

i

TOWARDS EFFICIENT TESTING AND DEBUGGING

OF EMERGING SOFTWARE APPLICATIONS

by

HUADONG FENG

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

May 2021

THE UNIVERSITY OF TEXAS AT ARLINGTON

ii

Copyright © by Huadong Feng 2021

All Rights Reserved

iii

Acknowledgements

It has been 25 years since I first started school. It seemed like yesterday

when I had my father yelling in my ears asking me what looked wrong when I wrote

Ɛ for number three in my entire homework. This sure was a long, but incredible

journey. Overall, I consider myself extremely lucky and blessed. I have had a series

of great teachers that have inspired wonders and curiosities in me. I am forever

grateful to these people that have brought me to where I am now, writing this

dissertation.

Firstly, I would like to thank Dr. Lei, my supervising professor, for his

patience, guidance, encouragement, and inspiration. This dissertation would not

have been possible without his help and generous support. I am grateful for Dr. Lei,

for making me a better independent thinker, problem solver, and decision maker. It

was truly an honor working with Dr. Lei.

Secondly, I would like to thank my committee members, Prof. Levine, Dr.

Csallner, and Dr. Ming, for generously sharing their time and ideas.

Finally, my deepest gratitude to my family for their continuous and

unparalleled love, help and support. I am grateful to my wife for always being there

for me as a friend. I am forever indebted to my parents for giving me the

opportunities and experiences that have made me who I am. They selflessly

encouraged me to explore new directions in life and seek my own destiny. This

journey would not have been possible if not for them, and I dedicate this milestone

to them.

 May 2021

iv

Abstract

TOWARDS EFFICIENT TESTING AND DEBUGGING OF EMERGING

SOFTWARE APPLICATIONS

Huadong Feng

The University of Texas at Arlington, 2021

Supervising Professor: Yu Lei

Big Data and Smart Contract are among the top emerging technologies

tipped to revolutionize the way businesses and organizations are run. Testing and

debugging are the most important tasks during the development of any software

application. Big data and smart contract applications possess unique characteristics.

There is an urgent need to develop efficient techniques for testing and debugging

these applications.

The first part of the dissertation addresses the problem of how to debug big

data applications. When a failure occurs in big data applications, debugging at the

system-level can be expensive due to the large amount of data being processed. We

introduce a test generation framework for effectively generating method-level tests

to facilitate debugging of big data applications. This is achieved by running a big

data application with the real dataset and by automatically recording input to a small

number of method executions, which we refer to as method-level tests, while

preserving certain code coverage, e.g., line coverage. When debugging, a developer

could inspect the execution of these method-level tests, instead of the entire

program execution with the real dataset, which could be time-consuming. We

implemented the framework and applied the framework to seven data mining

algorithms. The results show that only a very small number of method-level tests

v

need to be recorded to preserve code coverage. Furthermore, these tests could kill

between 53.08% to 96.89% of the mutants generated using a third-party tool. This

suggests that the framework could significantly reduce the effort required for

debugging big data applications.

The second part of the dissertation addresses the problem of how to test

smart contracts A smart contract is a program deployed on blockchain and is often

used to handle financial transactions. Unlike traditional programs, contract code

cannot be changed after it is deployed. Any security breach would be permanent

and could be difficult to be remedied. In this dissertation, we present a fuzzing

approach to testing smart contracts. While significant progress has been made,

achieving high code coverage remains an important concern for fuzzing. Our

fuzzing approach utilizes constraint solving, selective state exploration, and

combinatorial testing to improve code coverage. Constraint solving is used to

generate test inputs that meet preconditions in a smart contract. Selective state

exploration allows different state-dependent behaviors to be exercised while

alleviating the state explosion problem. Combinatorial testing is used together with

fuzzing to make the testing process more efficient. We implemented our approach

in a tool called MagicMirror and evaluated our approach using more than 2,000

contracts. The experimental results show that MagicMirror is effective for

achieving high code coverage and detecting vulnerabilities. MagicMirror has been

publicly released by National Institute of Science and Technology (NIST).

vi

Table of Contents

Acknowledgements .. iii

Abstract .. iv

Table of Contents ... vi

List of Illustrations .. x

List of Tables ... xi

Chapter 1. Introduction ... 1

1.1. Research Overview .. 1

1.2. Summary of Publications ... 2

Chapter 2. A Method-Level Test Generation Framework for Debugging Big Data

Applications .. 5

2.1. Introduction .. 7

2.2. Approach .. 10

2.2.1. Record Test .. 10

2.2.1.1. Instrumentation .. 13

2.2.1.2. Method Execution Evaluation.. 15

2.2.1.3. Serialization ... 16

2.2.2. Test Reduction ... 17

2.3. EXPERIMENTS .. 18

2.3.1. Subjects.. 19

2.3.2. Recorded Method-Level Tests .. 22

2.3.3. Reduced Method-Level Tests .. 22

vii

2.3.4. Mutation Testing ... 26

2.3.5. Performance Evaluation .. 31

2.4. Related Work .. 33

2.5. Conclusion & Future Work .. 35

2.6. Acknowledgment ... 36

2.7. References .. 36

Chapter 3. MagicMirror: Towards High-Coverage Fuzzing of Smart Contracts . 39

3.1. Introduction .. 41

3.1.1. Meeting preconditions ... 42

3.1.2. State-dependent behaviors ... 42

3.1.3. Combinatorial explosion ... 42

3.2. Motivation .. 43

3.2.1. Meeting preconditions ... 43

3.2.2. State-dependent behavior .. 45

3.2.3. Combinatorial explosion ... 47

3.3. Approach .. 47

3.3.1. Overview ... 47

3.3.2. Meeting Precondition .. 49

3.3.2.1. Identifying, Parsing, and Encoding Preconditions 50

3.3.2.2. Randomizing Solutions .. 51

3.3.3. State-Dependent Behavior ... 52

3.3.3.1. Random State Selection ... 53

viii

3.3.3.2. Random Function Selection ... 54

3.3.4. Combinatorial Explosion ... 54

3.3.4.1. Identifying Parameter Representative Values 55

3.3.4.2. Identifying Control Parameters .. 56

3.3.4.3. Generating Combinatorial Test Set .. 57

3.3.4.4. Mutating CT Test ... 58

3.3.5. Vulnerability Detection ... 59

3.4. Implementation ... 59

3.4.1. Static Analysis with Slither ... 59

3.4.1.1. Identify Preconditions .. 60

3.4.1.2. Identify Implicit Parameters .. 60

3.4.1.3. Identify Control Parameters ... 60

3.4.1.4. Identify Constants .. 60

3.4.2. Constraint Solving with Z3 ... 61

3.4.3. Combinatorial Test Generation using ACTS 62

3.4.4. Test Execution with Custom Geth EVM ... 62

3.4.5. Code Coverage Computation .. 62

3.4.6. Vulnerability Detectors ... 63

3.5. Experiments .. 64

3.5.1. Research Questions ... 64

3.5.2. Subjects.. 64

3.5.3. Metrics ... 65

ix

3.5.3.1. Code Coverage ... 65

3.5.3.2. Vulnerabilities .. 66

3.5.4. Procedure ... 66

3.5.5. Results for RQ1 ... 68

3.5.6. Results for RQ2 ... 70

3.6. Related Work .. 72

3.7. Conclusion .. 74

3.8. References .. 75

Chapter 4. Conclusion ... 81

x

List of Illustrations

Figure 2-1. Recording Process at Runtime ... 11

Figure 2-2. Example of Control Flow Graph .. 12

Figure 2-3. Example of Modifying Generated Control Flow Graph 13

Figure 2-4. Example of Instrumentation ... 15

Figure 2-5. Collection Variable Used at Branching Condition 25

Figure 2-6. Sample Mutation Testing Report ... 28

Figure 3-1. Code Snippet of the BecToken Contract .. 44

Figure 3-2. Code Snippet of the CryptoMinerToken Contract 44

Figure 3-3. Code Snippet of the BTC20Exchange Contract and Representative

Values of Parameters .. 46

Figure 3-4. Overview of the MagicMirror Fuzzing Framework 48

Figure 3-5. Combinatorial Test Set Generation for Function adminWithdraw() . 57

Figure 3-6. MagicMirror and sFuzz Covered Branches Comparison 69

Figure 3-7. MagicMirror and ILF Covered Branches Comparison 70

xi

List of Tables

Table 2-1. Selected Method Information .. 20

Table 2-2. Recorded Method Execution Information ... 21

Table 2-3. Test Reduction Results .. 23

Table 2-4. Mutation Testing Reduction Results ... 27

Table 2-5. System-Level Mutation Testing .. 30

Table 2-6. Performance Evaluation Results.. 32

Table 3-1. Statistical Results for ILF Executed on Multiple Contract Deployments

... 67

Table 3-2. Branch Coverage for MagicMirror and sFuzz 69

Table 3-3. Opcode Coverage for MagicMirror and ILF 70

Table 3-4. Vulnerability Detection for MagicMirror and sFuzz 71

Table 3-5. Vulnerability Detection for MagicMirror and ILF 71

1

Chapter 1. Introduction

Big Data and Smart Contract are among the top emerging technologies

tipped to revolutionize the way businesses and organizations are run. Testing and

debugging are the most important tasks during the development of any software

application. Big data and smart contract applications possess unique characteristics.

There is an urgent need to develop efficient techniques for testing and debugging

these applications.

1.1. RESEARCH OVERVIEW

This dissertation consists of two parts. In the first part, we present an

approach to debugging big data applications. Big data applications process and

analyze large volumes of data, often measured by gigabytes or more. The execution

time of big data applications can range from hours to days. When failure occurs, it

is impractical to debug big data applications at the system level. The major

challenge is how to debug with less effort, less time, and still preserve the fault

detection effectiveness. In this dissertation, we present a framework that can

significantly reduce the number of method executions that developers have to

manually inspect while maintaining a high probability that the failing method

execution(s) is among the selected small number of method-level tests. On average,

the execution time is reduced by over 99% when executing the method-level tests

generated by our framework instead of the system-level execution.

In the second part of the dissertation, we present a fuzzing approach to test

smart contracts. A smart contract is a program deployed on blockchain and is often

used to handle financial transactions. Unlike traditional programs, contract code

cannot be changed after it is deployed. Any security breach would be permanent

and could be difficult to be remedied. Hence, it is important to thoroughly test smart

contracts before they are deployed on the blockchain. While significant progress

2

has been made to fuzzing, achieving high code coverage remains an important

concern for fuzzing. In this dissertation, we present a fuzzing tool called

MagicMirror. In our experiment, MagicMirror outperforms current state-of-the-art

smart contract fuzzing tools in both code coverage and vulnerability detection

abilities.

1.2. SUMMARY OF PUBLICATIONS

This dissertation is presented in an article-based format and includes two

research papers. In Chapter 2, we present the paper titled, “A Method-Level Test

Generation Framework for Debugging Big Data Applications”, which was

published in the IEEE International Conference on Big Data (Big Data), in 2018.

The paper reports our work for improving the efficiency of debugging big data

applications. In our approach, we focus on identifying a small number of method

executions from the failing system-level execution that can effectively induce

method-level failures that propagated into the system-level failing output. The main

idea is to evaluate each method execution based on certain testing effectiveness

criteria, such as line coverage, edge, node and different types of path coverage

based on Control Flow Graph (CFG), or any other types of static code analysis

measurements. Then we record the method executions as method-level tests when

they cover any new entities of the selected testing effectiveness criterion. So only

the necessary method executions with respect to the selected criterion will be

executed later for debugging purposes instead of the entire system. Based on the

testing effectiveness criterion we choose, a much smaller set of method-level tests

can achieve the exact same test effectiveness for a selected method as the original

system-level execution. The framework we implemented will analyze and record

necessary method executions at runtime with a relatively small overhead depending

on the number of the method executions, and the size of the method-level inputs to

be serialized. Our framework can significantly reduce the number of method

3

executions that developers have to manually inspect while maintaining a high

probability that the failing method execution(s) is among the selected small number

of method-level tests.

In Chapter 3, we present the paper titled, “MagicMirror: Towards High-

Coverage Fuzzing of Smart Contracts”, which was submitted to the 36th

IEEE/ACM International Conference on Automated Software Engineering (ASE),

in 2021. The paper reports our work for improving fuzzing testing for smart

contracts.

Our approach is centered on how to increase code coverage by addressing

three challenges: meeting preconditions, state-dependent behaviors, and

combinatorial explosion. For meeting preconditions, in many functions, there are

require statements written at the beginning of the function. These statements

specify preconditions, i.e., conditions that must be satisfied before a function can

be successfully executed. Test inputs that do not meet preconditions would cause

the current transactions to be reverted. To address the meeting preconditions

challenge, our approach identifies preconditions and uses a constraint solver to

generate test inputs that satisfy the preconditions. For state-dependent behaviors,

like parameters, state variables are also input to a function, and their values may

affect the behavior of the function. Thus, a function needs to be tested at different

states; otherwise, some state-dependent behaviors may not be exercised. However,

unlike parameters, state variables cannot take arbitrary values due to the

reachability concern. We could derive reachable states by exploring the state space

of a smart contract; however, this would introduce the state explosion problem. To

address the state-dependent behaviors challenge, our approach uses a selective state

exploration framework to derive reachable states while alleviating the state

explosion problem. For combinatorial explosion, when the number of parameters

is large, the input space of a function can be huge due to the combinatorial explosion

4

problem. Many vulnerabilities are due to interaction between parameters. However,

important combinations of values of parameters can be easily missed by pure

random test generation. To address the combinatorial explosion challenge, we

combine fuzzing and Combinatorial Testing (CT). The CT tests allow us to exercise

parameter interactions in a systematic manner, while fuzzing is used to discover

important parameter values, which further improves the quality of CT tests. We

implemented our approach in a tool called MagicMirror. We conducted an

experimental evaluation of our approach by comparing MagicMirror to two

recently published state-of-the-are smart contract fuzzing tools, sFuzz and ILF. Our

experiment results show that MagicMirror performs better than sFuzz and ILF on

both code coverage and vulnerability detection abilities.

5

Chapter 2. A Method-Level Test Generation Framework for

Debugging Big Data Applications

The chapter contains a paper published in the IEEE International

Conference on Big Data (Big Data), in 2018.

6

A Method-Level Test Generation Framework for

Debugging Big Data Applications*

Huadong Feng1, Jaganmohan Chandrasekaran1, Yu Lei1, Raghu Kacker2, D.

Richard Kuhn2

1Dept. of Computer Science and Engineering, University of Texas at Arlington,

Arlington, TX 76019, USA

2Information Technology Lab, National Institute of Standards and Technology,

Gaithersburg, MD 20899, USA

Abstract – When a failure occurs in a big data application, debugging with

the original dataset can be difficult due to the large amount of data being processed.

This paper introduces a framework for effectively generating method-level tests to

facilitate debugging of big data applications. This is achieved by running a big data

application with the original dataset and by recording the inputs to a small number

of method executions, which we refer to as method-level tests, that preserve certain

code coverage, e.g., edge coverage. The size of each method-level test is further

reduced if needed, while maintaining code coverage. When debugging, a developer

could inspect the execution of these method-level tests, instead of the entire

program execution with the original dataset. We applied the framework to seven

algorithms in the WEKA tool. The initial results show that in many cases a small

number of method-level tests are sufficient to preserve code coverage. Furthermore,

these tests could kill between 57.58% to 91.43% of the mutants generated using a

mutation testing tool. This suggests that the framework could significantly reduce

* Copyright © 2018 IEEE. Reprinted, with permission, from Huadong Feng, Jaganmohan

Chandrasekaran, Yu Lei, Raghu Kacker, D. Richard Kuhn, A Method-Level Test Generation

Framework for Debugging Big Data Applications, IEEE International Conference on Big Data (Big

Data), December 2018.

7

the efforts required for debugging big data applications.

Keywords – Testing; Unit Testing; Big Data Application Testing; Test

Generation; Test Reduction; Debugging; Mutation Testing;

2.1. INTRODUCTION

Big data applications are software programs that process large amounts of

data. Debugging big data applications can be complicated and time-consuming.

This is due to the fact that inspecting the execution of a big data application often

involves long execution time, a large number of method executions, and/or a large

number of objects. For example, a classification algorithm, called DecisionTable,

in the WEKA tool [12] takes more than two hours to execute the Heterogeneity

Activity Recognition Dataset (HAR) from the UC Irvine (UCI) Machine Learning

Repository [13]. During the execution, one of the DecisionTable’s methods, named

updateStatsForClassifier, is executed more than half a billion times. (This method

has 66 lines of code, not including comments and spaces.) If there exists a fault in

this method, it can be very difficult to locate this fault due to the large number of

times this method is executed.

Some approaches have been proposed to reduce the effort required for

testing and debugging big data applications at the system level [1, 2, 3, 4, 5]. For

example, data mining and machine learning methods are used to reduce the size of

the original dataset or generate synthetic datasets [3, 4] for the testing purpose. The

reduced dataset using such methods are executed at the system level, which can still

be time-consuming. Furthermore, these methods are not designed to reproduce the

original failure. Debugging approaches such as delta debugging [8] can identify the

minimum failure-inducing input at the system level, which can reduce the size of

the input while preserving the failure triggered by the original dataset. However,

delta debugging can be very expensive for big data applications. This is because it

8

requires the input data be recursively split into smaller chunks, each of which has

to be executed at the system level. For big data applications, there can be a large

number of chunks and system-level execution of each chunk can be time-

consuming.

Our approach consists of two major steps. In the first step, we re-execute

the failing system-level execution to record method-level tests for suspicious

method(s). The main idea is to evaluate each method execution based on a chosen

coverage criterion. In this paper, we used edge coverage, edge-pair coverage and

edge-set coverage based on the Control Flow Graph (CFG) [11]. Note that other

coverage criteria, e.g., prime-path coverage [11], could also be used in our approach.

We record the input to a method execution as a method-level test when it covers

any new coverage element with respect to the chosen coverage criterion. In the

second step, we reduce method-level tests with large collection-typed variables

using binary reduction. The reduced tests preserve the same coverage achieved by

the originally recorded method-level tests. During debugging, a developer will first

identify suspicious methods based on his or her understanding of the program. Then,

the developer will only need to re-execute the reduced method-level tests recorded

for these methods, instead of executing the entire application with the original

dataset. Doing so could significantly speed up the debugging process.

We conducted an experimental evaluation of our approach. In our

experiments, we selected seven methods from four machine learning algorithms

that were implemented in WEKA using Java. The four machine learning algorithms

from WEKA and two datasets from UCI dataset repository were selected based on

the execution time and size of datasets. Method-level tests were recorded for these

seven methods based on three coverage criteria, including edge coverage, edge-pair

coverage, and edge-set coverage. (The three coverage criteria are defined in Section

2.2.1) On average, 4.4 tests were recorded for edge coverage, 5.9 tests for edge-pair

9

coverage, and 18.6 tests for edge-set coverage. While initially, the seven methods

were executed from 191 to half a billion times. For some of the recorded method-

level tests with large-size inputs, e.g., the previously mentioned

updateStatsForClassifier method in the DecisionTable algorithm, we further

reduced the size of the inputs using a binary reduction technique while preserving

the same coverage achieved by the original method-level test. For example, the

average input size for updateStatsForClassifier was reduced to 12.53 MB from

1269.76 GB.

Moreover, test effectiveness was evaluated using PITest (PIT) [16], a

commonly used mutation testing tool. Mutation testing seeds faults in a systematic

manner to simulate mistakes that developers may make during programming. All

25 available mutant generators were enabled for mutant generation. When

combining each set of tests generated for the edge, edge-pair, and edge-set coverage

for each method, the mutant killing rate ranges from 57.58% to 91.43%.

We summarize the contributions of our paper as follows:

• We present a new framework for debugging big data applications based

on method-level tests. Compared to executing the original dataset at the system

level, these method-level tests can be much faster to execute and inspect, which

could significantly speed up the debugging process.

• We built a prototype that implements our framework and conducted an

experimental evaluation of the framework. The evaluation results suggest that our

framework could significantly reduce the time and effort required for debugging

big data applications.

The rest of the paper is organized as follows. Section 2.2 presents the details

of our approach and discusses several implementation challenges. Section 2.3

10

presents the experimental design and analysis of the experimental results. Section

2.4 provides an overview of existing work that is closely related to ours. Section

2.5 provides concluding remarks as well as several directions for our future work.

2.2. APPROACH

Our approach consists of two major steps, recording method-level tests and

reducing the size of the recorded tests. In this section, Section 2.2.1 presents our

approach to recording method-level tests based on a given coverage criterion.

Section 2.2.2 presents our approach to reducing the size of a recorded test.

2.2.1. Record Test

In a typical scenario, once a failure occurs, a developer identifies several

suspicious locations based on his or her understanding of the program. Next, the

developer could set up breakpoints in these locations and then start the debugging

process with the system-level inputs. The breakpoints allow the developer to

inspect the program state during the debugging process. This approach may not be

effective for big data applications. This is because when the dataset is large, a

breakpoint may be executed for a large number of times before an incorrect

program state is found, and each breakpoint has to be inspected manually.

In our approach, the developer first identifies suspicious methods, in a way

that is similar to the identification of suspicious locations. Next, our approach runs

the program with the original dataset and records, for each suspicious method, a

small number of method executions, which we refer to as method-level tests, based

on a specific coverage criterion. The method-level tests recorded for a given method

achieve the same coverage criterion as the original dataset for the method. The

developer can then debug each method with the recorded method executions,

instead of a potentially large number of method executions. Since the same

11

coverage criterion is satisfied, there is a high probability that debugging these

recorded method-level tests would allow us to detect the fault that may have caused

the failure observed at the system level.

Figure 2-1. Recording Process at Runtime

After the developer identifies a list of suspicious methods to be recorded,

we instrument these methods to capture the coverage elements that need to be

covered for the selected coverage criterion. After instrumentation, our recording

process at runtime is shown in Figure 2-1. While re-executing the failing system-

level execution, each method execution of the suspicious methods is evaluated to

determine whether it is significant based on the selected coverage criterion. A

method execution is considered to be significant if it covers at least one new

coverage element. When a method execution is deemed to be significant, its

corresponding input for reproducing the method execution is recorded as a method-

level test. Otherwise, the execution will continue until it reaches the next significant

method execution.

In this paper, we will use edge coverage [11], edge-pair coverage [11], and

edge-set coverage, as the coverage criteria based on Control Flow Graph (CFG) to

determine if a given method execution is significant. A CFG is a graphical

12

representation of all possible paths that might be traversed by a program at runtime.

Thus it captures information about how the control is transferred in a program.

Figure 2-2 shows an example CFG. In a CFG, each node in the graph

represents a basic block, i.e. a sequence of consecutive statements with a single

entry and a single exit point[11]. A directed edge [11] represents that the control

can flow from one node to another. And a path [11] is a sequence of nodes, where

each pair of adjacent nodes is an edge.

Figure 2-2. Example of Control Flow Graph

We record the method executions as method-level tests when they cover

any new coverage elements with respect to the chosen coverage criterion. For edge

coverage, each edge covered by a method execution is recorded for the method

evaluation. For edge-pair coverage, each edge-pair (reachable path of length up to

two) is recorded for the method evaluation. Note that when edge-set coverage is

used, a method execution is considered significant if it covers a unique set of edges,

i.e., no other method executions exactly cover the same set of edges. Also note that

other coverage criteria, e.g., prime-path coverage [11], could also be used in our

13

approach.

To record method-level tests, three major tasks need to be accomplished,

including instrumentation, method execution evaluation, and serialization. We

further discuss these tasks in the following subsections.

2.2.1.1. Instrumentation

Figure 2-3. Example of Modifying Generated Control Flow Graph

We use a tool called Atlas [15], which is an Eclipse plugin developed by

EnSoft Corp to automatically generate CFGs from the source code of a selected

method. Atlas uses each line of code as a basic block. This is different from the

classical definition [11] that a basic block consists of a sequence of consecutive

statements with a single entry and a single exit point. Figure 2-2 shows a simple

method and its CFG generated using Atlas. We modify the generated CFGs from

Atlas by combining blocks that are in a consecutive sequence without inner

branches. Doing so reduces the amount of instrumentation and thus the runtime

overhead when executing the instrumented code. The red rectangle in Figure 2-3

marks the lines of code combined to be a basic block as we previously defined.

14

Once we have the CFG of a suspicious method, we instrument the method

by adding a few lines of code that invokes our recording program. Figure 2-4 shows

an example of how we instrument a sample method. The highlighted statements are

extra code added by instrumentation. The code from line 3 to line 10 initializes the

recording process. They are inserted at the beginning of a suspicious method. The

ParaArray array contains the list of input parameters used for a method execution.

The ParaTypeArray array contains the object types of the input parameters, which

are needed to reload the recorded inputs using Java Reflection. When recording a

method execution, we record not only the input parameters but also the current

object on which the suspicious method was invoked, to store the instance variables

accessed during the execution. They are loaded into our system using the

“R.loadInputs(ParaArray, this);” statement. The statement

“R.enterBlock(#number);” is added before each basic block to record the index of

the basic block when it is executed. The block number #number is manually

determined based on the previously discussed CFG. Moreover, the statement

“R.endOfProcess();” is added before each return statement or at the end of a method

to notify our program a method execution is completed, and start the method

execution evaluation process.

Recording basic block indexes with multiple entrances at runtime requires

more work than just adding the “R.enterBlock(#number)” statement in front of it.

As shown in Figure 2-4, lines 25 to 26 and lines 30 to 31 are the extra codes added

for recording the basic block contains line 24. To record the basic block indexes

correctly for basic blocks with multiple entrances such as for while loop, for loop,

else if, and switch statements, etc., we are inserting the “R.enterBlock(#number);”

statement before its descendants’ “R.enterBlock(#number);” statement based on the

CFG to capture every execution of such blocks. For example, if we only add

“R.enterBlock(#number);” statement right before the while statement shown in

15

Figure 2-4 at line 24, when the loop comes back to re-evaluate the loop condition

at the while statement, the repeated execution of this block will not be captured.

Figure 2-4. Example of Instrumentation

2.2.1.2. Method Execution Evaluation

In our implemented framework, we temporarily store the covered edges,

edge-pairs, and edge-set for each method execution. We consider a method

16

execution to be significant, and thus record the execution as a method-level test if

it covers any edge, edge-pair or edge-set that has not been covered before. Note that

we check for uncovered edges first for each method execution. This is because if a

method execution covers any edge that has not been covered before, it must cover

some new edge-pair(s) and a new edge-set. The time complexity for evaluating

each method executions is O(n2) where n represents the number of coverage

elements each method execution has to evaluate. For each method execution, each

coverage element of the method execution will be compared to the list of the

previously covered elements. If a method execution covers any new coverage

element, the method execution will be recorded, and the newly covered elements

will be added to the list.

2.2.1.3. Serialization

Once a method execution is determined to be significant, we record the

inputs of the method execution using serialization. Serialization can be an

expensive process, the built-in serialization support in Java is rather slow when

serializing large objects. We used an alternative tool called FST [17] that can be ten

times faster [17] to improve the performance of our test recording. In our

experiments, FST was able to serialize and deserialize objects correctly. However,

there are some reported cases [17] where FST was unable to correctly serialize and

deserialize objects that the built-in Java serialization could. In comparison, FST

provides better performance, but FST does not provide serialization ability that is

as strong as the Java built-in serialization.

While our performance is improved using FST, there are still some

situations where we experience significant overhead. To ensure an exact copy of

the input objects is created, we perform deep copy on the objects by serializing and

deserializing these objects. This is needed because the value of an input object

17

could potentially change during a method execution, especially for void methods

that operate on instance variables.

However, most of the stored input objects will not be recorded if the method

execution does not cover any new coverage element. Thus, much of the time spent

to store the deep copies of objects is unnecessary. These unnecessary time can be

huge when a method takes large inputs and/or is executed for a large number of

times. The recording overhead can be as high as 7 to 30 times the original system-

level execution time for some of the selected methods. In such cases, our solution

is recording the method-level tests by executing the entire system twice. In the first

execution, we do not store any inputs. Instead, we only record the IDs of significant

method executions. In the second execution, we only serialize the selected method

executions to store their inputs as method-level tests. Doing so can significantly

reduce the runtime overhead in cases where a method takes large inputs or is being

executed for a large number of times.

2.2.2. Test Reduction

While the recorded method-level tests can be used for debugging, these tests

in some case consist of very large inputs. For example, one of the selected methods

cutPointsForSubset, its recorded method-level tests have the average size of

1.62GB, executing these tests can take a lot of time. And breakpoints in loop

statements can be executed for a large number of times. These inputs are large

mostly due to the fact that they contain large collections of objects. For the three

methods mentioned above, they all have Instances typed (Implements Collection)

variables that contain instances from the original dataset for processing. Some of

the recorded data could potentially be reduced while still reproducing the method

execution and preserving the coverage elements. The reduction can further reduce

the time for executing the tests, and the debugging efforts required from developers.

18

Our binary reduction technique is inspired by the commonly used binary

search technique. For each recorded method-level test, we divide its collection

typed input variables into halves. Next, we take each half and other non-collection

typed inputs and re-execute them with the suspicious method. We then check

whether a half can preserve the originally covered coverage elements. If one of the

halves does preserve all the coverage elements, we will continue dividing it into

halves and check for the coverage elements repeatedly, until the minimal subset of

the collection variables that can preserve the coverage elements are identified. Note

that when preserving the coverage during reduction, we are preserving the exact

covered elements of edge coverage, edge-pair coverage, and edge-set coverage.

2.3. EXPERIMENTS

We implemented the initial working prototype of our framework in Java.

Some Manual efforts are required from developers to instrument the source code of

suspicious methods. After instrumentation, the recording process has been

automated. The reduction approach requires developers to manually identify the

large collection typed input variables. The re-execution of the recorded and reduced

method-level tests has been automated for debugging. We also conducted mutation

testing to evaluate the fault detection effectiveness of our recorded and reduced

method-level test. The currently implemented coverage criteria are the edge, edge-

pair, and edge-set coverage.

In the following, we discuss how we conducted our experiments and present

the experiment results. In Section 2.3.1, we discuss how we selected datasets,

applications, and methods to be used for our experiments. Section 2.3.2 presents

the statistics of the recorded method-level tests. Section 2.3.3 presents the statistics

of the reduced method-level tests. Section 2.3.4 presents how we conducted a

mutation testing experiment and the results of our mutation testing for both the

19

recorded tests, and the reduced tests. And finally, Section 2.3.5 presents the

performance analysis of our framework. All the source code, recorded method-

level tests, reduced method-level tests and mutation reports are publicly available

at

https://www.dropbox.com/sh/3k4kjwqjpa9i2qv/AAAkeYYNaQOVfT9WGe4OU

p_Pa?dl=0 for review. The machine we used for our experiment is a workstation

with two Xeon E5-2630V3 8 core CPUs @ 2.40GHz, 64GB DDR4 2133 MT/s

memory, and a Samsung 850 EVO 500GB SSD.

2.3.1. Subjects

We design our experiments to reflect real-world situations for evaluating

the effectiveness of our framework. First, we randomly selected ten algorithms that

are implemented in the WEKA tool. WEKA is one of the most widely used tools

for data mining by practitioners. Next, we selected one collection of dataset with

the largest number of instances (accessed on 08/18/2018) from the UCI Machine

Learning Repository that consists of 440 real-world collected datasets as a start.

The selected collection of datasets, Heterogeneity Activity Recognition (HAR),

contains four datasets for four different types of devices with a total of 43,930,257

instances and 16 attributes. The HAR collection includes several data types,

including multivariate, time-series and real numbers. The datasets can be used for

both classification and clustering. Among the four datasets, the largest dataset,

Phones_gyroscope, is used to execute the ten algorithms.

Phones_gyroscope dataset has the size of 1.37GB, it is too large for two of

our selected algorithms EM and LibSVM to finish their execution within a day. The

execution time is too long for our experimentation purpose due to our limited time

and resources. For these two algorithms, we reduced the size of the

Phones_gyroscope dataset by dividing the dataset in half and continue to divide in

https://www.dropbox.com/sh/3k4kjwqjpa9i2qv/AAAkeYYNaQOVfT9WGe4OUp_Pa?dl=0
https://www.dropbox.com/sh/3k4kjwqjpa9i2qv/AAAkeYYNaQOVfT9WGe4OUp_Pa?dl=0

20

half until the execution time for EM and LibSVM are reduced to be near an hour.

The reduced Phones_gyroscope dataset for EM and LibSVM now has the size of

3.3 MB. EM will now take 5352 seconds (1.49 Hours) to execute and 4491 seconds

(1.25 Hours) for LibSVM.

Table 2-1. Selected Method Information

Method Algorithm

of

Covered

Lines of

Code

of

Total

Lines

of

Code

of

Execution

Count

buildClusterer EM 115 165 1,910

cutPointsForSubset DecisionTable 62 64 29,564

EM_Init EM 47 53 191

handleNumericAttribute J48 51 53 28,314

select_working_set LibSVM 50 52 417,989

selectModel J48 50 58 12,391

updateStatsForClassifier DecisionTable 46 66 557,305,280

After two datasets (original Phone_gyroscope dataset and the reduced

dataset) and ten algorithms’ implementations (Apriori, DecisionTable, EM,

HierarchicalClusterer, J48, LibSVM, LinearRegression,

MakeDensityBasedClusterer, RandomTree, SimpleKMeans) have been selected.

We select methods with a larger number of executed statements, and a larger

number of executions for our experiments. This is because longer methods and

methods that have been executed for a larger number of times often require more

effort to debug. A total of seven methods are selected. The selected methods and

their information are shown in Table 2-1. These methods are then instrumented as

previously described in Section 2.2.

21

Table 2-2. Recorded Method Execution Information
 M

et
h

o
d

E
d

g
e

C
o

v
er

a
g

e
E

d
g

e
-P

a
ir

C
o

v
er

a
g

e

E
d

g
e
-S

et

C
o

v
er

a
g

e
T

o
ta

l
#

o
f

R
ec

o
rd

ed

T
es

ts

#
 o

f

O
ri

g
in

a
l

E
x

ec
u

ti
o

n

C
o

u
n

t

S
ta

te
m

en
t

C
o

v
er

a
g

e
#

 o
f

T
es

ts

#
 o

f

C
o

v
er

ed

E
d

g
es

#
 o

f

T
es

ts

#
 o

f

C
o

v
er

ed

E
d

g
e
-

P
a

ir
s

#
 o

f

T
es

ts

#
 o

f

C
o

v
er

ed

E
d

g
e
-

S
et

s

b
u

il
d

C
lu

st
er

er

3

8
3

4

1
8

1

3

3

4

1
,9

1
0

6

9
.7

0
%

cu
tP

o
in

ts
F

o
rS

u
b

se
t

8

3
0

9

6
4

1
7

1
7

1
8

2
9

,5
6
4

9

6
.8

8
%

E
M

_
In

it

1

2
4

3

5
5

1

1

3

1
9

1

8
8

.6
8

%

h
an

d
le

N
u

m
er

ic
A

tt
ri

b
u

te

4

3
2

5

7
0

3
3

3
3

3
3

2
8

,3
1
4

9

6
.2

3
%

se
le

ct
_

w
o

rk
in

g
_

se
t

7

4
1

1
1

1
1

1

6
1

6
1

6
3

4
1

7
,9

8
9

9

6
.1

5
%

se
le

ct
M

o
d

el

5

3
5

5

7
4

6

6

6

1
2

,3
9
1

8

6
.2

1
%

u
p

d
at

eS
ta

ts
F

o
rC

la
ss

if
ie

r
3

2

6

5

5
9

9

9

1
1

5
5

7
,3

0
5

,2
8

0

6
9

.7
0

%

22

2.3.2. Recorded Method-Level Tests

For our experiments, we have recorded method-level tests for all of the

seven selected methods for preserving edge coverage, edge-pair coverage, and

edge-set coverage of the original system-level execution. Some important

information about the recorded method-level tests is shown in Table 2-2. Note that

the statement coverage column in Table 2-2 is for all three types of recorded tests,

as well as the original failing system-level execution. This is because edge coverage

subsumes statement coverage, once all edges are preserved, all the statement

coverage will be preserved as well, and edge-pair coverage and edge-set coverage

both subsume edge coverage.

Based on the results shown in Table 2-2, we can see that only a small

number of method-level tests are sufficient for preserving coverage for a suspicious

method. Empirical studies show that there exists a high correlation between code

coverage and fault detection effectiveness. The actual fault detection ability of our

recorded method-level tests will be further evaluated using mutation testing in

Section 2.3.4. Thus, when failures occur on a system level, it is likely that executing

the method-level tests for the suspicious methods would trigger the failure observed

during the execution with the original dataset. Thus, the use of method-level tests

could potentially save developers a lot of time and efforts.

2.3.3. Reduced Method-Level Tests

As shown in Table 2-3, while some of the tests have a reasonable size, three

methods, cutPointsForSubset, selectModel and updateStatsForClassifier have

significantly large inputs for their recorded method-level tests. While debugging

with these tests is easier than debugging with the original dataset at the system level,

loading and debugging these tests could still take a lot of time. We further reduce

the size of these tests using our binary reduction approach as discussed in Section

23

Table 2-3. Test Reduction Results

M
e
th

o
d

T
o

ta
l

#

o
f

T
e
st

s

#
 o

f

L
a
r
g
e

C
o

ll
e
c
ti

o
n

V
a

r
ia

b
le

s

A
v

e
ra

g
e

In
p

u
t

S
iz

e
 (

M
B

)

T
o

ta
l

In
p

u
t

S
iz

e
 (

M
B

)

M
a

x
im

u
m

In
p

u
t

S
iz

e
 (

M
B

)

M
in

im
u

m

In
p

u
t

S
iz

e
 (

M
B

)

T
e
st

 E
x
e
c
u

ti
o

n

T
im

e
 (

S
ec

o
n

d
s)

R
e
co

rd
ed

R

ed
u

c
ed

R

e
co

rd
ed

R

ed
u

c
ed

R

e
co

rd
ed

R

ed
u

c
ed

R

e
co

rd
ed

R

ed
u

c
ed

R

e
co

rd
ed

R

ed
u

c
ed

b
u
il

d
C

lu
st

er
er

4

1

3
.1

8

3
.1

8

1
2
.7

5

1
2
.7

5

3
.2

3

3
.2

3

3
.1

6

3
.1

6

5
 s

5

 s

cu
tP

o
in

ts
F

o
rS

u
b

se
t

1
8

2

1
6
2
8

.1
6

9
.7

7

2
9
3
0

6
.8

1

1
7
6

.2
5

1

6
2
8

.1
6

3
7
.2

2

1
6
2
8

.1
6

0
.0

0
1

1

8
3
6

 s

5
 s

E
M

_
In

it

3

1

4
.7

1

4
.7

1

1
4
.1

2

1
4
.1

2

4
.3

4

4
.3

4

5
.1

8

5
.1

8

5
 s

5

 s

h
an

d
le

N
u

m
er

ic
A

tt
ri

b
u
te

3

3

1

5
4
.0

0

0
.7

4

1
7
8
1

.7
6

2
4
.4

2

1
3
0
0

.4
8

1
.7

5

0
.0

0
1
2

0

.0
0
1

1

5
5

 s

2
 s

se
le

ct
_

w
o

rk
in

g
_

se
t

6
3

2

3
9
.5

0

0
.0

8

2
4
8
8

.3
2

5
.0

4

4
1
.9

0

.2
9

1
.8

3

0
.0

0
2

1

7
6

 s

1
 s

se
le

ct
M

o
d
el

6

2

1
3
9
2

.6
4

0
.0

2

8
3
5
7

.0
4

0
.1

1

1
6
2
8

.1
6

0
.0

1

1
3
2
0

.9
6

0
.0

0
1

6

8
2

 s

1
 s

u
p
d

at
eS

ta
ts

F
o

rC
la

ss
if

ie
r

1
1

1

1
2
6
9

.7
6

1
2
.5

3

1
3
9
6

7
.3

4

1
3
8

.0
6

1

2
6
9

.7
6

4
4
.8

6

1
2
6
9

.7
6

0
.5

1

8
7
5

 s

3
 s

24

2.2. In Table 2-3, we compare the differences between the recorded method-level

tests before and after they were reduced.

For size reduction, our binary reduction technique was able to reduce the

input size of tests for five out of seven methods. Our result shows that the reduction

amount is often above 95%. Most of the method-level tests can be reduced

significantly while still preserving our selected coverage elements. The coverage

element refers to the edges, edge-pairs, and edge-set covered by each recorded

method-level test. While one of the tests for selectModel can be reduced to 1.7 KB

from 1.63 GB, some tests still have a fair amount of input data remaining, such as

the reduction from 1.63GB to 37.22 MB for one of the tests of cutPointsForSubset.

Furthermore, we were unable to reduce any test inputs for two methods,

buildClusterer and EM_Init. We further investigated this by looking into how the

variables of collection type are accessed and used. We noticed mainly three

different scenarios that may have contributed to our results.

The first scenario is when a collection variable is partially used as inputs.

When the partially accessed instances are in a consecutive sequence in the

collection variable, or when only one instance is accessed, our binary reduction

technique will reduce such collection variable to its minimal subset. However, if

the accessed instances are spread across the collection variable, our binary

reduction will not be able to identify only the accessed instances. Hence, the

reduction may not be minimal, many unnecessary data based on the coverage

elements may remain.

The second scenario is when the collection variable is accessed in branching

statements, e.g. for the tests recorded for buildClusterer and EM_Init. The

collection variables identified for these two methods were used at a few branching

statements and passed to other methods that return value to the execution as well.

In this situation, maintaining the exact coverage elements can be difficult to achieve

25

for our binary reduction technique. As an example, part of the code of

buildClusterer is shown in Figure 2-5. The instances variable was used at an if

statement and in the conditions of a for loop. Reducing the instance variable using

our binary reduction approach will compromise the originally covered coverage

elements (edges, edge-pairs, edge-set) of the method-level tests recorded for the

buildClusterer method.

Figure 2-5. Collection Variable Used at Branching Condition

The third scenario is when the collection variable is not accessed at all. In

our implementation, to reduce manual efforts required for instrumentation and

reproduce method executions precisely, we automatically record both the

parameters passed to the method and the object where the method was invoked

from, ensuring all possible inputs are recorded. However, not all recorded

information is used as inputs, such as for some instance variables of the object

where the method was invoked from. In this situation, our binary reduction

technique may be able to reduce unnecessary collection variables to empty, while

still preserving the coverage elements.

The first and second scenario can potentially use delta debugging [8] or

26

preserving superset of the coverage elements to further the reduction. However,

delta debugging could significantly increase the reduction overhead, and preserving

superset of the coverage elements may lose or introduce some coverage elements

that could potentially have a large impact on the reduced method-level test. For the

third scenario, we can implement systematic static analysis in the future to help our

framework identify and record only the necessary inputs for reproducing method

executions.

For execution time reduction, many of the recorded set of method-level tests

are now taking seconds instead of minutes after the binary reduction. When

debugging with these reduced tests, not only the tests will be short and easier to

debug, the execution time is also easy to manage.

2.3.4. Mutation Testing

For mutation testing, we used PITest (PIT) [16], a mutation testing tool for

Java, to evaluate the fault detection effectiveness of our recorded method-level tests.

In PIT, different types of faults (or mutants) are automatically seeded into the

source code. Each mutation (a mutated version of source code) simulates a single

fault and is executed against the unit tests that developers provide.

Mutation testing requires the provided unit tests to be passing tests. This is

because only when the mutant’s output differs from the expected output, a mutant

is said to be killed. In our experiments, when a method-level test is executed, we

record the outputs as the expected output for mutation testing purpose. The output

for each test contains not only the returned object if there is one, but also the object

where the method was invoked from and the input parameters of the method. This

is because the values of these parameters and the object where the method was

invoked from could change and should be considered as part of the output.

27

Table 2-4. Mutation Testing Reduction Results
 M

et
h

o
d

#
 o

f

M
u

ta
n

ts

G
en

er
a

te
d

fo
r

C
o

v
er

ed

C
o

d
e

S
ta

te
m

en
t

C
o

v
er

a
g

e

E
d

g
e

C
o
v

er
a

g
e

M
u

ta
n

t
K

il
li

n
g

R
a

te

E
d

g
e-

P
a

ir

C
o

v
er

a
g

e
M

u
ta

n
t

K
il

li
n

g
 R

a
te

E
d

g
e-

S
et

C
o

v
er

a
g

e
M

u
ta

n
t

K
il

li
n

g
 R

a
te

C
o

m
b

in
ed

R
ec

o
rd

ed
 T

es
ts

M
u

ta
n

t
K

il
li

n
g

R
a

te

R
ec

o
rd

ed

R
ed

u
ce

d

R
ec

o
rd

ed

R
ed

u
ce

d

R
ec

o
rd

ed

R
ed

u
ce

d

R
ec

o
rd

ed

R
ed

u
ce

d

b
u

il
d

C
lu

st
er

er

2
6

9

6
9

.7
0
%

7

9
.1

8
%

7

9
.1

8
%

7

9
.1

8
%

7

9
.1

8
%

7

9
.1

8
%

7

9
.1

8
%

7

9
.1

8
%

7

9
.1

8
%

cu
tP

o
in

ts
F

o
rS

u
b

se
t

1
6

4

9
6

.8
8
%

8

1
.7

1
%

8

1
.1

%

8
1

.7
1
%

8

2
.3

2
%

8

5
.9

8
%

8

5
.9

8
%

8

5
.9

8
%

8

5
.9

8
%

E
M

_
In

it

1
0

2

8
8

.6
8
%

8

7
.2

5
%

8

7
.2

5
%

8

7
.2

5
%

8

7
.2

5
%

8

7
.2

5
%

8

7
.2

5
%

8

7
.2

5
%

8

7
.2

5
%

h
an

d
le

N
u

m
er

ic
A

tt
ri

b
u

te

1
4

0

9
6

.2
3
%

8

9
.2

9
%

8

8
.5

7
%

9

0
.7

1
%

9

0
.7

1
%

9

1
.4

3
%

9

1
.4

3
%

9

1
.4

3
%

9

1
.4

3
%

se
le

ct
_

w
o

rk
in

g
_

se
t

1
2

8

9
6

.1
5
%

7

1
.8

8
%

7

5
%

7

3
.4

4
%

7

5
%

7

5
%

7

8
.9

1
%

7

5
%

7

8
.9

1
%

se
le

ct
M

o
d

el

1
3

2

8
6

.2
1
%

5

7
.5

8
%

5

7
.5

8
%

5

7
.5

8
%

5

7
.5

8
%

6

2
.8

8
%

6

2
.8

8
%

6

2
.8

8
%

6

2
.8

8
%

u
p

d
at

eS
ta

ts
F

o
rC

la
ss

if
ie

r
1

2
2

6
9

.7
0
%

8

6
.0

7
%

8

1
.1

5
%

8

6
.0

7
%

8

4
.4

3
%

8

6
.8

9
%

8

6
.0

7
%

8

6
.8

9
%

8

6
.8

9
%

A
v

er
a

g
e

7

9
.0

0
%

7

8
.5

5
%

7

9
.4

2
%

7

9
.4

9
%

8

1
.2

3
%

8

1
.6

7
%

8

1
.2

3
%

8

1
.7

9
%

28

 PIT provides a total of 25 different mutators to mutate different type of code.

When conducting mutation testing, we have enabled all 25 mutators in PIT for

generating mutants in our selected methods. PIT also provides an option to set a

timeout factor for executing each test against each mutant. The default is 1.25 times

the original test execution time. We increased the timeout factor to 10 times the

original execution time, as an effort to avoid false positives killing of mutants. This

is because a timed-out mutant is also considered as a killed mutant. We have also

increased the Java heap size to 60GB and stack size to 128MB using JVM

configuration in PIT, to avoid false positive killing of memory error mutants.

Figure 2-6. Sample Mutation Testing Report

 Table 2-4 shows the mutation testing result of our recorded and reduced

method-level tests. Note that PIT currently does not support the mutant generation

of only covered statements. Because the mutation generation of PIT is done

statically, it will generate mutants for all the statements of a selected method,

instead of only the reachable ones. In other words, if a mutant is located at a

statement that was not covered by any of the tests, the mutant will not be exercised,

and thus is impossible to be killed. Such mutants will not be considered in our

experiments. This is because if a mutant is not exercised by our recorded tests, it is

not exercised by the original system-level execution. The total number of mutants

generated for each selected method in Table 2-4 are calculated manually which

29

consist of only exercised mutants by our tests. This is done by removing mutants

that are labeled as NO_COVERAGE in the mutation testing report generated using

PIT, such as shown in Figure 2-6.

For recorded method-level tests without reduction shown in Table 2-4, we

can see that most of the recorded tests for different methods and coverage criteria

have a high mutant killing rate. Even without comparing to the original system-

level execution, a small number of tests show high effectiveness in detecting

potential faults that could occur in the selected methods. For four out of seven

selected methods, recorded tests achieve over 80% of mutant killing rate for all the

selected coverage criteria. The average mutant killing rate across seven methods

are around 80% for all four different sets of tests that achieve edge coverage, edge-

pair coverage, edge-set coverage, and these three combined. By only using edge

coverage, the recorded method-level tests can achieve reasonably high mutant

killing rate. With edge-pair and edge-set coverage, the mutant killing rate is further

improved slightly in some cases. This indicates the method-level tests generated

using our framework can effectively help developers to debug and find faults they

are looking for, while significantly reducing the time and efforts required from

developers for debugging.

For reduced method-level tests, their mutant killing rates are nearly the

same as their original recorded tests. With differences no larger than 5% of their

original killing rate. We even see some cases with increased mutant killing rate,

such as for the edge-pair coverage of method “cutPointsForSubset”. While

coverage elements of our specifically selected coverage criteria are maintained,

other elements from other coverage criteria could become lost, or may be newly

introduced after our binary reduction, such as combinations of the different

branches being executed. The mutation testing results of the reduced tests show that

even after the input sizes are significantly reduced, the coverage elements and also

30

the fault detection effectiveness are still preserved. Our binary reduction technique

on method-level tests can further help developers to reduce efforts for debugging

while maintaining the debugging effectiveness of the method-level tests.

Table 2-5. System-Level Mutation Testing

Method Algorithm

of Mutants

Killed by

System-Level

Execution

of

Propagatable

Mutants Killed

by Combined

Method-Level

Tests

select_working_set LibSVM 58 51

selectModel J48 61 56

 We also investigated the two methods select_working_set and selectModel

with the lowest mutant killing rate by comparing their results to the mutation testing

results of their system-level execution. We have planned on comparing all recorded

method-level tests’ mutation testing results with their corresponding system-level

execution. However, while mutation testing is a very effective method to evaluate

the quality of tests, mutation testing is a rather expensive method to use. In this

paper, we only have two system-level mutation testing results for

select_working_set and selectModel. Moreover, their system-level mutation tests

both took over one week to complete. Note that some mutants that can be killed

with method-level tests are not propagatable on the system level, i.e., a mutant may

cause a method execution producing incorrect output, but such incorrect output on

the method level did not cause an incorrect system-level output. We considered the

option of recording all method executions of a method during its system-level

execution. However, it is impractical, because of our selected methods have been

executed with a large number of times, and many of them have large inputs as well.

For comparing mutation testing results between method-level tests and system-

level execution, we will only be considering the propagatable mutants for the

31

method-level tests.

The system-level mutation testing results for select_working_set and

selectModel are shown in Table 2-5. For LibSVM, the system-level execution was

able to kill 58 mutants, the combined method-level test of select_working_set was

able to kill 51 out 58 propagatable mutants with a propagatable mutant killing rate

of 87.93%. For J48, the system-level execution was able to kill 61 mutants, the

combined method-level tests of selectModel were able to kill 56 out of 61

propagatable mutants with a propagatable mutant killing rate of 91.80%. The

further investigation shows the reason why method-level tests recorded for

select_working_set and selectModel have a lower mutant killing rate. It is likely

because their original system-level execution has a lower mutant killing rate.

After investigating the un-killed propagatable mutants in the recorded

method-level tests, we discovered three un-killed propagatable mutants from

select_working_set and one from selectModel were mutations related to modifying

boundary conditions. This means by adding more coverage criteria related to

boundary conditions, a higher mutant killing rate can be achieved for the method-

level test. With a few basic coverage criteria implemented for our framework,

method-level tests produced by our framework can be very effective in detecting

faults during debugging.

2.3.5. Performance Evaluation

We evaluate the performance of our implementation by investigating the

original system-level execution time, the time taken to evaluate and record the

method-level tests, time taken to reduce tests, and the time taken to execute the

recorded method-level tests. The results are shown in Table 2-6. Recall that in the

experiments for mutation testing, both inputs and outputs of the selected method

executions are recorded. However, the results shown in Table 2-6 are only for

32

recording the inputs and executing the recorded method-level tests with only inputs

without comparing their outputs. This is because, in real-world use of our

framework, outputs of the method executions do not need to be recorded.

Table 2-6. Performance Evaluation Results

Method

Original

Execution

Time

Total Test

Recording

Time

Total Test

Execution Time

Total Test

Reduction

Time Recorded Reduced

buildClusterer 5352 s 6303 s 5 s 5 s 27 s

cutPointsForSubset 9559 s *21615 s 1836 s 5 s 7558 s

EM_Init 5356 s 5361 s 5 s 5 s 22 s

handleNumericAttribute 6357 s *14624 s 155 s 2 s 1965 s

select_working_set 4491 s *11531 s 176 s 1 s 2763 s

selectModel 6357 s *14212 s 682 s 1 s 3122 s

updateStatsForClassifier 9559 s *30513 s 875 s 3 s 4088 s

As previously mentioned in Section 2.2, we have two solutions for

recording selected method executions. One approach is to serialize and temporarily

store the inputs for each method execution and record the inputs locally when a

method execution is determined to be significant. This method requires executing

the entire system only once. However, in cases where a method has large inputs or

is executed for a large number of times, this approach may have a significant

performance issue due to all the unnecessary serialization. The other approach is to

execute the entire system twice. In the first execution, we evaluate each method

execution and store the execution IDs of the method executions. An execution ID

is the index of a method execution based on the order of each method executions

that happened during the system-level execution. In the second system-level

execution, we only serialize and record the inputs of the selected method executions

based on their execution IDs. The numbers marked with “*” indicates that the

method-level tests were recorded using the second recording approach as shown in

Table 2-6. The execution time is computed by subtracting the execution end time

33

by the execution start time that was created using the Java

System.CurrentTimeMillis() function.

In Table 2-6, we see that recording method-level tests using our framework

can take up to three times of the initial system execution. Additional test reduction

time could take as much as two hours based on the size of the inputs (Our binary

reduction utilizes serialization for deep copy as well). The reduced tests can be

executed for many times during the debugging, the reduction time is a one-time

investment, we believe the time is manageable for developers. Moreover, our

approach is automated, allowing developers to work on other tasks while running

our approach. For executing the recorded method-level tests, we see that it usually

takes much less time than executing the entire system, especially for the reduced

tests, the execution time can range from as little as one second to five seconds.

Overall, we believe that recording and reducing method-level tests using our

framework will help developers save a lot of time and efforts in debugging big data

applications.

2.4. RELATED WORK

We first review previous work related to generating tests for big data

applications. Csallner et al. proposed an approach that uses dynamic symbolic

execution to automatically generate tests for general MapReduce programs [1].

Morán et al. proposed MRFlow, a testing technique tailored to test MapReduce

programs [5]. MRFlow uses data flow test criteria and oriented to transformations

analysis between the input and the output in order to detect defects in MapReduce

programs. Morán et al. also proposed a technique to generate different

infrastructure configurations for a given MapReduce program that can be used to

reveal functional faults [4]. They also proposed an automatic test framework that

can detect functional faults automatically [3]. Chandrasekaran et al. proposed an

34

approach to generate test input data using combinatorial testing for testing big data

applications [6]. Previous work reported in [1, 2, 3, 4, 5] focuses on generating tests

that help to identify functional faults, i.e., faults that will cause the program to

generate unexpected outputs. In contrast, our work focuses on reducing debugging

efforts for big data applications. Our tests are recorded in an effort to reproduce

failures using a small number of method-level tests.

Second, some work has been reported on debugging big data applications.

Gulzar et al. developed a tool, BigDebug, that simulates breakpoints to enable a

developer to inspect a program without actually pausing the entire computation [7].

To help a user inspect millions of records passing through a data-parallel pipeline,

BigDebug provides guarded watchpoints, which dynamically retrieve only those

records that match a user-defined guard predicate. Chandrasekaran et al. proposed

a technique that uses different annotators to debug the tracking data independently

and their debugging results were collected for joint correction propagation for later

analysis [9]. Our work is similar to Gulzar [7] and Li [9] in terms of only focusing

on a subcomponent of the system. However, our work focuses on recording

significant method-level executions to be replayed for debugging suspicious

methods. Gulzar [7] and Li [9] focuses on tracking the changes made to certain

objects using data flow analysis approach.

Third, our work is also related to existing work that records program

information and uses the information to generate unit tests. Pasternak et al.

proposed a technique that records interactions that take place during the execution

of Java programs and uses these interactions to construct unit tests automatically

using GenUTest [10]. Orso et al. proposed a technique and conducted a feasibility

study using SCARPE, a prototype tool, for selective capture and replay of program

executions [6]. Similar to our work presented in this paper, Orso’s technique [6]

can be used to automatically generate unit tests based on the recorded information

35

for testing purpose. Our work is similar to Pasternak [10] and Orso [6] in terms of

recording method-level tests based on the system-level execution. However, our

work focuses on recording unit tests for debugging one or more failures that have

been observed instead of generating tests for triggering failures that have not been

observed yet. Furthermore, our work also does not require complex instrumentation

techniques on the target’s bytecode [6]. Instead, we only employ simple

instrumentation that keeps track of code coverage.

Finally, we review work related to reducing input size for the debugging

purpose. Zeller et al. proposed Delta Debugging [8] technique to isolate failure-

inducing inputs on the system level to reduce work required for debugging. Clause

[14] et al. presented a technique based on dynamic tainting for automatically

identifying subsets of a program’s inputs that are relevant to a failure. These

techniques reduce the debugging effort at the system level, in terms that the reduced

datasets need to be executed at the system level. This is in contrast with our work

that reduces the debugging effort at the method level.

2.5. CONCLUSION & FUTURE WORK

In this paper, we presented a framework to provide developers with method-

level tests that were recorded from a failed system-level execution with the original

dataset. These method-level tests preserve a given coverage criterion, e.g. edge,

edge-pair, and edge-set coverage, and thus are likely to reproduce the failure

observed at the system level. The binary reduction is used to further reduce method-

level tests with large input. The set of method-level tests that are provided by our

approach could help developers to effectively debug suspicious methods against

properties of the original input dataset, and significantly reduce time and effort

required for debugging big data applications.

There are two major directions for future work. First, we plan to conduct

36

more experimental evaluation of our approach using more big data applications,

datasets, and coverage criteria. Second, we plan to further automate our approach.

In particular, we will develop techniques that can fully automate the

instrumentation process. Our current approach still needs manual effort in

modifying CFG generated by Atlas, inserting code for instrumentation, and

identifying collection typed variables for reduction. It is our plan to make the tool

publicly available.

2.6. ACKNOWLEDGMENT

This work is supported by a research grant (70NANB15H199) from

Information Technology Lab of National Institute of Standards and Technology

(NIST).

Disclaimer: Certain software products are identified in this document. Such

identification does not imply recommendation by the NIST, nor does it imply that

the products identified are necessarily the best available for the purpose.

2.7. REFERENCES

1. Csallner, C., Fegaras, L., & Li, C. (2011, September). New ideas track:

testing mapreduce-style programs. In Proceedings of the 19th ACM

SIGSOFT symposium and the 13th European conference on Foundations of

software engineering (pp. 504-507). ACM.

2. Jaganmohan Chandrasekaran, Huadong Feng, Yu Lei, Richard Kuhn,

Raghu Kacker, "Applying combinatorial testing to data mining algorithms",

Software Testing Verification and Validation Workshops (ICSTW) 2017

IEEE Fourth International Conference on-6th International Workshop on

Combinatorial Testing (IWCT), 2017.

3. Morán, J., Bertolino, A., de la Riva, C., & Tuya, J. (2017, July). Towards

37

Ex Vivo Testing of MapReduce Applications. In Software Quality,

Reliability and Security (QRS), 2017 IEEE International Conference on (pp.

73-80). IEEE.

4. Morán, J., Rivas, B., De La Riva, C., Tuya, J., Caballero, I., & Serrano, M.

(2016, August). Infrastructure-aware functional testing of mapreduce

programs. In Future Internet of Things and Cloud Workshops (FiCloudW),

IEEE International Conference on (pp. 171-176). IEEE.

5. Morán, J., Riva, C. D. L., & Tuya, J. (2015, August). Testing data

transformations in MapReduce programs. In Proceedings of the 6th

International Workshop on Automating Test Design, Selection and

Evaluation (pp. 20-25). ACM.

6. Orso, A., & Kennedy, B. (2005, May). Selective capture and replay of

program executions. In ACM SIGSOFT Software Engineering Notes (Vol.

30, No. 4, pp. 1-7). ACM.

7. Muhammad Ali Gulzar, Matteo Interlandi, Seunghyun Yoo, Sai Deep Tetali,

Tyson Condie, Todd Millstein, Miryung Kim. BigDebug: Debugging

Primitives for Interactive Big Data Processing in Spark. Proceeding ICSE

'16 Proceedings of the 38th International Conference on Software

Engineering, Pages 784-795

8. A. Zeller and R. Hildebrandt, “Simplifying and Isolating Failure-Inducing

Input”, IEEE Transactions on Software Engineering28(2), February 2002,

pp. 183-200.

9. Mingzhong Li, Zhaozheng Yin. Debugging Object Tracking by a

Recommender System with Correction Propagation. In IEEE Transactions

on Big Data (Volume: 3, Issue: 4, Dec. 1 2017)

10. Pasternak, B., Tyszberowicz, S., & Yehudai, A. (2009). GenUTest: a unit

test and mock aspect generation tool. International journal on software tools

for technology transfer, 11(4), 273.

38

11. N. Li, U. Praphamontripong, and J. Offutt, “An experimental comparison

of four unit test criteria: Mutation, edge-pair, all-uses and prime path

coverage,” in Second International Conference on Software Testing

Verification and Validation, ICST 2009, Denver, Colorado, USA, April 1-

4, 2009, Workshops Proceedings, 2009, pp. 220–229.

12. Eibe Frank, Mark A. Hall, and Ian H. Witten (2016). The WEKA

Workbench. Online Appendix for "Data Mining: Practical Machine

Learning Tools and Techniques", Morgan Kaufmann, Fourth Edition, 2016.

13. Dua, D. and Karra Taniskidou, E. (2017). UCI Machine Learning

Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of

California, School of Information and Computer Science.

14. J. Clause and A. Orso. Penumbra: Automatically identifying failure relevant

inputs using dynamic tainting. In ISSTA, pages 249–260, 2009.

15. “Atlas Platform, EnSoft Corp.” http://www.ensoftcorp.com.

16. “PITest.” http://pitest.org/.

17. “FST, fast-serialization.” https://github.com/RuedigerMoeller/fast-

serialization.

39

Chapter 3. MagicMirror: Towards High-Coverage Fuzzing of Smart

Contracts

The chapter contains a paper submitted to the 36th IEEE/ACM International

Conference on Automated Software Engineering (ASE), in 2021.

40

MagicMirror: Towards High-Coverage Fuzzing of Smart

Contracts †

Huadong Feng1, Xiaolei Ren1, Qiping Wei1, Yu Lei1, Raghu Kacker2, D. Richard

Kuhn2, Dimitris E. Simos3

1Dept. of Computer Science and Engineering, University of Texas at Arlington,

Arlington, TX 76019, USA

2Information Technology Lab, National Institute of Standards and Technology,

Gaithersburg, MD 20899, USA

3SBA Research, Vienna, Austria

Abstract – A smart contract is a program deployed on blockchain that is

often used to handle financial transactions. Unlike traditional programs, contract

code cannot be changed after it is deployed. This significantly increases the impact

of potential defects in the contract code. Thus, it is important to test smart contracts

thoroughly before deployment. In this paper, we present a fuzzing approach to

testing smart contracts. Our approach utilizes constraint solving, selective state

exploration, and combinatorial testing to improve code coverage. Constraint

solving is used to generate test inputs that meet preconditions in a smart contract.

Selective state exploration allows different state-dependent behaviors to be

exercised in a way that alleviates the state explosion problem. Combinatorial testing

is used to break an impasse that may be reached during the fuzzing process. We

implemented our approach in a tool called MagicMirror and evaluated our approach

using more than 2,000 contracts. The experimental results show that MagicMirror

is effective for achieving high code coverage and detecting vulnerabilities.

† Copyright © 2021 with permission, from Huadong Feng, Xiaolei Ren, Qiping Wei, Yu Lei, Raghu

Kacker, D. Richard Kuhn, Dimitris E. Simos, MagicMirror: Towards High-Coverage Fuzzing of

Smart Contracts.

41

Keywords – Blockchain, Ethereum, smart contracts, fuzzing, constraint

solving, combinatorial testing, security analysis, vulnerability detection.

3.1. INTRODUCTION

A smart contract is a program deployed on blockchain and is often used to

handle financial transactions. Unlike traditional programs, contract code cannot be

changed after it is deployed. Any security breach would be permanent and could be

difficult to be remedied. For example, in April 2016, the reentrancy attack [1] on

the DAO smart contract stole more than 3.6 million Ether (equivalent to about $45

million at the time). While the DAO attack was remedied via an expensive and

controversial hard fork due to its severe public impact, many other attacks [2, 3, 4]

have been observed and have never been resolved.

In recent years many fuzzing approaches have been reported for testing

smart contracts. Examples of these approaches include AFL based fuzzing [8],

where inputs are generated using strategies such as bit/byte flip and guided with

code coverage; grammar-based fuzzing [9], where valid inputs are produced

syntactically following certain grammars; input approximation-based fuzzing [8,

11], where the inputs are approximated based on the boolean expressions of certain

branching statements; and machine learning-assisted fuzzing [12], where inputs are

generated using a machine learning model that was trained by learning from the

inputs generated from symbolic execution of a large number of contracts. While

significant progress has been made, achieving high code coverage remains an

important concern for fuzzing [5, 7, 25].

In this paper, we present a fuzzing approach to test smart contracts. Our

approach is centered on how to increase code coverage by addressing the following

three challenges:

42

3.1.1. Meeting preconditions

In many functions, there are require statements written at the beginning of

the function. These statements specify preconditions, i.e., conditions that must be

satisfied before a function can be successfully executed. Test inputs that do not

meet preconditions would cause the current transactions to be reverted.

3.1.2. State-dependent behaviors

Like parameters, state variables are also input to a function, and their values

may affect the behavior of the function. Thus, a function needs to be tested at

different states; otherwise, some state-dependent behaviors may not be exercised.

However, unlike parameters, state variables cannot take arbitrary values due to the

reachability concern. We could derive reachable states by exploring the state space

of a smart contract; however, this would introduce the state explosion problem.

3.1.3. Combinatorial explosion

When the number of parameters is large, the input space of a function can

be huge due to the combinatorial explosion problem. Many vulnerabilities are due

to interaction between parameters. However, important combinations of values of

parameters can be easily missed by pure random test generation.

 To address the first challenge, our approach identifies preconditions and

uses a constraint solver to generate test inputs that satisfy the preconditions. To

address the second challenge, our approach uses a selective state exploration

framework to derive reachable states while alleviating the state explosion problem.

To address the third challenge, we combine fuzzing and Combinatorial Testing (CT)

[28]. The CT tests allow us to exercise parameter interactions in a systematic

manner, while fuzzing is used to discover important parameter values, which

further improves the quality of CT tests.

43

We implemented our approach in a tool called MagicMirror. We conducted

an experimental evaluation of our approach by comparing MagicMirror to two

other recently published state-of-the-are smart contract fuzzing tools, sFuzz [8] and

ILF [12]. Our evaluation used 2,397 real-world smart contracts [24]. The results

show that MagicMirror significantly outperforms sFuzz in both code coverage and

vulnerability detection. In particular, on average, MagicMirror achieves 21%

higher branch coverage than sFuzz and detects significantly more vulnerable

contracts. Compared to ILF, MagicMirror achieves slightly better code coverage

than ILF, while detecting significantly more vulnerabilities. We note that all inputs,

results, and scripts for running the experiments are saved for reproducibility and

are available at [33].

The remainder of the paper is organized as follows. Section 3.2

demonstrates three major challenges of fuzzing smart contracts using real-world

examples. Section 3.3 presents our approach, focusing on how to address the three

challenges. Section 3.4 discusses some implementation considerations. Section 3.5

presents an experimental evaluation of our approach. Second 3.6 reviews related

work. Section 3.7 concludes the paper and discusses future work.

3.2. MOTIVATION

In this section, we present motivating examples to demonstrate three major

challenges in fuzzing smart contracts. Our approach is developed to address these

challenges.

3.2.1. Meeting preconditions

Figure 3-1 shows a code snippet from the BecToken‡ contract. BecToken is

deployed on the Ethereum Blockchain and is implemented following the ERC-20

‡ https://etherscan.io/address/0xc5d105e63711398af9bbff092d4b6769c82f793d

https://etherscan.io/address/0xc5d105e63711398af9bbff092d4b6769c82f793d

44

Token Standard [26]. Tokens are digital assets issued on the Ethereum network and

could be used as currencies, like Bitcoin and Ether. transferFrom() allows a third

account with adequate allowance to transfer tokens from one account to another.

Figure 3-1. Code Snippet of the BecToken Contract

Figure 3-2. Code Snippet of the CryptoMinerToken Contract

45

require statements specify preconditions that must be satisfied by the inputs

of a function before the function can be executed. When executing a function, if

any require statement is not satisfied, the current transaction is reverted without

exercising the actual business logic implemented in the function. To effectively test

a function, it is important to generate test inputs that satisfy the require statements.

Consider the transferFrom() function in Figure 3-1. Line 5 requires that the

destination address, _to, cannot be the default address value 0x0…0. Line 6 requires

that the amount, _value, to be transferred from address _from be less than or equal

to the balance of _from. Line 7 requires that msg.sender has adequate allowance to

make the transfer. These preconditions could be difficult to satisfy with randomly

generated inputs.

3.2.2. State-dependent behavior

Figure 3-2 shows a code snippet from the CryptoMinerToken §contract.

CryptoMinerToken is used to help cryptocurrency miners to secure their mining

assets by providing safe token transfers and exchanges. Function purchaseTokens()

is a helper function to function buy(). It allows users to buy CryptoMiner tokens

using Ether.

In addition to parameters, state variables are also input to a function. Some

code may never be executed if the function is not executed at a particular state.

Thus, a function should be fuzzed at different states to exercise the different

behaviors a function could execute. One could explore the state space to derive all

reachable states, which would however introduce the state explosion problem.

Consider the purchaseTokens() function in Figure 3-2. Since lines 14 and

18 check the values of state variables tokenBalanceLedger_ and tokenSupply_,

§ https://etherscan.io/address/0x0a97094c19295e320d5121d72139a150021a2702

https://etherscan.io/address/0x0a97094c19295e320d5121d72139a150021a2702

46

reaching different branches of these if statements would require different values of

these state variables. One could try to assign arbitrary values to these state variables

to reach different branches. For example, if tokenBalanceLedger_[referredBy] is

set to 50e18 and tokenSupply to 0, a transaction would execute the true branch of

the first if statement at line 11 and the false branch of the second if statement at line

18. However, if we consider the entire contract, the sum of balances in

tokenBalanceLedger_ should always be equal to tokenSupply, because they are

always updated together in the implementation to maintain this constraint, such as

the sell() function shown in Figure 3-2. There exists no reachable state where the

balances in tokenBalanceLedger_are not zero while tokenSupply_ being 0. Thus, it

is impossible to exercise the statements in both line 16 and 20 in a single transaction.

Figure 3-3. Code Snippet of the BTC20Exchange Contract and Representative

47

Values of Parameters

3.2.3. Combinatorial explosion

Figure 3-3 shows a code snippet from the BTC20Exchange **contract.

BTC20Exchange is a crowdfunding contract that works by issuing tokens that are

purchased by contributors to finance some projects. Function adminWithDraw()

allows contract administrators to withdraw Ethers from the contract into other

accounts. There are nine parameters to adminWithDraw(). The execution of some

branches would require multiple input variables to take some particular values

simultaneously. For example, to execute the false branch of the if statement at line

12, the values taken by the input variables must satisfy the condition, i.e., certain

token, user has more balance than the amount needs to be withdrawn. Assume we

use the input model shown at the bottom of Figure 3-3. The identification of these

values is discussed in Section 3.3.4. Enumerating all combinations of parameters

and their values would yield 1.4 million tests. Due to the combinatorial explosion

problem, it can be difficult for random inputs to exercise input combinations that

are required to cover the different branches.

3.3. APPROACH

3.3.1. Overview

Our fuzzing framework contains four major components, as shown in

Figure 3-4. Static Analysis is performed on the contract’s Solidity source code

before fuzzing starts to collect information that is used later in the fuzzing process.

Selective State Exploration drives the fuzzing process. Combinatorial Fuzzer

generates CT tests and mutates them to fuzz functions on different contract states.

Constraint Solver is used by both Selective State Exploration and Combinatorial

** https://etherscan.io/address/0xdc468a1504fcbdf09705ee298bbec9b16ee263d0

https://etherscan.io/address/0xdc468a1504fcbdf09705ee298bbec9b16ee263d0

48

Fuzzer to evaluate contract states and generate test inputs that satisfy preconditions.

Vulnerability Analysis includes several detectors that take a transaction debugging

trace as input and detects vulnerabilities that may exist in the trace.

Figure 3-4. Overview of the MagicMirror Fuzzing Framework

Our approach is centered on how to address the three challenges mentioned

in Section 3.2.

Meeting preconditions. To generate tests meeting preconditions,

MagicMirror identifies the preconditions via lightweight static analysis. The

preconditions are then parsed and encoded into constraints in a format that a

constraint solver could accept. These constraints are solved to generate tests that

can satisfy these preconditions.

State-dependent behavior. To exercise state-dependent behaviors,

MagicMirror generates reachable states using a selective state exploration process.

Starting from the initial states, i.e., the state right after a contract is deployed, we

execute functions that can be executed at the states to derive successor states. This

process is repeated at a subset of the successor states until the maximum exploration

depth is reached. MagicMirror then restarts at the initial states and repeats the

selective state exploration. The selection of a successor state for further exploration

is performed to maximize the chance of increasing code coverage. This selective

49

state exploration process, i.e., exploring a subset of successor states instead of every

successor state, helps to alleviate the state explosion problem.

Combinatorial explosion. To handle the combinatorial explosion problem,

CT is used to select a subset of input combinations that achieves a combinatorial

coverage criterion. Representative values for each input are predefined and

identified via lightweight static analysis, e.g., constant values that appear in a

branching statement, and/or discovered during fuzzing, e.g., a value that triggers

new code coverage. t-way test generation is applied to control parameters, i.e.,

parameters that influence control flow decisions. For non-control parameters, we

cover every one of its representative values once. Note that, we refer to both

parameters from the function signature, msg.sender, and msg.value as parameters

to a function. Using this method on the example shown in Figure 3-3, with 3-way

test generation for control parameters, we can generate 211 tests instead of 1.4

million tests. At the same time, still cover every combination of parameters and

their values involved in the branching conditions. Lastly, we combine CT and

fuzzing by using the CT tests as seed to generate additional tests, where fuzzing

helps CT to extend its test set by discovering new representative values, and CT

helps fuzzing to cover important input combinations.

3.3.2. Meeting Precondition

In many functions, there are require statements written at the beginning of

the function. These require statements are used to check preconditions that must be

satisfied for the execution of a function to be successful. Due to preconditions,

many randomly generated test inputs could be rejected because the contract states

do not have the necessary state variable values for a function to be successfully

executed. If preconditions are not properly accounted for, it can be difficult for

fuzzing to achieve high code coverage. MagicMirror addresses the precondition

50

issue by using constraint solving to evaluate contract states and generate valid

inputs during fuzzing.

To evaluate contract states and generate precondition-satisfying tests, there

are two major technical problems to handle, including (1) identifying, parsing, and

encoding preconditions into constraints that a constraint solver can solve and (2)

randomizing solutions produced by a constraint solver, which typically gives the

same solution during multiple calls of the same constraint.

3.3.2.1. Identifying, Parsing, and Encoding Preconditions

To create precondition constraints for a function, we generate a control flow

graph based on its source code. Each node in the control flow graph corresponds to

a line of statement and is represented as an Abstract Syntax Tree (AST). The AST

allows MagicMirror to parse the boolean expression inside each require statement

and encode it into constraints. Note that require statements can be directly written

at the beginning of a function or included in the function’s modifiers.

There are more complex scenarios that make the precondition parsing more

difficult. Such as when parsing a precondition with a variable other than parameters

and state variables. For example, assigning the reference of a state variable sv[0] to

a local variable lv, then use lv for evaluation in a precondition lv.count > 0. Such

indirect accesses in preconditions are identified using static taint analysis by

analyzing the Static Single Assignment (SSA) of the source code so that the

constraint can be transformed into expressions containing only state variables and

parameters. lv.count > 0 would then become sv[0].count > 0 after the

transformation.

Once we identified all the preconditions, they are encoded into constraints

that a constraint solver can use. To evaluate whether the precondition of a function

can be satisfied on a given contract state, we encode the values of state variables

51

into the existing constraints. We then check whether the constraint solver can

generate at least one test that satisfies the constraints.

To generate precondition-satisfying tests using the constraint solver, we will

need the following information, a contract state, a CT test, and a selected parameter

to be randomized. For state variables, their values are encoded into the existing

constraints. For not selected parameters, their value in the CT test is also encoded

into the constraints. The selected parameter’s value is then solved based on the

actual values of state variables and the values of the unselected parameters.

Consider a constraint, s<p1 && p1<p2, that involves parameter p1, p2 and state

variable s. s is 10 in the selected state, the CT test is (p1=0, p2=15), and p1 is to be

randomized. We encode s and p2 in the constraint by adding the expressions s==10

and p2==15 into the constraint. The constraint solver will then provide a solution

of p1 that is greater than ten and less than 15.

3.3.2.2. Randomizing Solutions

Constraint solvers typically give the same solution during multiple calls (for

the same constraint). We need to help the constraint solver randomize solutions

better. For numerical or dynamically sized array parameters, we first use the

constraint solver to identify the minimum and maximum value or array length to

satisfy the constraints. We then divide the range from the minimum value to the

maximum value into 100 regions and force the constraint solver to find a solution

in a randomly selected region. Note that we are assuming the solution space is

continuous for these parameters, i.e., all values between the maximum and

minimum values are possible solutions. In some instances, this may not be true. For

example, constraint a <= 10 || a >= 100 where a has the data type of uint8. The

minimum and maximum value satisfying the constraint is 0 and 255. However,

values between 10 and 100 would not satisfy the constraint. We handle this type of

52

scenario by randomly selecting different regions until a solution can be found. For

other discrete typed parameters, we let the constraint solver enumerate all solutions

among their representative values, we then randomly select one from the solutions.

Note that there can be scenarios where mutating only one parameter of a CT

test cannot yield a precondition-satisfying test. In such scenarios, we will randomly

include additional parameters to be randomized by the constraint solver until the

CT test can be mutated into a test that meets the preconditions. Consider a constraint

s1 > p1 && s2 > p2, where s1 and s2 are state variables, p1 and p2 are parameters. s1

is 10, s2 is 20 and the CT test is (p1=11, p2=21). The parameter to be mutated is p1.

However, only mutating p1 cannot produce a test that satisfies the precondition with

the given state and CT test. Hence, we also randomize p2, which allows the

constraint solver to find a solution, e.g., (p1=9, p2=19).

When randomizing values for multiple parameters, instead of letting the

constraint solver provide the solution of all the parameters at once, we solve for

parameter values one by one, so we can randomize each parameter separately. This

is because randomly selecting a value for one parameter could change the solution

space for another parameter.

3.3.3. State-Dependent Behavior

Like parameters, state variables are also input to functions. Thus, a function

needs to be tested at different states. Furthermore, for certain functions with more

complex require statements, their precondition-satisfying states can be more

challenging to explore because such states can often require several functions to be

executed in particular orders. MagicMirror addresses the state-dependent behavior

issue with a selective state exploration fuzzing strategy.

MagicMirror employs a Breadth-First Search (BFS) exploration strategy.

At first, the constructor of the target contract is fuzzed. Initial contract states are

53

created from different contract deployments. We execute functions that can be

executed at the initial states to derive successor states. This process is repeated at a

subset of the successor states until the maximum exploration depth is reached. To

limit state explosion, we limit both depth and width of the BFS exploration. We

also limit the functions that can be fuzzed on a contract state.

When the maximum exploration depth is reached, MagicMirror will restart

by fuzzing the constructor again and repeat the BFS exploration process until the

timeout is reached. This is because some transactions may introduce permanent

changes to contract states that would stop certain functions from meeting their

preconditions. For example, many ERC-20 Token contracts can have a state

variable mintingFinished and a function finishMinting(). When contracts are

deployed, mintingFinished is set to false. Once finishMinting() is executed,

mintingFinished is permanently set to true. Any functions with preconditions

requiring mintingFinished being false cannot be entered again. Hence,

MagicMirror can create more precondition-satisfying states for these functions by

restarting the fuzzing process.

3.3.3.1. Random State Selection

During the BFS exploration, not all successor states are explored. We

perform state analysis for each successor state to compute a score for weighted

random selection. The score is calculated based on the code coverage of the

transactions executed to produce the state and precondition-satisfiability of contract

functions on the state. The precondition-satisfiability is determined using constraint

solving, which was discussed in Section 3.3.2. The score is then used to select a

number (equal to width) of successor states using a general weighted random

selection with replacement technique.

When computing the score of a successor state, each of the following criteria of

54

the state will count as one point:

• Every state-modifying transaction that triggered new code coverage in the

sequence of transactions that has produced the state.

• Every precondition-satisfiable function, i.e., a function having their

preconditions satisfied at the given state.

• Every precondition-satisfiable function that is yet to achieve 100% opcode

coverage at the given state.

• Every precondition-satisfiable function that is yet to be successfully

executed at the state.

The score is computed only once when the contract state is first created. In

principle, we favor contract states produced by transactions that have triggered new

coverage. This is because such transactions are more likely to have modified the

contract state different. We also favor states that allow MagicMirror to enter more

functions that are yet to be fully covered. Doing so can increase code coverage

faster.

3.3.3.2. Random Function Selection

Once a random contract state is selected, we will select one using weighted

random selection among its precondition-satisfiable functions. The weight is

calculated by inverting the relative opcode coverage of a function. Similar to

Random State Selection, we favor functions with lower opcode coverage as well.

We also limit the number of times a function is fuzzed to ensure every function can

generate a relatively fair number of states and fuzzed for a fair number of times.

The details of how a function is fuzzed are discussed next.

3.3.4. Combinatorial Explosion

Branching conditions often depend on a specific combination of parameter

55

values, which can be difficult to be covered by pure random testing. As shown in

Figure 3-3, not all inputs interact with each other. Thus, testing all possible

combinations of all parameters is often not necessary. The challenge is how to

select a subset of the combinations that are effective for testing.

MagicMirror addresses this challenge by generating tests using CT [28].

The CT tests are then fuzzed to discover new representative values to extend the

CT test set. In CT, a system is specified by a set of parameters and their

representative values. A test set is a t-way test set if it satisfies the following

property: Given any t parameters of a system, every combination of (representative)

values of these t parameters is covered in at least one test in the test set. In our case,

we apply CT to functions in a smart contract, where the parameters are function

parameters (including msg.sender and msg.value). We note that t-way test

generation is only applied to control parameters, i.e., parameters influencing the

result of branching conditions. For non-control parameters, we cover every

representative value only once.

Once a contract state and a function are randomly provided by the BFS

exploration, there are four major steps to fuzz the function, including (1) identifying

representative values of each parameter, (2) identifying control parameters, (3)

generating combinatorial tests, and (4) mutating CT test to discover more

representative values.

3.3.4.1. Identifying Parameter Representative Values

By default, we include the boundary values, near-boundary values, and

common values based on the parameter’s data type. The following values are

included as pre-defined representative values based on parameter type:

• intn: min, min + 1, 0, 1, 10, max – 1, max. For example, for int8, its

representative values are -128, -127, 0, 1, 10, 126, 127.

56

• uintn: 0, 1, 10, max – 1, max.

• byte: “0x0”, “0xff”.

• bytes: “0x0”, “0xff”, “0xffffffff”

• bytesn: “0x0”, “0xff”, “0xffffffff” if n >= 4, and “0xff” * n.

• string: “”, “Hello”.

• bool: true, false.

• address: normal account addresses, attacker contract addresses, and invalid

address “0x0”.

• arrays (fix sized): A sample array randomly populated with the base data

type representative values. For example, for int8[2], we could have [0, 126].

• arrays (dynamically sized): Three sample arrays of length zero, one, and a

random length, randomly populated with the base data type representative

values.

In addition, we also identify constant values that are used to compare with

parameters in the source code. These constant values are identified by analyzing

the AST of the function source code. These constant values are added to the

parameter(s) in which they were compared. There can also be an additional near-

boundary value when a constant value is compared to a parameter using <, >, <=

and >=. For example, in param>10, both 10 and the near-boundary value 11 are

added to param as additional representative values.

3.3.4.2. Identifying Control Parameters

To identify control parameters, we analyze the function’s AST to determine

the parameters used in branching conditions. We also use static taint analysis by

analyzing the SSA of the function to identify parameters that indirectly influenced

branching conditions.

57

3.3.4.3. Generating Combinatorial Test Set

Figure 3-5. Combinatorial Test Set Generation for Function adminWithdraw()

To achieve higher code coverage, combinations of control parameters and

their values are more important than non-control parameters. t-way test generation

is only applied to control parameters. In Figure 3-5, we illustrate how to generate a

t-way combinatorial test set for function adminWithdraw(). For simplicity, we will

only include two representative values (0 and 1) for each parameter and use 2-way

58

test generation. First, we generate the 2-way test set for the control parameters

msg.sender, token, amount, user, and feeWithdrawal. Nrxt, we add the

representative values of the non-control parameters into the 2-way test set to

complete the CT test set for function adminWithdraw().

3.3.4.4. Mutating CT Test

Not every CT test will execute unique scenarios. Some CT tests could share

similar behaviors. Instead of mutating every CT test, we want to identify tests that

covered new branches and/or reached deeper and hard-to-reach branches. After

executing the CT tests from step (3), we analyze the branch coverage achieved by

the CT tests. Next, we sort the tests by the number of covered branches of each test,

from large to small, because tests covering more branches likely indicate deeper

branches were reached. Lastly, from the first test in the sorted list, we select tests

covering branches that were not covered by any previous tests in the list. As a result,

we have a small subset of CT tests that can reach the same depth of branches, and

have the same branch coverage as the origianl CT test set.

In addition to predefined representative values based on parameter data type

and representative values identified using static analysis, we use fuzzing to discover

new representative values by mutating the CT tests. For each selected CT test, we

mutate one control parameter at a time. We maintain the values of other parameters,

so only a small number, or ideally one, branching condition involving the control

parameter, is flipped. This strategy helps MagicMirror increase the likelihood of

exploring new branches and discovering new representative values. We do not

mutate non-control parameters since they are unlikely to trigger new code coverage.

 To mutate the value of a selected parameter, we have two ways, using

constraint solver or random generation. When a parameter is used in preconditions,

its value is randomized using a constraint solver to ensure the mutated tests will not

59

be rejected by the preconditions. The details of how a constraint solver randomizes

parameter values were discussed in Section 3.3.2. For parameters that do not appear

in preconditions, their values are either randomly selected from their existing

representative values (i.e., bool, address, string, byte/bytes, bytesn and fixed sized

array), or randomly generated within the valid range of their data type (uintn, intn,

and dynamically sized array). The number of times a control parameter in a CT test

is mutated is configurable.

 If any new representative values are discovered after the mutation of CT

tests, the initial CT test set will be extended to include the new representative values.

We will take these extended CT tests and repeat the process at step (1) until no

additional representative values are discovered.

3.3.5. Vulnerability Detection

Our fuzzing approach is independent from vulnerability detection. Thus, in

principle, we could incorporate third-party vulnerability detectors. As discussed in

Section 3.4.6, we adopted 14 vulnerability detectors from sFuzz [8] and ILF [12].

3.4. IMPLEMENTATION

In this section, we discuss some major decisions in the implementation of

MagicMirror, including static analysis using Slither, constraint solving using Z3

[35], CT test generation using ACTS [13], code coverage computation, test

execution using a custom Geth EVM [34], and vulnerability detectors. The source

code and a ready-to-use Docker [32] image of MagicMirror is available at [33].

3.4.1. Static Analysis with Slither

We use Slither, a static analyzer for Solidity programs, to analyze the source

code of a contract. In particular, we utilize the control flow graph, AST of the source

60

code, and SSA from Slither to identify the information we need as discussed below:

3.4.1.1. Identify Preconditions

Preconditions need to be written in terms of state variables and function

parameters. However, a require statement may involve internal variables, which

need to be rewritten. To avoid the need for symbolic execution, MagicMirror only

handles require statements at the beginning of a function. A require statement is

considered to be at the beginning of a function if it appears before any statement

that changes a state or local variable or any branching statement that is not a require

statement.

3.4.1.2. Identify Implicit Parameters

Since implicit parameters, msg.sender and msg.value do not appear in a

function’s signature, we gather this information by analyzing the AST of the

function. Furthermore, we also identify their indirect usage in inner function calls

to other functions.

3.4.1.3. Identify Control Parameters

By analyzing the control flow graph. AST and SSA of a function, we can

identify parameters used in branching conditions as control parameters.

3.4.1.4. Identify Constants

In addition to handling the direct comparison of a parameter to a constant

value, constant values can also appear in type conversions. If not handled correctly,

the value may be missed or incorrectly assigned. We detect this type of operation

using the AST of the function and parse the constant value to its destined data type.

61

3.4.2. Constraint Solving with Z3

We use Z3 [35] to perform constraint solving. As discussed in Section 3.3.2,

constraint solving is used to identify states and input parameter values that satisfy

preconditions. The preconditions identified using Slither are parsed and encoded as

Z3 constraints. During the creation of Z3 constraints, we create Z3 variables to

represent different state variables and input parameters. Z3 provides data types that

can handle Solidity primitive types such as int, bool, bytes, etc. However, some

data types in Solidity, e.g., mapping, user-defined constructs, require creation of

customized data types in Z3. We utilize static typing information provided by

Slither to automatically create custom Z3 data types to handle non-primitive type

variables.

When loading state variables’ values into constraints, we call the state

variable getters to obtain the values. For state variables that are arrays or mappings,

obtaining their values requires additional effort. Solidity compilers do not generate

getters that can return the full content of an array or mapping structure. Instead, an

index must be provided to get the element at a specific position of an array or

mapping structure. For an array, we repeatedly call the getter function with the

index starting from 0, then add the value returned by the getter function into the Z3

constraint. We increase the index until the getter function fails.

For a mapping, obtaining all the values in the mapping can be more

challenging because mappings do not store their keys. Instead, only the value is

stored at the memory address calculated by the SHA3 hash of the key. If no value

is ever written into a position, accessing the position would return the default value.

On the other hand, a transaction could intentionally write the default value into a

position. This means we cannot distinguish the two cases when the default value is

returned. To address this problem, we keep track of the keys of a mapping structure

whose associated values were previously modified. If a key is non-numeric, this

62

problem does not exist as non-numeric parameters are only fuzzed with their

predefined values. We keep track of all possible values that could be assigned to

the key during state exploration for a numeric key.

3.4.3. Combinatorial Test Generation using ACTS

We use Automated Combinatorial Testing for Software (ACTS) [13], a test

generation tool for constructing t-way CT test sets. ACTS is implemented using

Java. To interact with ACTS, we implemented a custom wrapper using Py4j to

launch ACTS as a service, so MagicMirror can interact with ACTS as a client. The

input to ACTS contains control parameters for the function, t-way strength, and

representative values of control parameters. When generating the CT test set, the

default strength of control parameters is set to 2.

3.4.4. Test Execution with Custom Geth EVM

Our transaction execution backend is implemented on top of Go Ethereum

(Geth EVM). This idea is inspired by the backend implementation of ILF [12]. In

the wrapper of the Geth EVM, we implemented contract state management, i.e.,

taking/restoring snapshots of contract states. With the wrapped Geth EVM built

into a shared library, MagicMirror can execute transactions natively via inter-

process communication (IPC) without communication delays instead of performing

RPC calls.

3.4.5. Code Coverage Computation

Due to the existing tools [37, 38] not being compatible with our

implementation, we generate code coverage reports on our own based on the

contract bytecode. The code coverage report contains both edge coverage and

opcode coverage for the entire contract and individual functions. We identify edges

in the bytecode using the bytecode control flow graph generated by Vandal [21], a

63

static program analysis framework for Ethereum smart contract bytecode. However,

Vandal may not detect some edges because some destinations of JUMP or JUMPI

instructions in the bytecode could be computed dynamically at runtime, and are

thus not known at compile time. If any edge that Vandal does not detect is executed,

the edge is added to the set of all possible edges. For edge and opcode coverage on

individual functions, we utilize the source mapping produced from the Solidity

compiler, and control flow graph produced from Vandal, to map bytecode segments

to a specific function.

3.4.6. Vulnerability Detectors

MagicMirror, sFuzz and ILF all analyze debug trace of transactions to

detect vulnerabilities. We adopted nine detectors from sFuzz, they are strictly

translated from C++ to Python. We also adopted five detectors from ILF, we were

able to use them directly without translation because they were also implemented

in Python.

For triggering vulnerabilities requiring interactions between contracts,

MagicMirror deploys attacker contracts to interact with target contracts. Any test

can be sent by a normal wallet account or via an attacker contract. The attacker

contract contains three functions, AgentCallWithoutValue(), AgentCallWithValue()

and the fallback function. For the two agent call functions, besides calling the target

contract with the provided call data, they also save the call data in a state variable

for reentrancy attack. When sending transactions to target contract using agent calls,

if the target contract tries to send ether to the attacker contract, the attacker

contract’s fallback function will resend the previously received call data to create a

reentrancy scenario.

64

3.5. EXPERIMENTS

Our experiments are designed to evaluate the effectiveness of MagicMirror

in terms of code coverage and vulnerability detection abilities. In particular, we

compare MagicMirror to two recently published fuzzing tools, sFuzz [8] and ILF

[12].

3.5.1. Research Questions

Our experiments are designed to ask the following two research questions:

RQ1: How does MagicMirror perform in terms of code coverage?

RQ2: How does MagicMirror perform in terms of vulnerability detection?

 To answer RQ1, we compare the code coverage achieved by MagicMirror

to sFuzz and ILF within the same amount of time. To answer RQ2, we compare

the number of vulnerable contracts detected by MagicMirror to sFuzz and ILF

within the same amount of time. MagicMirror implements all vulnerability

detectors from sFuzz, and five out of seven vulnerability detectors from ILF.

3.5.2. Subjects

In the experiments, we used 2,397 smart contracts as our subjects. These

contracts are selected from 1,838 smart contract source files [24]. These contract

files were randomly collected from Etherscan [30] to evaluate another smart

contract analysis tool. The 1,838 source files require Solidity compiler versions

ranging from 0.4.0 to 0.5.10. Many of these files contain multiple contracts. Our

selection excludes the following types of contracts: library contracts, interface

contracts, abstract contracts, and contracts inherited by other contracts.

We compare MagicMirror to two state-of-the-art fuzzing tools that are

publicly available, i.e., sFuzz [8] and ILF [12], using their latest release [31, 39] on

65

GitHub. sFuzz uses an AFL [23] like fuzzing strategy to fuzz smart contracts. ILF

uses machine learning (ML) to fuzz smart contracts. The ML model is trained by a

symbolic execution expert executing on a training dataset.

Note that none of the three tools could execute all subject contracts due to

different kinds of exceptions. Out of the 2,397 subject contracts, MagicMirror

reported results for 2,276 contracts, ILF reported results for 2,005 contracts, sFuzz

reported results for 1,264 contracts. When comparing between tools, we only

compare results on contracts where both tools reported results. The exceptions we

encountered from ILF and sFuzz have been reported to the authors of sFuzz and

ILF.

3.5.3. Metrics

3.5.3.1. Code Coverage

When answering RQ1, MagicMirror reports both edge and opcode

(instruction) coverage based on the contract bytecode (both deploy-time and

runtime bytecode). However, sFuzz and ILF report their results differently.

sFuzz code coverage: sFuzz reports branch coverage based on the contract

bytecode. However, based on communication with the first author, sFuzz only

analyzes non-constant functions and only recognizes branches with JUMPI

instructions that can be mapped to an if/while/require/assert statement. To fairly

compare with sFuzz, MagicMirror uses identical contract bytecode that sFuzz used.

MagicMirror’s edge coverage result is also filtered to contain only branches

included in the sFuzz’s result. To identify branches recognized by sFuzz, we added

a few lines of code [33] to sFuzz for logging. The first author of sFuzz has

confirmed that the changes made to sFuzz will not impact its performance and

ability to detect vulnerabilities.

66

ILF code coverage: ILF reports opcode and basic block coverage based on

runtime bytecode only. Additionally, ILF removes the metadata appended to the

end of the runtime bytecode by the compiler. Hence, after disassembling the

runtime bytecode, ILF would report fewer total opcodes in the coverage. However,

after confirming with the first author, this would not affect the number of covered

opcodes. To fairly compare with ILF, we will use the total number of opcodes

disassembled from MagicMirror as the denominator for computing ILF’s opcode

percentage coverage.

3.5.3.2. Vulnerabilities

Since sFuzz analyzes non-constant functions only, when comparing with

sFuzz, we exclude vulnerabilities detected in constant functions from MagicMirror.

For ILF, constructors are not analyzed by ILF. When comparing with ILF, we

exclude vulnerabilities detected in constructor functions from MagicMirror.

Note that MagicMirror, sFuzz, and ILF all analyze transaction debug trace

for vulnerability detection. MagicMirror implements all sFuzz detectors in the same

logic. For ILF, we could copy and paste five out of seven ILF detectors into

MagicMirror without translation because ILF detectors were also written in Python.

The two excluded detectors, Leaking and Suicidal, require a fuzzing strategy that is

unique to ILF, and are thus excluded in MagicMirror. For false positives, since

MagicMirror has identical detectors implemented in sFuzz and ILF, we do not

investigate the false positive vulnerabilities detected between these tools.

3.5.4. Procedure

Due to limited resources and the large number of subject contracts, we

execute MagicMirror, sFuzz, and ILF with a 15-minutes timeout on each subject

contract. We run the experiment three times and report the average as the result.

67

For MagicMirror, the contract source code is provided as input, with other

user-configurable options left as default. In particular, the default value of t-way

test strength is two.

For sFuzz, we provide a JSON file consists of compiled contract

information and the source file. In the JSON file, the compiled contract information

is identical for both sFuzz and MagicMirror. The contract source file is required by

sFuzz to identify branches with source mapping.

For ILF, its input consists of a trained ML model, the contract source code,

and a contract deployment configuration. For the ML model, ILF uses the default

model provided in the GitHub repository [31]. ILF also provides a script to

automate the compilation and deployment transaction generation process. To

ensure ILF and MagicMirror receive identical compilation results, instead of using

the script, we generate the compilation information and provide it to ILF. For

contract deployment, ILF does not fuzz constructor. A contract deployment must

be provided to ILF. To fairly compare with ILF, we randomly generate a contract

deployment for ILF, and we modified MagicMirror to only fuzz the contract based

on the identical contract deployment instead of fuzzing the constructor.

Table 3-1. Statistical Results for ILF Executed on Multiple Contract Deployments

stdev < 1%
1% ≤ stdev

< 5%

 stdev ≥

5%

36 11 3

Min Avg Max

0% 1.62% 21.90%

Due to limited resources, we are unable to execute ILF multiple times on

different deployments. We acknowledge that different deployments may cause ILF

and MagicMirror to produce different results. To study how this factor may impact

68

ILF’s result, we randomly selected 50 contracts from the subject contracts for ILF

to execute, ILF is provided with five random contract deployments for each contract,

and each deployment is executed 15 minutes. Table 3-1 shows the statistics for the

opcode coverage standard deviation among five deployments for the 50 contracts.

We see that ILF would achieve similar opcode coverage results in most contracts

when different deployments are provided. On average, the opcode coverage

standard deviation of different deployments fluctuates around 1.62%.

Finally, all experiments are carried out on Docker containers with three

cores and 25GB RAM. The Docker containers are hosted on a Windows 10

workstation with two Intel Xeon Platinum 8180 processors with 56 2.5GHz cores;

and 512GB memory. We note that all inputs, results, and scripts for running the

experiments are saved for reproducibility and are available at [33].

3.5.5. Results for RQ1

In Table 3-2 and Figure 3-6, we compare the branch coverage of

MagicMirror to sFuzz on 1,225 contracts where both tools reported coverage. As

previously mentioned, to objectively compare with sFuzz, MagicMirror’s result has

been filtered to contain only branches that were identified by sFuzz. On average,

MagicMirror can achieve 21% more branch coverage than sFuzz, as shown in Table

3-2. Figure 3-6 shows the differences in the number of covered branches between

MagicMirror and sFuzz. The vertical axis represents 𝑀𝑎𝑔𝑖𝑐𝑀𝑖𝑟𝑟𝑜𝑟– 𝑠𝐹𝑢𝑧𝑧, i.e.,

the number of branches covered by MagicMirror minus the number of branches by

sFuzz. The horizontal axis represents individual contracts sorted by

𝑀𝑎𝑔𝑖𝑐𝑀𝑖𝑟𝑟𝑜𝑟– 𝑠𝐹𝑢𝑧𝑧. Note that each data point on the horizontal axis is a contract

that has a particular value of 𝑀𝑎𝑔𝑖𝑐𝑀𝑖𝑟𝑟𝑜𝑟– 𝑠𝐹𝑢𝑧𝑧. Among the 1,225 contracts,

MagicMirror achieved higher branch coverage than sFuzz in 930 contracts, the

same branch coverage in 166 contracts, and lower branch coverage in 129 contracts.

69

Figure 3-6. MagicMirror and sFuzz Covered Branches Comparison

Table 3-2. Branch Coverage for MagicMirror and sFuzz

 MagicMirror sFuzz

Min 1.35% 0.76%

Median 90.00% 66.67%

Mean 82.75% 61.67%

Max 100.00% 100%

MagicMirror significantly outperforms sFuzz in terms of branch coverage.

We intended to conduct further investigation to explain the results. However, sFuzz

only reports branch coverage for the entire contract, without detailed information

about the coverage, e.g., which function has lower coverage, or which

branches/opcodes were covered or uncovered.

In Table 3-3 and Figure 3-7, we compare the opcode coverage of

MagicMirror to ILF on 1,986 contracts where both tools reported coverage. In our

experiments, MagicMirror achieves slightly better code coverage than ILF. On

average, MagicMirror can achieve about 1.7% higher opcode coverage than ILF,

as shown in Table 3-3. The difference in opcode coverage achieved for contracts

between MagicMirror and ILF is shown in Figure 3-7. Among the 1,986 contracts,

MagicMirror achieved higher branch coverage than ILF in 1209 contracts, same

70

branch coverage in 161 contracts, and lower branch coverage in 616 contracts, as

shown in Figure 3-7.

Figure 3-7. MagicMirror and ILF Covered Branches Comparison

Table 3-3. Opcode Coverage for MagicMirror and ILF

 MagicMirror ILF

Min 2.80% 0.95%

Median 92.59% 91.53%

Mean 82.81% 80.10%

Max 99.84% 99.78%

3.5.6. Results for RQ2

In Table 3-4, we present the number of contracts flagged with

vulnerabilities by MagicMirror and sFuzz. Note that the result of MagicMirror has

been filtered to contain only vulnerabilities detected in non-constant functions,

same as sFuzz. As previously shown in Table 3-2, MagicMirror outperforms sFuzz

significantly in terms of branch coverage. For vulnerability detection, MagicMirror

is also detecting significantly more vulnerabilities than sFuzz. Among the nine

vulnerability detectors implemented in MagicMirror and sFuzz, MagicMirror

71

detects more vulnerable contracts in seven out of nine vulnerability detectors. When

compared to sFuzz, MagicMirror can generally detect more vulnerabilities.

Table 3-4. Vulnerability Detection for MagicMirror and sFuzz

 MagicMirror sFuzz

Gasless Send 241 187

Dangerous Delegate Call 24 19

Exception Disorder 29 17

Freezing Ether 22 17

Reentrancy 16 14

Block Number Dependency 8 17

Time Dependency 35 37

Integer Overflow 440 212

Integer Underflow 172 151

Table 3-5. Vulnerability Detection for MagicMirror and ILF

 MagicMirror ILF

Locking 7 9

Block Dependency 42 40

Unhandled Exception 29 10

Controlled Delegatecall 19 7

Reentrancy 58 5

In Table 3-5, we present the number of flagged contracts with

vulnerabilities by MagicMirror and ILF. As shown in Table 3-5, MagicMirror and

ILF have a similar result for Locking and Block Dependency. For the other

vulnerabilities, MagicMirror performs significantly better than ILF, which we

investigated further.

For Controlled Delegatecall, we investigated into the 12 contracts

MagicMirror flagged that ILF did not. Because ILF does not provide additional

coverage information, e.g., exactly which opcode is covered or not, we could not

conduct a thorough investigation. However, on average, MagicMirror achieved

72

78.83% higher opcode coverage in these 12 contracts than ILF. The reason is likely

because ILF was unable to execute the opcodes that would have triggered the

vulnerabilities.

For Unhandled Exception and Reentrancy vulnerabilities, they both require

interactions between contracts to trigger them. MagicMirror was able to flag many

more contracts because MagicMirror deploys attacker contracts to interact with

target contracts. In contrast, ILF only sends transactions via normal wallet accounts,

and thus cannot effectively detect Unhandled Exception and Reentrancy

vulnerabilities.

3.6. RELATED WORK

In this section, we briefly overview existing work on testing smart contracts,

including fuzzing, symbolic execution, and other static analysis-based approaches.

Fuzzing. ContractFuzzer [10] is an unguided fuzzer. ContractFuzzer

predefines a set of default values for each data type based on different lengths in

their byte form, e.g., 0x0 and 0xff as for uint with length 8. When fuzzing a function,

for each parameter, it randomly selects a valid length based on data type, e.g., 16

for uint256 with predefined value 0x0 and 0xffff. It then takes the predefined values

of each parameter, enumerates all the combinations of the parameters’ values, and

randomly selects some tests to execute. In contrast, MagicMirror is guided by its

selective state exploration process. MagicMirror identifies control parameters and

uses CT to execute only a subset of combinations. In addition, MagicMirror uses

fuzzing to discover important parameter values.

sFuzz [8] is a coverage-guided fuzzer built on top of AFL [23], and mutates

transaction input values using bit/byte flip, simple arithmetic, and other operations.

Furthermore, sFuzz uses an adaptive approach to measure the distance of the

73

current input value to the value that would flip a branching condition to explore

hard-to-reach statements. In contrast, MagicMirror uses a selective state

exploration framework, where constraint solving is used to generate tests that

satisfy preconditions and CT is used together with fuzzing to make the testing

process more efficient. MagicMirror achieved higher code coverage than sFuzz in

our experiments as discussed in Section 3.5.5.

ILF [12] combines Machine Learning and fuzzing to fuzz contracts based

on a specific contract deployment. ILF utilizes imitation learning by training a

neural network using test sequences produced by symbolic execution of a large

number of contracts. The neural network is then used to generate test sequences to

fuzz new contracts. The effectiveness of ILF depends on the quality of training

contracts, especially on whether they are a good representation of real-life contracts.

In contrast, MagicMirror does not require the user to provide contract deployment

configurations. MagicMirror does not have the notion of model training.

Echidna [9] uses grammar-based fuzzing based on contract ABI to falsify

user-defined properties, i.e., unit tests that check certain properties of user interest.

After investigating online documentation [41], and multiple articles [9, 29, 42, 43]

of Echidna. It is unclear how exactly Echidna generates random inputs. In contrast,

MagicMirror automatically checks for vulnerabilities without requiring the user to

implement property checkers.

Harvey [11] uses the Secant method [40], similar to sFuzz, to predict inputs

by measuring the linear distance of existing inputs on how far they are from

negating a branching condition. To handle the state-dependent behavior, Harvey

fuzzes transaction sequences in a targeted and demand-driven way, assisted by an

aggressive mode that directly fuzzes the persistent state of a smart contract. In

contrast, MagicMirror uses constraint solving to generate precondition-satisfying

tests, which can also easily handle non-linear relationships defined in preconditions.

74

To handle state-dependent behaviors, MagicMirror employs the selective state

exploration to generate diverse contract states without introducing the state

explosion problem.

Symbolic Execution. Oyente [14] analyzes a smart contract by

symbolically executing individual functions. However, Oyente does not deal with

the state reachability issue. That is, the states it uses to execute a function may not

be reachable, which causes false positives. MAIAN [22] and Osiris [19] improve

Oyente to reduce the number of false positives. MAIAN uses inter-procedural

symbolic analysis combined with concrete validation to address the state

reachability issue. Osiris focuses exclusively on detecting integer bugs and uses

taint analysis to reduce false positives. Mythril [15] uses symbolic execution and

its concolic models to check for a variety of vulnerabilities. Mythril concretize

symbolic variables on demand to verify reachability and solve for path constraints

requiring concrete values. In general, symbolic execution suffers from the path

explosion problem. Also, path conditions collected during symbolic execution

could be difficult to solve. MagicMirror also uses constraint solving, but only for

preconditions that are typically much simpler than path conditions.

Other Static Analysis Approaches. MadMax [18] uses the bytecode level

control flow graph, IR, and rules created using the Datalog language to identify

gas-related vulnerabilities. Securify [17] extracts semantic information based on a

contract’s dependency graph and checks compliance and violation patterns defined

in its domain-specific language. When compared to these approaches, MagicMirror

is a dynamic approach in that it executes smart contract functions with concrete

tests to detect vulnerabilities.

3.7. CONCLUSION

In this work, we present a novel approach that combines the power of

75

constraint solving, selective state exploration, CT, and fuzzing to test smart

contracts effectively. MagicMirror requires access to the source code of smart

contracts. Many real-world contracts have their source code publicly available on

Etherscan. This is especially true for contracts that interact with public users. Public

access to the source code allows involved parties to inspect the contract, increasing

their confidence about contract execution. We note that all the contracts used in our

experiments are real-world contracts, and their source code is publicly available. In

our experiment, we compared MagicMirror to two state-of-the-art smart contract

fuzzing tools, sFuzz and ILF. Our experiment results show that MagicMirror

performs better than sFuzz and ILF on both code coverage and vulnerability

detection abilities. We note that all inputs, results, and scripts for running the

experiments are saved for reproducibility and are available at [33].

In the future, we plan to add more features and optimize MagicMirror.

Currently, MagicMirror cannot access non-public state variables’ values, because

MagicMirror relies on the getter functions automatically created for public state

variables to retrieve state variable values. We plan to access their values directly

from contract storage instead of relying on getters. This would make it possible to

access the values of non-public state variables. We also plan to add oracles to detect

more types of vulnerabilities, e.g., Suicidal contracts allowing anyone to destruct,

arbitrary send vulnerability where external contracts can call the target contract to

send Ethers to an arbitrary address. Finally, we plan to perform static analysis of

bytecode instead of source code to obtain information needed by MagicMirror, e.g.,

identifying preconditions. This would allow MagicMirror to be used when source

code is not available.

3.8. REFERENCES

1. P. Daian, “Analysis of the DAO exploit,” Hacking, Distributed, 18-Jun-

76

2016. [Online]. Available:

https://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/.

[Accessed: 01-Oct-2020].

2. PeckShield, “New batchOverflow Bug in Multiple ERC20 Smart Contracts

(CVE-2018-10299),” blog.peckshield.com, 22-Apr-2018. [Online].

Available: https://blog.peckshield.com/2018/04/22/batchOverflow/.

[Accessed: 01-Oct-2020].

3. PeckShield, “New ceoAnyone Bug Identified in Multiple Crypto Game

Smart Contracts (CVE-2018–11329),” Medium, 21-May-2018. [Online].

Available: https://medium.com/@peckshield/new-ceoanyone-bug-

identified-in-multiple-crypto-game-smart-contracts-cve-2018-11329-

898cdceac7e0. [Accessed: 01-Oct-2020].

4. PeckShield, “New proxyOverflow Bug in Multiple ERC20 Smart Contracts

(CVE-2018-10376),” blog.peckshield.com, 25-Apr-2018. [Online].

Available: https://blog.peckshield.com/2018/04/25/proxyOverflow/.

[Accessed: 01-Oct-2020].

5. López Vivar, A. T. Castedo, A. L. Sandoval Orozco, and L. J. García

Villalba, “An Analysis of Smart Contracts Security Threats Alongside

Existing Solutions,” Entropy, vol. 22, no. 2, p. 203, Feb. 2020.

6. P. Anderson, “The use and limitations of static-analysis tools to improve

software quality,” CrossTalk: The Journal of Defense Software Engineering,

vol. 21, no. 2, p. 18–21, 2008.

7. N. Stephens et al., “Driller: Augmenting fuzzing through selective symbolic

execution,” Proc. Symp. Netw. Distrib. Syst. Secur. (NDSS), pp. 1-16, 2016.

8. T. Nguyen, L. Pham, J. Sun, Y. Lin and M. Tran, “sFuzz: An efficient

adaptive Fuzzer for solidity smart contracts,” Proc. 42nd Int. Conf. Softw.

Eng. (ICSE), Jul. 2020.

9. G. Grieco, W. Song, A. Cygan, J. Feist, and A. Groce, “Echidna: effective,

77

usable, and fast fuzzing for smart contracts,” Proc, 29th Int. Symp. Software

Testing and Analysis (ISSTA), Jul. 2020

10. Jiang, Y. Liu and W. K. Chan, “ContractFuzzer: Fuzzing smart contracts

for vulnerability detection,” Proc. 33rd ACM/IEEE Int. Conf. Automated

Softw. Eng. (ASE), pp. 259-269, Sep. 2018.

11. V. Wüstholz and M. Christakis, “Harvey: A greybox fuzzer for smart

contracts, ” arXiv preprint, 2019, [online] Available:

https://arxiv.org/abs/1905.06944.

12. J. He, M. Balunovic, N. Ambroladze, P. Tsankov and M. T. Vechev,

“Learning to fuzz from symbolic execution with application to smart

contracts,” Proc. ACM SIGSAC Conf. Comput. Commun. Secur. (CCS), p.

531-548, Nov. 2019.

13. L. Yu, Y. Lei, R. N. Kacker, and D. R. Kuhn, “Acts: A combinatorial test

generation tool,” in 6th International Conference on Software Testing,

Verification and Validation (ICST), p. 370-375, 2013.

14. L. Luu, D.-H. Chu, H. Olickel, P. Saxena and A. Hobor, “Making smart

contracts smarter,” Proc. ACM SIGSAC Conf. Comput. Commun. Secur.

(CCS), p. 254-269, Oct. f2016.

15. Mythril GitHub Repository, [Online]. Available:

https://github.com/ConsenSys/mythril. [Accessed: 01-Oct-2020].

16. Jiang, A. Wang, Z. Zheng, W. K. Chan, and N. Li, “Artemis: An improved

smart contract verification tool for vulnerability detection”, CCF China

Blockchain Conf. (CCF CBCC), p. 1–17, 2019.

17. P. Tsankov, A. Dan, D. Cohen, A. Gervais, F. Buenzli and M. Vechev,

“Securify: Practical security analysis of smart contracts,” Proc. ACM

SIGSAC Conf. Comput. Commun. Secur. (CCS), p. 67-82, Jan. 2018.

18. N. Grech, M. Kong, A. Jurisevic, L. Brent, B. Scholz and Y. Smaragdakis,

“Madmax: Surviving out-of-gas conditions in ethereum smart contracts”,

78

Proc. ACM Program. Lang, vol. 2, no. OOPSLA, p. 116:1-116:27, Oct.

2018,.

19. F. Torres, J. Schütte and R. State, “Osiris: Hunting for integer bugs in

ethereum smart contracts,” Proc. 34th Annu. Comput. Secur. Appl. Conf.,

p. 19-34, Dec. 2018.

20. J. Feist, G. Grieco and A. Groce, “Slither: a static analysis framework for

smart contracts,” Proceedings of the 2019 IEEE/ACM 2nd International

Workshop on Emerging Trends in Software Engineering for Blockchain

(WETSEB), p. 8-15, 2019.

21. L. Brent et al., “Vandal: A scalable security analysis framework for smart

contracts,” arXiv preprint, 2018, [online] Available:

https://arxiv.org/abs/1809.03981.

22. Nikolić, A. Kolluri, I. Sergey, P. Saxena and A. Hobor,” “Finding the

greedy prodigal and suicidal contracts at scale,” Proceedings of the 34th

Annual Computer Security Applications Conference, p. 653-663, 2018

23. M. Zalewski, American Fuzzy Loop, [online] Available:

http://lcamtuf.coredump.cx/afl/

24. C. Peng, S. Akca and A. Rajan, “SIF: A Framework for Solidity Contract

Instrumentation and Analysis,” 26th Asia-Pacific Software Engineering

Conference (APSEC), p. 466-473, 2019

25. G. Klees, A. Ruef, B. Cooper, S. Wei and M. Hicks, “Evaluating fuzz

testing,” Proc. ACM SIGSAC Conf. Comput. Commun. Secur. (CCS), p.

2123-2138, Jan. 2018.

26. Ethereum Improvement Proposals, “EIP-20: ERC-20 Token Standard,”

eips.ethereum.org, 19-Nov-2018. [Online]. Available:

https://eips.ethereum.org/EIPS/eip-20. [Accessed: 01-Oct-2020].

27. P. Hegedus, “Towards Analyzing the Complexity Landscape of Solidity

Based Ethereum Smart Contracts,” 2018 IEEE/ACM 1st International

79

Workshop on Emerging Trends in Software Engineering for Blockchain

(WETSEB), Gothenburg, Sweden, 2018, pp. 35-39.

28. Y. Lei, R. Kacker, D. R. Kuhn, V. Okun and J. Lawrence, “IPOG: A

General Strategy for T-Way Software Testing,” 14th Annual IEEE

International Conference and Workshops on the Engineering of Computer-

Based Systems (ECBS’07), Tucson, AZ, 2007, pp. 549-556

29. Echidna, a smart fuzzer for Ethereum, [Online]. Available:

https://blog.trailofbits.com/2018/03/09/echidna-a-smart-fuzzer-for-

ethereum/.

30. Etherscan, [Online]. Available: https://etherscan.io/.

31. ILF GitHub Repository, [Online]. Available: https://github.com/eth-

sri/ilf/tree/9e8e3015a48783634658c8e748f113d2da2628c7.

32. Docker, [Online]. Available: https://www.docker.com/.

33. MagicMirror, [Online]. Available: https://smart-explorer.gitbook.io/smart/.

34. Geth GitHub Repository, [Online]. Available:

https://github.com/ethereum/go-ethereum.

35. L. Moura and N. Bjørner, “Z3: An Efficient SMT Solver”, TACAS 2008.

Lecture Notes in Computer Science, vol 4963. Springer, Berlin, Heidelberg.

https://doi.org/10.1007/978-3-540-78800-3_24

36. Py4j, [Online]. Available: https://www.py4j.org/

37. Solidity-coverage, [Online]. Available: https://github.com/sc-

forks/solidity-coverage

38. Truffle development suite, [Online]. Available:

https://www.trufflesuite.com/

39. sFuzz GitHub Repository, [Online]. Available:

https://github.com/duytai/sFuzz/tree/eb690d4287af4c7dc0ecfce7447e4b44

62775d55.

40. M. Avriel, “Nonlinear Programming: Analysis and Methods,” Prentice Hall.

80

pp. 220–221.

41. Echidna GitHub Repository, [Online]. Available:

https://github.com/crytic/echidna/tree/31865b1942733ad285f8d305db3c5f

f3e3a193a1.

42. Using Echidna to test a smart contract library, [Online]. Available:

https://securityboulevard.com/2020/08/using-echidna-to-test-a-smart-

contract-library/.

43. Smart Contract Fuzzing, how to find edge cases with echidna, [Online].

Available: https://medium.com/coinmonks/smart-contract-fuzzing-

d9b88e0b0a05.

81

Chapter 4. Conclusion

In this dissertation, we present two novel approaches for improving the

testing and debugging of emerging software applications, big data applications, and

smart contracts.

For big data application, we presented a framework to provide developers

with method-level tests that were recorded from a failed system-level execution

with the original dataset. These method-level tests preserve a given coverage

criterion, e.g. edge, edge-pair, and edge-set coverage, and thus are likely to

reproduce the failure observed at the system level. The binary reduction is used to

further reduce method-level tests with large input. The set of method-level tests that

are provided by our approach could help developers to effectively debug suspicious

methods against properties of the original input dataset, and significantly reduce

time and effort required for debugging big data applications.

For smart contracts, we present a novel approach that combines the power

of constraint solving, selective state exploration, CT, and fuzzing to test smart

contracts effectively. MagicMirror requires access to the source code of smart

contracts. Many real-world contracts have their source code publicly available on

Etherscan. This is especially true for contracts that interact with public users. Public

access to the source code allows involved parties to inspect the contract, increasing

their confidence about contract execution. We note that all the contracts used in our

experiments are real-world contracts, and their source code is publicly available. In

our experiment, we compared MagicMirror to two state-of-the-art smart contract

fuzzing tools, sFuzz and ILF. Our experiment results show that MagicMirror

performs better than sFuzz and ILF on both code coverage and vulnerability

detection abilities.

