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ABSTRACT

LEARNING HIERARCHICAL TRAVERSABILITY REPRESENTATION FOR

EFFICIENT MULTI-RESOLUTION PATH PLANNING

Reza Etemadi Idgahi, M.S.

The University of Texas at Arlington, 2021

Supervising Professor: Manfred Huber

Path finding on grid-based obstacle maps is an important and much studied

problem with applications in robotics and autonomy. Traditionally, in the AI com-

munity, heuristic search methods (e.g. based on Dijkstra and A*, or based on random

trees) are used to solve this problem. This search, however incurs significant com-

putational cost that grows with the size and resolution of the obstacle grid and has

to be mitigated with effective heuristics in order to allow path finding in real time.

In this work we introduce a learning framework using deep neural networks with a

stackable convolution kernel to establish a hierarchy of directional traversability rep-

resentations with decreasing resolution that can serve as an efficient heuristic to guide

a multi-resolution path planner. This path planner finds paths efficiently starting on

the lowest resolution traversability representation and then refining the path incre-

mentally through the hierarchy until it addresses the original obstacle constraints.

We demonstrate the benefits and applicability of this approach on datasets of maps

we created to represent both indoor and outdoor environments in order to represent

different real world applications. The conducted experiments show that our method
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can improve the time of path planning by 30% in indoor environments and 66%

in outdoor environments compared to the application of the same heuristic search

method applied to the original obstacle map, which demonstrates the effectiveness of

this method.
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CHAPTER 1

INTRODUCTION

Path planning on a given static grid is one of the well-known and common

problems of AI and Robotics which is solved with a large variety of methods that

have been proposed so far. These methods can be divided broadly into 2 general

categories. One is global path planners that compute a complete path before starting

navigation, such as Dijkstra, A* or Rapidly Expanding Random Trees (RRT). The

other is local path planners which determine local navigation actions without first

computing a complete path, such as potential fields or reactive navigation strategies.

Local path planning generally has the advantage of requiring less computation

time and of being able to work while only having knowledge about the local environ-

ment around the current position of the agent. However, these methods are prone to

fail and get stuck in local minima and thus may not be able to find a path.

On the other hand, global path planners rely on heuristic search in the state-

space induced by grid cells and can guarantee to find a path given sufficient in-

formation about the environment. However, since they require significantly more

information compared to the local path planners, these methods often struggle to

find a path in a reasonable amount of time as the size of the maps increase. While

efficient heuristics can accelerate path construction in these algorithms, the deriva-

tion of effective heuristics for a specific environment is a significant challenge. Most

traditional approaches thus use generic heuristics that are largely independent of the

environment such as Cartesian Distance or Search Node Density, thus still requiring

large amounts of time in cluttered and ill-structured environments. This is a huge
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drawback that makes these methods difficult to use for applications with stringent

time constraints.

In this work we introduce a novel method to derive a hierarchical traversability

representation using a stackable convolutional neural network architecture that can

serve as an efficient heuristic for global path finding approaches. The proposed ap-

proach finds a path between two positions in a large map while reducing the time

of path planning. To do this, we translate the obstacle grid map into a directional

traversability representation and then learn a model in a supervised fashion that can

reduce the resolution of traversability grid maps and create a new set of traversability

maps of smaller size that preserves most navigation information. This model is cre-

ated using a convolutional neural network that can be expanded without retraining

to variable size inputs while achieving a constant factor size reduction. This enables

us to to stack the learned convolutional kernel an arbitrary number of times without

additional re-training, yielding an increasingly deep network and creating a growing

hierarchy of abstracted maps of increasingly smaller size. On this hierarchy we then

apply a global path planner in a multi-resolution framework, starting by finding a

path in the smallest size (i.e. coarsest resolution) abstracted map and then incre-

mentally refining it on the increasingly higher resolution maps on each level of the

hierarchy, including the original grid map which results in the final path. The use

of the traversability hierarchy here ensures that paths found on low resolution maps

retain most aspects of the true path and can thus be easily refined, yielding faster

overall planning times than planning on the full resolution map. While we use Dijk-

stra’s algorithm here for path planning and refinement, the approach should also be

applicable to other global planners, including A* and RRTs.

The main contribution of this work is to demonstrate that the model is able

to learn a new, hierarchical representation of physical features in a map in terms of
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obstacle and non obstacle cells. The learned model allows the algorithm to accurately

reduce the resolution of the maps in order to perform path planning in less time.

Furthermore, our experiments show that our algorithm is more efficient than the plain

Dijkstra and can reduce the overall time of finding a path in a grid map significantly.
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CHAPTER 2

RELATED WORK

A variety of search algorithms have been proposed in the context of path plan-

ning, such as A* [1], Anytime Repairing A* [2], Rapidly-exploring Random Tree

(RRT) [3], Hybrid-A* [4], and two-stage RRT [5]. Generally these methods use

generic, handcrafted heuristic functions, such as Manhattan distance, Euclidean dis-

tance, and length of Reeds-Shepp paths. Additionally in [6] it is shown that cost

functions of the states can be created from the topology of the state and can be

learned from demonstration [7]. Although it is possible to achieve optimal solutions

with a well founded heuristic function, the complexity of the environments can make

these methods unpractical specially when the length of the path or the dimension of

the state space increases. ARA* [2] reduces the complexity by using a scaling factor

and adjusting the upper bound of the cost of a path. Hybrid A* [4] uses the maximum

of two different heuristic functions to guide grid cell expansion. However, it neither

preserves completeness nor guarantees to achieve an optimal solution. Two-stage

RRT [5] utilizes two RRTs where an upper RRT produces waypoints, which guide

the other, lower RRT to address the robot kinematics.

Researchers have developed several hierarchical path planning methods in order

to improve the quality of the planned path in complex environments [8, 9, 10, 11, 12].

Fujimura and Samet [11] proposed a hierarchical system for path planning in an envi-

ronment with moving obstacles, in which time was included as one of the dimensions

of the model world. However, this approach leads to having a large search space. In

[12], a hierarchical approximate cell decomposition method was introduced for path
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planning where different resolutions were used in cell decomposition. Additionally

path planning methods based on fuzzy systems and optimization methods have been

introduced by researchers in order to overcome the challenging properties of environ-

ments such as unknown and dynamic areas [8, 13]. In [13], a multi-objective path

planning algorithm based on particle swarm optimization is proposed for robot nav-

igation in uncertain environments. By contrast, [8] proposed a hierarchical planning

strategy with two layers, where fuzzy logic was used for the proposed motion planning

strategy. However, the optimization and generalization ability of these planners still

need to be improved.

Fueled by the increasing popularity of artificial neural networks, the AI com-

munity has started to utilize these computational models in path planning and use

their powerful features such as strong function approximation. In particular, deep

reinforcement learning [14] which is a machine learning framework for sequential de-

cision making problems has been used to learn a policy that can generate the shortest

path. Prior RL algorithms, like Q-learning and Sarsa [14], work well with discrete

state spaces. Konar et al. [15] have applied Q-learning to path planning of a mobile

robot. However, if the state spaces become very large or continuous, these algorithms

will be computationally expensive and impractical for applications. In [16, 17, 18, 19]

researchers introduced various approximation methods to deal with large or continu-

ous state spaces. Inspired by the least-squares temporal difference learning algorithm

[16], Lagoudakis and Parr [17] proposed the least-squares policy iteration algorithm

(LSPI), in which linear architectures were used to approximate the value functions

in continuous state spaces. In [20] a hierarchical planning approach based on A* and

LSPI is presented in which a two-level structure was used. In the first level, the A*

algorithm was used to find several path points as subgoals for the next level and in

the second level, LSPI was used to learn a near-optimal local planning policy. How-
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ever, these methods require significant training in order to be practical for real world

applications.

In contrast to this previous work, the approach presented here uses deep neural

networks to explicitly learn reductions of the world model that can then be used as

a heuristic by a path planner to reduce complexity. The goal here is to combine the

benefits of a global, well studied path planner in terms of completeness and correct-

ness with the advantages of machine learning to identify patterns in traversability

representations that indicate successful path attributes.
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CHAPTER 3

METHOD

The method developed here attempts to provide efficient guidance to a hierarchi-

cal path planning and refinement approach by constructing a cascade of increasingly

lower resolution representations of the environment that maintain the main charac-

teristics of the environment in terms of path construction with minimal refinement

requirements. For this, it is important that the maps maintain broad traversabil-

ity characteristics rather than obstacle locations or densities. For example, while an

orchard of trees and a field with multiple walls might have the same average obsta-

cle density, traversability of the orchard is relatively universal (i.e. there is a path

through the orchard in pretty much any direction), traversability of the walled field

is severely limited. When abstracting these two pieces of environment in a way that

preserves approximate paths, it is thus important that these environments are repre-

sented so their characteristics are preserved. For this, we propose here the concept

of directional traversability maps to capture this information and utilize supervised

learning with convolutional networks to identify the features that indicate particular

traversability characteristics.

To be able to address varying size maps, the developed learning approach builds

a convolutional kernel in the network that reduces the traversability representation

of a map region into a lower resolution traversability representation of the same

region where the resolution reduction is a constant factor. This allows us not only

to expand the convolutional layer to arbitrary input sizes but also allows the same
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kernel to be stacked in additional layers of a deeper network, producing increasingly

coarser resolution traversability maps with each additional stacked layer.

Using this hierarchy of representations, path planning then works back up the

hierarchy, starting by constructing a path in the lowest resolution (and thus smallest

size) map and then incrementally refining it by considering the next higher level

representation.

Figure 3.1 shows an overview of the heuristic construction and path planning

approach.

Figure 3.1. Overview of the proposed hierarchical, multi-resolution path planning
approach. Construction of the reducing resolution directional traversability cascade
(top from left to right) is followed by bottom up path planning and refinement (bottom
from right to left).

Starting by translating the original obstacle map (top left), into a set of direc-

tional traversability maps, these are then transformed into incrementally reduced size

representations through the application of the learned convolutional network kernel

until a desired smallest size is reached (illustrated left to right at the top of the fig-
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ure). Once this representation hierarchy is formed, the path planner is executed at the

bottom of the hierarchy (bottom right of the figure) and the results is incrementally

refined moving back up the hierarchy until a path is derived on the original obstacle

map (illustrated right to left at the bottom of the figure).

3.1 Directional Traversability Maps

In this work, the gird maps that represent the environment are called obstacle

maps. In these maps each cell can be either 0 meaning obstacle or 1 meaning non-

obstacle cell. We introduce the concept of directional traversability maps as a new

way of representing obstacle maps where each cell can have a value between 0 and

1 which is called its traversability score, loosely representing the likelihood that the

represented region is traversable in the intended direction. Each obstacle map can be

converted into multiple traversability maps where each map shows the traversability

scores in a specific direction. In the case of 6 directions, these directions are hori-

zontal, vertical, top-left, top-right, bottom-left, and bottom-right, where the latter

names indicate the entry and exit edges of the traversal relative to the considered re-

gion. The traversability score for each direction represent the degree to which a path

exists that traverses the underlying patch of the environment in the corresponding

general direction. Figure 3.2 shows an example of an obstacle map region and the

corresponding traversability representations.

To manually convert an obstacle map to a set of equal sized traversability maps,

we need to calculate the traversability scores for each cell in the obstacle map. If the

cell is an obstacle then traversability scores in all directions are set to 0. Otherwise if

the cell is non-obstacle, we look at the pair of adjacent neighbors of that cell in each

direction. For example, the left and right neighbors are considered for horizontal, and

top and bottom for vertical traversability. The traversability score in each direction
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Figure 3.2. Obstacle map and corresponding directional traversability representations
for the 6 traversal directions.

is set to 0 if both neighbors are obstacles, 1 if both are non-obstacles, and 0.5 if one

is an obstacle and the other is a non-obstacle.

Generating general traversability maps at lower resolutions where each location

in the map represents an entire region of space is more complex. In order to do

this manually, a search process would be required to explore all possible ways to tra-

verse the underlying region in the intended direction and to determine the likelihood

that a particular entry and exit location pair in the specific direction would have a

successful path through the underlying region. The complexity of this computation,

however, increases significantly with the size of the region for which traversability

is to be calculated, making such manual calculation of traversability unwieldy in

large environments. To address this, the work presented here trains a convolutional

10



neural network to predict traversability scores for larger regions hierarchically from

traversability scores from smaller, underlying regions.

3.2 Model for Map Size Reduction

At the core of the proposed work is the construction of a cascade of resolu-

tion (and thus size) reduced directional traversability maps representing the same

environment. To achieve this, we trained a convolutional model with 2 layers, with

the goal of the learned convolutional kernel to reduce a 4x4 patch of the 6 direc-

tional traversability maps to a 2x2 reduced size patch of 6 more abstract directional

traversability scores. The used convolutional kernel, when applied in a convolutional

layer, thus reduces the resolution of the traversability maps by a factor of 2 in each

dimension. In the used network, the first layer of the convolutional kernel has 3 4x4

filters with a stride of 2 and relu activation functions for each directional traversability

map. The outputs of this first layer of the kernel are stacked and as a result the input

traversability maps with size of WxHx6 are converted to W/2xH/2x18 maps which

serve as the input for the second layer of the convolution kernel. The second layer

is a 3D convolutional layer that has 6 1x1x18 filters with a stride of 1 and clipped

relu activation functions with max value of 1. This function enables the model to

generate valid values between 0 and 1 as traversability score. Therefore, the output

of this models is 6 directional traversability maps with half resolution of the input

traversability maps. The convolution kernel can then be replicated in a variable size

convolution layer that covers the entire size of the presented map, making it flexible

to train and apply on arbitrarily large maps. Figure 3.3 shows an illustration of the

proposed model.
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Figure 3.3. Proposed model of convolutional kernel for map size reduction.

3.2.1 Training Data Generation

To train the convolutional network for one step of size reduction, we generated

a training set of obstacle maps with corresponding resolution reduced traversabil-

ity labels using an automated labeling process based on a local path search in the

underlying region. The label is defined as directional traversability maps with half

resolution created for each training obstacle map. In the case of the maps used for our

experiments in Chapter 4, for example, where our original obstacle and traversability

maps are 256x256 maps, these label maps have a size of 128x128 and each cell on

these maps represent a 4x4 window on the obstacle map in the form of a traversability

score. This score is a real number between 0 and 1 where 0 means there is no path

in the specified direction in that window and 1 means there are paths from any point

on one side of the window to any point on the other side in the specified direction.

Values in between represent the fraction of location pairs on the entrance and exit
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side of the area corresponding to the given direction that can be connected through

the area with a collision free path. Loosely, this corresponds to a measure indicating

how easy it would be to find a path traversing the area in the given direction. The

window moves on the obstacle map with a step size of 2 which creates overlapping

areas in the form of 2 shared columns or rows between two adjacent windows. This

helps to have consistent traversability maps and catch all the different formations of

obstacles between 2 adjacent windows.

It is important to note here that this training data only contains traversability

scores of 0, 0.5, and 1 on the input side while the final learned reduction network will

have to be able to be applied to arbitrary traversability scores in order to allow for

the hierarchical cascade with multiple size reduction steps. The goal here is for the

generalization ability of the neural network to translate the examples in this limited

training set into a more general transformation, thus alleviating the need for con-

structing larger scale training data where automatic labeling would be substantially

more computationally expensive.

3.2.2 Hierarchical Scale Reduction

Using the derived training data, we train a convolutional network with one layer

of the two layer convolutional kernels. The result of this is a trained convolutional

kernel that can efficiently derive a traversability representation of the same area but

with half the resolution in both width and height. Since we are using convolutional

layers in this model, the size of the input can be changed dynamically by increasing or

decreasing the number of convolutional kernels in the layer. This, together with the

fact that the convolutional kernel utilizes the same input and output representation

in terms of 6 traversability values, enables us to stack multiple layers with identical

convolution kernels in order to achieve an incremental reduction in size down to a
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desired target size. For this, we can train the model once and use it for all the levels

of abstraction, minimizing the training required while obtaining an approach that

is applicable to arbitrary size maps. The concept of this multi-layer application is

shown as an overview in Figure 3.1 and on an example obstacle map in Figure 3.4.

Figure 3.4. Example of the hierarchical path planning approach using 3 abstraction
levels. Hierarchical scale reduction of directional traversability maps (left to right)
with corresponding path construction and refinement (right to left). Traversability
scores in the horizontal and vertical traversability maps in the top two rows are
indicated by level of shading and the refined path at each level is shown in red.
Search area maps in the bottom row show the area around the path used for path
refinement.

3.3 Hierarchical Path Planning

After creating the dataset, the supervised learning approach is used to train a

model that can convert traversability maps to lower resolution maps while maintaining

the important features for path planning. This model then enables us to use it on a
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map multiple times in a hierarchy in order to reach a very small map where a global

path planner can perform reasonably well. In this thesis, Dijkstra’s algorithm is used

to find this path but a different path planner, such as RRT, could also be used. After a

path at the lowest resolution has been found, the goal now is to incrementally refine it

in the context of the higher resolution traversability maps until a path in the original

environment is found. To achieve this, it is important to have a version of the path

planner that can perform local refinement of a path. For that, a modified version of

Dijkstra is used here to find a path in the derived map by using the traversability

maps at the current level and a local search area specified around the path derived on

the previous, more abstract level. Using this, the path is refined in each level where

increasingly more details of the map are available. This is repeated until the original

map is reached.

While the local refinement with its limited search region can dramatically reduce

the computation time required, there is the potential that it is not complete and that

it therefore might sometimes fail to refine a a path within the limited search region.

To address this, in situations where the path refinement fails to find a path at any

given level, the path planner is re-run on the complete map at this level to provide a

new seed path for the remaining abstraction levels. While this can lead to an increase

in the total planning time, it ensures that the completeness and correctness properties

of the underlying path planning approach are preserved.

3.3.1 Modified Dijkstra

For path planning algorithm, Dijkstra is used here with a few modifications

that allow us to use it on traversability maps. The input of this algorithm are 6

directional traversability maps with values between 0 and 1. To cope with this multi-
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dimensional input, the following heuristic function is introduced in order to include

the traversability scores:

cdir = d+ λ(1− tdir)

where cdir is the cost of the current cell with a traversal in direction dir, d is

the length of the current shortest path from the starting point to the entry of the

current cell, tdir is the traversability score of the current cell in this direction, and λ is

a hyper-parameter that specifies the importance of the traversability score compared

to the length of the path. Note that if the traversability score is 0, that cell will

not be considered for path planning because it is either unreachable or untraversable,

meaning we can reach it from one side but we can not exit from another side. This

rule has an exception at the start and end point of the path where we just want to

reach these cells and not traverse them.

Algorithm 1 presents a coarse algorithm description of the overall approach to

hierarchical traversability map-based multi-resolution path planning and Figure 3.4

shows and example of the map cascade and hierarchical path refinement on an exam-

ple world.

Figure 3.5 and 3.6 show an example of hierarchical abstraction and path re-

finement respectively on a full size, 256x256 resolution map with 6 traversability

directions and three levels of abstraction.

16



Algorithm 1 Hierarchical Path Planning

1: function HPP(obstacleMap,maxLevel)
2: Produce traverse map from obstacle map
3: Append traverse map to traverse list
4: for level← 1 to maxLevel do
5: traverseMap←
6: convModel(traveseList[level − 1])
7: Append traverse map to traverse list

8: path← pathP lanner(traverseList[maxLevel])
9: for i← maxLevels− 1 to 1 do
10: path← pathRefiner(path, traverseList[i])

11: path← pathRefiner(path, obstacleMap)
12: return path

17



Figure 3.5. Hierarchical abstraction on a full size, 256x256 resolution map with 6
traversability directions and three levels of abstraction from top to bottom.
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Figure 3.6. Path refinement on a hierarchy of maps with three levels of abstraction
from bottom to top.
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CHAPTER 4

RESULTS

In the experimental section, we would like to answer the following questions: (1)

How does this method perform in terms of the time required to find a path, compared

to running raw Dijkstra? (2) How does the trained model generalize and represent

environments accurately as the levels of abstraction goes further? (3) How often does

the path refiner fail to refine a path in a map with more details and how much time

is wasted on these maps as the planner has to replan a path at the failing level rather

than just refine the existing path ? (4) What is the relation between the number of

reduction levels and the saved time in path planning?

To answer these questions, we evaluate our method on 2000 indoor maps and

2000 outdoor maps with random start and end positions.

4.1 Dataset

To evaluate the approach in a variety of settings and to derive training data for

the learning approach to hierarchical resolution reduction of the directional traversabil-

ity maps, an environment generator was constructed that constructs arbitrary worlds

with particular characteristics representing indoor and outdoor environments. With

this, we created 2 sets of 256x256 resolution maps to represent both indoor and out-

door environments. Indoor maps consist of rooms and hallways with few random

obstacles which represent furniture or other obstacles that may be seen in a build-

ing. By contrast, outdoor maps consist of forest, field, and jungle patches which are

nothing but large numbers of small obstacles, such as trees scattered through an area
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with different densities. There are also random walls and obstacles of larger size in

these maps. During the creation of the datasets, parameters such as size of hallways

and number of random obstacles for indoor maps, and parameters including size and

density of the jungles, as well as position and size of the walls and obstacles for out-

door environments were specified randomly in order to create a diverse dataset that

can represent many kinds of environments.

4.1.1 Creating Outdoor Maps

As mentioned, outdoor maps are made of jungle patches, random walls, and

obstacles. In the created dataset, outdoor maps are made of 8 jungle patches with

random position, width, height, and density. The width and height of the patches are

constrained between 50 to 130 pixels, and density cannot exceed 0.25 which means at

most 25% of pixels in a patch can be obstacles. While having randomness in choos-

ing the properties of patches helps to represent the unstructured nature of outdoor

environments, adding these constraints helps to control the size of jungles and leave

room for other features such as empty areas, walls, and random obstacles. In the

next step, 5 walls are added to the map with random directions (can be horizontal

or vertical) and random thickness (can be 1, 2, or 3) and a random length between

10 and 80. At the end, 40 random obstacles with arbitrary width and height up to 8

pixels are added to the map. Figure 4.1 shows a few examples of generated outdoor

environments.

4.1.2 Creating Indoor Maps

Unlike outdoor environments, indoor maps have an organized structure formed

by rooms and hallways. However there are different characteristics such as size and

position of these elements that make indoor maps different from each other. In order
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Figure 4.1. Examples of obstacle maps for outdoor environments.

to create a random indoor map with an underlying structured formation, a special

algorithm is introduced which utilizes a randomly created block to construct the whole

map. The indoor maps are formed by blocks which are simple rectangles that will

contain rooms, and the space between blocks form the hallways in the map. After

creating a block with random position and size in the map, for each edge of rectangle,
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as long as there is free space between that edge and the border of the map in that

direction, a new block with the same size on one edge and random size on the other

edge is created. For example the new blocks on the left and right side of the first

block have the same height but random width, and on top and bottom, they have the

same width but random height. In other words, after creating the first block, new

blocks are created in four directions in the form of a plus sign, representing rooms

along major hallways. After that, the same routine is repeated to create new blocks

around the previously created blocks until there is no more large enough free area in

the map. Finally, each block is divided into 1, 2, or 4 rooms based on the size of the

block and doors are added for each room. Figure 4.2 shows the process of creating

an indoor map, and Figure 4.3 shows a few examples of generated indoor maps.

4.2 Performance Evaluation

To answer the above-mentioned questions and evaluate the different perfor-

mance characteristics of the proposed hierarchical abstraction and path planning ap-

proach, we run Dijkstra as well as our method on each of the 2000 outdoor and 2000

indoor maps and measure the time each algorithm consumes to find a valid path. Due

to the existence of uncontrollable conditions in CPU processing time, we run each

algorithm 4 times and report the average of the measured times for better accuracy.

Additionally, we tested our method with different numbers of reduction levels

in order to measure the saved time as the levels are increased. Table 4.1 demonstrates

that our method with 3 levels of reduction can improve the time of path planning by

30% on indoor environments and 66% on outdoor environments.

However, due to the fact that at each level of resolution reduction some of the

details are removed, there are some cases in our experiment where at some level the

path refiner fails to refine the given path on the map with more details. In these cases,
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Figure 4.2. The process of creating an indoor map.

the path planner finds a path on the lowest resolution map, however this path is not

feasible because the map is abstracted multiple times and some important features for

path planning may be lost during the process. If the path refinement fails, the path

planner has to plan a new path at the failing level, thus wasting time and potentially

taking longer than the base path planner would. While the data in Table 4.1 includes

both the cases with and without failures, it would be beneficial to analyze the cost
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Figure 4.3. Examples of obstacle maps for indoor environments.

of failures at different levels in order to obtain a better estimate of the expected best

and worst case speedups and slowdowns that can occur.

Table 4.2 shows the number of failures of the path refiner at each level as well as

the wasted time. The wasted time is the time that our method has spent on finding

a path and refining it before reaching the level at which the failure happens. That
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Table 4.1. Average time of path planning

Indoor Outdoor

Raw Dijkstra 1.244451 1.606247
HPP 1 Level 0.92951 0.762387
HPP 2 Levels 0.802333 0.56627
HPP 3 Levels 0.758200 0.523608

path is not feasible and we have to run the path planner to search the whole map

and find a new path at that level. After that the normal operation continues and the

new path is given to the levels after for refinement.

Table 4.2. Number of failures and time loss at each level among the 2000 environments
for both indoor and outdoor environments.

Indoor Outdoor
Failure Level Failures Wasted Time Failures Wasted Time

Level 0 36 0.36504 0 0
Level 1 186 0.07783 11 0.08055
Level 2 102 0.02024 16 0.02302

From Table 4.2, it can be seen that this phenomenon is a more significant effect

in the indoor environments as the number of failures is higher. The reason is that in

these maps doors are small features that provide access between hallways and rooms

and play a major role in the formation of the path. Combining this with random

obstacles around these areas can create challenging situations that our model may

not be able to represent accurately on the reduced sized map and therefore leads to

finding infeasible paths in abstracted maps.
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However, the number of failures is still relatively small and the amount of excess

time needed to correct, especially for failures at lower levels, is relatively limited, still

resulting in competitive performance even in failure cases and significant gains on

average as indicated in Table 4.1.
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CHAPTER 5

DISCUSSION AND CONCLUSIONS

We have presented a novel method for path planning in a hierarchical manner.

We introduced the concept of directional traversability maps and how we can repre-

sent an obstacle map in the form of directional traversability scores. To create the

hierarchy, a convolutional model was trained using supervised learning to learn the

traversability function as a convolutional network kernel and reduce the resolution of

its input. This convolutional kernel can then be replicated into convolutional layers

and stacked in a deep network that can derive a cascade of incrementally resolution

reduced traversability representations of the environment. After that a modified ver-

sion of Dijkstra was introduced to find and refine a path throughout the hierarchy

and return the final path on the input obstacle map.

We demonstrated the potential for complexity reduction of our method in ex-

perimental results in both indoor and outdoor environments and showed that our

method outperforms the raw Dijkstra and improves the time of path planning sig-

nificantly on both types of environments. Additionally, we discussed the drawback

of our method where some of the details of the maps are omitted during resolution

reduction which leads to finding a path that is infeasible on higher resolution maps.

Regarding future work, one interesting direction is instead of using the pre-

coded concept of traversability and supervised learning, to train the model using

reinforcement learning and let it to come up with its own representation of an ab-

stracted map which can be more useful for the path planner and further improve

the performance while reducing the number of failures in the path refiner by better
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incorporating the important features in abstracted maps. Moreover, we are planning

to utilize the hierarchical traversability heuristic in the context of an RRT based path

planner to further study its potential in larger environments.
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