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Abstract 

TOWARDS EFFICIENT TESTING AND DEBUGGING OF EMERGING 

SOFTWARE APPLICATIONS 

 

Huadong Feng 

The University of Texas at Arlington, 2021 

Supervising Professor: Yu Lei 

Big Data and Smart Contract are among the top emerging technologies 

tipped to revolutionize the way businesses and organizations are run. Testing and 

debugging are the most important tasks during the development of any software 

application. Big data and smart contract applications possess unique characteristics. 

There is an urgent need to develop efficient techniques for testing and debugging 

these applications.  

The first part of the dissertation addresses the problem of how to debug big 

data applications. When a failure occurs in big data applications, debugging at the 

system-level can be expensive due to the large amount of data being processed. We 

introduce a test generation framework for effectively generating method-level tests 

to facilitate debugging of big data applications. This is achieved by running a big 

data application with the real dataset and by automatically recording input to a small 

number of method executions, which we refer to as method-level tests, while 

preserving certain code coverage, e.g., line coverage. When debugging, a developer 

could inspect the execution of these method-level tests, instead of the entire 

program execution with the real dataset, which could be time-consuming. We 

implemented the framework and applied the framework to seven data mining 

algorithms. The results show that only a very small number of method-level tests 
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need to be recorded to preserve code coverage. Furthermore, these tests could kill 

between 53.08% to 96.89% of the mutants generated using a third-party tool. This 

suggests that the framework could significantly reduce the effort required for 

debugging big data applications. 

The second part of the dissertation addresses the problem of how to test 

smart contracts A smart contract is a program deployed on blockchain and is often 

used to handle financial transactions. Unlike traditional programs, contract code 

cannot be changed after it is deployed. Any security breach would be permanent 

and could be difficult to be remedied. In this dissertation, we present a fuzzing 

approach to testing smart contracts. While significant progress has been made, 

achieving high code coverage remains an important concern for fuzzing. Our 

fuzzing approach utilizes constraint solving, selective state exploration, and 

combinatorial testing to improve code coverage. Constraint solving is used to 

generate test inputs that meet preconditions in a smart contract. Selective state 

exploration allows different state-dependent behaviors to be exercised while 

alleviating the state explosion problem. Combinatorial testing is used together with 

fuzzing to make the testing process more efficient. We implemented our approach 

in a tool called MagicMirror and evaluated our approach using more than 2,000 

contracts. The experimental results show that MagicMirror is effective for 

achieving high code coverage and detecting vulnerabilities. MagicMirror has been 

publicly released by National Institute of Science and Technology (NIST).  
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Chapter 1. Introduction 

Big Data and Smart Contract are among the top emerging technologies 

tipped to revolutionize the way businesses and organizations are run. Testing and 

debugging are the most important tasks during the development of any software 

application. Big data and smart contract applications possess unique characteristics. 

There is an urgent need to develop efficient techniques for testing and debugging 

these applications.  

1.1. RESEARCH OVERVIEW 

This dissertation consists of two parts. In the first part, we present an 

approach to debugging big data applications. Big data applications process and 

analyze large volumes of data, often measured by gigabytes or more. The execution 

time of big data applications can range from hours to days. When failure occurs, it 

is impractical to debug big data applications at the system level. The major 

challenge is how to debug with less effort, less time, and still preserve the fault 

detection effectiveness. In this dissertation, we present a framework that can 

significantly reduce the number of method executions that developers have to 

manually inspect while maintaining a high probability that the failing method 

execution(s) is among the selected small number of method-level tests. On average, 

the execution time is reduced by over 99% when executing the method-level tests 

generated by our framework instead of the system-level execution.  

In the second part of the dissertation, we present a fuzzing approach to test 

smart contracts. A smart contract is a program deployed on blockchain and is often 

used to handle financial transactions. Unlike traditional programs, contract code 

cannot be changed after it is deployed. Any security breach would be permanent 

and could be difficult to be remedied. Hence, it is important to thoroughly test smart 

contracts before they are deployed on the blockchain. While significant progress 
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has been made to fuzzing, achieving high code coverage remains an important 

concern for fuzzing. In this dissertation, we present a fuzzing tool called 

MagicMirror. In our experiment, MagicMirror outperforms current state-of-the-art 

smart contract fuzzing tools in both code coverage and vulnerability detection 

abilities.  

1.2. SUMMARY OF PUBLICATIONS 

This dissertation is presented in an article-based format and includes two 

research papers. In Chapter 2, we present the paper titled, “A Method-Level Test 

Generation Framework for Debugging Big Data Applications”, which was 

published in the IEEE International Conference on Big Data (Big Data), in 2018. 

The paper reports our work for improving the efficiency of debugging big data 

applications. In our approach, we focus on identifying a small number of method 

executions from the failing system-level execution that can effectively induce 

method-level failures that propagated into the system-level failing output. The main 

idea is to evaluate each method execution based on certain testing effectiveness 

criteria, such as line coverage, edge, node and different types of path coverage 

based on Control Flow Graph (CFG), or any other types of static code analysis 

measurements. Then we record the method executions as method-level tests when 

they cover any new entities of the selected testing effectiveness criterion. So only 

the necessary method executions with respect to the selected criterion will be 

executed later for debugging purposes instead of the entire system. Based on the 

testing effectiveness criterion we choose, a much smaller set of method-level tests 

can achieve the exact same test effectiveness for a selected method as the original 

system-level execution. The framework we implemented will analyze and record 

necessary method executions at runtime with a relatively small overhead depending 

on the number of the method executions, and the size of the method-level inputs to 

be serialized. Our framework can significantly reduce the number of method 
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executions that developers have to manually inspect while maintaining a high 

probability that the failing method execution(s) is among the selected small number 

of method-level tests. 

In Chapter 3, we present the paper titled, “MagicMirror: Towards High-

Coverage Fuzzing of Smart Contracts”, which was submitted to the 36th 

IEEE/ACM International Conference on Automated Software Engineering (ASE), 

in 2021. The paper reports our work for improving fuzzing testing for smart 

contracts.  

Our approach is centered on how to increase code coverage by addressing 

three challenges: meeting preconditions, state-dependent behaviors, and 

combinatorial explosion. For meeting preconditions, in many functions, there are 

require statements written at the beginning of the function. These statements 

specify preconditions, i.e., conditions that must be satisfied before a function can 

be successfully executed. Test inputs that do not meet preconditions would cause 

the current transactions to be reverted. To address the meeting preconditions 

challenge, our approach identifies preconditions and uses a constraint solver to 

generate test inputs that satisfy the preconditions. For state-dependent behaviors, 

like parameters, state variables are also input to a function, and their values may 

affect the behavior of the function. Thus, a function needs to be tested at different 

states; otherwise, some state-dependent behaviors may not be exercised. However, 

unlike parameters, state variables cannot take arbitrary values due to the 

reachability concern. We could derive reachable states by exploring the state space 

of a smart contract; however, this would introduce the state explosion problem. To 

address the state-dependent behaviors challenge, our approach uses a selective state 

exploration framework to derive reachable states while alleviating the state 

explosion problem. For combinatorial explosion, when the number of parameters 

is large, the input space of a function can be huge due to the combinatorial explosion 
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problem. Many vulnerabilities are due to interaction between parameters. However, 

important combinations of values of parameters can be easily missed by pure 

random test generation. To address the combinatorial explosion challenge, we 

combine fuzzing and Combinatorial Testing (CT). The CT tests allow us to exercise 

parameter interactions in a systematic manner, while fuzzing is used to discover 

important parameter values, which further improves the quality of CT tests. We 

implemented our approach in a tool called MagicMirror. We conducted an 

experimental evaluation of our approach by comparing MagicMirror to two 

recently published state-of-the-are smart contract fuzzing tools, sFuzz and ILF. Our 

experiment results show that MagicMirror performs better than sFuzz and ILF on 

both code coverage and vulnerability detection abilities. 

  



 

5 

 

Chapter 2. A Method-Level Test Generation Framework for 

Debugging Big Data Applications 

The chapter contains a paper published in the IEEE International 

Conference on Big Data (Big Data), in 2018. 
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A Method-Level Test Generation Framework for 

Debugging Big Data Applications* 

Huadong Feng1, Jaganmohan Chandrasekaran1, Yu Lei1, Raghu Kacker2, D. 

Richard Kuhn2 

1Dept. of Computer Science and Engineering, University of Texas at Arlington, 

Arlington, TX 76019, USA 

2Information Technology Lab, National Institute of Standards and Technology, 

Gaithersburg, MD 20899, USA 

 

Abstract – When a failure occurs in a big data application, debugging with 

the original dataset can be difficult due to the large amount of data being processed. 

This paper introduces a framework for effectively generating method-level tests to 

facilitate debugging of big data applications. This is achieved by running a big data 

application with the original dataset and by recording the inputs to a small number 

of method executions, which we refer to as method-level tests, that preserve certain 

code coverage, e.g., edge coverage. The size of each method-level test is further 

reduced if needed, while maintaining code coverage. When debugging, a developer 

could inspect the execution of these method-level tests, instead of the entire 

program execution with the original dataset. We applied the framework to seven 

algorithms in the WEKA tool. The initial results show that in many cases a small 

number of method-level tests are sufficient to preserve code coverage. Furthermore, 

these tests could kill between 57.58% to 91.43% of the mutants generated using a 

mutation testing tool. This suggests that the framework could significantly reduce 

 
*  Copyright © 2018 IEEE. Reprinted, with permission, from Huadong Feng, Jaganmohan 

Chandrasekaran, Yu Lei, Raghu Kacker, D. Richard Kuhn, A Method-Level Test Generation 

Framework for Debugging Big Data Applications, IEEE International Conference on Big Data (Big 

Data), December 2018. 
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the efforts required for debugging big data applications.   

Keywords – Testing; Unit Testing; Big Data Application Testing; Test 

Generation; Test Reduction; Debugging; Mutation Testing; 

2.1. INTRODUCTION 

Big data applications are software programs that process large amounts of 

data. Debugging big data applications can be complicated and time-consuming. 

This is due to the fact that inspecting the execution of a big data application often 

involves long execution time, a large number of method executions, and/or a large 

number of objects. For example, a classification algorithm, called DecisionTable, 

in the WEKA tool [12] takes more than two hours to execute the Heterogeneity 

Activity Recognition Dataset (HAR) from the UC Irvine (UCI) Machine Learning 

Repository [13]. During the execution, one of the DecisionTable’s methods, named 

updateStatsForClassifier, is executed more than half a billion times. (This method 

has 66 lines of code, not including comments and spaces.) If there exists a fault in 

this method, it can be very difficult to locate this fault due to the large number of 

times this method is executed. 

Some approaches have been proposed to reduce the effort required for 

testing and debugging big data applications at the system level [1, 2, 3, 4, 5]. For 

example, data mining and machine learning methods are used to reduce the size of 

the original dataset or generate synthetic datasets [3, 4] for the testing purpose. The 

reduced dataset using such methods are executed at the system level, which can still 

be time-consuming. Furthermore, these methods are not designed to reproduce the 

original failure. Debugging approaches such as delta debugging [8] can identify the 

minimum failure-inducing input at the system level, which can reduce the size of 

the input while preserving the failure triggered by the original dataset. However, 

delta debugging can be very expensive for big data applications. This is because it 
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requires the input data be recursively split into smaller chunks, each of which has 

to be executed at the system level. For big data applications, there can be a large 

number of chunks and system-level execution of each chunk can be time-

consuming. 

Our approach consists of two major steps. In the first step, we re-execute 

the failing system-level execution to record method-level tests for suspicious 

method(s). The main idea is to evaluate each method execution based on a chosen 

coverage criterion. In this paper, we used edge coverage, edge-pair coverage and 

edge-set coverage based on the Control Flow Graph (CFG) [11]. Note that other 

coverage criteria, e.g., prime-path coverage [11], could also be used in our approach. 

We record the input to a method execution as a method-level test when it covers 

any new coverage element with respect to the chosen coverage criterion. In the 

second step, we reduce method-level tests with large collection-typed variables 

using binary reduction. The reduced tests preserve the same coverage achieved by 

the originally recorded method-level tests. During debugging, a developer will first 

identify suspicious methods based on his or her understanding of the program. Then, 

the developer will only need to re-execute the reduced method-level tests recorded 

for these methods, instead of executing the entire application with the original 

dataset. Doing so could significantly speed up the debugging process.  

We conducted an experimental evaluation of our approach. In our 

experiments, we selected seven methods from four machine learning algorithms 

that were implemented in WEKA using Java. The four machine learning algorithms 

from WEKA and two datasets from UCI dataset repository were selected based on 

the execution time and size of datasets. Method-level tests were recorded for these 

seven methods based on three coverage criteria, including edge coverage, edge-pair 

coverage, and edge-set coverage. (The three coverage criteria are defined in Section 

2.2.1) On average, 4.4 tests were recorded for edge coverage, 5.9 tests for edge-pair 
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coverage, and 18.6 tests for edge-set coverage. While initially, the seven methods 

were executed from 191 to half a billion times. For some of the recorded method-

level tests with large-size inputs, e.g., the previously mentioned 

updateStatsForClassifier method in the DecisionTable algorithm, we further 

reduced the size of the inputs using a binary reduction technique while preserving 

the same coverage achieved by the original method-level test. For example, the 

average input size for updateStatsForClassifier was reduced to 12.53 MB from 

1269.76 GB. 

Moreover, test effectiveness was evaluated using PITest (PIT) [16], a 

commonly used mutation testing tool. Mutation testing seeds faults in a systematic 

manner to simulate mistakes that developers may make during programming. All 

25 available mutant generators were enabled for mutant generation. When 

combining each set of tests generated for the edge, edge-pair, and edge-set coverage 

for each method, the mutant killing rate ranges from 57.58% to 91.43%.  

We summarize the contributions of our paper as follows:  

• We present a new framework for debugging big data applications based 

on method-level tests. Compared to executing the original dataset at the system 

level, these method-level tests can be much faster to execute and inspect, which 

could significantly speed up the debugging process.  

• We built a prototype that implements our framework and conducted an 

experimental evaluation of the framework. The evaluation results suggest that our 

framework could significantly reduce the time and effort required for debugging 

big data applications.   

The rest of the paper is organized as follows. Section 2.2 presents the details 

of our approach and discusses several implementation challenges. Section 2.3 
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presents the experimental design and analysis of the experimental results. Section 

2.4 provides an overview of existing work that is closely related to ours. Section 

2.5 provides concluding remarks as well as several directions for our future work. 

2.2. APPROACH 

Our approach consists of two major steps, recording method-level tests and 

reducing the size of the recorded tests. In this section, Section 2.2.1 presents our 

approach to recording method-level tests based on a given coverage criterion. 

Section 2.2.2 presents our approach to reducing the size of a recorded test. 

2.2.1. Record Test 

In a typical scenario, once a failure occurs, a developer identifies several 

suspicious locations based on his or her understanding of the program. Next, the 

developer could set up breakpoints in these locations and then start the debugging 

process with the system-level inputs. The breakpoints allow the developer to 

inspect the program state during the debugging process. This approach may not be 

effective for big data applications. This is because when the dataset is large, a 

breakpoint may be executed for a large number of times before an incorrect 

program state is found, and each breakpoint has to be inspected manually. 

In our approach, the developer first identifies suspicious methods, in a way 

that is similar to the identification of suspicious locations. Next, our approach runs 

the program with the original dataset and records, for each suspicious method, a 

small number of method executions, which we refer to as method-level tests, based 

on a specific coverage criterion. The method-level tests recorded for a given method 

achieve the same coverage criterion as the original dataset for the method. The 

developer can then debug each method with the recorded method executions, 

instead of a potentially large number of method executions. Since the same 
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coverage criterion is satisfied, there is a high probability that debugging these 

recorded method-level tests would allow us to detect the fault that may have caused 

the failure observed at the system level. 

 

Figure 2-1. Recording Process at Runtime 

After the developer identifies a list of suspicious methods to be recorded, 

we instrument these methods to capture the coverage elements that need to be 

covered for the selected coverage criterion. After instrumentation, our recording 

process at runtime is shown in Figure 2-1. While re-executing the failing system-

level execution, each method execution of the suspicious methods is evaluated to 

determine whether it is significant based on the selected coverage criterion. A 

method execution is considered to be significant if it covers at least one new 

coverage element. When a method execution is deemed to be significant, its 

corresponding input for reproducing the method execution is recorded as a method-

level test. Otherwise, the execution will continue until it reaches the next significant 

method execution. 

In this paper, we will use edge coverage [11], edge-pair coverage [11], and 

edge-set coverage, as the coverage criteria based on Control Flow Graph (CFG) to 

determine if a given method execution is significant. A CFG is a graphical 
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representation of all possible paths that might be traversed by a program at runtime. 

Thus it captures information about how the control is transferred in a program. 

Figure 2-2 shows an example CFG. In a CFG, each node in the graph 

represents a basic block, i.e. a sequence of consecutive statements with a single 

entry and a single exit point[11]. A directed edge [11] represents that the control 

can flow from one node to another. And a path [11] is a sequence of nodes, where 

each pair of adjacent nodes is an edge.  

 

Figure 2-2. Example of Control Flow Graph 

We record the method executions as method-level tests when they cover 

any new coverage elements with respect to the chosen coverage criterion. For edge 

coverage, each edge covered by a method execution is recorded for the method 

evaluation. For edge-pair coverage, each edge-pair (reachable path of length up to 

two) is recorded for the method evaluation. Note that when edge-set coverage is 

used, a method execution is considered significant if it covers a unique set of edges, 

i.e., no other method executions exactly cover the same set of edges. Also note that 

other coverage criteria, e.g., prime-path coverage [11], could also be used in our 
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approach. 

To record method-level tests, three major tasks need to be accomplished, 

including instrumentation, method execution evaluation, and serialization. We 

further discuss these tasks in the following subsections. 

2.2.1.1. Instrumentation 

 

Figure 2-3. Example of Modifying Generated Control Flow Graph 

We use a tool called Atlas [15], which is an Eclipse plugin developed by 

EnSoft Corp to automatically generate CFGs from the source code of a selected 

method. Atlas uses each line of code as a basic block. This is different from the 

classical definition [11] that a basic block consists of a sequence of consecutive 

statements with a single entry and a single exit point. Figure 2-2 shows a simple 

method and its CFG generated using Atlas. We modify the generated CFGs from 

Atlas by combining blocks that are in a consecutive sequence without inner 

branches. Doing so reduces the amount of instrumentation and thus the runtime 

overhead when executing the instrumented code. The red rectangle in Figure 2-3 

marks the lines of code combined to be a basic block as we previously defined. 
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Once we have the CFG of a suspicious method, we instrument the method 

by adding a few lines of code that invokes our recording program. Figure 2-4 shows 

an example of how we instrument a sample method. The highlighted statements are 

extra code added by instrumentation. The code from line 3 to line 10 initializes the 

recording process. They are inserted at the beginning of a suspicious method. The 

ParaArray array contains the list of input parameters used for a method execution. 

The ParaTypeArray array contains the object types of the input parameters, which 

are needed to reload the recorded inputs using Java Reflection. When recording a 

method execution, we record not only the input parameters but also the current 

object on which the suspicious method was invoked, to store the instance variables 

accessed during the execution. They are loaded into our system using the 

“R.loadInputs(ParaArray, this);” statement.  The statement 

“R.enterBlock(#number);” is added before each basic block to record the index of 

the basic block when it is executed. The block number #number is manually 

determined based on the previously discussed CFG. Moreover, the statement 

“R.endOfProcess();” is added before each return statement or at the end of a method 

to notify our program a method execution is completed, and start the method 

execution evaluation process. 

Recording basic block indexes with multiple entrances at runtime requires 

more work than just adding the “R.enterBlock(#number)” statement in front of it. 

As shown in Figure 2-4, lines 25 to 26 and lines 30 to 31 are the extra codes added 

for recording the basic block contains line 24.  To record the basic block indexes 

correctly for basic blocks with multiple entrances such as for while loop, for loop, 

else if, and switch statements, etc., we are inserting the “R.enterBlock(#number);” 

statement before its descendants’ “R.enterBlock(#number);” statement based on the 

CFG to capture every execution of such blocks. For example, if we only add 

“R.enterBlock(#number);” statement right before the while statement shown in 
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Figure 2-4 at line 24, when the loop comes back to re-evaluate the loop condition 

at the while statement, the repeated execution of this block will not be captured. 

 

Figure 2-4. Example of Instrumentation 

2.2.1.2. Method Execution Evaluation 

In our implemented framework, we temporarily store the covered edges, 

edge-pairs, and edge-set for each method execution. We consider a method 
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execution to be significant, and thus record the execution as a method-level test if 

it covers any edge, edge-pair or edge-set that has not been covered before. Note that 

we check for uncovered edges first for each method execution. This is because if a 

method execution covers any edge that has not been covered before, it must cover 

some new edge-pair(s) and a new edge-set. The time complexity for evaluating 

each method executions is O(n2) where n represents the number of coverage 

elements each method execution has to evaluate. For each method execution, each 

coverage element of the method execution will be compared to the list of the 

previously covered elements. If a method execution covers any new coverage 

element, the method execution will be recorded, and the newly covered elements 

will be added to the list. 

2.2.1.3. Serialization 

Once a method execution is determined to be significant, we record the 

inputs of the method execution using serialization. Serialization can be an 

expensive process, the built-in serialization support in Java is rather slow when 

serializing large objects. We used an alternative tool called FST [17] that can be ten 

times faster [17] to improve the performance of our test recording. In our 

experiments, FST was able to serialize and deserialize objects correctly. However, 

there are some reported cases [17] where FST was unable to correctly serialize and 

deserialize objects that the built-in Java serialization could. In comparison, FST 

provides better performance, but FST does not provide serialization ability that is 

as strong as the Java built-in serialization. 

While our performance is improved using FST, there are still some 

situations where we experience significant overhead. To ensure an exact copy of 

the input objects is created, we perform deep copy on the objects by serializing and 

deserializing these objects. This is needed because the value of an input object 
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could potentially change during a method execution, especially for void methods 

that operate on instance variables. 

However, most of the stored input objects will not be recorded if the method 

execution does not cover any new coverage element. Thus, much of the time spent 

to store the deep copies of objects is unnecessary. These unnecessary time can be 

huge when a method takes large inputs and/or is executed for a large number of 

times. The recording overhead can be as high as 7 to 30 times the original system-

level execution time for some of the selected methods. In such cases, our solution 

is recording the method-level tests by executing the entire system twice. In the first 

execution, we do not store any inputs. Instead, we only record the IDs of significant 

method executions. In the second execution, we only serialize the selected method 

executions to store their inputs as method-level tests. Doing so can significantly 

reduce the runtime overhead in cases where a method takes large inputs or is being 

executed for a large number of times. 

2.2.2. Test Reduction 

While the recorded method-level tests can be used for debugging, these tests 

in some case consist of very large inputs. For example, one of the selected methods 

cutPointsForSubset, its recorded method-level tests have the average size of 

1.62GB, executing these tests can take a lot of time. And breakpoints in loop 

statements can be executed for a large number of times. These inputs are large 

mostly due to the fact that they contain large collections of objects. For the three 

methods mentioned above, they all have Instances typed (Implements Collection) 

variables that contain instances from the original dataset for processing. Some of 

the recorded data could potentially be reduced while still reproducing the method 

execution and preserving the coverage elements. The reduction can further reduce 

the time for executing the tests, and the debugging efforts required from developers. 
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Our binary reduction technique is inspired by the commonly used binary 

search technique. For each recorded method-level test, we divide its collection 

typed input variables into halves. Next, we take each half and other non-collection 

typed inputs and re-execute them with the suspicious method. We then check 

whether a half can preserve the originally covered coverage elements. If one of the 

halves does preserve all the coverage elements, we will continue dividing it into 

halves and check for the coverage elements repeatedly, until the minimal subset of 

the collection variables that can preserve the coverage elements are identified. Note 

that when preserving the coverage during reduction, we are preserving the exact 

covered elements of edge coverage, edge-pair coverage, and edge-set coverage.   

2.3. EXPERIMENTS 

We implemented the initial working prototype of our framework in Java. 

Some Manual efforts are required from developers to instrument the source code of 

suspicious methods. After instrumentation, the recording process has been 

automated. The reduction approach requires developers to manually identify the 

large collection typed input variables. The re-execution of the recorded and reduced 

method-level tests has been automated for debugging. We also conducted mutation 

testing to evaluate the fault detection effectiveness of our recorded and reduced 

method-level test. The currently implemented coverage criteria are the edge, edge-

pair, and edge-set coverage. 

In the following, we discuss how we conducted our experiments and present 

the experiment results. In Section 2.3.1, we discuss how we selected datasets, 

applications, and methods to be used for our experiments. Section 2.3.2 presents 

the statistics of the recorded method-level tests. Section 2.3.3 presents the statistics 

of the reduced method-level tests. Section 2.3.4 presents how we conducted a 

mutation testing experiment and the results of our mutation testing for both the 
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recorded tests, and the reduced tests. And finally, Section 2.3.5 presents the 

performance analysis of our framework.  All the source code, recorded method-

level tests, reduced method-level tests and mutation reports are publicly available 

at 

https://www.dropbox.com/sh/3k4kjwqjpa9i2qv/AAAkeYYNaQOVfT9WGe4OU

p_Pa?dl=0 for review. The machine we used for our experiment is a workstation 

with two Xeon E5-2630V3 8 core CPUs @ 2.40GHz, 64GB DDR4 2133 MT/s 

memory, and a Samsung 850 EVO 500GB SSD. 

2.3.1. Subjects 

We design our experiments to reflect real-world situations for evaluating 

the effectiveness of our framework. First, we randomly selected ten algorithms that 

are implemented in the WEKA tool. WEKA is one of the most widely used tools 

for data mining by practitioners. Next, we selected one collection of dataset with 

the largest number of instances (accessed on 08/18/2018) from the UCI Machine 

Learning Repository that consists of 440 real-world collected datasets as a start. 

The selected collection of datasets, Heterogeneity Activity Recognition (HAR), 

contains four datasets for four different types of devices with a total of 43,930,257 

instances and 16 attributes. The HAR collection includes several data types, 

including multivariate, time-series and real numbers. The datasets can be used for 

both classification and clustering. Among the four datasets, the largest dataset, 

Phones_gyroscope, is used to execute the ten algorithms. 

Phones_gyroscope dataset has the size of 1.37GB, it is too large for two of 

our selected algorithms EM and LibSVM to finish their execution within a day. The 

execution time is too long for our experimentation purpose due to our limited time 

and resources. For these two algorithms, we reduced the size of the 

Phones_gyroscope dataset by dividing the dataset in half and continue to divide in 

https://www.dropbox.com/sh/3k4kjwqjpa9i2qv/AAAkeYYNaQOVfT9WGe4OUp_Pa?dl=0
https://www.dropbox.com/sh/3k4kjwqjpa9i2qv/AAAkeYYNaQOVfT9WGe4OUp_Pa?dl=0
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half until the execution time for EM and LibSVM are reduced to be near an hour. 

The reduced Phones_gyroscope dataset for EM and LibSVM now has the size of 

3.3 MB. EM will now take 5352 seconds (1.49 Hours) to execute and 4491 seconds 

(1.25 Hours) for LibSVM. 

Table 2-1. Selected Method Information 

Method Algorithm 

# of 

Covered 

Lines of 

Code 

# of 

Total 

Lines 

of 

Code 

# of 

Execution 

Count  

buildClusterer EM 115 165 1,910 

cutPointsForSubset DecisionTable 62 64 29,564 

EM_Init EM 47 53 191 

handleNumericAttribute J48 51 53 28,314 

select_working_set LibSVM 50 52 417,989 

selectModel J48 50 58 12,391 

updateStatsForClassifier DecisionTable 46 66 557,305,280 

 

After two datasets (original Phone_gyroscope dataset and the reduced 

dataset) and ten algorithms’ implementations (Apriori, DecisionTable, EM, 

HierarchicalClusterer, J48, LibSVM, LinearRegression, 

MakeDensityBasedClusterer, RandomTree, SimpleKMeans) have been selected. 

We select methods with a larger number of executed statements, and a larger 

number of executions for our experiments. This is because longer methods and 

methods that have been executed for a larger number of times often require more 

effort to debug. A total of seven methods are selected. The selected methods and 

their information are shown in Table 2-1. These methods are then instrumented as 

previously described in Section 2.2. 
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Table 2-2. Recorded Method Execution Information 
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2.3.2. Recorded Method-Level Tests 

For our experiments, we have recorded method-level tests for all of the 

seven selected methods for preserving edge coverage, edge-pair coverage, and 

edge-set coverage of the original system-level execution. Some important 

information about the recorded method-level tests is shown in Table 2-2. Note that 

the statement coverage column in Table 2-2 is for all three types of recorded tests, 

as well as the original failing system-level execution. This is because edge coverage 

subsumes statement coverage, once all edges are preserved, all the statement 

coverage will be preserved as well, and edge-pair coverage and edge-set coverage 

both subsume edge coverage.   

Based on the results shown in Table 2-2, we can see that only a small 

number of method-level tests are sufficient for preserving coverage for a suspicious 

method. Empirical studies show that there exists a high correlation between code 

coverage and fault detection effectiveness. The actual fault detection ability of our 

recorded method-level tests will be further evaluated using mutation testing in 

Section 2.3.4. Thus, when failures occur on a system level, it is likely that executing 

the method-level tests for the suspicious methods would trigger the failure observed 

during the execution with the original dataset. Thus, the use of method-level tests 

could potentially save developers a lot of time and efforts. 

2.3.3. Reduced Method-Level Tests 

As shown in Table 2-3, while some of the tests have a reasonable size, three 

methods, cutPointsForSubset, selectModel and updateStatsForClassifier have 

significantly large inputs for their recorded method-level tests. While debugging 

with these tests is easier than debugging with the original dataset at the system level, 

loading and debugging these tests could still take a lot of time. We further reduce 

the size of these tests using our binary reduction approach as discussed in Section 
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Table 2-3. Test Reduction Results 
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2.2. In Table 2-3, we compare the differences between the recorded method-level 

tests before and after they were reduced. 

For size reduction, our binary reduction technique was able to reduce the 

input size of tests for five out of seven methods. Our result shows that the reduction 

amount is often above 95%. Most of the method-level tests can be reduced 

significantly while still preserving our selected coverage elements. The coverage 

element refers to the edges, edge-pairs, and edge-set covered by each recorded 

method-level test. While one of the tests for selectModel can be reduced to 1.7 KB 

from 1.63 GB, some tests still have a fair amount of input data remaining, such as 

the reduction from 1.63GB to 37.22 MB for one of the tests of cutPointsForSubset. 

Furthermore, we were unable to reduce any test inputs for two methods, 

buildClusterer and EM_Init. We further investigated this by looking into how the 

variables of collection type are accessed and used. We noticed mainly three 

different scenarios that may have contributed to our results. 

The first scenario is when a collection variable is partially used as inputs. 

When the partially accessed instances are in a consecutive sequence in the 

collection variable, or when only one instance is accessed, our binary reduction 

technique will reduce such collection variable to its minimal subset. However, if 

the accessed instances are spread across the collection variable, our binary 

reduction will not be able to identify only the accessed instances. Hence, the 

reduction may not be minimal, many unnecessary data based on the coverage 

elements may remain. 

The second scenario is when the collection variable is accessed in branching 

statements, e.g. for the tests recorded for buildClusterer and EM_Init. The 

collection variables identified for these two methods were used at a few branching 

statements and passed to other methods that return value to the execution as well. 

In this situation, maintaining the exact coverage elements can be difficult to achieve 
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for our binary reduction technique. As an example, part of the code of 

buildClusterer is shown in Figure 2-5. The instances variable was used at an if 

statement and in the conditions of a for loop. Reducing the instance variable using 

our binary reduction approach will compromise the originally covered coverage 

elements (edges, edge-pairs, edge-set) of the method-level tests recorded for the 

buildClusterer method. 

 

Figure 2-5. Collection Variable Used at Branching Condition 

The third scenario is when the collection variable is not accessed at all. In 

our implementation, to reduce manual efforts required for instrumentation and 

reproduce method executions precisely, we automatically record both the 

parameters passed to the method and the object where the method was invoked 

from, ensuring all possible inputs are recorded. However, not all recorded 

information is used as inputs, such as for some instance variables of the object 

where the method was invoked from. In this situation, our binary reduction 

technique may be able to reduce unnecessary collection variables to empty, while 

still preserving the coverage elements. 

The first and second scenario can potentially use delta debugging [8] or 
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preserving superset of the coverage elements to further the reduction. However, 

delta debugging could significantly increase the reduction overhead, and preserving 

superset of the coverage elements may lose or introduce some coverage elements 

that could potentially have a large impact on the reduced method-level test. For the 

third scenario, we can implement systematic static analysis in the future to help our 

framework identify and record only the necessary inputs for reproducing method 

executions. 

For execution time reduction, many of the recorded set of method-level tests 

are now taking seconds instead of minutes after the binary reduction. When 

debugging with these reduced tests, not only the tests will be short and easier to 

debug, the execution time is also easy to manage. 

2.3.4. Mutation Testing 

For mutation testing, we used PITest (PIT) [16], a mutation testing tool for 

Java, to evaluate the fault detection effectiveness of our recorded method-level tests. 

In PIT, different types of faults (or mutants) are automatically seeded into the 

source code. Each mutation (a mutated version of source code) simulates a single 

fault and is executed against the unit tests that developers provide. 

Mutation testing requires the provided unit tests to be passing tests. This is 

because only when the mutant’s output differs from the expected output, a mutant 

is said to be killed. In our experiments, when a method-level test is executed, we 

record the outputs as the expected output for mutation testing purpose. The output 

for each test contains not only the returned object if there is one, but also the object 

where the method was invoked from and the input parameters of the method. This 

is because the values of these parameters and the object where the method was 

invoked from could change and should be considered as part of the output. 
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Table 2-4. Mutation Testing Reduction Results 
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 PIT provides a total of 25 different mutators to mutate different type of code. 

When conducting mutation testing, we have enabled all 25 mutators in PIT for 

generating mutants in our selected methods. PIT also provides an option to set a 

timeout factor for executing each test against each mutant. The default is 1.25 times 

the original test execution time. We increased the timeout factor to 10 times the 

original execution time, as an effort to avoid false positives killing of mutants. This 

is because a timed-out mutant is also considered as a killed mutant. We have also 

increased the Java heap size to 60GB and stack size to 128MB using JVM 

configuration in PIT, to avoid false positive killing of memory error mutants. 

 

Figure 2-6. Sample Mutation Testing Report 

 Table 2-4 shows the mutation testing result of our recorded and reduced 

method-level tests. Note that PIT currently does not support the mutant generation 

of only covered statements. Because the mutation generation of PIT is done 

statically, it will generate mutants for all the statements of a selected method, 

instead of only the reachable ones. In other words, if a mutant is located at a 

statement that was not covered by any of the tests, the mutant will not be exercised, 

and thus is impossible to be killed. Such mutants will not be considered in our 

experiments. This is because if a mutant is not exercised by our recorded tests, it is 

not exercised by the original system-level execution.  The total number of mutants 

generated for each selected method in Table 2-4 are calculated manually which 
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consist of only exercised mutants by our tests. This is done by removing mutants 

that are labeled as NO_COVERAGE in the mutation testing report generated using 

PIT, such as shown in Figure 2-6. 

For recorded method-level tests without reduction shown in Table 2-4, we 

can see that most of the recorded tests for different methods and coverage criteria 

have a high mutant killing rate. Even without comparing to the original system-

level execution, a small number of tests show high effectiveness in detecting 

potential faults that could occur in the selected methods. For four out of seven 

selected methods, recorded tests achieve over 80% of mutant killing rate for all the 

selected coverage criteria. The average mutant killing rate across seven methods 

are around 80% for all four different sets of tests that achieve edge coverage, edge-

pair coverage, edge-set coverage, and these three combined. By only using edge 

coverage, the recorded method-level tests can achieve reasonably high mutant 

killing rate. With edge-pair and edge-set coverage, the mutant killing rate is further 

improved slightly in some cases. This indicates the method-level tests generated 

using our framework can effectively help developers to debug and find faults they 

are looking for, while significantly reducing the time and efforts required from 

developers for debugging. 

For reduced method-level tests, their mutant killing rates are nearly the 

same as their original recorded tests. With differences no larger than 5% of their 

original killing rate. We even see some cases with increased mutant killing rate, 

such as for the edge-pair coverage of method “cutPointsForSubset”. While 

coverage elements of our specifically selected coverage criteria are maintained, 

other elements from other coverage criteria could become lost, or may be newly 

introduced after our binary reduction, such as combinations of the different 

branches being executed. The mutation testing results of the reduced tests show that 

even after the input sizes are significantly reduced, the coverage elements and also 
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the fault detection effectiveness are still preserved. Our binary reduction technique 

on method-level tests can further help developers to reduce efforts for debugging 

while maintaining the debugging effectiveness of the method-level tests. 

Table 2-5. System-Level Mutation Testing 

Method Algorithm 

# of Mutants 

Killed by 

System-Level 

Execution 

# of 

Propagatable 

Mutants Killed 

by Combined 

Method-Level 

Tests 

select_working_set LibSVM 58 51 

selectModel J48 61 56 

 

 We also investigated the two methods select_working_set and selectModel 

with the lowest mutant killing rate by comparing their results to the mutation testing 

results of their system-level execution. We have planned on comparing all recorded 

method-level tests’ mutation testing results with their corresponding system-level 

execution. However, while mutation testing is a very effective method to evaluate 

the quality of tests, mutation testing is a rather expensive method to use. In this 

paper, we only have two system-level mutation testing results for 

select_working_set and selectModel. Moreover, their system-level mutation tests 

both took over one week to complete. Note that some mutants that can be killed 

with method-level tests are not propagatable on the system level, i.e., a mutant may 

cause a method execution producing incorrect output, but such incorrect output on 

the method level did not cause an incorrect system-level output. We considered the 

option of recording all method executions of a method during its system-level 

execution. However, it is impractical, because of our selected methods have been 

executed with a large number of times, and many of them have large inputs as well. 

For comparing mutation testing results between method-level tests and system-

level execution, we will only be considering the propagatable mutants for the 
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method-level tests. 

The system-level mutation testing results for select_working_set and 

selectModel are shown in Table 2-5. For LibSVM, the system-level execution was 

able to kill 58 mutants, the combined method-level test of select_working_set was 

able to kill 51 out 58 propagatable mutants with a propagatable mutant killing rate 

of 87.93%. For J48, the system-level execution was able to kill 61 mutants, the 

combined method-level tests of selectModel were able to kill 56 out of 61 

propagatable mutants with a propagatable mutant killing rate of 91.80%. The 

further investigation shows the reason why method-level tests recorded for 

select_working_set and selectModel have a lower mutant killing rate. It is likely 

because their original system-level execution has a lower mutant killing rate. 

After investigating the un-killed propagatable mutants in the recorded 

method-level tests, we discovered three un-killed propagatable mutants from 

select_working_set and one from selectModel were mutations related to modifying 

boundary conditions. This means by adding more coverage criteria related to 

boundary conditions, a higher mutant killing rate can be achieved for the method-

level test. With a few basic coverage criteria implemented for our framework, 

method-level tests produced by our framework can be very effective in detecting 

faults during debugging. 

2.3.5. Performance Evaluation 

We evaluate the performance of our implementation by investigating the 

original system-level execution time, the time taken to evaluate and record the 

method-level tests, time taken to reduce tests, and the time taken to execute the 

recorded method-level tests. The results are shown in Table 2-6. Recall that in the 

experiments for mutation testing, both inputs and outputs of the selected method 

executions are recorded. However, the results shown in Table 2-6 are only for 
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recording the inputs and executing the recorded method-level tests with only inputs 

without comparing their outputs. This is because, in real-world use of our 

framework, outputs of the method executions do not need to be recorded. 

Table 2-6. Performance Evaluation Results 

Method 

Original 

Execution 

Time 

Total Test 

Recording 

Time 

Total Test 

Execution Time  

Total Test 

Reduction 

Time Recorded Reduced 

buildClusterer 5352 s 6303 s 5 s 5 s 27 s 

cutPointsForSubset 9559 s *21615 s 1836 s 5 s 7558 s 

EM_Init 5356 s 5361 s 5 s 5 s 22 s 

handleNumericAttribute 6357 s *14624 s 155 s 2 s 1965 s 

select_working_set 4491 s *11531 s 176 s 1 s 2763 s 

selectModel 6357 s *14212 s 682 s 1 s 3122 s 

updateStatsForClassifier 9559 s *30513 s 875 s 3 s 4088 s 

  

As previously mentioned in Section 2.2, we have two solutions for 

recording selected method executions. One approach is to serialize and temporarily 

store the inputs for each method execution and record the inputs locally when a 

method execution is determined to be significant. This method requires executing 

the entire system only once. However, in cases where a method has large inputs or 

is executed for a large number of times, this approach may have a significant 

performance issue due to all the unnecessary serialization. The other approach is to 

execute the entire system twice. In the first execution, we evaluate each method 

execution and store the execution IDs of the method executions. An execution ID 

is the index of a method execution based on the order of each method executions 

that happened during the system-level execution. In the second system-level 

execution, we only serialize and record the inputs of the selected method executions 

based on their execution IDs. The numbers marked with “*” indicates that the 

method-level tests were recorded using the second recording approach as shown in 

Table 2-6. The execution time is computed by subtracting the execution end time 
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by the execution start time that was created using the Java 

System.CurrentTimeMillis() function. 

In Table 2-6, we see that recording method-level tests using our framework 

can take up to three times of the initial system execution. Additional test reduction 

time could take as much as two hours based on the size of the inputs (Our binary 

reduction utilizes serialization for deep copy as well). The reduced tests can be 

executed for many times during the debugging, the reduction time is a one-time 

investment, we believe the time is manageable for developers. Moreover, our 

approach is automated, allowing developers to work on other tasks while running 

our approach. For executing the recorded method-level tests, we see that it usually 

takes much less time than executing the entire system, especially for the reduced 

tests, the execution time can range from as little as one second to five seconds. 

Overall, we believe that recording and reducing method-level tests using our 

framework will help developers save a lot of time and efforts in debugging big data 

applications. 

2.4. RELATED WORK 

We first review previous work related to generating tests for big data 

applications. Csallner et al. proposed an approach that uses dynamic symbolic 

execution to automatically generate tests for general MapReduce programs [1]. 

Morán et al. proposed MRFlow, a testing technique tailored to test MapReduce 

programs [5]. MRFlow uses data flow test criteria and oriented to transformations 

analysis between the input and the output in order to detect defects in MapReduce 

programs. Morán et al. also proposed a technique to generate different 

infrastructure configurations for a given MapReduce program that can be used to 

reveal functional faults [4]. They also proposed an automatic test framework that 

can detect functional faults automatically [3]. Chandrasekaran et al. proposed an 
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approach to generate test input data using combinatorial testing for testing big data 

applications [6]. Previous work reported in [1, 2, 3, 4, 5] focuses on generating tests 

that help to identify functional faults, i.e., faults that will cause the program to 

generate unexpected outputs. In contrast, our work focuses on reducing debugging 

efforts for big data applications. Our tests are recorded in an effort to reproduce 

failures using a small number of method-level tests. 

Second, some work has been reported on debugging big data applications. 

Gulzar et al. developed a tool, BigDebug, that simulates breakpoints to enable a 

developer to inspect a program without actually pausing the entire computation [7]. 

To help a user inspect millions of records passing through a data-parallel pipeline, 

BigDebug provides guarded watchpoints, which dynamically retrieve only those 

records that match a user-defined guard predicate. Chandrasekaran et al. proposed 

a technique that uses different annotators to debug the tracking data independently 

and their debugging results were collected for joint correction propagation for later 

analysis [9]. Our work is similar to Gulzar [7] and Li [9] in terms of only focusing 

on a subcomponent of the system. However, our work focuses on recording 

significant method-level executions to be replayed for debugging suspicious 

methods. Gulzar [7] and Li [9] focuses on tracking the changes made to certain 

objects using data flow analysis approach.  

Third, our work is also related to existing work that records program 

information and uses the information to generate unit tests. Pasternak et al. 

proposed a technique that records interactions  that take place during the execution 

of Java programs and uses these interactions to construct unit tests automatically 

using GenUTest [10]. Orso et al. proposed a technique and conducted a feasibility 

study using SCARPE, a prototype tool, for selective capture and replay of program 

executions [6]. Similar to our work presented in this paper, Orso’s technique [6] 

can be used to automatically generate unit tests based on the recorded information 
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for testing purpose. Our work is similar to Pasternak [10] and Orso [6] in terms of 

recording method-level tests based on the system-level execution. However, our 

work focuses on recording unit tests for debugging one or more failures that have 

been observed instead of generating tests for triggering failures that have not been 

observed yet. Furthermore, our work also does not require complex instrumentation 

techniques on the target’s bytecode [6]. Instead, we only employ simple 

instrumentation that keeps track of code coverage.  

Finally, we review work related to reducing input size for the debugging 

purpose. Zeller et al. proposed Delta Debugging [8] technique to isolate failure-

inducing inputs on the system level to reduce work required for debugging. Clause 

[14] et al. presented a technique based on dynamic tainting for automatically 

identifying subsets of a program’s inputs that are relevant to a failure. These 

techniques reduce the debugging effort at the system level, in terms that the reduced 

datasets need to be executed at the system level. This is in contrast with our work 

that reduces the debugging effort at the method level.  

2.5. CONCLUSION & FUTURE WORK 

In this paper, we presented a framework to provide developers with method-

level tests that were recorded from a failed system-level execution with the original 

dataset. These method-level tests preserve a given coverage criterion, e.g. edge, 

edge-pair, and edge-set coverage, and thus are likely to reproduce the failure 

observed at the system level. The binary reduction is used to further reduce method-

level tests with large input. The set of method-level tests that are provided by our 

approach could help developers to effectively debug suspicious methods against 

properties of the original input dataset, and significantly reduce time and effort 

required for debugging big data applications. 

There are two major directions for future work. First, we plan to conduct 
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more experimental evaluation of our approach using more big data applications, 

datasets, and coverage criteria. Second, we plan to further automate our approach. 

In particular, we will develop techniques that can fully automate the 

instrumentation process. Our current approach still needs manual effort in 

modifying CFG generated by Atlas, inserting code for instrumentation, and 

identifying collection typed variables for reduction. It is our plan to make the tool 

publicly available. 
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Chapter 3. MagicMirror: Towards High-Coverage Fuzzing of Smart 

Contracts 

The chapter contains a paper submitted to the 36th IEEE/ACM International 

Conference on Automated Software Engineering (ASE), in 2021.
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Abstract – A smart contract is a program deployed on blockchain that is 

often used to handle financial transactions. Unlike traditional programs, contract 

code cannot be changed after it is deployed. This significantly increases the impact 

of potential defects in the contract code. Thus, it is important to test smart contracts 

thoroughly before deployment. In this paper, we present a fuzzing approach to 

testing smart contracts. Our approach utilizes constraint solving, selective state 

exploration, and combinatorial testing to improve code coverage. Constraint 

solving is used to generate test inputs that meet preconditions in a smart contract. 

Selective state exploration allows different state-dependent behaviors to be 

exercised in a way that alleviates the state explosion problem. Combinatorial testing 

is used to break an impasse that may be reached during the fuzzing process. We 

implemented our approach in a tool called MagicMirror and evaluated our approach 

using more than 2,000 contracts. The experimental results show that MagicMirror 

is effective for achieving high code coverage and detecting vulnerabilities. 

 
† Copyright © 2021 with permission, from Huadong Feng, Xiaolei Ren, Qiping Wei, Yu Lei, Raghu 

Kacker, D. Richard Kuhn, Dimitris E. Simos, MagicMirror: Towards High-Coverage Fuzzing of 

Smart Contracts. 
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solving, combinatorial testing, security analysis, vulnerability detection. 

3.1. INTRODUCTION 

A smart contract is a program deployed on blockchain and is often used to 

handle financial transactions. Unlike traditional programs, contract code cannot be 

changed after it is deployed. Any security breach would be permanent and could be 

difficult to be remedied.  For example, in April 2016, the reentrancy attack [1] on 

the DAO smart contract stole more than 3.6 million Ether (equivalent to about $45 

million at the time). While the DAO attack was remedied via an expensive and 

controversial hard fork due to its severe public impact, many other attacks [2, 3, 4] 

have been observed and have never been resolved. 

In recent years many fuzzing approaches have been reported for testing 

smart contracts. Examples of these approaches include AFL based fuzzing [8], 

where inputs are generated using strategies such as bit/byte flip and guided with 

code coverage; grammar-based fuzzing [9], where valid inputs are produced 

syntactically following certain grammars; input approximation-based fuzzing [8, 

11], where the inputs are approximated based on the boolean expressions of certain 

branching statements; and machine learning-assisted fuzzing [12], where inputs are 

generated using a machine learning model that was trained by learning from the 

inputs generated from symbolic execution of a large number of contracts. While 

significant progress has been made, achieving high code coverage remains an 

important concern for fuzzing [5, 7, 25]. 

In this paper, we present a fuzzing approach to test smart contracts. Our 

approach is centered on how to increase code coverage by addressing the following 

three challenges: 
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3.1.1. Meeting preconditions 

In many functions, there are require statements written at the beginning of 

the function. These statements specify preconditions, i.e., conditions that must be 

satisfied before a function can be successfully executed. Test inputs that do not 

meet preconditions would cause the current transactions to be reverted. 

3.1.2. State-dependent behaviors 

Like parameters, state variables are also input to a function, and their values 

may affect the behavior of the function. Thus, a function needs to be tested at 

different states; otherwise, some state-dependent behaviors may not be exercised. 

However, unlike parameters, state variables cannot take arbitrary values due to the 

reachability concern. We could derive reachable states by exploring the state space 

of a smart contract; however, this would introduce the state explosion problem. 

3.1.3. Combinatorial explosion 

When the number of parameters is large, the input space of a function can 

be huge due to the combinatorial explosion problem. Many vulnerabilities are due 

to interaction between parameters. However, important combinations of values of 

parameters can be easily missed by pure random test generation. 

 To address the first challenge, our approach identifies preconditions and 

uses a constraint solver to generate test inputs that satisfy the preconditions. To 

address the second challenge, our approach uses a selective state exploration 

framework to derive reachable states while alleviating the state explosion problem. 

To address the third challenge, we combine fuzzing and Combinatorial Testing (CT) 

[28]. The CT tests allow us to exercise parameter interactions in a systematic 

manner, while fuzzing is used to discover important parameter values, which 

further improves the quality of CT tests. 
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We implemented our approach in a tool called MagicMirror. We conducted 

an experimental evaluation of our approach by comparing MagicMirror to two 

other recently published state-of-the-are smart contract fuzzing tools, sFuzz [8] and 

ILF [12]. Our evaluation used 2,397 real-world smart contracts [24]. The results 

show that MagicMirror significantly outperforms sFuzz in both code coverage and 

vulnerability detection. In particular, on average, MagicMirror achieves 21% 

higher branch coverage than sFuzz and detects significantly more vulnerable 

contracts. Compared to ILF, MagicMirror achieves slightly better code coverage 

than ILF, while detecting significantly more vulnerabilities. We note that all inputs, 

results, and scripts for running the experiments are saved for reproducibility and 

are available at [33]. 

The remainder of the paper is organized as follows. Section 3.2 

demonstrates three major challenges of fuzzing smart contracts using real-world 

examples. Section 3.3 presents our approach, focusing on how to address the three 

challenges. Section 3.4 discusses some implementation considerations. Section 3.5 

presents an experimental evaluation of our approach. Second 3.6 reviews related 

work. Section 3.7 concludes the paper and discusses future work. 

3.2. MOTIVATION 

In this section, we present motivating examples to demonstrate three major 

challenges in fuzzing smart contracts. Our approach is developed to address these 

challenges. 

3.2.1. Meeting preconditions 

Figure 3-1 shows a code snippet from the BecToken‡ contract. BecToken is 

deployed on the Ethereum Blockchain and is implemented following the ERC-20 

 
‡ https://etherscan.io/address/0xc5d105e63711398af9bbff092d4b6769c82f793d 

https://etherscan.io/address/0xc5d105e63711398af9bbff092d4b6769c82f793d
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Token Standard [26]. Tokens are digital assets issued on the Ethereum network and 

could be used as currencies, like Bitcoin and Ether. transferFrom() allows a third 

account with adequate allowance to transfer tokens from one account to another. 

 

Figure 3-1. Code Snippet of the BecToken Contract 

 

Figure 3-2. Code Snippet of the CryptoMinerToken Contract 
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require statements specify preconditions that must be satisfied by the inputs 

of a function before the function can be executed. When executing a function, if 

any require statement is not satisfied, the current transaction is reverted without 

exercising the actual business logic implemented in the function. To effectively test 

a function, it is important to generate test inputs that satisfy the require statements. 

Consider the transferFrom() function in Figure 3-1. Line 5 requires that the 

destination address, _to, cannot be the default address value 0x0…0. Line 6 requires 

that the amount, _value, to be transferred from address _from be less than or equal 

to the balance of _from. Line 7 requires that msg.sender has adequate allowance to 

make the transfer. These preconditions could be difficult to satisfy with randomly 

generated inputs. 

3.2.2. State-dependent behavior 

Figure 3-2 shows a code snippet from the CryptoMinerToken §contract. 

CryptoMinerToken is used to help cryptocurrency miners to secure their mining 

assets by providing safe token transfers and exchanges. Function purchaseTokens() 

is a helper function to function buy(). It allows users to buy CryptoMiner tokens 

using Ether. 

In addition to parameters, state variables are also input to a function. Some 

code may never be executed if the function is not executed at a particular state. 

Thus, a function should be fuzzed at different states to exercise the different 

behaviors a function could execute. One could explore the state space to derive all 

reachable states, which would however introduce the state explosion problem. 

Consider the purchaseTokens() function in Figure 3-2. Since lines 14 and 

18 check the values of state variables tokenBalanceLedger_ and tokenSupply_, 

 
§ https://etherscan.io/address/0x0a97094c19295e320d5121d72139a150021a2702  

https://etherscan.io/address/0x0a97094c19295e320d5121d72139a150021a2702
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reaching different branches of these if statements would require different values of 

these state variables. One could try to assign arbitrary values to these state variables 

to reach different branches. For example, if tokenBalanceLedger_[referredBy] is 

set to 50e18 and tokenSupply to 0, a transaction would execute the true branch of 

the first if statement at line 11 and the false branch of the second if statement at line 

18. However, if we consider the entire contract, the sum of balances in 

tokenBalanceLedger_ should always be equal to tokenSupply, because they are 

always updated together in the implementation to maintain this constraint, such as 

the sell() function shown in Figure 3-2. There exists no reachable state where the 

balances in tokenBalanceLedger_are not zero while tokenSupply_ being 0. Thus, it 

is impossible to exercise the statements in both line 16 and 20 in a single transaction. 

 

Figure 3-3. Code Snippet of the BTC20Exchange Contract and Representative 
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Values of Parameters 

3.2.3. Combinatorial explosion 

Figure 3-3 shows a code snippet from the BTC20Exchange **contract. 

BTC20Exchange is a crowdfunding contract that works by issuing tokens that are 

purchased by contributors to finance some projects. Function adminWithDraw() 

allows contract administrators to withdraw Ethers from the contract into other 

accounts. There are nine parameters to adminWithDraw(). The execution of some 

branches would require multiple input variables to take some particular values 

simultaneously. For example, to execute the false branch of the if statement at line 

12, the values taken by the input variables must satisfy the condition, i.e., certain 

token, user has more balance than the amount needs to be withdrawn. Assume we 

use the input model shown at the bottom of Figure 3-3. The identification of these 

values is discussed in Section 3.3.4. Enumerating all combinations of parameters 

and their values would yield 1.4 million tests. Due to the combinatorial explosion 

problem, it can be difficult for random inputs to exercise input combinations that 

are required to cover the different branches. 

3.3. APPROACH 

3.3.1. Overview 

Our fuzzing framework contains four major components, as shown in 

Figure 3-4. Static Analysis is performed on the contract’s Solidity source code 

before fuzzing starts to collect information that is used later in the fuzzing process. 

Selective State Exploration drives the fuzzing process. Combinatorial Fuzzer 

generates CT tests and mutates them to fuzz functions on different contract states. 

Constraint Solver is used by both Selective State Exploration and Combinatorial 

 
** https://etherscan.io/address/0xdc468a1504fcbdf09705ee298bbec9b16ee263d0  

https://etherscan.io/address/0xdc468a1504fcbdf09705ee298bbec9b16ee263d0
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Fuzzer to evaluate contract states and generate test inputs that satisfy preconditions. 

Vulnerability Analysis includes several detectors that take a transaction debugging 

trace as input and detects vulnerabilities that may exist in the trace. 

 

Figure 3-4. Overview of the MagicMirror Fuzzing Framework 

Our approach is centered on how to address the three challenges mentioned 

in Section 3.2. 

Meeting preconditions. To generate tests meeting preconditions, 

MagicMirror identifies the preconditions via lightweight static analysis. The 

preconditions are then parsed and encoded into constraints in a format that a 

constraint solver could accept. These constraints are solved to generate tests that 

can satisfy these preconditions. 

State-dependent behavior. To exercise state-dependent behaviors, 

MagicMirror generates reachable states using a selective state exploration process. 

Starting from the initial states, i.e., the state right after a contract is deployed, we 

execute functions that can be executed at the states to derive successor states. This 

process is repeated at a subset of the successor states until the maximum exploration 

depth is reached. MagicMirror then restarts at the initial states and repeats the 

selective state exploration. The selection of a successor state for further exploration 

is performed to maximize the chance of increasing code coverage. This selective 
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state exploration process, i.e., exploring a subset of successor states instead of every 

successor state, helps to alleviate the state explosion problem.  

Combinatorial explosion. To handle the combinatorial explosion problem, 

CT is used to select a subset of input combinations that achieves a combinatorial 

coverage criterion. Representative values for each input are predefined and 

identified via lightweight static analysis, e.g., constant values that appear in a 

branching statement, and/or discovered during fuzzing, e.g., a value that triggers 

new code coverage. t-way test generation is applied to control parameters, i.e., 

parameters that influence control flow decisions. For non-control parameters, we 

cover every one of its representative values once. Note that, we refer to both 

parameters from the function signature, msg.sender, and msg.value as parameters 

to a function. Using this method on the example shown in Figure 3-3, with 3-way 

test generation for control parameters, we can generate 211 tests instead of 1.4 

million tests. At the same time, still cover every combination of parameters and 

their values involved in the branching conditions. Lastly, we combine CT and 

fuzzing by using the CT tests as seed to generate additional tests, where fuzzing 

helps CT to extend its test set by discovering new representative values, and CT 

helps fuzzing to cover important input combinations. 

3.3.2. Meeting Precondition 

In many functions, there are require statements written at the beginning of 

the function. These require statements are used to check preconditions that must be 

satisfied for the execution of a function to be successful. Due to preconditions, 

many randomly generated test inputs could be rejected because the contract states 

do not have the necessary state variable values for a function to be successfully 

executed. If preconditions are not properly accounted for, it can be difficult for 

fuzzing to achieve high code coverage. MagicMirror addresses the precondition 
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issue by using constraint solving to evaluate contract states and generate valid 

inputs during fuzzing. 

To evaluate contract states and generate precondition-satisfying tests, there 

are two major technical problems to handle, including (1) identifying, parsing, and 

encoding preconditions into constraints that a constraint solver can solve and (2) 

randomizing solutions produced by a constraint solver, which typically gives the 

same solution during multiple calls of the same constraint. 

3.3.2.1. Identifying, Parsing, and Encoding Preconditions 

To create precondition constraints for a function, we generate a control flow 

graph based on its source code. Each node in the control flow graph corresponds to 

a line of statement and is represented as an Abstract Syntax Tree (AST). The AST 

allows MagicMirror to parse the boolean expression inside each require statement 

and encode it into constraints. Note that require statements can be directly written 

at the beginning of a function or included in the function’s modifiers. 

There are more complex scenarios that make the precondition parsing more 

difficult. Such as when parsing a precondition with a variable other than parameters 

and state variables. For example, assigning the reference of a state variable sv[0] to 

a local variable lv, then use lv for evaluation in a precondition lv.count > 0. Such 

indirect accesses in preconditions are identified using static taint analysis by 

analyzing the Static Single Assignment (SSA) of the source code so that the 

constraint can be transformed into expressions containing only state variables and 

parameters. lv.count > 0 would then become sv[0].count > 0 after the 

transformation. 

Once we identified all the preconditions, they are encoded into constraints 

that a constraint solver can use. To evaluate whether the precondition of a function 

can be satisfied on a given contract state, we encode the values of state variables 
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into the existing constraints. We then check whether the constraint solver can 

generate at least one test that satisfies the constraints. 

To generate precondition-satisfying tests using the constraint solver, we will 

need the following information, a contract state, a CT test, and a selected parameter 

to be randomized. For state variables, their values are encoded into the existing 

constraints. For not selected parameters, their value in the CT test is also encoded 

into the constraints. The selected parameter’s value is then solved based on the 

actual values of state variables and the values of the unselected parameters. 

Consider a constraint, s<p1 && p1<p2, that involves parameter p1, p2 and state 

variable s. s is 10 in the selected state, the CT test is (p1=0, p2=15), and p1 is to be 

randomized. We encode s and p2 in the constraint by adding the expressions s==10 

and p2==15 into the constraint. The constraint solver will then provide a solution 

of p1 that is greater than ten and less than 15. 

3.3.2.2. Randomizing Solutions 

Constraint solvers typically give the same solution during multiple calls (for 

the same constraint). We need to help the constraint solver randomize solutions 

better. For numerical or dynamically sized array parameters, we first use the 

constraint solver to identify the minimum and maximum value or array length to 

satisfy the constraints. We then divide the range from the minimum value to the 

maximum value into 100 regions and force the constraint solver to find a solution 

in a randomly selected region. Note that we are assuming the solution space is 

continuous for these parameters, i.e., all values between the maximum and 

minimum values are possible solutions. In some instances, this may not be true. For 

example, constraint a <= 10 || a >= 100 where a has the data type of uint8. The 

minimum and maximum value satisfying the constraint is 0 and 255. However, 

values between 10 and 100 would not satisfy the constraint. We handle this type of 
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scenario by randomly selecting different regions until a solution can be found. For 

other discrete typed parameters, we let the constraint solver enumerate all solutions 

among their representative values, we then randomly select one from the solutions. 

Note that there can be scenarios where mutating only one parameter of a CT 

test cannot yield a precondition-satisfying test. In such scenarios, we will randomly 

include additional parameters to be randomized by the constraint solver until the 

CT test can be mutated into a test that meets the preconditions. Consider a constraint 

s1 > p1 && s2 > p2, where s1 and s2 are state variables, p1 and p2 are parameters. s1 

is 10, s2 is 20 and the CT test is (p1=11, p2=21). The parameter to be mutated is p1. 

However, only mutating p1 cannot produce a test that satisfies the precondition with 

the given state and CT test. Hence, we also randomize p2, which allows the 

constraint solver to find a solution, e.g., (p1=9, p2=19). 

When randomizing values for multiple parameters, instead of letting the 

constraint solver provide the solution of all the parameters at once, we solve for 

parameter values one by one, so we can randomize each parameter separately. This 

is because randomly selecting a value for one parameter could change the solution 

space for another parameter. 

3.3.3. State-Dependent Behavior 

Like parameters, state variables are also input to functions. Thus, a function 

needs to be tested at different states. Furthermore, for certain functions with more 

complex require statements, their precondition-satisfying states can be more 

challenging to explore because such states can often require several functions to be 

executed in particular orders. MagicMirror addresses the state-dependent behavior 

issue with a selective state exploration fuzzing strategy. 

MagicMirror employs a Breadth-First Search (BFS) exploration strategy. 

At first, the constructor of the target contract is fuzzed. Initial contract states are 
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created from different contract deployments. We execute functions that can be 

executed at the initial states to derive successor states. This process is repeated at a 

subset of the successor states until the maximum exploration depth is reached. To 

limit state explosion, we limit both depth and width of the BFS exploration. We 

also limit the functions that can be fuzzed on a contract state. 

When the maximum exploration depth is reached, MagicMirror will restart 

by fuzzing the constructor again and repeat the BFS exploration process until the 

timeout is reached. This is because some transactions may introduce permanent 

changes to contract states that would stop certain functions from meeting their 

preconditions. For example, many ERC-20 Token contracts can have a state 

variable mintingFinished and a function finishMinting(). When contracts are 

deployed, mintingFinished is set to false. Once finishMinting() is executed, 

mintingFinished is permanently set to true. Any functions with preconditions 

requiring mintingFinished being false cannot be entered again. Hence, 

MagicMirror can create more precondition-satisfying states for these functions by 

restarting the fuzzing process. 

3.3.3.1. Random State Selection 

During the BFS exploration, not all successor states are explored. We 

perform state analysis for each successor state to compute a score for weighted 

random selection. The score is calculated based on the code coverage of the 

transactions executed to produce the state and precondition-satisfiability of contract 

functions on the state. The precondition-satisfiability is determined using constraint 

solving, which was discussed in Section 3.3.2. The score is then used to select a 

number (equal to width) of successor states using a general weighted random 

selection with replacement technique. 

When computing the score of a successor state, each of the following criteria of 
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the state will count as one point: 

• Every state-modifying transaction that triggered new code coverage in the 

sequence of transactions that has produced the state.  

• Every precondition-satisfiable function, i.e., a function having their 

preconditions satisfied at the given state.  

• Every precondition-satisfiable function that is yet to achieve 100% opcode 

coverage at the given state.  

• Every precondition-satisfiable function that is yet to be successfully 

executed at the state.  

The score is computed only once when the contract state is first created. In 

principle, we favor contract states produced by transactions that have triggered new 

coverage. This is because such transactions are more likely to have modified the 

contract state different. We also favor states that allow MagicMirror to enter more 

functions that are yet to be fully covered. Doing so can increase code coverage 

faster. 

3.3.3.2. Random Function Selection 

Once a random contract state is selected, we will select one using weighted 

random selection among its precondition-satisfiable functions. The weight is 

calculated by inverting the relative opcode coverage of a function. Similar to 

Random State Selection, we favor functions with lower opcode coverage as well. 

We also limit the number of times a function is fuzzed to ensure every function can 

generate a relatively fair number of states and fuzzed for a fair number of times. 

The details of how a function is fuzzed are discussed next. 

3.3.4. Combinatorial Explosion 

Branching conditions often depend on a specific combination of parameter 
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values, which can be difficult to be covered by pure random testing. As shown in 

Figure 3-3, not all inputs interact with each other. Thus, testing all possible 

combinations of all parameters is often not necessary. The challenge is how to 

select a subset of the combinations that are effective for testing. 

MagicMirror addresses this challenge by generating tests using CT [28]. 

The CT tests are then fuzzed to discover new representative values to extend the 

CT test set. In CT, a system is specified by a set of parameters and their 

representative values. A test set is a t-way test set if it satisfies the following 

property: Given any t parameters of a system, every combination of (representative) 

values of these t parameters is covered in at least one test in the test set. In our case, 

we apply CT to functions in a smart contract, where the parameters are function 

parameters (including msg.sender and msg.value). We note that t-way test 

generation is only applied to control parameters, i.e., parameters influencing the 

result of branching conditions. For non-control parameters, we cover every 

representative value only once. 

Once a contract state and a function are randomly provided by the BFS 

exploration, there are four major steps to fuzz the function, including (1) identifying 

representative values of each parameter, (2) identifying control parameters, (3) 

generating combinatorial tests, and (4) mutating CT test to discover more 

representative values. 

3.3.4.1. Identifying Parameter Representative Values 

By default, we include the boundary values, near-boundary values, and 

common values based on the parameter’s data type. The following values are 

included as pre-defined representative values based on parameter type: 

• intn: min, min + 1, 0, 1, 10, max – 1, max. For example, for int8, its 

representative values are -128, -127, 0, 1, 10, 126, 127.  
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• uintn: 0, 1, 10, max – 1, max.  

• byte: “0x0”, “0xff”.  

• bytes: “0x0”, “0xff”, “0xffffffff” 

• bytesn: “0x0”, “0xff”, “0xffffffff” if n >= 4, and “0xff” * n.  

• string: “”, “Hello”.  

• bool: true, false. 

• address: normal account addresses, attacker contract addresses, and invalid 

address “0x0”.  

• arrays (fix sized): A sample array randomly populated with the base data 

type representative values. For example, for int8[2], we could have [0, 126]. 

• arrays (dynamically sized): Three sample arrays of length zero, one, and a 

random length, randomly populated with the base data type representative 

values.  

In addition, we also identify constant values that are used to compare with 

parameters in the source code. These constant values are identified by analyzing 

the AST of the function source code. These constant values are added to the 

parameter(s) in which they were compared. There can also be an additional near-

boundary value when a constant value is compared to a parameter using <, >, <= 

and >=. For example, in param>10, both 10 and the near-boundary value 11 are 

added to param as additional representative values. 

3.3.4.2. Identifying Control Parameters 

To identify control parameters, we analyze the function’s AST to determine 

the parameters used in branching conditions. We also use static taint analysis by 

analyzing the SSA of the function to identify parameters that indirectly influenced 

branching conditions. 
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3.3.4.3. Generating Combinatorial Test Set 

 

Figure 3-5. Combinatorial Test Set Generation for Function adminWithdraw() 

To achieve higher code coverage, combinations of control parameters and 

their values are more important than non-control parameters. t-way test generation 

is only applied to control parameters. In Figure 3-5, we illustrate how to generate a 

t-way combinatorial test set for function adminWithdraw(). For simplicity, we will 

only include two representative values (0 and 1) for each parameter and use 2-way 
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test generation. First, we generate the 2-way test set for the control parameters 

msg.sender, token, amount, user, and feeWithdrawal. Nrxt, we add the 

representative values of the non-control parameters into the 2-way test set to 

complete the CT test set for function adminWithdraw(). 

3.3.4.4.  Mutating CT Test 

Not every CT test will execute unique scenarios. Some CT tests could share 

similar behaviors. Instead of mutating every CT test, we want to identify tests that 

covered new branches and/or reached deeper and hard-to-reach branches. After 

executing the CT tests from step (3), we analyze the branch coverage achieved by 

the CT tests. Next, we sort the tests by the number of covered branches of each test, 

from large to small, because tests covering more branches likely indicate deeper 

branches were reached. Lastly, from the first test in the sorted list, we select tests 

covering branches that were not covered by any previous tests in the list. As a result, 

we have a small subset of CT tests that can reach the same depth of branches, and 

have the same branch coverage as the origianl CT test set. 

In addition to predefined representative values based on parameter data type 

and representative values identified using static analysis, we use fuzzing to discover 

new representative values by mutating the CT tests. For each selected CT test, we 

mutate one control parameter at a time. We maintain the values of other parameters, 

so only a small number, or ideally one, branching condition involving the control 

parameter, is flipped. This strategy helps MagicMirror increase the likelihood of 

exploring new branches and discovering new representative values. We do not 

mutate non-control parameters since they are unlikely to trigger new code coverage. 

 To mutate the value of a selected parameter, we have two ways, using 

constraint solver or random generation. When a parameter is used in preconditions, 

its value is randomized using a constraint solver to ensure the mutated tests will not 
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be rejected by the preconditions. The details of how a constraint solver randomizes 

parameter values were discussed in Section 3.3.2. For parameters that do not appear 

in preconditions, their values are either randomly selected from their existing 

representative values (i.e., bool, address, string, byte/bytes, bytesn and fixed sized 

array), or randomly generated within the valid range of their data type (uintn, intn, 

and dynamically sized array). The number of times a control parameter in a CT test 

is mutated is configurable. 

 If any new representative values are discovered after the mutation of CT 

tests, the initial CT test set will be extended to include the new representative values. 

We will take these extended CT tests and repeat the process at step (1) until no 

additional representative values are discovered. 

3.3.5. Vulnerability Detection 

Our fuzzing approach is independent from vulnerability detection. Thus, in 

principle, we could incorporate third-party vulnerability detectors. As discussed in 

Section 3.4.6, we adopted 14 vulnerability detectors from sFuzz [8] and ILF [12]. 

3.4. IMPLEMENTATION 

In this section, we discuss some major decisions in the implementation of 

MagicMirror, including static analysis using Slither, constraint solving using Z3 

[35], CT test generation using ACTS [13], code coverage computation, test 

execution using a custom Geth EVM [34], and vulnerability detectors. The source 

code and a ready-to-use Docker [32] image of MagicMirror is available at [33]. 

3.4.1. Static Analysis with Slither 

We use Slither, a static analyzer for Solidity programs, to analyze the source 

code of a contract. In particular, we utilize the control flow graph, AST of the source 
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code, and SSA from Slither to identify the information we need as discussed below: 

3.4.1.1. Identify Preconditions 

Preconditions need to be written in terms of state variables and function 

parameters. However, a require statement may involve internal variables, which 

need to be rewritten. To avoid the need for symbolic execution, MagicMirror only 

handles require statements at the beginning of a function. A require statement is 

considered to be at the beginning of a function if it appears before any statement 

that changes a state or local variable or any branching statement that is not a require 

statement.  

3.4.1.2. Identify Implicit Parameters 

Since implicit parameters, msg.sender and msg.value do not appear in a 

function’s signature, we gather this information by analyzing the AST of the 

function. Furthermore, we also identify their indirect usage in inner function calls 

to other functions.  

3.4.1.3. Identify Control Parameters 

By analyzing the control flow graph. AST and SSA of a function, we can 

identify parameters used in branching conditions as control parameters.  

3.4.1.4. Identify Constants 

In addition to handling the direct comparison of a parameter to a constant 

value, constant values can also appear in type conversions. If not handled correctly, 

the value may be missed or incorrectly assigned. We detect this type of operation 

using the AST of the function and parse the constant value to its destined data type.  
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3.4.2. Constraint Solving with Z3 

We use Z3 [35] to perform constraint solving. As discussed in Section 3.3.2, 

constraint solving is used to identify states and input parameter values that satisfy 

preconditions. The preconditions identified using Slither are parsed and encoded as 

Z3 constraints. During the creation of Z3 constraints, we create Z3 variables to 

represent different state variables and input parameters. Z3 provides data types that 

can handle Solidity primitive types such as int, bool, bytes, etc. However, some 

data types in Solidity, e.g., mapping, user-defined constructs, require creation of 

customized data types in Z3. We utilize static typing information provided by 

Slither to automatically create custom Z3 data types to handle non-primitive type 

variables. 

When loading state variables’ values into constraints, we call the state 

variable getters to obtain the values. For state variables that are arrays or mappings, 

obtaining their values requires additional effort. Solidity compilers do not generate 

getters that can return the full content of an array or mapping structure. Instead, an 

index must be provided to get the element at a specific position of an array or 

mapping structure. For an array, we repeatedly call the getter function with the 

index starting from 0, then add the value returned by the getter function into the Z3 

constraint. We increase the index until the getter function fails. 

For a mapping, obtaining all the values in the mapping can be more 

challenging because mappings do not store their keys. Instead, only the value is 

stored at the memory address calculated by the SHA3 hash of the key. If no value 

is ever written into a position, accessing the position would return the default value. 

On the other hand, a transaction could intentionally write the default value into a 

position. This means we cannot distinguish the two cases when the default value is 

returned. To address this problem, we keep track of the keys of a mapping structure 

whose associated values were previously modified. If a key is non-numeric, this 
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problem does not exist as non-numeric parameters are only fuzzed with their 

predefined values. We keep track of all possible values that could be assigned to 

the key during state exploration for a numeric key. 

3.4.3. Combinatorial Test Generation using ACTS 

We use Automated Combinatorial Testing for Software (ACTS) [13], a test 

generation tool for constructing t-way CT test sets. ACTS is implemented using 

Java. To interact with ACTS, we implemented a custom wrapper using Py4j to 

launch ACTS as a service, so MagicMirror can interact with ACTS as a client. The 

input to ACTS contains control parameters for the function, t-way strength, and 

representative values of control parameters. When generating the CT test set, the 

default strength of control parameters is set to 2. 

3.4.4. Test Execution with Custom Geth EVM 

Our transaction execution backend is implemented on top of Go Ethereum 

(Geth EVM). This idea is inspired by the backend implementation of ILF [12]. In 

the wrapper of the Geth EVM, we implemented contract state management, i.e., 

taking/restoring snapshots of contract states. With the wrapped Geth EVM built 

into a shared library, MagicMirror can execute transactions natively via inter-

process communication (IPC) without communication delays instead of performing 

RPC calls. 

3.4.5. Code Coverage Computation 

Due to the existing tools [37, 38] not being compatible with our 

implementation, we generate code coverage reports on our own based on the 

contract bytecode. The code coverage report contains both edge coverage and 

opcode coverage for the entire contract and individual functions. We identify edges 

in the bytecode using the bytecode control flow graph generated by Vandal [21], a 
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static program analysis framework for Ethereum smart contract bytecode. However, 

Vandal may not detect some edges because some destinations of JUMP or JUMPI 

instructions in the bytecode could be computed dynamically at runtime, and are 

thus not known at compile time. If any edge that Vandal does not detect is executed, 

the edge is added to the set of all possible edges. For edge and opcode coverage on 

individual functions, we utilize the source mapping produced from the Solidity 

compiler, and control flow graph produced from Vandal, to map bytecode segments 

to a specific function. 

3.4.6. Vulnerability Detectors 

MagicMirror, sFuzz and ILF all analyze debug trace of transactions to 

detect vulnerabilities. We adopted nine detectors from sFuzz, they are strictly 

translated from C++ to Python. We also adopted five detectors from ILF, we were 

able to use them directly without translation because they were also implemented 

in Python. 

For triggering vulnerabilities requiring interactions between contracts, 

MagicMirror deploys attacker contracts to interact with target contracts. Any test 

can be sent by a normal wallet account or via an attacker contract. The attacker 

contract contains three functions, AgentCallWithoutValue(), AgentCallWithValue() 

and the  fallback function. For the two agent call functions, besides calling the target 

contract with the provided call data, they also save the call data in a state variable 

for reentrancy attack. When sending transactions to target contract using agent calls, 

if the target contract tries to send ether to the attacker contract, the attacker 

contract’s fallback function will resend the previously received call data to create a 

reentrancy scenario. 
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3.5. EXPERIMENTS 

Our experiments are designed to evaluate the effectiveness of MagicMirror 

in terms of code coverage and vulnerability detection abilities. In particular, we 

compare MagicMirror to two recently published fuzzing tools, sFuzz [8] and ILF 

[12].   

3.5.1. Research Questions 

Our experiments are designed to ask the following two research questions: 

RQ1: How does MagicMirror perform in terms of code coverage? 

RQ2: How does MagicMirror perform in terms of vulnerability detection? 

 To answer RQ1, we compare the code coverage achieved by MagicMirror 

to sFuzz and ILF within the same amount of time. To answer RQ2, we compare 

the number of vulnerable contracts detected by MagicMirror to sFuzz and ILF 

within the same amount of time. MagicMirror implements all vulnerability 

detectors from sFuzz, and five out of seven vulnerability detectors from ILF. 

3.5.2. Subjects 

In the experiments, we used 2,397 smart contracts as our subjects. These 

contracts are selected from 1,838 smart contract source files [24]. These contract 

files were randomly collected from Etherscan [30] to evaluate another smart 

contract analysis tool. The 1,838 source files require Solidity compiler versions 

ranging from 0.4.0 to 0.5.10. Many of these files contain multiple contracts. Our 

selection excludes the following types of contracts: library contracts, interface 

contracts, abstract contracts, and contracts inherited by other contracts. 

We compare MagicMirror to two state-of-the-art fuzzing tools that are 

publicly available, i.e., sFuzz [8] and ILF [12], using their latest release [31, 39] on 
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GitHub. sFuzz uses an AFL [23] like fuzzing strategy to fuzz smart contracts. ILF 

uses machine learning (ML) to fuzz smart contracts. The ML model is trained by a 

symbolic execution expert executing on a training dataset. 

Note that none of the three tools could execute all subject contracts due to 

different kinds of exceptions. Out of the 2,397 subject contracts, MagicMirror 

reported results for 2,276 contracts, ILF reported results for 2,005 contracts, sFuzz 

reported results for 1,264 contracts. When comparing between tools, we only 

compare results on contracts where both tools reported results. The exceptions we 

encountered from ILF and sFuzz have been reported to the authors of sFuzz and 

ILF. 

3.5.3. Metrics 

3.5.3.1. Code Coverage 

When answering RQ1, MagicMirror reports both edge and opcode 

(instruction) coverage based on the contract bytecode (both deploy-time and 

runtime bytecode). However, sFuzz and ILF report their results differently. 

sFuzz code coverage: sFuzz reports branch coverage based on the contract 

bytecode. However, based on communication with the first author, sFuzz only 

analyzes non-constant functions and only recognizes branches with JUMPI 

instructions that can be mapped to an if/while/require/assert statement. To fairly 

compare with sFuzz, MagicMirror uses identical contract bytecode that sFuzz used. 

MagicMirror’s edge coverage result is also filtered to contain only branches 

included in the sFuzz’s result. To identify branches recognized by sFuzz, we added 

a few lines of code [33] to sFuzz for logging. The first author of sFuzz has 

confirmed that the changes made to sFuzz will not impact its performance and 

ability to detect vulnerabilities. 
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ILF code coverage: ILF reports opcode and basic block coverage based on 

runtime bytecode only. Additionally, ILF removes the metadata appended to the 

end of the runtime bytecode by the compiler. Hence, after disassembling the 

runtime bytecode, ILF would report fewer total opcodes in the coverage. However, 

after confirming with the first author, this would not affect the number of covered 

opcodes. To fairly compare with ILF, we will use the total number of opcodes 

disassembled from MagicMirror as the denominator for computing ILF’s opcode 

percentage coverage. 

3.5.3.2. Vulnerabilities 

Since sFuzz analyzes non-constant functions only, when comparing with 

sFuzz, we exclude vulnerabilities detected in constant functions from MagicMirror. 

For ILF, constructors are not analyzed by ILF. When comparing with ILF, we 

exclude vulnerabilities detected in constructor functions from MagicMirror. 

Note that MagicMirror, sFuzz, and ILF all analyze transaction debug trace 

for vulnerability detection. MagicMirror implements all sFuzz detectors in the same 

logic.  For ILF, we could copy and paste five out of seven ILF detectors into 

MagicMirror without translation because ILF detectors were also written in Python. 

The two excluded detectors, Leaking and Suicidal, require a fuzzing strategy that is 

unique to ILF, and are thus excluded in MagicMirror. For false positives, since 

MagicMirror has identical detectors implemented in sFuzz and ILF, we do not 

investigate the false positive vulnerabilities detected between these tools.   

3.5.4. Procedure 

Due to limited resources and the large number of subject contracts, we 

execute MagicMirror, sFuzz, and ILF with a 15-minutes timeout on each subject 

contract. We run the experiment three times and report the average as the result. 
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For MagicMirror, the contract source code is provided as input, with other 

user-configurable options left as default. In particular, the default value of t-way 

test strength is two. 

For sFuzz, we provide a JSON file consists of compiled contract 

information and the source file. In the JSON file, the compiled contract information 

is identical for both sFuzz and MagicMirror. The contract source file is required by 

sFuzz to identify branches with source mapping. 

For ILF, its input consists of a trained ML model, the contract source code, 

and a contract deployment configuration. For the ML model, ILF uses the default 

model provided in the GitHub repository [31]. ILF also provides a script to 

automate the compilation and deployment transaction generation process. To 

ensure ILF and MagicMirror receive identical compilation results, instead of using 

the script, we generate the compilation information and provide it to ILF.  For 

contract deployment, ILF does not fuzz constructor. A contract deployment must 

be provided to ILF. To fairly compare with ILF, we randomly generate a contract 

deployment for ILF, and we modified MagicMirror to only fuzz the contract based 

on the identical contract deployment instead of fuzzing the constructor. 

Table 3-1. Statistical Results for ILF Executed on Multiple Contract Deployments 

stdev < 1% 
1% ≤ stdev 

< 5% 

 stdev ≥ 

5% 

36 11 3 

  

Min Avg Max 

0% 1.62% 21.90% 

 

Due to limited resources, we are unable to execute ILF multiple times on 

different deployments. We acknowledge that different deployments may cause ILF 

and MagicMirror to produce different results. To study how this factor may impact 
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ILF’s result, we randomly selected 50 contracts from the subject contracts for ILF 

to execute, ILF is provided with five random contract deployments for each contract, 

and each deployment is executed 15 minutes. Table 3-1 shows the statistics for the 

opcode coverage standard deviation among five deployments for the 50 contracts. 

We see that ILF would achieve similar opcode coverage results in most contracts 

when different deployments are provided. On average, the opcode coverage 

standard deviation of different deployments fluctuates around 1.62%. 

Finally, all experiments are carried out on Docker containers with three 

cores and 25GB RAM. The Docker containers are hosted on a Windows 10 

workstation with two Intel Xeon Platinum 8180 processors with 56 2.5GHz cores; 

and 512GB memory. We note that all inputs, results, and scripts for running the 

experiments are saved for reproducibility and are available at [33]. 

3.5.5. Results for RQ1 

In Table 3-2 and Figure 3-6, we compare the branch coverage of 

MagicMirror to sFuzz on 1,225 contracts where both tools reported coverage. As 

previously mentioned, to objectively compare with sFuzz, MagicMirror’s result has 

been filtered to contain only branches that were identified by sFuzz. On average, 

MagicMirror can achieve 21% more branch coverage than sFuzz, as shown in Table 

3-2. Figure 3-6 shows the differences in the number of covered branches between 

MagicMirror and sFuzz. The vertical axis represents 𝑀𝑎𝑔𝑖𝑐𝑀𝑖𝑟𝑟𝑜𝑟– 𝑠𝐹𝑢𝑧𝑧, i.e., 

the number of branches covered by MagicMirror minus the number of branches by 

sFuzz. The horizontal axis represents individual contracts sorted by 

𝑀𝑎𝑔𝑖𝑐𝑀𝑖𝑟𝑟𝑜𝑟– 𝑠𝐹𝑢𝑧𝑧. Note that each data point on the horizontal axis is a contract 

that has a particular value of 𝑀𝑎𝑔𝑖𝑐𝑀𝑖𝑟𝑟𝑜𝑟– 𝑠𝐹𝑢𝑧𝑧. Among the 1,225 contracts, 

MagicMirror achieved higher branch coverage than sFuzz in 930 contracts, the 

same branch coverage in 166 contracts, and lower branch coverage in 129 contracts. 
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Figure 3-6. MagicMirror and sFuzz Covered Branches Comparison 

Table 3-2. Branch Coverage for MagicMirror and sFuzz 

 MagicMirror sFuzz 

Min 1.35% 0.76% 

Median 90.00% 66.67% 

Mean 82.75% 61.67% 

Max 100.00% 100% 

 

MagicMirror significantly outperforms sFuzz in terms of branch coverage. 

We intended to conduct further investigation to explain the results. However, sFuzz 

only reports branch coverage for the entire contract, without detailed information 

about the coverage, e.g., which function has lower coverage, or which 

branches/opcodes were covered or uncovered. 

In Table 3-3 and Figure 3-7, we compare the opcode coverage of 

MagicMirror to ILF on 1,986 contracts where both tools reported coverage. In our 

experiments, MagicMirror achieves slightly better code coverage than ILF. On 

average, MagicMirror can achieve about 1.7% higher opcode coverage than ILF, 

as shown in Table 3-3. The difference in opcode coverage achieved for contracts 

between MagicMirror and ILF is shown in Figure 3-7. Among the 1,986 contracts, 

MagicMirror achieved higher branch coverage than ILF in 1209 contracts, same 
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branch coverage in 161 contracts, and lower branch coverage in 616 contracts, as 

shown in Figure 3-7. 

 

Figure 3-7. MagicMirror and ILF Covered Branches Comparison 

Table 3-3. Opcode Coverage for MagicMirror and ILF 

 MagicMirror ILF 

Min 2.80% 0.95% 

Median 92.59% 91.53% 

Mean 82.81% 80.10% 

Max 99.84% 99.78% 

3.5.6. Results for RQ2 

 

In Table 3-4, we present the number of contracts flagged with 

vulnerabilities by MagicMirror and sFuzz. Note that the result of MagicMirror has 

been filtered to contain only vulnerabilities detected in non-constant functions, 

same as sFuzz. As previously shown in Table 3-2, MagicMirror outperforms sFuzz 

significantly in terms of branch coverage. For vulnerability detection, MagicMirror 

is also detecting significantly more vulnerabilities than sFuzz. Among the nine 

vulnerability detectors implemented in MagicMirror and sFuzz, MagicMirror 
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detects more vulnerable contracts in seven out of nine vulnerability detectors. When 

compared to sFuzz, MagicMirror can generally detect more vulnerabilities. 

Table 3-4. Vulnerability Detection for MagicMirror and sFuzz 

 MagicMirror sFuzz 

Gasless Send 241 187 

Dangerous Delegate Call 24 19 

Exception Disorder 29 17 

Freezing Ether 22 17 

Reentrancy 16 14 

Block Number Dependency 8 17 

Time Dependency 35 37 

Integer Overflow 440 212 

Integer Underflow 172 151 

 

Table 3-5. Vulnerability Detection for MagicMirror and ILF 

 MagicMirror ILF 

Locking 7 9 

Block Dependency 42 40 

Unhandled Exception 29 10 

Controlled Delegatecall 19 7 

Reentrancy 58 5 

 

In Table 3-5, we present the number of flagged contracts with 

vulnerabilities by MagicMirror and ILF. As shown in Table 3-5, MagicMirror and 

ILF have a similar result for Locking and Block Dependency. For the other 

vulnerabilities, MagicMirror performs significantly better than ILF, which we 

investigated further. 

For Controlled Delegatecall, we investigated into the 12 contracts 

MagicMirror flagged that ILF did not. Because ILF does not provide additional 

coverage information, e.g., exactly which opcode is covered or not, we could not 

conduct a thorough investigation. However, on average, MagicMirror achieved 



 

72 

 

78.83% higher opcode coverage in these 12 contracts than ILF. The reason is likely 

because ILF was unable to execute the opcodes that would have triggered the 

vulnerabilities. 

For Unhandled Exception and Reentrancy vulnerabilities, they both require 

interactions between contracts to trigger them. MagicMirror was able to flag many 

more contracts because MagicMirror deploys attacker contracts to interact with 

target contracts. In contrast, ILF only sends transactions via normal wallet accounts, 

and thus cannot effectively detect Unhandled Exception and Reentrancy 

vulnerabilities.   

3.6. RELATED WORK 

In this section, we briefly overview existing work on testing smart contracts, 

including fuzzing, symbolic execution, and other static analysis-based approaches. 

Fuzzing. ContractFuzzer [10] is an unguided fuzzer. ContractFuzzer 

predefines a set of default values for each data type based on different lengths in 

their byte form, e.g., 0x0 and 0xff as for uint with length 8. When fuzzing a function, 

for each parameter, it randomly selects a valid length based on data type, e.g., 16 

for uint256 with predefined value 0x0 and 0xffff. It then takes the predefined values 

of each parameter, enumerates all the combinations of the parameters’ values, and 

randomly selects some tests to execute. In contrast, MagicMirror is guided by its 

selective state exploration process. MagicMirror identifies control parameters and 

uses CT to execute only a subset of combinations. In addition, MagicMirror uses 

fuzzing to discover important parameter values. 

sFuzz [8] is a coverage-guided fuzzer built on top of AFL [23], and mutates 

transaction input values using bit/byte flip, simple arithmetic, and other operations. 

Furthermore, sFuzz uses an adaptive approach to measure the distance of the 
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current input value to the value that would flip a branching condition to explore 

hard-to-reach statements. In contrast, MagicMirror uses a selective state 

exploration framework, where constraint solving is used to generate tests that 

satisfy preconditions and CT is used together with fuzzing to make the testing 

process more efficient.  MagicMirror achieved higher code coverage than sFuzz in 

our experiments as discussed in Section 3.5.5. 

ILF [12] combines Machine Learning and fuzzing to fuzz contracts based 

on a specific contract deployment. ILF utilizes imitation learning by training a 

neural network using test sequences produced by symbolic execution of a large 

number of contracts. The neural network is then used to generate test sequences to 

fuzz new contracts. The effectiveness of ILF depends on the quality of training 

contracts, especially on whether they are a good representation of real-life contracts. 

In contrast, MagicMirror does not require the user to provide contract deployment 

configurations. MagicMirror does not have the notion of model training. 

Echidna [9] uses grammar-based fuzzing based on contract ABI to falsify 

user-defined properties, i.e., unit tests that check certain properties of user interest. 

After investigating online documentation [41], and multiple articles [9, 29, 42, 43] 

of Echidna. It is unclear how exactly Echidna generates random inputs. In contrast, 

MagicMirror automatically checks for vulnerabilities without requiring the user to 

implement property checkers. 

Harvey [11] uses the Secant method [40], similar to sFuzz, to predict inputs 

by measuring the linear distance of existing inputs on how far they are from 

negating a branching condition. To handle the state-dependent behavior, Harvey 

fuzzes transaction sequences in a targeted and demand-driven way, assisted by an 

aggressive mode that directly fuzzes the persistent state of a smart contract. In 

contrast, MagicMirror uses constraint solving to generate precondition-satisfying 

tests, which can also easily handle non-linear relationships defined in preconditions. 
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To handle state-dependent behaviors, MagicMirror employs the selective state 

exploration to generate diverse contract states without introducing the state 

explosion problem. 

Symbolic Execution. Oyente [14] analyzes a smart contract by 

symbolically executing individual functions. However, Oyente does not deal with 

the state reachability issue. That is, the states it uses to execute a function may not 

be reachable, which causes false positives. MAIAN [22] and Osiris [19] improve 

Oyente to reduce the number of false positives. MAIAN uses inter-procedural 

symbolic analysis combined with concrete validation to address the state 

reachability issue. Osiris focuses exclusively on detecting integer bugs and uses 

taint analysis to reduce false positives. Mythril [15] uses symbolic execution and 

its concolic models to check for a variety of vulnerabilities. Mythril concretize 

symbolic variables on demand to verify reachability and solve for path constraints 

requiring concrete values. In general, symbolic execution suffers from the path 

explosion problem. Also, path conditions collected during symbolic execution 

could be difficult to solve. MagicMirror also uses constraint solving, but only for 

preconditions that are typically much simpler than path conditions. 

Other Static Analysis Approaches. MadMax [18] uses the bytecode level 

control flow graph, IR, and rules created using the Datalog language to identify 

gas-related vulnerabilities. Securify [17] extracts semantic information based on a 

contract’s dependency graph and checks compliance and violation patterns defined 

in its domain-specific language. When compared to these approaches, MagicMirror 

is a dynamic approach in that it executes smart contract functions with concrete 

tests to detect vulnerabilities. 

3.7. CONCLUSION 

In this work, we present a novel approach that combines the power of 
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constraint solving, selective state exploration, CT, and fuzzing to test smart 

contracts effectively. MagicMirror requires access to the source code of smart 

contracts. Many real-world contracts have their source code publicly available on 

Etherscan. This is especially true for contracts that interact with public users. Public 

access to the source code allows involved parties to inspect the contract, increasing 

their confidence about contract execution. We note that all the contracts used in our 

experiments are real-world contracts, and their source code is publicly available. In 

our experiment, we compared MagicMirror to two state-of-the-art smart contract 

fuzzing tools, sFuzz and ILF. Our experiment results show that MagicMirror 

performs better than sFuzz and ILF on both code coverage and vulnerability 

detection abilities. We note that all inputs, results, and scripts for running the 

experiments are saved for reproducibility and are available at [33]. 

In the future, we plan to add more features and optimize MagicMirror. 

Currently, MagicMirror cannot access non-public state variables’ values, because 

MagicMirror relies on the getter functions automatically created for public state 

variables to retrieve state variable values. We plan to access their values directly 

from contract storage instead of relying on getters. This would make it possible to 

access the values of non-public state variables. We also plan to add oracles to detect 

more types of vulnerabilities, e.g., Suicidal contracts allowing anyone to destruct, 

arbitrary send vulnerability where external contracts can call the target contract to 

send Ethers to an arbitrary address. Finally, we plan to perform static analysis of 

bytecode instead of source code to obtain information needed by MagicMirror, e.g., 

identifying preconditions. This would allow MagicMirror to be used when source 

code is not available. 
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Chapter 4. Conclusion 

In this dissertation, we present two novel approaches for improving the 

testing and debugging of emerging software applications, big data applications, and 

smart contracts.  

For big data application, we presented a framework to provide developers 

with method-level tests that were recorded from a failed system-level execution 

with the original dataset. These method-level tests preserve a given coverage 

criterion, e.g. edge, edge-pair, and edge-set coverage, and thus are likely to 

reproduce the failure observed at the system level. The binary reduction is used to 

further reduce method-level tests with large input. The set of method-level tests that 

are provided by our approach could help developers to effectively debug suspicious 

methods against properties of the original input dataset, and significantly reduce 

time and effort required for debugging big data applications.   

For smart contracts, we present a novel approach that combines the power 

of constraint solving, selective state exploration, CT, and fuzzing to test smart 

contracts effectively. MagicMirror requires access to the source code of smart 

contracts. Many real-world contracts have their source code publicly available on 

Etherscan. This is especially true for contracts that interact with public users. Public 

access to the source code allows involved parties to inspect the contract, increasing 

their confidence about contract execution. We note that all the contracts used in our 

experiments are real-world contracts, and their source code is publicly available. In 

our experiment, we compared MagicMirror to two state-of-the-art smart contract 

fuzzing tools, sFuzz and ILF. Our experiment results show that MagicMirror 

performs better than sFuzz and ILF on both code coverage and vulnerability 

detection abilities.  


