intervals and RUL 

information. It was also proved that the accuracy of future damage state prediction improves as 

more and more experimental information (such as strain measurements and the corresponding 

estimated damage states) was available. By comparing the on-line prediction from PZT and 

acoustic emission features it was observed that piezoelectric features provided better prediction 

accuracy than AE counts. This could be due to the fact that the model was not familiar with the 

signal processing and filtering aspects of the AE system and therefore it is difficult to use these 

kinds of features or improve on it [138,139]. Another approach to predict the RUL was carried out 

by Joint Extended Kalman Filter (JEKF) algorithm using the PZT ultrasonic wave’s data of glass 

epoxy coupons subjected to tensile loading. This combination of sensors and JEKF algorithm, 

teach that the real-time calculation of the remaining useful life is possible and it could be 

sufficiently effective to be study in a real-time situation [140].   

2.4 Uncertainty Quantification 

Uncertainty Quantification(UQ) is an important engineering factor, because the engineer’s 

judgment in design, manufacture, operation and maintenance – including decision making for 

structural prognostics, needs the prediction estimates with credible uncertainty bounds for safe 

operation and failure prevention. In composites, due to the complex damage mechanisms, the 

models lack confidence in real world applications. The uncertainty in this system may come from 

the sensing systems by means of inaccurate data transmitted from sensors or imprecise database 

developed during the damage analysis, manufacturing errors, environmental errors, loading 

perturbations, model errors. Potential sources of uncertainty are shown in Figure 2.14 
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Figure 2.14: Sources of Uncertainty[141] 

One of the main concerns in implementing AI techniques in real-world aerospace applications 

is the scarcity of data, containing all possible conditions subjected to the structure during flight. 

These data are to be collected from sensors in real-time for training the AI models. Since majority 

of the AI models developed are in laboratory scales, these are not exposed to the operational 

conditions and hence will lead to false positive estimates. In addition, by using a large dataset with 

high statistical variations will decrease the accuracy in predictions. Hence, a proper methodology 

to handle these uncertainties associated with abrupt changes to load and environmental conditions 

need to be developed.  

For example, in case of an aging aircraft in service, as shown in Figure 2.15 below, the complex 

flow of knowledge- both quantitatively and qualitatively from the databases 1,2,3,4 and M are 

required for reliable predictions. This UQ model depicted in the Figure 2.15, needs the specific 
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input from the 5 databases which are 1. Damage failure mechanism database, 2. Current SHM, 

inspection reports database, 3. Material property database, 4. Loading/Constraints Database and 5. 

Physics based/AI based Model’s learned knowledge database-M in order to effectively predict the 

remaining fatigue life estimates of the aging aircraft structure. The figure 13 also represents the 

uncertainty error in each event and databases, which are associated with all sorts of uncertainties 

and errors due to data collection, data mining, analysis and modeling the data driven model. 

Researchers from NIST have worked on solutions for similar problems uncertainty quantification 

in aging bridges, pipelines by integrating statistical design of experiments, AI and developing 

intelligent python codes [142].  

 

 

Figure 2.15: Conceptual approach of Uncertainties involved in RUL estimates 

 

As per the above figure if we consider the model M as a black box – AI model, and if we know 

that the governing equations, physics of the model are not fully understood and the list of 
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parameters that define model M contains some unknown, unidentified uncertainties, it is 

incumbent upon us to introduce another important uncertainty source, Uncertainty Error (UE) for 

model M, UE-M, that is intrinsic to model M which together represents all additional uncertainties 

inside the black box. Researches have shown that data driven AI models are capable to handle 

such uncertainties to an extent, and hence then UE-M becomes UE-RUL. AI tools with a human 

partnership are, therefore, more reliable and cost-effective in managing an aging structure. Hence, 

the UQ is to be addressed on two fields – 1. Using AI models to determine and handle the 

uncertainty on ISHM and IPHM systems; and 2. Uncertainty Quantification of the prediction of 

AI models. 

2.4.1 Using AI models to determine and handle the Uncertainty on ISHM and IPHM systems 

 This section discusses on the physics based and data driven AI models that incorporated 

the capacities to handle the uncertainties involved from various sources.   

 Ramu et al., integrated fuzzy logic with ANN to handle the uncertainties of making damage 

assessments. The fuzzy logic representation has been found to be a most efficient means of treating 

uncertainties [69]. The failure of optical fiber sensors, in SHM is a serious concern and detection 

and isolation of such events are extremely critical. Khatkhate et al., have proposed methods 

combining FEA and ANN to isolate the failure of sensors based on static strain patterns. However, 

their proposed methodology considers only sensor failure at a particular grid location on the 

structure, and not the entire failure of the optical fiber sensor, by debonding issues[77].   

 One alternate possible solution is to include the uncertainty scenarios in the training set, 

but this approach would involve developing a vast damage database which often requires 

considerable time and budget for industries. Another approach would be weighing the 

conventional neural network by signal-to-noise coefficients. In a performed case study for 
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composite airfoil, the noisy damage signature data were analyzed for each input neuron to calculate 

an appropriate SN ratio. The approach dramatically increased the efficiency of the ANN- based 

SHM, even though it was only trained with the original damage scenarios and predicted the noisy 

damage data. By using signal to noise (SN) ratio methods on the input layer of an ANN model, the 

uncertainty to noisy input data was reduced and damage location, size predictions was increased 

to 90%. It is critical to ensure that a given damage signature database contains a sufficient number 

of damage scenarios to accurately represent the reality. For a sufficiently large damage database, 

and with uncertainty propagated throughout the structure, caution must be taken not to pre-

define/prefer limited sensor locations to be used for training proposes. Such models provide robust 

SHM development. A practical problem with this approach, however, is the reliable estimation of 

SN weights. This estimation may come from past experience, expert knowledge or by developing 

a sub-set of initial DSD encompassing uncertainty cases. [75]. Model, measurement and future 

loading uncertainty are handled by using a joint parameter state estimation with a particle filter, in 

prognostics of fatigue crack growth [136].  

  Montoya et al., suggest the use of data preprocessing methods such as kernel density 

estimation and hampel identifier through which, Probability Density Function (PDF) can be 

obtained for the measured sensor data. Low PDF values are treated as a greater degree of 

outlierness and the associated data are discarded as they lie outside of the defined confidence 

intervals (i.e. 95%, 99% and 99.5%). Spikes and measurement errors are also removed by this 

process. Through some variations to the pattern recognition techniques developed, it was shown 

that with this methodology in a composite wing structure under flight testing with a suitable 

performance, the damage can be estimated with an accuracy of 0.981 and an F1 score of 0.978 

where KDE with a confidence interval of 95% was used as a preprocessing technique[66].  
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In another approach, Elenchezhian et al., built ANN and Random Forest Regression 

models, on an artificially created data set based on the average stress criterion to predict the 

notched strength of a composite coupon. They also obtained the feature importance of the input 

features used in the AI model, and the feature importance’s related to the physical relationship. It 

is incorporated that models based on a physics based law were able to produce excellent results 

since they follow a pattern, and suggests that the hybrid models with both physics based and data 

based data should be constructed for more fidelity[143] .   

 Lopez et al., has presented a review paper on the uncertainty methods for structural health 

monitoring, but it specifically does not focuses on composites. However, the methods suggested 

may be applied to the data driven models built with composites. Fuzzy logic, Dempster-Shafer 

theory, Bayesian framework with relevance vector machines combined with particle filters are few 

suggested techniques [144]. 

 Saxena et al., proposed using the Bayesian filtering methods like particle filters which have 

the capability to manage the uncertainty in the prediction process through importance sampling, 

thereby refining the current estimates of multiple damage growth model predictions using the 

evidence from measurement data. Guassian Process Regression provides variance around its mean 

predictions to describe associated uncertainty in the predictions, which will be extremely useful in 

incorporating the effect of various uncertainties for RUL prognostics. Chicachio et al., and Ruano 

et al., predicted the evolution of damage in composites under fatigue loading, with the associated 

uncertainty estimates using Bayesian methods. According to them the ability to deal with 

uncertainties from models and data can be the biggest advantage of Bayesian methods since the 

existence of uncertainty in composite materials is an undeniable fact. Peng et al., used an 

uncertainty parameter to account for the noise in the physics based model. Corbetta et al., proposed 
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a particle filter using an AD or KS sub-algorithm to filter the uncertainty linked to the model 

parameters. However it does not include the uncertainty from future loading conditions 

[117,119,121,123,145]. 

2.4.2 Uncertainty Quantification of the prediction of AI models  

 The “a90|95 value,” which is determined from the probability of detection curves, is used as 

a performance measure indicating the minimum damage size that is detected with a probability of 

90% and 95% confidence. Long-term strength and life prediction of critical aerospace, military 

composite structures entails large-grain uncertainty that must be represented and managed 

effectively, i.e. as more and more data becomes available, “means” must be devised to narrow or 

"shrink" the uncertainty bounds. Khawaja et al (2005) introduced a novel confidence prediction 

neural network that employs confidence distribution nodes based on Parzen estimates to represent 

uncertainty and a reinforcement learning algorithm which is implemented as a lazy or Q-learning 

routine that improves uncertainty of online prognostics estimates over time. It is the time 

correlation between measurements that allows to characterize the evolution of a fault [146]. 

Kral has performed design of experiments, statistical analysis on the data and predicted the 

outputs of the AI models with 95% confidence intervals. It was shown that, damage could be 

predicted to within 1 in., and damage size of 0.375 in. in diameter with 95% confidence [50]. Two 

common statistical metrics that, used along with PCA are the Q index (or squared prediction error 

index) and the T2 index (or D index). These quantitative indices are intended to consider whether 

the results of different experiments or studies are homogeneous or not, provide information about 

the magnitude of the effect of the relationships studied together with a confidence interval and 

statistical significance and whether there is heterogeneity between different experiments or studies, 
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and identify variables or characteristics that may affect the results. This PCA model is used for 

damage detection in UAV wings using FBGs [65,66].  

Consensus clustering with bootstrap ensembles allows the estimation of uncertainty 

envelopes of each cluster, and provides an interval of cumulated loading thresholds to activate a 

particular damage. The uncertainty of the assignment of clusters applied to pattern discovery in 

AE signals was investigated by using a supervised method based on a ground truth supplied by the 

end user. The proposed clustering consensus method makes it possible to represent the uncertainty 

on clusters in an unsupervised manner. This approach was implemented to predict the robust 

damage from AE time series data in composites [41,147]. 

 

 

Figure 2.16: Need for Real-Time In-situ predictions. 

 

Liu et al., predicted the damage index and remaining useful life, with 95% confidence intervals 

from the data driven models developed. From Fig. 14, in model A, it is observed that the prediction 

estimates from 95K cycles, were different from the prediction estimates from 130K cycles. 

However, the estimates were accurate to the experimental readings as more data was involved in 
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the model.  In another model B, we can observe that the prediction 2, and prediction 3 are within 

the confidence interval levels of prediction 1, and hence the accuracy of future damage prediction 

has improved as more material state values are available to assess the damage states [138,139].  

Eleftheroglou et al., have used the NHHSMM technique, and used the confidence interval for 

the mean RUL values based on the cumulative distributive function. Also they introduced a new 

metric for prognostics accuracy called the Modified Mann–Kendal (MMK) and Confidence 

Intervals Distance Convergence (CIDC), which is based on the fact that that as the amount of data 

increases during the fatigue life, the confidence intervals distance should converge. [127–129,131].  

2.4.3 Interpretable Machine Learning / Explainable Artificial Intelligence     

     A major disadvantage of using Machine learning AI models is the insights about data, and the 

functioning of model is hidden in increasing complex models like deep-neural networks. The term 

“Interpretability” is defined as the degree to which a human can understand the cause of a 

decision.[148] It is also the degree to which a human can consistently predict the model’s 

result[149]. Hence, when the Interpretability of the AI model is higher, it is easier to comprehend 

on why that particular decision was made. The ensemble models which are a blend of several data 

driven models,  result in best  performance metrics but cannot be interpreted, even if a single model 

among them would. As result, when these AI models focus on performance, it becomes more 

opaque. The goal of science is to gain knowledge and understanding, but many problems are solved 

with big datasets and black box machine learning models. The model itself becomes the source of 

knowledge instead of the data. Interpretability makes it possible to extract this additional 

knowledge captured by the model [150] Hence Interpretable AI models need to be developed for 

critical applications such as aviation, defense, and anything that involves lives. These models can 

be either intrinsically interpretable models or model-agnostic methods. Model-agnostic methods 
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which are employed on the black-box AI models work by varying the input of the model and 

measuring the variations in the estimates predicted. These methods can be differentiated based on 

their capability to explain local and/or global prediction. 

 

2.4.4 Summary on UQ  

The ability of these data-driven AI methods for prognosis under measurement and modeling 

uncertainty has been proven through numerical examples. However, they have assumed known 

values of current and future loading, which is not the case in real-life scenarios. In order to address 

the issue of uncertainty, contextual information, knowledge, and experience must be well 

incorporated. To reduce uncertainty in the diagnosis and prognosis processes, knowledge must be 

maximized via integration of various information sources. 

As Sankaraman et al., have mentioned it is not possible to analytically calculate the uncertainty 

in the remaining useful life prediction even for certain simple problems involving Gaussian 

random variables and linear state-prediction models. Therefore, it is necessary to resort to 

computational methodologies for such uncertainty quantification and to compute the probability 

distribution of remaining useful life prediction.[141] 

Any prognostic method should be able to process stochasticity and provide probability 

estimation and a confidence band around predictions. Figure 2.16 also leads to the idea of 

uncertainty, where the predictions of different IPHM models, AI based and physics based, or two 

AI based models can be combined together and the interaction regions of the predictions and their 

confidence regions could be used for decision making. Such that multiple models can be fused, 

hybrid models can be created to get more accurate prediction estimates with tighter uncertainty 

bounds     
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Physics-based models can only be used up to a certain accuracy, as they are not able to predict 

all possible phenomena. Similarly, AI models have limitations. Hence, a single methodology 

cannot be the ultimate solution for an IPHMS. Multiple models must be integrated intelligently to 

form an IPHMS with more reliability.  

 

Figure 2.17 : Implementation of AI models with Uncertainty Quantification 

 

2.5 Datasets Available 

One of the essential inputs to build AI models is the data source. Unfortunately, many of the studies 

on composites have only been published as conference and journal papers. There is not much data 

available on composites, either in any of the domains of design, manufacturing, SHM and 

prognostics. The publicly available data sets as per our knowledge for SHM and prognostics of 

composites, to explore more AI models and develop insightful findings in composites are listed 

below.  

 NASA Prognostics Dataset – CFRP Composites Dataset  [151] 

https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/  

 SNL/MSU/DOE database [152] 

https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/
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 Nathan Post Dataset – Virginia Tech [153] 

https://vtechworks.lib.vt.edu/handle/10919/26492 

It is also recommended that researcher’s create public datasets, for use of AI enthusiasts and to 

support PHM challenges. 

2.6 COTF-IPHMS with IIoT  

The real-world application of COTF-IPHMS would be a part of the aircrafts flight control system, 

where the application would provide the respective authoritative person (Pilot, Maintenance 

Engineer, Structural Inspector) with the information on damage, strength and life of the structure 

and recommended measures for the safety of the aircraft before tremendous damage to aircraft and 

life [154]. This could be achieved as:  

1. During the startup of the aircraft, COFT-IPHMS assesses the airworthiness if the aircraft, 

by assessing the current state and past state values observed by the sensor systems.  

2. During flight, the application continuously monitors the loads applied on the structure, 

damage state, and hence predicts the remaining strength and life of the composite structure. 

This is vital in military aircraft applications as the application assesses the reliability of the 

battle damage, and predicts the remaining values.  

3. Any serious damage, exceeding the set threshold values would indicate the pilot to take 

control measures, and possible maneuvering procedures.  

4. After landing, the application provides the authoritative person, with a complete report of 

the loads applied, induced damage, remaining strength and life of the structure and suggests 

the need for maintenance, or clears the aircraft for the next flight.  

https://vtechworks.lib.vt.edu/handle/10919/26492
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Figure 2.18: Functioning of IPHSM with IIoT 

 

To build such a system, the authors suggest that the following research needs to be achieved in 

the materials sector using composites and AI.  

 

1. Determination of sensor systems to be used in real-time for assessing the material state of 

the composite materials, and reliability of the sensor data  

2. Creating a large cloud-based database of composite materials with all material properties 

data, SHM and prognostics data  

3. Develop data-driven AI models to make predictions on the remaining strength and life of 

materials 

4. Adaptive learning methods to predict unseen events must be developed.  
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5. Use the concepts of Transfer Learning and Multi-Task learning, to accelerate the process, 

and combine the data-driven AI models.  

a. Transfer learning is the concept where the learned parameters from one model can 

be used to build another model, with better accuracies, and faster learning time. For 

example, If one researcher A is working on Glass fiber composite materials, and 

have fatigue data for 1000 samples, and another researcher B is working on Carbon 

fiber composite materials and have fatigue data for 100 samples, the knowledge 

learnt on a AI model A, built with dataset A, can be used to develop an AI model 

B, with dataset B under some conditions.   

b. Multi-Task learning is the process where multiple AI models built for predicting 

different outputs, can be combined to a single AI model and to make a number 

predictions. Biologically, humans learn multiple related tasks instead of focusing 

on one specific task for a long time. This way, one task will help learning the other 

task, and vice versa, hence supporting each other.    

6. If data-driven models, can be combined with physics-based models, hybrid models should 

be developed.  

7. Develop Uncertainty Quantification methods for the AI models being developed 

 

Also proper procedures need to be carried out during step 3, developing the data driven AI models, 

e.g.: 

 Data mining – data cleaning and preprocessing techniques are necessary to separate “bad 

data” from the “good data” 

 The data must be standardized to be used for faster model training and optimization 
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 Proper hyper-parameter tuning must be performed  

 The thresholds for making predictions must be defined as per the industry requirements 

 Proper use of Prognostic metrics must be employed to evaluate the model  

 Due to the non-physics nature of AI models, it must be validated and tested with unknown 

uncertain instances, which are outside the training and testing datasets. 

 

Figure 2.19: Transfer learning and Multi-Task learning 

Figure 2.19 represents schematic of transfer learning and multi-task learning. It is to the 

surprise of the authors that such technologies have not been widely used by researchers in the field 

of composites. There is only one article as per the authors’ knowledge that used transfer learning, 

on the CNN model to identify images with FOD, by using a publicly available pre-trained networks 

enabling its completion with a small number of training images [23]. Reinforcement learning has 

not been used widely in composites. 

 Finally, the birth to death approach for monitoring of composites using AI pipelines can 

be achieved by using compatible sensors, such as fiber optics, dielectrics, PZT embedded with the 

laminae during the manufacturing of the part. By embedded sensors in the composite during 

manufacturing, AI can keep track of the curing process, identify any defects in the material, and 
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perform continuous health monitoring. Fiber optic sensors and dielectric methods have proven to 

be used in the life cycle monitoring of composites [52,155]. Integrating AI with such applications 

might improve the cost and maintenance of aircraft structures. However, the major limitation of 

sensors and other practical limitations on such methods such as secondary bonding needs to be 

considered.  

This dissertation is  focused on using AI with dielectric sensors and fiber optic sensors for i) 

identifying defects ii) predicting the characteristic damage state of the composite material iii) 

predicting the residual strength and life of composite materials - by developing interpretability 

models with AI. It also covers the topics of data fusion, statistical analysis and uncertainty of the 

models. 
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METHODOLOGIES 

In this chapter, an introduction is given for the composite manufacturing processes, quasi-

static and fatigue testing equipment, and the state of the art sensor technologies of the Broadband 

Dielectric Spectroscopy Method and the Fiber Optic Sensing technique. Later, Weibull Statistical 

Analysis, and Artificial Intelligence methods are introduced and discussed in detail.  

3.1 Manufacturing of Composites  

In this section, we discuss the types of equipment and processes used for manufacturing 

the composite materials needed for the experiments. Three different composite specimens were 

manufactured for each type of experiments, which are described in their respective chapters. They 

were manufactured using the Compression Molding and Out of Autoclave Processes, using the 

equipment at the University of Texas at Arlington Research Institute (UTARI).  

3.1.1 Compression Molding  

Compression molding is a closed-mold composite manufacturing process that uses 

matched metal molds with the application of external pressure. In the compression molding 

process, an engineered composite layup is placed in the open mold cavity, the mold is closed, and 

consolidating force is applied. The pressure remains on the mold throughout the cure cycle, which 

usually occurs in an oven. The combination of heat and pressure produces a composite part with 

low void content and high fiber volume fraction—a near net shape finished component. 

Compression molding often yields composite parts that have the optimal mechanical properties 

possible from the particular combination of constituent materials. The WABASH compression 

molding press, model – VS50H-24-BCX at UTARI was used for the compression molding process 

of manufacturing composites for this work. 
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3.1.2 Out of Autoclave (OOA) Process 

 

Out-of-Autoclave (OOA) composite manufacturing is an alternative to the traditional high-

pressure autoclave (industrial) curing process commonly used by the aerospace manufacturers for 

manufacturing composite material. It is a process that achieves the same quality as an autoclave 

but through a different process. Many composite components have been manufactured using 

autoclave technology, which applies steam, heat, and high pressure in a liquid nitrogen 

environment to create the low-to-no void bonds necessary to combine two or more different 

materials to form a composite part. However, the extremely capital-intensive equipment costs, 

high operational costs, slow curing-cycle times, inability to make in-process adjustments, pressure-

vessel size limitations, and other disadvantages associated with autoclave curing have caused 

manufacturers to seek less costly, more versatile, out of autoclave composite-curing technologies. 

OOA is considered a cost effective way to produce a part, and it avoids the financial investment 

in purchasing autoclaves and freezer storage. Today, low cost out-of-autoclave curing of 

aerospace-grade composite parts is possible using a vacuum bagging system with a walk-in batch 

oven. The process is precisely controlled and monitored to ensure void-free composite parts. At 

UTARI, the DESPATCH Complete Composite Curing – Walk-In Ovens TFD3-21-1E were used 

to manufacture very large composites panels. Thermocouples were used to monitor the 

temperature distribution during the manufacturing process.  

 

 3.2 Mechanical Testing Machine  

All the quasi-static and fatigue cyclic testing was performed using an MTS Landmark servo 

hydraulic universal testing machine (Model 370.10). The Load cell capacity is 50KN, and it has a 
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unique custom feature to test the composite materials at high strain rate. The MTS Series 647 

hydraulic wedge grips were used which are specifically made for testing of the polymer composite 

materials. The MTS equipment at UTARI also has an Advantage environmental thermal chamber 

for operation between -129°C to 315°C; however the thermal chamber was not used in this 

dissertation experiments. MTS axial extensometers with 25 mm gage length were used to measure 

strain. 

3.3 Sensor Technologies  

Different SHM techniques were discussed in the review in chapter 2. Among them, the 

EIS technique of Broadband Dielectric Spectroscopy for measuring the dielectric constants, and 

another distributed sensing technique of Fiber Optic Sensing for measuring the strain are used in 

this dissertation. These techniques are explained in detail as follows in sections 3.3.1 and 3.3.2  

3.3.1 Broadband Dielectric Spectroscopy (BbDS) Method  

Dielectrics are electrically non-conducting materials such as glass, porcelain, and polymers 

etc. which exhibit the ability of  an applied  electric field to polarize the material creating electric 

dipoles. Fiber reinforced composites are naturally dielectric primarily due to the heterogeneous 

microstructure, interfaces and defects (voids, cracks etc.) that act as charge trapping sites. 

The displacement of charged particles in atoms or molecules leads to development of a net dipole 

moments along the applied field direction. The net dipole moment per unit volume is termed as 

Polarization. Broadband Dielectric Spectroscopy (BbDS) is an established experimental tool that 

describes the interaction of electromagnetic waves with matter and reflects by that the underlying 

molecular mechanisms typically in the frequency range from a lower value of 10-6 Hz to a higher 

frequency of 1012 Hz. The frequency regime contains information about molecular and collective 



 

63 

dipolar fluctuation; charge transport and polarization effects that occur at inner and outer 

boundaries in the form of different dielectric properties of the material under study. 

Several polarization mechanisms can occur in a material system, i.e. electronic, ionic (molecular), 

atomic, dipolar (orientational), and interfacial polarizations. Figure 3.1 shows the effect of 

different charge displacement mechanisms on dielectric response and their corresponding effective 

frequency range and polarization mechanism. 

 

Figure 3.1: Dielectric Response to different polarization mechanisms in different frequency  

At the atomic scale, the separation of effective centers of positive charges from effective 

centers of negative charge in the presence of an external electric field leads to creation of a net 

dipole moment and this mechanism of polarization is called electronic polarization. In ionic 

crystals, the anions and cations are arranged in a balanced structure that the net dipole moment of 

the structure is zero. However, under the influence of an electric field, a net dipole moment is 

induced because of the displacement of charges and this mechanism is termed as ionic polarization. 

In some crystals, the distribution of cations and anions are uneven and leads to creation of a net 

dipole moment because of the arrangement of these ions, termed as dipolar (permanent dipoles) 

molecules. In the presence of an electric field, these molecules tend to align in the electric field 
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direction and leads to a net dipole moment. This mechanism of polarization in dipolar molecular 

structures is termed as orientational polarization. In the above mentioned polarizations, the charges 

are locally bound in atoms or molecules. There could be some charge carriers that are not bound 

and can migrate through the material under the action of a low frequency electric field. These 

charge carriers are displaced by the electric field and in the presence of multiple interfaces in the 

material system, these charge displacements are impeded at the interface and get trapped which 

results in charge accumulation. This mechanism is called as interfacial or space charge 

polarization. Based on this, it can be observed that different polarization mechanisms occur at 

different scales and using different frequency ranges, one can estimate the contribution of each of 

these different mechanisms. 

The dielectric constant of a material can be measured using different techniques limited by 

the frequency at which the measurements are to be made. In this work, the complex permittivity 

is measured using the parallel plate capacitor technique. The setup is shown below in Figure 3.2. 

The dielectric material (laminate) is sandwiched between two conductive plates (electrodes) to 

form this setup. A sinusoidal voltage is input though one electrode and the output current is 

measured through the other electrode which could be in phase or out of phase with the input voltage 

signal based on the nature of the material.  
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Figure 3.2: Principle of Broadband Dielectric Spectroscopy 

A voltage 𝑈0(𝑉) with a fixed frequency (𝜔 2𝜋)⁄  is applied to the sample that causes a 

current 𝐼0(𝐴)at the same frequency but with a phase shift(𝜑). The relation between them can be 

expressed in complex notation by the relations shown below: 

U(t) = 𝑈0 cos(𝜔𝑡) = 𝑅𝑒(𝑈∗𝑒𝑗𝜔𝑡) (3.1) 

I(t) = 𝐼0 cos(𝜔𝑡 + 𝜑) = 𝑅𝑒(𝐼∗𝑒𝑗𝜔𝑡) (3.2) 

Where 𝑈∗ = 𝑈0 and 𝐼∗ = 𝐼′ + 𝑗𝐼′′ is the complex representation of the current caused by 

the applied voltage. The magnitude of this current is given by 𝐼0 = √𝐼′ + 𝐼′′. The measured 

impedance and capacitance of the sample is given by: 

Z∗(𝜔) = Z′ + 𝑗Z′′ =
𝑈∗

𝐼∗
 (3.3) 

C∗(𝜔) = C′ + 𝑗C′′ =
1

𝑗𝜔Z∗
 (3.4) 

Where Z′(Ω), Z′′(Ω), C′(F), C′′(F) are the real and imaginary parts of measured impedance 

Z∗(Ω) and capacitance C∗(𝐹) respectively. The dielectric constant of the sample is given by: 
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𝜀𝑟
∗(𝜔) = 𝜀𝑟

′ + 𝑗𝜀𝑟
′′ =

𝐶∗

𝐶0
 (3.5) 

𝐶0 = 𝜀0

𝐴

𝑑
 (3.6) 

Where 𝜀𝑟
′ , 𝜀𝑟

′′are the real and imaginary parts of measured complex dielectric constant 𝜀𝑟
∗ 

and 𝐶0(𝐹) is the capacitance of free space, 𝜀0(F/𝑚) is the permittivity of free space, 𝐴(m2) is the 

area of the electrodes, 𝑑(𝑚) is the distance between the electrodes (thickness of the laminate).  

It can be observed that the measured dielectric state variable is dependent on the area 𝐴 of 

the electrodes. Hence, as a best practice it is advised to use the same electrode configuration to 

measure the dielectric data of the samples being monitored. The question is how one can interpret 

the value of this variable? The effective way is to normalize the data w.r.t to initial dielectric data 

to understand the change in material state. To better understand, consider a material system as 

shown in Figure 3.3. In the initial state, the material comprises of some manufacturing defects and 

the initial dielectric constant of the as manufactured system is obtained. Under the application of 

a field (mechanical/electrical/thermal etc.) defects (cracks) develop in the material system. In the 

current state, the dielectric constant is obtained. Based on the theory of interfacial polarization, the 

creation of these new surfaces (cracks) would lead to charge accumulation and hence to a net 

increase in the measured dielectric constant with reference to the initial state of the material. The 

normalized value with respect to the initial state would give a representation of the intensity of 

damage. 



 

67 

 

Figure 3.3: Different Material States for Interpretation of Dielectric State Variable 

In this dissertation, the material behavior is characterized by broadband dielectric 

spectroscopy (BbDS) using the Novocontrol™ alpha analyzer. The alpha analyzer measures the 

complex dielectric properties of the material system as a function of frequency of applied electric 

field. The frequency range of the alpha analyzer is limited to (3μHz – 20MHz) with a phase 

accuracy of 0.002º and impedance range of (10-3Ω - 1015Ω) for the current work.  

3.3.2 Fiber Optic Sensing (FOS) Method 

The majority of FOS systems in the market today employ the use of fiber Bragg gratings 

to reflect light back to the interrogator. Each manufacturer utilizes a unique configuration and 

demodulation technique—the method used to obtain and interpret the optical signal provided by 

the sensors. Fiber Bragg gratings (FBG) operate as wavelength selective mirrors, meaning they 

reflect a single specific wavelength and transmit all others. The reflected wavelength is referred to 

as the Bragg wavelength. One way to think about this is with white light. White light consists of 

the entire color spectrum, or in other words, many different wavelengths. If white light was sent 

down a fiber with a FBG, one would see a single color reflected, while everything else is 

transmitted. 
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When a grating is stretched, compressed, or undergoes thermal expansion and contraction, 

the Bragg, or reflected wavelength changes. The interrogator then uses a demodulation technique 

to observe the change in wavelength and translate this into strain and temperature measurements. 

The relationship between mechanical strain and the Bragg wavelength is described in the Figure 

3.4. Further, the demodulation techniques such as Wavelength Division Multiplexing (WDM) and 

Optical Frequency Domain Reflectometry (OFDR) are used. 

  

Figure 3.4: Working Principles of FBG in FOS 
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Optical frequency domain reflectometry (OFDR) can be applied to FBG-based sensors or 

to scattering technologies. Unlike WDM, when using OFDR, each grating is written at the same 

wavelength. Writing each grating at the same wavelength enables these systems to avoid the 

limitation on the number of sensors. Additionally, OFDR based fiber optic sensing systems can 

provide spatially continuous measurements instead of from a handful of points. 

 

Figure 3.5: Operating Principle of OFDR 

Multi-sensing platforms, simply put, are sensor technologies that can monitor multiple 

parameters (strain, temperature, deflection, etc.) simultaneously and are robust enough that they 

can be deployed in multiple applications across an organization and utilized throughout the product 

lifecycle. It’s not just about being able to monitor different parameters using the same data 
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acquisition hardware. More than that, a multi-sensing platform can consolidate sensing technology 

so the same hardware, with minor changes in application techniques and sensor packaging, can 

adapt to cover multiple testing and monitoring needs of an organization. In order to accomplish 

this, the sensing system must obtain spatially continuous information in real time, be capable of 

taking dynamic measurements, be able to easily integrate with a network and perform well in the 

lab or harsh applied environments. These features allow multi-sensing platforms to be deployed in 

lifecycle monitoring applications from design validation to providing operational data for critical 

components and equipment. 

 

3.4 Weibull Statistical Analysis 

Weibull statistical analysis is an important interpretive analysis method, especially for the 

prediction of the composite materials strength and life as per the ASTM standard. Waloddi Weibull 

proposed his work on the Weibull statistical distribution, and its family of distributions to be 

applied to a wide range of problems in 1951. He claimed that the function “may sometimes render 

good service”, and did not claim that it always worked, and it was the best choice. Today, Weibull 

analysis has many applications in many industries, particularly to Aerospace for the Life 

estimations.  

The formula for the probability density function of the 2-Parameter Weibull distribution is 

𝑓(𝑥) =
𝛾

α
(
𝑥

α
)(𝛾−1)exp (−

𝑥

α
)𝛾     𝑥 ≥ 0; 𝛾 > 0 

where γ is the shape parameter and α is the scale parameter. 

3.5 Artificial Intelligence  

In Chapter 2, section 2.2 a brief introduction was given to the AI and its methods. However 

the working principles of the different AI algorithms were not discussed. In this section, a complete 
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explanation of the different AI algorithms used in this dissertation are presented, and the general 

AI model development process is explained.  

 

3.5.1 Supervised Learning Algorithms  

Linear Regression  

In statistical data analysis, linear regression serves as an analytical technique to formulate 

the relationship between the dependent output based on the independent input variable. If the 

output variable depends on two or more input variables, it is defined as multivariate linear 

regression. The output of linear regression may be non-linear when the exponential powers of the 

input independent variables are additional input units. Linear regression is widely used in statistics, 

data analysis, machine learning, biological and industrial engineering to develop possible 

relationships when the physics of the data is unknown 

Logistic Regression  

The Logistic Regression or Classification algorithm was developed to classify the given 

data into the classes, obtain decision boundaries for the classes, and hence used to predict the class 

for any new input data.  

Hypothesis 

 

For Linear Regression with a given input vector X, the predicted output is  

ℎ(𝑥) = 𝑊 ∗ 𝑋 + 𝑏 

 

(3.7) 

For Logistic Regression with a given input vector X, the predicted output is  

𝑦̂ = 𝑔(𝑊 ∗ 𝑋 + 𝑏) (3.8) 
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Where W and b are the parameters or weights. W is a vector of weights and b represents a 

scalar bias unit. g(z) represents the activation function 

Cost function 

For linear regression, we calculate the cost function from the loss function (also called as error 

function) as the mean of the squared errors.  

For ith example, the Loss Function is given by 

𝐿(ℎ(𝑥), 𝑦)= 
1

2
(ℎ(𝑥𝑖) − 𝑦𝑖)

2
 

 

(3.9) 

Hence the Cost Function is given by J 

𝐽(𝑊, 𝑏) =
1

2𝑚
∑(ℎ(𝑥𝑖) − 𝑦𝑖)

2
+  

𝜆

2𝑚
∑ 𝑊𝑗

2

𝑛

𝑗=1

𝑚

𝑖=1

 
(3.10) 

 

where, ℎ(𝑥𝑖) is the predicted output and 𝑦𝑖 is the actual output, and  𝜆 is the L2-regularization 

parameter. The accurate value of the L2- regularization parameter can be obtained by developing 

validation curves or error analysis curves.  

For the Logistic Regression, the Loss function is defined as  

𝐿(𝑦̂, 𝑦) =  −( 𝑦 log 𝑦̂ + ( 1 − 𝑦 ) log(1 − 𝑦̂)) (3.11) 

The cost function J is given by  

𝐽(𝑊, 𝑏) =
1

𝑚
∑ 𝐿(𝑦̂𝑖𝑦𝑖) + 

𝜆

2𝑚
∑ 𝑊𝑗

2

𝑛

𝑗=1

𝑚

𝑖=1

 
 

(3.12) 

Where 𝜆 is the L2-Regularization parameter. 
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Gradient Descent Algorithm 

As we need to determine the parameters W and b that will result in the very least cost function 

value, we use the batch gradient descent algorithm. In the batch gradient descent algorithm, every 

iteration performs the operations 

𝑊 ∶= 𝑊 −  𝛼 
𝜕𝐽(𝑊, 𝑏)

𝜕𝑤
 

 

𝑏 ∶= 𝑏 −  𝛼 
𝜕𝐽(𝑊, 𝑏)

𝜕𝑏
. 

 

 

 

(3.13) 

The batch gradient descent performs simultaneous updates of W and b, on all the examples in 

the training set. The parameters obtained, W and b are used to predict the output value for any new 

data set. 

Random Forest Algorithm 

An alternative approach, the random forest algorithm, also called random decision forests 

operates by the construction of decision trees during the training and outputs the mean of 

predictions of all the decision trees. The Random forest algorithm is the best fit to avoid the 

overfitting of the data. It was put forward by Leo Breiman as part of a statistical learning approach. 

It is an ensemble learning method, which can also predict the value and ranking of each feature.  

The random forest algorithm involves two primary processes – Tree bagging ( also known as 

Bootstrap aggregate bagging ) and creation of the random forests. The number of trees in the model 

plays a vital role, as it increases the average value.  
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Tree Bagging  

Given a dataset of m examples, B number of bags are created where each bag consists of the 

data of 𝑚̅ examples. These bags are created by random selection of examples with replacement 

from the total data set (X,Y) such that an example may repeat in several bags. In general Machine 

learning usage, 𝑚̅  ≤ 𝑚 

 

Random Forests 

From the Tree Bagging process, the input data X(m,n) is reduced to X1(𝑚̅ , 𝑛) …. Xb(𝑚̅ , 𝑛). 

In the process of creation of random forests, the features to be used in each bag is selected in 

random, creating random subsets of features. Hence a massive number of tress is created to form 

the forest. Let 𝑛̅ be the number of features in each tree, where 𝑛̅  ≤ 𝑛. This process is defined as 

the feature bagging. 

 Each of these trees consists of a data set which is used in a machine learning algorithm 

(regression, classification or support vector machines) to predict the output of the tree. The output 

of the random forest is computed by the mean of the predicted output of the trees. 

Artificial Neural Network  

The Artificial neural networks ( ANN ) have been considered as the state of art technique for 

modeling and predicting non-linear system behavior. This non-linear behavior is obtained using 

hidden layers, which consist of units called neurons. The neurons in the hidden layers are 

connected to the input and output data by weights or parameters (W and b ). The structure of an 

artificial neural network used in our model is depicted as follows. An N-layer neural network, 

consists of N-1 hidden layers.  
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In the mathematical theory of artificial neural networks, the universal approximation theorem 

states[10] that a feed-forward network with a single hidden layer containing a finite number of 

neurons, can approximate continuous functions on compact subsets of Rn, under mild assumptions 

on the activation function. 

Activation functions 

 

In the Linear Regression, we used the function ℎ(𝑥𝑖)  as cost function. It is called the linear 

activation function. There are also many other activation functions used by various machine 

learning methods and data scientists in the industry.  The most commonly used functions are linear, 

sigmoid, tanh and ReLu – rectified linear unit, as defined below. 

Let ℎ(𝑥𝑖) = 𝑧 be the input to the activation function 

𝐿𝑖𝑛𝑒𝑎𝑟 = 𝑔(𝑧) = 𝑧 

𝑆𝑖𝑔𝑚𝑜𝑖𝑑 = 𝑔(𝑧) =  
1

1 + 𝑒−𝑧
 

𝑇𝑎𝑛ℎ = 𝑔(𝑧) = tanh(𝑧) 

𝑅𝑒𝐿𝑢 = 𝑔(𝑧) = max(0, 𝑧) 

Most of the algorithms use ReLu activation function in neural network model, because it 

greatly accelerates the convergence of our model compared to the other activation functions. [11]  

Feed forward propagation 

The feed forward propagation step is similar to the linear regression step to calculate the 

predicted output. The first layer of the ANN is the input layer. 

Our hypothesis equation is  

ℎ(𝑥) = 𝑧1 = 𝑊1
1 ∗ 𝑋 + 𝑏1 (3.14) 
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The superscript 1 represents the layer 1. 𝑎𝑘 is used to calculate the values of the neurons in the 

hidden layer next to the input layer, given by the activation function used.  

𝑎𝑘
1 = 𝑔(𝑧1) 

 

(3.15) 

where k is the number of neurons in the respective hidden layer. 𝑎𝑘
1 serves as the inputs to the 

hypothesis function, which is used to calculate the outputs of the next hidden layer. The process is 

repeated until the output layer, where the final output 𝑧𝑁 is predicted.  

 

Backward propagation 

Back-propagation algorithms are used in the design of multilayer neural networks, and are used 

in various applications in regression, classification problems, speech recognition and image 

recognition techniques.  

It computes the derivatives of the cost function J with respect to our parameters W and b.  

If the Cost Function J for a Neural Network is given by 

𝐽(𝑊1, 𝑏1, 𝑊2, 𝑏2 … … 𝑊𝑁 , 𝑏𝑁) =
1

2𝑚
∑(𝑦̂𝑖 − 𝑦𝑖)

2
 +  

𝜆

2𝑚
∑ 𝑊𝑗

2

𝑛

𝑗=1

𝑚

𝑖=1

 
 

(3.16) 

The derivatives are given by  

𝜕𝑧𝑁 =  𝑎𝑁 − 𝑦 

 

𝜕𝐽(𝑊1, 𝑏1, 𝑊2, 𝑏2 … … 𝑊𝑁 , 𝑏𝑁)

𝜕𝑤𝑁
=  

1

𝑚
∗ 𝜕𝑧𝑁 ∗ 𝑎𝑁−1 +

𝜆

𝑚
𝑊𝑁 

 

𝜕𝐽(𝑊1, 𝑏1, 𝑊2, 𝑏2 … … 𝑊𝑁 , 𝑏𝑁)

𝜕𝑏𝑁
=  

1

𝑚
∗ 𝜕𝑧𝑁 

 

 

 

 

(3.17) 
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L-BFGS Algorithm 

Earlier for our linear regression, we discussed the Gradient Descent Algorithm, but there are 

many other algorithms which can be used for the optimization processes to obtain the parameters 

W and b, which can find the least value of the cost function. These optimization algorithms are 

selected based on the input data, number of samples, timing required, efficiency and computational 

requirements. The most commonly used algorithms are gradient descent algorithm, stochastic 

gradient descent algorithm, gradient descent with momentum, exponentially weighted averages 

algorithm, Adam algorithm, BFGS and L-BFGS algorithm. 

Limited-memory BFGS or L-BFGS belongs to the family of quasi-Newton methods which 

approximate the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm using a limited amount 

of computer memory. L-BFGS uses an estimation to the inverse Hessian matrix to steer its search 

through variable space, but where BFGS stores a dense n × n approximation to the inverse Hessian, 

L-BFGS stores only a few vectors that represent the approximation implicitly. Due to its resulting 

linear memory requirement, the L-BFGS method is particularly well suited for optimization 

problems with many variables [12-14].  
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Adam Optimization Algorithm 

 

Figure 3.6: ADAM optimization algorithm 

Adam optimization has proved to be the best for our models being developed, which is one of 

the best optimizing algorithms in deep learning inherited from the RMSProp and AdaGrad [13]. 

The Parameters are updated in this algorithm, invariant to re-scaling of the gradient, hence greater 

performance is achieved. In the original paper, Adam was demonstrated empirically to show that 

convergence meets the expectations of the theoretical analysis. Adam was applied to the logistic 

regression algorithm on the MNIST character recognition and IMDB sentiment analysis datasets, 

a Multilayer Perceptron algorithm on the MNIST dataset, and Convolutional Neural Networks on 

the CIFAR-10 image recognition dataset. Being computationally efficient, and suitable for large 

systems in terms of data, Adam is used in both the neural network models being developed. The 

Algorithm is shown in Figure 3.6. 

Recurrent Neural Network  

Recurrent Neural Network (RNN) is a supervised learning algorithm, and is a class of the 

artificial neural networks in which the connections between neurons in each layer form a directed 

graph along a sequence. RNNs are most commonly used in language modelling and generating 
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text, machine translation, speech recognition, generating image descriptions and time series data, 

where the model depends on the previous data value to make a prediction.  

Long Short-Term Memory (LSTM) networks, are a particular type of recurrent neural 

networks that has gotten immense attention recently within the data driven community. These 

networks have  internal contextual state cells that acts as long-term or short-term memory cells. 

These memory cells are used for predicting a long sequence of data with less memory requirements 

and achieve greater performance. LSTM networks were discovered by Hochreiter and 

Schmidhuber in 1997 and set accuracy records in multiple applications domains [16]. LSTM 

networks keep contextual information of the inputs by integrating over a loop that allows 

information to flow from each previous step to the current, and further. Hence these loops make 

RNNs seem magical. The limitation of RNN is the vanishing gradient problem, which is solved 

by LSTM. 

 

3.5.2 Unsupervised Learning Algorithms  

Unlike traditional methods of Supervised Machine learning, where the input data are 

matched to their corresponding output data, Unsupervised methods take only the input data and 

perform the mathematical formulations on them to give significant information. Unsupervised 

learning is of two types – clustering and dimensionality reduction. Clustering is further divided 

into several types such as centroid based clustering, connectivity-based clustering, Gaussian 

mixture models, and density-based clustering. Based on the type of data, the best algorithm needs 

to be selected.  

 Dimensionality reduction of the data is used when there is a huge number of features and 

the best features are needed to be known as the inputs to the data. Feature selection is one technique 
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for this purpose, but in the process of feature selection, several features are eliminated. In 

dimensionality reduction, the feature data is not eliminated. Also, applying dimensionality 

reduction improves the speed of learning for the model. Principal Component Analysis (PCA) is 

the most commonly used dimensionality reduction technique. Several other methods include 

random projection method, independent component analysis, feature agglomeration, neural auto-

encoders, and linear discriminant analysis. The selection of these techniques also depends on the 

nature of the data. For instance, for the time-dependent data, the neural auto-encoders are used due 

to their time-distributed functions. 

 

Principal Component Analysis 

 PCA is an important method in the field of machine learning, statistics, and data science. 

By definition, it is the linear dimensionality reduction using Singular Value Decomposition (SVD) 

of the data to project it to a lower-dimensional space. It combines the input features into a single 

value or vector, by retaining the most important knowledge of all the features. This was invented 

as an analog of the principal axis theorem in mechanics, by Pearson (1901) and Hotelling (1933), 

whilst the best modern reference is Jolliffe [9]. PCA is the process of transforming original features 

into a new coordinate system, creating new features called the principal components. These are 

linear functions of original features and are not correlated. The highest variance by any projection 

of the data comes to lie on the first coordinate, the second-highest variance on the second 

coordinate, and so on. This is achieved by calculating the covariance matrix for the entire data set, 

computing the eigenvectors and eigenvalues for the covariance matrix, and sorting them according 

to decreasing eigenvalue. The algorithm is shown in Figure 3.7. It is vital to note that PCA's bias 
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is not always appropriate; features with low variance might have high predictive relevance, 

depending on its application. 

 

Figure 3.7: PCA Algorithm 

Selecting the number of features that are needed for the model is a critical step of PCA. It 

is done either by the domain knowledge, if the user knows how many principal components are 

required, or by the proportion of variance that the user wants to maintain from their entire dataset. 

For example, if we want to retain 90% of the variance of the dataset, we select the top features 

whose sum of the variances equals or exceeds 90%. There is also another method called the elbow 

method, using the scree plot but it is not widely used. The main disadvantage of PCA is that, since 

the features are changed to principal components, it’s not possible to obtain meaningful 

information for engineering analysis or to get the inverse relationship from the model being 

developed. But few other techniques exist that can be carefully implied into PCA to get useful 

information from the data. 
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K-MEANS CLUSTERING  

 K-Means clustering [10], [11] is the most commonly used simple clustering 

algorithm, which aims to combine ‘n’ observations into ‘k’ clusters, where each observation 

belongs to the cluster with the nearest mean center or centroid. It is a type of centroid based 

clustering. It is often confused with the K-nearest neighbor algorithm due to the name. It uses the 

Euclidean distance function. It often gives the best result when the data set is distinct.  

The K-Means algorithm is as follows: 

• Choose the number of clusters (K) and obtain the data points  

• Place the centroids c_1, c_2, ..... c_k randomly  

• Repeat steps below until convergence or until the end of a fixed number of 

iterations 

• for each data point x_i: 

        - find the nearest centroid(c_1, c_2 .. c_k)  

        - assign the point to that cluster  

• for each cluster j = 1..k 

        - new centroid = mean of all points assigned to that cluster 

 

The disadvantage of K-Means clustering is that it requires a prior specification of the 

number of clusters. However, by using the distortion or inertia data, we would be able to use the 

elbow method to find the optimal number of clusters. In some cases, the clustering accuracy is also 

used in the elbow method to determine the number of clusters. It has few other disadvantages in 

their application to the real world datasets as the algorithm provides the local optima of the squared 

error function. However, there are alternatives to the algorithm that are available with the increased 
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research use of these methods. Also, it is to be noted that due to their iterative nature and random 

initialization of centroids, it is recommended to run the algorithm using different centroid 

initialization and select the results yielding the least sum of squared distance. 

3.5.3 Performance Metrics  

Once the model has been developed, the performance of the model is evaluated by the mean 

squared error function (MSE) and the R2 score or R2 coefficient.  

R2 coefficient 

The R2 coefficient is defined as the ratio of the residual sum of squares to the total sum of 

squares of output, subtracted from unity. 

 𝑀𝑆𝐸 =
1

2𝑚
∑ (𝑦̂𝑖 − 𝑦𝑖)

2𝑚
𝑖=1  

 

 

(3.18) 

𝑅2 =  1 −  
∑ (𝑦̂𝑖 − 𝑦𝑖)

2𝑚
𝑖=1

∑ (𝑚𝑒𝑎𝑛(𝑦𝑖) − 𝑦𝑖)2𝑚
𝑖=1

 
 

(3.19) 

 

An 𝑅2 coefficient of 1 indicates a best model, and a negative 𝑅2 indicates a worse model. 

When the 𝑅2 score tends to 0, it indicates that our model is a constant model, and will always give 

0 for any input. This 𝑅2 coefficient determines the uncertainty of the model being developed. 

Also in random forest regression algorithm and XG-boost, and other decision tree based 

algorithms, we can obtain the depth of each feature, which is the relative importance of that 

particular feature to the prediction of the output. These are defined by the expected fraction of 

samples they contribute.  

Additionally, for the Logistic Regression models, additional Performance Metrics are used. 

Confusion Matrix  
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Confusion matrix  is used  to evaluate the quality of the output of a classifier. The diagonal 

elements represent the number of points for which the predicted label is equal to the true label, 

while off-diagonal elements are those that are mislabeled by the classifier. The higher the diagonal 

values of the confusion matrix the better, indicating many correct predictions.  

Precision  

The precision is the ratio tp / (tp + fp) where tp is the number of true positives and fp the 

number of false positives. The precision is intuitively the ability of the classifier not to label as 

positive a sample that is negative.  

Recall  

The recall is the ratio tp / (tp + fn) where tp is the number of true positives and fn the 

number of false negatives. The recall is intuitively the ability of the classifier to find all the positive 

samples.  

F1- Score  

The F-beta score can be interpreted as a weighted harmonic mean of the precision and 

recall, where an F-beta score reaches its best value at 1 and worst score at 0. The F-beta score 

weights recall more than precision by a factor of beta. Beta == 1.0 means recall and precision are 

equally important.  

Accuracy  

In multi-label classification, Accuracy represents subset accuracy: the set of labels predicted 

for a test Set must exactly match the corresponding set of labels in test set  

Accuracy = Number of correct classifications / Number of samples in the dataset 
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3.5.4 AI Model Development Process  

Data Preparation 

Normalization of the Data  

 

 Normalization is defined as the process of scaling individual sample data to have unit norm. 

This process is useful to quantify the similarity of any pair of samples. Normalization was done 

by using the scikit-learn normalizer package, by setting the norm parameter as “l2”, to obtain the 

Euclidian norm and normalizing each sample. By normalizing the data, the optimization algorithm 

runs better and faster, as the loss value is minimized.  

 

Padding of Variable Length data 

 

For few experiments, especially for fatigue experiments, since the data were obtained from 

the experimental testing of composite materials, the length of the data was not uniform for all the 

samples. As the data must be of uniform length, all the input and output data were padded with 

zeros, to make the length of the data set to be a vector of uniform size for each sample for both 

input and output.  

 

Splitting of Training and Test Set 

 

 The total data set was split into training and test sets, by setting the test size parameter to 

be 0.2, using the scikit-learn[12] python package. The train data is used for the model development 
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process, and its further split for cross-validation purposes. Finally, after the model is developed, 

the test data, which is the unseen data is used to test the model’s predictions. 

 

Cross Validation and Hyper Parameter Tuning   

For each of the data-mining algorithms to be developed, there are certain parameters called 

Hyper-parameters which are not directly learned within estimators. In scikit-learn they are passed 

as arguments to the constructor of the estimator classes. Typical examples include number of 

neighbors, weights and p value for K-Neighbors Classifier, alpha for Neural Networks, etc. It is 

possible and recommended to search the hyper-parameter space for the best cross validation score. 

When the performance of the model is poor, the model will require proper tuning. The problem of 

bias and variance is first identified by learning curves, between the training set and cross-validation 

set. Based on it, the recommended tuning process is executed. The tuning of a neural network is 

complicated compared to the machine learning models, as the neural network has a number of 

hyper parameters.  
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Figure 3.8: Cross Validation with Hyper Parameter estimation 

When evaluating different settings (“hyperparameters”) for estimators, such as the 

n_neighbors setting that must be manually set for an K-Neighbors, there is still a risk of over fitting 

on the test set because the parameters can be tweaked until the estimator performs optimally. This 

way, knowledge about the test set can “leak” into the model and evaluation metrics no longer 

report on generalization performance. To solve this problem, yet another part of the dataset can be 

held out as a so-called “validation set”: training proceeds on the training set, after which evaluation 

is done on the validation set, and when the experiment seems to be successful, final evaluation can 

be done on the test set  

A test set should still be held out for final evaluation, but the validation set is no longer 

needed when doing CV. In the basic approach, called k-fold CV, the training set is split into k 

smaller sets (other approaches are described below, but generally follow the same principles). The 

following procedure is followed for each of the k “folds”:  
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 A model is trained using k-1 of the folds as training data;  

 The resulting model is validated on the remaining part of the data (i.e., it is used as a test 

set to compute a performance measure such as accuracy).  

The performance measure reported by k-fold cross-validation is then the average of the values 

computed in the loop. This approach can be computationally expensive, but does not waste too 

much data (as is the case when fixing an arbitrary validation set), which is a major advantage in 

problems such as inverse inference where the number of samples is very small. 

3.5.5 Interpretable Machine Learning Methods  

The importance of using Interpretable Machine Learning (IML) models was discussed in 

the last section of chapter 2. The working principle of the IML models are explained here.  

Throughout this dissertation, the focus is on Model-Agnostic explanation systems. 

Desirable aspects of a model-agnostic explanation system are[156]  

Model flexibility: The interpretation method can work with any machine learning model, 

such as random forests and deep neural networks. 

Explanation flexibility: You are not limited to a certain form of explanation. In some cases 

it might be useful to have a linear formula, in other cases a graphic with feature 

importances. 

Representation flexibility: The explanation system should be able to use a different feature 

representation as the model being explained. For a text classifier that uses abstract word 

embedding vectors, it might be preferable to use the presence of individual words for the 

explanation. 
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Permutation Feature Importance  

Permutation feature importance measures the increase in the prediction error of the model 

after we permuted the feature's values, which breaks the relationship between the feature and the 

true outcome. The concept was developed by measuring the importance of a feature by calculating 

the increase in the model's prediction error after permuting the feature. A feature is "important" if 

shuffling its values increases the model error, because in this case the model relied on the feature 

for the prediction. A feature is "unimportant" if shuffling its values leaves the model error 

unchanged, because in this case the model ignored the feature for the prediction. 

The permutation feature importance algorithm based on Fisher, Rudin, and Dominici 

(2018) is as follows [157] 

Input: Trained model f, feature matrix X, target vector y, error measure L(y,f).  

1. Estimate the original model error eorig = L(y, f(X)) (e.g. mean squared error) 

2. For each feature j = 1,...,p do: 

i. Generate feature matrix Xperm by permuting feature j in the data X. This breaks 

the association between feature j and true outcome y. 

ii. Estimate error eperm = L(Y,f(Xperm)) based on the predictions of the permuted 

data. 

iii. Calculate permutation feature importance FIj= eperm/eorig. Alternatively, the 

difference can be used: FIj = eperm - eorig 

3. Sort features by descending FI. 
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LIME  

Local interpretable model-agnostic explanations (LIME) is a research article in which the 

authors propose a concrete implementation of local surrogate models. Surrogate models are trained 

to approximate the predictions of the underlying black box model. Instead of training a global 

surrogate model, LIME focuses on training local surrogate models to explain individual 

predictions. 

The idea is quite intuitive. First, forget about the training data and imagine you only have 

the black box model where you can input data points and get the predictions of the model. You 

can probe the box as often as you want. Your goal is to understand why the machine learning 

model made a certain prediction. LIME tests what happens to the predictions when you give 

variations of your data into the machine learning model. LIME generates a new dataset consisting 

of perturbed samples and the corresponding predictions of the black box model. On this new 

dataset LIME then trains an interpretable model, which is weighted by the proximity of the 

sampled instances to the instance of interest. The interpretable model can be anything from the 

interpretable models chapter, for example Lasso or a decision tree. The learned model should be a 

good approximation of the machine learning model predictions locally, but it does not have to be 

a good global approximation. This kind of accuracy is also called local fidelity. 

Mathematically, local surrogate models with interpretability constraint can be 

expressed as follows: 

explanation(x)=argming∈GL(f,g,πx)+Ω(g) 

 

The explanation model for instance x is the model g (e.g. linear regression model) that 

minimizes loss L (e.g. mean squared error), which measures how close the explanation is to the 
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prediction of the original model f (e.g. an xgboost model), while the model 

complexity Ω(g)Ω(g) is kept low (e.g. prefer fewer features) 

The procedure for training local surrogate models: 

 Select your instance of interest for which you want to have an explanation of its 

black box prediction. 

 Perturb your dataset and get the black box predictions for these new points. 

 Weight the new samples according to their proximity to the instance of interest. 

 Train a weighted, interpretable model on the dataset with the variations. 

 Explain the prediction by interpreting the local model. 

SHAP 

SHAP (SHapley Additive exPlanations) by Lundberg and Lee (2016) is a method to 

explain individual predictions. SHAP is based on the game theoretically optimal Shapley Values. 

A prediction can be explained by assuming that each feature value of the instance is a "player" in 

a game where the prediction is the payout. Shapley values -- a method from coalitional game theory 

-- tells us how to fairly distribute the "payout" among the features.  

The goal of SHAP is to explain the prediction of an instance x by computing the 

contribution of each feature to the prediction. The SHAP explanation method computes Shapley 

values from coalitional game theory. The feature values of a data instance act as players in a 

coalition. Shapley values tell us how to fairly distribute the "payout" (= the prediction) among the 

features. A player can be an individual feature value, e.g. for tabular data. A player can also be a 

group of feature values. For example to explain an image, pixels can be grouped to super pixels 

and the prediction distributed among them. One innovation that SHAP brings to the table is that 

the Shapley value explanation is represented as an additive feature attribution method, a linear 
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model. SHAP is further subdivided into KernalSHAP and TreeSHAP based on the type of model 

to be developed.  

3.6 Summary 

In this chapter, we gave the entire description of technical background of manufacturing 

the composites, the sensor equipment’s used and the different AI algorithms used in this 

dissertation work. In further chapters, we will discuss the experiments performed and how these 

sensor systems, and AI methods are used for the Defect Analysis, Stiffness Degradation 

Measurements, Residual Strength and Residual Life Prediction in Composite materials.  
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DEFECT ASSESSMENT IN COMPOSITES USING DIELECTRICS AND AI 

In the previous chapter 3, we discussed the Electrochemical Impedance Spectroscopy (EIS) 

technique, and the various Artificial Intelligence (AI) algorithms, model development techniques 

and Interpretable Machine Learning (IML) methods. In this chapter, we discuss the 

implementation of the aforementioned methods to Identify and predict the defects in composite 

materials. These defects are foreign body objects, which are induced in the material during 

manufacturing. The outline of this chapter is as follows. Section 4.1 deals with the process of 

experimental methods and data collection. Section 4.2 describes the Supervised Learning problem 

with sub-sections 4.2.1 describing the data preparation, 4.2.2 on AI model developed, 4.2.3 on 

Model performance and 4.2.4 on the use of Interpretable machine learning techniques. Section 4.3 

describes using the real part of permittivity and imaginary part of permittivity with Un-supervised 

learning techniques.  

4.1 Experimental Methods 

4.1.1 Manufacturing  

 Four composite panels of 254 mm x 254 mm planar dimension were manufactured using 

Rockwest 120 Glass Fiber (E-glass) woven prepreg. The laminate sequence was [0]4. The Panels 

were manufactured with defects induced in them in between the middle layers. Each panel was 

divided into 8x8 cells for the experimental readings, as shown in Figure 4.1. These panels were 

manufactured as per the manufacturer’s recommended cure cycle at 408 K for the NP301 Resin 

system, using the WABASH compression molding presses, at the University of Texas at Arlington 

Research Institute. 
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Figure 4.1: Panels manufactured for BbDS Testing 

Table 4-I Defects induced in each panel manufactured 

PANEL No. DEFECT Material description 

1 No Defect - 

2 Release Film Non-Perforated High Temperature 

3 Backing Paper Prepreg backing paper attached in Glass Fiber 

4 Release Paper Top Release paper from the prepreg 
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Figure 4.2. Composite laminate with the defects 

  Figure 4.2 represents a composite laminate with 3 different types of defects in it, and some 

regions with no-defects. As per our experimental data, measurements were taken for 256 points, 

represented in the figure by a 16 x 16 cell analysis. 

4.1.2 Obtaining Dielectric parameters using Broadband Dielectric Spectroscopy  

Dielectric property measurements were measured using the Novo Control Broadband 

Dielectric Spectrometer at the University of Texas at Arlington Research Institute. A 12.7 mm 

square electrode was used. The Panels were placed in between electrodes within the closed 

environmental chamber, and the measurements were observed at each cell for all the four panels. 

The measurements were obtained by a frequency sweep from 1 MHz to 0.1 Hz, with a scaling 

factor of 1.4.  Figure 4.3 depicts the setup of the equipment which was used to carry out the 

experiments. 
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Figure 4.3: Experimental test setup for BbDS measurement 

 14 dielectric parameters were obtained from the experiments. They are the Real, Imaginary 

and Modulus of the Dielectric Permittivity, Electric Modulus, Conductivity and Impedance 

respectively. The Tan loss and conductivity ratio was also calculated. Each of these dielectric 

parameters were measured through the thickness of every single cell, at 49 different frequencies. 

Hence there are 14 dielectric parameters at 49 frequencies which form the 686 features. As there 

are 4 different panels and 64 cells in each panel, which form the 256 samples of data points. The 

average frequency sweep of these 14 dielectric parameters for each panel type are shown in Figure 

4.4. 

 

Figure 4.4: Average Curves of Dielectric Parameters for each defect 
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4.2 Supervised Learning Model and Interpretability  

4.2.1 Data preparation 

The dataset considered consists of 256 samples and 686 features, as discussed in the 

previous session. To build a logistic regression model, for the classification purposes, it is 

important to remove all of the redundant features. Hence, the Pearson Correlation Coefficients 

(PCC) were calculated for all the 686 features, and the correlation matrix was developed. Later, 

the features which had an absolute PCC value greater than 0.95 were removed, which reduced the 

number of features drastically to 16 features. These features obtained were found to be mostly in 

the lower frequency ranges between 0.1 Hz to 30 Hz. This reduction of features, implies that there 

is not significant change in values among the 4 different panels at higher frequencies. As it is 

difficult to visualize a 686 x 686 correlation matrix, a correlation matrix is shown in Figure 4.5, 

indicating the correlation of the frequency sweep of the 14 dielectric parameters. 

 

Figure 4.5: Correlation among the Dielectric Parameters 
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4.2.2 AI model development 

Once the data reduction was performed by removing the highly correlated features, the data 

set was split into training and testing tests. The training set consisted of 204 samples and the test 

set consisted of 52 samples. It was randomly split using the sklearn train_test_split algorithm. The 

training set was further during split as per the K-Fold cross validation process. Four different AI 

models were developed – logistic regression, random forest classifier, XGboost classifier and 

artificial neural network. The algorithms of these AI models are discussed in the previous chapter. 

As per the procedure for developing an AI model discussed in previous chapter, section 3.5, the 

hyper parameter tuning was performed using the GridSearch Algorithm, to identify the best 

parameter set for each AI model developed. Unless specified, all other defaults parameters were 

used from the sklearn package.  

4.2.2.1 Logistic Regression  

The default parameters were used and the best value for maximum number of iterations 

was found to be 100. Increasing this parameter for logistic regression, did not improve the model 

performance.  

4.2.2.2 Random Forest Classifier 

The best value for the number of estimators was found to be 100 as per the hyper-parameter 

tuning for the random forest classifier. All other default parameters of the sklearn random forest 

classifier were used. 
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Figure 4.6: Hyperparameter tuning for Random Forest Classifier 

4.2.2.3 XGBoost Classifier  

The best value for the number of estimators was found to be 1000 as per the hyper 

parameter tuning for the random forest classifier. 

 

Figure 4.7: Hyper parameter tuning for XGBoost Classifier. 
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4.2.2.4 Artificial Neural Network  

The best network was found to be a  2-Layer Neural Network which was developed, with 

100 neurons in the Hidden layer and with an alpha value of 0.0003. The input layer had 16 inputs, 

and the output layer had  four class output. The ReLu activation function was used for the hidden 

layers, and sigmoid activation function was used for the output layer. Optimization was done by 

the L-BFGS Algorithm. 

 

Figure 4.8: Hyper Parameter Tuning for Artificial Neural Network. 

 

4.2.3 Model Performance 

The performance metrics and their equations are discussed in chapter 3.  

4.2.3.1 Performance Metrics  

Table 4-II: Accuracy of the AI models developed 

AI Model Training 

Accuracy 

Cross-Validation 

Accuracy 

Test Set 

Accuracy 

Logistic Regression 0.838 (+/-0.022) 0.832 (+/-0.185) 0.8269 
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Random Forest 

Classifier 

1.000 (+/-0.000) 0.862 (+/-0.142) 0.8269 

XG Boost Classifier 1.000 (+/-0.000) 0.926 (+/-0.066) 0.9423 

Artificial Neural 

Network 

1.000 (+/-0.000) 0.985 (+/-0.045) 0.9615 

 

 The Table 4-II values list the accuracy for the training, cross validation and the test data 

for the 4 different AI models developed. We can see that the Artificial Neural Network model has 

the highest accuracy on the Cross validation and the test data.  

Additionally, the classification report for each of the AI models developed is as follows.  

 

 

 

Figure 4.9: Classification Report on the Test Data. 
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4.2.3.2 Confusion Matrix  

 

Figure 4.10: Confusion Matrix from the AI Classification models. 

 

4.2.4 Interpretability of the AI models  

As discussed in our previous chapter, here we deal with explainability of the AI models 

that were developed. The permutation importance’s, LIME and SHAP techniques are used to 

explain the global and local interpretability of the predictions and to learn which dielectric 

parameter at which frequency makes the most significant contribution to identify the presence of 

defects in composite materials. All these explanations are on the unseen – test dataset.  
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4.2.4.1 Global Feature Importance – Permutation Importance  

 

Figure 4.11: Permutation Importance’s of the predictions. 

 

These permutation importance’s are obtained using the Eli5 package in Python. We can 

see that the Real Permittivity and Imaginary Permittivity at 0.1 Hz are the most highly contributing 

features to the prediction of the output. The next highest contributing feature is the Conductivity 

Ratio at 2 Hz and 30 Hz.  
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4.2.4.2 LIME  

The local predictions are obtained for two observations from the test dataset, and their 

predictions are explained using LIME. Figure 4.12 shows the LIME prediction for a sample from 

the test dataset, whose actual prediction is for Backing Paper. Figure 4.13 shows the LIME 

prediction for a sample, whose actual prediction belongs to the class “No Defect” 
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Figure 4.12: LIME Predictions for Observation 1. 

 

Figure 4.13: LIME Prediction for observation 2. 

 It can be noted that, for observation 1, where the actual class is Backing Paper, the 

conductivity ratio at 2 Hz and 30 Hz are the most contributing features, whereas for observation 

2, where the actual class is “No Defect”, the contributing features are the Real Permittivity and 

Imaginary Impedance at 0.1 Hz. 
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4.2.4.3 SHAP 

The SHAP values are obtained and the Summary Plots are plotted for each of the AI 

models. These plots represent the global behavior of the model based on the test data.  

 

Figure 4.14: SHAP Summary Plot for Logistic Regression 
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Figure 4.15: SHAP Summary Plot for Random Forest Classifier  

 

Figure 4.16: SHAP Summary Plot for XGBoost Classifier  
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Figure 4.17: SHAP Summary Plot for Artificial Neural Network  

 As we can notice from above four figures, the Real Permittivity and the Imaginary 

Impedance at 0.1 Hz are the top contributing factors, with each model having different SHAP 

Values to identify the prediction classes. The individual –local predictions for observation 1 are 

shown in figures 18,19,20,21. Comparing to the LIME results, the Conductivity ratio at 2 Hz and 

30 Hz, Real and Imaginary permittivity at 0.1 Hz are the most strongly contributing features for 

the prediction of “Backing Paper” 
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Figure 4.18: SHAP Prediction of Logistic Regression for Class 3 – Backing Paper  

 

Figure 4.19: SHAP Prediction of Random Forest Classifier for Class 3 – Backing Paper  
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Figure 4.20: SHAP Prediction of XGBoost Classifier for Class 3 – Backing Paper  

 

Figure 4.21: SHAP Prediction of ANN for Class 3 – Backing Paper  
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4.3 Unsupervised Learning Algorithms 

Using the same experimental setup and data collected as discussed in the above sections, 

the frequency sweeps of the real and imaginary parts of permittivity alone were  used to develop 

unsupervised learning algorithms. Hence, 98 features indicating the real and imaginary 

permittivity are used for dimensionality reduction using Principal Component Analysis (PCA) and 

K-Means Clustering algorithms. These data clustered, was further used to drive supervised 

learning algorithms such as Random forest classifier to understand the principal components.  

4.3.1 Principal Component Analysis (PCA)  

4.3.1.1 PCA with 99% Variance  

A PCA model was developed to obtain a 99% variance of the input features and 5 principal 

components were obtained. These principal components had variances as shown in Figure 4.22, 

which sums up to be 0.9975 

 

Figure 4.22: Variance of PC’s in 5 PC dataset 

4.3.1.2 PCA with 2 Di-Electric Principal Components  

As the 5 principal components obtained earlier, contain information from the data, but do 

not represent the data directly i.e as no physical meaning can be obtained, we developed a new 

approach to obtain Di-electric principal components. The 49 features of the real part of permittivity 
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were given as an input to the PCA algorithm, and a single principal component called the “Real 

Permittivity Principal Component (RP-PC)” was obtained. Similarly, the 49 features of the 

imaginary part of the permittivity were used to develop “Imaginary Permittivity Principal 

Component (IP-PC)”. Hence these 2 are the Di-electric Principal Components (PC), which are 

used in the further model development process. From Figure 4.23, it can be observed that the RP-

PC was still able to obtain 98.75% of the variance, and the IP-PC was able to obtain a 74.35% 

variance of their original feature vectors. 

 

Figure 4.23: Variance of Dielectric PC’s and Cluster Plot of Dielectric PC’s. 

 

4.3.1.3 PCA with K-Means Clustering   

The two datasets, one with 5-PC’s and another with 2 PC’s were clustered using the K-

Means clustering algorithm. The algorithm is designed to find the optimal number of clusters from 

the inertia data obtained. The inertia is the sum of the squared distances of samples to their closed 

cluster center. Later, the elbow method plot was created for the number of clusters vs. inertia as 

shown in Figure 4.24. Surprisingly for both the 5-PC and 2 Dielectric-PC datasets, the same inertia 

plot was obtained, with difference only in the magnitude of the inertia.  

From Figure 4.24, it can be seen that there is not a sharp elbow and it lies between the 

values of 4-6 number of clusters. From domain knowledge, it is known that 4 different types of 
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laminate defects were inspected, we can conclude that 4 is the optimum number of clusters for this 

dataset. Also, as per the elbow method, the number of clusters can be 6, as the curve begins its 

linearity when K=6. The actual clusters for the Dielectric 2-PC data, with the clusters obtained by 

K-Means when K=4 and K=6 are plotted in Figure 4.25. 

Hence, by this method of PCA with K-Means clustering, and by cross-validating with the 

human visual inspection data of the laminates, a labeled database is created. This labeled database 

can be further used in supervised learning methods for making predictions on the type of foreign 

object defect present in the composite material, as we discussed in our previous sections. 

 

Figure 4.24: Elbow Curve for determining K. 

 

Figure 4.25: Clusters obtained using K-Means clustering algorithm 
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4.3.1.4 PCA with Supervised Learning   

As the supervised learning algorithms are discussed in chapter 3, we have used a few of 

the popular techniques, such as K-Nearest Neighbors, Decision Trees, Adaboost model, Random 

forest Classifier and Artificial Neural Network, to use the data from unsupervised learning 

algorithms. The main difference between the section 4.2 and 4.3 is that the previous section did 

not have the principal component analysis and unsupervised clustering algorithms applied to them.  

Table 4-III: Hyper-parameters for the supervised learning algorithms 

 5 PC dataset 2 Dielectric PC dataset 

K-Nearest Neighbors n_neighbors: 6 n_neighbors: 9 

Decision Tree max_depth: 6 max_depth: 7 

Adaboost n_estimators :10000 n_estimators :100 

Random Forest n_estimators: 100 n_estimators: 1000 

Neural Network 

alpha: 1, hidden_layer_sizes: 

(25, 25), solver: 'lbfgs' 

alpha: 1, hidden_layer_sizes: 

(25), solver: 'lbfgs' 

 

For each of these algorithms, both the datasets were split into training and testing sets, 

where 80% of the data is used for training and 20% is used for testing. A python function was 

created to perform the K-Fold cross-validation and grid search for determining the best hyper-

parameters for the supervised learning model. 
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Figure 4.26: Feature Importance’s obtained using Random Forest Regression 

 

Figure 4.27: Test Accuracy of the Supervised Learning models. 

It can be observed from the elbow method of K-Means clustering that the optimal number 

of clusters K is from 4-6. Although by using our prior knowledge we can select K=4 as there were 

4 different composite laminate panels from which the data were collected, it can be observed by 

comparing the figures that the PC’s indicating the release film and release paper are together. This 

might be due to their indistinguishable dielectric properties from the dataset. Also because the 

value of K is selected based on the point at which the elbow starts its linearity, and then the value 

of K will be 6. From Figure 4.25, K = 6, we can see that the clusters are grouped more evenly. 

This brings another intuition that as the dielectric properties are measured through the thickness of 
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the composite laminate, this thickness, and resin flow, or curing of the laminate are contributing 

factors to the two additional clusters.  

 In the hybrid model of using supervised learning, one significant advantage of using 

ensemble-learning methods such as decision trees, Adaboost, and random forest classifier 

algorithms, is the capability to obtain feature importances. These are the impurity-based feature 

importances of the ensemble forests algorithm. Due to the high accuracy of the random forest 

classifier models, we obtain feature importances for the five PC’s and two dielectric PC’s dataset 

as shown in Figure 4.26. It is vital to note that the RP-PC had higher variance than IP-PC as shown 

in Figure 4.26 but the feature importance of IP-PC is higher than the RP-PC, while the tradeoff is 

small. 

Figure 4.27 illustrates the overall testing accuracy of the five different supervised models 

developed with the 2 Dielectric PC dataset and 5 PC dataset. The five PC data models have more 

accuracy and better performance in all the different supervised models being developed than the 2 

Dielectric PC dataset. Hence, for visualization, or to obtain a meaningful analysis of their real and 

imaginary permittivity values, the 2 dielectric PC data can be used. For the real-time classification 

of defects and further identifying the damages, the five PC model can be used. 

 

4.4 Summary of Results  

From this research work, we identified that the BbDS – EIS technique is able to identify 

the defects caused during manufacturing of composite materials. Moreover, using the AI 

algorithms, we were able to predict the defects and label them. A combination of the supervised 

and unsupervised algorithms were used, and the Interpretable Machine Learning was used to 

explain the predictions of the AI model.  
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As this work focused on developing machine learning models for classification of the 

foreign object defects present in the composite laminate, the future work will attempt to create 

algorithms to identify the different damage types during the service life of composite laminates, 

and hence to predict the remaining strength and life of the composite structure, topics which are 

discussed in the subsequent chapters.  
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DAMAGE PRECURSOR IDENTIFICATION UNDER STATIC LOADING 

In the previous chapters, we have discussed the literature, background and the 

methodologies used in this dissertation. This chapter explains the experimental process and the 

results, which are used to conclude that the damage precursors can be identified using the dielectric 

spectroscopy and the artificial intelligence methods.  

5.1 Experimental Methods 

5.1.1 Manufacturing  

In this work, unidirectional glass fiber reinforced composites (Newport 301 epoxy resin/E-

Glass fibers (volume fraction 55%)) were manufactured in house at UTARI using a compression-

molding technique. In order to induce matrix dominated failure, off axis lamina were chosen and 

the laminate layup was [+45/-45]s. Two laminate panels were made wherein the temperature was 

ramped up at a rate of  3 °F/min from 70 °F to 275 °F, cured at 275 °F for 60 minutes and cooled 

at a rate of 3 °F/min from 275 °F to 120 °F, as per the manufacturer recommendations. Cured 

panels were cut into coupons as per ASTM D 3039 recommendations [7]. The final average 

dimensions of the unidirectional specimens are 203.2 mm (L) * 18.54 mm (W) * 0.86mm (T). 

5.1.2 In-Situ Monitoring with Tensile Loading  

The coupons were loaded in tension using MTS Landmark™ unit under displacement 

control. Simultaneously, the dielectric properties are measured by attaching an electrode block to 

the coupon in the form of a parallel plate capacitor and is connected to the analyzer of the 

Novocontrol™ unit. The schematic of the setup is shown in Figure 5.1. A rate of 0.3 mm/min was 

used for testing the specimens and for the dielectric response a sinusoidal AC signal with a 

potential of 1VRMS at a frequency of 10 Hz was applied. The insitu testing was done in the low 
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frequency regime to capture the redistribution of charges (interfacial polarization) due to local 

damage mechanisms [4, 8]. Also, edge replication techniques were used to capture the damage 

patterns developed during loading to correlate the changes in dielectric response to damage 

growth. Replicas were obtained at every 250 N by holding at that load level for 4 minutes. 

 

Figure 5.1: Schematic of the In-Situ Setup for Measuring Mechanical and Dielectric Response.  

5.2 Experimental Analysis and Results 

The stress-strain curves for the coupons are shown in Figure 5.2(a) and Figure 5.2(b). The 

data just before failure are plotted. The mechanical and dielectric response for one specimen is 

shown below in Fig. 3 [9]. From Figure 5.3, it is evident that with increasing strain and damage, 

there is a variation in the dielectric response. To better understand the variations, the dielectric 

response data are fitted using a fourth order polynomial as shown in Figure 5.3 and the first and 

second slope of the fitted curves are plotted in Figure 5.4 and Figure 5.5[9]. Since, dielectric 

response varies with damage, the first slope represents the damage growth and second slope 

indicates the rate of damage. The edge replication images for a coupon are shown below in Figure 

5.6 and a fractured specimen is shown in Figure 5.8 [9].   
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Figure 5.2: (a) Stress-Strain curves for Set A, (b) Stress-Strain curves for Set D 

 

Figure 5.3: Mechanical and Dielectric Response of a Composite Sample  
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From Figure 5.4, the strain at which the first slope changes from positive to negative or the 

strain at which the real permittivity 𝜀 𝑟
′  saturates was determined to be the Characteristic Damage 

State (CDS) of the material system. Characteristic Damage State (CDS) is a material state where 

the primary cracks saturate and the secondary cracks initiate in the neighboring plies followed by 

coupling of those cracks [9]. This can be observed in edge replication images (1750 N) in Figure 

5.6[9]. With increasing strain, these secondary cracks initiate at multiple sites leading to interaction 

of these cracks creating interlaminar cracks or local delamination that are thin strip like lines shown 

in Figure 5.7. During this stage, the ‘rate’ of these interactions increases at such pace, that the local 

failures aided by fiber fractures lead to global failure of the material [9]. From Figure 5.5, it can 

be observed that at a certain stage the second slope or ‘rate’ of damage changes shape indicating 

an accelerating growth of damage events. Also, from Figure 5.5, it is evident that the strain at 

which the rate of damage accelerates is in the zone where there is an inflection in the stress strain 

curve. 

 

Figure 5.4: Variation of 1st slope of Permittivity with Axial Strain [9] 
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Figure 5.5: Variation of 2nd slope of Permittivity with Axial strain [9] 

 

 

Figure 5.6: Edge replication images of the composite specimen at various load levels [9] 
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Figure 5.7: Fractured Specimen depicting distributed damage [9] 

5.3 Damage Precursor Identification using Artificial Intelligence  

In this section, we describe the method to use the dielectric compliance measurements in 

the artificial intelligence algorithm that can then predict the state of the material, and the initiation 

of failure based on the experimental observables. A pictorial representation of this research work 

is shown in Figure 5.8. 

 

Figure 5.8: Flowchart of the Damage Precursor Identification  

5.3.1 Data Pre-Processing  

5.3.1.1 Data Visualization  

The first stage of developing a machine learning and neural network model was to 

understand the data. Visualizing the data, gives a clear overview of what is being expected from 

the model, and helps to develop the model correctly. The input data set and output data set over 

time are plotted in Figure 5.9(a) and (b) for several samples 
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Figure 5.9: (a) Input data of Real Permittivity and (b) Output data of 1st slope 

5.3.1.2 Padding of data  

Since the data were obtained from the experimental testing of composite materials, the 

length of the data was not uniform for all the samples. As the data must be of uniform length, all 

the input and output data was padded with zeros, to make the length of the data set to be a vector 

of size (1, 1000) for each sample for both input and output. 

The data is then normalized and further split into the train and test sets for the development 

of the AI model.  

5.3.2 Model Parameters 

In this experiment, three different AI models – Artificial Neural Network, Random Forest 

Regressor and Recurrent Neural Network Models were developed. All the model parameters were 

obtained by following the hyper-parameter analysis as mentioned in the procedures of chapter 3.  

5.3.2.1 Multi-Layer Perceptron (MLP) Model  

For our given dataset, we developed a 3-Layer MLP model, as shown in Fig 10. As per the 

dataset, the input and output layers had 1000 values. Both the hidden layers had 1500 neurons in 

each. Adam optimization algorithm and the ReLU activation function was used. The learning rate 

was 0.001 and the L2- regularization parameter was chosen to be 0.0003. This parameter was 
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obtained by plotting the training vs. cross validation curve on various L2-regularzation parameter 

values. 

 

 

Figure 5.10: Multi-Layer Perceptron Model  

5.3.2.2 Random Forest Regressor  

With our previous experiments on using random forest regression models to learn about 

the behavior of the model from the feature importance’s [11], a random forest regression model 

was developed. It was a part of the error analysis process. Our model was developed by setting the 

number of estimators to be 3000, which is thrice the size of our input features. All other parameters 

were set as default by the scikit-learn [12] python package. The results obtained from these models, 

played a vital role in the development of our next model. 

5.3.2.3 Recurrent Neural Network Model  

Masking Layer 

From the results obtained from the previous model, it was realized that padding with zeros 

had an effect on the models’ performance and hence affected the R2-score of the predictions. RNN 

or LSTM does not have the requirements for the data to be of the same input length. Also, by 
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masking these networks with a masking layer, and by setting the mask value parameter to be zero, 

the LSTM model skips the particular mask value. Hence the weights are not affected.  

3D Input Shape 

For LSTM, the input needs to be in a 3D shape. Hence the 2D input of (m, 1000) was 

reshaped into the form of (m, 1000, 1) where the 1000 represents the time steps. Now as per the 

input data, for every sample m, there are 1000 time steps and each time step has a single feature. 

In certain other examples, it can have multiple features for a single time step, such as considering 

the real permittivity, imaginary permittivity, material properties or stress and strain value for a 

sample.   

Model Development Parameters 

The LSTM model was developed using keras[17] package  sequential model as shown in 

Figure 5.11 . First the input was converted from 2D to 3D, then the masking layer was set on the 

sequential model, which is an embedding layer. The LSTM layer had 1000 units, and the return 

sequences parameter was set to be false, hence we predict the output as a many- to- one- problem. 

This is more beneficial in the real time implementation of the model, because the entire input set 

of values was used to make the prediction at every time step. The model was ran for 2500 epochs, 

to ensure the convergence of the training loss and testing loss. 4,008,000 parameters were trained. 
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Figure 5.11: RNN model for predicting the Characteristic Damage State  

5.3.3 Results from AI models  

5.3.3.1 MLP model results  

From the MLP model developed, it was observed that the model was over-fitting. It had an 

excellent R2-score on the training data, but a very moderate R2-score on the test data. Also, from 

the results obtained, it was observed that the model predicted outputs even when the input data 

was zero as observed in Figure 5.12(a), which means that the zero padding was inversely affecting 

the model. Also the R2-score on the test data was moderate, because it could very well learn the 

initial set of data, up to the first 250 features, by which this model still predicts the 1st slope of 

permittivity to classify if the specimen has achieved the Characteristic Damage State as shown in 

Figure 5.12(b). Because when the predicted 1st slope of permittivity reaches zero, and changes 

from positive to negative, we believe that the material state changes from damage initiation stage 

to damage accumulation and growth stage.   
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Figure 5.12: (a) Actual test data vs. predicted data by Multi-Layer Perceptron model (b) Scaled-

in version of (a) 

5.3.3.2 Random Forest Regressor Results 

The Random forest regression model that was developed, did not outperform the MLP 

model. It had a lesser R2-score on both the training and testing compared to the MLP model. 

Although the R2-score was quite a bet less, the model had the same behavior of predicting the 

output values for the padded region of input data as well. While examining the features 

importance’s, this behavior was verified that the weights were higher in the regions where there 

was a change in the length of the data. This is depicted in Figure 5.13(a), from which it can be 

observed that the weights are high at approximately the 150th feature instance, which is the average 

instance where the characteristic damage state occurs as seen in Figure 5.13(b). It is also high 

approximately at instances 550, 775 and 890 which are the regions were the input data has no 

value, and zero padding begins as observed from Figure 5.13(b). Once this issue was realized, it 

was planned to develop the RNN model instead of improving this model to overcome the effect of 

zero padding and sequential nature of the data. 
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(a)                                                                                          (b) 

Figure 5.13 (a) Feature Importance’s (b) Size of Input and Output Data 

5.3.3.3 Recurrent Neural Network model results  

The LSTM model had tremendous performance on our dataset. The training R2-score was 

much similar to that of the MLP model, and the testing R2-score was significantly improved. 

Although a highest testing R2-score was not obtained, the LSTM model developed does not have 

bias and variance issues. The training loss and the test loss gradually began decreasing after the 

first few iterations, when our model started learning, as shown in Figure 5.14. After 1500 iterations, 

both the losses converged, and the difference between the losses were of the order of 10-5.  

Also from Figure 5.15, it can be observed that the predicted values match closely with the actual 

test data values. It can also be observed that there is no zero padding effect due to the masking 

layer in the LSTM model being developed. 
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Figure 5.14: Loss Plot of the LSTM model  

 

Figure 5.15: Test Data vs. Predicted Data by LSTM model 
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5.3.3.4 R2 – Score of Data Driven Models  

As defined earlier, the model’s accuracy is the R2-score value. Table 5-I represents the R2 score 

of the three different models developed.  

Table 5-I. R2-Score of Data Driven Models  

Model Training Score Testing Score 

Multi-Layer Perceptron (MLP) 0.9831 0.7322 

Random Forest Regression 0.9168 0.6840 

Long Short Term Memory Network (LSTM) 0.9528 0.8713 

 

5.4 Summary of the Work  

An in-situ testing technique was used to measure the variation in dielectric response as a 

function of damage growth in 4 ply unidirectional off axis glass fiber reinforced polymer 

composites. An increase in normalized real permittivity was observed during the micro cracking 

stage followed by saturation that correlated with the Characteristic Damage State (CDS) of the 

material system. These were validated using edge replication images and it was observed that when 

the value of 1st slope of normalized real permittivity was 0, the material state was CDS. Also from 

the 2nd slope of normalized real permittivity it was observed that the point at which there was a 

curvature change, there was an inflection point observed in the stress strain response indicating 

acceleration of damage events. 

Three different supervised learning algorithms were developed to predict the 1st slope of 

real permittivity, for the given real permittivity input values over time. By these predictions, the  

CDS of the material system could be identified from the dielectric data. The Multi-Layer 

Perceptron and Random Forest Regression model developed reflected in the over fitting of the 
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model. It also lacked success due to the zero padding done on the input data. However these models 

can be used to classify data between the damage initiation and damage growth stages. The Long-

Short Term Memory network model developed as a part of the Recurrent Neural Network, 

demonstrated better performance on both training and test data and can be used for predicting the 

CDS of the material system.   
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RESIDUAL STRENGTH AND LIFE PREDICTION IN COMPOSITES  

 In the previous chapters, we discussed the use of the dielectric parameters for assessing the 

defects in composites, and to predict the characteristic damage state under the quasi-static loading 

condition. This chapter is focused on Tension-Tension Fatigue experiments, with In-situ 

monitoring using the dielectric and fiber optic sensors. The Stiffness Degradation, Residual 

Strength and Residual Life are important parameters of interest in this chapter.  

6.1 Manufacturing of Composite specimens  

In this study, GFRP composite laminate was manufactured using the Rockwest 

unidirectional E-glass prepreg. An 8-ply quasi-isotropic laminate with stacking sequence  

[-45°/0°/-45°/90°]s was manufactured using the out-of-autoclave (OOA) process in a Despatch 

composite curing oven. The manufacturer recommended cure cycle[158] was followed and the 

laminate was cured at 135° C.  These laminates were cut using a Protomax water jet cutter to 

prepare the specimens in the dimensions of 254 mm × 38.1 mm as per the ASTM D3479 standard 

[159], where the width was determined as needed for the experiments. The samples had an average 

thickness of 1.9 mm. Seven different panels were manufactured and used for testing and analysis, 

hence this creates a large variation in the dataset.  

6.2 Determination of the Ultimate Tensile Strength under Static Loading  

Initially, 21 specimen ( 3 from each panel ) were subjected to quasi-static loading, to determine 

the ultimate tensile strength of the composite specimens as per ASTM D3039. These tests were 

performed in the displacement control mode, at a rate of 0.03 mm/s. Once the breaking load for 

the samples was obtained, average ultimate tensile strength was calculated and a Weibull analysis 

was carried out, and the 95% confidence levels were obtained as shown in Table 6-I.  
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Table 6-I: Results of Quasi-static Tensile Tests 

Mean Ultimate 

Tensile Strength 

(MPa) 

Scale 

Parameter 

(Mpa) 

Shape 

Parameter 

95 % Confidence 

Limit – Lower 

(Mpa) 

95% Confidence 

Limit – Upper 

(Mpa) 

314.12 323.54 16.37 314.71 332.62 

 

6.3 Determination of the Number of cycles to Failure under Cyclic Loading  

6.3.1 Experimental Design 

Based on the Average Strength and Average Area ( 73.25 mm2 ) from our initial static tests, 

the Average breaking load was obtained to be 23 KN, and hence the fatigue test experiments were 

designed as shown in Table 6-II. The fatigue tests were performed at a constant amplitude of 20% 

stress loads. Three different mean stress conditions are used.  

Table 6-II: Fatigue Test Parameters 

Mean Stress % Mean Stress ( MPa) Max Stress (MPa) Min Stress (MPa) R ratio 

75 % 235.58 298.41 172.76 0.578 

50 % 157.06 219.88 94.23 0.428 

25 % 78.53 141.35 15.70 0.111 

 

6.3.2 Fatigue Test Results and Weibull Analysis    

As per the parameters in Table 6-II, run-to-failure fatigue tests were carried out and the 

number of cycles to failure were obtained for three different mean stress conditions. The results 

are shown in Table 6-III 

Table 6-III: Initial Fatigue Test Results 

Mean Stress % 

Condition 

Shape 

Parameter 

 

Mean Cycles 

to Failure – 

Scale 

Parameter 

95 % Confidence 

Limit – Lower 

95% Confidence 

Limit – Upper 

75 % 1.7392 764.70 500.51 1168.34 

50 % 2.6236 60504.49 49756.22 73574.57 

25 % 4.2211 456882.75 390979.68 533894.37 
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6.4 State Variable Change with Damage Development  

For the fatigue data of the composite specimens tested, the evolution of state variables 

(stiffness and permittivity) were obtained. In this work, secant stiffness is used as the mechanical 

state variable. These curves were normalized with respect to initial values, so a normalized value 

of 1 indicates initial stiffness and initial permittivity. The life was also normalized with respect to 

the number of cycles to failure, so a normalized value of 1 indicates the failure of the specimen. A 

fifth order polynomial was then used to fit these curves, and from these curves, the first and second 

derivative of the state variables were calculated. The fifth order polynomial was selected, rather 

than the other orders because it was able to provide a better fit in terms of R2 value and the 

correlation of mechanical and dielectric response was clear.  In general, the first derivative 

represents the instantaneous rate of change, and second derivate represents the acceleration. These 

curves represent significant behavior, which helps us identify the damage precursors and beginning 

of the end of life of the composite material. Primarily, the instantaneous rate of change is triggered 

by damage development, and acceleration of response is dependent on acceleration of damage 

development and can be an indicator of impending failure. For each of the composite specimens, 

the coefficients of polynomial equation for the state variables were obtained and average 

coefficients were calculated to generate a representative curve for the entire dataset. The slopes of 

this representative curve are then used to understand the evolution of these state variables with 

damage development. 

6.5 Residual Strength Determination 

6.5.1 Experimental Design  

Based on the results from Table 6-III, the experiments were designed in such a way that, 

for each of the mean stress levels, to apply fatigue loading for a number of cycles determined as 
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the 95% lower confidence limit of that particular stress level, and then unload it to the zero load 

level and perform a quasi-static test to determine the residual strength of that particular specimen. 

These tests are carried out with both the dielectric sensor and FOS placed in them as shown in 

Figure 6.1. In this experiment, the dielectric sensors are used with the polycarbonate blocks as 

shown in Figure 6.2. The Installation of fiber optic sensors are shown in that figure.. The sensor 

data collected during tests were correlated with the residual strength obtained. 

 

Figure 6.1: Composite Specimen under Fatigue with Dielectric and FOS Sensor 
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Figure 6.2: Installation of FOS Sensors on the Composite Specimen 

The Figure 6.3 shows the Input Mechanical Response over time, Figure 6.4 shows strain 

response over time, and  Figure 6.6 the Output Stress-Strain response for a Sample which is 

fatigued at 75% Mean stress level. The Dielectric Response for the entire Residual Strength test is 

shown in Figure 6.7 

 

Figure 6.3: Input Stress over time during Fatigue 



 

138 

 

Figure 6.4: Strain response over time during Fatigue 

 
 

Figure 6.5: Fiber Optic Strain response for Fatigue 
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Figure 6.6: Stress-Strain response during residual strength determination test 

 

 

 

 

Figure 6.7: Dielectric Permittivity response for residual strength determination test 
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From the above figures, it can be observed that the dielectric response has a certain 

correlation with the strain response, during the initial static ramp up and during fatigue. However 

the curves are different for the ramp down and the second ramp up for residual strength 

determination. This gives us another intuition that the dielectric response behaves differently when 

there is damage in the material, validating our prior theories.  

 

The results of the residual strength calculations are shown in Table 6-IV. 

Table 6-IV: Residual Strength Values for different fatigue loading conditions 

Mean Stress 

Condition 

Average 

Residual 

Strength 

(MPa) 

Shape 

Parameter 

Weibull 

Scale 

Parameter 

(MPa) 

95% Lower 

Residual 

Strength 

(MPa) 

95% Upper 

Residual 

Strength 

(MPa) 

75 % 326.50 13.60 339.1871 320.22 359.27 

50 % 262.24 21.48 269.446 259.06 280.03 

25 % 248.18 16.93 255.661 238.13 274.47 

 

6.6 Life Prediction with ECSEA Bonded Sensors 

Being a popular characterization technique, dielectric properties of composite materials 

have been measured using different established techniques as discussed above using copper 

electrode blocks. However, due to the clamping force of the blocks on the composite specimen 

under testing, stress concentrations at the contact sites are common. In addition, if the clamping 

force isn’t sufficient or the specimen surface is uneven, there would be poor surface contact. All 

these issues can lead to erroneous noise measurements. To get rid of these issues, a new approach 

has been carried out using Extremely Conductive Silver Epoxy Adhesive (ECSEA) paste 

manufactured by MG Chemicals. This method eliminates the possibility of having any stress 

concentration as well as maintains proper contact with the specimen surface (given proper curing 

of the silver epoxy). By bonding copper electrodes using ECSEA paste to the composite, 
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continuous contact is established. The composite specimens where first marked with the location 

of the sensor and taped all around with a masking tape, to avoid any excess adhesive on the 

specimen. The part A and part B of ECSEA pastes were mixed in 1:1 ratio and applied evenly on 

the particular location on both sides of the composite sample, and thin copper sheets were placed 

on top and bottom of the ECSEA paste. This setup was cured at 60° C for 2 hours as per the 

manufacturer’s recommendation. Later, BNC connectors were soldered to the sensor using copper 

wires. The composite specimen with the bonded dielectric sensor is shown in Figure 6.88.  

 

Figure 6.8: a) Composite sample with copper sensor bonded using ECSEA paste b) sample under 

testing in MTS machine. 

All the mechanical tests were carried out using MTS Landmark Servo-hydraulic test 

systems. The composite specimens were subjected to the fatigue test at the mean load level of 50% 

of the lower confidence interval bound of the breaking load. These fatigue tests were designed at 
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a constant amplitude of 20% and frequency of 2 Hz. The fatigue parameters are as mentioned 

earlier in Table 2. Both the tensile and fatigue in-situ tests were carried out using the ECSEA paste 

based dielectric sensors. The real and imaginary part of permittivity were measured simultaneously 

during these mechanical tests using the NoVoControl Dielectric Spectrometer as described earlier. 

These ex-situ dielectric measurements were carried out between the frequency of 1 MHz to 0.1 Hz 

and the in-situ measurement was carried out at a frequency of 100 Hz. 11 composite specimens 

were used in this particular experiment. 

 

6.6.1 Dielectric response using ECSEA under quasi-static loads 

Since a new methodology of using ECSEA with the copper plate was used to measure the 

dielectric properties of the composite material using the BbDS method, the sensors were first 

validated by measuring the ex-situ response of the composite as shown in Figure 6.9; it was 

observed that the behavior is similar to using the traditional electrode block setup[160]. Then 

another validation was performed by analyzing the in-situ behavior of the composite panel with 

SEA bonded sensors, under quasi-static loading as shown in Figure 6.10 and was similar to using 

the traditional electrode block setup[160] 
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Figure 6.9: Ex-Situ Dielectric data of composite bonded with ECSEA sensors 

 

Figure 6.10: In-situ dielectric data of composite with SEA bonded sensors under quasi-static 

loading 
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6.6.2 Dielectric response under fatigue loading  

Figure 6.11 represents the mechanical (stiffness) and dielectric (permittivity) response 

during fatigue loading of a specimen. The stiffness vs. life curve (normalized), is similar to 

observations made in the literature (Figure 2.3), except a for few artifacts. A sharp decrease in the 

beginning and end of the fatigue is notable, which is primarily due to the 50% mean stress level. 

At this stress level, and considering the amplitude of fatigue loading, the material would have 

attained the CDS (Characteristic Damage State crack spacing), resulting in this initial sharp 

decrease in stiffness unlike the behavior in Figure 2.3. From Figure 6.11, it is seen that there is an 

accelerated decrease in the permittivity at about 75% of the life of the composite material, which 

could serve as a precursor for indicating the beginning of the end of life of the material.  

 

Figure 6.11: Mechanical vs. Dielectric Response of Composite under Cyclic loading 
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6.6.3 Evolution of state variables with damage development   

 

Figure 6.12: 1st and 2nd derivatives of a) stiffness and b) permittivity 

To get a better understanding of the material behavior with damage development, curve 

fits were obtained for the mechanical and dielectric representative curves and their slopes were 

analyzed. Figure 6.12 represents the derivatives for the state variables of the representative curve. 

As described above in State Variable Change with Damage Development section, the first 

derivative represents the rate of change in behavior whereas the second derivate represents the 

acceleration in behavior [161,162]. The average acceleration of stiffness and permittivity are 

normalized with respect to their maximum values and compared as shown Figure 6.13. It can be 

observed that the acceleration of mechanical and dielectric state variables follow a similar trend 

until 50% of life, i.e. the magnitude of the acceleration is higher in the beginning and starts to 

decrease gradually followed by saturation. We observe the second inflection point in the 

acceleration curve at around 70% of life where the magnitude of acceleration in dielectric response 

starts to increase earlier than the mechanical response which increases around 75% of life and then 

both decrease, hence providing an earlier warning of beginning of failure. Based on this second 
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point of inflection, which indicates the beginning of end of life, the percent of life and hence the 

number of cycles at that point of inflection was obtained for all the 11 composite specimens. The 

average percent of life is predicted as 68.78% and average number of cycles is predicted as 53655 

based on permittivity, at which the failure is imminent for this laminate under the given loading 

conditions. Based on the 2nd point of inflections calculated from stiffness, the percent of life is 

71.74% and the number of cycles is 59669. Weibull analysis was carried out for these data, 

indicating the reliability of this dielectric in-situ monitoring method. A shape factor of 10.30 was 

obtained.  

 

Figure 6.13: Acceleration of Mechanical and Dielectric state variables 
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Figure 6.14: Acceleration of Dielectric Permittivity under Fatigue for different load levels 

 

Figure 6.14 shows how the acceleration of the permittivity changes for the 3 different 

fatigue loading conditions based on the dielectric permittivity response as an input. It can be clearly 

observed that, for all the 3 different loading conditions, we are able to identify the inflection point 

at about 75-80% of the material’s failure, indicating the beginning of the end of failure of the 

composite specimen.  

Hence with this in-situ monitoring of the composite material using the SEA bonded 

sensors, it is possible to predict the beginning of the end of life of the material. Based on these 

observations, we propose the following framework shown in the Figure 6.15 for in-situ monitoring 

of composite structures using BbDS. Here, the dielectric property is measured at regular time 

intervals, the rate of change and acceleration are calculated and based on the design, the structure 

can be called for maintenance, repair and operation. Based on this framework, by continuous 



 

148 

monitoring of dielectric data, maintenance scheduling will be more effective leading to reliable 

and safer structures. It is to be noted that, all of these results were obtained with the fifth order 

polynomial curves and changing the order of curve might result in different results. Hence the 

future work will be focused to use data-driven artificial intelligence methods for in-situ monitoring 

using this methodology. 

 

Figure 6.15: Proposed Di-electric in-situ monitoring framework 
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6.6.4 Artificial Intelligence Models for ECSEA bonded Dielectric Sensor Monitoring  

Until now we discussed the physics based approach of using real-permittivity value and 

the stiffness value, over life. This section explains the development of an AI algorithm using the 

real-permittivity curve for each specimen, obtained over time and predicting the life at that instant, 

and the future life.  
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Figure 6.16: Interpolated representation of Permittivity and Strain over time  

 For the development of the AI model, we converted the input data into finite time steps of 

data by the process of interpolation. This helps us improve the model efficiency, and develop a 

model with the limited data points. Various approaches can also be taken by using the RNN-LSTM 
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model, where the LSTM model takes care of the variable sequence length using the encoder-

decoder approach.  

 An Artificial Neural Network model was developed, where the permittivity is provided as 

the input and the Life is obtained as the output. It’s a 4-Layer Neural Network model, with 1000 

neurons in each layer, with 500 outputs in the output layer. 8 samples were used for training and 

3 samples were used for the testing. Validation was done from the training data set, with the 

validation parameter set to 0.2. For the output prediction, each sample in the test data set was split 

into 5 sub-samples, where these sub-samples had values only for 100,200,300,400 and 500 time 

steps, and the remaining values were made as 0. By this way, the output prediction curves were 

obtained from the ANN model for each sub-samples as shown in Figure 6.17 

 

Figure 6.17 Prediction of a test data for ANN model with Permittivity as Input 
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Table 6-V: Results from the ANN model for a sample  

X 
100 Time 

steps 

200 Time 

steps 

300 Time 

steps 

400 Time 

steps 

500 Time 

steps 

Actual Life % at X  

Time step 
0.1932 0.3944 0.5956 0.7968 1 

Predicted Life % at X 

Time step 
0.1907 0.4020 0.5880 0.7522 0.9831 

Predicted Life % at 500
th

 

Time step 
0.74 0.8649 0.8831 0.9480 0.9831 

Accuracy 74 % 86.49 % 88.31 % 94.80 % 98.31 % 

 

 From the results above, it can be observed that with the initial 100 time steps in-situ 

monitoring data of dielectric permittivity, the life prediction has a low accuracy, however as more 

ground-truth information in form of time-steps is obtained and the damage progression occurs in 

the composite materials and provided to the AI model, the life can be predicted with more than 

90% accuracy.  This will be helpful for the maintenance inspection technicians, to schedule timely 

condition based maintenance. 

 

Figure 6.18: Prediction of a test data for ANN with Strain as Input 

 Figure 6.18 shows the output predictions of the ANN model. It can be seen that the output 

predictions matches the actual prediction so accurately. This is due to the fact that the strain 
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response developed during a constant amplitude fatigue tests do not vary and follow similar 

pattern. Since the input data is smooth as shown in Figure 6.16 

 

6.7 Summary of the work 

In this work, in-situ dielectric spectroscopy was used to monitor evolution of state variables 

with damage development during fatigue. Quasi isotropic laminates made out of glass fiber 

reinforced polymer composites were loaded in tension-tension fatigue at a mean stress level of 75 

%, 50 %, and 25% of ultimate tensile strength. The Number of cycles to failure were obtained for 

each fatigue condition. Residual strength determination tests were designed based on the Weibull 

parameters, and the residual strength of the specimens was obtained for each fatigue condition. As 

the change in the state variables is triggered by damage development, the rate of change of these 

state variables indicates the rate of damage interaction and can be effectively used to predict 

impending failure. For these laminates under the given loading conditions, it was predicted that 

failure is imminent after 53655 cycles (68.78 % of life) with a 95% confidence interval [41488 to 

69390 cycles]. A framework was designed in this work based on in-situ monitoring to effectively 

schedule maintenance and hence make the composite structures more reliable.  AI models are 

developed to predict the life during fatigue of composite materials using the dielectric permittivity 

value collected in real-time.  
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CONCLUSION AND FUTURE WORK   

With the increasing use of Artificial Intelligence based data-driven modelling in composite 

materials, and the need for reliable prognostic health management systems for condition based 

maintenance, it is necessary to identify the material state parameters that could give reliable 

information on the performance of the composite material under various loading conditions.  

This work is summarized as the results of the four chapters, where the in-depth literature 

survey is performed, experiments are carried out using the state of the art material sensor systems 

for manufacturing, static and fatigue loading conditions, and the use of artificial intelligence 

techniques using these data is studied.  

The major contributions from this dissertation are   

• Proposed the methodology to adopt artificial intelligence based data-driven methods for 

prognostic health management, from the survey of the current methods available 

• Established a method to identify the foreign object defects in the composite materials from 

dielectric properties and machine learning 
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• Established the use of Interpretable Machine Learning and Explainable Artificial 

intelligence techniques to identify which dielectric parameter, and at what frequencies, the defects 

are distinguishable in composites  

• Developed Artificial Intelligence models to identify the Characteristic Damage State 

(CDS) of the composite material from the in-situ dielectric data under quasi-static loading 

• Established a framework to predict the beginning of end of life of the material during in-

life service, by in-situ monitoring with dielectric sensors 

• Developed an Artificial Intelligence framework to predict the remaining useful life of the 

composite material using permittivity and strain measurements 

 

The future work that can be carried out in various directions is suggested as follows:  

 Research work on the advancement of using dielectric sensors for fatigue monitoring, by 

varying several other parameters that can be studied, such as spectrum loading conditions  

 A complete life cycle monitoring of the composite structure can be done using the proposed 

sensors from manufacturing till failure, and the data can be studied.  

 Adaptive data-driven models can be developed  

 Interpretable methods to predict the regression – time series data can be used for the fatigue 

life monitoring of composite materials  

 Develop classification models for identifying the different damage states under fatigue 

loading conditions 

 Develop methods to correlate the damage state of the material based on the slope change of 

dielectric response, i.e correlated the initial stiffness, residual stiffness with the dielectric 

slope.  
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