

Application of Interpretable Machine Learning

in Flight Delay Detection

by

AFROZA HOSSAIN

MASTERS THESIS

Submitted in partial fulfillment of the requirements for the degree of Master of Science in

Information Systems at

The University of Texas at Arlington

May, 2021

Arlington, Texas

Supervising Committee:

Dr. Manjeri K Raja, Supervising Professor

Dr. Riyaz Sikora

Dr. Jayarajan Samuel

1

ABSTRACT

Application of Interpretable Machine Learning

in Flight Delay Detection

Afroza Hossain (Masters of Science in Information System)

Supervising Professor: Dr. Manjeri K Raja

Precise flight delay prediction is vital for the airline industries and passengers. This thesis focuses

on applying several machine learning and auto-ML techniques to predict flight delays. A flight

delay is said to occur when an airline lands or takes off later than its scheduled arrival or departure

time, respectively. Conventionally, if a flight's departure time or arrival time is greater than 15

minutes than its scheduled departure and arrival times respectively, then it is considered that there

is a departure or arrival delay with respect to the corresponding airports. Notable reasons for

commercially scheduled flights to be delayed are adverse weather conditions, air traffic

congestion, a late reaching aircraft to be used for the flight from a previous flight, maintenance,

and security issues. In this research study, a python-based model will be developed for a specific

Airline and an Airport from already established models that are available in literature and were

implemented in flight delay predictions. Once that is completed, the same model will be used for

a different Airline at the same Airport. Later, the model will be implemented for several other

Airports to check the adaptability of the models. In this process, there will be an attempt to enhance

the existing models by carefully selecting the dataset and features. In the final stage, the results

will be compared with the Microsoft Azure Machine Learning Studio, the best model will be

2

deployed using Auto-ML and the existing interpretable machine learning package, LIME will be

used to explore local prediction capability of the models. This study has been conducted with the

hopes that alongside other increasing numbers of studies in this subject matter, it will contribute

to improving on-time performances of flights to benefit airline customers, airline personnel, and

airport authorities.

3

Copyright by

Afroza Hossain

2021

4

ACKNOWLEDGEMENTS

Foremost, I would like to thank Prof. Manjeri K Raja, my advisor and Professor of Information

Systems and Operations Management at the University of Texas at Arlington, for his advises and

guidance, he gave me an interesting insight on the possible applications. Besides my advisor, I

would like to thank the rest of my thesis committee member: Professor Riyaz Sikora, Professor

Jayarajan Samuel for their inspiration. I offer my sincere appreciation for the learning opportunity

provided by University of Texas at Arlington and my committee.

5

DEDICATION

I dedicate this thesis to my encouraging husband who has been a constant source of support and

inspiration during the challenges of school and life. This effort is also dedicated to my parents and

my sister, as their unconditional love and prayers made it possible to receive such an honor.

6

TABLE OF CONTENTS

ABSTRACT .. 1

ACKNOWLEDGEMENTS .. 4

DEDICATION .. 5

Chapter 1 ... 11

INTRODUCTION ... 11

Chapter 2 ... 13

LITERATURE REVIEW ... 13

APPLICATION OF MACHINE LEARNING IN FLIGHT DELAY PREDICTION 13

MACHINE LEARNING WORKFLOW .. 14

Dealing with Imbalanced data ... 19

Interpretable Machine Learning: ... 26

Chapter 3 ... 29

DATA GATHERING PREPROCESSING AND EXPLORATION ... 29

EDA: Exploratory Data Analysis for American Airlines ... 37

EDA: Exploratory Data Analysis for Southwest Airlines ... 50

Chapter 4 ... 53

RESULT AND DISCUSSION ... 53

MODELS using Python for American Airlines .. 53

MODELS using Python for Southwest Airlines ... 57

Microsoft Azure Studio ... 59

Interpretability of the models prediction using LIME: ... 62

All Model Comparison for LIME for a specific Flight from test data set .. 62

Chapter 5 ... 74

CONCLUSION ... 74

REFERENCE .. 76

APPENDIX .. 77

7

LIST OF FIGURES (or Illustrations)

Figure 1: A typical process of Air Transportation System (Sternberg et al., 2017) 11

Figure 2: Flow Chart of the Research Plan for Interpretable Flight Delay Prediction 12

Figure 3:Publication in last two decades in Flight Delay Prediction Statistical Analysis,

Probabilistic Models, Network Representation, Operational Research, Machine Learning

(Sternberg et al., 2017).. 14

Figure 4:Schematic of generic Machine Learning workflow ... 15

Figure 5: Different sources of data for machine learning models .. 16

Figure 6:Process of splitting the data set .. 18

Figure 7:Example of imbalanced dataset .. 19

Figure 8: Oversampling example, creating balance ... 20

Figure 9:SMOTE (Bank Data: SMOTE. This Will Be a Short Post before We… | by Zaki

Jefferson | Analytics Vidhya | Medium, n.d.) ... 20

Figure 10: Undersampling technique example, creating balance ... 21

Figure 11:Adaboost Classifier iteration approach .. 23

Figure 12: Multilayer perceptron-NN ... 25

Figure 13: Importance of interpretable ML .. 27

Figure 14: schematic of how LIME works ... 27

Figure 15: Steps that LIME uses for the interpretation... 28

Figure 16:Heat Map .. 37

Figure 17: Total number of AA flights that arrived at DFW .. 38

Figure 18: Total Delayed AA Flights by origin airport based in arrival delay status 39

Figure 19:Comparison pie char between arrival and delay status .. 40

Figure 20:Percentage of delayed arrival flights of airport .. 40

Figure 21: Percentage of departure delayed flights by airport .. 41

Figure 22:Total delays in minutes by airport .. 41

Figure 23:Average arrival delay by airport ... 42

Figure 24:Number of delays flight per month .. 43

Figure 25: Number of Delayed flights per day of week ... 43

Figure 26: Number of delayed flights per day of the month... 44

Figure 27:Departure vs arrival delay .. 45

8

Figure 28:Total delayed AA flights by origin airport based on carrier delay 46

Figure 29:Total delayed AA flights by origin airport based on weather delay 47

Figure 30:Total delayed AA flights by origin airport based on NAS delay 47

Figure 31:Total delayed AA flights by origin airport based on security delay 48

Figure 32: Total delayed AA flights by origin airport based on late air-craft delay 49

Figure 33:Percentage of flights delays based on carrier, weather, NAS, security, late aircraft ... 50

Figure 34: Total number of Southwest flights arrived at DAL ... 50

Figure 35: Total delayed SW flights based on arrival delay ... 51

Figure 36:Comparison between departure and arrival delay .. 52

Figure 37: Total delayed SW flights by origin based on cause of delay 52

Figure 40:Evaluation Metric for random forest .. 55

Figure 42:Evaluation Metric for Adaboost ... 55

Figure 40: Evaluation Metric for XGBoost .. 56

Figure 44: Evaluation Metric for MLP-NN .. 57

Figure 45:Evaluation Metric for Random Forest .. 57

Figure 47:Evaluation Metric for Adaboost ... 57

Figure 48:Evaluation Metric for xgboost .. 58

Figure 49: Evaluation Metric for MLP- NN ... 58

Figure 50: Visualization from Azure .. 60

Figure 51: Result for Two-Class Decision Forest... 61

Figure 52:Result for Azure Auto-ML ... 62

Figure 53: Case 1 result using Random Forest ... 63

Figure 54: Case 1 result using Adaboost .. 63

Figure 55: Case 1 result using Gradient Boosting .. 64

Figure 56 : Case 1 result using xgboost .. 64

Figure 57 : Case 2 result using Random Forest .. 65

Figure 58 : Case 2 result using Adaboost ... 65

Figure 59 : Case 2 result using Gradient Boosting ... 66

Figure 60: Case 2 result using XGBoosting ... 66

Figure 61 Random Forest model was run with Flight Number .. 71

Figure 62 Random Forest model was run without Flight Number ... 71

9

Figure 63: Case 1: Delay flight based on customer centric Interpretable prediction.................... 72

Figure 64 Case 2: Flight arrive on time based on customer centric Interpretable prediction 73

10

LIST OF TABLES

Table 1:Features with description ... 30

Table 2: Performance metrics for AA ... 59

Table 3:: Performance metrics for Southwest ... 59

11

Chapter 1

INTRODUCTION

An arrival flight delay is said to occur when an airline lands later than its scheduled arrival time.

Notable reasons for commercially scheduled flights to delay are adverse weather conditions, air

traffic congestion, late reaching aircraft to be used for the flight from previous flight, maintenance

and security issues.

Flight delays are relatively common in both domestic and international flights. Based on the

statistics of the Bureau of Transportation, 18% (average of last 10 years)((Bureau of

Transportation Statistics, n.d.) of US domestic flights arrive more than 15 minutes late. According

to Baik et al., these delays are not only a cause of frustration for the passengers, Airline, and airport

authorities but also play an important role in financial loss for all parties (Baik et al., 2010)). Some

of the flights are more frequently delayed than others. The continuous technological advancement

in data storage enables the storage of a massive amount of data and computational power leads to

the development of data analytics. Different government agencies, airport authorities, and Airline

companies are collecting significant amounts of data and analyzing these datasets to aid in gaining

knowledge about the delays. A robust flight delay prediction model with proper explanation of the

delay is not only an interest of travelers but also of Airlines and Airport Authorities.

Figure 1: A typical process of Air Transportation System (Sternberg et al., 2017)

12

PROBLEM STATEMENT & RESEARCH PLAN

Air traffic is a very complex transportation system and the reason for the delay can occur at

different stages of the process. Figure 1 is a schematic of this complex process.

In this research study, a python-based model will be developed for a specific Airline and one of

their operating or hub Airport from already established models that are available in the literature

and were implemented in flight delay predictions. These data-driven methods will only consider

historic observations and will be using several years of records (largest public dataset of flight

delay) from the Bureau of Transportation Statistics (BTS) of the United States Department of

Transportation of US domestic flight delays. The model will not take into account short-term

effects, such as current weather or traffic situation. The same model will then be used for a

different Airline and it’s one of the operating or hub Airports. In this process, there will be an

attempt to enhance the existing models by carefully selecting the dataset and features. In the final

stage, the results will be compared with Microsoft Azure Machine Learning Studio and also with

Azure Auto-ML, and then the interpretation of prediction of delay will be made based on an

interpretable machine learning package, Local Interpretable Model-Agnostic Explanations

(LIME). This study is being conducted with the hopes that it will contribute to improving on-time

performances of flights for the benefit of the airline customers, airline personnel, and airport

authorities. Figure 2, which can be found below, represents the Research Plan for Flight Prediction

Model and the interpretation of the prediction.

Figure 2: Flow Chart of the Research Plan for Interpretable Flight Delay Prediction

13

Chapter 2

LITERATURE REVIEW

APPLICATION OF MACHINE LEARNING IN FLIGHT DELAY PREDICTION

Flight delays are an important subject in literature due to their economic and environmental

impacts. They may increase costs to customers and operational costs to airlines. Apart from

outcomes directly related to passengers, delay prediction is vital during the administrative process

for all parties involved in the air transportation system, this has been explored in Annual U.S.

Impact of Flight Delays by FAA (Apo-, 2016). Approximately $23 billion loss was reported due

to delay of flights in the U.S as per the yearly reports of FAA, these include both domestic and

international flights. In the last few decades, many attempts of flight delay predictions have been

made by researchers based on Machine Learning, Deep Learning, and Big Data approach (Figure

2). A regression model using Gradient Boosting Regressor for predicting both Flight Departure

and Arrival Delays was explored and analyzed by Manna et al. and Yazdi et al.(Yazdi et al.,

2020a)(Manna et al., 2018). Applied Supervised Machine Learning Algorithms like decision trees,

random forests, AdaBoost, and k-Nearest Neighbours for predicting weather influenced flight

delay were reported by Choi et al.(Choi et al., 2016). Rebollo et al.(Rebollo & Balakrishnan, 2014)

applied Random Forest on an air traffic network framework for predicting flight departure delays

in the future. Different machine learning methods such as decision trees were analyzed by Kuhn

et al. and Dothang et al. (Truong et al., 2018) (Kuhn & Jamadagni, 2017), random forest models

were used in Predictive Modeling of Aircraft Flight Delay by Kalliguddi et al. (Kalliguddi et al.,

2017), naïve Bayes model was used in Prediction Analysis of Flight Cancellation Based on Spark,

bagging classifier, extra trees classifier, gradient boosting methods were used by Yanying et

al.(Yanying et al., 2019). A recent article by Yazdi et al. (Yazdi et al., 2020b) proposes a model

for predicting flight delay based on Deep Learning (DL).

14

Figure 3:Publication in last two decades in Flight Delay Prediction Statistical Analysis, Probabilistic Models, Network

Representation, Operational Research, Machine Learning (Sternberg et al., 2017)

According to Teja et al, (Teja, n.d.) flight delays do not only have an economic impact but also

have an environmental impact, this was determined using machine learning algorithms like

XGBoost regression and Linear regression Techniques. Another model which was used to

predict flight delay by Sina (Gui et al., 2020) tries to reduce delays to gain the loyalty of their

customers using artificial neural network (ANN) techniques.

MACHINE LEARNING WORKFLOW

Machine Learning (ML) models are used to learn from data without being explicitly programmed.

ML models are code that has been trained to recognize several types of patterns in the data and

make a prediction based on that. Machine learning techniques are useful for solving experiments

efficiently and effectively. A great amount of data is loaded into a computer program and a model

is chosen to fit the data, which allows the program, without any help to make predictions, based

on the trained data. Predictive models are only as good as the data from which they are built, thus

using valid and relevant data helps with high-performing models. Here, the analogy of garbage-in

garbage-out takes into effect which means that if a model is fed garbage, that is exactly what it

will return, in other words, the trained model will provide invalid predictions. Based on Figure 3,

the workflow of Machine learning includes all the steps required to build the proper machine

learning model from scratch.

15

Figure 4:Schematic of generic Machine Learning workflow

Define Problem: This is the first step of machine learning. It is important to identify what exactly

one expects as output from a model. This might involve in having some assumptions which mostly

come from the domain knowledge.

Gather Data: Based on one problem statement, one must gather an appropriate data set. Quality

of data dictates the accuracy of the model, so it is a very important stage of ML workflow. This

can be a tedious process because getting the right dataset in the right format can be challenging. It

has to correlate with the outcomes which are being predicted, accumulating data, requires a clear

understanding of domain knowledge, and proper engagement in sampling from a large database to

capture records to be used in an analysis. Figure (below) is a depiction of different sources of data

for machine learning models.

16

Figure 5: Different sources of data for machine learning models

Data Pre-processing: Data preprocessing is the process of cleaning data and preparing it to be

used to train the model. Most scientists believe data cleaning and formatting can be considered the

most challenging part of any project (Shmueli et al., 2017). In the real world, data is incomplete,

inconsistent, and inaccurate which means that there are errors and outliers present in the data which

causes there to be a lack in patterns and trends. According to (Shmueli et al., 2017) data

preprocessing enhances the quality of data to stimulate the extraction of meaningful insights. Some

of the key steps of data preprocessing are

a) gathering the dataset: In this case, data was gathered from the Bureau of Transportation Statistics

for 2016-2019, using only American Airlines (AA) and Southwest (WN), limited to the US

domestic flights and a couple of airports.

b) Importing all the required libraries: importing libraries and dependencies, into the Python

environment will make tasks easier, as it has built-in functions and models that can be used instead

of doing that ourselves. For example, some of the libraries that will be used are pandas, which

is used for data cleaning and analysis, NumPy which is a library that is mostly used for, multi-

dimensional arrays and matrices, along with mathematical functions to operate on these arrays,

matplotlib which is used for analyzing and visualizing charts or graphs, as well as several other

libraries which will be used throughout the project.

17

c) Importing the dataset: When running python programs, datasets are required for data analysis.

Python has several modules for importing external data. For example, the method used in this

project is by importing the CSV to enable us to read each row in the file using a comma as a

delimiter, which is best described in (Importing Data in Python, n.d.)

d) The next step in ML is feature engineering, it is the process of using domain knowledge to

extract features from raw data. These features can be used to improve the performance of machine

learning algorithms. The following list of techniques exist in feature engineering: Imputation,

Handling Outliers, Binning, Log Transform, One-Hot Encoding, Grouping Operations, Scaling,

some of which will be used in this thesis.

i. Data cleaning or identifying and handling the missing values: according to (Shmueli et al.,

2017) from a statistics point of view, it is important to understand different types of missing

data. The type of missing data will help with filling in the data or discarding them. In

python, isnull and notnull can also be used to summarize missing values, this will be

discussed in greater detail further in this paper.

ii. Encoding the categorical data: According to (Shmueli et al., 2017) data scientists spend

80% of their time cleaning and preparing data, in this process converting categorical data

is an inevitable activity. It helps improve the model quality and provides better feature

engineering. For example, in some of the feature binary variables containing either 0 or 1,

where 0 represents the absence, and 1 represents the presence.

iii. Feature Scaling is also sometimes involved in this step of ML workflow. It helps to

normalize the data through standardization, which involves rescaling the properties of a

standard normal distribution with a mean of zero and a standard deviation of one.

Normalization is a scaling technique in which values are rescaled, hence varying between

zero and one, it is also known as Min-Max scaling. Error! Reference source not found.

is the formula for normalization where Xmax and Xmin signify the maximum and the

minimum values of the feature, respectively.

iv. Another type of scaling often used is Standardization where the values are focused around

the mean with a component standard deviation. Error! Reference source not found. is

18

the formula for standardization, where represents the mean of the feature values

and represents the standard deviation of the feature values.

Once preprocessing has been complete, data exploration is the first step in data analysis where the

use of data visualization and statistical techniques describes the nature of the dataset. Data

exploration helps us visually explore and categorize relationships between different features,

structures, and the presence of outliers. It also helps us understand the patterns and trends present

in the raw data.

Building Data set: Based on the data, and the purpose of the problem, one has to determine the

Machine Learning task to be performed amongst the following tasks: classification, prediction,

clustering, and partitioning the data accordingly. For example, if the problem is a supervised

(prediction), the dataset is divided into three parts: training, validation, and test datasets. Many

Machine Learning techniques such as regression, neural nets, decision trees, etc, can be used in

this iterative process. Below figure is an example of the process of splitting the data set.

Figure 6:Process of splitting the data set

19

Dealing with Imbalanced data

As most of the machine learning algorithms are designed to maximize accuracy and reduce error,

it works best when the number of samples in each class are about equal but in real data set this is

very rare.

Class imbalance is a problem that arises in machine learning classification problems. A

classification problem in machine learning in which a target must be predicted given some input.

There is a great chance that the distribution values may be different and due to this difference in

the class, the algorithms may be biased towards the majority values and will not perform well on

the minority values, as a result, the difference in class affects the outcome of the model.

For an example, if someone has a two-class problem (e.g., yes or no). If 10% data points are of the

class of “Yes”, 90% for the class of “No” class. The “No” class is the majority class and “Yes”

class is the minority. Here “No” class to “Yes” class ratio is very high. This problem is referred to

as a class imbalance.

Figure 7:Example of imbalanced dataset

There are many techniques which are used in dealing with the imbalanced data. Below are some

examples of those techniques.

Oversampling: This technique tries to increase the size of minority samples to create a balance.

20

Figure 8: Oversampling example, creating balance

One of the popular oversampling method is Synthetic Minority Over-sampling Technique

(SMOTE). By using a distance measure, SMOTE algorithm selects two or more similar instances

to create synthetic samples from the minority class. below is a schematic of the algorithm.

Figure 9:SMOTE (Bank Data: SMOTE. This Will Be a Short Post before We… | by Zaki Jefferson | Analytics Vidhya | Medium,

n.d.)

Undersampling: Undersampling works in opposite way of oversampling, it aims to decrease the

size of the majority class to balance the dataset.

21

Figure 10: Undersampling technique example, creating balance

Penalize Model: One can penalize the model to pay more attention to the minority class by

imposing an additional cost on the model for making classification mistakes on the minority class

during training.

Assigning Weights for the Classes: As stated earlier, machine learning algorithms are not very

useful with biased class data. When training algorithms, skewed distribution of the classes can be

taken into consideration. This can be accomplished by giving different weights to both the

majority and minority classes. The formula to calculate weights is Error! Reference source not

found.:

Where,

wj represents the weight for each class

n_samples represents the total number of samples

n_classes represents the total number of unique classes in the target

n_samples represents the total number of rows of the respective class

In order to achieve more accurate and meaningful results, weights were distributed among the

classes.

Building Model: Before diving into models, understanding algorithms is important, Machine

learning algorithms can be divided into 3 broad categories:

❖ Supervised learning

❖ Unsupervised learning, and

22

❖ Semi-supervised learning.

Supervised learning is the function that maps an input to an output based on example input-output

pairs. Unsupervised learning is a type of algorithm that learns patterns from untagged data.

According to (Truong et al., 2018), semi-supervised learning is an approach that combines a small

amount of labeled data with a large amount of unlabeled data during training. As can be interpreted

from the name, semi-supervised learning falls between unsupervised learning and supervised

learning. Machine learning algorithms build a model based on sample data, identified as the

"training data", to make predictions. There are many models in Machine Learning but the

following four models: Random Forest, AdaBoost, XgBoost, Neural network will be looked into.

Random forest: Random forest is one of the most used algorithms, it can be used for both

classification and regression tasks, classification will be used in the case of this thesis. To use this

algorithm in Python, the RandomForest Classifier and BaggingClassifier libraries are required to

be imported. It is the supervised, ensemble learning, usually trained with the “bagging” method

which helps with the overall result. The Random Forest algorithm will be used because it is very

easy to measure the importance of each feature in the prediction. The hyperparameters are used to

increase the predictive power of the model or to make the model quicker. Some common

hyperparameters for increasing the predictive power are the n_estimators which is the number of

trees the algorithm builds. In general, a higher number of trees increases the performance and

makes the predictions more stable. Another important hyperparameter is max_features, which is

the maximum number of features random forest considers when splitting a node. The last

hyperparameter is min_sample_leaf which helps determine the minimum number of leafs required

to split an internal node. Although the Random Forest algorithm is versatile, it is slow in creating

predictions once the model is made. The Random Forest algorithm uses the Gini Index which is a

measure for classification type problems. For the purpose of this thesis, the function being used

takes in the parameters gini which measures the quality of a split and the maximum depth of the

tree. If the maximum depth is denoted to none, then the nodes are expanded until all leaves contain

less than min_samples_split samples.

23

The formula Error! Reference source not found. uses probability to determine the Gini of each

branch on a node; deciding which branch is more likely to occur. Here, Pi represents the relative

frequency of the class in the dataset and c represents the number of classes. This can also be done

using entropy. The formula for entropy is shown below:

Entropy manages the probability of a certain outcome for making a decision (the equation above).

This algorithm can be extremely useful with different types of data sets. It is easy to use, fast to

train and finds an accurate representation.

AdaBoost: The next model which is used in this thesis is AdaBoost, short for “Adaptive Boosting.

To use this algorithm in Python, the AdaBoostClassifier library needs to be imported. It focuses

on classification problems and uses an ensemble learning method. AdaBoost uses an iterative

approach to learn from the mistakes of weak classifiers, and turns them into strong ones as shown

below.

Figure 11:Adaboost Classifier iteration approach

The way the model works is, it makes n number of decision trees during the training, as the first

decision tree is made, and the record which is incorrectly classified is given more priority. Two

hyperparameters that are mostly used are the number of estimators (n_estimators) and the learning

rate. Only those incorrect records are sent as input for the next model and the process will

24

continue. The final equation for classification can be represented Error! Reference source not

found.:

where fm stands for the m’th weak classifier and θm is the corresponding weight. It represents the

weighted combination of M weak classifiers.

XGBoost: Another algorithm which will be looked into is XGBoost, it is a decision-tree-based

ensemble Machine Learning algorithm that uses a gradient boosting framework. It helps in

prediction problems involving unstructured data. This algorithm has many advantages such

as Regularization which also helps to reduce overfitting. Overfitting occurs when the model tries

to contain all the data points in the provided dataset, which reduces the accuracy of the model. The

overfitted model results in low bias and high variance. XGBoost has an in-built procedure to

handle missing values on each node, which allows users to run cross-validation at each iteration of

the boosting process. The final equation for XGBoost can be represented as Error! Reference

source not found.:

Multilayer Perceptron (MLP): The last algorithm/model which will be used in this project is

Multilayer Perceptron (MLP). MLPs are suitable for classification prediction problems. It utilizes

a supervised learning technique called backpropagation. It is an algorithm that calculates a

complicated gradient. In the Multilayer perceptron, there are combinations of neurons. For

instance, in a three-layer network, the first layer is the input layer, the middle layer is the hidden

layer and the last layer is the output layer, as can be seen Figure 12.

25

Figure 12: Multilayer perceptron-NN

MLP networks are composed of many functions that are chained together. Each layer is

represented as y = f(WxT + b) where f represents the activation function, W represents the set of

parameters, or weights, in the layer, and x represents the input vector. To use this algorithm in,

Python, the tensorflow and keras library needs to be imported. Keras works as an interface for

TensorFlow which focuses on the inference of deep neural networks.

Training and testing the model: According to Wiley et al, (Data Mining for Business Analytics:

Concepts, Techniques, and Applications in R | Wiley, n.d.), once the model is selected based on the problem

definition and domain knowledge, it is time to feed the training set to the algorithm so that it can learn

suitable parameters and features used in the data set. Validation data set is mainly used in modifying or

discarding variables and includes a process of tuning model-specific hyperparameters until a satisfactory

accuracy level is accomplished.

In the testing stage, a test dataset is used to verify that model using accurate features. In this part of the

workflow, one should return to training the model based on the feedback to improve accuracy and desired

output.

Model Evaluation and Feedback: It can be done using accuracy, precision, recall and F1-score.

Generally, finding accuracy can determine whether a model is being trained correctly and how it

may function. The problem with using accuracy is that it does not do well when one has a severe

class imbalance, that is why precision, recall must also be considered. Error! Reference source

26

not found.Error! Reference source not found. is the formula for how accuracy is

mathematically interpreted.

Precision is helpful when false positives are high, precision can help predict positives. Let us

assume a model has very low precision, which can lead to the assumption that there are a lot

more delayed flights, and this may be a false conclusion. Error! Reference source not found.

is the mathematical equation for precision.

The opposite of precision is recall, recall helps when the false negatives are high, as false

negatives can also be misleading. Error! Reference source not found. is the mathematical

equation for recall:

When modelling, machine learning algorithms assume that the data is evenly distributed within

classes. If the imbalanced data is not taken care of, the model may predict high accuracy, but this

will not have any value to the objective. According to (James et al., 2000) the F1-score is simply

the harmonic mean of precision (PRE) and recall (REC). The balance between precision and

recall can be found using the F1-score metric Error! Reference source not found., which is

beneficial toward imbalanced datasets.

Interpretable Machine Learning:

Application of Machine learning is now widespread but ML models are still considered as a black

box which is a barrier to the adoption of machine learning. Why can a ML model make certain

27

prediction? That is one of the big questions in the implementation of ML. Interpretability of those

prediction can help to increase the trust, to select better models and to reduce the bias that exist in

the data set. Figure below is a pictorial explanation of the importance of interpretable machine

learning. (Interpretable Machine Learning - Christoph Molnar - Google Books, n.d.) ((Masís, 2021)

Figure 13: Importance of interpretable ML

Lime stands for Local Interpretable Model-Agnostic Explanations. LIME allows end-users to

interpret predictions and take action. It is model-agnostic, implying it can be applied to any

machine learning model.

Figure 14: schematic of how LIME works

Above Figure is a schematic of how LIME works. The technique attempts to understand the model

by studying the input of data and recognizing how the predictions change. In simple words, LIME

assumes a black-box machine learning model and examines the relationship between input and

output. It helps understand feature importances on a dataset level. Also, it allows verification of

the problem statement, but when using LIME, it is important to accurately interpret the output.

28

The way LIME gives explanation of the model is by approximating the black box model for each

prediction to explain, permute the observation n times, then let the complex model to predict the

outcome of all permuted observations. It calculates the distance from all permutations to the

original observation. Followed by converting the distance to a similarity score. Select m features

best describing the complex model outcome from the permuted data. Then it fits a simple model

to the permuted data, explaining the complex model outcome with the m features from the

permuted data weighted by its similarity to the original observation. Finally, extract the feature

weights from the simple model and use these as explanations for the complex models local

behavior. Figure below explain steps that LIME uses for the interpretation (Ribeiro et al., 2016).

Figure 15: Steps that LIME uses for the interpretation

29

Chapter 3

DATA GATHERING PREPROCESSING AND EXPLORATION

American Airlines, Inc. (AA) is an American airline carrier that is based on Fort Worth, Texas. It

is arguably the world's largest airline on grounds of revenue, fleet size, and scheduled passenger

kilometers flown [2]. Hence, in addition to international flights, it is observed to be quite obvious

for passengers to prefer American Airlines for domestic flights too. However, flight delays

concerned with American Airlines often seem sudden and unprecedented and these delays cause

passengers to lose their trust in such a widely-known and internationally recognized airline.

Therefore, an Intelligent and Automated Prediction System is a must in this case to predict possible

airline delays. The model that will be discussed takes the flight details regarding American

Airlines; data was gathered from the Bureau of Transportation Statistics (BTS) for 2016-2019 for

flight that departed for DFW from following Origin Airport.

1. Los Angeles International Airport (LAX)

2. O'Hare International Airport (ORD)

3. Phoenix Sky Harbor International Airport (PHX)

4. Miami International Airport (MIA)

5. Charlotte Douglas International Airport (CLT)

6. Denver International Airport (DEN)

7. Philadelphia International Airport (PHL)

8. Ronald Reagan Washington National Airport (DCA)

9. John F. Kennedy International Airport (JFK)

10. Hartsfield-Jackson Atlanta International Airport (ATL)

11. LaGuardia Airport (LGA)

Some of the selected Airports were the operating airports (Hub) and some are busiest airports of

USA.

Southwest Airlines Co. (WN) is the world's largest low-cost carrier airline based on Dallas. Data

from 2016-19 was collected from BTS for the flights that are departed for Dallas Love Field

Airport (DAL),one of the operating airport of Southwest, from following origin airports.

1. Texas. William P. Hobby Airport (HOU)

2. Denver International Airport (DEN)

30

3. Chicago Midway International Airport (MDW)

4. Phoenix Sky Harbor International Airport (PHX)

5. McCarran International Airport (LAS)

6. Hartsfield-Jackson Atlanta International Airport (ATL)

7. Los Angeles International Airport (LAX)

8. Baltimore/Washington International Thurgood Marshall Airport (BWI)

9. Orlando International Airport (MCO)

10. Oakland International Airport (OAK)

For both cases data will be analyzed and arrival delay prediction will be made, which means that

it will determine whether it will arrive at the concerned airport on-time or not. So, this is a binary

classification problem.

Some of the following features will be considered as that will play a key role in determining the

flight delay. Each feature has a different measurable property that is used while training the

model. Domain knowledge of these features should be present to understand the dataset for a

better outcome.

Below are the flight data features and its description from the year 2016 and 2019, which has been

extracted from the Bureau of Transportation Statistics. There were 86 features found but by

conducting literature review and the need to reduce data complexity, only 35 features will be used

and are listed below in below.

Table 1:Features with description

Feature Information

Time Period
1. YEAR : Year

2. QUARTER: Quarter (1-4)

3. MONTH: Month

4. DAY_OF_MONTH: Day of Month

5. DAY_OF_WEEK: Day of Week

31

Airline
6. OP_UNIQUE_CARRIER:

Unique Carrier Code. When the same code

has been used by multiple carriers, a

numeric suffix is used for earlier users, for

example, PA, PA(1), PA(2). Use this field

for analysis across a range of years.

7. OP_CARRIER_FL_NUM: Flight Numb

Origin

8. ORIGIN: Origin Airport Analysis

Destination

9. DEST: Destination Airport Analysis

Departure Performance

10. CRS_DEP_TIME: CRS Departure Time (local time: hhmm)

11. DEP_TIME: Actual Departure Time (local time: hhmm)

12. DEP_DELAY: The difference in minutes between

scheduled and actual departure time. Early

departures show negative numbers.

13. DEP_DELAY_NEW: The difference in minutes between

scheduled and actual departure time. Early

departures are set to 0.

14. DEP_DEL15: Departure Delay Indicator, 15 Minutes or

More (1=Yes)

15. TAXI_OUT: Taxi Out Time, in Minutes

16. WHEELS_OFF: Wheels Off Time (local time: hhmm)
Arrival Performance

 17. WHEELS_ON: Wheels On-Time (local time: hhmm)

18. TAXI_IN: Taxi In Time, in Minutes

19. CRS_ARR_TIME: CRS Arrival Time (local time: hhmm)

20. ARR_TIME: Actual Arrival Time (local time: hhmm)

21. ARR_DELAY: The difference in minutes between

scheduled and actual arrival time. Early

arrivals show negative numbers.

22. ARR_DELAY_NEW: The difference in minutes between

scheduled and actual arrival time. Early

arrivals are set to 0.

23. ARR_DEL15: Arrival Delay Indicator, 15 Minutes or

More (1=Yes)

Cancellations and Diversions

24. CANCELLED: Cancelled Flight Indicator (1=Yes)

32

25. CANCELLATION_CODE: Specifies The Reason For Cancellation

26. DIVERTED: Diverted Flight Indicator (1=Yes)

Flight Summaries
27. CRS_ELAPSED_TIME: Elapsed Time of Flight, in Minutes

28. ACTUAL_ELAPSED_TIME: Elapsed Time of Flight, in Minutes

29. AIR_TIME: Flight Time, in Minutes

Flights Number of Flights Analysis

30. DISTANCE: Distance between airports (miles)

Cause of Delay

31. CARRIER_DELAY: Carrier Delay, in Minutes

32. WEATHER_DELAY: Weather Delay, in Minutes

33. NAS_DELAY: National Air System Delay, in Minutes

34. SECURITY_DELAY: Security Delay, in Minutes

35. LATE_AIRCRAFT_DELAY: Late Aircraft Delay, in Minutes

For this thesis, 2016-2019 data was used, and the listed features with descriptions are given in Table 1.

Data Cleaning: Since this is a binary classification problem, let us represent 0 for ARR_TIME arrival on

and 1 for delayed arrival for the above features. Since it is a large dataset (153975 entries with a total of 35

features), additional steps need to be taken by studying each feature and missing values must be

considered. For instance, when executing df1.isna().sum(), where df1 is our dataset the missing count of

values are listed below.

 0 YEAR 153975 non-null int64

 1 QUARTER 153975 non-null int64

 2 MONTH 153975 non-null int64

 3 DAY_OF_MONTH 153975 non-null int64

 4 DAY_OF_WEEK 153975 non-null int64

 5 OP_UNIQUE_CARRIER 153975 non-null object

 6 OP_CARRIER_FL_NUM 153975 non-null int64

 7 ORIGIN 153975 non-null object

 8 DEST 153975 non-null object

 9 CRS_DEP_TIME 153975 non-null int64

33

 10 DEP_TIME 151722 non-null float64

 11 DEP_DELAY 151718 non-null float64

 12 DEP_DELAY_NEW 151718 non-null float64

 13 DEP_DEL15 151718 non-null float64

 14 TAXI_OUT 151612 non-null float64

 15 WHEELS_OFF 151612 non-null float64

 16 WHEELS_ON 151578 non-null float64

 17 TAXI_IN 151578 non-null float64

 18 CRS_ARR_TIME 153975 non-null int64

 19 ARR_TIME 151578 non-null float64

 20 ARR_DELAY 151026 non-null float64

 21 ARR_DELAY_NEW 151026 non-null float64

 22 ARR_DEL15 151026 non-null float64

 23 CANCELLED 153975 non-null float64

 24 CANCELLATION_CODE 2367 non-null object

 25 DIVERTED 153975 non-null float64

 26 CRS_ELAPSED_TIME 153975 non-null float64

 27 ACTUAL_ELAPSED_TIME 151026 non-null float64

 28 AIR_TIME 151026 non-null float64

 29 DISTANCE 153975 non-null float64

 30 CARRIER_DELAY 31058 non-null float64

 31 WEATHER_DELAY 31058 non-null float64

 32 NAS_DELAY 31058 non-null float64

 33 SECURITY_DELAY 31058 non-null float64

 34 LATE_AIRCRAFT_DELAY 31058 non-null float64

CANCELLED and DIVERTED feature are dropped as those flight doesn’t arrive at the airports.

BTS listed following five features for reasons for delay:

❖ CARRIER_DELAY

❖ WEATHER_DELAY

❖ NAS_DELAY

❖ SECURITY_DELAY

❖ LATE_AIRCRAFT_DELAY

Before making any decisions related to these features, how much information is available must be

determined. By executing the Count for “NaN” or missing values in DataFrame, it was found that

122917 values were missing among all of the five features and the following result was obtained:

the percentage of valid data was found to 20.1708% and the percentage of missing values was found

to be 79.829%. Therefore, all “NaN” values were replaced to 0 for the five delay reasons.

DEP_DEL15 and ARR_DEL15 are dropped as we are interested in just whether the flight will be

delayed or not. As DEP_TIME (departure time) and ARR_TIME (arrival time) features seemed

vague because it does not comprise dates, those features will be converted to the quarter of the day.

34

In the following features TAXI_IN, TAXI_OUT, DEP_DELAY, DEP_DELAY_NEW,

ARR_DELAY, ARR_DELAY_NEW the Count for “NaN” or missing values were executed in

DataFrame and it was found that 2397, 2363, 2257, 2257, 2949, 2949 were missing, respectively.

Since these missing values cannot be retrieved the “NaN” will be replaced by the mean or median.

For the feature CANCELLATION_CODE, by executing the Count for “NaN” or missing values in

DataFrame, it was found that 151608 values were missing, this feature consists of three categories

A, B, and C, where A represents Carrier cancellation, B represents Weather delay, and C represents

National Air System delay. Since this is a categorical feature, it cannot be replaced by using mean

or median, instead, it was replaced by the most appeared category B. CRS_DEP_TIME, and

CRS_ARR_TIME is usually a categorical value, however the current format results in too many

columns, therefore, time is split into quadrants.

The feature ARR_DELAY, arrival delay reveals the difference in minutes between scheduled and

actual arrival time. Early arrivals show negative numbers, since this will not be feasible when

modeling, this data will not be used. Therefore, by comparing the value of each row for the

"ARR_DELAY" feature, if the total delay is zero or less, it will assign "0", this is denoted as minus-

- arrive early in the dataset, otherwise it will be assigned as "1". Once that was completed, that

feature was then added to a new feature (column), denoted as "ARR_FLIGHT_STATUS".

Similarly, for Departure Delay, when comparing the value of each row for the "DEP_DELAY"

feature (or column), if the total delay zero or less (minus-- arrive early) it will assign "0", otherwise,

it will be assigned as "1". Once that was completed, that feature was then added to a new feature

(column) " DEP _FLIGHT_STATUS".

The same will be done for the Cause of delay features such as CARRIER_DELAY, by comparing

the value of each row for the "CARRIER_DELAY" feature (or column), if the total delay zero or

less (minus-- arrive early) it will be assigned as "0" otherwise, it will be assigned as "1" and feature

(column) called "CARRIER_DELAY_STATUS" will be added and the same process will be

executed on WEATHER_DELAY, NAS_DELAY, SECURITY_DELAY, and

LATE_AIRCRAFT_DELAY

35

After having added these additional features, there are a total of 40 features as listed below.

Data columns (total 40 columns):

 # Column Non-Null Count Dtype

--- ------ -------------- -----

 0 YEAR 151026 non-null int64

 1 QUARTER 151026 non-null int64

 2 MONTH 151026 non-null int64

 3 DAY_OF_MONTH 151026 non-null int64

 4 DAY_OF_WEEK 151026 non-null int64

 5 OP_UNIQUE_CARRIER 151026 non-null object

 6 OP_CARRIER_FL_NUM 151026 non-null int64

 7 ORIGIN 151026 non-null object

 8 DEST 151026 non-null object

 9 CRS_DEP_TIME 151026 non-null int64

 10 DEP_DELAY 151026 non-null float64

 11 DEP_DELAY_NEW 151026 non-null float64

 12 DEP_DEL15 151026 non-null float64

 13 TAXI_OUT 151026 non-null float64

 14 WHEELS_OFF 151026 non-null int64

 15 WHEELS_ON 151026 non-null int64

 16 TAXI_IN 151026 non-null float64

 17 CRS_ARR_TIME 151026 non-null int64

 18 ARR_DELAY 151026 non-null float64

 19 ARR_DELAY_NEW 151026 non-null float64

 20 ARR_DEL15 151026 non-null float64

 21 CANCELLED 151026 non-null float64

 22 CANCELLATION_CODE 151026 non-null object

 23 DIVERTED 151026 non-null float64

 24 CRS_ELAPSED_TIME 151026 non-null float64

 25 ACTUAL_ELAPSED_TIME 151026 non-null float64

 26 AIR_TIME 151026 non-null float64

 27 DISTANCE 151026 non-null float64

 28 CARRIER_DELAY 151026 non-null float64

 29 WEATHER_DELAY 151026 non-null float64

 30 NAS_DELAY 151026 non-null float64

 31 SECURITY_DELAY 151026 non-null float64

 32 LATE_AIRCRAFT_DELAY 151026 non-null float64

 33 ARR_FLIGHT_STATUS 151026 non-null int64

 34 DEP_FLIGHT_STATUS 151026 non-null int64

 35 CARRIER_DELAY_STATUS 151026 non-null int64

 36 WEATHER_DELAY_STATUS 151026 non-null int64

 37 NAS_STATUS 151026 non-null int64

 38 SECURITY_STATUS 151026 non-null int64

 39 LATE_AIRCRAFT_STATUS 151026 non-null int64

36

The following features ARR_DELAY, DEP_DELAY, CARRIER_DELAY,

WEATHER_DELAY, NAS_DELAY, SECURITY_DELAY,

LATE_AIRCRAFT_STATUS, 'DEP_DELAY_NEW', 'DEP_DEL15','ARR_DELAY_NEW',

'ARR_DEL15','CANCELLED','CANCELLATION_CODE', and 'DIVERTED' are duplicated

and therefore, require to be dropped, which then results in a total of 23 features.

Certain subsets of the 26 remaining features were found to have a high correlation among them.

Correlation is a technique that can indicate whether and how strongly pairs of variables are related.

Correlations are useful because they can help in determining the relationships amongst variables,

and can also be used to make predictions. A correlation coefficient places a value on the

relationship, this index has a value between -1 and 1, where 0 means there is no relationship

between the variables, and -1 or 1 suggests that there is a high negative or positive correlation,

respectively (James et al., 2000). It can be illustrated using a heat map; a two-dimensional

graphical interpretation of data where the values are represented in colors in a matrix. below is a

heat map of the 23 features.

37

Figure 16:Heat Map

From the color on the indicator, it can instantly be seen that certain features have a higher

correlation than others, for example, MONTH vs. QUARTER has a high correlation of 0.97, one

of these features can be dropped but it is kept to help visualize the correlation in data exploratory.

EDA: Exploratory Data Analysis for American Airlines

In Exploratory Data Analysis (EDA), the large number of rows and columns which was formatted

during the preprocessing steps will help in visualizing, summarizing, and interpreting the data.

EDA is one of the steps in data science that provides certain insights and meaningful patterns

which is essential not only for data scientists but also for business aspects. EDA reveals

information about the content without having to make any assumptions, that is why data scientists

use this process to understand what kind of model can be created for further analysis, according to

(Suresh Kumar Mukhiya and Usman Ahmed, n.d.). In Python, the libraries which will be used

38

with visualizing and informative statistical graphics include matplotlib and Plotly, and Seaborn

which is a Python data visualization library based on matplotlib.

Using the dataset, which was limited to US domestic flight for AA and the following airports:

LAX, ORD, PHX, MIA, CLT, DEN, PHL, DCA, JFK, ATL, LGA, the objective is to find the total

number of AA flights which arrived at DFW during the year 2016-2019. It is important to note

that the 2020 dataset was not used due to COVID-19, as a different trend may appear in reasons

for delay, which can be analyzed during future work. The bar chart below shows the exact number

of flights which arrived at DFW, here the x-axis represents the name of the origin airport and the

y-axis represents the number of flights.

Figure 17: Total number of AA flights that arrived at DFW

The above graph illustrates the number flights that arrived at DFW from the following airports

LAX, ORD,PHX , LGA, MIA, CLT, DEN, PHL, DCA, ATL, and JKF, respectively. The purpose

is to find how many of these flights were delayed, and then the reason for the delay can be

determined. By keeping the x-axis and y-axis the same as shown above and grouping the origin

and flight status in descending order, shows the flights arriving from ORD to DFW have the

highest number of delays. According to this graph, a trend that can be seen is that the higher the

number of flights arriving from a particular airport, the higher the possibility of the flights being

delayed. However, that may be true for many of the airports, the graph below indicates that ORD

has more delayed flights than LAX, similarly, that can be observed in other cases.

39

Figure 18: Total Delayed AA Flights by origin airport based in arrival delay status

To get a greater understanding, a new engineered binary column ARR_FLIGHT_STATUS was

added using the column ARR_DELAY where it represents flights being delayed or not, where “0”

indicates that flights arrived on time, and “1” indicates that flights arrived late. From the new

engineered feature, the overall percentage of delayed flights per Origin Airport showed

approximately 61.8% of flights from the dataset have arrived on time and 38.2 % were delayed.

Departure Delay involves the plane taking off later than its departure time, making the chances

higher for the flight to be arriving late at its destination. A new engineered binary column

DEP_DELAY_STATUS was added using the column DEP_DELAY where it represents flight

being delayed or not, “0” indicating flight departure to be on time and “1” for flights being departed

late.

below is a pie-chart showing the Departure of Flight Status, where it is illustrated that 61.2 % of

flights departed on time and 38.4% shows flights that departed late. The two pie charts show some

correlations which reveal if the flight was delayed during departure, there might be a possibility it

might arrive late. From both chart, one can conclude that the data in not highly imbalanced.

40

Figure 19:Comparison pie char between arrival and delay status

The below Bar-chart: Total number delayed of AA flights by Origin shows ORD has the highest

number of delays. It is interesting to note that although in this graph it can be observed that JFK

has the least number of delayed flights, when looking into the bar-chart below, which depicts the

percentage of delayed arrival flights by airport, the results shows that JFK has a greater percentage

of delayed arrival flights. For instance, when taking a flight from New York, a wiser choice

between LGA and JFK would be to choose to take a flight from LGA, because the percentage of

delayed flights is lower in comparison to the percentage of delayed flights at JFK.

Figure 20:Percentage of delayed arrival flights of airport

41

Figure 21: Percentage of departure delayed flights by airport

By looking into the percentage Figure 20,Figure 21, the below bar chart where the total delayed

minutes by the airport is shown, the x-axis represents the airport and the y-axis represents the total

delayed minutes, interesting results were revealed, it can be observed that the total number of

minutes delayed is very low for LGA though the highest number of flights depart from LGA to

DFW.

Figure 22:Total delays in minutes by airport

42

According to FAA, (Airlines For America | Annual U.S. Impact of Flight Delays (NEXTOR

Report), n.d.) in 2018, alone, airlines and passengers lost $28 billion due to delayed flights,

presuming $47 per hour average value of a passenger’s time. Looking into AA, and the 5 busiest

airports, the Average Delay Time per Airport is shown below. The x-axis represents the minutes,

and the y-axis represents origins (of airport).

Figure 23:Average arrival delay by airport

Knowledgeable travelers will take advantage of vacation deals at popular destinations around the

world. below is the bar graph showing the worst and the best months to travel to DFW based on

flight delays and the origin airport, where x -axis represents the month (which is numbered from

1-12) and the y-axis represents the number of flights. The month of June is shown as the busiest

month of the year to travel to DFW, however, April and September are the best months to travel

to DFW to avoid delays, this is a great insight to those who would prefer to travel in conditions

with less congestion and limited traffic.

43

Figure 24:Number of delays flight per month

When observing the bar chart: Figure 25: Number of Delayed flights per day of week, where the x-axis

represents the days of the week and the y-axis represents the number of flights, it can be noted that

Thursday and Friday are the busiest when traveling to DFW. However, Tuesday and Saturday are

less busy. This is due to the reason that most people have to take more days off work to fly

midweek, which people usually tend to avoid. Furthermore, passengers who commute every week

for work will also travel on Fridays in order to get home for the weekend and will travel on Sundays

to get to work on Mondays which results on Sundays being very busy as well.

Figure 25: Number of Delayed flights per day of week

44

When you search for flights online, it typically offers a prediction for whether you should buy the

tickets right away or wait, and the recent fare for that travel plan is also provided. The site will

also predict whether the flight will be available in the next few days.

The below bar chart shows the Number of Delayed Flights Per day of the Month, the x-axis

represents the Day of the Month, and the y-axis represents the number of flights. The interesting

fact is the 31st has the least number of flight delays which can be due to the reason that 5 months

of the year only have 30 days.

Figure 26: Number of delayed flights per day of the month

This next visualization is of the departure and the arrival delay. It shows whether departure or

arrival delay has a bigger impact on the plane being delayed. Assuming that the departure of the

flight was on time and the flight’s arrival is late, then this means that there’s another factor which

may have increased the elapsed time. This plot validates the principal idea that some airlines will

try to compensate for the delayed departure by reducing air time. The below graph is shown by

overlaying the ARR_DELAY over the DEP_DELAY. The departure delay (DEP_DELAY) is

colored in light blue, whereas the arrival delay (ARR_DELAY) is the dashed line. The results of

the plot suggest that the ARR_DELAYS are generally lower than the DEP_DELAYS, and as

mentioned above, this suggests that the airlines try to adjust their flight speed to try and compensate

for the late departure and reduce the ARR_DELAY. Another interesting piece of information is

45

related to LGA. Once again, the arrival delay is low. This means that even when the departure is

late, the flight that leaves from LGA to DFW compensates the delay by reducing the air time of

the flights to arrive on time or on average, earlier.

Figure 27:Departure vs arrival delay

There are five features that are causes of delay; carrier delay which involves maintenance, crew

problems, aircraft cleaning, baggage loading, fueling. Weather delay which involves major

meteorological conditions such as tornadoes, blizzards or hurricanes. NAS Delay which involves

non-extreme weather conditions, airport operations, heavy traffic volume, air traffic control, as

well as any delays that occur after the gate are usually assigned to the NAS Delay. Security

delay which is caused by evacuation of a terminal as well as when reboarding of the aircraft is

required. Finally, Late Aircraft delay which involves a previous flight with the same aircraft that

arrived late, causing the present flight to depart late.

Below bar charts will show the causes of delay with the help of data visualizations, the bar chart

below is for Total Delayed AA Flights by Origin Airport based on Carrier Delay status, where the

46

x-axis represents the origin airport name and the y-axis represents the number of flights. The data

used is normalized using the normalize function in Python, because differences in the scales across

the models may cause inaccurate results when modeling. The chart suggests that most delayed

flights coming from ORD to DFW are due to carrier delay whereas JFK had the least number of

flights affected by carrier delays.

Figure 28:Total delayed AA flights by origin airport based on carrier delay

Similarly, the bar chart below represents Total Delayed AA Flights by Origin Airport based on

Weather Delay status, where the x-axis represents the origin airport name and the y-axis represents

the number of flights. Likewise, most delayed flights coming from ORD to DFW are due to

weather delays where LAX had the least number of flights which were delayed due to weather

delays.

47

Figure 29:Total delayed AA flights by origin airport based on weather delay

NAS Delays usually include any delays that occur after Actual Gate Out (delays caused after the

gate), according to the Bureau of Transportation. The bar chart below is for Total Delayed AA

Flights by Origin Airport based on NAS Delay status, where the x-axis represents the origin airport

name and the y-axis represents the number of flights. Most delayed flights due to NAS delay are

from ORD to DFW where JFK has the least number of flights which are delayed by NAS delays.

Figure 30:Total delayed AA flights by origin airport based on NAS delay

48

Security delays can be caused by equipment at the screening not functioning or any other

occurrences of security breaches. The bar chart below is for Total Delayed AA Flights by Origin

Airport based on Security Delay status, where the x-axis represents the origin airport name and the

y-axis represents the number of flights. Most delayed flights due to Security delay are from CLT

to DFW whereas LGA had the least number of flights delayed due to security delays. An

observation that can be made is that despite ORD being a larger airport, it has a relatively lower

security delay, a reason as to why that is, could be that better security measures are in place at

ORD.

Figure 31:Total delayed AA flights by origin airport based on security delay

According to the Bureau of Transportation of Statistics, the late aircraft delay occurs when the

current flight takes off later than scheduled and creates a domino effect on the following flights.

The bar chart below is for Total Delayed AA Flights by Origin Airport based on Late aircraft Delay

status, where the x-axis represents the origin airport name and the y-axis represents the number of

flights. Most delayed flights due to Late aircraft delay are from ORD to DFW whereas JFA has

the least delayed flights due to late aircraft delays. This may be caused by the reason that flights

coming to ORD are being delayed, leading to flights leaving ORD also being delayed.

49

Figure 32: Total delayed AA flights by origin airport based on late air-craft delay

When observing all five causes of delay, it can be concluded that ORD is not great at handling any

sort of delays except for security delays. With the help of data exploration, the Error! Reference

source not found. pie chart shows what percentage contributes to each of the delays, such as

11.6% of flights are delayed by carrier delays, 1.4 % caused by weather delays, 11.7% are caused

by NAS delays, 0.1% are caused by security delays and 9.0% are caused by late arrival delays.

50

Figure 33:Percentage of flights delays based on carrier, weather, NAS, security, late aircraft

EDA: Exploratory Data Analysis for Southwest Airlines

Here, the data will be analyzed for Southwest Airlines arriving at DAL, this data was gathered to

preprocess in the same fashion as American Airlines.

Using the dataset, which was limited to US domestic flights and the following airports: HOU,

DEN, MDW, PHX, LAS, ATL, LAX, BWI, MCO, OAK, the objective is to find the total number

of Southwest flights arrived at DAL during the year 2016-2019. The bar chart below shows the

exact number of flights which arrived at DAL where the x-axis represents the origin airport and

the y-axis represents the number of flights.

Figure 34: Total number of Southwest flights arrived at DAL

By using the same x and y-axis as in the above graph, and grouping origin and flight status in

descending order, it can be observed that flights arriving from HOU to DAL have the highest

51

number of delays. As one would think that the higher the number of flights arriving from a

particular airport has a higher number of possibilities of being delayed, that is exactly the case

when the below bar chart is observed.

Figure 35: Total delayed SW flights based on arrival delay

As seen for AA there is a relationship between the departure flight status and the arrival flight

status. Similarly, this pattern is found in Southwest Airlines as well. The Arrival Flight status

shows that 58.4% of flights from the dataset have arrived on time and 41.6% were delayed. The

Departure Flight Status, illustrates that 52.1 % of flights departed on time and 47.9% of flights

departed late shown below.

52

Figure 36:Comparison between departure and arrival delay

Among the five causes of delay, it is shown below that HOU deals with all delays quite poorly and

OAK has the least number of overall delays, a reason as to why it has the least number of overall

delays may be fact because it has the least number of flights coming from OAK.

Figure 37: Total delayed SW flights by origin based on cause of delay

53

Chapter 4

RESULT AND DISCUSSION

MODELS using Python for American Airlines

For this thesis, flight dataset from BTS from 2016 to 2019 will be used to understand class

imbalance for flight arrival status. Figure below shows the distribution of the flight status. Based

on the distribution for both AA-DFW and WN-DAL ration of on time vs delayed flight is less

than 2:1. So the data is not highly imbalanced.

Random forest Model for American Airlines was utilized without and with different class

weights (e.g., balanced and subsample balanced), to check the effect of the data imbalance on the

performance matrices of the model. Below figure is a comparison of that result. As the data is

not highly imbalanced, performance matrices do not vary much without or with class weights.

54

The figure below represents the flow process to get the evaluation (performance matrices) and

interpretation using LIME for all the models.

55

We already observed that data set is not highly imbalance, so the models were build and

evaluated without any treatment for data imbalance. Below are the performance matrices and

confusion matrix for Random forest. Accuracy of the model is 82%.

Figure 38:Evaluation Metric for random forest

Accuracy of Adaboost is 86%, Figure 39 shows the evaluation metrics for Adaboost machine

learning model.

Figure 39:Evaluation Metric for Adaboost

GradientBoost yields an accuracy of 88%. Below figure shows other performance matrices of

GradientBoost.

56

The XGBoost algorithm is highly flexible and faster in comparison to other algorithms, but it has

several hyperparameters, many of which require tuning to obtain accurate results. One of the

hyperparameters which is used is the scale_pos_weight hyperparameter which tunes imbalanced

data. Using cross validation testing and training, the method obtained 91% accuracy shown on

Figure 40.

Figure 40: Evaluation Metric for XGBoost

When using multilayered perceptron – neural network (MLP-NN), the data was required to be

entirely numerical as it does not function with qualitative data, similarly it does not function with

data that contains missing values. Using the StandardScale function the data was standardized

and below is the output from the confusion matrix, which obtained an accuracy of 62%, shown in

Figure 41.

57

Figure 41: Evaluation Metric for MLP-NN

MODELS using Python for Southwest Airlines

In the above section for Models using Python and Results for AA were shared, the same procedure

was applied to the Southwest Airlines dataset and the results for Random Forest shown on Figure

42, Adaboost, XGBoost, MLP-NN can be found below.

Random Forest

Figure 42:Evaluation Metric for Random Forest

Adaboost

Figure 43:Evaluation Metric for Adaboost

58

 GradientBoost

XGBoost

Figure 44:Evaluation Metric for xgboost

MLP-NN

Figure 45: Evaluation Metric for MLP- NN

Below tables have the performance metrics of the models

59

American Airline and DFW:

Table 2: Performance metrics for AA

Model Name Accuracy (%) Precision(%) Recall(%) F1-score(%)

Random Forest 85 86 85 85

Adaboost 83 86 83 82

Gradient Boost 88 89 88 88

XGBoost 90 90 90 90

MLP - NN 86 92 92 92

Southwest and DAL:

Table 3:: Performance metrics for Southwest

Model Name Accuracy(%) Precision(%) Recall(%) F1-score(%)

Random Forest 81 84 81 81

Adaboost 81 84 81 80

Gradient Boost 84 86 84 84

XGBoost 86 87 86 86

MLP - NN 86 87 86 86

Microsoft Azure Studio

Previously, the experiment was done using Python, the same dataset will be used with Azure

Machine Learning studio to compare between the two. The studio offers no-code experiences for

a data science platform and creates models for classification, regression and time-series forecasting

depending on the type of project that is being worked on. In this experiment, the classification

approach will be used, which is a supervised learning problem. It will be used to predict whether

the flight will be delayed or not, using a two-class decision forest.

In the experiment, a model was trained using historic flight data (from 2016-2019). The features

are labeled “1” if a flight was delayed, and labeled “0” if the flight was on time. The following

steps were followed while building the experiment in Azure ML Studio: the data was imported,

and pre-processed, the data was trained, and a machine learning algorithm was applied, followed

by executing score, the model was then tested and the accuracy was predicted.

A dataset requires pre-processing before it can be analyzed, using the tools provided by the studio

the following pre-processing changes were made.

60

Figure 46: Visualization from Azure

Steps:

➢ Loaded the dataset

➢ Replaced “NaN” with 0 for feature 'CARRIER_DELAY', WEATHER_DELAY',

'NAS_DELAY','SECURITY_DELAY','LATE_AIRCRAFT_DELAY’

➢ Dropped feature 'DEP_TIME', 'ARR_TIME’ because of redundancy

➢ All the missing data for TAXI_IN, TAXI_OUT, DEP_DELAY, DEP_DELAY_NEW,

ARR_DELAY, and ARR_DELAY_NEW are filled with the mean value of each feature

➢ For feature 'CRS_DEP_TIME’, 'WHEELS_OFF’, 'WHEELS_ON’, 'CRS_ARR_TIME’,

Time is normally categorical, and having it in the current format will give us too many

columns when the hot encode is applied to them, therefore it will be better to split the

time into 4 quarters of the days meaning of 6 hours each

➢ For the DAY_OF_WEEK feature are present 0 = Monday, 1 = Tuesday, 2 = Wednesday,

3 = Thursday, 4 = Friday, 5 = Saturday, 6 = Sunday

➢ The feature ARR_DELAY, reveals the difference in minutes between scheduled and

actual arrival time. Early arrivals show negative numbers. Therefore, created a new

Column ARR_FLIGHT_STATUS, by comparing the value of each row for the

"ARR_DELAY" feature, if the total delay zero or less (minus-- arrive early) it will assign

"0" otherwise "1".

➢ Similarly, for DEP_DELAY, CARRIER_DELAY, 'WEATHER_DELAY’,

'NAS_DELAY’, 'SECURITY_DELAY’, 'LATE_AIRCRAFT_DELAY’, created,

DEP_FLIGHT_STATUS, CARRIER_DELAY_STATUS,

WEATHER_DELAY_STATUS,

➢ NAS_STATUS,SECURITY_STATUS,LATE_AIRCRAFT_STATUS

61

➢ There are some feature which are duplicate in nature: ARR_DELAY, DEP_DELAY,

CARRIER_DELAY,WEATHER_DELAY, NAS_DELAY,SECURITY_DELAY ,

LATE_AIRCRAFT_STATUS, 'DEP_DELAY_NEW',

'DEP_DEL15','ARR_DELAY_NEW',

'ARR_DEL15','CANCELLED','CANCELLATION_CODE', 'DIVERTED’

For comparison with Python, the model was created using the Two Class Decision Forest ,which

was very close to the random forest model applied in Python. The result of the experiment is shown

below.

Figure 47: Result for Two-Class Decision Forest

Microsoft Azure Auto-ML

Automated machine learning (AutoML) automates the process of building machine learning

models through automating the feature selection and parametrization of these models. AutoML

has been designed to helps data scientists perform this process with accuracy and

precision. Azure Machine Learning offers featurization for classification problems.

Classification models predict from the provided training data. When the data is being trained,

AutoML will create various pipelines using multiple algorithms. The system will then, iterate

through these algorithms alongside feature selections and will produce a model as output from

the training dataIdentify the ML problem: classification, or regression

1. Choose no code experience in Azure Machine Learning studio

2. Specify the source and format of the labeled training data

3. Configure the compute target for model training.

4. Configure the automated machine learning parameters such as how many iterations

there are in the models and tune hyperparameters.

5. Submit the training data.

62

6. Review the results

This experiment created a classification model, without writing code using automated machine

learning in the Azure Machine Learning studio, the same dataset was used for comparison. The

studio also provided model explanations which allowed for the observation of which data

features influenced a particular model's predictions. The accuracy obtained by Azure- AutoML

when using XGBoost was 82%, and 92% when using Random Forest . Although the best

Algorithm suggested by Azure- AutoML is VotingEnsemble. Although in this thesis

VotingEnsemble was not used in Python, it combines the predictions from multiple other

models, it helps improve model performance.

Figure 48:Result for Azure Auto-ML

Interpretability of the models prediction using LIME:

To use LIME algorithm in Python, the library “lime” needed to be installed. Randomly two

flights were chosen from the test data set to explain the use of LIME.

All Model Comparison for LIME for a specific Flight from test data set

Case-1: Delayed Flight(AA)

All model predicted that this flight will be delayed with different confidence level. Random

forest and XGBoost predicted the delay with 100% confidence but Adaboost’s predict the delay

for this flight with 68% probability. All model selected NAS delay as the top feature for the

delay of this flight.

63

Random Forest:

Figure 49: Case 1 result using Random Forest

Adaboost:

Figure 50: Case 1 result using Adaboost

64

Gradient Boosting:

Figure 51: Case 1 result using Gradient Boosting

XGBoost:

Figure 52 : Case 1 result using xgboost

Case-2: Arrive on time Flight(AA)

In this case Random forest, XGBoost and Gradient boost predicted with above 90% probability

that this flight arrives on time but Adaboost again showed poor prediction probabilities. As

Carrier, NAS, Late Arrival, Weather and Security delay are not present there, most of the model

pick those as most important features for the prediction.

65

Random Forest:

Figure 53 : Case 2 result using Random Forest

Adaboost:

Figure 54 : Case 2 result using Adaboost

66

Gradient Boosting:

Figure 55 : Case 2 result using Gradient Boosting

XGBoost:

Figure 56: Case 2 result using XGBoosting

So, lime can be used to identify which model is suitable to make the accurate prediction with

reasonable feature importance.

Case-1: Delayed Flight (Southwest)

All models predicted that this flight will be delayed with different confidence level. Random

forest predicted 84% and GradientBoost predicted the delay with confidence 95%, XGBoost

predicted 99% but Adaboost’s predicted the delay for this flight with 65% probability.

67

Random Forest:

Figure 57:Case 1 result using Random Forest

Adaboost:

Figure 58:Case 1 result using Adaboost

68

Gradient Boost:

Figure 59:Case 1 result using Gradient Boost

XGBoost:

Figure 60:Case 1 result using XGBoost

Case-2: Arrive on time Flight(Southwest)

In this case Random forest, XGBoost and Gradient boost predicted with above 60% probability

that this flight arrives on time but Adaboost again showed poor prediction probabilities.

69

Random Forest:

Figure 61:Case 2 result using Random Forest

Adaboost:

Figure 62:Case 2 result using Adaboost

70

Gradient Boost:

Figure 63:Case 2 result using Gradient Boost

XGBoost:

Figure 64:Case 2 result using XGBoost

Removing the Feature(s) that Bias the accuracy of model prediction (only for AA-DFW)

Here Random Forest model was run with a data set where Flight Number was included as a

feature and LIME provided the following prediction and feature importance.

71

Figure 65: Random Forest model was run with Flight Number

Model predicted that this flight will be delayed but the top feature that the model considered are

all different flight numbers (except NAS delay) which is not very intuitive. Same model was run

after dropping Flight Number Feature and LIME provided the following interpretation and the

prediction probability increased by 5%.

Figure 66: Random Forest model was run without Flight Number

Airline customer centric interpretable prediction (Only for AA-DFW)

As a customer some of the features used as an input may not be intuitive. For an example, taxi

out time is a feature that a customer may not think about before entering the airport. So, if a

customer wants to know whether their flight will be delayed or not and what the probable cause

of that delay is by inputting some features that they already know can help them plan better. Here

a random forest model ran with the following features.

72

❖ Distance

❖ Origin

❖ Day of the Week

❖ Day of the Month

❖ Month

❖ Quarter of the year

These features are easy for the customer to input in the model to get the prediction. With this

small amount of features, the prediction probability suffers a lot, however a customer can still

check the probability and probable cause of the delay.

Case-1: Delay flight

Inputs:

❖ Distance: 801.0

❖ Origin: ORD

❖ Day of the Week: Saturday (6)

❖ Day of the Month: 12

❖ Month: June (6)

❖ Quarter of the year: 2

Figure 67: Case 1: Delay flight based on customer centric Interpretable prediction

73

Case-2: Flight Arrive on time

Inputs:

❖ Distance: 936.0

❖ Origin: CLT

❖ Day of the Week: Saturday (6)

❖ Day of the Month: 30

❖ Month: January (1)

❖ Quarter of the year: 1

Figure 68 Case 2: Flight arrive on time based on customer centric Interpretable prediction

For Case-1, features that influence the prediction include the month of travel of that flight and

the origin (ORD). During our exploratory data analysis, we observed percentage of flight delays

are higher for summer and ORD Airport.

For Case-2, model predicted with very high confidence that flight will arrive on time as it is not

scheduled on the month of June and is not departing from ORD.

74

Chapter 5

CONCLUSION

During this master’s thesis, different prediction models and various evaluation methods are

explored using different applications and services. By using historic data, interesting results were

observed on the predictability of delays. The best delay prediction method emerged to be the most

specific one, which takes into account all the combinations of categorical features.

 The performances of the models were interesting to evaluate, due to the numerous features

used. From the exploratory data analysis (EDA), we found that AA flights departing from ORD

and arriving at DFW are the most delayed flights from the exploratory data analysis (EDA), we

found that AA flights departing from ORD and arriving at DFW are the most delayed flights. For

southwest airlines departing from LAX had the most total number of delays. There is a relationship

between arrival and departure delay. Also, found June and July are the worse month when it comes

to total number of delays.

For AA, model accuracy using Python for Random Forest obtained 85% accuracy, Adaboost

obtained 83% accuracy, XGBoost obtained 90% accuracy, Gradient Boost obtained 88% accuracy

and MLP obtained 86% accuracy. For WN, model accuracy using Python for Random Forest

obtained 81% accuracy, Adaboost obtained 83% accuracy, XGBoost obtained 86% accuracy,

Gradient Boost 84% accuracy and MLP obtained 86% accuracy. The accuracy for AA of the

random forest model using Azure Studio for is 96%, and Azure- AutoML gives 82% for XGBoost

and 92% for Random Forest. The differences in accuracy between Python and Azure AutoML may

be the result of the data pre-processing, as Azure AutoML automates the machine learning

workflow (that includes data preprocess) on the other hand for Python model data preprocess

requires domain knowledge.

75

In the business world, we can save time and money by improving the understanding of our machine

learning model prediction. Using LIME, it is possible to find out the cause of delay from the

prediction model and take action to mitigate those reasons.

76

REFERENCE

Airlines For America | Annual U.S. Impact of Flight Delays (NEXTOR report). (n.d.). Retrieved

January 3, 2021, from https://www.airlines.org/data/annual-u-s-impact-of-flight-delays-

nextor-report/

Apo-. (2016). Cost of Delay Estimates FAA APO-100.

Baik, H., Li, T., & Chintapudi, N. K. (2010). Estimation of Flight Delay Costs for U.S. Domestic

Air Passengers. Transportation Research Record: Journal of the Transportation Research

Board, 2177(1), 49–59. https://doi.org/10.3141/2177-07

Bank Data: SMOTE. This will be a short post before we… | by Zaki Jefferson | Analytics Vidhya

| Medium. (n.d.). Retrieved April 22, 2021, from https://medium.com/analytics-

vidhya/bank-data-smote-b5cb01a5e0a2

Bureau of Transportation Statistics. (n.d.). Retrieved January 3, 2021, from https://www.bts.gov/

Choi, S., Kim, Y. J., Briceno, S., & Mavris, D. (2016). Prediction of weather-induced airline

delays based on machine learning algorithms. AIAA/IEEE Digital Avionics Systems

Conference - Proceedings, 2016-December. https://doi.org/10.1109/DASC.2016.7777956

Data Mining for Business Analytics: Concepts, Techniques, and Applications in R | Wiley. (n.d.).

Retrieved February 23, 2021, from https://www.wiley.com/en-

us/Data+Mining+for+Business+Analytics%3A+Concepts%2C+Techniques%2C+and+Appl

ications+in+R-p-9781118879368

Gui, G., Liu, F., Sun, J., Yang, J., Zhou, Z., & Zhao, D. (2020). Flight delay prediction based on

aviation big data and machine learning. IEEE Transactions on Vehicular Technology, 69(1),

140–150. https://doi.org/10.1109/TVT.2019.2954094

Importing Data in Python. (n.d.). Retrieved February 28, 2021, from

https://www.tutorialspoint.com/importing-data-in-python

Interpretable Machine Learning - Christoph Molnar - Google Books. (n.d.). Retrieved April 22,

2021, from

https://books.google.com/books?hl=en&lr=&id=jBm3DwAAQBAJ&oi=fnd&pg=PP1&dq=

Molnar,+C.+(2020).+Interpretable+machine+learning.+Lulu.+Com&ots=EgsYVrECS5&si

g=VlidO835EGnXahwu3gIJ-R2-ONY#v=onepage&q=Molnar%2C C. (2020). Interpretable

machine learning. Lulu. Com&f=false

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2000). An introduction to Statistical

Learning. In Current medicinal chemistry (Vol. 7, Issue 10). https://doi.org/10.1007/978-1-

4614-7138-7

Kalliguddi, A., Leboulluec, A., Kalliguddi, A. M., & Leboulluec, A. K. (2017). Predictive

Modeling of Aircraft Flight Delay Adaptive Interdisciplinary Pain Management View

project Predictive Modeling of Aircraft Flight Delay. Article in Universal Journal of

Management, 5(10), 485–491. https://doi.org/10.13189/ujm.2017.051003

Kuhn, N., & Jamadagni, N. (2017). Application of Machine Learning Algorithms to Predict

Flight Arrival Delays. Cs229, 1–6.

Manna, S., Biswas, S., Kundu, R., Rakshit, S., Gupta, P., & Barman, S. (2018). A statistical

approach to predict flight delay using gradient boosted decision tree. ICCIDS 2017 -

International Conference on Computational Intelligence in Data Science, Proceedings,

2018-January, 1–5. https://doi.org/10.1109/ICCIDS.2017.8272656

Masís, S. (2021). Interpretable Machine Learning with Python: Learn to build interpretable

high-performance models with hands-on real-world. Packt Publishing.

77

Rebollo, J. J., & Balakrishnan, H. (2014). Characterization and prediction of air traffic delays.

Transportation Research Part C: Emerging Technologies, 44, 231–241.

https://doi.org/10.1016/j.trc.2014.04.007

Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). “Why should i trust you?” Explaining the

predictions of any classifier. Proceedings of the ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, 13-17-August-2016, 1135–1144.

https://doi.org/10.1145/2939672.2939778

Shmueli, G., Bruce, P., Yahav, I., Patel, N., & Lichtendahl Jr., K. (2017). tutorial. John Wiley &

Sons.

Teja, S. (n.d.). (PDF) Flight Delay Prediction Using Machine Learning Algorithm XGBoost.

Retrieved April 2, 2021, from

https://www.researchgate.net/publication/344227817_Flight_Delay_Prediction_Using_Mac

hine_Learning_Algorithm_XGBoost

Truong, D., Friend, M. A., & Chen, H. (2018). Applications of business analytics in predicting

flight on-time performance in a complex and dynamic system. Transportation Journal,

57(1), 24–52. https://doi.org/10.5325/transportationj.57.1.0024

Yazdi, M. F., Kamel, S. R., Chabok, S. J. M., & Kheirabadi, M. (2020a). Flight delay prediction

based on deep learning and Levenberg-Marquart algorithm. Journal of Big Data, 7(1), 1–

28. https://doi.org/10.1186/s40537-020-00380-z

Yazdi, M. F., Kamel, S. R., Chabok, S. J. M., & Kheirabadi, M. (2020b). Flight delay prediction

based on deep learning and Levenberg-Marquart algorithm. Journal of Big Data, 7(1), 106.

https://doi.org/10.1186/s40537-020-00380-z

APPENDIX

Gathering Data

Gathering data

Data were downloaded from BTS website. 2016-2019. 48 months

#import libraries

import pandas as pd

#Glob is a general term used to define techniques to

#match specified patterns according to rules related to Unix shell

from glob import glob

import datetime, warnings, scipy

warnings.filterwarnings("ignore")

#make list of flies in the folder

#careful about file path it is "/"

stock_files = sorted (glob('C:/Users/raihanm/Desktop/FD/data_1/*.csv'))

stock_files

df_from_each_file = (pd.read_csv(f, sep=',') for f in stock_files)

df_merged = pd.concat(df_from_each_file, ignore_index=True)

df_merged.to_csv("merged.csv")

78

df1=df_merged

df1.columns

df1=df1.drop(['FIRST_DEP_TIME','TOTAL_ADD_GTIME','Unnamed: 37'],axis=1)

df1.shape

filt=(df1['DEST']=='DFW')

df2=df1[filt]

filt2=(df2['OP_UNIQUE_CARRIER']=='AA')

df3=df2[filt2]

origin_list=['JFK','LGA','ATL','CLT','PHL','DCA','ORD','LAX','MIA','PHX','DEN']

df4=df3[df3['ORIGIN'].isin(origin_list)]

df4.head()

df4.shape

df4.to_csv('dfm.csv')

79

Data Cleaning: Part 1

Data Cleaning: Part 1

Below are the steps that are taken for data cleaning:

80

Feature Engineering

Data Engineering

Below are the steps that are taken for data engineering:

81

Exploratory Data Analysis

Exploratory Data Analysis

Below are the steps that are taken for Exploratory Data Analysis :

82

Data cleaning: Part 2

Below are the steps that are taken for Data cleaning- Part 2:

83

Final Data Processing for Modeling

Libraries

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

get_ipython().run_line_magic('matplotlib', 'inline')

import seaborn as sns

sns.set_style('darkgrid')

pd.set_option('display.max_columns', None)

import datetime, warnings, scipy

warnings.filterwarnings("ignore")

from sklearn import metrics, linear_model

from sklearn.metrics import accuracy_score, confusion_matrix, classification_report,

plot_confusion_matrix

from sklearn.preprocessing import PolynomialFeatures, StandardScaler

from sklearn.preprocessing import LabelEncoder, OneHotEncoder

from sklearn.model_selection import train_test_split, cross_val_score, cross_val_predict,

RepeatedStratifiedKFold

from sklearn.tree import DecisionTreeClassifier

from sklearn.ensemble import BaggingClassifier, RandomForestClassifier

from scipy.optimize import curve_fit

from sklearn.svm import SVC

from random import sample

import keras

from keras.models import Sequential

from keras.layers import Dense

from sklearn.preprocessing import StandardScaler, LabelBinarizer

import statsmodels.formula.api as smf

import statsmodels.stats.api as sms

from statsmodels.formula.api import ols

from statsmodels.stats.outliers_influence import variance_inflation_factor

import statsmodels.api as sm

import scipy.stats as stats

Data Loading & QC

dfm = pd.read_csv('dfm.csv', index_col=0)

dfm.head()

dfm.info()

84

dfm.YEAR.value_counts(normalize=True)

dfm.QUARTER.value_counts(normalize=True)

dfm.MONTH.value_counts(normalize=True)

dfm.DAY_OF_MONTH.value_counts(normalize=True)

dfm.DAY_OF_WEEK.value_counts(normalize=True)

dfm.OP_CARRIER_FL_NUM.nunique()

dfm.OP_CARRIER_FL_NUM.value_counts(normalize=True)

dfm.head(2)

dfm.ORIGIN.value_counts(normalize=True)

dfm.CRS_DEP_TIME.value_counts(normalize=True)

dfm.TAXI_OUT.nunique()

dfm.TAXI_OUT.value_counts(normalize=True)

dfm.head(2)

dfm.WHEELS_OFF.value_counts(normalize=True)

dfm.WHEELS_ON .value_counts(normalize=True)

dfm.TAXI_IN.nunique()

dfm.TAXI_IN.value_counts(normalize=True)

dfm.CRS_ARR_TIME.value_counts(normalize=True)

dfm.head(2)

dfm.CRS_ELAPSED_TIME.nunique()

dfm.CRS_ELAPSED_TIME.value_counts(normalize=True)

dfm.ACTUAL_ELAPSED_TIME.nunique()

85

dfm.ACTUAL_ELAPSED_TIME.value_counts(normalize=True)

dfm.head(2)

dfm.AIR_TIME.nunique()

dfm.AIR_TIME.value_counts(normalize=True)

dfm.DISTANCE.nunique()

dfm.DISTANCE.value_counts(normalize=True)

dfm.ARR_FLIGHT_STATUS.nunique()

dfm.ARR_FLIGHT_STATUS.value_counts(normalize=True)

dfm.head(2)

dfm.CARRIER_DELAY_STATUS.value_counts(normalize=True)

dfm.WEATHER_DELAY_STATUS.value_counts(normalize=True)

dfm.NAS_STATUS.value_counts(normalize=True)

dfm.SECURITY_STATUS.value_counts(normalize=True)

dfm.LATE_AIRCRAFT_STATUS.value_counts(normalize=True)

Data Distribution

Based on the percentage of delayed flight we know that this dataset is unbalanced, but just to

follow standard workflows we will write a short function to see this visually and then keep on

going.

def scaling_check(data):

 case_count = dfm['ARR_FLIGHT_STATUS'].value_counts() # 'data' is our input which will

be any of the 3 dataframes created

 print('Legend:')

 print(case_count)

86

 plt.figure(figsize=(10,6))

 sns.barplot(x=case_count.index, y=case_count.values)

 plt.rcParams["figure.facecolor"] = "blue"

 plt.title('Data Distribution', fontsize=16)

 plt.xlabel('Arrival Flight Status', fontsize=12)

 plt.ylabel('Number of Flights', fontsize=12)

 plt.xticks(range(len(case_count.index)), ['ON TIME(0)', 'DELAYED(1)'])

 plt.show()

scaling_check (dfm)

dfm.ARR_FLIGHT_STATUS.value_counts(normalize=True)

Calculating the weight to use later for the imbalanced dataset

df_test=dfm['ARR_FLIGHT_STATUS'].value_counts()

df_test.head()

count_0=df_test[0]

count_0

count_1=df_test[1]

count_1

initial_bias = np.log([count_1/count_0])

initial_bias

weight_for_0 = (1/count_0)*(count_0 + count_1)/2.0

weight_for_1 = (1/count_1)*(count_0 + count_1)/2.0

class_weight = {0: weight_for_0, 1: weight_for_1}

print('Weight for class 0: {:.2f}'.format(weight_for_0))

print('Weight for class 1: {:.2f}'.format(weight_for_1))

87

Before going into the modeling, we will create histograms for all the features to get a better

feeling of them:

dfm.hist(figsize = [15, 15],bins=9)

plt.show()

dfm.columns

fig, axes = plt.subplots(nrows=5, ncols=3, figsize=(16,14), sharey=True)

categoricals = ['QUARTER', 'MONTH', 'DAY_OF_MONTH', 'DAY_OF_WEEK',

 'OP_CARRIER_FL_NUM', 'ORIGIN', 'WHEELS_OFF', 'WHEELS_ON',

 'DEP_FLIGHT_STATUS','CARRIER_DELAY_STATUS',

'WEATHER_DELAY_STATUS',

 'NAS_STATUS','SECURITY_STATUS', 'LATE_AIRCRAFT_STATUS']

for col, ax in zip(categoricals, axes.flatten()):

 (dfm.groupby(col).sum()['ARR_FLIGHT_STATUS'].sort_values().plot.bar(ax=ax))

 ax.set_title(col)

fig.tight_layout()

dfm.head()

QUARTER_dummies = pd.get_dummies(dfm['QUARTER'], prefix='QUARTER',

drop_first=True)

MONTH_dummies = pd.get_dummies(dfm['MONTH'], prefix='MONTH', drop_first=True)

DAY_OF_MONTH_dummies = pd.get_dummies(dfm['DAY_OF_MONTH'],

prefix='DAY_OF_MONTH', drop_first=True)

DAY_OF_WEEK_dummines = pd.get_dummies(dfm['DAY_OF_WEEK'],

prefix='DAY_OF_WEEK', drop_first=True)

#OP_CARRIER_FL_NUM_dummies = pd.get_dummies(dfm['OP_CARRIER_FL_NUM'],

prefix='OP_CARRIER_FL_NUM', drop_first=True)

ORIGIN_dummies = pd.get_dummies(dfm['ORIGIN'], prefix='ORIGIN', drop_first=True)

CRS_DEP_TIME_dummies = pd.get_dummies(dfm['CRS_DEP_TIME'],

prefix='CRS_DEP_TIME', drop_first=True)

WHEELS_OFF_dummies = pd.get_dummies(dfm['WHEELS_OFF'],

prefix='WHEELS_OFF', drop_first=True)

88

WHEELS_ON_dummies = pd.get_dummies(dfm['WHEELS_ON'], prefix='WHEELS_ON',

drop_first=True)

CRS_ARR_TIME_dummies = pd.get_dummies(dfm['CRS_ARR_TIME'],

prefix='CRS_ARR_TIME', drop_first=True)

dfm = dfm.drop(['YEAR','OP_UNIQUE_CARRIER','DEST','QUARTER', 'MONTH',

'DAY_OF_MONTH', 'DAY_OF_WEEK', 'OP_CARRIER_FL_NUM', 'ORIGIN',

'CRS_DEP_TIME',

 'WHEELS_OFF', 'WHEELS_ON',

'CRS_ARR_TIME','DEP_FLIGHT_STATUS'],axis=1)

dfm =

pd.concat([dfm,QUARTER_dummies,MONTH_dummies,DAY_OF_MONTH_dummies,DA

Y_OF_WEEK_dummines,

 ORIGIN_dummies,CRS_DEP_TIME_dummies,

WHEELS_OFF_dummies,WHEELS_ON_dummies,CRS_ARR_TIME_dummies],axis=1)

dfm.head()

dfm.shape

dfm.to_csv('dfm_ready3.csv')

89

Checking data for imbalance

Performance metrics with and without class weight

Libraries

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

get_ipython().run_line_magic('matplotlib', 'inline')

import seaborn as sns

sns.set_style('darkgrid')

pd.set_option('display.max_columns', None)

import datetime, warnings, scipy

warnings.filterwarnings("ignore")

from sklearn import metrics, linear_model

from sklearn.metrics import accuracy_score, confusion_matrix, classification_report,

plot_confusion_matrix

from sklearn.preprocessing import PolynomialFeatures, StandardScaler

from sklearn.preprocessing import LabelEncoder, OneHotEncoder

from sklearn.model_selection import train_test_split, cross_val_score, cross_val_predict,

RepeatedStratifiedKFold

from sklearn.tree import DecisionTreeClassifier

from sklearn.ensemble import BaggingClassifier, RandomForestClassifier

from scipy.optimize import curve_fit

from sklearn.svm import SVC

from random import sample

import keras

from keras.models import Sequential

from keras.layers import Dense

from sklearn.datasets import load_breast_cancer

from sklearn.preprocessing import StandardScaler, LabelBinarizer

import statsmodels.formula.api as smf

import statsmodels.stats.api as sms

from statsmodels.formula.api import ols

from statsmodels.stats.outliers_influence import variance_inflation_factor

import statsmodels.api as sm

import scipy.stats as stats

Data Loading & QC

dfm = pd.read_csv('dfm_ready3', index_col=0)

dfm.head()

90

dfm.ARR_FLIGHT_STATUS.nunique()

dfm.ARR_FLIGHT_STATUS.value_counts(normalize=True)

Create features (X) and labels (y)

y = dfm['ARR_FLIGHT_STATUS']

X = dfm.drop(['ARR_FLIGHT_STATUS'], axis=1)

Perform the split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42)

Random Forest With No Class Weighting

I'll start by instantiating the RandomForestClassifier

forest = RandomForestClassifier(n_estimators=100, max_depth=5)

forest.fit(X_train, y_train)

Now to check the accuracy score

forest.score(X_train, y_train)

And for the test set:

forest.score(X_test, y_test)

MODEL PERFORMANCE

Test set predictions

pred_rf = forest.predict(X_test)

confusion matrix and classfication report

print('\nConfusion Matrix')

print('----------------')

pd.crosstab(y_test, pred_rf, rownames=['True'], colnames=['Predicted'], margins=True)

print('Classificiation Report')

print('---------------------')

print(classification_report(y_test, pred_rf))

print("Testing Accuracy for RandomForest Classifier: {:.4}%".format(accuracy_score(y_test,

pred_rf) * 100))

Random Forest With Class Weighting

forest_cw = RandomForestClassifier(n_estimators=100, max_depth=5,

class_weight='balanced')

forest_cw.fit(X_train, y_train)

91

Now to check the accuracy score

forest_cw.score(X_train, y_train)

And for the test set:

forest_cw.score(X_test, y_test)

MODEL PERFORMANCE

Test set predictions

pred_rfcw = forest_cw.predict(X_test)

confusion matrix and classfication report

print('\nConfusion Matrix')

print('----------------')

pd.crosstab(y_test, pred_rfcw, rownames=['True'], colnames=['Predicted'], margins=True)

print('Classificiation Report')

print('---------------------')

print(classification_report(y_test, pred_rfcw))

print("Testing Accuracy for RandomForest Classifier: {:.4}%".format(accuracy_score(y_test,

pred_rfcw) * 100))

Random Forest With Bootstrat Class Weighting

forest_bcw = RandomForestClassifier(n_estimators=100, max_depth=5,

class_weight='balanced_subsample')

forest_bcw.fit(X_train, y_train)

Now to check the accuracy score

forest_bcw.score(X_train, y_train)

And for the test set:

forest_bcw.score(X_test, y_test)

MODEL PERFORMANCE

Test set predictions

pred_rfbcw = forest_bcw.predict(X_test)

confusion matrix and classfication report

print('\nConfusion Matrix')

print('----------------')

pd.crosstab(y_test, pred_rfbcw, rownames=['True'], colnames=['Predicted'], margins=True)

92

print('Classificiation Report')

print('---------------------')

print(classification_report(y_test, pred_rfbcw))

print("Testing Accuracy for RandomForest Classifier: {:.4}%".format(accuracy_score(y_test,

pred_rfbcw) * 100))

93

Model and Interpretation

Importing Required Libraries

import numpy as np

import pandas as pd

import os

from sklearn.metrics import confusion_matrix, plot_confusion_matrix

from sklearn.model_selection import train_test_split, GridSearchCV, cross_val_score

from sklearn import metrics

from sklearn.tree import DecisionTreeClassifier

from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier

from sklearn.ensemble import BaggingClassifier

import xgboost as xgb

from xgboost import XGBClassifier

from sklearn.metrics import accuracy_score

from sklearn.ensemble import AdaBoostClassifier, GradientBoostingClassifier

from sklearn.metrics import accuracy_score, f1_score, confusion_matrix, classification_report

pd.set_option('display.max_columns',None)

data = pd.read_csv("dfm_ready_cv.csv")

data.head()

data.columns

data=data.drop(['Unnamed: 0'],axis=1)

data.head()

train,test=train_test_split(data,test_size=0.3,random_state=0,stratify=data['ARR_FLIGHT_ST

ATUS'])

train.head()

test.head()

train.shape

test.shape

Create X_train,Y_train,X_test, Y_test

X_train = train.drop(['ARR_FLIGHT_STATUS'], axis=1)

Y_train = train['ARR_FLIGHT_STATUS']

X_test = test.drop(['ARR_FLIGHT_STATUS'], axis=1)

Y_test = test['ARR_FLIGHT_STATUS']

94

Random Forest

random_forest = RandomForestClassifier(n_estimators=100)

random_forest.fit(X_train, Y_train)

random_forest_preds = random_forest.predict(X_test)

print('The accuracy of the Random Forests model is

:\t',metrics.accuracy_score(random_forest_preds,Y_test))

import lime

import lime.lime_tabular

predict_fn_rf = lambda x: random_forest.predict_proba(x).astype(float)

X = X_train.values

explainer = lime.lime_tabular.LimeTabularExplainer(X,feature_names =

X_train.columns,class_names=['Arrive on Time','Delay in Arrival'],kernel_width=5)

test.loc[[112707]]

choosen_instance = X_test.loc[[112707]].values[0]

exp = explainer.explain_instance(choosen_instance, predict_fn_rf,num_features=10)

exp.show_in_notebook(show_all=False)

test.loc[[698]]

choosen_instance = X_test.loc[[698]].values[0]

exp = explainer.explain_instance(choosen_instance, predict_fn_rf,num_features=10)

exp.show_in_notebook(show_all=False)

adaboost_clf = AdaBoostClassifier(random_state=42)

adaboost_clf.fit(X_train, Y_train)

adaboost_clf_preds = adaboost_clf.predict(X_test)

print('The accuracy of the Adaboost model is

:\t',metrics.accuracy_score(adaboost_clf_preds,Y_test))

predict_fn_ab = lambda x: adaboost_clf.predict_proba(x).astype(float)

X = X_train.values

explainer = lime.lime_tabular.LimeTabularExplainer(X,feature_names =

X_train.columns,class_names=['Arrive on Time','Delay in Arrival'],kernel_width=5)

choosen_instance = X_test.loc[[112707]].values[0]

exp = explainer.explain_instance(choosen_instance, predict_fn_ab,num_features=10)

exp.show_in_notebook(show_all=False)

95

choosen_instance = X_test.loc[[698]].values[0]

exp = explainer.explain_instance(choosen_instance, predict_fn_ab,num_features=10)

exp.show_in_notebook(show_all=False)

gbt_clf = GradientBoostingClassifier(random_state=42)

gbt_clf.fit(X_train, Y_train)

gbt_clf_preds = gbt_clf.predict(X_test)

print('The accuracy of the Gradient boost model is

:\t',metrics.accuracy_score(gbt_clf_preds,Y_test))

predict_fn_gbt = lambda x: gbt_clf.predict_proba(x).astype(float)

X = X_train.values

explainer = lime.lime_tabular.LimeTabularExplainer(X,feature_names =

X_train.columns,class_names=['Arrive on Time','Delay in Arrival'],kernel_width=5)

choosen_instance = X_test.loc[[112707]].values[0]

exp = explainer.explain_instance(choosen_instance, predict_fn_gbt,num_features=10)

exp.show_in_notebook(show_all=False)

choosen_instance = X_test.loc[[698]].values[0]

exp = explainer.explain_instance(choosen_instance, predict_fn_gbt,num_features=10)

exp.show_in_notebook(show_all=False)

xgb_clf = xgb.XGBClassifier()

xgb_clf.fit(X_train, Y_train)

xgb_clf_preds = clf.predict(X_test)

print('The accuracy of the XGboost model is

:\t',metrics.accuracy_score(xgb_clf_preds,Y_test))

predict_fn_xgb = lambda x: xgb_clf.predict_proba(x).astype(float)

X = X_train.values

explainer = lime.lime_tabular.LimeTabularExplainer(X,feature_names =

X_train.columns,class_names=['Arrive on Time','Delay in Arrival'],kernel_width=5)

choosen_instance = X_test.loc[[112707]].values[0]

exp = explainer.explain_instance(choosen_instance, predict_fn_xgb,num_features=10)

exp.show_in_notebook(show_all=False)

choosen_instance = X_test.loc[[698]].values[0]

exp = explainer.explain_instance(choosen_instance, predict_fn_xgb,num_features=10)

exp.show_in_notebook(show_all=False)

96

MLP-NN

import pandas as pd

import numpy as np

np.random.seed(0)

import matplotlib.pyplot as plt

get_ipython().run_line_magic('matplotlib', 'inline')

import seaborn as sns

import xgboost as xgb

sns.set_style('darkgrid')

pd.set_option('display.max_columns', None)

import datetime, warnings, scipy

warnings.filterwarnings("ignore")

import keras

from keras.models import Sequential

from keras.layers import Dense

from sklearn.datasets import load_breast_cancer

from sklearn.preprocessing import StandardScaler, LabelBinarizer

from sklearn.model_selection import train_test_split

from keras.layers import Dense, Conv2D , SeparableConv2D, MaxPool2D, Flatten , Dropout ,

BatchNormalization

from keras import Sequential

from keras.layers import Dense

from sklearn import preprocessing

import sklearn.metrics as metrics

from sklearn.metrics import classification_report, confusion_matrix

from sklearn.metrics import precision_score, recall_score, f1_score

import tensorflow as tf

from tensorflow import keras

dfm_ready = pd.read_csv('dfm_ready3.csv', index_col=0)

dfm_ready.head().append(dfm_ready.tail())

The next cell will make sure that all my features are in floating format, followed by a double

check with the .info() function

df = dfm_ready.astype(float)

df.info()

Function Library

97

def visualize_training_results(results):

 history = results.history

 plt.figure()

 plt.plot(history['val_loss'])

 plt.plot(history['loss'])

 plt.legend(['val_loss', 'loss'])

 plt.title('LOSS', fontsize=14)

 plt.xlabel('Epochs', fontsize=12)

 plt.ylabel('Loss', fontsize=12)

 plt.show()

 plt.figure()

 plt.plot(history['val_accuracy'])

 plt.plot(history['accuracy'])

 plt.legend(['val_accuracy', 'accuracy'])

 plt.title('ACCURACY', fontsize=14)

 plt.xlabel('Epochs', fontsize=12)

 plt.ylabel('Accuracy', fontsize=12)

 plt.show()

def conf_matrix(conf_mat,):

 conf_mat = pd.DataFrame(conf_mat, index = ['0', '1'], columns = ['0', '1'])

 sns.set(font_scale=1.4)

 plt.figure(figsize = (8,7))

 sns.heatmap(conf_mat, cmap= "Blues", linecolor = 'black' , linewidth = 1, annot = True,

fmt='')

 plt.xlabel('Predicted', fontsize=14)

 plt.ylabel('True', fontsize=14)

 plt.show()

def model_metrics(a, b):

 accuracy = metrics.accuracy_score(a, b)

 precision = precision_score(a, b)

 recall = recall_score(a, b)

 f1 = f1_score(a, b)

 print('Accuracy:', round(accuracy*100, 2),'%')

 print('Precision score:', round(precision*100, 2),'%')

 print('Recall score:', round(recall*100, 2),'%')

 print('F1 score:', round(f1*100, 2),'%')

Target (y) and Features (X) definitions:

98

y = df['ARR_FLIGHT_STATUS']

X = df.drop(['ARR_FLIGHT_STATUS'], axis=1)

df.head(2)

input_shape_column=len(df.columns)-1

input_shape_column

Neural Network Conditions

Data has to be purely numerical

Data cannot contain missing values

Data has to be Normalized

df.isna().sum().sum()

We know the data is purely numerical and that it has no missing values, now all is needed is

to normalized and we will do it by using the StandardScaler

col_names = list(df.columns)

s_scaler = preprocessing.StandardScaler()

df_s = s_scaler.fit_transform(df)

df_s = pd.DataFrame(df_s, columns=col_names)

The following are the two first rows of the normalized data:

df_s.head(2)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

Modeling

Model MLP NN

99

model_MLP_NN= Sequential()

model_MLP_NN.add(Dense(30, activation='relu', input_shape=(input_shape_column,)))

model_MLP_NN.add(Dense(10, activation='relu'))

model_MLP_NN.add(Dense(5, activation='relu'))

model_MLP_NN.add(Dense(1, activation='sigmoid'))

model_MLP_NN.summary()

model_MLP_NN.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

results_MLP_NN = model_MLP_NN.fit(X_train, y_train, epochs=25, batch_size=32,

validation_split=0.1)

visualize_training_results(results_MLP_NN)

y_pred_MLP_NN = model_MLP_NN.predict(X_test)

y_pred_m7 =(y_pred_MLP_NN > 0.5)

cm_MLP_NN = confusion_matrix(y_test, y_pred_MLP_NN)

print(cm_MLP_NN)

print("------------------")

print(classification_report(y_test, y_pred_MLP_NN))

conf_matrix(cm_MLP_NN)

model_metrics(y_test, y_pred_MLP_NN)

