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ABSTRACT 

 

Application of Interpretable Machine Learning 

in Flight Delay Detection 

 

 

Afroza Hossain (Masters of Science in Information System) 

 

 

 

Supervising Professor: Dr. Manjeri K Raja 

 

 

Precise flight delay prediction is vital for the airline industries and passengers. This thesis focuses 

on applying several machine learning and auto-ML techniques to predict flight delays. A flight 

delay is said to occur when an airline lands or takes off later than its scheduled arrival or departure 

time, respectively. Conventionally, if a flight's departure time or arrival time is greater than 15 

minutes than its scheduled departure and arrival times respectively, then it is considered that there 

is a departure or arrival delay with respect to the corresponding airports. Notable reasons for 

commercially scheduled flights to be delayed are adverse weather conditions, air traffic 

congestion, a late reaching aircraft to be used for the flight from a previous flight, maintenance, 

and security issues. In this research study, a python-based model will be developed for a specific 

Airline and an Airport from already established models that are available in literature and were 

implemented in flight delay predictions. Once that is completed, the same model will be used for 

a different Airline at the same Airport. Later, the model will be implemented for several other 

Airports to check the adaptability of the models. In this process, there will be an attempt to enhance 

the existing models by carefully selecting the dataset and features. In the final stage, the results 

will be compared with the Microsoft Azure Machine Learning Studio, the best model will be 
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deployed using Auto-ML and the existing interpretable machine learning package, LIME will be 

used to explore local prediction capability of the models. This study has been conducted with the 

hopes that alongside other increasing numbers of studies in this subject matter, it will contribute 

to improving on-time performances of flights to benefit airline customers, airline personnel, and 

airport authorities. 
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Chapter 1 

INTRODUCTION 

An arrival flight delay is said to occur when an airline lands later than its scheduled arrival time. 

Notable reasons for commercially scheduled flights to delay are adverse weather conditions, air 

traffic congestion, late reaching aircraft to be used for the flight from previous flight, maintenance 

and security issues.  

 

Flight delays are relatively common in both domestic and international flights. Based on the 

statistics of the Bureau of Transportation, 18% (average of last 10 years)((Bureau of 

Transportation Statistics, n.d.) of US domestic flights arrive more than 15 minutes late. According 

to Baik et al., these delays are not only a cause of frustration for the passengers, Airline, and airport 

authorities but also play an important role in financial loss for all parties (Baik et al., 2010)). Some 

of the flights are more frequently delayed than others. The continuous technological advancement 

in data storage enables the storage of a massive amount of data and computational power leads to 

the development of data analytics. Different government agencies, airport authorities, and Airline 

companies are collecting significant amounts of data and analyzing these datasets to aid in gaining 

knowledge about the delays. A robust flight delay prediction model with proper explanation of the 

delay is not only an interest of travelers but also of Airlines and Airport Authorities. 

 

Figure 1: A typical process of Air Transportation System (Sternberg et al., 2017) 
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PROBLEM STATEMENT & RESEARCH PLAN 

 

Air traffic is a very complex transportation system and the reason for the delay can occur at 

different stages of the process. Figure 1 is a schematic of this complex process.  

In this research study, a python-based model will be developed for a specific Airline and one of 

their operating or hub Airport from already established models that are available in the literature 

and were implemented in flight delay predictions. These data-driven methods will only consider 

historic observations and will be using several years of records (largest public dataset of flight 

delay) from the Bureau of Transportation Statistics (BTS) of the United States Department of 

Transportation of US domestic flight delays.  The model will not take into account short-term 

effects, such as current weather or traffic situation.  The same model will then be used for a 

different Airline and it’s one of the operating or hub Airports. In this process, there will be an 

attempt to enhance the existing models by carefully selecting the dataset and features. In the final 

stage, the results will be compared with Microsoft Azure Machine Learning Studio and also with 

Azure Auto-ML, and then the interpretation of prediction of delay will be made based on an 

interpretable machine learning package, Local Interpretable Model-Agnostic Explanations 

(LIME). This study is being conducted with the hopes that it will contribute to improving on-time 

performances of flights for the benefit of the airline customers, airline personnel, and airport 

authorities. Figure 2, which can be found below, represents the Research Plan for Flight Prediction 

Model and the interpretation of the prediction. 

 

 

Figure 2: Flow Chart of the Research Plan for Interpretable Flight Delay Prediction 

 

 



13 
 

Chapter 2 

LITERATURE REVIEW 

APPLICATION OF MACHINE LEARNING IN FLIGHT DELAY PREDICTION 

 

Flight delays are an important subject in literature due to their economic and environmental 

impacts. They may increase costs to customers and operational costs to airlines. Apart from 

outcomes directly related to passengers, delay prediction is vital during the administrative process 

for all parties involved in the air transportation system, this has been explored in Annual U.S. 

Impact of Flight Delays by FAA (Apo-, 2016). Approximately $23 billion loss was reported due 

to delay of flights in the U.S as per the yearly reports of FAA, these include both domestic and 

international flights. In the last few decades, many attempts of flight delay predictions have been 

made by researchers based on Machine Learning, Deep Learning, and Big Data approach (Figure 

2). A regression model using Gradient Boosting Regressor for predicting both Flight Departure 

and Arrival Delays was explored and analyzed by Manna et al. and Yazdi et al.(Yazdi et al., 

2020a)(Manna et al., 2018). Applied Supervised Machine Learning Algorithms like decision trees, 

random forests, AdaBoost, and k-Nearest Neighbours for predicting weather influenced flight 

delay were reported by Choi et al.(Choi et al., 2016). Rebollo et al.(Rebollo & Balakrishnan, 2014) 

applied Random Forest on an air traffic network framework for predicting flight departure delays 

in the future. Different machine learning methods such as decision trees were analyzed by Kuhn 

et al. and Dothang et al. (Truong et al., 2018) (Kuhn & Jamadagni, 2017), random forest models 

were used in Predictive Modeling of Aircraft Flight Delay by Kalliguddi et al. (Kalliguddi et al., 

2017), naïve Bayes model was used in Prediction Analysis of Flight Cancellation Based on Spark, 

bagging classifier, extra trees classifier, gradient boosting methods were used by Yanying et 

al.(Yanying et al., 2019). A recent article by Yazdi et al. (Yazdi et al., 2020b) proposes a model 

for predicting flight delay based on Deep Learning (DL). 
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Figure 3:Publication in last two decades in Flight Delay Prediction Statistical Analysis, Probabilistic Models, Network 

Representation, Operational Research, Machine Learning (Sternberg et al., 2017) 

According to Teja et al, (Teja, n.d.) flight delays do not only have an economic impact but also 

have an environmental impact, this was determined using machine learning algorithms like 

XGBoost regression and Linear regression Techniques. Another model which was used to 

predict flight delay by Sina (Gui et al., 2020) tries to reduce delays to gain the loyalty of their 

customers using artificial neural network (ANN) techniques. 

MACHINE LEARNING WORKFLOW 

 

Machine Learning (ML) models are used to learn from data without being explicitly programmed.  

ML models are code that has been trained to recognize several types of patterns in the data and 

make a prediction based on that. Machine learning techniques are useful for solving experiments 

efficiently and effectively. A great amount of data is loaded into a computer program and a model 

is chosen to fit the data, which allows the program, without any help to make predictions, based 

on the trained data.  Predictive models are only as good as the data from which they are built, thus 

using valid and relevant data helps with high-performing models. Here, the analogy of garbage-in 

garbage-out takes into effect which means that if a model is fed garbage, that is exactly what it 

will return, in other words, the trained model will provide invalid predictions.  Based on Figure 3, 

the workflow of Machine learning includes all the steps required to build the proper machine 

learning model from scratch.  
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Figure 4:Schematic of generic Machine Learning workflow 

Define Problem: This is the first step of machine learning. It is important to identify what exactly 

one expects as output from a model. This might involve in having some assumptions which mostly 

come from the domain knowledge.   

Gather Data: Based on one problem statement, one must gather an appropriate data set. Quality 

of data dictates the accuracy of the model, so it is a very important stage of ML workflow. This 

can be a tedious process because getting the right dataset in the right format can be challenging. It 

has to correlate with the outcomes which are being predicted, accumulating data, requires a clear 

understanding of domain knowledge, and proper engagement in sampling from a large database to 

capture records to be used in an analysis. Figure (below) is a depiction of different sources of data 

for machine learning models.  
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Figure 5: Different sources of data for machine learning models 

 

Data Pre-processing: Data preprocessing is the process of cleaning data and preparing it to be 

used to train the model. Most scientists believe data cleaning and formatting can be considered the 

most challenging part of any project (Shmueli et al., 2017).  In the real world, data is incomplete, 

inconsistent, and inaccurate which means that there are errors and outliers present in the data which 

causes there to be a lack in patterns and trends. According to (Shmueli et al., 2017) data 

preprocessing enhances the quality of data to stimulate the extraction of meaningful insights. Some 

of the key steps of data preprocessing are  

a) gathering the dataset: In this case, data was gathered from the Bureau of Transportation Statistics 

for 2016-2019, using only American Airlines (AA) and Southwest (WN), limited to the US 

domestic flights and a couple of airports.  

b) Importing all the required libraries: importing libraries and dependencies, into the Python 

environment will make tasks easier, as it has built-in functions and models that can be used instead 

of doing that ourselves. For example, some of the libraries that will be used are pandas, which 

is used for data cleaning and analysis, NumPy which is a library that is mostly used for, multi-

dimensional arrays and matrices, along with mathematical functions to operate on these arrays, 

matplotlib which is used for analyzing and visualizing charts or graphs, as well as several other 

libraries which will be used throughout the project.  
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c) Importing the dataset: When running python programs, datasets are required for data analysis. 

Python has several modules for importing external data. For example, the method used in this 

project is by importing the CSV to enable us to read each row in the file using a comma as a 

delimiter, which is best described in (Importing Data in Python, n.d.)  

 

d) The next step in ML is feature engineering, it is the process of using domain knowledge to 

extract features from raw data. These features can be used to improve the performance of machine 

learning algorithms. The following list of techniques exist in feature engineering: Imputation, 

Handling Outliers, Binning, Log Transform, One-Hot Encoding, Grouping Operations, Scaling, 

some of which will be used in this thesis. 

i. Data cleaning or identifying and handling the missing values: according to (Shmueli et al., 

2017) from a statistics point of view, it is important to understand different types of missing 

data. The type of missing data will help with filling in the data or discarding them. In 

python, isnull and notnull can also be used to summarize missing values, this will be 

discussed in greater detail further in this paper.  

ii. Encoding the categorical data: According to (Shmueli et al., 2017) data scientists spend 

80% of their time cleaning and preparing data, in this process converting categorical data 

is an inevitable activity. It helps improve the model quality and provides better feature 

engineering. For example, in some of the feature binary variables containing either 0 or 1, 

where 0 represents the absence, and 1 represents the presence.  

iii. Feature Scaling is also sometimes involved in this step of ML workflow. It helps to 

normalize the data through standardization, which involves rescaling the properties of a 

standard normal distribution with a mean of zero and a standard deviation of one. 

Normalization is a scaling technique in which values are rescaled, hence varying between 

zero and one, it is also known as Min-Max scaling. Error! Reference source not found. 

is the formula for normalization where Xmax and Xmin signify the maximum and the 

minimum values of the feature, respectively. 

 

iv. Another type of scaling often used is Standardization where the values are focused around 

the mean with a component standard deviation. Error! Reference source not found. is 
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the formula for standardization, where represents the mean of the feature values 

and  represents the standard deviation of the feature values. 

 

 

Once preprocessing has been complete, data exploration is the first step in data analysis where the 

use of data visualization and statistical techniques describes the nature of the dataset. Data 

exploration helps us visually explore and categorize relationships between different features, 

structures, and the presence of outliers. It also helps us understand the patterns and trends present 

in the raw data.  

 

Building Data set: Based on the data, and the purpose of the problem, one has to determine the 

Machine Learning task to be performed amongst the following tasks: classification, prediction, 

clustering, and partitioning the data accordingly. For example, if the problem is a supervised 

(prediction), the dataset is divided into three parts: training, validation, and test datasets. Many 

Machine Learning techniques such as regression, neural nets, decision trees, etc, can be used in 

this iterative process. Below figure is an example of the process of splitting the data set.  

 

 

Figure 6:Process of splitting the data set 
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Dealing with Imbalanced data 

 

As most of the machine learning algorithms are designed to maximize accuracy and reduce error, 

it works best when the number of samples in each class are about equal but in real data set this is 

very rare.  

Class imbalance is a problem that arises in machine learning classification problems. A 

classification problem in machine learning in which a target must be predicted given some input. 

There is a great chance that the distribution values may be different and due to this difference in 

the class, the algorithms may be biased towards the majority values and will not perform well on 

the minority values, as a result, the difference in class affects the outcome of the model. 

For an example, if someone has a two-class problem (e.g., yes or no). If 10% data points are of the 

class of “Yes”, 90% for the class of “No” class. The “No” class is the majority class and “Yes” 

class is the minority. Here “No” class to “Yes” class ratio is very high. This problem is referred to 

as a class imbalance.  

 

Figure 7:Example of imbalanced dataset 

There are many techniques which are used in dealing with the imbalanced data. Below are some 

examples of those techniques.  

Oversampling: This technique tries to increase the size of minority samples to create a balance.  
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Figure 8: Oversampling example, creating  balance 

One of the popular oversampling method is Synthetic Minority Over-sampling Technique 

(SMOTE). By using a distance measure, SMOTE algorithm selects two or more similar instances 

to create synthetic samples from the minority class. below is a schematic of the algorithm.  

 

Figure 9:SMOTE (Bank Data: SMOTE. This Will Be a Short Post before We… | by Zaki Jefferson | Analytics Vidhya | Medium, 

n.d.) 

Undersampling: Undersampling works in opposite way of oversampling, it aims to decrease the 

size of the majority class to balance the dataset. 
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Figure 10: Undersampling technique example, creating balance 

Penalize Model: One can penalize the model to pay more attention to the minority class by 

imposing an additional cost on the model for making classification mistakes on the minority class 

during training.  

Assigning Weights for the Classes: As stated earlier, machine learning algorithms are not very 

useful with biased class data. When training algorithms, skewed distribution of the classes can be 

taken into consideration. This can be accomplished by giving different weights to both the 

majority and minority classes. The formula to calculate weights is Error! Reference source not 

found.: 

 

Where,  

wj represents the weight for each class 

n_samples represents the total number of samples 

n_classes represents the total number of unique classes in the target 

n_samples represents the total number of rows of the respective class 

  

In order to achieve more accurate and meaningful results, weights were distributed among the 

classes. 

Building Model: Before diving into models, understanding algorithms is important, Machine 

learning algorithms can be divided into 3 broad categories:  

❖ Supervised learning  

❖ Unsupervised learning, and  
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❖ Semi-supervised learning.  

Supervised learning is the function that maps an input to an output based on example input-output 

pairs. Unsupervised learning is a type of algorithm that learns patterns from untagged data. 

According to (Truong et al., 2018), semi-supervised learning is an approach that combines a small 

amount of labeled data with a large amount of unlabeled data during training. As can be interpreted 

from the name, semi-supervised learning falls between unsupervised learning and supervised 

learning. Machine learning algorithms build a model based on sample data, identified as the 

"training data", to make predictions. There are many models in Machine Learning but the 

following four models: Random Forest, AdaBoost, XgBoost, Neural network will be looked into.  

 

Random forest: Random forest is one of the most used algorithms, it can be used for both 

classification and regression tasks, classification will be used in the case of this thesis. To use this 

algorithm in Python, the RandomForest Classifier and BaggingClassifier libraries are required to 

be imported. It is the supervised, ensemble learning, usually trained with the “bagging” method 

which helps with the overall result. The Random Forest algorithm will be used because it is very 

easy to measure the importance of each feature in the prediction. The hyperparameters are used to 

increase the predictive power of the model or to make the model quicker. Some common 

hyperparameters for increasing the predictive power are the n_estimators which is the number of 

trees the algorithm builds. In general, a higher number of trees increases the performance and 

makes the predictions more stable. Another important hyperparameter is max_features, which is 

the maximum number of features random forest considers when splitting a node. The last 

hyperparameter is min_sample_leaf which helps determine the minimum number of leafs required 

to split an internal node. Although the Random Forest algorithm is versatile, it is slow in creating 

predictions once the model is made. The Random Forest algorithm uses the Gini Index which is a 

measure for classification type problems.  For the purpose of this thesis, the function being used 

takes in the parameters gini which measures the quality of a split and the maximum depth of the 

tree. If the maximum depth is denoted to none, then the nodes are expanded until all leaves contain 

less than min_samples_split samples. 
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The formula Error! Reference source not found. uses probability to determine the Gini of each 

branch on a node;  deciding which branch is more likely to occur. Here, Pi represents the relative 

frequency of the class in the dataset and c represents the number of classes. This can also be done 

using entropy. The formula for entropy is shown below: 

 

Entropy manages the probability of a certain outcome for making a decision (the equation above). 

This algorithm can be extremely useful with different types of data sets. It is easy to use, fast to 

train and finds an accurate representation. 

 

AdaBoost: The next model which is used in this thesis is AdaBoost, short for “Adaptive Boosting. 

To use this algorithm in Python, the AdaBoostClassifier library needs to be imported. It focuses 

on classification problems and uses an ensemble learning method. AdaBoost uses an iterative 

approach to learn from the mistakes of weak classifiers, and turns them into strong ones as shown 

below. 

 

Figure 11:Adaboost Classifier iteration approach 

 

The way the model works is, it makes n number of decision trees during the training, as the first 

decision tree is made, and the record which is incorrectly classified is given more priority. Two 

hyperparameters that are mostly used are the number of estimators (n_estimators) and the learning 

rate.  Only those incorrect records are sent as input for the next model and the process will 
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continue. The final equation for classification can be represented Error! Reference source not 

found.: 

 

where fm stands for the m’th weak classifier and θm is the corresponding weight. It represents the 

weighted combination of M weak classifiers.   

 

XGBoost: Another algorithm which will be looked into is XGBoost, it is a decision-tree-based 

ensemble Machine Learning algorithm that uses a gradient boosting framework. It helps in 

prediction problems involving unstructured data. This algorithm has many advantages such 

as Regularization which also helps to reduce overfitting. Overfitting occurs when the model tries 

to contain all the data points in the provided dataset, which reduces the accuracy of the model. The 

overfitted model results in low bias and high variance. XGBoost has an in-built procedure to 

handle missing values on each node, which allows users to run cross-validation at each iteration of 

the boosting process. The final equation for XGBoost can be represented as Error! Reference 

source not found.: 

 

 

 

Multilayer Perceptron (MLP): The last algorithm/model which will be used in this project is 

Multilayer Perceptron (MLP). MLPs are suitable for classification prediction problems. It utilizes 

a supervised learning technique called backpropagation. It is an algorithm that calculates a 

complicated gradient. In the Multilayer perceptron, there are combinations of neurons. For 

instance, in a three-layer network, the first layer is the input layer, the middle layer is the hidden 

layer and the last layer is the output layer, as can be seen Figure 12. 
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Figure 12: Multilayer perceptron-NN 

MLP networks are composed of many functions that are chained together. Each layer is 

represented as y = f(WxT + b) where f represents the activation function, W represents the set of 

parameters, or weights, in the layer, and x represents the input vector. To use this algorithm in, 

Python, the tensorflow and keras library needs to be imported. Keras works as an interface for 

TensorFlow which focuses on the inference of deep neural networks. 

 

Training and testing the model: According to Wiley et al, (Data Mining for Business Analytics: 

Concepts, Techniques, and Applications in R | Wiley, n.d.), once the model is selected based on the problem 

definition and domain knowledge, it is time to feed the training set to the algorithm so that it can learn 

suitable parameters and features used in the data set. Validation data set is mainly used in modifying or 

discarding variables and includes a process of tuning model-specific hyperparameters until a satisfactory 

accuracy level is accomplished.  

In the testing stage, a test dataset is used to verify that model using accurate features. In this part of the 

workflow, one should return to training the model based on the feedback to improve accuracy and desired 

output. 

 

Model Evaluation and Feedback: It can be done using accuracy, precision, recall and F1-score. 

Generally, finding accuracy can determine whether a model is being trained correctly and how it 

may function. The problem with using accuracy is that it does not do well when one has a severe 

class imbalance, that is why precision, recall must also be considered. Error! Reference source 
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not found.Error! Reference source not found. is the formula for how accuracy is 

mathematically interpreted.  

  

  

Precision is helpful when false positives are high, precision can help predict positives. Let us 

assume a model has very low precision, which can lead to the assumption that there are a lot 

more delayed flights, and this may be a false conclusion.  Error! Reference source not found. 

is the mathematical equation for precision. 

 

The opposite of precision is recall, recall helps when the false negatives are high, as false 

negatives can also be misleading. Error! Reference source not found. is the mathematical 

equation for recall: 

 

When modelling, machine learning algorithms assume that the data is evenly distributed within 

classes. If the imbalanced data is not taken care of, the model may predict high accuracy, but this 

will not have any value to the objective. According to (James et al., 2000) the F1-score is simply 

the harmonic mean of precision (PRE) and recall (REC). The balance between precision and 

recall can be found using the F1-score metric Error! Reference source not found., which is 

beneficial toward imbalanced datasets.  

 

 
 

 

Interpretable Machine Learning:  

 

Application of Machine learning is now widespread but ML models are still considered as a black 

box which is a barrier to the adoption of machine learning. Why can a ML model make certain 
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prediction? That is one of the big questions in the implementation of ML. Interpretability of those 

prediction can help to increase the trust, to select better models and to reduce the bias that exist in 

the data set. Figure below is a pictorial explanation of the importance of interpretable machine 

learning. (Interpretable Machine Learning - Christoph Molnar - Google Books, n.d.) ((Masís, 2021) 

 

Figure 13: Importance of interpretable ML 

 

Lime stands for Local Interpretable Model-Agnostic Explanations. LIME allows end-users to 

interpret predictions and take action. It is model-agnostic, implying it can be applied to any 

machine learning model.  

 

Figure 14: schematic of how LIME works 

Above Figure is a schematic of how LIME works. The technique attempts to understand the model 

by studying the input of data and recognizing how the predictions change. In simple words, LIME 

assumes a black-box machine learning model and examines the relationship between input and 

output. It helps understand feature importances on a dataset level. Also, it allows verification of 

the problem statement, but when using LIME, it is important to accurately interpret the output. 
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The way LIME gives explanation of the model is by approximating the black box model for each 

prediction to explain, permute the observation n times, then let the complex model to predict the 

outcome of all permuted observations. It calculates the distance from all permutations to the 

original observation. Followed by converting the distance to a similarity score. Select m features 

best describing the complex model outcome from the permuted data. Then it fits a simple model 

to the permuted data, explaining the complex model outcome with the m features from the 

permuted data weighted by its similarity to the original observation. Finally, extract the feature 

weights from the simple model and use these as explanations for the complex models local 

behavior. Figure below explain steps that LIME uses for the interpretation (Ribeiro et al., 2016). 

 

Figure 15: Steps that LIME uses for the interpretation 
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Chapter 3 

DATA GATHERING PREPROCESSING AND EXPLORATION 

American Airlines, Inc. (AA) is an American airline carrier that is based on Fort Worth, Texas. It 

is arguably the world's largest airline on grounds of revenue, fleet size, and scheduled passenger 

kilometers flown [2]. Hence, in addition to international flights, it is observed to be quite obvious 

for passengers to prefer American Airlines for domestic flights too. However, flight delays 

concerned with American Airlines often seem sudden and unprecedented and these delays cause 

passengers to lose their trust in such a widely-known and internationally recognized airline. 

Therefore, an Intelligent and Automated Prediction System is a must in this case to predict possible 

airline delays. The model that will be discussed takes the flight details regarding American 

Airlines; data was gathered from the Bureau of Transportation Statistics (BTS) for 2016-2019 for 

flight that departed for DFW from following Origin Airport. 

1. Los Angeles International Airport (LAX) 

2. O'Hare International Airport (ORD) 

3. Phoenix Sky Harbor International Airport (PHX) 

4. Miami International Airport (MIA)  

5. Charlotte Douglas International Airport (CLT) 

6. Denver International Airport (DEN) 

7. Philadelphia International Airport (PHL) 

8. Ronald Reagan Washington National Airport (DCA) 

9. John F. Kennedy International Airport (JFK) 

10. Hartsfield-Jackson Atlanta International Airport (ATL) 

11. LaGuardia Airport (LGA) 

Some of the selected Airports were the operating airports (Hub) and some are busiest airports of 

USA.  

Southwest Airlines Co. (WN) is the world's largest low-cost carrier airline based on Dallas. Data 

from 2016-19 was collected from BTS for the flights that are departed for Dallas Love Field 

Airport (DAL),one of the operating airport of Southwest,  from following origin airports. 

1. Texas. William P. Hobby Airport (HOU) 

2. Denver International Airport (DEN)  
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3. Chicago Midway International Airport (MDW)  

4. Phoenix Sky Harbor International Airport (PHX)  

5. McCarran International Airport (LAS)  

6. Hartsfield-Jackson Atlanta International Airport (ATL)  

7. Los Angeles International Airport (LAX)  

8. Baltimore/Washington International Thurgood Marshall Airport (BWI)  

9. Orlando International Airport (MCO)  

10. Oakland International Airport (OAK) 

 

For both cases data will be analyzed and arrival delay prediction will be made, which means that 

it will determine whether it will arrive at the concerned airport on-time or not. So, this is a binary 

classification problem.  

Some of the following features will be considered as that will play a key role in determining the 

flight delay. Each feature has a different measurable property that is used while training the 

model. Domain knowledge of these features should be present to understand the dataset for a 

better outcome. 

 

Below are the flight data features and its description from the year 2016 and 2019, which has been 

extracted from the Bureau of Transportation Statistics. There were 86 features found but by 

conducting literature review and the need to reduce data complexity, only 35 features will be used 

and are listed below in below. 

 

Table 1:Features with description 

Feature Information 

Time Period 
1.  YEAR : Year  

2.  QUARTER:  Quarter (1-4)  

3.  MONTH: Month  

4.  DAY_OF_MONTH: Day of Month  

5.  DAY_OF_WEEK: Day of Week  
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Airline 
6.  OP_UNIQUE_CARRIER: 

 

  

Unique Carrier Code. When the same code 

has been used by multiple carriers, a 

numeric suffix is used for earlier users, for 

example, PA, PA(1), PA(2). Use this field 

for analysis across a range of years. 

  

7. OP_CARRIER_FL_NUM: Flight Numb 

Origin 

8. ORIGIN:  Origin Airport Analysis 

Destination 

9. DEST: Destination Airport Analysis 

Departure Performance 

10.  CRS_DEP_TIME: CRS Departure Time (local time: hhmm) 

11. DEP_TIME: Actual Departure Time (local time: hhmm) 

12. DEP_DELAY:  The difference in minutes between 

scheduled and actual departure time. Early 

departures show negative numbers. 

13. DEP_DELAY_NEW:  The difference in minutes between 

scheduled and actual departure time. Early 

departures are set to 0. 

14.  DEP_DEL15:  Departure Delay Indicator, 15 Minutes or 

More (1=Yes)  

15. TAXI_OUT:  Taxi Out Time, in Minutes  

16. WHEELS_OFF: Wheels Off Time (local time: hhmm)   
Arrival Performance 

  17. WHEELS_ON:  Wheels On-Time (local time: hhmm)  

  

18. TAXI_IN: Taxi In Time, in Minutes 

19. CRS_ARR_TIME:  CRS Arrival Time (local time: hhmm)

   

20. ARR_TIME: Actual Arrival Time (local time: hhmm)

   

21. ARR_DELAY: The difference in minutes between 

scheduled and actual arrival time. Early 

arrivals show negative numbers.  

22. ARR_DELAY_NEW: The difference in minutes between 

scheduled and actual arrival time. Early 

arrivals are set to 0.  

23. ARR_DEL15: Arrival Delay Indicator, 15 Minutes or 

More (1=Yes) 

Cancellations and Diversions 

24. CANCELLED: Cancelled Flight Indicator (1=Yes)  
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25. CANCELLATION_CODE: Specifies The Reason For Cancellation

  

26. DIVERTED: Diverted Flight Indicator (1=Yes)  

Flight Summaries  
27. CRS_ELAPSED_TIME: Elapsed Time of Flight, in Minutes 

28. ACTUAL_ELAPSED_TIME: Elapsed Time of Flight, in Minutes  

29. AIR_TIME: Flight Time, in Minutes  
 

Flights Number of Flights Analysis 

30. DISTANCE:  Distance between airports (miles) 

Cause of Delay 

31. CARRIER_DELAY: Carrier Delay, in Minutes  

32. WEATHER_DELAY: Weather Delay, in Minutes  

33. NAS_DELAY: National Air System Delay, in Minutes

  

34. SECURITY_DELAY: Security Delay, in Minutes 

35. LATE_AIRCRAFT_DELAY: Late Aircraft Delay, in Minutes 

 

 

For this thesis, 2016-2019 data was used, and the listed features with descriptions are given in Table 1.  

Data Cleaning: Since this is a binary classification problem, let us represent 0 for ARR_TIME arrival on 

and 1 for delayed arrival for the above features. Since it is a large dataset (153975 entries with a total of 35 

features), additional steps need to be taken by studying each feature and missing values must be 

considered.  For instance, when executing df1.isna().sum(), where df1 is our dataset the missing count of 

values are listed below.  

 

 0   YEAR                 153975 non-null  int64   

 1   QUARTER              153975 non-null  int64   

 2   MONTH                153975 non-null  int64   

 3   DAY_OF_MONTH         153975 non-null  int64   

 4   DAY_OF_WEEK          153975 non-null  int64   

 5   OP_UNIQUE_CARRIER    153975 non-null  object  

 6   OP_CARRIER_FL_NUM    153975 non-null  int64   

 7   ORIGIN               153975 non-null  object  

 8   DEST                 153975 non-null  object  

 9   CRS_DEP_TIME         153975 non-null  int64   
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 10  DEP_TIME             151722 non-null  float64 

 11  DEP_DELAY            151718 non-null  float64 

 12  DEP_DELAY_NEW        151718 non-null  float64 

 13  DEP_DEL15            151718 non-null  float64 

 14  TAXI_OUT             151612 non-null  float64 

 15  WHEELS_OFF           151612 non-null  float64 

 16  WHEELS_ON            151578 non-null  float64 

 17  TAXI_IN              151578 non-null  float64 

 18  CRS_ARR_TIME         153975 non-null  int64   

 19  ARR_TIME             151578 non-null  float64 

 20  ARR_DELAY            151026 non-null  float64 

 21  ARR_DELAY_NEW        151026 non-null  float64 

 22  ARR_DEL15            151026 non-null  float64 

 23  CANCELLED            153975 non-null  float64 

 24  CANCELLATION_CODE    2367 non-null    object  

 25  DIVERTED             153975 non-null  float64 

 26  CRS_ELAPSED_TIME     153975 non-null  float64 

 27  ACTUAL_ELAPSED_TIME  151026 non-null  float64 

 28  AIR_TIME             151026 non-null  float64 

 29  DISTANCE             153975 non-null  float64 

 30  CARRIER_DELAY        31058 non-null   float64 

 31  WEATHER_DELAY        31058 non-null   float64 

 32  NAS_DELAY            31058 non-null   float64 

 33  SECURITY_DELAY       31058 non-null   float64 

 34  LATE_AIRCRAFT_DELAY  31058 non-null   float64 
 

CANCELLED and  DIVERTED feature are dropped as those flight doesn’t arrive at the airports.  

  

BTS listed following five features for reasons for delay:  

❖ CARRIER_DELAY 

❖ WEATHER_DELAY  

❖ NAS_DELAY 

❖ SECURITY_DELAY 

❖ LATE_AIRCRAFT_DELAY 

Before making any decisions related to these features, how much information is available must be 

determined. By executing the Count for “NaN” or missing values in DataFrame, it was found that 

122917 values were missing among all of the five features and the following result was obtained: 

the percentage of valid data was found to 20.1708% and the percentage of missing values was found 

to be 79.829%. Therefore, all “NaN” values were replaced to 0 for the five delay reasons. 

DEP_DEL15 and ARR_DEL15 are dropped as we are interested in just whether the flight will be 

delayed or not. As  DEP_TIME (departure time) and ARR_TIME (arrival time) features seemed 

vague because it does not comprise dates, those features will be converted to the quarter of the day.  
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In the following features TAXI_IN, TAXI_OUT, DEP_DELAY, DEP_DELAY_NEW, 

ARR_DELAY, ARR_DELAY_NEW the Count for “NaN” or missing values were executed in 

DataFrame and it was found that 2397, 2363, 2257, 2257, 2949, 2949 were missing, respectively. 

Since these missing values cannot be retrieved the “NaN” will be replaced by the mean or median.  

  

For the feature CANCELLATION_CODE, by executing the Count for “NaN” or missing values in 

DataFrame, it was found that 151608 values were missing, this feature consists of three categories 

A, B, and C, where A represents Carrier cancellation, B represents Weather delay, and C represents 

National Air System delay. Since this is a categorical feature, it cannot be replaced by using mean 

or median, instead, it was replaced by the most appeared category B. CRS_DEP_TIME, and 

CRS_ARR_TIME is usually a categorical value, however the current format results in too many 

columns, therefore, time is split into quadrants.  

The feature ARR_DELAY, arrival delay reveals the difference in minutes between scheduled and 

actual arrival time. Early arrivals show negative numbers, since this will not be feasible when 

modeling, this data will not be used. Therefore, by comparing the value of each row for the 

"ARR_DELAY" feature, if the total delay is zero or less, it will assign "0", this is denoted as minus-

- arrive early in the dataset, otherwise it will be assigned as "1". Once that was completed, that 

feature was then added to a new feature (column), denoted as "ARR_FLIGHT_STATUS".  

Similarly, for Departure Delay, when comparing the value of each row for the "DEP_DELAY" 

feature (or column), if the total delay zero or less (minus-- arrive early) it will assign "0", otherwise, 

it will be assigned as "1". Once that was completed, that feature was then added to a new feature 

(column) " DEP _FLIGHT_STATUS".  

  

The same will be done for the Cause of delay features such as CARRIER_DELAY, by comparing 

the value of each row for the "CARRIER_DELAY" feature (or column), if the total delay zero or 

less (minus-- arrive early) it will be assigned as "0" otherwise, it will be assigned as "1" and feature 

(column) called "CARRIER_DELAY_STATUS" will be added and the same process will be 

executed on WEATHER_DELAY, NAS_DELAY, SECURITY_DELAY, and 

LATE_AIRCRAFT_DELAY 
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After having added these additional features, there are a total of 40 features as listed below. 

Data columns (total 40 columns): 

 #   Column                Non-Null Count   Dtype   

---  ------                --------------   -----   

 0   YEAR                  151026 non-null  int64   

 1   QUARTER               151026 non-null  int64   

 2   MONTH                 151026 non-null  int64   

 3   DAY_OF_MONTH          151026 non-null  int64   

 4   DAY_OF_WEEK           151026 non-null  int64   

 5   OP_UNIQUE_CARRIER     151026 non-null  object  

 6   OP_CARRIER_FL_NUM     151026 non-null  int64   

 7   ORIGIN                151026 non-null  object  

 8   DEST                  151026 non-null  object  

 9   CRS_DEP_TIME          151026 non-null  int64   

 10  DEP_DELAY             151026 non-null  float64 

 11  DEP_DELAY_NEW         151026 non-null  float64 

 12  DEP_DEL15             151026 non-null  float64 

 13  TAXI_OUT              151026 non-null  float64 

 14  WHEELS_OFF            151026 non-null  int64   

 15  WHEELS_ON             151026 non-null  int64   

 16  TAXI_IN               151026 non-null  float64 

 17  CRS_ARR_TIME          151026 non-null  int64   

 18  ARR_DELAY             151026 non-null  float64 

 19  ARR_DELAY_NEW         151026 non-null  float64 

 20  ARR_DEL15             151026 non-null  float64 

 21  CANCELLED             151026 non-null  float64 

 22  CANCELLATION_CODE     151026 non-null  object  

 23  DIVERTED              151026 non-null  float64 

 24  CRS_ELAPSED_TIME      151026 non-null  float64 

 25  ACTUAL_ELAPSED_TIME   151026 non-null  float64 

 26  AIR_TIME              151026 non-null  float64 

 27  DISTANCE              151026 non-null  float64 

 28  CARRIER_DELAY         151026 non-null  float64 

 29  WEATHER_DELAY         151026 non-null  float64 

 30  NAS_DELAY             151026 non-null  float64 

 31  SECURITY_DELAY        151026 non-null  float64 

 32  LATE_AIRCRAFT_DELAY   151026 non-null  float64 

 33  ARR_FLIGHT_STATUS     151026 non-null  int64   

 34  DEP_FLIGHT_STATUS     151026 non-null  int64   

 35  CARRIER_DELAY_STATUS  151026 non-null  int64   

 36  WEATHER_DELAY_STATUS  151026 non-null  int64   

 37  NAS_STATUS            151026 non-null  int64   

 38  SECURITY_STATUS       151026 non-null  int64   

 39  LATE_AIRCRAFT_STATUS  151026 non-null  int64  
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The following features ARR_DELAY, DEP_DELAY, CARRIER_DELAY, 

WEATHER_DELAY, NAS_DELAY, SECURITY_DELAY, 

LATE_AIRCRAFT_STATUS,  'DEP_DELAY_NEW', 'DEP_DEL15','ARR_DELAY_NEW', 

'ARR_DEL15','CANCELLED','CANCELLATION_CODE', and 'DIVERTED' are duplicated 

and therefore, require to be dropped, which then results in a total of 23 features.   

Certain subsets of the 26 remaining features were found to have a high correlation among them. 

Correlation is a technique that can indicate whether and how strongly pairs of variables are related. 

Correlations are useful because they can help in determining the relationships amongst variables, 

and can also be used to make predictions. A correlation coefficient places a value on the 

relationship, this index has a value between -1 and 1, where 0 means there is no relationship 

between the variables, and -1 or 1 suggests that there is a high negative or positive correlation, 

respectively (James et al., 2000). It can be illustrated using a heat map; a two-dimensional 

graphical interpretation of data where the values are represented in colors in a matrix. below is a 

heat map of the 23 features.  
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Figure 16:Heat Map 

 

From the color on the indicator, it can instantly be seen that certain features have a higher 

correlation than others, for example, MONTH vs. QUARTER has a high correlation of 0.97, one 

of these features can be dropped but it is kept to help visualize the correlation in data exploratory. 

EDA: Exploratory Data Analysis for American Airlines 

In Exploratory Data Analysis (EDA), the large number of rows and columns which was formatted 

during the preprocessing steps will help in visualizing, summarizing, and interpreting the data. 

EDA is one of the steps in data science that provides certain insights and meaningful patterns 

which is essential not only for data scientists but also for business aspects. EDA reveals 

information about the content without having to make any assumptions, that is why data scientists 

use this process to understand what kind of model can be created for further analysis, according to 

(Suresh Kumar Mukhiya and Usman Ahmed, n.d.). In Python, the libraries which will be used 
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with visualizing and informative statistical graphics include matplotlib and Plotly, and Seaborn 

which is a Python data visualization library based on matplotlib.  

Using the dataset, which was limited to US domestic flight for AA and the following airports: 

LAX, ORD, PHX, MIA, CLT, DEN, PHL, DCA, JFK, ATL, LGA, the objective is to find the total 

number of AA flights which arrived at DFW during the year 2016-2019. It is important to note 

that the 2020 dataset was not used due to COVID-19, as a different trend may appear in reasons 

for delay, which can be analyzed during future work. The bar chart below shows the exact number 

of flights which arrived at DFW, here the x-axis represents the name of the origin airport and the 

y-axis represents the number of flights.   

 

Figure 17: Total number of AA flights that arrived at DFW 

The above graph illustrates the number flights that arrived at DFW from the following airports 

LAX, ORD,PHX , LGA, MIA, CLT, DEN, PHL, DCA, ATL, and JKF, respectively. The purpose 

is to find how many of these flights were delayed, and then the reason for the delay can be 

determined. By keeping the x-axis and y-axis the same as shown above and grouping the origin 

and flight status in descending order, shows the flights arriving from ORD to DFW have the 

highest number of delays. According to this graph, a trend that can be seen is that the higher the 

number of flights arriving from a particular airport, the higher the possibility of the flights being 

delayed. However, that may be true for many of the airports, the graph below indicates that ORD 

has more delayed flights than LAX, similarly, that can be observed in other cases. 
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Figure 18: Total Delayed AA Flights by origin airport based in arrival delay status 

 

To get a greater understanding, a new engineered binary column ARR_FLIGHT_STATUS was 

added using the column ARR_DELAY where it represents flights being delayed or not, where “0” 

indicates that flights arrived on time, and “1” indicates that flights arrived late. From the new 

engineered feature, the overall percentage of delayed flights per Origin Airport showed 

approximately 61.8% of flights from the dataset have arrived on time and 38.2 % were delayed. 

Departure Delay involves the plane taking off later than its departure time, making the chances 

higher for the flight to be arriving late at its destination. A new engineered binary column 

DEP_DELAY_STATUS was added using the column DEP_DELAY where it represents flight 

being delayed or not, “0” indicating flight departure to be on time and “1” for flights being departed 

late.  

below is a pie-chart showing the Departure of Flight Status, where it is illustrated that 61.2 % of 

flights departed on time and 38.4% shows flights that departed late. The two pie charts show some 

correlations which reveal if the flight was delayed during departure, there might be a possibility it 

might arrive late. From both chart, one can conclude that the data in not highly imbalanced.  
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Figure 19:Comparison pie char between arrival and delay status 

 

The below Bar-chart: Total number delayed of AA flights by Origin shows ORD has the highest 

number of delays. It is interesting to note that although in this graph it can be observed that JFK 

has the least number of delayed flights, when looking into the bar-chart below, which depicts the 

percentage of delayed arrival flights by airport, the results shows that JFK has a greater percentage 

of delayed arrival flights. For instance, when taking a flight from New York, a wiser choice 

between LGA and JFK would be to choose to take a flight from LGA, because the percentage of 

delayed flights is lower in comparison to the percentage of delayed flights at JFK.  

 

Figure 20:Percentage of delayed arrival flights of airport 
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Figure 21: Percentage of departure delayed flights by airport 

 

By looking into the percentage Figure 20,Figure 21, the below bar chart where the total delayed 

minutes by the airport is shown, the x-axis represents the airport and the y-axis represents the total 

delayed minutes, interesting results were revealed, it can be observed that the total number of 

minutes delayed is very low for LGA though the highest number of flights depart from LGA to 

DFW. 

 

Figure 22:Total delays in minutes by airport 
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According to FAA, (Airlines For America | Annual U.S. Impact of Flight Delays (NEXTOR 

Report), n.d.) in 2018, alone, airlines and passengers lost $28 billion due to delayed flights, 

presuming $47 per hour average value of a passenger’s time. Looking into AA, and the 5 busiest 

airports, the Average Delay Time per Airport is shown below. The x-axis represents the minutes, 

and the y-axis represents origins (of airport). 

 

Figure 23:Average arrival delay by airport 

Knowledgeable travelers will take advantage of vacation deals at popular destinations around the 

world. below is the bar graph showing the worst and the best months to travel to DFW based on 

flight delays and the origin airport, where x -axis represents the month (which is numbered from 

1-12) and the y-axis represents the number of flights. The month of June is shown as the busiest 

month of the year to travel to DFW, however, April and September are the best months to travel 

to DFW to avoid delays, this is a great insight to those who would prefer to travel in conditions 

with less congestion and limited traffic. 
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Figure 24:Number of delays flight per month 

When observing the bar chart: Figure 25: Number of Delayed flights per day of week, where the x-axis 

represents the days of the week and the y-axis represents the number of flights, it can be noted that 

Thursday and Friday are the busiest when traveling to DFW. However, Tuesday and Saturday are 

less busy. This is due to the reason that most people have to take more days off work to fly 

midweek, which people usually tend to avoid. Furthermore, passengers who commute every week 

for work will also travel on Fridays in order to get home for the weekend and will travel on Sundays 

to get to work on Mondays which results on Sundays being very busy as well. 

 

Figure 25: Number of Delayed flights per day of week 



44 
 

When you search for flights online, it typically offers a prediction for whether you should buy the 

tickets right away or wait, and the recent fare for that travel plan is also provided. The site will 

also predict whether the flight will be available in the next few days.  

The below bar chart shows the Number of Delayed Flights Per day of the Month, the x-axis 

represents the Day of the Month, and the y-axis represents the number of flights. The interesting 

fact is the 31st has the least number of flight delays which can be due to the reason that 5 months 

of the year only have 30 days. 

 

Figure 26: Number of delayed flights per day of the month 

This next visualization is of the departure and the arrival delay. It shows whether departure or 

arrival delay has a bigger impact on the plane being delayed. Assuming that the departure of the 

flight was on time and the flight’s arrival is late, then this means that there’s another factor which 

may have increased the elapsed time. This plot validates the principal idea that some airlines will 

try to compensate for the delayed departure by reducing air time. The below graph is shown by 

overlaying the ARR_DELAY over the DEP_DELAY. The departure delay (DEP_DELAY) is 

colored in light blue, whereas the arrival delay (ARR_DELAY) is the dashed line. The results of 

the plot suggest that the ARR_DELAYS are generally lower than the DEP_DELAYS, and as 

mentioned above, this suggests that the airlines try to adjust their flight speed to try and compensate 

for the late departure and reduce the ARR_DELAY. Another interesting piece of information is 
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related to LGA. Once again, the arrival delay is low. This means that even when the departure is 

late, the flight that leaves from LGA to DFW compensates the delay by reducing the air time of 

the flights to arrive on time or on average, earlier. 

  

 
Figure 27:Departure vs arrival delay 

  

There are five features that are causes of delay; carrier delay which involves maintenance, crew 

problems, aircraft cleaning, baggage loading, fueling. Weather delay which involves major 

meteorological conditions such as tornadoes, blizzards or hurricanes. NAS Delay which involves 

non-extreme weather conditions, airport operations, heavy traffic volume, air traffic control, as 

well as any delays that occur after the gate are usually assigned to the NAS Delay. Security 

delay which is caused by evacuation of a terminal as well as when reboarding of the aircraft is 

required. Finally, Late Aircraft delay which involves a previous flight with the same aircraft that 

arrived late, causing the present flight to depart late.  

  

Below bar charts will show the causes of delay with the help of data visualizations, the bar chart 

below is for Total Delayed AA Flights by Origin Airport based on Carrier Delay status, where the 



46 
 

x-axis represents the origin airport name and the y-axis represents the number of flights. The data 

used is normalized using the normalize function in Python, because differences in the scales across 

the models may cause inaccurate results when modeling. The chart suggests that most delayed 

flights coming from ORD to DFW are due to carrier delay whereas JFK had the least number of 

flights affected by carrier delays. 

 
Figure 28:Total delayed AA flights by origin airport based on carrier delay 

  

  

Similarly, the bar chart below represents Total Delayed AA Flights by Origin Airport based on 

Weather Delay status, where the x-axis represents the origin airport name and the y-axis represents 

the number of flights. Likewise, most delayed flights coming from ORD to DFW are due to 

weather delays where LAX had the least number of flights which were delayed due to weather 

delays. 
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Figure 29:Total delayed AA flights by origin airport based on weather delay 

  

NAS Delays usually include any delays that occur after Actual Gate Out (delays caused after the 

gate), according to the Bureau of Transportation. The bar chart below is for Total Delayed AA 

Flights by Origin Airport based on NAS Delay status, where the x-axis represents the origin airport 

name and the y-axis represents the number of flights. Most delayed flights due to NAS delay are 

from ORD to DFW where JFK has the least number of flights which are delayed by NAS delays.  

  

 
Figure 30:Total delayed AA flights by origin airport based on NAS delay 
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Security delays can be caused by equipment at the screening not functioning or any other 

occurrences of security breaches. The bar chart below is for Total Delayed AA Flights by Origin 

Airport based on Security Delay status, where the x-axis represents the origin airport name and the 

y-axis represents the number of flights. Most delayed flights due to Security delay are from CLT 

to DFW whereas LGA had the least number of flights delayed due to security delays. An 

observation that can be made is that despite ORD being a larger airport, it has a relatively lower 

security delay, a reason as to why that is, could be that better security measures are in place at 

ORD. 

  

  

 
Figure 31:Total delayed AA flights by origin airport based on security delay 

  

According to the Bureau of Transportation of Statistics, the late aircraft delay occurs when the 

current flight takes off later than scheduled and creates a domino effect on the following flights. 

The bar chart below is for Total Delayed AA Flights by Origin Airport based on Late aircraft Delay 

status, where the x-axis represents the origin airport name and the y-axis represents the number of 

flights. Most delayed flights due to Late aircraft delay are from ORD to DFW whereas JFA has 

the least delayed flights due to late aircraft delays. This may be caused by the reason that flights 

coming to ORD are being delayed, leading to flights leaving ORD also being delayed. 

  



49 
 

 
Figure 32: Total delayed AA flights by origin airport based on late air-craft delay 

  

When observing all five causes of delay, it can be concluded that ORD is not great at handling any 

sort of delays except for security delays. With the help of data exploration, the Error! Reference 

source not found. pie chart shows what percentage contributes to each of the delays, such as 

11.6% of flights are delayed by carrier delays, 1.4 % caused by weather delays, 11.7% are caused 

by NAS delays, 0.1% are caused by security delays and 9.0% are caused by late arrival delays. 

 

 

 
     



50 
 

 
Figure 33:Percentage of flights delays based on carrier, weather, NAS, security, late aircraft 

EDA: Exploratory Data Analysis for Southwest Airlines 

Here, the data will be analyzed for Southwest Airlines arriving at DAL, this data was gathered to 

preprocess in the same fashion as American Airlines. 

Using the dataset, which was limited to US domestic flights and the following airports: HOU, 

DEN, MDW, PHX, LAS, ATL, LAX, BWI, MCO, OAK, the objective is to find the total number 

of Southwest flights arrived at DAL during the year 2016-2019. The bar chart below shows the 

exact number of flights which arrived at DAL where the x-axis represents the origin airport and 

the y-axis represents the number of flights.   

 

Figure 34: Total number of Southwest flights arrived at DAL 

 

By using the same x and y-axis as in the above graph, and grouping origin and flight status in 

descending order, it can be observed that flights arriving from HOU to DAL have the highest 
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number of delays. As one would think that the higher the number of flights arriving from a 

particular airport has a higher number of possibilities of being delayed, that is exactly the case 

when the below bar chart is observed. 

 

 

Figure 35: Total delayed SW flights based on arrival delay 

 

As seen for AA there is a relationship between the departure flight status and the arrival flight 

status. Similarly, this pattern is found in Southwest Airlines as well. The Arrival Flight status 

shows that 58.4% of flights from the dataset have arrived on time and 41.6% were delayed. The 

Departure Flight Status, illustrates that 52.1 % of flights departed on time and 47.9% of flights 

departed late shown below.  
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Figure 36:Comparison between departure and arrival delay 

Among the five causes of delay, it is shown below that HOU deals with all delays quite poorly and 

OAK has the least number of overall delays, a reason as to why it has the least number of overall 

delays may be fact because it has the least number of flights coming from OAK.  

 

 

Figure 37: Total delayed SW flights by origin based on cause of delay 
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Chapter 4 

RESULT AND DISCUSSION 

MODELS using Python for American Airlines 

 

For this thesis, flight dataset from BTS from 2016 to 2019 will be used to understand class 

imbalance for flight arrival status. Figure below shows the distribution of the flight status. Based 

on the distribution for both AA-DFW and WN-DAL ration of on time vs delayed flight is less 

than 2:1. So the data is not highly imbalanced.  

 

 

Random forest Model for American Airlines was utilized without and with different class 

weights (e.g., balanced and subsample balanced), to check the effect of the data imbalance on the 

performance matrices of the model. Below figure is a comparison of that result. As the data is 

not highly imbalanced, performance matrices do not vary much without or with class weights.  
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The figure below represents the flow process to get the evaluation (performance matrices) and 

interpretation using LIME for all the models.  
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We already observed that data set is not highly imbalance, so the models were build and 

evaluated without any treatment for data imbalance. Below are the performance matrices and 

confusion matrix for Random forest. Accuracy of the model is 82%. 

 

  

Figure 38:Evaluation Metric for random forest 

 

 

Accuracy of Adaboost is 86%,  Figure 39 shows the evaluation metrics for Adaboost machine 

learning model. 

   

Figure 39:Evaluation Metric for Adaboost 

  

GradientBoost yields an accuracy of 88%. Below figure shows other performance matrices of 

GradientBoost.  
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The XGBoost algorithm is highly flexible and faster in comparison to other algorithms, but it has 

several hyperparameters, many of which require tuning to obtain accurate results. One of the 

hyperparameters which is used is the scale_pos_weight hyperparameter which tunes imbalanced 

data. Using cross validation testing and training, the method obtained 91% accuracy shown on 

Figure 40. 

  
Figure 40: Evaluation Metric for XGBoost 

  

When using multilayered perceptron – neural network  (MLP-NN), the data was required to be 

entirely numerical as it does not function with qualitative data, similarly it does not function with 

data that contains missing values. Using the StandardScale function the data was standardized 

and below is the output from the confusion matrix, which obtained an accuracy of 62%, shown in  

Figure 41. 
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Figure 41: Evaluation Metric for MLP-NN 

  

MODELS using Python for Southwest Airlines 

In the above section for Models using Python and Results for AA were shared, the same procedure 

was applied to the Southwest Airlines dataset and the results for Random Forest shown on Figure 

42, Adaboost, XGBoost, MLP-NN can be found below.  

Random Forest 

  

Figure 42:Evaluation Metric for Random Forest 

Adaboost 

  

Figure 43:Evaluation Metric for Adaboost 
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 GradientBoost 

 

 

XGBoost 

  

Figure 44:Evaluation Metric for xgboost 

MLP-NN 

  

Figure 45: Evaluation Metric for MLP- NN 

Below tables have the performance metrics of the models 
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American Airline and DFW: 

Table 2: Performance metrics for AA 

Model Name Accuracy (%) Precision(%) Recall(%) F1-score(%) 

Random Forest 85 86  85 85 

Adaboost 83 86 83 82 

Gradient Boost 88 89 88 88 

XGBoost 90  90 90 90 

MLP - NN 86 92 92 92 

 

Southwest and DAL: 

Table 3:: Performance metrics for Southwest 

Model Name Accuracy(%) Precision(%) Recall(%) F1-score(%) 

Random Forest 81  84 81 81 

Adaboost 81 84 81 80 

Gradient Boost 84 86 84 84 

XGBoost 86 87 86 86 

MLP - NN 86 87 86 86 

 

 

Microsoft Azure Studio 

 

Previously, the experiment was done using Python, the same dataset will be used with Azure 

Machine Learning studio to compare between the two.  The studio offers no-code experiences for 

a data science platform and creates models for classification, regression and time-series forecasting 

depending on the type of project that is being worked on. In this experiment, the classification 

approach will be used, which is a supervised learning problem. It will be used to predict whether 

the flight will be delayed or not, using a two-class decision forest.  

 

In the experiment, a model was trained using historic flight data (from 2016-2019). The features 

are labeled “1” if a flight was delayed, and labeled “0” if the flight was on time. The following 

steps were followed while building the experiment in Azure ML Studio: the data was imported, 

and pre-processed, the data was trained, and a machine learning algorithm was applied, followed 

by executing score, the model was then tested and the accuracy was predicted. 

A dataset requires pre-processing before it can be analyzed, using the tools provided by the studio 

the following pre-processing changes were made. 
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Figure 46: Visualization from Azure 

Steps: 

➢ Loaded the dataset 

➢ Replaced “NaN” with 0 for feature  'CARRIER_DELAY', WEATHER_DELAY', 

'NAS_DELAY','SECURITY_DELAY','LATE_AIRCRAFT_DELAY’ 

➢ Dropped feature  'DEP_TIME', 'ARR_TIME’  because  of redundancy 

 

➢ All the missing data for TAXI_IN, TAXI_OUT, DEP_DELAY, DEP_DELAY_NEW, 

ARR_DELAY, and ARR_DELAY_NEW are filled with the mean value of each feature 

 

➢ For feature 'CRS_DEP_TIME’, 'WHEELS_OFF’, 'WHEELS_ON’, 'CRS_ARR_TIME’, 

Time is normally categorical, and having it in the current format will give us too many 

columns when the hot encode is applied to them, therefore it will be better to split the 

time into 4 quarters of the days meaning of 6 hours each 

 

➢ For the DAY_OF_WEEK feature are present 0 = Monday, 1 = Tuesday, 2 = Wednesday, 

3 = Thursday, 4 = Friday, 5 = Saturday,  6 = Sunday 

 

➢ The feature ARR_DELAY, reveals the difference in minutes between scheduled and 

actual arrival time. Early arrivals show negative numbers. Therefore, created a new 

Column ARR_FLIGHT_STATUS, by comparing the value of each row for the 

"ARR_DELAY" feature, if the total delay zero or less (minus-- arrive early) it will assign 

"0" otherwise "1". 

 

➢ Similarly, for DEP_DELAY, CARRIER_DELAY, 'WEATHER_DELAY’, 

'NAS_DELAY’, 'SECURITY_DELAY’, 'LATE_AIRCRAFT_DELAY’, created, 

DEP_FLIGHT_STATUS, CARRIER_DELAY_STATUS, 

WEATHER_DELAY_STATUS,   

 

➢ NAS_STATUS,SECURITY_STATUS,LATE_AIRCRAFT_STATUS 
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➢ There are some feature which are duplicate in nature: ARR_DELAY, DEP_DELAY, 

CARRIER_DELAY,WEATHER_DELAY, NAS_DELAY,SECURITY_DELAY , 

LATE_AIRCRAFT_STATUS, 'DEP_DELAY_NEW', 

'DEP_DEL15','ARR_DELAY_NEW', 

'ARR_DEL15','CANCELLED','CANCELLATION_CODE', 'DIVERTED’ 

For comparison with Python, the model was created using the Two Class Decision Forest ,which 

was very close to the random forest model applied in Python. The result of the experiment is shown 

below. 

 

 

Figure 47: Result for Two-Class Decision Forest 

 

 

Microsoft Azure Auto-ML  

Automated machine learning (AutoML) automates the process of building machine learning 

models through automating the feature selection and parametrization of these models. AutoML 

has been designed to helps data scientists perform this process with accuracy and 

precision.  Azure Machine Learning offers featurization for classification problems. 

Classification models predict from the provided training data. When the data is being trained, 

AutoML will create various pipelines using multiple algorithms. The system will then, iterate 

through these algorithms alongside feature selections and will produce a model as output from 

the training dataIdentify the ML problem: classification, or regression 

 

1. Choose no code experience in Azure Machine Learning studio  

2. Specify the source and format of the labeled training data 

3. Configure the compute target for model training. 

4. Configure the automated machine learning parameters such as how many iterations 

there are in the models and tune hyperparameters. 

5.  Submit the training data. 
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6. Review the results 

This experiment created a classification model, without writing code using automated machine 

learning in the Azure Machine Learning studio, the same dataset was used for comparison. The 

studio also provided model explanations which allowed for the observation of which data 

features influenced a particular model's predictions. The accuracy obtained by Azure- AutoML 

when using XGBoost was 82%, and 92% when using Random Forest .  Although the best 

Algorithm suggested by  Azure- AutoML is VotingEnsemble. Although in this thesis 

VotingEnsemble was not used in Python, it combines the predictions from multiple other 

models, it helps improve model performance. 

 

Figure 48:Result for Azure Auto-ML 

Interpretability of the models prediction using LIME: 

 

To use LIME algorithm in Python, the library “lime” needed to be installed. Randomly two 

flights were chosen from the test data set to explain the use of LIME.  

All Model Comparison for LIME for a specific Flight from test data set 

Case-1: Delayed Flight(AA) 

All model predicted that this flight will be delayed with different confidence level. Random 

forest and XGBoost predicted the delay with 100% confidence but Adaboost’s predict the delay 

for this flight with 68% probability. All model selected NAS delay as the top feature for the 

delay of this flight.  
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Random Forest: 

 

Figure 49: Case 1 result using Random Forest 

 

Adaboost: 

 

Figure 50: Case 1 result using Adaboost 
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Gradient Boosting: 

 

Figure 51: Case 1 result using Gradient Boosting 

XGBoost: 

 

Figure 52 : Case 1 result using xgboost 

Case-2: Arrive on time Flight(AA) 

In this case Random forest, XGBoost and Gradient boost predicted with above 90% probability 

that this flight arrives on time but Adaboost again showed poor prediction probabilities. As 

Carrier, NAS, Late Arrival, Weather and Security delay are not present there, most of the model 

pick those as most important features for the prediction.   
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Random Forest: 

 

Figure 53 : Case 2 result using Random Forest 

 

 

Adaboost: 

 

Figure 54 : Case 2 result using Adaboost 
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Gradient Boosting:

 

Figure 55 : Case 2 result using Gradient Boosting 

XGBoost: 

 

Figure 56: Case 2 result using XGBoosting 

So, lime can be used to identify which model is suitable to make the accurate prediction with 

reasonable feature importance.  

Case-1: Delayed Flight (Southwest) 

All models predicted that this flight will be delayed with different confidence level. Random 

forest predicted 84% and GradientBoost predicted the delay with confidence 95%, XGBoost 

predicted 99% but Adaboost’s predicted the delay for this flight with 65% probability.  
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Random Forest: 

 

Figure 57:Case 1 result using Random Forest 

 

Adaboost: 

 

Figure 58:Case 1 result using Adaboost 
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Gradient Boost: 

 

Figure 59:Case 1 result using Gradient Boost 

XGBoost: 

 

Figure 60:Case 1 result using XGBoost 

 

Case-2: Arrive on time Flight(Southwest) 

In this case Random forest, XGBoost and Gradient boost predicted with above 60% probability 

that this flight arrives on time but Adaboost again showed poor prediction probabilities.  
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Random Forest: 

 

Figure 61:Case 2 result using Random Forest 

Adaboost: 

 

Figure 62:Case 2 result using Adaboost 

 

 

 

 

 

 

 



70 
 

Gradient Boost: 

 

Figure 63:Case 2 result using Gradient Boost 

 

XGBoost: 

 

Figure 64:Case 2 result using XGBoost 

 

Removing the Feature(s) that Bias the accuracy of model prediction (only for AA-DFW) 

Here Random Forest model was run with a data set where Flight Number was included as a 

feature and LIME provided the following prediction and feature importance.   
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Figure 65: Random Forest model was run with Flight Number 

Model predicted that this flight will be delayed but the top feature that the model considered are 

all different flight numbers (except NAS delay) which is not very intuitive. Same model was run 

after dropping Flight Number Feature and LIME provided the following interpretation and the 

prediction probability increased by 5%.  

 

Figure 66: Random Forest model was run without Flight Number 

 

Airline customer centric interpretable prediction (Only for AA-DFW) 

As a customer some of the features used as an input may not be intuitive. For an example, taxi 

out time is a feature that a customer may not think about before entering the airport. So, if a 

customer wants to know whether their flight will be delayed or not and what the probable cause 

of that delay is by inputting some features that they already know can help them plan better. Here 

a random forest model ran with the following features. 
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❖ Distance 

❖ Origin 

❖ Day of the Week  

❖ Day of the Month 

❖ Month 

❖ Quarter of the year 

These features are easy for the customer to input in the model to get the prediction. With this 

small amount of features, the prediction probability suffers a lot, however a customer can still 

check the probability and probable cause of the delay.  

Case-1: Delay flight 

Inputs: 

❖ Distance: 801.0 

❖ Origin: ORD 

❖ Day of the Week: Saturday (6) 

❖ Day of the Month: 12  

❖ Month: June (6) 

❖ Quarter of the year: 2 

 

 

Figure 67: Case 1: Delay flight based on customer centric Interpretable prediction 
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Case-2: Flight Arrive on time 

Inputs: 

❖ Distance: 936.0 

❖ Origin: CLT 

❖ Day of the Week: Saturday (6) 

❖ Day of the Month: 30  

❖ Month: January (1) 

❖ Quarter of the year: 1 

 

 

Figure 68 Case 2: Flight arrive on time based on customer centric Interpretable prediction 

For Case-1, features that influence the prediction include the month of travel of that flight and 

the origin (ORD). During our exploratory data analysis, we observed percentage of flight delays 

are higher for summer and ORD Airport.  

For Case-2, model predicted with very high confidence that flight will arrive on time as it is not 

scheduled on the month of June and is not departing from ORD.  
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Chapter 5 

CONCLUSION 

During this master’s thesis, different prediction models and various evaluation methods are 

explored using different applications and services. By using historic data, interesting results were 

observed on the predictability of delays. The best delay prediction method emerged to be the most 

specific one, which takes into account all the combinations of categorical features.  

 

 The performances of the models were interesting to evaluate, due to the numerous features 

used. From the exploratory data analysis (EDA), we found that AA flights departing from ORD 

and arriving at DFW are the most delayed flights from the exploratory data analysis (EDA), we 

found that AA flights departing from ORD and arriving at DFW are the most delayed flights. For 

southwest airlines departing from LAX had the most total number of delays. There is a relationship 

between arrival and departure delay. Also, found June and July are the worse month when it comes 

to total number of delays. 

 

For AA, model accuracy using Python for Random Forest obtained 85% accuracy, Adaboost 

obtained 83% accuracy, XGBoost obtained 90% accuracy, Gradient Boost obtained 88% accuracy 

and MLP obtained 86% accuracy. For WN, model accuracy using Python for Random Forest 

obtained 81% accuracy, Adaboost obtained 83% accuracy, XGBoost obtained 86% accuracy, 

Gradient Boost 84% accuracy and MLP obtained 86% accuracy. The accuracy for AA of  the 

random forest model using Azure Studio for is 96%, and Azure- AutoML gives 82% for XGBoost 

and 92% for Random Forest. The differences in accuracy between Python and Azure AutoML may 

be the result of the data pre-processing, as Azure AutoML automates the machine learning 

workflow (that includes data preprocess) on the other hand for Python model data preprocess 

requires domain knowledge. 
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In the business world, we can save time and money by improving the understanding of our machine 

learning model prediction. Using LIME, it is possible to find out the cause of delay from the 

prediction model and take action to mitigate those reasons.  
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APPENDIX 

 

Gathering Data 

# # Gathering data  

# ### Data were downloaded from BTS website. 2016-2019. 48 months 

 

#import libraries 

import pandas as pd 

#Glob is a general term used to define techniques to  

#match specified patterns according to rules related to Unix shell 

from glob import glob 

import datetime, warnings, scipy 

warnings.filterwarnings("ignore") 

#make list of flies in the folder 

#careful about file path it is "/" 

stock_files = sorted (glob('C:/Users/raihanm/Desktop/FD/data_1/*.csv')) 

stock_files 

df_from_each_file = (pd.read_csv(f, sep=',') for f in stock_files) 

df_merged   = pd.concat(df_from_each_file, ignore_index=True) 

df_merged.to_csv( "merged.csv") 
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df1=df_merged 

df1.columns 

 

df1=df1.drop(['FIRST_DEP_TIME','TOTAL_ADD_GTIME','Unnamed: 37'],axis=1) 

df1.shape 

filt=(df1['DEST']=='DFW') 

df2=df1[filt] 

filt2=(df2['OP_UNIQUE_CARRIER']=='AA') 

df3=df2[filt2] 

origin_list=['JFK','LGA','ATL','CLT','PHL','DCA','ORD','LAX','MIA','PHX','DEN'] 

df4=df3[df3['ORIGIN'].isin(origin_list)] 

df4.head() 

df4.shape 

df4.to_csv('dfm.csv') 
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Data Cleaning: Part 1 

Data Cleaning: Part 1 

Below are the steps that are taken for data cleaning: 
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Feature Engineering 

Data Engineering 

Below are the steps that are taken for data engineering: 
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Exploratory Data Analysis 

Exploratory Data Analysis  

Below are the steps that are taken for Exploratory Data Analysis : 
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Data cleaning: Part 2 

Below are the steps that are taken for Data cleaning- Part 2: 

 

 
 

 

  



83 
 

 

Final Data Processing for Modeling 

# # Libraries 

 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

get_ipython().run_line_magic('matplotlib', 'inline') 

import seaborn as sns 

sns.set_style('darkgrid') 

pd.set_option('display.max_columns', None) 

import datetime, warnings, scipy 

warnings.filterwarnings("ignore") 

 

from sklearn import metrics, linear_model 

from sklearn.metrics import accuracy_score, confusion_matrix, classification_report, 

plot_confusion_matrix 

from sklearn.preprocessing import PolynomialFeatures, StandardScaler 

from sklearn.preprocessing import LabelEncoder, OneHotEncoder 

from sklearn.model_selection import train_test_split, cross_val_score, cross_val_predict, 

RepeatedStratifiedKFold 

from sklearn.tree import DecisionTreeClassifier 

from sklearn.ensemble import BaggingClassifier, RandomForestClassifier 

from scipy.optimize import curve_fit 

from sklearn.svm import SVC 

from random import sample 

 

import keras 

from keras.models import Sequential 

from keras.layers import Dense 

from sklearn.preprocessing import StandardScaler, LabelBinarizer 

 

import statsmodels.formula.api as smf 

import statsmodels.stats.api as sms 

from statsmodels.formula.api import ols 

from statsmodels.stats.outliers_influence import variance_inflation_factor 

import statsmodels.api as sm 

import scipy.stats as stats 

 

 

# # Data Loading & QC 

 

dfm = pd.read_csv('dfm.csv', index_col=0) 

dfm.head() 

dfm.info() 
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dfm.YEAR.value_counts(normalize=True) 

 

dfm.QUARTER.value_counts(normalize=True) 

 

 

       

 

 

dfm.MONTH.value_counts(normalize=True) 

 

 

dfm.DAY_OF_MONTH.value_counts(normalize=True) 

dfm.DAY_OF_WEEK.value_counts(normalize=True) 

dfm.OP_CARRIER_FL_NUM.nunique() 

dfm.OP_CARRIER_FL_NUM.value_counts(normalize=True) 

dfm.head(2) 

dfm.ORIGIN.value_counts(normalize=True) 

 

 

dfm.CRS_DEP_TIME.value_counts(normalize=True) 

 

dfm.TAXI_OUT.nunique() 

 

dfm.TAXI_OUT.value_counts(normalize=True) 

 

dfm.head(2) 

 

dfm.WHEELS_OFF.value_counts(normalize=True) 

 

dfm.WHEELS_ON .value_counts(normalize=True) 

 

dfm.TAXI_IN.nunique() 

 

dfm.TAXI_IN.value_counts(normalize=True) 

 

dfm.CRS_ARR_TIME.value_counts(normalize=True) 

 

dfm.head(2) 

 

dfm.CRS_ELAPSED_TIME.nunique() 

 

dfm.CRS_ELAPSED_TIME.value_counts(normalize=True) 

 

 

dfm.ACTUAL_ELAPSED_TIME.nunique() 
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dfm.ACTUAL_ELAPSED_TIME.value_counts(normalize=True) 

 

dfm.head(2) 

 

dfm.AIR_TIME.nunique() 

 

dfm.AIR_TIME.value_counts(normalize=True) 

 

dfm.DISTANCE.nunique() 

 

dfm.DISTANCE.value_counts(normalize=True) 

 

dfm.ARR_FLIGHT_STATUS.nunique() 

 

 

       

 

 

dfm.ARR_FLIGHT_STATUS.value_counts(normalize=True) 

 

dfm.head(2) 

 

dfm.CARRIER_DELAY_STATUS.value_counts(normalize=True) 

 

dfm.WEATHER_DELAY_STATUS.value_counts(normalize=True) 

 

dfm.NAS_STATUS.value_counts(normalize=True) 

 

dfm.SECURITY_STATUS.value_counts(normalize=True) 

 

dfm.LATE_AIRCRAFT_STATUS.value_counts(normalize=True) 

 

 

# # Data Distribution 

#  

# Based on the percentage of delayed flight we know that this dataset is unbalanced, but just to 

follow standard workflows we will write a short function to see this visually and then keep on 

going. 

#  

 

def scaling_check(data): 

     

    case_count = dfm['ARR_FLIGHT_STATUS'].value_counts() # 'data' is our input which will 

be any of the 3 dataframes created 

    print('Legend:') 

    print(case_count) 
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    plt.figure(figsize=(10,6)) 

    sns.barplot(x=case_count.index, y=case_count.values) 

    plt.rcParams["figure.facecolor"] = "blue" 

    plt.title('Data Distribution', fontsize=16) 

    plt.xlabel('Arrival Flight Status', fontsize=12) 

    plt.ylabel('Number of Flights', fontsize=12) 

    plt.xticks(range(len(case_count.index)), ['ON TIME(0)', 'DELAYED(1)']) 

    plt.show() 

 

 

scaling_check (dfm) 

 

dfm.ARR_FLIGHT_STATUS.value_counts(normalize=True) 

 

 

# ## Calculating the weight to use later for the imbalanced dataset 

 

df_test=dfm['ARR_FLIGHT_STATUS'].value_counts() 

 

 

df_test.head() 

 

 

count_0=df_test[0] 

 

count_0 

 

count_1=df_test[1] 

 

 

count_1 

 

initial_bias = np.log([count_1/count_0]) 

initial_bias 

 

weight_for_0 = (1/count_0)*(count_0 + count_1)/2.0 

weight_for_1 = (1/count_1)*(count_0 + count_1)/2.0 

 

class_weight = {0: weight_for_0, 1: weight_for_1} 

 

print('Weight for class 0: {:.2f}'.format(weight_for_0)) 

print('Weight for class 1: {:.2f}'.format(weight_for_1)) 
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# Before going into the modeling, we will create histograms for all the features to get a better 

feeling of them: 

 

dfm.hist(figsize  = [15, 15],bins=9)  

plt.show() 

 

 

dfm.columns 

 

 

fig, axes = plt.subplots(nrows=5, ncols=3, figsize=(16,14), sharey=True) 

 

categoricals = ['QUARTER', 'MONTH', 'DAY_OF_MONTH', 'DAY_OF_WEEK', 

                'OP_CARRIER_FL_NUM', 'ORIGIN', 'WHEELS_OFF', 'WHEELS_ON', 

                'DEP_FLIGHT_STATUS','CARRIER_DELAY_STATUS', 

'WEATHER_DELAY_STATUS',  

                'NAS_STATUS','SECURITY_STATUS', 'LATE_AIRCRAFT_STATUS'] 

 

for col, ax in zip(categoricals, axes.flatten()): 

    (dfm.groupby(col).sum()['ARR_FLIGHT_STATUS'].sort_values().plot.bar(ax=ax)) 

     

    ax.set_title(col) 

     

fig.tight_layout() 

 

dfm.head() 

 

 

       

 

 

QUARTER_dummies = pd.get_dummies(dfm['QUARTER'], prefix='QUARTER', 

drop_first=True) 

MONTH_dummies = pd.get_dummies(dfm['MONTH'], prefix='MONTH', drop_first=True) 

DAY_OF_MONTH_dummies = pd.get_dummies(dfm['DAY_OF_MONTH'], 

prefix='DAY_OF_MONTH', drop_first=True) 

DAY_OF_WEEK_dummines = pd.get_dummies(dfm['DAY_OF_WEEK'], 

prefix='DAY_OF_WEEK', drop_first=True)  

#OP_CARRIER_FL_NUM_dummies = pd.get_dummies(dfm['OP_CARRIER_FL_NUM'], 

prefix='OP_CARRIER_FL_NUM', drop_first=True) 

ORIGIN_dummies = pd.get_dummies(dfm['ORIGIN'], prefix='ORIGIN', drop_first=True) 

CRS_DEP_TIME_dummies = pd.get_dummies(dfm['CRS_DEP_TIME'], 

prefix='CRS_DEP_TIME', drop_first=True) 

WHEELS_OFF_dummies = pd.get_dummies(dfm['WHEELS_OFF'], 

prefix='WHEELS_OFF', drop_first=True) 
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WHEELS_ON_dummies = pd.get_dummies(dfm['WHEELS_ON'], prefix='WHEELS_ON', 

drop_first=True) 

CRS_ARR_TIME_dummies = pd.get_dummies(dfm['CRS_ARR_TIME'], 

prefix='CRS_ARR_TIME', drop_first=True) 

 

 

dfm = dfm.drop(['YEAR','OP_UNIQUE_CARRIER','DEST','QUARTER', 'MONTH', 

'DAY_OF_MONTH', 'DAY_OF_WEEK', 'OP_CARRIER_FL_NUM', 'ORIGIN', 

'CRS_DEP_TIME', 

               'WHEELS_OFF', 'WHEELS_ON', 

'CRS_ARR_TIME','DEP_FLIGHT_STATUS'],axis=1) 

 

dfm = 

pd.concat([dfm,QUARTER_dummies,MONTH_dummies,DAY_OF_MONTH_dummies,DA

Y_OF_WEEK_dummines, 

                ORIGIN_dummies,CRS_DEP_TIME_dummies, 

                

WHEELS_OFF_dummies,WHEELS_ON_dummies,CRS_ARR_TIME_dummies],axis=1) 

 

 

dfm.head() 

 

 

dfm.shape 

 

dfm.to_csv('dfm_ready3.csv') 
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Checking data for imbalance 

# # Performance metrics with and without class weight 

 

# # Libraries 

 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

get_ipython().run_line_magic('matplotlib', 'inline') 

import seaborn as sns 

sns.set_style('darkgrid') 

pd.set_option('display.max_columns', None) 

import datetime, warnings, scipy 

warnings.filterwarnings("ignore") 

 

from sklearn import metrics, linear_model 

from sklearn.metrics import accuracy_score, confusion_matrix, classification_report, 

plot_confusion_matrix 

from sklearn.preprocessing import PolynomialFeatures, StandardScaler 

from sklearn.preprocessing import LabelEncoder, OneHotEncoder 

from sklearn.model_selection import train_test_split, cross_val_score, cross_val_predict, 

RepeatedStratifiedKFold 

from sklearn.tree import DecisionTreeClassifier 

from sklearn.ensemble import BaggingClassifier, RandomForestClassifier 

from scipy.optimize import curve_fit 

from sklearn.svm import SVC 

from random import sample 

 

import keras 

from keras.models import Sequential 

from keras.layers import Dense 

from sklearn.datasets import load_breast_cancer 

from sklearn.preprocessing import StandardScaler, LabelBinarizer 

 

import statsmodels.formula.api as smf 

import statsmodels.stats.api as sms 

from statsmodels.formula.api import ols 

from statsmodels.stats.outliers_influence import variance_inflation_factor 

import statsmodels.api as sm 

import scipy.stats as stats 

 

# # Data Loading & QC 

 

dfm = pd.read_csv('dfm_ready3', index_col=0) 

dfm.head() 
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dfm.ARR_FLIGHT_STATUS.nunique() 

 

dfm.ARR_FLIGHT_STATUS.value_counts(normalize=True) 

 

 

# Create features (X) and labels (y) 

y = dfm['ARR_FLIGHT_STATUS'] 

X = dfm.drop(['ARR_FLIGHT_STATUS'], axis=1) 

 

# Perform the split 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42) 

 

# ## Random Forest With No Class Weighting 

#  

 

# I'll start by instantiating the RandomForestClassifier 

forest = RandomForestClassifier(n_estimators=100, max_depth=5) 

forest.fit(X_train, y_train) 

 

# Now to check the accuracy score 

forest.score(X_train, y_train) 

 

# And for the test set: 

forest.score(X_test, y_test) 

 

# ### MODEL PERFORMANCE 

 

# Test set predictions 

pred_rf = forest.predict(X_test) 

 

# confusion matrix and classfication report 

print('\nConfusion Matrix') 

print('----------------') 

pd.crosstab(y_test, pred_rf, rownames=['True'], colnames=['Predicted'], margins=True) 

 

print('Classificiation Report') 

print('---------------------') 

print(classification_report(y_test, pred_rf)) 

 

print("Testing Accuracy for RandomForest Classifier: {:.4}%".format(accuracy_score(y_test, 

pred_rf) * 100)) 

 

# ### Random Forest With Class Weighting 

forest_cw = RandomForestClassifier(n_estimators=100, max_depth=5, 

class_weight='balanced') 

forest_cw.fit(X_train, y_train) 
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# Now to check the accuracy score 

forest_cw.score(X_train, y_train) 

 

# And for the test set: 

forest_cw.score(X_test, y_test) 

 

 

# ### MODEL PERFORMANCE 

 

# Test set predictions 

pred_rfcw = forest_cw.predict(X_test) 

 

# confusion matrix and classfication report 

print('\nConfusion Matrix') 

print('----------------') 

pd.crosstab(y_test, pred_rfcw, rownames=['True'], colnames=['Predicted'], margins=True) 

 

print('Classificiation Report') 

print('---------------------') 

print(classification_report(y_test, pred_rfcw)) 

 

print("Testing Accuracy for RandomForest Classifier: {:.4}%".format(accuracy_score(y_test, 

pred_rfcw) * 100)) 

 

# ### Random Forest With Bootstrat Class Weighting 

 

forest_bcw = RandomForestClassifier(n_estimators=100, max_depth=5, 

class_weight='balanced_subsample') 

forest_bcw.fit(X_train, y_train) 

 

# Now to check the accuracy score 

forest_bcw.score(X_train, y_train) 

 

# And for the test set: 

forest_bcw.score(X_test, y_test) 

 

# ### MODEL PERFORMANCE 

 

# Test set predictions 

pred_rfbcw = forest_bcw.predict(X_test) 

 

# confusion matrix and classfication report 

print('\nConfusion Matrix') 

print('----------------') 

pd.crosstab(y_test, pred_rfbcw, rownames=['True'], colnames=['Predicted'], margins=True) 
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print('Classificiation Report') 

print('---------------------') 

print(classification_report(y_test, pred_rfbcw)) 

 

print("Testing Accuracy for RandomForest Classifier: {:.4}%".format(accuracy_score(y_test, 

pred_rfbcw) * 100)) 
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Model and Interpretation 

# Importing Required Libraries 

import numpy as np 

import pandas as pd 

import os 

from sklearn.metrics import confusion_matrix, plot_confusion_matrix 

from sklearn.model_selection import train_test_split, GridSearchCV, cross_val_score 

from sklearn import metrics 

from sklearn.tree import DecisionTreeClassifier 

from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier 

from sklearn.ensemble import BaggingClassifier 

import xgboost as xgb 

from xgboost import XGBClassifier 

from sklearn.metrics import accuracy_score 

from sklearn.ensemble import AdaBoostClassifier, GradientBoostingClassifier 

from sklearn.metrics import accuracy_score, f1_score, confusion_matrix, classification_report 

pd.set_option('display.max_columns',None) 

 

data = pd.read_csv("dfm_ready_cv.csv") 

data.head() 

 

data.columns 

 

data=data.drop(['Unnamed: 0'],axis=1) 

 

data.head() 

 

train,test=train_test_split(data,test_size=0.3,random_state=0,stratify=data['ARR_FLIGHT_ST

ATUS']) 

 

train.head() 

 

test.head() 

 

train.shape 

 

test.shape 

 

# Create X_train,Y_train,X_test, Y_test 

X_train = train.drop(['ARR_FLIGHT_STATUS'], axis=1) 

Y_train = train['ARR_FLIGHT_STATUS'] 

 

X_test  = test.drop(['ARR_FLIGHT_STATUS'], axis=1) 

Y_test  = test['ARR_FLIGHT_STATUS'] 
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# Random Forest 

random_forest = RandomForestClassifier(n_estimators=100) 

random_forest.fit(X_train, Y_train) 

random_forest_preds = random_forest.predict(X_test) 

print('The accuracy of the Random Forests model is 

:\t',metrics.accuracy_score(random_forest_preds,Y_test)) 

 

 

import lime 

import lime.lime_tabular 

 

predict_fn_rf = lambda x: random_forest.predict_proba(x).astype(float) 

X = X_train.values 

explainer = lime.lime_tabular.LimeTabularExplainer(X,feature_names = 

X_train.columns,class_names=['Arrive on Time','Delay in Arrival'],kernel_width=5) 

 

test.loc[[112707]] 

 

choosen_instance = X_test.loc[[112707]].values[0] 

exp = explainer.explain_instance(choosen_instance, predict_fn_rf,num_features=10) 

exp.show_in_notebook(show_all=False) 

 

test.loc[[698]] 

 

choosen_instance = X_test.loc[[698]].values[0] 

exp = explainer.explain_instance(choosen_instance, predict_fn_rf,num_features=10) 

exp.show_in_notebook(show_all=False) 

 

adaboost_clf = AdaBoostClassifier(random_state=42) 

adaboost_clf.fit(X_train, Y_train) 

adaboost_clf_preds = adaboost_clf.predict(X_test) 

print('The accuracy of the Adaboost model is 

:\t',metrics.accuracy_score(adaboost_clf_preds,Y_test)) 

 

 

predict_fn_ab = lambda x: adaboost_clf.predict_proba(x).astype(float) 

X = X_train.values 

explainer = lime.lime_tabular.LimeTabularExplainer(X,feature_names = 

X_train.columns,class_names=['Arrive on Time','Delay in Arrival'],kernel_width=5) 

 

 

choosen_instance = X_test.loc[[112707]].values[0] 

exp = explainer.explain_instance(choosen_instance, predict_fn_ab,num_features=10) 

exp.show_in_notebook(show_all=False) 
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choosen_instance = X_test.loc[[698]].values[0] 

exp = explainer.explain_instance(choosen_instance, predict_fn_ab,num_features=10) 

exp.show_in_notebook(show_all=False) 

 

gbt_clf = GradientBoostingClassifier(random_state=42) 

gbt_clf.fit(X_train, Y_train) 

gbt_clf_preds = gbt_clf.predict(X_test) 

print('The accuracy of the Gradient boost model is 

:\t',metrics.accuracy_score(gbt_clf_preds,Y_test)) 

 

predict_fn_gbt = lambda x: gbt_clf.predict_proba(x).astype(float) 

X = X_train.values 

explainer = lime.lime_tabular.LimeTabularExplainer(X,feature_names = 

X_train.columns,class_names=['Arrive on Time','Delay in Arrival'],kernel_width=5) 

 

choosen_instance = X_test.loc[[112707]].values[0] 

exp = explainer.explain_instance(choosen_instance, predict_fn_gbt,num_features=10) 

exp.show_in_notebook(show_all=False) 

 

choosen_instance = X_test.loc[[698]].values[0] 

exp = explainer.explain_instance(choosen_instance, predict_fn_gbt,num_features=10) 

exp.show_in_notebook(show_all=False) 

 

xgb_clf = xgb.XGBClassifier() 

xgb_clf.fit(X_train, Y_train) 

xgb_clf_preds = clf.predict(X_test) 

print('The accuracy of the XGboost model is 

:\t',metrics.accuracy_score(xgb_clf_preds,Y_test)) 

 

predict_fn_xgb = lambda x: xgb_clf.predict_proba(x).astype(float) 

X = X_train.values 

explainer = lime.lime_tabular.LimeTabularExplainer(X,feature_names = 

X_train.columns,class_names=['Arrive on Time','Delay in Arrival'],kernel_width=5) 

 

choosen_instance = X_test.loc[[112707]].values[0] 

exp = explainer.explain_instance(choosen_instance, predict_fn_xgb,num_features=10) 

exp.show_in_notebook(show_all=False) 

 

choosen_instance = X_test.loc[[698]].values[0] 

exp = explainer.explain_instance(choosen_instance, predict_fn_xgb,num_features=10) 

exp.show_in_notebook(show_all=False) 
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MLP-NN 

import pandas as pd 

import numpy as np 

np.random.seed(0) 

import matplotlib.pyplot as plt 

get_ipython().run_line_magic('matplotlib', 'inline') 

import seaborn as sns 

import xgboost as xgb 

sns.set_style('darkgrid') 

pd.set_option('display.max_columns', None) 

import datetime, warnings, scipy 

warnings.filterwarnings("ignore") 

 

import keras 

from keras.models import Sequential 

from keras.layers import Dense 

from sklearn.datasets import load_breast_cancer 

from sklearn.preprocessing import StandardScaler, LabelBinarizer 

from sklearn.model_selection import train_test_split 

from keras.layers import Dense, Conv2D , SeparableConv2D, MaxPool2D, Flatten , Dropout , 

BatchNormalization 

from keras import Sequential 

from keras.layers import Dense 

from sklearn import preprocessing 

import sklearn.metrics as metrics 

from sklearn.metrics import classification_report, confusion_matrix 

from sklearn.metrics import precision_score, recall_score, f1_score 

 

import tensorflow as tf 

from tensorflow import keras 

dfm_ready = pd.read_csv('dfm_ready3.csv', index_col=0) 

dfm_ready.head().append(dfm_ready.tail()) 

 

 

# The next cell will make sure that all my features are in floating format, followed by a double 

check with the .info() function 

 

df = dfm_ready.astype(float) 

 

 

df.info() 

 

 

# # Function Library 
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def visualize_training_results(results): 

    history = results.history 

    plt.figure() 

    plt.plot(history['val_loss']) 

    plt.plot(history['loss']) 

    plt.legend(['val_loss', 'loss']) 

    plt.title('LOSS', fontsize=14) 

    plt.xlabel('Epochs', fontsize=12) 

    plt.ylabel('Loss', fontsize=12) 

    plt.show() 

     

    plt.figure() 

    plt.plot(history['val_accuracy']) 

    plt.plot(history['accuracy']) 

    plt.legend(['val_accuracy', 'accuracy']) 

    plt.title('ACCURACY', fontsize=14) 

    plt.xlabel('Epochs', fontsize=12) 

    plt.ylabel('Accuracy', fontsize=12) 

    plt.show() 

 

 

def conf_matrix(conf_mat,): 

     

    conf_mat = pd.DataFrame(conf_mat, index = ['0', '1'], columns = ['0', '1']) 

    sns.set(font_scale=1.4) 

    plt.figure(figsize = (8,7)) 

    sns.heatmap(conf_mat, cmap= "Blues", linecolor = 'black' , linewidth = 1, annot = True, 

fmt='') 

    plt.xlabel('Predicted', fontsize=14) 

    plt.ylabel('True', fontsize=14) 

    plt.show() 

 

def model_metrics(a, b): 

     

    accuracy = metrics.accuracy_score(a, b) 

    precision = precision_score(a, b) 

    recall = recall_score(a, b) 

    f1 = f1_score(a, b) 

 

    print('Accuracy:', round(accuracy*100, 2),'%') 

    print('Precision score:', round(precision*100, 2),'%') 

    print('Recall score:', round(recall*100, 2),'%') 

    print('F1 score:', round(f1*100, 2),'%') 

 

# Target (y) and Features (X) definitions: 
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y = df['ARR_FLIGHT_STATUS'] 

X = df.drop(['ARR_FLIGHT_STATUS'], axis=1) 

 

 

df.head(2) 

 

input_shape_column=len(df.columns)-1 

 

input_shape_column 

 

 

# # Neural Network Conditions 

# Data has to be purely numerical 

#  

# Data cannot contain missing values 

#  

# Data has to be Normalized 

 

 

df.isna().sum().sum() 

 

 

# We know the data is purely numerical and that it has no missing values, now all is needed is 

to normalized and we will do it by using the StandardScaler 

 

col_names = list(df.columns) 

 

s_scaler = preprocessing.StandardScaler() 

df_s = s_scaler.fit_transform(df) 

 

df_s = pd.DataFrame(df_s, columns=col_names) 

 

 

# The following are the two first rows of the normalized data: 

 

 

df_s.head(2) 

 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) 

 

 

# # Modeling 

 

# # Model MLP NN 
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model_MLP_NN= Sequential() 

 

model_MLP_NN.add(Dense(30, activation='relu', input_shape=(input_shape_column,))) 

 

model_MLP_NN.add(Dense(10, activation='relu')) 

 

model_MLP_NN.add(Dense(5, activation='relu')) 

 

model_MLP_NN.add(Dense(1, activation='sigmoid')) 

 

model_MLP_NN.summary() 

 

model_MLP_NN.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) 

 

results_MLP_NN = model_MLP_NN.fit(X_train, y_train, epochs=25, batch_size=32, 

validation_split=0.1) 

 

 

 

visualize_training_results(results_MLP_NN) 

 

y_pred_MLP_NN = model_MLP_NN.predict(X_test) 

y_pred_m7 =(y_pred_MLP_NN > 0.5) 

 

cm_MLP_NN = confusion_matrix(y_test, y_pred_MLP_NN) 

print(cm_MLP_NN) 

print("------------------") 

print(classification_report(y_test, y_pred_MLP_NN)) 

 

conf_matrix(cm_MLP_NN) 

 

model_metrics(y_test, y_pred_MLP_NN) 

 

 

 

 

 

 

 

 

 


