
DATA-DRIVEN DECISION MAKING AND CONTROL OF RATIONAL AGENTS

by

PATRIK KOLARIC, M.Sc.

DISSERTATION
Presented to the Graduate Faculty of
The University of Texas at Arlington

In Partial Fulfillment
Of the Requirements

For the Degree of

DOCTOR OF PHILOSOPHY

COMMITTEE MEMBERS:
Frank Lewis, Ph.D., Chair

Yan Wan, Ph.D.
Nicholas Gans, Ph.D.
Ramtin Madani, Ph.D.

Jonathan Bredow, Ph.D.

THE UNIVERSITY OF TEXAS AT ARLINGTON
College of Engineering

Department of Electrical Engineering
May 2021

Copyright 2021 Patrik Kolaric
All rights reserved.

DEDICATION

This work is dedicated to Ivona for her love, support and unrelenting courage.

ACKNOWLEDGEMENTS

Many people had a positive influence on me during my doctoral studies. The knowledge and

principles they shared with me are mirrored in this thesis. I will mention some of them here.

My supervisor, Dr. Frank Lewis, the greatest teacher I have ever had. He taught me how to

write as a researcher, how to communicate as a researcher and how to think as one. He taught me

humility and character. His way of life and principles he follows will remain the strongest source

of inspiration and guidance. I have yet to earn these rare gifts.

The professors from my committee, with whom I had insightful conversations during my PhD.

I am honored by the attention they gave me and proud for being their student.

Victor, a close collaborator and a mentor. He is an open-minded researcher with an inspiring

passion for research and strong discipline. Discussions with Victor, both formal and informal, were

very important element of my doctoral studies. He is also a great friend.

Ci, my collaborator and a mentor. First journal paper is very tough and confusing experience

for every researcher. Ci helped me to bring class and quality to my first journal paper. In doing so,

he set a high standard for my future papers.

I would like to thank my closest collaborators at UTARI: Wenqian, Yusuf, Bosen and Raghu.

They are very original thinkers who improved me as a researcher.

I grew up in a small village at the north of Croatia in an open minded environment where

curiosity was encouraged, hard work was praised and love was unconditional. I cannot thank

enough to my sister Jessy and parents Alenka and Zdravko for fostering these values. They are the

ones who planted a seed for this work.

May 2021

iv

DATA-DRIVEN DECISION MAKING AND CONTROL OF RATIONAL AGENTS

Patrik Kolaric, Ph.D.
The University of Texas at Arlington, 2021

Supervising Professors: Frank Lewis, Ph.D. and Co-Supervisor Name, Degree

Abstract This dissertation studies the problem of data-driven optimal decision making. The 4

main contributions of this work are listed here.

First, we develop a model-based and data-driven techniques for learning the cost of an Ex-

pert agent. This ties fields of Inverse Optimal Control and Inverse Reinforcement Learning and

represents a first data-driven algorithm of this kind in the control community.

Next, we have developed optimally adaptive dynamic control allocation mechanism that opti-

mally re-configures redundant actuators in a model-free fashion, that is, based on collected data.

This work pushed the multiple frontiers of control allocation research, since state-of-the-art control

allocation was

Next, we have introduced an uncertainty aware trajectory optimization technique that uses the

information about the model uncertainty to inform the generation of local feedback policy which

makes the open loop solution more reliable and robust.

Finally, a cooperative protocol for distributed formation control has been developed and tested

on the real system in the lab. This was among the first real world examples of multi-agent dis-

tributed formation control.

v

TABLE OF CONTENTS

Acknowledgements . iv

Abstract . v

List of Figures . ix

Chapter 1: Introduction . 1

Chapter 2: Review of Optimal Decision Making: Optimal Control and Reinforcement

Learning . 4

2.1 Optimal Control Problem . 4

2.2 Solving Optimal Control Problem . 6

2.3 Reinforcement Learning Problem . 8

2.4 Continuous-Time Reinforcement Learning Algorithms 8

2.4.1 Continuous-Time On Policy Reinforcement Learning 9

2.4.2 Continuous-Time Off-Policy Reinforcement Learning 10

Chapter 3: Inverse Reinforcement Learning . 13

3.1 Problem Formulation . 15

3.1.1 Set of optimal solutions to LQR . 15

3.1.2 Expert Policy and Expert Subset . 16

3.1.3 Inverse Reinforcement Learning Problem Definition 17

3.2 The Expert Subset Analysis . 17

3.2.1 Analytical expression for the elements of the Expert Subset 18

3.3 Model-Based Inverse Reinforcement Learning Algorithms 22

3.3.1 Model-Based Inverse Reinforcement Learning - Riccati Iterations 22

3.3.2 Model-Based Inverse Reinforcement Learning - Value Iteration 24

vi

3.4 Data-Driven algorithm . 31

3.4.1 Integral Inverse Reinforcement Learning 32

3.4.2 Data-Driven Algorithm Implementation 36

3.5 Simulation Results . 38

3.6 Conclusion . 41

3.7 Proofs . 42

3.7.1 Proof of Lemma 5 . 42

3.7.2 Proof of Lemma 6 . 44

Chapter 4: Model Based Reinforcment Learning for Safe Trajectory Optimization . . . 47

4.1 Motivation for Model based Reinforcement Learning 47

4.2 Introduction . 48

4.3 Related Work . 50

4.4 Problem Formulation . 51

4.4.1 Trajectory Optimization as Non-linear Program 51

4.4.2 Trajectory Optimization with Local Stabilization 53

4.5 Solution Approach . 56

4.6 Experimental Results . 60

4.6.1 Simulation Results for Underactuated Pendulum 60

4.6.2 Results on Ball-and-Beam System . 63

4.7 Conclusion and Future Work . 66

Chapter 5: Optimal Dynamic Control Allocation of Input Redundant Systems 68

5.1 Introduction . 68

5.2 Mathematical Preliminaries . 69

5.2.1 Actuator Redundancy . 70

5.3 Optimal Dynamic Allocator . 71

5.3.1 Optimal Dynamic Allocator Problem . 72

vii

5.3.2 Comparison with Optimal Static Allocators 74

5.4 Linear Quadratic H∞ allocation . 77

5.5 Constrained model-free optimal control allocation 80

5.5.1 Online Reinforcement Learning (RL) algorithm 81

5.5.2 Approximate Neural Network Solution to IRL 83

5.6 Experimental Validation . 83

5.7 Conclusion . 87

Chapter 6: Distributed Formation Control of Multi-agent System of UAVs 88

6.1 Introduction . 88

6.2 Preliminaries on Graph Theory . 90

6.3 Quadrotor dynamics . 91

6.4 Position consensus controller . 94

6.5 Modifying Edge Weights Based on Trust . 102

6.6 Experimental Environment . 103

6.6.1 Crazyflie 2.0 . 104

6.6.2 Master workstation . 105

6.7 Flight Tests . 107

6.7.1 Experiment 1 . 107

6.7.2 Experiment 2 . 110

6.7.3 Experiment 3 . 111

6.8 Conclusion . 113

Chapter 7: Conclusion and Future Directions . 115

Bibliography . 117

Vita

viii

LIST OF FIGURES

3.1 Algorithm 2; Normed distance between matrices Ki and K∗; ||Ki −K∗|| . 39

3.2 Algorithm 2; Normed distance between matrices Qi+1 and Qi; ||Qi+1−Qi|| 40

3.3 Algorithm 3; Normed distance between matrices Ki and K∗; ||Ki −K∗|| . 41

3.4 Algorithm 3; Normed distance between matrices Qi+1 and Qi; ||Qi+1−Qi|| 41

4.1 A schematic representation of the robustness constraint introduced in the

chapter. 53

4.2 State-space representation of the optimal trajectory (green), stable closed-

loop system using the obtained solution (blue), and unstable open-loop tra-

jectory without the local feedback (red). Note that the feedback is time-

invariant. 61

4.3 State-space representation of the open loop trajectory predicted by opti-

mizer (dotted line), open loop trajectory with stabilizing component closed

loop system using the obtained solution (full line), and unstable open-loop

trajectory without the local feedback (dashed line). Note that the feedback

is time-invariant. 62

4.4 a) open-loop control b) static feedback matrix obtained from optimization

c) LQR feedback . 63

4.5 Error statistics for the controlled system using the proposed method on the

under-actuated pendulum with noise amplitude 64

4.6 Error statistics for the controlled system using the proposed method on the

under-actuated pendulum with noise amplitude for uncertainty regions of

different sizes . 64

4.7 The ball-and-beam system used for the experiments. There is an RGB

camera above that measures the location of the ball. The encoder (seen in

the figure) measures the angular position of the beam. 65

ix

4.8 Comparison of the performance of the proposed controller on a ball-and-

beam system with the open-loop solution. The plot shows the error in the

position of the ball from the regulated position averaged over 12 runs. . . . 66

5.1 The norm distance between the optimal feedback gain matrix −BT
a P in

(5.31) and the learned policy weights W j
µ in (5.46) updated by least squares. 85

5.2 Actuators allocated by policies µj(w) that minimize (5.40) for constrained

case (β = 1). Constraints are imposed on actuators (u1, u2) selected as

u1,2
L , u1,2

U = (−0.5, 0.0). 85

5.3 Dashed lines show the actuators allocated by optimal control allocation

input (5.31). Solid lines show the actuators allocated by policy µj(w) in

(5.43). The initial stabilizing policy µ0(w) is applied during data collection

phase [0s − 37.5s]. The policy µj(w), j = 1, 2, ... is then updated by

least squares using new data samples. 86

5.4 Overview of Dynamic Control Allocation Design 86

6.1 Motion capture and communication topology based on master-slave model

architecture. robustness constraint introduced in the chapter. 104

6.2 Distributed multi-threaded software architecture with data pipeline. 105

6.3 Distributed hierarchical motion control statemachine. 106

6.4 Experiment 1, positions x of UAVs . 108

6.5 Experiment 1, positions y of UAVs . 109

6.6 Experiment 2, positions x of UAVs . 110

6.7 Experiment 2, positions y of UAVs . 111

6.8 Experiment 3, positions x of UAVs . 112

6.9 Experiment 3, positions y of UAVs . 112

6.10 Photograph of the experiment during consensus 113

x

Chapter 1: INTRODUCTION

At the high level, this dissertation studies the problem of optimal decision making. The problem

of decision making has been studied in various engineering disciplines such as, control theory,

computer science, game theory, machine learning, artificial intelligence, operations research to

name a few. The unified solution to this fundamental problem does not exist. Modern technological

advancement is critically dependent on our ability to automate decision making process in the

machine.

In this dissertation, we focus on decision making of dynamic systems, that is, systems whose

state changes over time and depends on the actions taken in the past. Optimal control is one of

the best studied frameworks for analyzing dynamic decision making and most of the work in this

dissertation relies on it. The theory of optimal control has a long history that can be traced back

to the calculus of variations and brachistochrone problem. We omit the overview of this historic

development, but interested reader is referred to [97].

Optimal control offers many successful techniques for designing decision making systems.

However, it requires human to specify a cost function. In other words, the objectives or motives

of a decision making agent have to be understood a priori. The designer of optimal controller

has to codify these motives and objectives by selecting a proper cost function. This can be a hard

problem.

In order to advance decision making theory and automate associated technologies, the research

community needs to find a way to mathematically argue about objectives, intentions and motives

of agents that perform complex tasks. One of the contributions of this dissertation is the formal

introduction of a method that can be used to infer the objectives and motives of a, so called, Expert

agent, by determining the cost function that such an agent optimizes.

Another disadvantage of optimal control is that it depends on the model of system dynam-

ics. This means that the efficiency of optimal controller depends on the accuracy of the model.

Moreover, optimal controller has to be pre-computed offline.

1

Both problems mentioned here can be partially addressed using data-driven methods. Specif-

ically, the theory of reinforcement learning has been developed to learn optimal policies through

experience. However, the "experience" is again associated with a reward function which is math-

ematically equivalent to cost function in optimal control. In other words, the objectives, motives

and intentions of agent have to be properly represented using the reward function. This brings us

to the first contribution:

Contribution 1): In this work, we develop a model-based and data-driven techniques for learning

the cost of an Expert agent. This ties fields of Inverse Optimal Control and Inverse Reinforcement

Learning and represents a first data-driven algorithm of this kind in the control community.

One of the most celebrated data-driven techniques in optimal control is continuous time integral

reinforcement learning. Despite the attractive theory and effective algorithms, there have been very

few applications reported where this technique is used.

We recognized the problem of control allocation of redundant systems as a very interesting

application of integral reinforcement learning. Many robots have a redundancy built into their

system. In most cases, the redundancy protects the system in cases of critical failures of some

components. In these cases, the system needs to optimally adapt to new circumstance. Moreover,

even when the system is functioning healthy, the redundancy present in the system can be utilized

by the system. This brings us to next contribution.

Contribution 2): We have developed optimally adaptive dynamic control allocation mechanism

that optimally re-configures redundant actuators in a model-free fashion, that is, based on collected

data.

In our investigation of data-driven techniques in decision making, we have found that data can

be very useful for evaluating the level of uncertainty in the models used in optimal control. If

the model can inform the algorithm not only about the next state, but also the uncertainty of that

prediction, then the information about the uncertainty can be used to make the policy robust.

In this dissertation, we study a case of standard robotic trajectory optimization where the open

loop solution is made more robust by adding the feedback term informed by the model uncertainty.

2

This is our next contribution

Contribution 3): We have developed an uncertainty aware trajectory optimization technique that

uses the information about the model uncertainty to inform the generation of local feedback policy

which makes the open loop solution more reliable and robust.

Finally, optimal control has not yet been well generalized to the problem of multi-agent setting.

The problem is that when one deals with multi-agent setting then the global optimality does not

follow from the local optimality of each agent. Moreover, the communication graph affects the

behaviour of agents. In Chapter 7, we also disclose some preliminary results on applying inverse

reinforcement learning to the problem of distributed decision making over a group of networked

agents. It turns out that inverse reinforcement learning can be used to encourage global optimality

by incentivizing each agent locally.

Contribution 4): In addition, a cooperative protocol for distributed formation control has been

developed and tested on the real system in the lab. This was among the first real world examples

of multi-agent distributed formation control.

3

Chapter 2: REVIEW OF OPTIMAL DECISION MAKING: OPTIMAL

CONTROL AND REINFORCEMENT LEARNING

In this chapter, we will review two well defined frameworks for studying optimal decision making:

optimal control and reinforcement learning. Both theories are used throughout the dissertation and

therefore deserve to be introduced in this separate chapter.

2.1 Optimal Control Problem

The theory of optimal control has a long history that can be traced back to the calculus of variations

and brachistochrone problem. We omit the overview of this historic development, but interested

reader is referred to [97].

In optimal control, we are interested in the analysis and design of optimal decisions. The state

of the system that we want to control is defined by a real vector x. The real vector u represents the

decision trajectory and is often termed as the input vector in the control literature. The evolution

of the state x(t) over time, given the initial condition x(t = 0) and decision trajectory u(t) is

governed by a non-linear differential equation

ẋ = F (x, u)

F (x, u) , f(x) + g(x)u

(2.1)

In order to argue about the optimality of decision trajectory u(t), we need a formal ranking

criteria that compares the utility of an arbitrary decision trajectory u1(t) against some other deci-

sion trajectory u2(t). In this scenario, the ranking criteria should claim that u1(t) is either better,

worse or equal compared to u2(t). This ranking criteria is widely referred to as the cost function

or performance index. The definition of cost function is as follows

J(x(t), u(t)) ,
∫ ∞
t

L(x(τ), u(τ))dτ (2.2)

4

The cost function J(x(t), u(t)) is a performance measure of decision trajectory u(t) applied to the

system (2.1).

If the cost function is well defined, then there exists an optimal decision trajectory (not neces-

sarily unique) defined as

u∗(t) , arg min
u(t)

J(x(t), u(t)) (2.3)

The system of equations (2.1), (2.2) and (2.3) constitutes a well defined framework for analyzing

and designing optimal decision making systems.

A powerful specialization of optimal decision making framework based on (2.1), (2.2) and

(2.3) is that of state feedback policy design. In this specialization, the decision trajectory is the

explicit function of state trajectory as follows

u(t) = πw(x(t)) (2.4)

where w are the parameters of state feedback policy πw(x(t)). The optimal state feedback policy

is then defined as
π∗(x(t)) , πw∗(x(t))

w∗(t) , arg min
w

J(x(t), πw(x(t)))
(2.5)

In order to understand the power of state feedback design, consider the complexity involved with

searching for an optimal decision trajectory in (2.3) and compare it with the problem of determin-

ing a finite dimensional vector of parameters w in (2.5). Clearly, (2.5) is more compact problem

of optimization over the space of parameter w with the solution that generalizes across the state

space.

Since the search for the optimal state feedback policy design takes place in the space of param-

eter w it is crucial to tie that parameter space with the associated cost. In other words, there is a

map from parameter space to the cost of associated policy w → J . This map is widely known as

5

the value function and is defined as follows

Jπw(x(t)) , J(x(t), πw(x(t))) (2.6)

Moreover, the optimal value function that measures the performance of the optimal policy π∗(x(t))

is then given as

J∗(x(t)) , Jπ
∗
(x(t)) (2.7)

where w∗ is defined in (2.5).

2.2 Solving Optimal Control Problem

In this subsection, we formalize the procedure for solving optimal control problem. The solution

relies on the celebrated Pontryagin’s Maximum Principle and related stationarity conditions.

First, define Hamiltonian function as

H(x, u, p) , pTF (x, u) + L(x, u) (2.8)

The state feedback solution to the optimal control problem satisfies certain conditions that are

formalized in next theorem (source: [33]).

Theorem 1. Consider a policy π and its corresponding value function Jπ that satisfy set of equal-

ities and inequalities

Jπ(0) = 0

Jπ(x) > 0 x ∈ D

π(0) = 0

(2.9)

∇xJ
π(x)F (x, π(x)) < 0 x ∈ D (2.10)

H(x, π(x),∇xJ
π(x)) = 0 x ∈ D

H(x, u,∇xJ
π(x)) ≥ 0 x ∈ D u ∈ U

(2.11)

6

Then, the policy π is stable in the sense of Lyapunov where the value function Jπ serves as the

Lyapunov function. Moreover, the policy π is the optimal state feedback policy π∗ that solves (2.5).

Proof. First write the Bellman equation

H(x, π(x),∇xJ
π(x)) = ∇xJ

π(x)TF (x, π(x)) + L(x, π(x))

= J̇π(x) + L(x, π(x))

0 = J̇π(x) + L(x, π(x))

(2.12)

Then, since L(x, u) > 0 ∀x, u/{0} we have

J̇π(x) < 0 (2.13)

Therefore, using Jπ(x) > 0, we recognize that Jπ is Lyapunov function and conclude that policy

π is stable in the sense of Lyapunov.

Next, we show the optimality of π. To see that, consider Hamilton inequality

J(x, u) =

∫ ∞
t

L(x(τ), u(τ))dτ∫ ∞
t

(H(x, u,∇xJ
π(x))−∇xJ

π(x))TF (x, u))dτ∫ ∞
t

(H(x, u,∇xJ
π(x))− J̇π(x))dτ

Jπ(x) +

∫ ∞
t

(H(x, u,∇xJ
π(x)))dτ ≥ Jπ(x)

(2.14)

Therefore, J(x, u) ≥ Jπ(x) which implies that π(x) is the optimal policy.

Two important results can be obtained for the case when the input is quadratically weighted in

the cost function.

Lemma 1. Let the stage cost L(x, u) be given as

L(x, u) = Q(x) + uTRu (2.15)

7

Then the optimal policy is given as

π∗ = −1

2
R−1g(x)T∇xJ

π∗(x) (2.16)

Lemma 2. Let the stage cost L(x, u) be given as

L(x, u) = Q(x) + uTRu (2.17)

Then following holds

H(x, u,∇xJ
π∗(x)) = (u− π∗)TR(u− π∗) (2.18)

2.3 Reinforcement Learning Problem

In this section, we review problem definition of reinforcement learning which can be thought of as

a data-driven equivalent of optimal control.

Since the reinforcement learning is a data-driven method, it is typically analyzed using prob-

abilistic approaches and Markov Decision Processes (MDPs). Therefore, we will introduce the

problem in probabilistic setting and then switch to deterministic analysis to show the relation be-

tween reinforcement learning and optimal control.

Consider the MDP (X,U, P,R) where X is a set of states and U is the set of actions. The set

of transition probabilities between states is denoted as P where P u
x,x′ indicates the probability of

transitioning from state x and to state x′ after making action u and the reward function (negative

stage cost) is given as R where Ru
x,x′ is the reward associated with that transition.

2.4 Continuous-Time Reinforcement Learning Algorithms

In this section, we introduce continuous time version of common reinforcement learning algo-

rithms.

8

2.4.1 Continuous-Time On Policy Reinforcement Learning

We start by looking at equation (2.11) and recognize that the non-linear Lyapunov equation

0 = Q(x) + πT (x)Rπ(x) +∇xJ
πT (x)ẋ (2.19)

is in fact equivalent to the Bellman equation. This becomes more evident if (2.19) is written as

0 = Q(x) + πT (x)Rπ(x) +
d

dt
JπT (x) (2.20)

and then integrated to get

Jπ(x) =

∫ ∞
t

(Q(x) + πT (x)Rπ(x))dτ (2.21)

extracting the tail gives us

Jπ(x) =

∫ t+T

t

(Q(x) + πT (x)Rπ(x))dτ +

∫ ∞
t+T

(Q(x) + πT (x)Rπ(x))dτ (2.22)

Finally, the integral form of Bellman equation (2.19) is given as

Jπ(x(t)) =

∫ t+T

t

(Q(x) + πT (x)Rπ(x))dτ + Jπ(x(t+ T)) (2.23)

Combining (2.23) with the optimality conditions from (2.11) we can write policy iteration algo-

rithm

9

Algorithm 2.1 Continuous Time - Policy Iteration
Input: Symmetric cost matrices Q and R
Output: Optimal policy π∗(t) = −R−1gT (x)∇xJ

π∗ (see Definition 2).
Initialization: Initialize stabilizing policy π0.

1: while ||πi − πi−1|| > ε do
2: Policy Evaluation. Estimate Jπi using

Jπi(x(t))− Jπi(x(t+ T)) =

∫ t+T

t

(Q(x) + πTi (x)Rπi(x))dτ (2.24)

3: Policy Improvement. Estimate policy πi+1 by using

πi+1(x) = arg min
z

H(x, z,∇xJ
πi(x)) (2.25)

or explicitly

πi+1(x) = −1

2
R−1gT (x)∇xJ

πi(x) (2.26)

This result is thoroughly presented in [59].

2.4.2 Continuous-Time Off-Policy Reinforcement Learning

In this section we discuss off-policy version of algorithms from previous subsection. The "off-

policy" in reinforcement learning indicates that the policy applied to collect the data for learning

is different from the learned policy. The policy which is used for collecting the data is often called

behavior policy πb(x) and the policy that is actually learned is denoted πi(x) as before.

We will sketch off-policy reinforcement learning derivation. The full derivations and results

originate from [48]. Start by writing the system dynamics resulting from behavior policy πb(x) as

ẋ = f(x) + g(x)πb(x) (2.27)

Use the trick to write

ẋ = f(x) + g(x)πb(x) + g(x)(πi(x)− πi(x)) (2.28)

10

and manipulate this expression to write

ẋ = f(x) + g(x)πi(x) + g(x)(πb(x)− πi(x)) (2.29)

Next, let us introduce Bellman equation that evaluates πi(x) along the trajectory produced by

behavior policy πb(x) as follows

0 = Q(x) + πTi Rπi +∇xJ
πiT ẋ

0 = Q(x) + πTi Rπi +∇xJ
πiT (f(x) + g(x)πb(x))

(2.30)

and now use (2.29) to write

0 = Q(x) + πTi Rπi +∇xJ
πiT (f(x) + g(x)πi(x)) +∇xJ

πiTg(x)(πb(x)− πi(x)) (2.31)

Now note that∇xJ
πiT (f(x) + g(x)πi(x)) = J̇πi and therefore

0 = Q(x) + πTi Rπi + J̇πi +∇xJ
πiTg(x)(πb(x)− πi(x)) (2.32)

Moreover, from (2.26) we see that∇xJ
πiTg(x) = −2Rπi+1(x) and therefore

0 = Q(x) + πTi Rπi + J̇πi − 2πTi+1(x)R(πb(x)− πi(x)) (2.33)

In order to learn from state trajectories, we integrate (2.33) and write the integral equation

0 =

∫ ∞
t

(Q(x) + πTi Rπi)dτ + Jπi − 2

∫ ∞
t

πTi+1(x)R(πb(x)− πi(x))dτ (2.34)

This gives us an expression for evaluating Jπi

Jπi(x(t)) = −
∫ ∞
t

(Q(x) + πTi Rπi)dτ + 2

∫ ∞
t

πTi+1(x)R(πb(x)− πi(x))dτ (2.35)

11

Moreover, since

Jπi(x(t+ T)) = −
∫ ∞
t+T

(Q(x) + πTi Rπi)dτ + 2

∫ ∞
t+T

πTi+1(x)R(πb(x)− πi(x))dτ (2.36)

then we can express Jπi(x(t))− Jπi(x(t+ T)) as

Jπi(x(t))−Jπi(x(t+ T))

= −
∫ t+T

t

(Q(x) + πTi Rπi)dτ + 2

∫ t+T

t

πTi+1(x)R(πb(x)− πi(x))dτ
(2.37)

This brings us to the algorithm.

Algorithm 2.2 Continuous Time, Off-Policy - Policy Iteration
Input: Symmetric cost matrices Q and R
Output: Optimal policy π∗(t) = −R−1gT (x)∇xJ

π∗ (see Definition 2).
Initialization: Initialize stabilizing policy π0.

1: while ||πi − πi−1|| > ε do
2: Policy Evaluation and Policy Improvement. Update Jπi and πi+1 using

Jπi(x(t))−Jπi(x(t+ T))

= −
∫ t+T

t

(Q(x) + πTi Rπi)dτ + 2

∫ t+T

t

πTi+1(x)R(πb(x)− πi(x))dτ
(2.38)

The utility of this algorithm is that the behaviour policy can be independent of learned policy.

In other words, behaviour policy can be selected as a safe and stable policy and learned policy does

not have to be applied until convergence to the optimal policy. We omit the proof of convergence

which can be found in [48].

12

Chapter 3: INVERSE REINFORCEMENT LEARNING

The optimal control is a well developed field of control [63]. The theory relies on well formulated

concepts of optimality of dynamic systems such as dynamic programming [6] and Pontryagin’s

minimum principle [63]. The general optimal control is considered to be a hard problem to solve

analytically, as it requires solution to Hamilton-Jacobi-Bellman (HJB) equation.

The attractive property of optimal control theory is that it provides a clear framework for es-

tablishing the stability of resulting control policies. Under certain conditions, the optimal control

policy inherits the property of dynamic stability just from the fact that it is optimal. In other words,

a control policy that is optimal with respect to selected performance index is also dynamically

stable, if and only if the performance index has a certain admissible form [33].

The problem of selecting the performance index in optimal control such that the optimal policy

has desired properties is called Inverse Optimal Control. This problem was first proposed in [50]

where authors regarded stability as the main property that one should ensure when selecting perfor-

mance index. The authors provide a solution for scalar case. In [78] authors recommend additional

properties like controllability and observability. Well developed content on Inverse Optimal Con-

trol is summarized in [33] and [11] where authors used Lyapunov Stability theory to give sufficient

conditions for determining performance indices that yield stable optimal policies. More recent

results and applications of Inverse Optimal Control can be found in [81], [123], [28], [89]

The family of methods that solve optimal control in iterative real-time data-driven fashion are

called Reinforcement Learning [98], Adaptive Dynamic Programming [60], [112] or Approximate

Dynamic Programming [8]. In each iteration, the control policy is evaluated based on collected

data and then improved. These data-driven iterative procedures are akin to matrix iterations which

were developed to solve Algebraic Riccati Equations, [52], [55], [40] and [39]

Recently, Inverse Reinforcement Learning was studied in [75], [1], [76], [70] [90], [34], [2],

[126], [125], [92], [26], [18], [100], [118], [32], [66], [30]. Unlike Inverse Optimal Control, where

the goal is to find a family of performance indices that satisfy a desirable property, the Inverse

13

Reinforcement Learning recovers a specific performance index under which the observed actions

of an Expert agent are optimal. One of the drawbacks of existing Inverse Reinforcement Learning

methods is that they use various heuristics to ensure that the resulting performance index is a

meaningful representation of the Expert’s objective. Moreover, the policies that are optimal with

respect to reconstructed performance index do not have clear stability guarantees.

In this chapter, the theory of Inverse Optimal Control is used to overcome the shortcomings

of existing Inverse Reinforcement Learning solutions. The idea is to use Inverse Optimal Control

to isolate the family of performance indices that are guaranteed to produce a stabilizing control

policy. Firstly, the model-based iterative algorithms are provided along with convergence analysis.

Secondly, the data-driven algorithms are derived as approximations to model-based algorithms.

Our contributions are summarized as follows.

1) We propose a novel, model-based Inverse Reinforcement Learning problem formulation moti-

vated by well studied Inverse Optimal Control techniques that ensure reconstruction of meaningful

performance indices. This clarifies the relation between Inverse Reinforcement Learning and In-

verse Optimal Control.

2) It is shown that the optimal cost that generates a given Expert policy may not be unique. We

characterize all possible solutions to the Inverse Reinforcement Learning problem.

3) Two novel iterative algorithms for solving model-based Inverse Reinforcement Learning are

presented along with the convergence analysis. The first is based on Riccati iterations and the

second is based on Lyapunov iterations. We do not assume knowledge of Expert policy. Instead,

only the knowledge of Expert dynamics is assumed.

4) A data-driven algorithm is given for implementing Inverse RL in real time without knowing the

Expert’s dynamics, but only observing its state trajectories. A rigorous derivation is provided.

14

3.1 Problem Formulation

3.1.1 Set of optimal solutions to LQR

In this subsection, we present the optimality conditions of LQR problem. Consider linear control

system

ẋ(t) = Ax(t) +Bu(t) (3.1)

with state x(t) ∈ Rn×1 and input u(t) ∈ Rm×1. System matrices are defined as A ∈ Rn×n and

B ∈ Rn×m and the system (A,B) is assumed to be controllable. The linear feedback policy

u(t) = −Kx(t) and the system dynamics in (3.1) together define closed loop dynamics

ẋ(t) = (A−BK)x(t) , AKx(t) (3.2)

Consider the cost function

J(x(t), u(t)) =

∫ ∞
t

{xT (τ)Qx(τ) + uT (τ)u(τ)}dτ (3.3)

Setting linear policy u = −Kx in the cost function (3.3) defines state dependent value function

JK(x(t)) , J(x(t),−Kx(t))

=

∫ ∞
t

xT (τ){Q+KTK}x(τ)dτ
(3.4)

The cost JK(x(t)) in (3.4) is commonly referred to as value function [60]. Well known result in

optimal control [63] is that the optimal gain K∗ that minimizes the performance index in (3.4) is

given as K∗ = BTP where P solves

0 = PA+ ATP +Q− PBBTP

Q = QT

(3.5)

Definition 1 (Optimality Set). Given a controllable pair (A,B), the set of all (Q,P) that satisfy

15

(3.5) is referred to as the Optimality Set.

The Optimality Set identifies the most general set of (Q,P) that are guaranteed to produce sta-

ble control policy u(t) = Kx(t). This is the result from Inverse Optimal Control [33] specialized

for LQR case.

3.1.2 Expert Policy and Expert Subset

We consider two agents, the Expert and the Learner. The Expert is an agent that employs an

optimal control policy with some favorable properties. The Behavior goal is to mimic the Expert

by learning its intentions (performance index), rather than learning how the Expert acts in a specific

situation (control policy). The technical definition of this problem is discussed later in Subsection

3.1.3. Current subsection is used to formally introduce the concepts of Expert Policy and Expert

Subset.

The Expert Policy is denoted as u∗ , −K∗x, where K∗ is referred to as Expert Gain. The

Expert Policy u∗ and the Expert Gain K∗ are fixed and unknown in our formulation. Note that

the closed loop dynamics of Expert is given as ẋ(t) , AK∗x(t) = (A − BK∗)x(t). The Expert

Policy u∗ = −K∗x is optimal with respect to some cost from the proposed family of quadratic cost

functions in (3.3).

Definition 2 (Expert Subset). The Expert Subset (Q,P) of the Optimality Set (Q,P), consists of

all solutions to (3.5) with the gain K∗ fixed to the Expert Gain K∗. That is, the Expert Subset

(Q,P) ∈ (Q,P) is given as the set of solutions to

0 = PA+ ATP +Q−PBBTP

QT = Q

BTP = K∗

(3.6)

It is possible that the Expert Policy is optimal with respect to more than one cost from the family

of costs. That is, given K∗, the (Q,P) that solve (3.6) may not be unique. This non-uniqueness in

16

the space of solutions to (3.6) is formalized by introducing the Expert Subset in Definition 2. In

Theorem 2 of Section 3.2 we identify the Expert Subset analytically.

3.1.3 Inverse Reinforcement Learning Problem Definition

We are now ready to formulate the Inverse Reinforcement Learning problems.

Definition 3 (Model-Based Inverse Reinforcement Learning). Given the knowledge of the dynam-

ics model (A,B) and the closed loop dynamics of the Expert, AK∗ , solve (3.6). In shorthand

notation, (A,B,AK∗)
?→ (Q,P ,K∗).

Definition 4 (Data-Driven Inverse Reinforcement Learning). Given Expert trajectories xK∗(t) ,

{x(t) | ẋ(t) = AK∗x(t), t ∈ (0,∞)}, solve (3.6). In shorthand notation, xK∗(t)
?→ (Q,P ,K∗).

Solving the model-based problem in Definition 3 is instrumental for determining the solution

to data-driven problem in Definition 4. This is because the Expert trajectories xK∗(t) are the results

of closed loop Expert dynamics AK∗ . Therefore, if we can determine the model-based algorithm

that solves (3.6), then the data-driven algorithm can be derived as its approximation. Therefore,

we first propose the model-based algorithm in Section 3.3 from which the data-driven algorithm

emerges naturally in Section 3.4.

Before introducing the algorithms that solve problems from Definition 3 and Definition 4, we

need to develop better understanding of the solution space that these algorithms are converging

towards. Therefore, next section is used to characterize the solution space - Expert Subset.

3.2 The Expert Subset Analysis

As mentioned earlier, given the Expert Policy u∗(t) = K∗x(t), the pair (Q,P) that solves the

system of equations in (3.6) may not be unique. Since the objective of this chapter is to recover

one such pair, we wish to understand the solution space of all such pairs. In this section we

characterize all possible solutions to (3.6), that is, the Expert Subset defined in Definition 2.

17

3.2.1 Analytical expression for the elements of the Expert Subset

In our first result in Theorem 2, the analytical expression for the elements of the Expert Subset

(Q,P) given the Expert Gain K∗ is provided. Before that, in Lemma 3 we introduce a matrix

equation that can be used to determine the Expert Subset. This matrix equation is useful alternative

to the matrix equation (3.6) which is originally used to define the Expert Subset in Definition 2.

Lemma 3 (Expert Subset in Terms of AK∗). The set of solutions to

0 = PAK∗ + ATK∗P +Q+ PBBTP

QT = Q
(3.7)

is equivalent to set of solutions to (3.6).

Proof. The equation (3.7) can be derived directly from (3.6) and the equivalence of these two

equations is well known in Optimal Control literature.

The equation (3.7) is important for the problem of Inverse Reinforcement Learning because

it ties the closed loop dynamics AK∗ with the Expert Subset (Q,P). This allows us to develop

algorithms that update Q and P based on AK∗ rather than K∗. Note that assuming the knowledge

of AK∗ is less restrictive than assuming the knowledge of K∗. More importantly, the true utility of

the algorithm that is driven by the knowledge of AK∗ is that it has a natural data-driven equivalent

where AK∗ is replaced by the Expert Trajectory xK∗(t) as we shall see in Section 3.4. In next

definition we introduce the concept of the null-space of input matrixB. As we shall see in Theorem

2, the null-space of the input matrix B provides the shape and determines the dimension of the

Expert Subset, which is the set of solutions to problems in Definitions 3 and 4 (see Remark 3.1.2).

Definition 5. For a matrix B from (3.1), define a null-space projector B⊥ ∈ Rn×n with following

properties

1) B⊥B = 0

2) B⊥ = BT
⊥ (from 1) and 2) follows BTB⊥ = 0)

18

3) rank(B⊥) = n−m

The null-space projector can be designed as

B⊥ = (I −B(BTB)−1BT).

We are ready to introduce the main result of this section.

Theorem 2 (Determining the Expert Subset). Let Assumption 3.1.2 hold and let (Q∗,P∗) be one

solution to (3.6). Then, the Expert Subset is given as

P(L) = P∗ + ∆P

where ∆P , B⊥L = LTB⊥

(3.8)

and

Q(L) = Q∗ + ∆Q

where ∆Q , −(∆PAK∗ + ATK∗∆P)

(3.9)

where B⊥ is the projector to the null-space of matrix BT and L is any matrix of appropriate

dimensions that satisfies (3.8). Moreover, (Q(L),P(L)) is also a solution to (3.7).

Proof The Expert Subset from Definition 2 consists of every (Q,P) that corresponds to the

Expert Policy K∗ in the sense of equation (3.6). Consider two different pairs from the Expert

Subset and denote them as (Q1,P1) and (Q2,P2). Since both pairs belong to the Expert Subset,

then K∗ = BTP1 and K∗ = BTP2. Subtract these two expressions

K∗ −K∗ = BTP1 +BTP2

0 = BT (P1 − P2)

(3.10)

Note that the difference between any two matricesP1 andP2 from the Expert Subset is a symmetric

matrix that lies in the null-space of matrix BT . Then the difference can be expressed as

∆P , P1 − P2 = BT
⊥L = B⊥L (3.11)

19

for some matrix L that ensures B⊥L = LTB⊥. Therefore, if P∗ is one solution, then any other

solution is given by (3.8) for appropriate matrix L. This proves (3.8).

Next, insert (3.8) in the equation (3.7)

Q =− ((P∗ +B⊥L)TAK∗ + ATK∗(P∗ +B⊥L)

+ (P∗ +B⊥L)TBBT (P∗ +B⊥L))

=− (P∗AK∗ + ATK∗P∗ + P∗BBTP∗

+ (B⊥L)TAK∗ + ATK∗B⊥L+ P∗BBTB⊥L

+ (B⊥L)TBBTB⊥L+ LTB⊥BB
TP∗)

(3.12)

Note that BTB⊥ = 0 and write

Q =− (P∗AK∗ + ATK∗P∗ + P∗BBTP∗

+ (B⊥L)TAK∗ + ATK∗B⊥L)

(3.13)

The first three terms constitute a solution Q∗ from (3.7)

Q∗ = −(P∗AK∗ + ATK∗P∗ + P∗BBTP∗) (3.14)

Then (3.13) becomes

Q = Q∗ − ((B⊥L)TAK∗ + ATK∗B⊥L) (3.15)

Use ∆P = B⊥L from (3.8) and insert it into (3.15) to prove (3.9).

Finally, (Q(L),P(L)) is also a solution to (3.7) as a consequence of Lemma 3.

Let the matrix L satisfy B⊥L = LTB⊥. Let the Expert Policy K∗ = BTP optimize the

performance index (by Assumption 3.1.2)

x(t)TPx(t) = min
K

∫ ∞
t

xT (τ){Q+KTK}x(τ)dτ (3.16)

20

for some (Q,P) with corresponding Riccati equation

ATP + PA+Q−PBBTP = 0 (3.17)

Then, K∗ also optimizes a family of performance indices where a specific element of the family

can be obtained by varying L

x(t)T P̃x(t) =

min
K

∫ ∞
t

xT (τ){Q −B⊥LA− ATLTB⊥ +KTK}x(τ)dτ
(3.18)

Moreover, the family of performance indices (3.18) corresponds to a family of Riccati equations

AT P̃ + P̃A+Q−B⊥LA− ATLTB⊥ − P̃BBT P̃ = 0 (3.19)

Proof. Start by observing that the optimization problem in (3.16) is equivalent to the problem of

solving Riccati equation (3.17) and then forming the optimal policy K∗ = BTP . Add ±B⊥LA±

ATLTB⊥ to (3.17) and write

AT (P +B⊥L) + (P +B⊥L)A

+{Q −B⊥LA−ATLTB⊥} − PBBTP = 0

(3.20)

denote P̃ = P +B⊥L and use PBBTP = P̃BBT P̃ to write the result in (3.19).

By standard optimal control theory, the policy that optimizes (3.18) (let us denote it as K̃∗) is

given by K̃∗ = BT P̃ where P̃ is the solution to (3.19). However, since P̃ = P+B⊥Lwe conclude

that K̃∗ = K∗. Therefore, the Expert Policy K∗ is optimal for both performance indices (3.18) and

(3.16). This completes the proof.

21

3.3 Model-Based Inverse Reinforcement Learning Algorithms

In this section we propose Algorithms 3.1 and 3.2 to solve the Model-Based Inverse RL problem

defined in Definition 3. The problem is considered to be solved when the algorithm converges to

the Expert Subset given by (3.7), or alternatively (3.6). The first algorithm is based on repeated

solutions to Riccati equation and the second is based on Value Iteration, that is repeated solutions

of Lyapunov equations.

3.3.1 Model-Based Inverse Reinforcement Learning - Riccati Iterations

In this subsection, we present the first model-based algorithm and analyze its convergence.

Algorithm 3.1 Model-Based Inverse Reinforcement Learning - Riccati Iterations
Input: Symmetric cost matrix Q0

Output: Symmetric matrix Q∞ that belongs to the Expert Subset of the Expert Policy u∗(t) =
−K∗x(t) (see Definition 2).
Initialization: Initialize P0 as the solution to Riccati equation in (3.5) with Q = Q0; i← 0;
Select the convergence tolerance ε ∈ R+

1: while ||Ki −Ki−1|| = ||BTPi −BTPi−1|| > ε do
2: Inverse Optimal Control Step. Estimate Qi by using equation (3.7)

Qi = −(PiAK∗ + ATK∗Pi + PiBB
TPi) (3.21)

3: Optimal Control Step - (Riccati equation). Solve (3.5) for Pi+1 given Q = Qi

0 = Pi+1A+ ATPi+1 +Qi − Pi+1BB
TPi+1 (3.22)

The algorithm can be expressed in the form of the matrix iteration by inserting (3.21) into

(3.22)

0 = Pi+1A+ ATPi+1 − Pi+1BB
TPi+1

+ {−PiBBTPi − PiAK∗ − ATK∗Pi}
(3.23)

Note that the Inverse RL problem is solved in Algorithm 3.1 by interleaved steps based on In-

verse Optimal Control and Optimal Control. As such, Algorithm 3.1 clarifies the relation between

22

Inverse RL and Inverse Optimal Control.

The recursive matrix iteration (3.23) provides useful intuition about the Inverse Reinforce-

ment Learning procedure. First note that the iteration has the form of Riccati Equation (3.5) with

Q = −{PiBBTPi + PiAK∗ + ATK∗Pi}. Therefore, model-based Inverse RL procedure in Algo-

rithm 3.1 iteratively solves Riccati equations, where Qi is adapted to satisfy Riccati equation (3.7)

specialized to Expert Dynamics AK∗ = A−BK∗.

Theorem 3 (Fixed Point of Algorithm 3.1). The fixed point of Algorithm 3.1 belongs to the Expert

Subset defined in Definition 2.

Proof. First note that if the initial P0 is symmetric, then the update rule (3.23) preserves the sym-

metry of Pi,∀i.

Next, we analyze the fixed point of (3.23). To do the fixed point analysis, take Pi = Pi+1 = P∞

and write (3.23) as

0 = P∞A+ ATP∞ − P∞BBTP∞

+ {−P∞BBTP∞ − P∞AK∗ − ATK∗P∞}

0 = −P∞BBTP∞ − P∞BBTP∞

+ P∞BB
TP∗ + P∗BBTP∞

0 = {P∗ − P∞}BBTP∞ + P∞BB
T{P∗ − P∞}

(3.24)

Then, by inserting

P∞ = P∗ +BT
⊥L (3.25)

into (3.24), we confirm that (3.25) is the fixed point of the algorithm. Moreover, by Theorem 2,

(3.25) belongs to the Expert Subset (3.6).

Next, insert (3.25) into steady state form of equation (3.21) to derive

Q∞(L) = Q∗ − (LTB⊥AK∗ + ATK∗B
T
⊥L) (3.26)

which confirms that Qi in Algorithm 3.1 converges to (3.9), that is the Expert Subset.

23

Finally, since P∞(L) in (3.25) andQ∞(L) in (3.26) are in the Expert Subset, then by Definition

3.5, they reconstruct the Expert Policy. This can also be confirmed by writing K∞ = BTP∞(L) =

BT (P∗ +BT
⊥L) = BTP∗ = K∗

When Algorithm 3.1 converges, then the final value lies in the Expert Subset (Q,P) defined

in Definition 2. Therefore, Algorithm 3.1 solves the model-based Inverse Reinforcement Learning

problem as defined in Definition 3.

3.3.2 Model-Based Inverse Reinforcement Learning - Value Iteration

In this subsection the Algorithm 3.2 is constructed by modifying Algorithm 3.1. The motivation

behind the development of this algorithm is that the Optimal Control step in Algorithm 3.1 requires

solution to the Riccati equation at each iteration. We wish to simplify that step by replacing the

quadratic equation with linear one.

The key idea is to replace second order Riccati equation in (3.22) with linear Lyapunov equa-

tion. First note that Ki+1 = BTPi+1. Let us estimate Ki+1 using previous Pi as follows

Ki+1 = BTPi (3.27)

Next, rewrite the equation (3.22) as

0 = Pi+1(A−BKi+1) + (A−BKi+1)TPi+1

+Qi +KT
i+1Ki+1

(3.28)

Finally, approximate Ki+1 using (3.27) and use AKi
, A−BKi to derive the Lyapunov equation

0 = Pi+1AKi
+ ATKi

Pi+1 +Qi +KT
i Ki (3.29)

The final procedure is given in Algorithm 3.2

24

Algorithm 3.2 Model-Based Inverse Reinforcement Learning - Value Iterations
Input: Symmetric cost matrix Q0

Output: Symmetric matrix Q∞ that belongs to the Expert Subset of the Expert Policy u∗(t) =
−K∗x(t) (see Definition 2).
Initialization: Initialize P0 as the solution to Riccati equation in (3.5) with Q = Q0; i← 0;
Select the convergence tolerance ε ∈ R+

1: while ||Ki −Ki−1|| = ||BTPi −BTPi−1|| > ε do
2: Inverse Optimal Control Step. Estimate Qi by using equation (3.7)

Qi = −(PiAK∗ + ATK∗Pi + PiBB
TPi) (3.30)

3: Optimal Control Step - (Lyapunov equation). Solve (3.5) for Pi+1 given Q = Qi

0 = Pi+1AKi
+ ATKi

Pi+1 +Qi +KT
i Ki (3.31)

Combining two steps of Algorithm 3.2 gives a single-step version of the algorithm

Pi+1AKi
+ ATKi

Pi+1 + {−PiAK∗ − ATK∗Pi} = 0 (3.32)

Lemma 4 (Fixed Point of Algorithm 3.2). The fixed point of the Algorithm 3.2 belongs to the

Expert Subset defined in Definition 2.

Proof. In convergence Pi → P∞. Then (3.32) becomes

0 =P∞A∞ + AT∞P∞ + {−P∞AK∗ − ATK∗P∞}

0 =P∞(A∞ − AK∗) + (A∞ − AK∗)TP∞

0 =P∞(A−BK∞ − (A−BK∗))

+ (A−BK∞ − (A−BK∗))TP∞

0 =P∞(−BK∞ +BK∗) + (−BK∞ +BK∗)TP∞

(3.33)

Express the Expert gain as K∗ = BTP∗ where P∗ is one solution from the set of solutions to (3.7)

25

and insert it in (3.33) to get

0 =P∞BB
T (P∗ − P∞) + (P∗ − P∞)TBBTP∞ (3.34)

Comparing (3.34) with (3.24) shows that the Algorithm 3.2 has the same fixed point as Algorithm

3.1. Therefore, the statement in Theorem 3 about the fixed-point of Algorithm 3.1 applies to

Algorithm 3.2 as well. This proves the statement in Lemma 4.

In Theorem 4 of this section, we will prove that Algorithm 3.2 converges. But first, we need to

introduce few lemmas and definitions that are used in Theorem 4. Next definition introduces the

Kronecker algebra notation which is heavily used in the remainder of the chapter.

Definition 6 (Kronecker Algebra Notation).

i) Let S ∈ RN×M be a general matrix of arbitrary size. Then, vertical stacking of columns of

matrix S gives a vector
−→
S ∈ RNM×1 where symbol→ is used to denote the operation of vertical

stacking and is referred to as "vectorization".

ii) Let S ⊗ Z denote the standard Kronecker Product between matrices S and Z.

iii) Let S ⊕Z = S ⊗ I + I ⊗Z denote the standard Kronecker Sum between matrices S and Z.

In order to argue about convergence of Algorithm 3.2 we introduce the error matrix in Defini-

tion 7.

Definition 7. Let us define the error matrix Ei ∈ Rn×n as

Ei , Pi − P∗ ,
−→
E i ,

−→
P i −

−→
P ∗ (3.35)

Moreover, let us introduce normalized error ξi ∈ Rn×n as

ξi =
1

||Ei||
Ei ,

−→
ξ i =

1

||Ei||
−→
E i (3.36)

The matrix iteration given in (3.32) can now be expressed using the error matrix by inserting

26

Pi = P∗ + Ei

0 =(Ei+1 + P∗)AKi
+ ATKi

(Ei+1 + P∗)−

(Ei + P∗)AK∗ − ATK∗(Ei + P∗)

=Ei+1AKi
+ ATKi

Ei+1 − EiAK∗ − ATK∗Ei

−P∗BBTEi − EiBBTP∗

(3.37)

Which results in

Ei+1AKi
+ ATKi

Ei+1 = EiA+ ATEi (3.38)

It can also be written in vectorized form

(
ATKi
⊕ ATKi

)−→
E i+1 =

(
AT ⊕ AT

)−→
E i (3.39)

Multiplying by
(
ATKi
⊕ ATKi

)−1 on the left yields
−→
E i+1 as an explicit function of

−→
E i. This is

formalized in Definition 8.

Definition 8. Let the operator Ψ(·) : Rn2×1 → Rn2×1 be defined as

Ψ(Ei) ,
(
ATKi
⊕ ATKi

)−1
(AT ⊕ AT

)
(3.40)

Then, the error matrix iteration in (3.38) can be succinctly expressed as

−→
E i+1 = Ψ(

−→
E i)
−→
E i (3.41)

Note that Ψ(Ei) in (3.40) depends implicitly onEi sinceAKi
= A−BBTPi = A−BBT (P∗+

Ei). We will continue to use the notation in (3.40) in favor of readability. The convergence

properties of Algorithm 3.2 can now be studied by analyzing the operator Ψ(
−→
E i). Before that, we

need Lemma 5 which is used in that analysis.

27

Lemma 5. Consider ξ ∈ Rn2×1. Then, following inequalities hold

∣∣ξT (I ⊗ AK∗)ξ∣∣ > ∣∣ξT (I ⊗ A)ξ∣∣ (3.42)

∣∣ξT (AK∗ ⊗ I)ξ∣∣ > ∣∣ξT (A⊗ I)ξ∣∣ (3.43)

Proof. Proof in the Section 3.7

The convergence of Algorithm 3.2 is related to certain properties of operator Ψ(·). Next lemma

is used to introduce those properties.

Lemma 6 (Properties of Operator Ψ).

The following statements hold for operator Ψ(·) defined in (3.40)

A) Ψ(0) = (AK∗ ⊕ AK∗)−T (A⊕ A
)T (3.44)

B) Ψ(
−→
E i) =

(
I −

(
(BBTEi)⊕ (BBTEi)

)
· (AK∗ ⊕ AK∗)−1

)−T
Ψ(0)

Let ξ ∈ Rn2×1 and µ ∈ R, then following implication holds

C) Ψ(0)ξ = µξ ⇒ |µ| < 1 (3.45)

Proof. The proof is in the Section 3.7.

Theorem 4 (Convergence of Algorithm 3.2). The Algorithm 3.2 converges to the Expert Subset

and thereby solves Model Based Reinforcement Learning Problem as defined in Definition 3.

Proof. We need to show that the sequence of error matrices {Ei}∞i=0 produced by iteration (3.41)

converges to 0. This is done by studying Ψ(
−→
E i). Start by considering ω ∈ R and Ei such that

Ψ(
−→
E i)
−→
E i = ω

−→
E i (3.46)

28

Use (3.36) to write

(
I − ||Ei||

(
(BBT ξi)⊕ (BBT ξi)

)
(AK∗ ⊕ AK∗)−1

)−T ·Ψ(0)
−→
E i = ω

−→
E i (3.47)

Multiply by
−→
E T
i

(
I − ||Ei||

(
(BBT ξi)⊕ (BBT ξi)

)
(AK∗ ⊕ AK∗)−1

)
on the left side

−→
E T
i Ψ(0)

−→
E i = ω

−→
E T
i

(
I − ||Ei||

(
(BBT ξi)⊕ (BBT ξi)

)
· (AK∗ ⊕ AK∗)−1

)−→
E i (3.48)

Then we can express |ω|

|ω| = |
−→
E T

i Ψ(0)
−→
E i|∣∣−→E T

i

(
I−||Ei||

(
(BBT ξi)⊕(BBT ξi)

)
(AK∗⊕AK∗)−1

)−→
E i

∣∣ (3.49)

Use (3.36) and cancel ||Ei||2 that will appear in the numerator and the denominator to write

|ω| = |
−→
ξ T

i Ψ(0)
−→
ξ i|∣∣−→ξ T

i

(
I−||Ei||((BBT ξi)⊕(BBT ξi))(AK∗⊕AK∗)−1

)−→
ξ i

∣∣
=

|
−→
ξ T

i Ψ(0)
−→
ξ i|∣∣1−−→ξ T

i

(
||Ei||((BBT ξi)⊕(BBT ξi))(AK∗⊕AK∗)−1

)−→
ξ i

∣∣ (3.50)

If ||Ei|| → 0 we see that |ω| → |
−→
ξ T
i Ψ(0)

−→
ξ i|. Since ||ξi|| = 1 and using (3.45) we conclude that

|ω| < 1 holds locally.

Moreover, since |
−→
ξ T
i Ψ(0)

−→
ξ i| < 1, then there is a margin α ∈ (0, 1) such that

|
−→
ξ T
i Ψ(0)

−→
ξ i|+ α = 1 (3.51)

Using this margin and using the continuity of operator Ψ(·) we can extend the local result by

determining the non-local region of convergence. To do so, we require |ω| < 1 and seek a sufficient

condition for this to hold in some non-local region around Ei = 0. Insert (3.51) into (3.50) to write

29

the requirement |ω| < 1 as

|ω| = 1−α∣∣1−−→ξ T
i

(
||Ei||((BBT ξi)⊕(BBT ξi))(AK∗⊕AK∗)−1

)−→
ξ i

∣∣ < 1 (3.52)

When
−→
ξ T
i

(
||Ei||((BBT ξi)⊕ (BBT ξi))(AK∗ ⊕AK∗)−1

)−→
ξ i is negative, (3.52) directly holds since

1− α < 1. On the other hand, if
−→
ξ T
i

(
||Ei||((BBT ξi)⊕ (BBT ξi))(AK∗ ⊕AK∗)−1

)−→
ξ i is positive,

then |ω| < 1 holds true for ||Ei|| that satisfies

−→
ξ T
i

(
||Ei||((BBT ξi)⊕ (BBT ξi)) · (AK∗ ⊕ AK∗)−1

)−→
ξ i < α (3.53)

Therefore, a sufficient condition that ensures |ω| < 1 for the case of positive
−→
ξ T
i

(
||Ei||((BBT ξi)⊕ (BBT ξi))(AK∗ ⊕ AK∗)−1

)−→
ξ i is given by

||Ei|| < α
−→
ξ T

i ((BBT ξi)⊕(BBT ξi))(AK∗⊕AK∗)−1
−→
ξ i

(3.54)

In conclusion, there is a non-local region around Ei = 0 where the operator Ψ(
−→
E i) is contractive

in the following sense, |ω| < 1, and ω is from (3.46).

To complete the proof, we will show that {Ei}∞i=0 < ∞. In order to do that, we show that

Ψ(
−→
E i) is a contraction for large enough, but necessarily finite Ei. Specifically, we need to show

that

∃M , M < ||Ei|| <∞ ⇒ |ω| < 1 (3.55)

where ω is from (3.46). Consider (3.52) and note that for large ||Ei|| the denominator is dominated

by the term
−→
ξ T
i

(
||Ei||((BBT ξi)⊕ (BBT ξi))(AK∗ ⊕ AK∗)−1

)−→
ξ i.

Formally, if

||Ei|| · |
−→
ξ T
i ((BBT ξi) ⊕ (BBT ξi)) · (AK∗ ⊕ AK∗)

−1−→ξ i| >> 1 (3.56)

30

then the requirement |ω| < 1 in (3.52) is met. Therefore,

|
−→
ξ T
i ((BBT ξi) ⊕ (BBT ξi))(AK∗ ⊕ AK∗)

−1−→ξ i| << ||Ei|| < ∞ ⇒ |ω| < 1 (3.57)

We conclude that {||Ei||}∞i=0 <∞.

In conclusion, considering the contractive properties of the Algorithm 3.2 as well as the fact

that it is globally bounded, it follows that Algorithm 3.2 converges to its fixed point. Moreover,

since the fixed point of Algorithm 3.2 is shown to be the element of the Expert Subset by Lemma

4, then Algorithm 3.2 solves the Model Based Inverse Reinforcement Learning Problem as defined

in Definition 3.

In Section 3.5, we show by simulation that Algorithm 3.2 converges.

Model-based Algorithms 3.1 and 3.2 provide a mathematical formalism for learning cost func-

tion in continuous time. However, these algorithms can also be understood intuitively as the

Expert-Learner interaction. Concretely, in the Inverse Optimal Control steps (3.21) and (3.30),

the Learner estimates the cost function by observing the Expert AK∗ . After the cost function is

estimated, Learner develops a policy which optimizes newly estimated cost function (steps (3.22)

and (3.31)). This cycle repeats until Learner develops the Expert Policy by means of optimizing

current iterate of cost function.

Often times, the information about the Expert is available in the form of state trajectories

xK∗(t) , {x(t) | ẋ(t) = AK∗x(t), t ∈ (0,∞)} instead of closed loop dynamics AK∗ . In next

section, we show how the problem can be solved given the Expert Trajectories.

3.4 Data-Driven algorithm

In this section we introduce data-driven equivalent of model-based Algorithm 3.2. The data-driven

Inverse Reinforcement Learning problem is defined in Definition 4.

The technique we use to derive the data-driven algorithm is known as Integral Reinforcement

Learning [112]. This technique is used in Reinforcement Learning literature to solve Riccati equa-

31

tion using Expert trajectories. We employ a similar technique to derive data-driven equivalent

of model-based Algorithm 3.2 and we call it Integral Inverse Reinforcement Learning (Integral

Inverse RL).

3.4.1 Integral Inverse Reinforcement Learning

Model-based Algorithm 3.2 has 2 steps in each iteration. In this subsection, we will convert both

steps into a data-driven form using Integral Reinforcement Learning technique [112].

We will start with Inverse Optimal Control step (3.30).

Theorem 5 (Data-Driven Inverse Optimal Control Step). Assume that Pi,Ki and Expert trajectory

xK∗(t) are given. Then the solution Qi to equation (3.30) is equivalent to the solution Qi of the

equation

xTK∗(t+ T)PixK∗(t+ T)− xTK∗(t)PixK∗(t)

= −
∫ t+T

t

xTK∗(τ)
(
Qi +KT

i Ki

)
xK∗(τ)dτ

(3.58)

Proof. Multiply equation (3.30) by xK∗(τ) from both sides

0 = xTK∗(τ)PiAK∗xK∗(τ) + xTK∗(τ)ATK∗PixK∗(τ)

+ xTK∗(τ)QixK∗(τ) + xTK∗(τ)KT
i KixK∗(τ)

(3.59)

Note that AK∗xK∗(τ) = ẋK∗(τ). Use this expression to write (3.59) as

0 = xTK∗(τ)PiẋK∗(τ) + ẋTK∗(τ)PixK∗(τ) + xTK∗(τ)QixK∗(τ)

+ xTK∗(τ)KT
i KixK∗(τ)

(3.60)

Next, note that first two terms in (3.60) can be expressed as d
dτ

(
xTK∗(τ)PixK∗(τ)

)
= xTK∗(τ)PiẋK∗(τ)+

ẋTK∗(τ)PixK∗(τ). Then (3.60) becomes

0 =
d

dτ

(
xTK∗(τ)PixK∗(τ)

)
+ xTK∗(τ)QixK∗(τ) + xTK∗(τ)KT

i KixK∗(τ)

(3.61)

32

Integrate over the interval [t, t+ T] to recover (3.58)

The importance of this result is that the data-driven Inverse Optimal Control step in (3.58) uses

the Expert trajectory xK∗(t) when it updates Qi in (3.58). This allows us to replace the model of

Expert AK∗ in the Inverse Optimal Control Step in (3.30), by its trajectories xK∗(τ) as shown in

data-driven Inverse Optimal Control Step (3.58).

Next, we need to derive the data-driven Optimal Control step. We show that the data-driven

Optimal Control is equivalent to the standard Value Iteration step in the Reinforcement Learning

literature. Specifically, we develop off-policy algorithm, where the trajectory used for learning

does not necessarily have to be generated by Learner’s policy. Instead, any stabilizing policy can

be used to collect the data trajectories. The policy selected for data collection will be referred to as

the Behavior Policy. We first introduce the corresponding notation in next definition.

Definition 9 (Behavior Policy and Trajectory). Let the Behavior Dynamics be given as

ẋ = Ax(t) +Bub(t) (3.62)

where ub(t) is the Behavior Policy. Then, the Behavior Trajectory is given as xb(t) , {x(t) | ẋ(t) =

Ax(t) +Bub(t), t ∈ (0,∞)}.

The Behavior Policy is the policy that is applied to the system during Optimal Control step.

As such, it generates Behavior Trajectory which is used in data-driven Optimal Control step of our

algorithm. The Learner’s Policy ui = Kix(t) can be selected as Behavior Policy, but it need not

be. In other words, the choice of Behavior Policy is arbitrary as long as it is stabilizing. In the

next theorem we derive data-driven version of the Optimal Control Step in (3.31), where data from

the Behaviour Trajectory is used to obtain the solution.

Theorem 6 (Data-Driven Optimal Control Step). Assume that Qi and Ki are given. Then, the so-

33

lutions Pi+1 and Ki+1 to the equation (3.31) are equivalent to the solution of data-driven equation

xTb (t+ T)Pi+1xb(t+ T)− xTb (t)Pi+1xb(t)

= −
∫ t+T

t

xTb (τ)
(
Qi +KT

i Ki

)
xb(τ)dτ

+ 2

∫ t+T

t

xTb (τ)
(
KT
i+1(ub(t) +Kixb(τ))

)
dτ (3.63)

evaluated along the Behavior Trajectory xb(t).

Proof. Consider the Behavior Dynamics in (3.62) and write the alternative expression as

ẋ(t) = Ax(t) + Bub(t) ± BKix(t) = (A − BKi)x(t) + B(ub(t) + Kix(t)) (3.64)

Consider the value function xT (t)Pi+1x(t) and differentiate it along the trajectories generated by

Behavior Policy defined in Definition 9.

d

dt
xT (t)Pi+1x(t) = xT (t)Pi+1ẋ(t) + ẋT (t)Pi+1x(t) = 2xT (t)Pi+1ẋ(t) (3.65)

Inserting (3.64) into (3.65) gives

d

dt
xT (t)Pi+1x(t) = 2xT (t)Pi+1

(
AKi

x(t) + B(ub(t) + Kix(t))
)

(3.66)

Next, we use the model-based Optimal Control step in (3.31) to estimate x(t)TPi+1AKi
x(t) as

x(t)TPi+1AKi
x(t) + x(t)TATKi

Pi+1x(t)

= −x(t)TQix(t)− x(t)TKT
i Kix(t)

⇒ 2x(t)TPi+1AKi
x(t) = −x(t)TQix(t)− x(t)TKT

i Kix(t) (3.67)

34

Insert (3.67) into equation (3.66) to write

d

dt
xT (t)Pi+1x(t) = −x(t)TQix(t) − x(t)TKT

i Kix(t) + 2xT (t)PiB
(
ub(t) + Kix(t)

)
(3.68)

Use approximation in (3.27) to write equation (3.68) as

d

dt
xT (t)Pi+1x(t) = −x(t)TQix(t) − x(t)TKT

i Kix(t) + 2xT (t)Ki+1

(
ub(t) + Kix(t)

)
(3.69)

Integrate (3.69) along the Behavior trajectory xb(t), defined in Definition 9, over time horizon of

length T to write the result in (3.63). This completes the proof.

Theorem 6 completes the conversion of model-based Algorithm 3.2 into a data-driven Algo-

rithm 3.3. Now, we introduce this algorithm.

35

Algorithm 3.3 Data-Driven Inverse Reinforcement Learning - Value Iterations
Input: Symmetric cost matrix Q0

Output: Symmetric matrix Q∞ that belongs to the Expert Subset of the Expert Policy u∗(t) =
−K∗x(t) (see Definition 2).
Initialization: Initialize any stabilizing K0 and Q0 = QT

0 ; i ← 0; Select the convergence
tolerance ε ∈ R+

1: while ||Ki −Ki−1|| > ε do
2: Data-Driven Optimal Control Step. Split the Behavior Trajectory xb(t) and control input

ub(t) into N sequential trajectories that fall into intervals [0, T], [T, 2T], ...[(N − 1)T,NT].
For each interval, form the scalar equation based on (3.63)

xTb (t+ T)Pi+1xb(t+ T)− xTb (t)Pi+1xb(t)

= −
∫ t+T

t

xTb (τ)
(
Qi +KT

i Ki

)
xb(τ)dτ

+ 2

∫ t+T

t

xTb (τ)
(
KT
i+1(ub(t) +Kixb(τ))

)
dτ (3.70)

Given Qi and Ki, solve the system of N equations for Pi+1 and Ki+1.
3: Data-Driven Inverse Optimal Control. Split the Expert’s Trajectory xK∗(t) into N se-

quential trajectories in intervals [0, T], [T, 2T], ...[(N − 1)T,NT]. For each interval, form
the scalar equation based on (3.58)

xTK∗(t+ T)PixK∗(t+ T)− xTK∗(t)PixK∗(t)

= −
∫ t+T

t

xTK∗(τ)
(
Qi +KT

i Ki

)
xK∗(τ)dτ

(3.71)

Given Pi and Ki, solve the system of N equations for Qi.

Note that the Algorithm 3.3 does not impose any rules on the choice of ub(t). The true power of

this design lies in the fact that the Learner’s Value function and Policy can be updated based on the

trajectory collected by arbitrary Behavior Policy ub(t). In the Reinforcement Learning literature

this is known as the off-policy method.

3.4.2 Data-Driven Algorithm Implementation

In this subsection we show how to implement steps (3.70) and (3.71). We propose the actor-critic

structure, whereby the actor is given as Learner’s Policy ui(t) = Kix(t) and and the critic is given

as the Learner’s Value function Vi(x) , xTPix.

36

Start by rewriting (3.71) using Kronecker product

−→
Pi

T
(
xK∗(t+ T)⊗ xK∗(t+ T)− xK∗(t)⊗ xK∗(t)

)
+ (
−→
Qi +

−−−→
KT
i Ki)

T

∫ t+T

t

xK∗(τ)⊗ xK∗(τ)dτ = 0
(3.72)

Note that (3.72) is linear in Qi and can be expressed as

−→
Qi

Tht+Tt = yt+Tt (3.73)

where ht+Tt and yt+Tt are constants that can be evaluated for a given Pi, Ki along the Expert

Trajectory xK∗(t) in time interval [t, t + T]. This equation is imposed on every interval from the

sequence of N intervals defined in Algorithm 3.3 as follows

−→
Qi

ThT0 = yT0

−→
Qi

Th2T
T = y2T

T

...

−→
Qi

ThNTNT−T = yNTNT−T

(3.74)

The system of N scalar equations can be transformed into a vector equation

−→
Qi

T

hT0

h2T
T

...

hNTNT−T

T

=

yT0

y2T
T

...

yNTNT−T

T

(3.75)

Which can be directly solved by gradient descent or, if the size of the matrix permits, by pseudo-

inverse. This concludes the implementation of (3.71).

Next, we describe the implementation of (3.70) which is similar to that of (3.71). Concretely,

37

we express (3.70) as

−−→
Pi+1

(
xb(t+ T)⊗ xb(t+ T)− xb(t)⊗ xb(t)

)
+ 2
−−→
Ki+1

∫ t+T

t

(ub(t) +Kixb(τ))⊗ xb(τ)dτ

+ (
−→
Qi +

−−−→
KT
i Ki)

∫ t+T

t

xb(τ)⊗ xb(τ)dτ = 0 (3.76)

and note that the resulting scalar equation is linear in
−−→
Pi+1 and

−−→
Ki+1. Then

[
−−→
Pi+1

−−→
Ki+1

]
gt+Tt = zt+Tt (3.77)

where gt+Tt and zt+Tt are constants that can be evaluated for given Qi and Ki along the Behavior

Trajectory xb(t) in time interval [t, t + T]. The system of N scalar equations in this form is given

as

[
−−→
Pi+1

−−→
Ki+1

]T

gT0

g2T
T

...

gNTNT−T

T

=

zT0

z2T
T

...

zNTNT−T

T

(3.78)

Actor and critic are directly updated by the solution to this linear equation.

3.5 Simulation Results

In this section, we simulate Algorithm 2 and Algorithm 3 on a randomly generated system dynam-

ics and expert dynamics matrices.

First, we show simulation results for Algorithm 2. Matrices A ∈ R10×10 in (3.102) and B =

R10×3 in (3.103) from the Section 3.7 are randomly selected matrices and the cost matrix Q =

R10×10, used to construct the Expert Policy (introduced in Assumption 1 and Definition 2), is

randomly selected positive definite matrix shown in (3.100). Then, the Expert Policy is given as

K∗ = BTP where P solves (3.7). The initial Learner Cost Q0 is selected as identity matrix and

38

Learner Value P0 is calculated using Algebraic Riccati equation. We proceed by iterating over

steps of Algorithm 2, until convergence.

The Learner’s policy Ki, obtained as the optimal policy with respect to cost Qi, is shown

in Figure 3.1. Since the Learner’s policy converges to the Expert’s policy, then Q∞ is in the

Expert subset and solves model-based Inverse Reinforcement Learning. The convergence of Qi is

displayed in Figure 3.2.

Figure 3.1: Algorithm 2; Normed distance between matrices Ki and K∗; ||Ki −K∗||

39

Figure 3.2: Algorithm 2; Normed distance between matrices Qi+1 and Qi; ||Qi+1 −Qi||

Next, we simulate Algorithm 3.3. We use the same matrices as in model-based simulation.

Before running the algorithm, we collect 10 Expert Trajectories starting from randomly selected

initial conditions, each 5s in length. The trajectories are split into intervals of length T = 0.05

which makesN = 1000 samples. These trajectories are reused every time in (3.71). The Behaviour

Policy is selected as ub(t) = Kix(t) + e(t) where e(t) is chirp signal with frequencies between

0.1Hz and 500Hz. The choice of e(t) is important as it excites the system and allows proper

exploration of the state space, which is formally known as the persistence of excitation condition.

Another option is white noise, but we have found that chirp consistently gives better results. The

length of the Reinforcement Learning episode T is 0.05s, and each step operates on 10 Behaviour

Trajectories 5s in length. Each trajectory is initialized with randomly selected initial condition.

Therefore, in each step, we collectN = 1000 samples from xb(t) and execute (3.70). Convergence

tolerance is ε = 0.01.

The results from data-driven simulation are shown in Figures 3.3 and 3.4 and they show that

the Algorithm 3.3 converges to the Expert Subset and thereby solves data-driven Inverse Rein-

forcement Learning problem as defined in Definition 4. The Learner’s Cost function converges to

(3.101) in the Section 3.7. Solving Riccati equation with that cost yields the Expert Policy, which

40

numerically confirms that Q∞ is in the Expert Subset.

Figure 3.3: Algorithm 3; Normed distance between matrices Ki and K∗; ||Ki −K∗||

Figure 3.4: Algorithm 3; Normed distance between matrices Qi+1 and Qi; ||Qi+1 −Qi||

3.6 Conclusion

In this chapter we have developed mathematical framework for solving Inverse Reinforcement

Learning problem in continuous time. We analyzed the space of all possible solutions to this prob-

41

lem, and characterized them analytically. Then, we provided model-based procedure for solving

Inverse Reinforcement Learning problem based on matrix iterations. Finally, the iterative model-

based procedure is used as the backbone to develop data-driven procedure. Algorithms were tested

on higher dimensional random matrices to confirm the correctness of our algorithm as well as

robustness to numerical issues.

3.7 Proofs

3.7.1 Proof of Lemma 5

Proof. Let us introduce λ ∈ R that satisfies (I ⊗ AK∗
)−1

(I ⊗ A
)
ξ = λξ. Then, we can write

(I ⊗ AK∗
)−1

(I ⊗ A
)
ξ = λξ

(I ⊗ A
)
ξ = λ(I ⊗ AK∗

)
ξ

(3.79)

Take the left multiplication of (3.79) by ξT , and express |λ|

ξT (I ⊗ A
)
ξ = λξT (I ⊗ AK∗

)
ξ

⇒ |λ| =
|ξT (I ⊗ A

)
ξ|

|ξT (I ⊗ AK∗
)
ξ|

(3.80)

However, an alternative expression for |λ| can be derived by multiplying (3.79) by ξT (I ⊗ P∗)

from left
ξT (I ⊗ P∗

)
(I ⊗ A

)
ξ = λ ξT (I ⊗ P∗

)(
I ⊗ AK∗

)
ξ

ξT (I ⊗ P∗A
)
ξ = λ ξT

(
I ⊗ (P∗AK∗)

)
ξ

(3.81)

Therefore, we can determine |λ| as the ratio

∣∣λ∣∣ =

∣∣ξT (I ⊗ (P∗A)
)
ξ
∣∣∣∣ξT (I ⊗ (P∗AK∗)
)
ξ
∣∣ (3.82)

In order to determine the ratio in (3.82), we first consider Riccati Equation (3.5) and apply

42

Kronecker multiplication

I ⊗ (P∗A+ ATP∗ − P∗BBTP∗) = −I ⊗Q∗

I ⊗ (P∗A+ ATP∗)− I ⊗ P∗BBTP∗ = −I ⊗Q∗
(3.83)

Multiply by ξ on both sides to write

ξT (I ⊗ (P∗A+ ATP∗ − P∗BBTP∗))ξ = −ξT (I ⊗Q∗)ξ

ξT (I ⊗ (P∗A+ ATP∗))ξ − ξT (I ⊗ P∗BBTP∗)ξ = −ξT (I ⊗Q∗)ξ (3.84)

Note that ξT (I ⊗ (P∗A))ξ = ξT (I ⊗ (ATP∗))ξ. Then, we can simplify (3.84)

2ξT (I ⊗ (P∗A))ξ = −ξT (I ⊗Q∗)ξ + ξT (I ⊗ P∗BBTP∗)ξ (3.85)

Next, we can express
∣∣ξT (I ⊗ (P∗A))ξ| as

∣∣ξT (I ⊗ (P∗A))ξ| = 1

2

∣∣− ξT (I ⊗Q∗)ξ + ξT (I ⊗ P∗BBTP∗)ξ
∣∣ (3.86)

Similar procedure can be followed to express∣∣ξT (I ⊗ (P∗AK∗))ξ| as

∣∣ξT (I ⊗ (P∗AK∗))ξ| =
1

2

∣∣− ξT (Q∗ ⊗ I)ξ − ξT (P∗BBTP∗ ⊗ I)ξ
∣∣ (3.87)

Use Q∗ > 0, P∗BBTP∗ ≥ 0 and properties of eigenvalues of Kronecker Product to conclude that

(I ⊗Q∗) > 0 and (I ⊗ P∗BBTP∗) ≥ 0. Therefore,

∣∣− ξT (I ⊗Q∗)ξ − ξT (I ⊗ P∗BBTP∗)ξ
∣∣ >

| − ξT (I ⊗Q∗)ξ + ξT (I ⊗ P∗BBTP∗)ξ
∣∣ (3.88)

43

We can now use (3.88) to compare
∣∣ξT (I ⊗ (P∗AK∗))ξ| in (3.87) with

∣∣ξT (I ⊗ (P∗A))ξ| in (3.86)

∣∣ξT (I ⊗ (P∗AK∗))ξ| >
∣∣ξT (I ⊗ (P∗A))ξ| (3.89)

The inequality in (3.89) allows us to bound the ratio in (3.82). Concretely,

∣∣λ∣∣ =

∣∣ξT (I ⊗ (P ∗A)
)
ξ
∣∣∣∣ξT (I ⊗ (P ∗AK∗)
)
ξ
∣∣ < 1 (3.90)

Finally, since |λ| < 1, we can use (3.80) to write the inequality

|ξT (I ⊗ A
)
ξ|

|ξT (I ⊗ AK∗
)
ξ|
< 1 (3.91)

and from this inequality the result in (3.42) directly follows. The inequality (3.43) can be derived

in a similar fashion.

3.7.2 Proof of Lemma 6

Proof. First, note that

AKi
= A−BBTPi = A−BBT (P∗ + Ei) (3.92)

Then, Statement A) can be proved by noticing that for Ei = 0, we have AKi
= AK∗ . Therefore,

the operator (3.40) for Ei = 0 is given by (3.44). This proves Statement A).

44

Next, we prove Statement B). Expand Ψ(
−→
E i) and use (3.92) and (3.36) to write

Ψ(
−→
E i) =

(
AKi
⊕ AKi

)−T
(A⊕ A

)T
=
(
AK∗ ⊕ AK∗ − ((BBTEi)⊕ (BBTEi))

)−T ·
· (A⊕ A

)T
=
(
I −

(
(BBTEi)⊕ (BBTEi)

)
(AK∗ ⊕ AK∗)−1

)−T
·

· (AK∗ ⊕ AK∗)−T (A⊕ A
)T (3.93)

Note that the last factor in (3.93) is exactly the operator Ψ(0) evaluated at the solution
−→
E i = 0 as

given by (3.44). Inserting Ψ(0), directly proves Statement B).

Next, we prove Statement C). Use (3.44) to write

Ψ(0)ξ = µξ

(AK∗ ⊕ AK∗)−T (A⊕ A
)T
ξ = µξ

(3.94)

Left multiply (3.94) by ξT (AK∗ ⊕ AK∗)T

ξT (A⊕ A
)T
ξ = µξT (AK∗ ⊕ AK∗)T ξ

ξT (A⊕ A
)
ξ = µξT (AK∗ ⊕ AK∗)ξ

(3.95)

Finally express
∣∣µ∣∣ as ∣∣µ∣∣ =

∣∣ξT (A⊕ A
)
ξ
∣∣∣∣ξT (AK∗ ⊕ AK∗)ξ∣∣ (3.96)

In order to determine the bound on (3.96), we expand the numerator and denominator using the

definition of the Kronecker Sum

∣∣µ∣∣ =

∣∣ξT (I ⊗ A
)
ξ + ξT (A⊗ I

)
ξ
∣∣∣∣ξT (I ⊗ AK∗

)
ξ + ξT (AK∗ ⊗ I

)
ξ
∣∣

=

∣∣ξT (I ⊗ A
)
ξ + ξT (A⊗ I

)
ξ
∣∣∣∣ξT (I ⊗ AK∗

)
ξ + ξT (AK∗ ⊗ I

)
ξ
∣∣

(3.97)

45

and study the terms in denominator and numerator. First, note that I ⊗ AK∗ and AK∗ ⊗ I are

negative definite. This allows us to write the equality
∣∣ξT (I ⊗AK∗

)
ξ + ξT (AK∗ ⊗ I

)
ξ
∣∣ =

∣∣ξT (I ⊗

AK∗
)
ξ
∣∣+
∣∣ξT (AK∗ ⊗ I

)
ξ
∣∣ and further develop the expression (3.97) as follows

∣∣µ∣∣ =

∣∣ξT (I ⊗ A
)
ξ + ξT (A⊗ I

)
ξ
∣∣∣∣ξT (I ⊗ AK∗

)
ξ
∣∣+
∣∣ξT (AK∗ ⊗ I

)
ξ
∣∣ (3.98)

Use the triangle inequality to find the upper bound on |µ|

∣∣µ∣∣ =

∣∣ξT (I ⊗ A
)
ξ + ξT (A⊗ I

)
ξ
∣∣∣∣ξT (I ⊗ AK∗

)
ξ
∣∣+
∣∣ξT (AK∗ ⊗ I

)
ξ
∣∣

≤
∣∣ξT (I ⊗ A

)
ξ
∣∣+
∣∣ξT (A⊗ I

)
ξ
∣∣∣∣ξT (I ⊗ AK∗

)
ξ
∣∣+
∣∣ξT (AK∗ ⊗ I

)
ξ
∣∣

(3.99)

From (3.43) and (3.42) in Lemma 5 we see that |µ| < 1. This proves Statement C).

Q =

1.088 0.827 0.996 0.449 1.222 0.848 0.693 0.863 0.805 0.539
0.827 1.029 0.901 0.569 1.105 0.792 0.555 0.945 0.849 0.674
0.996 0.901 1.015 0.468 1.206 0.818 0.654 1.001 0.808 0.666
0.449 0.569 0.468 0.656 0.594 0.575 0.413 0.633 0.598 0.42
1.222 1.105 1.206 0.594 1.546 0.905 0.76 1.147 0.949 0.709
0.848 0.792 0.818 0.575 0.905 1.147 0.793 0.853 0.964 0.715
0.693 0.555 0.654 0.413 0.76 0.793 0.983 0.984 0.9 0.706
0.863 0.945 1.001 0.633 1.147 0.853 0.984 1.609 1.154 1.011
0.805 0.849 0.808 0.598 0.949 0.964 0.9 1.154 1.117 0.785
0.539 0.674 0.666 0.42 0.709 0.715 0.706 1.011 0.785 0.789

 (3.100)

Q∞ =

1.4 0.86 1.42 1.01 −0.44 −0.36 −0.080.97 0.83 −0.27
0.86 −1.77 −1.01 −2.09 4. −0.18 1.871.26 1.91 1.67
1.42 −1.01 2.25 −0.58 3.23 −1.18 1.423.11 3.25 2.2
1.01 −2.09 −0.58 −1.04 4.71 −2.11 2.22.39 3.9 2.03
−0.44 4. 3.23 4.71 −6.29 4.95 −3.02−1.69 −5.3 −2.47
−0.36 −0.18 −1.18 −2.11 4.95 2.59 2.171.55 2.44 3.42
−0.08 1.87 1.42 2.2 −3.02 2.17 −0.09−0.61 −2.01 −1.3
0.97 1.26 3.11 2.39 −1.69 1.55 −0.612.38 −0.3 −0.52
0.83 1.91 3.25 3.9 −5.3 2.44 −2.01−0.3 −2.09 −2.47
−0.27 1.67 2.2 2.03 −2.47 3.42 −1.3−0.52 −2.47 0.14

 (3.101)

A =

0.141 −0.495 0.199 0.35 0.444 0.0140.198 0.161 −0.155 −0.122
−0.103 −0.041 0.11 0.285 0.099 −0.424−0.196 0.094 0.357 0.171
−0.248 −0.08 0.156 −0.226 −0.307 −0.364−0.276 0.41 0.165 0.031
−0.281 0.386 0.379 −0.281 −0.473 0.4110.2 0.324 0.167 −0.172
−0.332 0.207 0.472 −0.003 0.229 0.3330.118 0.311 0.478 0.448
0.003 0.206 −0.056 0.19 −0.007 −0.1080.054 −0.361 −0.217 0.02
0.088 −0.073 0.013 −0.478 0.313 0.11−0.112 0.313 0.269 0.076
0.043 −0.136 −0.098 0.487 −0.065 0.458−0.239 −0.313 0.13 0.35
−0.053 −0.353 −0.1 −0.44 0.203 −0.4410.231 0.196 −0.048 0.274
−0.386 0.378 −0.387 −0.291 −0.376 −0.0670.015 0.316 −0.004 −0.248

 (3.102)

B =

0.345 −0.123 0.46
−0.39 0.41 0.259
−0.098 −0.25 −0.28
0.213 −0.27 0.023
−0.043 0.239 −0.263
0.233 −0.078 0.119
0.371 −0.466 0.444
−0.41 −0.37 −0.178
0.101 −0.26 −0.371
−0.417 −0.499 0.192

 (3.103)

46

Chapter 4: MODEL BASED REINFORCMENT LEARNING FOR SAFE

TRAJECTORY OPTIMIZATION

4.1 Motivation for Model based Reinforcement Learning

In this subsection, we motivate a different family of reinforcement learning algorithms known as

model based reinforcement learning. There are 2 main issues in data driven reinforcement learning

algorithms that model based reinforcement learning addresses.

First well known issue is that the convergence of all data driven reinforcement learning al-

gorithms rely on the data contained in the state trajectories. It is hard to guarantee that the data

contained in the state trajectories is sufficient for learning the value function and optimal policy.

This heavy reliance on data is a non-trivial issue that requires the attention of algorithm designer.

Additional efforts are needed to guarantee that the data driven algorithms are supplied with proper

state trajectories.

The adaptive control community is familiar with this problem for some time. It is known

that the convergence of adaptive controllers requires that the data in state trajectories satisfies

certain statistical properties. These requirements are formalized through the concept of Persistence

of Excitation. Specifically, in order for adaptive controller to converge to the desired solution,

the system has to be persistently excited. It is the duty of algorithm designer to ensure that this

condition is met. Again, this is a non-trivial problem.

In reinforcement learning community, this issue is generalized to a problem of exploration,

stating that the data driven algorithms require the state trajectories to visit the entire admissible

part of the state space. The part of state space that has not been explored remains "unexplained by

the data". As a result, one cannot guarantee the global optimality of the resulting value function

and policy.

Clearly, we are in need of a robust approach to learn optimal policies from the data. An idea

that we will study in this chapter is to use models of system dynamics to compactly represent

47

state trajectories. Instead of learning the value function and optimal policy solely from data, one

could learn robust models of system dynamics. This model is then used for learning the value

function and optimal policy. The advantage of this approach is that if the model approximator

function is rich enough, then all data trajectories can be implicitly represented in that model. That

makes the algorithm robust to insufficiently excited state trajectories. In order to make this work,

we need a function approximator that is general enough to represent all collected state trajectories

simultaneously. In other words, if the function approximator is not a general representation of

the data, then the model could be biased towards heavily represented state trajectories, ignoring

important corner cases that are underrepresented in the data.

Second problem with data driven reinforcement learning is that it does not scale efficiently with

the amount of data available for learning. As a consequence, it might be impossible to use all the

data in real time. The experience replay is one solution for this problem. In experience replay, the

algorithm randomly selects a batch of data out of all historic data in each step. In this chapter, we

take a different approach. Again, we recognize the fact that the dynamics model is a compact way

to implicitly store state trajectories.

In conclusion, it seems that the pathologies present in data driven reinforcement learning can

be addressed by introducing appropriate model of the system dynamics. The model we need has to

be a powerful approximator that has the capacity to take in large amounts of data. There are many

different function approximators to choose from, but in this chapter we will focus on Gaussian

Process.

4.2 Introduction

Reinforcement learning (RL) is a learning framework that addresses sequential decision-making

problems, wherein an ‘agent’ or a decision maker learns a policy to optimize a long-term reward

by interacting with the (unknown) environment. At each step, the RL agent obtains evaluative

feedback (called reward or cost) about the performance of its action, allowing it to improve the

performance of subsequent actions [99,113]. Although RL has witnessed huge successes in recent

48

times [93, 94], there are several unsolved challenges, which restrict the use of these algorithms

for industrial systems. In most practical applications, control policies must be designed to satisfy

operational constraints, and a satisfactory policy should be learnt in a data-efficient fashion [109].

Model-based reinforcement learning (MBRL) methods [25] learn a model from exploration

data of the system, and then exploit the model to synthesize a trajectory-centric controller for

the system [57]. These techniques are, in general, harder to train, but could achieve good data

efficiency [56]. Learning reliable models is very challenging for non-linear systems and thus, the

subsequent trajectory optimization could fail when using inaccurate models. However, modern

machine learning methods such as Gaussian processes (GP), stochastic neural networks (SNN),

etc. can generate uncertainty estimates associated with predictions [86, 88]. These uncertainty

estimates could be used to estimate the confidence set of system states at any step along a given

controlled trajectory for the system. The idea presented in this chapter considers the stabilization

of the trajectory using a local feedback policy that acts as an attractor for the system in the known

region of uncertainty along the trajectory [102].

We present a method for simultaneous trajectory optimization and local policy optimization,

where the policy optimization is performed in a neighborhood (local sets) of the system states

along the trajectory. These local sets could be obtained by a stochastic function approximator (e.g.,

GP, SNN, etc.) that used to learn the forward model of the dynamical system. The local policy

is obtained by considering the worst-case deviation of the system from the nominal trajectory

at every step along the trajectory. Performing simultaneous trajectory and policy optimization

could allow us to exploit the modeling uncertainty as it drives the optimization to regions of low

uncertainty, where it might be easier to stabilize the trajectory. This allows us to constrain the

trajectory optimization procedure to generate robust, high-performance controllers. The proposed

method automatically incorporates state and input constraints on the dynamical system.

Contributions. The main contributions of the current chapter are:

1. We present a novel formulation of simultaneous trajectory optimization and time-invariant

local policy synthesis for stabilization.

49

2. We present analysis of the proposed technique that allows us to analytically derive the gra-

dient of the robustness constraint for the optimization problem.

It is noted that this chapter only presents the controller synthesis part for MBRL – a more detailed

analysis of the interplay between model uncertainties and controller synthesis is deferred to another

publication.

4.3 Related Work

MBRL has raised a lot of interest recently in robotics applications, because model learning algo-

rithms are largely task independent and data-efficient [25, 56, 116]. However, MBRL techniques

are generally considered to be hard to train and likely to result in poor performance of the re-

sulting policies/controllers, because the inaccuracies in the learned model could guide the policy

optimization process to low-confidence regions of the state space. For non-linear control, the use

of trajectory optimization techniques such as differential dynamic programming [43] or its first-

order approximation, the iterative Linear Quadratic Regulator (iLQR) [101] is very popular, as it

allows the use of gradient-based optimization, and thus could be used for high-dimensional sys-

tems. As the iLQR algorithm solves the local LQR problem at every point along the trajectory, it

also computes a sequence of feedback gain matrices to use along the trajectory. However, the LQR

problem is not solved for ensuring robustness, and furthermore the controller ends up being time-

varying, which makes its use somewhat inconvenient for robotic systems. Thus, we believe that the

controllers we propose might have better stabilization properties, while also being time-invariant.

Most model-based methods use a function approximator to first learn an approximate model

of the system dynamics, and then use stochastic control techniques to synthesize a policy. Some

of the seminal work in this direction could be found in [25, 56]. The method proposed in [56]

has been shown to be very effective in learning trajectory-based local policies by sampling several

initial conditions (states) and then fitting a neural network which can imitate the trajectories by

supervised learning. This can be done by using ADMM [12] to jointly optimize trajectories and

learn the neural network policies. This approach has achieved impressive performance on several

50

robotic tasks [56]. The method has been shown to scale well for systems with higher dimensions.

Several different variants of the proposed method were introduced later [17, 71, 74]. However, no

theoretical analysis could be provided for the performance of the learned policies.

Another set of seminal work related to the proposed work is on the use of sum-of-square (SOS)

programming methods for generating stabilizing controller for non-linear systems [102]. In these

techniques, a stabilizing controller, expressed as a polynomial function of states, for a non-linear

system is generated along a trajectory by solving an optimization problem to maximize its region

of attraction [67].

Another set of relevant work could be found in [14, 16] where the idea is to allow constraint

satisfaction for the partially-known system by appropriately bounding model errors. Furthermore,

authors in [15] present a way to perform approximate dynamic programming using the ideas of

invariant sets. However, these methods find the global controller for the system which could be

inefficient for high-dimensional systems. lastly, some model-free trajectory-centric approaches

could be found in [103, 117].

4.4 Problem Formulation

In this section, we describe the problem studied in the rest of the chapter. To perform trajectory-

centric control, we propose a novel formulation for simultaneous design of open-loop trajectory

and a time-invariant, locally stabilizing controller that is robust to bounded model uncertainties

and/or system measurement noise. As we will present in this section, the proposed formulation is

different from that considered in the literature in the sense it allows us to exploit sets of possible

deviation of a system to design stabilizing controller.

4.4.1 Trajectory Optimization as Non-linear Program

Consider the discrete-time dynamical system

xk+1 = f(xk, uk) (4.1)

51

where xk ∈ Rnx , uk ∈ Rnu are the differential states and controls, respectively. The function

f : Rnx+nu → Rnx governs the evolution of the differential states. Note that the discrete-time

formulation (4.1) can be obtained from a continuous time system ẋ = f̂(x, u) by using the explicit

Euler integration scheme (xk+1 − xk) = ∆tf̂(xk, uk) where ∆t is the time-step for integration.

For clarity of exposition we have limited our focus to discrete-time dynamical systems of the

form in (4.1) although the techniques we describe can be easily extended to implicit discretization

schemes.

In typical applications the states and controls are restricted to lie in sets := {x ∈ Rnx |x ≤ x ≤

x} ⊆ Rnx and := {u ∈ Rnu |u ≤ u ≤ u} ⊆ Rnu , i.e. xk ∈, uk ∈. We use [K] to denote the index

set {0, 1, . . . , K}. Further, there may exist nonlinear inequality constraints of the form

g(xk) ≥ 0 (4.2)

with g : Rnx → Rm. The inequalities in (4.2) are termed as path constraints. The trajectory

optimization problem is to manipulate the controls uk over a certain number of time steps [T − 1]

so that the resulting trajectory {xk}k∈[T] minimizes a cost function c(xk, uk). Formally, we aim to

solve the trajectory optimization problem

min
xk,uk

∑
k∈[T]

c(xk, uk)

s.t. Eq. (4.1)− (4.2) for k ∈ [T]

x0 = x̃0

xk ∈ for k ∈ [T]

uk ∈ for k ∈ [T − 1]

(TrajOpt)

where x̃0 is the differential state at initial time k = 0. Before introducing the main problem of

interest, we would like to introduce some notations.

In the following text, we use the following shorthand notation, ||v||2M = vTMv. We denote the

52

Figure 4.1: A schematic representation of the robustness constraint introduced in the chapter.
nominal trajectory as X ≡ x0, x1, x2, x3, . . . , xT−1, xT , U ≡ u0, u1, u2, u3, ..., uT−1. The actual

trajectory followed by the system is denoted as X̂ ≡ x̂0, x̂1, x̂2, x̂3, . . . , x̂T−1, x̂T . We denote a local

policy as πW , where π is the policy and W denotes the parameters of the policy. The trajectory

cost is also sometimes denoted as J =
∑
k∈[T]

c(xk, uk).

4.4.2 Trajectory Optimization with Local Stabilization

This subsection introduces the main problem of interest in this chapter. A schematic of the problem

studied in the chapter is also shown in Figure 4.1. In the rest of this section, we will describe how

we can simplify the trajectory optimization and local stabilization problem and turn it into an

optimization problem that can be solved by standard non-linear optimization solvers.

Consider the case where the system dynamics, f is only partially known, and the known com-

ponent of f is used to design the controller. Consider the deviation of the system at any step ’k’

from the state trajectory X and denote it as δxk ≡ xk − x̂k. We introduce a local (time-invariant)

policy πW that regulates the local trajectory deviation δxk and thus, the final controller is denoted

as ûk = uk + πW (δxk). The closed-loop dynamics for the system under this control is then given

53

by the following:

x̂k+1 = f(x̂k, ûk) = f(xk + δxk, uk + πW (δxk)) (4.3)

The main objective of the chapter is to find the time-invariant feedback policy πW that can stabilize

the open-loop trajectoryX locally within Rk ⊂ Rnx where Rk defines the set of uncertainty for the

deviation δxk. The uncertainty region Rk can be approximated by fitting an ellipsoid to the uncer-

tainty estimate using a diagonal positive definite matrix Sk such that Rk = {δxk : δxTk Skδxk ≤ 1}.

The general optimization problem that achieves that is proposed as:

J∗ =min
U,X,W δxk∈Rk

[J(X + δX,U + πW (δxk)]

xk+1 = f̂(xk, uk)

(4.4)

where f̂(·, ·) denotes the known part of the model. Note that in the above equation, we have

introduced additional optimization parameters corresponding to the policy πW when compared to

TrajOpt in the previous section. However, to solve the above, one needs to resort to sampling in

order to estimate the expected cost. Instead we introduce a constraint that solves for the worst-case

cost for the above problem.

Robustness Certificate. The robust trajectory optimization problem is to minimize the trajec-

tory cost while at the same time satisfying a robust constraint at every step along the trajectory.

This is also explained in Figure 4.1, where the purpose of the local stabilizing controller is to push

the max-deviation state at every step along the trajectory to ε-tolerance balls around the trajectory.

54

Mathematically, we express the problem as following:

min
xk,uk,W

∑
k∈[T]

c(xk, uk)

s.t. Eq. (4.1)− (4.2) for k ∈ [T]

x0 = x̃0

xk ∈ for k ∈ [T]

uk ∈ for k ∈ [T − 1]

max
δxk∈Rk

||xk+1 − f(xk + δxk, uk + πW (δxk))||2 ≤ εk

(RobustTrajOpt)

The additional constraint introduced in RobustTrajOpt allows us to ensure stabilization of the

trajectory by estimating parameters of the stabilizing policy πW . It is easy to see that RobustTra-

jOpt solves the worst-case problem for the optimization considered in (4.4). However, RobustTra-

jOpt introduces another hyperparameter to the optimization problem, εk. In the rest of the chapter,

we refer to the following constraint as the robust constraint:

max
δxTk Skδxk≤1

||xk+1 − f(xk + δxk, uk + πW (δxk))||2 ≤ εk (4.5)

Solution of the robust constraint for generic non-linear system is out of scope of this chapter.

Instead, we linearize the trajectory deviation dynamics as shown in the following Lemma.

Lemma 7. The trajectory deviation dynamics δxk+1 = xk+1 − x̂k+1 approximated locally around

the optimal trajectory (X,U) are given by

δxk+1 = A(xk, uk) · δxk +B(xk, uk) · πW (δxk)

A(xk, uk) ≡ ∇xk f̂(xk, uk)

B(xk, uk) ≡ ∇uk f̂(xk, uk)

(4.6)

Proof. Use Taylor’s series expansion to obtain the desired expression.

55

To ensure feasibility of the RobustTrajOpt problem and avoid tuning the hyperparameter εk, we

make another relaxation by removing the robust constraint from the set of constraints and move it

to the objective function. Thus, the simplified robust trajectory optimization problem that we solve

in this chapter can be expressed as following (we skip the state constraints to save space).

min
xk,uk,W

(
∑
k∈[T]

c(xk, uk) + α
∑
k∈[T]

dmax,k)

s.t. Eq. (4.1)− (4.2) for k ∈ [T]

(RelaxedRobustTrajOpt)

where the term dmax,k is defined as following after linearization.

dmax,k ≡

max
δxTk Skδxk≤1

||A(xk, uk) · δxk +B(xk, uk) · πW (δxk)||2P
(4.7)

Note that the matrix P allows to weigh states differently. In the next section, we present the

solution approach to compute the gradient for the RelaxedRobustTrajOpt which is then used to

solve the optimization problem. Note that this results in simultaneous solution to open-loop and

the stabilizing policy πW .

4.5 Solution Approach

This section introduces the main contribution of the chapter, which is a local feedback design

that regulates the deviation of an executed trajectory from the optimal trajectory generated by the

optimization procedure.

To solve the optimization problem presented in the last section, we first need to obtain the gra-

dient information of the robustness heuristic that we introduced. However, calculating the gradient

of the robust constraint is not straightforward, because the max function is non-differentiable. The

gradient of the robustness constraint is computed by the application of Danskins Theorem [9],

which is stated next.

Danskin’s Theorem: Let K ⊆ Rm be a nonempty, closed set and let Ω ⊆ Rn be a nonempty,

56

open set. Assume that the function f : Ω ×K → R is continuous on Ω ×K and that ∇xf(x, y)

exists and is continuous on Ω×K. Define the function g : Ω→ R ∪ {∞} by

g(x) ≡ sup
y∈K

f(x, y), x ∈ Ω

and

M(x) ≡ {y ∈ K | g(x) = f(x, y)}.

Let x ∈ Ω be a given vector. Suppose that a neighborhoodN (x) ⊆ Ω of x exists such thatM(x′) is

nonempty for all x′ ∈ N (x) and the set ∪x′∈N (x)M(x′) is bounded. The following two statements

(a) and (b) are valid.

(a) The function g is directionally differentiable at x and

g′(x; d) = sup
y∈M(x)

∇xf(x, y)Td.

(b) If M(x) reduces to a singleton, say M(x) = {y(x)}, then g is Gâeaux differentiable at x and

∇g(x) = ∇xf(x, y(x)).

Proof See [29], Theorem 10.2.1.

Danskin’s theorem allows us to find the gradient of the robustness constraint by first computing

the argument of the maximum function and then evaluating the gradient of the maximum function

at the point. Thus, in order to find the gradient of the robust constraint (4.5), it is necessary to

interpret it as an optimization problem in δxk, which is presented next. In Section 4.4.2, we pre-

sented a general formulation for the stabilization controller πW , where W are the parameters that

are obtained during optimization. However, solution of the general problem is beyond the scope

of the current chapter. Rest of this section considers a linear πW for analysis.

57

Lemma 8. Assume the linear feedback πW (δxk) = Wδxk. Then, the constraint (4.7) is quadratic

in δxk,

max
δxk
||Mkδxk||2P = max

δxk
δxTkM

T
k · P ·Mkδxk

s.t. δxTk Skδxk ≤ 1

(4.8)

where Mk is shorthand notation for

Mk(xk, uk,W) ≡ A(xk, uk) +B(xk, uk) ·W (4.9)

Proof. Write dmax from (4.7) as the optimization problem

dmax =

max
δxk
||A(xk, uk) · δxk +B(xk, uk) · πW (δxk)||2P

s.t. δxTk Skδxk ≤ 1

(4.10)

Introduce the linear controller and use the shorthand notation for Mk to write (4.8).

The next lemma is one of the main results in the chapter. It connects the robust trajectory

tracking formulation RelaxedRobustTrajOpt with the optimization problem that is well known in

the literature.

Lemma 9. The worst-case measure of deviation dmax is

dmax =

λmax(S
− 1

2
k MT

k · P ·MkS
− 1

2
k) = ||P

1
2MkS

− 1
2

k ||
2
2

where λmax(·) denotes the maximum eigenvalue of a matrix and || · ||2 denotes the spectral norm

of a matrix. Moreover, the worst-case deviation δmax is the corresponding maximum eigenvector

δmax =

{δxk :
[
S
− 1

2
k MT

k · P ·MkS
− 1

2
k

]
· δxk = dmax · δxk}

(4.10)

58

Proof. Apply coordinate transformation δx̃k = Sk
1
2 δxk in (4.8) and write

max
δx̃k

δx̃kS
− 1

2
k MT

k · P ·MkS
− 1

2
k δx̃k

s.t. δx̃kδx̃k ≤ 1

(4.11)

Since S
− 1

2
k MT

k · P ·MkS
− 1

2
k is positive semi-definite, the maximum lies on the boundary of the set

defined by the inequality. Therefore, the problem is equivalent to

max
δx̃k

δx̃kS
− 1

2
k MT

k · P ·MkS
− 1

2
k δx̃k

s.t. δx̃kδx̃k = 1

(4.12)

The formulation (4.12) is a special case with a known analytic solution. Specifically, the maximiz-

ing deviation δmax that solves (4.12) is the maximum eigenvector of S
− 1

2
k MT

k ·P ·MkS
− 1

2
k , and the

value dmax at the optimum is the corresponding eigenvalue.

This provides us with the maximum deviation along the trajectory at any step ’k’, and now we

can use Danskin’s theorem to compute the gradient which is presented next.

Theorem 7. Introduce the following notation,M(z) = S
− 1

2
k MT

k (z) ·P ·Mk(z)S
− 1

2
k . The gradient

of the robust inequality constraint dmax with respect to an arbitrary vector z is

∇zdmax = ∇zδ
T
maxM(z)δmax

Where δmax is maximum trajectory deviation introduced in Lemma 3.

Proof. Start from the definition of gradient of robust constraint

∇zdmax = ∇z max
δx̃k

δx̃kM(z)δx̃k

Use Danskin’s Theorem and the result from Lemma 9 to write the gradient of robust constraint

59

with respect to an arbitrary z,

∇zdmax = ∇zδ
T
maxM(z)δmax

which completes the proof.

The gradient computed from Theorem 7 is used in solution of the RelaxedRobustTrajOpt– how-

ever, this is solved only for a linear controller. The next section shows some results in simulation

and on a real physical system.

4.6 Experimental Results

In this section, we present some results using the proposed algorithm for an under-actuated in-

verted pendulum, as well as on a experimental setup for a ball-and-beam system. We use a Python

wrapper for the standard interior point solver IPOPT to solve the optimization problem discussed

in previous sections. We perform experiments to evaluate the following questions:

1. Can an off-the-shelf optimization solver find feasible solutions to the joint optimization prob-

lem described in the chapter?

2. Can the feedback controller obtained by this optimization stabilize the open-loop trajectory

in the presence of bounded uncertainties?

3. How good is the performance of the controller on a physical system with unknown system

parameters ?

In the following sections, we try to answer these questions using simulations as well as experiments

on real systems.

4.6.1 Simulation Results for Underactuated Pendulum

The objective of this subsection is twofold: first, to provide insight into the solution of the opti-

mization problem; and second, to demonstrate the effectiveness of that solution in the stabilization

60

of the optimal trajectory.

Figure 4.2: State-space representation of the optimal trajectory (green), stable closed-loop system
using the obtained solution (blue), and unstable open-loop trajectory without the local feedback
(red). Note that the feedback is time-invariant.

For clarity of presentation, we use an underactuated pendulum system, where trajectories can

be visualized in state space. The dynamics of the pendulum is modeled as Iθ̈+bθ̇+mgl ·sin(θ) =

u. The continuous-time model is discretized as (θk+1, θ̇k+1) = f((θk, θ̇k), uk). The goal state is

xg = [π, 0], and the initial state is x0 = [0, 0] and the control limit is u ∈ [−1.7, 1.7]. The cost is

quadratic in both the states and input. The initial solution provided to the controller is trivial (all

states and control are 0). The number of discretization points along the trajectory is N = 120, and

the discretization time step is ∆t = 1/30. The cost weight on robust slack variables is selected

to be α = 10. The uncertainty region is roughly estimated as xTk

1.0 0.0

0.0 5.5

xk < 1 along the

trajectory. Detailed analysis on uncertainty estimation based on Gaussian processes is deferred to

future work, due to space limits. The optimization procedure terminates in 50 iterations with the

static solution W = [−2.501840,−7.38725].

The controller generated by the optimization procedure is then tested in simulation, with noise

61

Figure 4.3: State-space representation of the open loop trajectory predicted by optimizer (dotted
line), open loop trajectory with stabilizing component closed loop system using the obtained so-
lution (full line), and unstable open-loop trajectory without the local feedback (dashed line). Note
that the feedback is time-invariant.

added to each state of the pendulum model at each step of simulation as xk+1 = f(xk, uk)+ω with

ωθ ∼ U(−0.2rad, 0.2rad]) and ωθ̇ ∼ U(−0.05rad/s, 0.05rad/s]).

We tested the controller over several settings and found that the underactuated setting was the

most challenging to stabilize. In Figure 4.3, we show the state-space trajectory for the controlled

(underactuated) system with additional noise as described above. As seen in the plot, the open-

loop controller becomes unstable with the additional noise, while the proposed controller can still

stabilize the whole trajectory. In Figure 4.4, we show the control inputs, the time-invariant feed-

back gains obtained by the optimization problem. We also the time-varying LQR gains obtained

along the trajectory to show provide some insight between the two solutions. As the proposed

optimization problem is finding the feedback gain for the worst-case deviation from the trajectory,

the solutions are different than the LQR-case. Next, in Figure 4.6, we plot the error statistics for

the controlled system (in the underactuated setting) over 2 different uncertainty balls using each

62

Figure 4.4: a) open-loop control b) static feedback matrix obtained from optimization c) LQR
feedback

12 sample for each ball. We observe that the steady-state error goes to zero and the closed-loop

system is stable along the entire trajectory. As we are using a linear approximation of the system

dynamics, the uncertainty sets are still small, however the results are indicating that incorporating

the full dynamics during stabilization could allow to generate much bigger basins of attraction for

the stabilizing controller.

4.6.2 Results on Ball-and-Beam System

Next, we implemented the proposed method on a ball-and-beam system (shown in Figure 4.7) [44].

The ball-and-beam system is a low-dimensional non-linear system with the non-linearity due to the

dry friction and delay in the servo motors attached to the table (see Figure 4.7). The ball-and-beam

system can be modeled with 4 state variables [x, ẋ, θ, θ̇], where x is the position of the ball, ẋ is

the ball’s velocity, θ is the beam angle in radians, and θ̇ is the angular velocity of the beam. The

63

Figure 4.5: Error statistics for the controlled system using the proposed method on the under-
actuated pendulum with noise amplitude

Figure 4.6: Error statistics for the controlled system using the proposed method on the under-
actuated pendulum with noise amplitude for uncertainty regions of different sizes

acceleration of the ball, ẍ, is given by

ẍ =
mballxθ̇

2 − b1ẋ− b2mballg cos(θ)−mballg sin(θ)
Iball
r2ball

+mball

,

64

Figure 4.7: The ball-and-beam system used for the experiments. There is an RGB camera above
that measures the location of the ball. The encoder (seen in the figure) measures the angular
position of the beam.

where mball is the mass of the ball, Iball is the moment of inertia of the ball, rball is the radius of the

ball, b1 is the coefficient of viscous friction of the ball on the beam, b2 is the coefficient of static

(dry) friction of the ball on the beam, and g is the acceleration due to gravity. The beam is actuated

by a servo motor (position controlled) and an approximate model for its motion is estimated by fit-

ting an auto-regressive model. We use this model for the analysis where the ball’s rotational inertia

is ignored and we approximately estimate the dry friction. The model is inaccurate, as can be seen

from the performance of the open-loop controller in Figure 4.8. However, the proposed controller

is still able to regulate the ball position at the desired goal showing the stabilizing behavior for the

system (see the performance of the closed-loop controller in Figure 4.8). The plot shows the mean

and the standard deviation of the error for 12 runs of the controller. It can be observed that the

mean regulation error goes to zero for the closed-loop controller. We believe that the performance

of the controller will improve as we improve the model accuracy. In future research, we would like

to study the learning behavior for the proposed controller by learning the residual dynamics using

65

Figure 4.8: Comparison of the performance of the proposed controller on a ball-and-beam system
with the open-loop solution. The plot shows the error in the position of the ball from the regulated
position averaged over 12 runs.

GP [88].

4.7 Conclusion and Future Work

This chapter presents a method for simultaneously computing an optimal trajectory along with a

local, time-invariant stabilizing controller for a dynamical system with known uncertainty bounds.

The time-invariant controller was computed by adding a robustness constraint to the trajectory

optimization problem. We prove that under certain simplifying assumptions, we can compute the

gradient of the robustness constraint so that a gradient-based optimization solver could be used

to find a solution for the optimization problem. We tested the proposed approach that shows

that it is possible to solve the proposed problem simultaneously. We showed that even a linear

parameterization of the stabilizing controller with a linear approximation of the error dynamics

allows us to successfully control non-linear systems locally. We tested the proposed method in

simulation as well as a physical system. Due to space limitations, we have to skip extra results

regarding the behavior of the algorithm.

66

However, the current approach has two limitations– it makes linear approximation of dynamics

for finding the worst-case deviation, and secondly, the linear parameterization of the stabilizing

controller can be limiting for a lot of robotic systems. In future research, we will incorporate these

two limitations using Lyapunov theory for non-linear control, for better generalization and more

powerful results of the proposed approach. We also hope to extend the current formulation to more

complex settings for feedback control of manipulation problems [35].

67

Chapter 5: OPTIMAL DYNAMIC CONTROL ALLOCATION OF INPUT

REDUNDANT SYSTEMS

5.1 Introduction

A system is said to be actuator redundant when the number of actuators is greater than the num-

ber of high-level control inputs. Consequently, the actuators that gen-erate a certain control input

are not unique for actuator redundant systems. The Control Allocation (CA) problem is to se-

lect actuators that generate a given control input and satisfy additional criteria, such as constraint

satisfac-tion and energy efficiency of actuators.

Comprehensive control allocation surveys are given in [49], [80], [10]. Early attempts to solve

the problem were inspired by applications in the control design of robotic manipulators [19], and

aerial vehicles [10]. The main motivation for in-troducing control allocation in these applications

is to maintain stability in case of actuator failures or/and to re-duce the power requirements.

The common approach to solve the control allocation problem is static optimization. In un-

constrained case, the solution can be expressed in closed form, by using the generalized in-

verse, [49], [80]. If actuator ine-quality constraints are also considered, the problem be-comes

a standard quadratic program [11], [82], [41]. In [36], it is shown that the optimality of the entire

system is preserved if the con-trol allocation problem is solved separately. An important drawback

of the static optimization approach to control allocation is that it disregards the dynamical nature

of the problem in the objective.

One interpretation of dynamic allocation considers the problem of control allocation where the

dynamics is present naturally in the actuators [38], [106] and [105]. On the other hand, dynamic

allocation was de-fined differently in [122] as a novel tech-nique for exploring the subspace of

redundant actuators by introducing virtual dynamics in the actuator space. This idea is further

developed in [23] and [31]. Model predictive control approach was proposed in [120], [73] that

achieves dynamic optimality and adaptive control allocation solution was proposed in [107] where

68

stability is guaranteed by Lyapunov analysis. However, both methods rely on knowledge of system

model and the trajectory.

It is in our interest to apply dynamic optimization pro-cedures to solve the control allocation

problem. Rein-forcement learning is a technique for determining solu-tions to dynamic optimiza-

tion problems by measuring in-put-output data online and without knowing the system dynamics.

In the last decade, this approach has attracted an increasing interest in many areas of research due

to its ability to determine the optimal policy of a system in re-al-time [69], [64], [45].

The main contribution of this chapter is the novel formulation of control allocation as a dy-

namic optimization problem. This formulation allows us to: (1) unify and ex-tend the existing

static control allocation solutions from the literature under a general solution to dynamic optimiza-

tion based on robust control design. (2) Apart from dynamic optimality, our solution guarantees

the robust-ness to unknown outer loop system dynamics. (3) Develop control allocation with guar-

anteed actuator constraints, and (4) learn the optimal control allocation online using data-driven

model-free reinforcement learning method.

5.2 Mathematical Preliminaries

In this section, the prerequisites required to define our control allocation problem are introduced.

Consider the continuous time dynamic system

ẋ(t) = f(x(t)) +G(x(t))v (5.1)

where x(t) ∈ Rn is the system state, v(t) ∈ Rm is the control input, f(·) : Rn → Rn is a smooth

nonlinear function, and matrix G ∈ Rn×m is a map from control space to state space. We will refer

to (1) as the outer loop in this chapter. It is assumed that the stabilizing control input v is given by

some prior design procedure. Input matrixG is assumed to have full column rank so that the design

of v is unique. System (1), for instance, could represent an aircraft dynamics with control input v

designed as a pitch rate controller, normal acceleration control augmentation system, etc. [96].

69

5.2.1 Actuator Redundancy

In this subsection, the basic concepts required to formulate the control allocation problem are

defined.

Many controllers found in the literature are usually not directly implementable in practice.

For instance, aircraft flight control inputs are generally composed of thrust, and torques in roll,

pitch and yaw. To apply these aerodynamic control inputs to the system, it is necessary to find

their functional dependence on the actual system actuators. If the number of actuators k is greater

than the number of control inputs m, then the actuators are said to be redundant. The following

definition formalizes this concept.

Definition 10 (Actuator Redundancy). Consider the allocation expression

v(t) = Bu(t) (5.2)

where u(t) ∈ Rk represents the available actuators and B ∈ Rm×k is a matrix that can be inter-

preted as a map from the space of actuators u to the control input v. If k −m > 0 then the null

space of matrix B is a non-empty set and the system is actuator redundant. The dimension of the

nullspace of B is the redundancy k −m.

Since we study actuator redundant systems in this chapter, the following assumption is naturally

required.

Assumption 1. The following is assumed throughout the chapter

i) k −m > 0

ii) B is full row rank

In order to exploit the redundancy, we introduce pseudoinverse and nullspace projector.

Definition 11 (Pseudoinverse and nullspace projector). The pseudoinverse B+ can be calculated

as

B+ = BT (BBT)−1 (5.3)

70

The nullspace projector B0 ∈ Rk×k can be calculated as B0 = Ik − B+B, where Ik is the

identity matrix, such that BB0 = 0.

The matrix B+ from (5.3) has full column rank under Assumption 1. Define a full rank matrix

B⊥ ∈ Rk×(k−m) as a basis for the nullspace of B. Note that B⊥ and B0 have the same column

space, but B0 is not full rank.

5.3 Optimal Dynamic Allocator

In this section, the control allocation problem is formulated as a dynamic optimal design. A general

solution to the problem is provided in Subsection 3.1, and it is shown in Subsection 3.2 that the

existing results in the literature [120] and [122] are special cases of our general solution.

The problem of control allocation is to select the actuators u in (2) that guarantee the desired

control inputs v. The control inputs v are selected independently by a state feedback design that

ensures the stability of outer loop (5.1) (see Stevens Lewis (2003)).

Consider the dynamic control allocation

ω̇(t) = µ(t) (5.4)

u(t) = uc(t) +B⊥ω(t)

uc(t) , B+v(t)

(5.5)

where ω(t) ∈ Rk−m is the allocator state and µ(t) ∈ Rk−m is the allocator input. The actuator

vector u in (2) is selected by (5.4) and termed allocator output, while uc(t) ∈ Rk in (5.4) is termed

the initial candidate allocation. All possible actuator allocations may be obtained by varying ω.

Note that for ω = 0 equation (5.4) becomes u(t) = uc(t). Therefore, uc(t) solves (5.2). How-

ever, the goal of control allocation is not only to solve (5.2), but also to select u(t) that efficiently

allocates the actuators. This energy efficiency is measured by additional performance index intro-

duced in Definition 3. It is important to note that the cost in Definition 3 is dynamic. The dynamic

optimality of actuators is more desirable than static optimality be-cause the outer loop dynamically

71

changes in the con-trol allocation expression (5.5). Moreover, in Section 5 we additionally require

actuators constraints on . In order to dynamically select actuators , we introduce the dy-namics in

(5.4). This mechanism allows us to explore the space of valid by modifying in (5.5) and select that

is energy efficient and satisfies constraints.

The following lemma formally shows that the control allocator (5.5) decouples the outer loop

system (5.1) from allocator dynamics (5.4).

The control allocator (5.5) makes (5.1) independent from (5.4).

Proof. Use (5.2) and (5.5) to write the dynamics (5.1) as ẋ = f(x) + G(x)(BB+v + BB⊥ω).

Since BB⊥ and BB+ = I , we see that ẋ = f(x) +G(x)v. Therefore, the control allocation (5.5)

makes x in (5.1) independent from in (5.4).

Lemma 5.3 is important because it shows that the stability of the outer loop (5.1) is independent

of allocator dynamics (5.4) when actuators u are determined by (5.5). In other words, the outer

loop state x is independent of ω in (5.5). Therefore, we can safely modify ω in order to explore

different actuators u without ever affecting the stability of outer loop (5.1). However, note that

Lemma 5.3 does not imply that (5.4) is independent of (5.1). On the contrary, outer loop system is

affecting allocator dynamics (5.4) through equation (5.5).

5.3.1 Optimal Dynamic Allocator Problem

The control allocation problem is now formulated as a dynamics optimization problem.

Definition 12 (Optimal Dynamic Allocator (ODA)). The performance index (PI) of the dynamics

allocator (5.4),(5.5) is defined as

Jµ(ω(t), uc(t)) ,
∫ ∞
t

e−α(τ−t){uTQu+ ||µ||22
}

(5.6)

where Q = QT > 0 and α > 0. The ODA problem is to determine the allocation input policy

72

µ∗(ω, uc) in (5.4) that minimizes (5.6)

µ∗(ω, uc) , argminµJ
µ(ω, uc) (5.7)

The exponential weighting factor αmakes the future stage costs approach zero and also bounds

the infinite time horizon integral in (5.6).

Use Leibniz differentiation rule to write the differential version of (5.6)

Hµ(ω, uc) , ||µ||22 + uTQu− αJµ(ω, uc)

+ u̇Tc∇ucJ
µ(ω, uc) + ω̇T∇ωJ

µ(ω, uc)

(5.8)

where H is Hamiltonian and ∇ denotes the operator of partial derivative. The solution (5.7) can

be obtained by solving the corresponding Hamilton-Jacobi-Bellman (HJB) equation

0 = −minµHµ(ω, uc) (5.9)

In the following theorem we solve the ODA with the assumption that uc is constant. It is shown

in next subsection that the existing control allocation solutions [120] and ([122] are special cases

of this result.

Theorem 1 (Static Allocation). Consider the non-linear system (5.1) and (5.2) with the allocator

design (5.4), (5.5) and let uc in (5.5) be constant (u̇c = 0). Then, the optimal allocator input (5.7)

is given by

µ∗(ω, uc) = −P11ω − (P11 + α)−1BT
⊥Quc (5.10)

P11 =
√

(α/2)2 +BT
⊥QB⊥ − α/2 (5.11)

Proof. Apply stationarity condition on Hamiltonian (8) ∇ωH
µ(ω, uc) = 0, to find the expression

for the optimal allocation input µ∗ = −(1/2)∇ωJ
µ∗(ω, uc). Assume that the optimal cost function

has the quadratic form Jµ
∗
(ω, uc) = [ωT uTc]P [ωT uTc]T then the gradient is ∇ωJ

µ∗(ω, uc) =

2[P11 P12][ωT uTc]T where P12 and P11 are upper block matrices of matrix P . The optimal

73

allocation input is then

µ∗(ω, uc) = −P11ω − P12uc

Insert the cost Jµ∗(ω, uc), the gradient of the cost ∇ωJ
µ∗(ω, uc) and µ∗(ω, uc) in (5.8) to express

Hamiltonian. Now use the Hamiltonian in (5.8) and state augmentation

ωa , [ωT , uTc]T

to discover that the equation (5.9) is Algebraic Ricatti Equation (ARE)

0 = ωTa [B⊥ Ik]
TQ[B⊥ Ik]ωa + ωTa [P11 P12]T [P11 P12]ωa

− 2ωTa [P11 P12]T [P11 P12]ωa − αωTa PωTa
(5.12)

To determine P11 and P12, extract the upper block ma-trices in equation (5.12). This gives us

matrix equations 0 = BT
⊥QB⊥−P11P11−αP11 and 0 = BT

⊥Q−P11P12−αP12. The first equation

is a standard ARE with analytical solution given by (5.11). Since α > 0 and P11 is solution to the

Riccati equation, then P11 + α is invertible and P12 = (P11 + α)−1BT
⊥Q. This confirms that the

solution µ∗(ω, uc) = −P11ω − P12uc is given by (5.10).

To confirm the stability of allocator dynamics (5.4) for µ = µ∗(ω, uc), note that the state

feedback gain −P11 in (5.10) is negative definite for α > 0.

5.3.2 Comparison with Optimal Static Allocators

In this section we show that a special case of the ODA solution in Theorem 1 solves the standard

allocation problems in the literature such as [80] and [122].

The problem presented in [122] is to solve

minωJs(u) , minωu
TQu

s.t. u = B+v +B⊥ω

(5.13)

74

and the solution is
u∗1 = B+v +B⊥ω

∗

ω∗ = −(BT
⊥QB⊥)−1BT

⊥Quc

(5.14)

A different formulation of the allocation problem that is also common in the literature [120] is

given by

minuJs(u) , minuu
TQu

s.t. v = Bu

(5.15)

with the solution

u∗2 = Q−1BT (BQ−1BT)−1v , BQv (5.16)

Where BQ is the weighted right inverse of matrix B.

The next two theorems show that these are both special cases of solution (5.10) in Theorem 1.

To start, we will now show that the solutions (5.14) and (5.16) are equivalent.

Theorem 2. The solutions (5.14) and (5.16) are equivalent.

Proof. First use

B0B
Q = BQ −B+BBQ = BQ −B+ (5.17)

to express BQ as BQ = B+ +B0B
Q. Now use this form of BQ to rewrite (5.16) as

u∗2 = BQv = B+v +B0B
Qv (5.18)

Since B0 and B⊥ have identical column-space then there is F2 ∈ R(k−m)×k such that B0 = B2 .

The solution u∗2 can then be written as

u∗2 = B+v +B⊥ξ

ξ , F2B
Qv = F2B

QBuc

(5.19)

which is in the same form as the solution u∗1 in (5.14) with ξ ∈ Rk−m corresponding to ω∗. From

75

convexity of (5.13) and (5.15), identical feasibility domains and identical forms of solutions (5.17)

and (5.14) we infer that the two problems have equivalent solutions.

The next theorem is our main result in this section. It shows that the standard allocation solu-

tions in the literature [80] and [122] are special cases of ODA solution in Theorem 1.

Theorem 3. Consider the allocator input (5.10) with α = 0 and constant uc. Then the allocator

dynamics (5.4) becomes

ω̇ = KBT
⊥Qu

K = −(BT
⊥QB⊥)−1/2

(5.20)

Moreover, the allocation output (5.5) converges to the steady state value

u(t→∞) = (I −B⊥K2BT
⊥Q)uc (5.21)

which is equivalent to the solution (5.14).

Proof. The allocator dynamics (5.4) with allocator control input (5.10) and α = 0 is

ω̇ = −P11ω − P−1
11 B

T
⊥Quc = −P−1

11 (P 2
11ω +BT

⊥Quc) (5.22)

Use (5.11) to express P 2
11 and write

ω̇ = −P−1
11 (BT

⊥QB⊥ω +BT
⊥Quc) (5.23)

Finally, use (5.5) and (5.11) to show that

ω̇ = KBT
⊥Qu (5.24)

which proves (5.20).

76

The steady state of dynamical equation (5.20) with u in (5.5) is

ω(t→∞) = −(BT
⊥QB⊥)−1BT

⊥Quc = −K2BT
⊥Quc (5.25)

The steady state allocator output (5.5) is then

u(t→∞) = uc +B⊥ω(t→∞)

= (I −B⊥K2BT
⊥Q)uc

(5.26)

which proves (5.21). It is now easy to see that u(t→∞) in (5.21) and u∗1 in (5.14) are equivalent.

The allocator dynamics (5.16) was used in ([122], where (5.20) was also derived. Theorem

3 recovers their result as a special case of Theorem 1 where the initial candidate allocation uc is

assumed constant. Both optimization techniques lead to the same steady-state solution (19) that

minimizes static optimization cost (13), but our method shows how to select a specific K in (5.20)

that also minimizes the dynamic cost functional (6) and not only static objective (13). Moreover,

our solution also solves (15) since Theorem 2 shows that solutions (14) and (16) are equivalent.

5.4 Linear Quadratic H∞ allocation

Theorem 1 solves a specific case of ODA (5.7) assuming u̇c = 0. Theorem 3 shows that existing

results are special cases of Theorem 1. In this section, Theorem 4 presents more general result than

Theorem 1 that allows us more design freedom, including adding actuator constraints in Section 5.

The assumption uc(t) = 0 in Theorem 1 virtually decouples the Hamiltonian (5.7) from outer

loop dynamics. However, in general, the Hamiltonian (5.8) depends on outer loop dynamics so

that u̇c 6= 0. Since the optimality of control allocator design (5.4), (5.5) is directly related to

Hamiltonian (5.8), it is crucial to cover the general case u̇c 6= 0 to guarantee optimality.

In this section, we generalize the ODA solution to the case u̇c 6= 0 . To start, we formally define

the problem.

77

Definition 13 (H∞ Optimal Dynamic Allocator (ODA)). Consider the H∞ performance index

Jµ(w, d) =

∫ ∞
t

e−α(τ−t)(uTQu+ ||u||22 − γ2||dj||22)dτ (5.27)

where w , [ωT uTc]T is the augmented state, d = x is the disturbance γ > 0 tunes the amount

of disturbance rejection effort. The H∞ ODA problem is to determine the policy that minimizes

(5.27) for the worst case disturbance

J∗(w) = Jµ
∗
(w, d∗(w)) = minµmaxdJ

µ∗(w, d) (5.28)

Define the optimal policy and the worst case disturbance

µ∗ , arg minµ J
µ(w, d∗)

d∗ , arg maxd J
µ(w, d)

(5.29)

If solutions (??) exist, then they form a zero-sum game saddle point solution for the system

(5.4),(5.5) and they are said to be in Nash equilibrium.

Assumption 2. Let the stabilizing outer loop control v(t) and the outer loop system (5.1) be linear

in state x so that

ẋ = Ax+Gv

v = Kx

(5.30)

This assumption is general and covers, for in- stance, all the cases of linearized aircraft dy-

namics with linear feedbacks designed using standard flight dynamics control techniques (see,

e.g. [96]).

The next result solves the H∞ ODA for this linear case. The main idea is to construct the

explicit expression for dynamics u c assuming the linear feedback control (5.30) in the outer loop,

while x in (5.1) is considered as disturbance d , x.

Defining the outer loop state as disturbance d , allows us to write the actuator dynamics (5.4),

78

(5.5) in the standard H∞ control form as shown in Theorem 4.

Theorem 4. Let assumptions from this chapter hold. Consider the infinite horizon H∞ cost (5.27)

for system (5.4), (5.5) written in the form of augmented state w , [ωT uTc]T . Assume that the

optimal value function has the form J∗(w) , wTPw. Then, the optimal control allocation input is

µ∗ = −BT
a Pw (5.31)

where P solves the algebraic Riccati equation (ARE)

0 = CT
a QCa − P (BaB

T
a − γ−2DaD

T
a)P + P (Aa − α/2) + (Aa − α/2)TP (5.32)

that corresponds to the dynamics of the augmented state

ẇ = Aaw +Baµ+Dad

u = Caw

(5.33)

where

Aa =

0 0

0 B+KGB

 Ba =

Ik−m
0

 Da =

 0

B+KA

 Ca =

[
B⊥ B+

]
(5.34)

Proof. Start by differentiating uc = B+v in (5.5) with respect to time and use equations (5.2),

(5.5) to time and use Assumption 2 and equations (5.2), (5.5) to write

uc = B+KAx+B+KGB(uc +D⊥ω) (5.35)

Finally,

u̇c = B+KAx+B +KGBuc (5.36)

since BB⊥ = 0. Use (5.4), (5.5) and (5.36) to write the dynamics of augmented state ẇ in (5.33).

79

To find the solution to H∞ ODA (5.29) we will follow steps similar to Theorem (1). First,

write the Hamiltonian

Hµ(w, d) = uTQu+ ||µ||22 − γ2||d||22 + ẇT∇wJ
µ(w, d)− αJµ(w, d) (5.37)

that corresponds to the cost (5.27) subject to dynamics (5.33). Then, the Hamilton-Jacobi-Isaacs

equation is

0 = −max
d

min
µ
Hµ(w, d) = −Hµ∗(w, d∗(w)) (5.38)

Use the stationarity conditions ∇µH
µ(w, d) = 0, ∇dH

µ(w, d) = 0 to find the control input that

minimizes (5.38) and the worst case disturbance that maximizes (5.38)

µ∗ = −1

2
BT
a∇wJ

∗(w)

d∗ =
1

2γ2
DT
a∇wJ

∗(w)
(5.39)

with the gradient of the optimal cost equal to ∇wJ
∗(w) = ∇ww

TPw = 2Pw. Notice that (5.38)

is obtained by inserting (5.39) into (5.37) and it results in ARE (5.32).

The solution (5.31) in Theorem 4 is a generalization of the solution (5.10) in Theorem 1 since

it does not assume uc(t) = 0. Theorem 1, on the other hand, is a generalization of static control

allocation results (5.14), (5.16).

Moreover, the H∞ design provides the allocator (5.5) with robustness against outer loop dy-

namics (5.1) by treating x as a disturbance. However, the model of the outer loop dynamics (5.30)

is needed to determine the solution. In next section, we solve H∞ ODA in a model-free fashion

using machine learning technique.

5.5 Constrained model-free optimal control allocation

In this section, we introduce a cost function specifically designed to ensure constrained actuators

while preserving the optimality results. We then develop a Reinforcement Learning (RL) [61]

80

method that determines the optimal control allocation online by measuring input-output data in

real time. Specifically, we employ the off-policy Integral Reinforcement Learning (IRL) algorithm

as in [69].

Consider the performance index

Jµc (w, d) =

∫ ∞
t

e−α(τ−t)(Q(u) + ||µ||22 − γ2||d||22
)
dτ

Q(u) = uTQu+ β

k∑
r=1

(ur − urU)−2l + (ur − urL)−2l

(5.40)

where β is a positive scalar, ur denotes r-th element of vector u, urL /U are design parameters

that bound the value of ur and l is a positive integer. The cost term Q(u) in (5.40) guarantees

constrained actuators urL ≤ ur ≤ urU .

Evaluating the system (5.33) by cost (5.40) induces the Bellman equation

Hµ
c (w, d) = Q(u) + ||µ||22 − γ2||d||22 + ẇT∇wJ

µ
c (w)− αJµc (w) (5.41)

The optimal solution J∗c (w) = Jµc (w, d∗) satisfies

min
µ

max
d

Hµ
c (w, d) = Hµ∗

c (w, d∗) (5.42)

5.5.1 Online Reinforcement Learning (RL) algorithm

In this section, we introduce RL to minimize (30). This procedure generates decreasing cost iter-

ates J j+1
c (w) < J jc (w) and policy iterates as

µj+1 = −1

2
BT
a∇wJ

j
c (w)

dj+1 = − 1

2γ2
DT
a∇wJ

j
c (w)

(5.43)

81

These policies (5.43) are shown to converge to the optimal solution of (5.42), that is

lim
j→∞

Hµj

c (w, dj) = Hµ∗

c (w, d∗) (5.44)

The method in [69] consists of an off-policy RL algorithm that determines (5.43) without us-

ing any model information. We have used this method to solve the ODA problem, as given in

Algorithm 1 below. In this off-policy algorithm, policy updates (5.43) are obtained by solving the

Integral Reinforcement Learning (IRL) Bellman Equation (5.45)

e−J jc (w(t+ T))− J jc (w(t)) =

∫ t+T

t

e−α(τ−t)(Q(u) + ||µj||22 − γ2||dj||22+

2(µ− µj)Tµj+1 − 2γ2(d− dj)Tdj+1
)
dτ

(5.45)

This equation is an integral version of the Bellman equation (5.41) where (5.43) was used. For a

complete description of the derivation of (5.45), please refer to [69], equations (58) - (63).

Algorithm 5.1 Intelligent control allocator
Input: Initialize policies µ0(w), d0(w).
Output: Optimal control allocator µ∗(w)

Initialization: Initialize policies µ0(w), d0(w).
1: while ||Ki −Ki−1|| = ||BTPi −BTPi−1|| > ε do
2: Step 1 Fix the policies µj(w), dj(w) and let µ and µ act on the system (5.33). Store i -th

sample of (5.45) by collecting data.
3: Step 2 Determine J jc (w), µj+1(w), dj+1(w) by solving the system of i IRL equations (5.45)

Theorem 5. Let µ0(w) be stabilizing. Then, Algorithm 5.1 converges to the optimal solution.

Proof. [58] proved that policy iteration with a non-quadratic positive definite Q(u) converges.

[69] proved that off-policy IRL gives the same policy updates and final solution as the policy

iteration algorithm. Using both results, we conclude that Algorithm 5.1 converges to the optimal

policies.

82

5.5.2 Approximate Neural Network Solution to IRL

In order to solve (5.45), the cost and the policies (5.43) are approximated by 3 neural networks

(NN)

J jc (w) = W j
JσJ(w)

µj(w) = W j
µσµ(w)

dj(w) = W j
dσd(w)

(5.46)

where W j
µ , W j

d , W j
J are NN weights and σjµ, σjJ and σjd are non-linear basis sets.

The i-th sample of IRL equation (5.45) approximated by (5.46) is linear in NN weights and can

be written as
W jhTi = yi; W j = [W j

J , vec(W
j
µ)T , vec(W j

d)T]

hi =

e−αTσJ(w(t+ T))− σJ(w(t))

2
∫ t+T
t

e−α(τ−t)(µ− µW)⊗ σµ(w)dτ

−2γ2
∫ t+T
t

e−α(τ−t)(d− dW)⊗ σd(w)dτ

yi = −

∫ t+T

t

(
Q(u) + ||µj||22 − γ2||dj||22

)
(5.47)

where ⊗ denotes Kronecker product and vec(·) is a stack of matrix columns.

In order to solve the IRL equation in step 2 of the algorithm, the number of samples has to be

at least equal to number of NN weights i ≥ N = Nj + Nµ + Nd. The step 2 of the algorithm can

then be executed as a least squares update.

One of the main contributions of this work is that we do not require knowledge of outer loop

dynamics (5.1) nor feedback gain K in order to perform Algorithm 5.1 since these do not appear

in (5.47). Note also that µj and dj are updated in the algorithm, but are not required to be applied

to system (5.1).

5.6 Experimental Validation

In this final section, we experimentally verify that The H∞-ODA allocation solution (5.31) in

Theorem 4 stabilizes the allocator dynamics (5.4),(5.5).

83

ii) The policy µj(w) in Algorithm 1 without actuator constraints (β = 0) in (5.40) converges

to solution (5.31).

iii) Setting β = 1 in (5.40) constrains the actuators. The simulation shows that these constraints

are obeyed. Consider F16 flight control system in (5.1) to be

α̇

q̇

δ̇

 =

−1.01887 0.90506 −0.00215

0.82225 −1.07741 −0.17555

0 0 −1

α

q

δ

+

0

0

5

 v (5.48)

where α is the angle of attack (AoA), q is the pitch rate and δ is the elevator deflection angle.

This is flight control example in 5.4-1 in Stevens Lewis, (2003). Define x in (5.1) to be x =

[αT qT δT (α − αr)T]T where αr is the reference value for AoA. The outer loop feedback gain

in (5.30) is selected to stabilize (5.1) as K = [2.16 1.66 0.2 2.72 1.66 0.2].

The allocation matrix in (5.2) is selected as B = [1 1 1 1]. This corresponds to modern

aircraft designs where flight controls are distributed into multiple trailing edge actuators to reduce

singe-point-of-failure and improve reliability. The cost function parameters in (5.27) and (5.40)

are γ = 1.5, α = 0.01 and Q = diag([1 5 25 125])

Simulate the outer loop system (5.1) with allocation design (5.4), (5.5) and select the allocation

input µ(w) as (5.31). The simulated actuators are displayed by dashed lines in Figure 1. This

experimentally confirms the Statement i). Next, the online Algorithm 1 with no constraints (β = 0

in 5.40) is run and the results are the solid lines in Figure 1. We introduce function approximators

(5.46) as σJ(w) = w ⊗ w σµ(w) = w and σd(w) = w and perform Algorithm 5.1 with N = 250

episodes of data collection, each T = 0.15 seconds long. In first 37.5 seconds of simulation

non-optimal behavior policy µ0(w) is applied to (5.4). At t = 37.5s the learned policy µj=1(w)

is applied to (5.4). The policy µj(w) is then continuously updated using new data samples until

convergence. After convergence, they conform closely to the dashed lines confirming Statement

ii).

Moreover, Figure 2 shows the Frobenius distance between optimal gain −BT
a P in (5.31) and

84

W j
µ in (5.46) for every policy update. The policy weights W j

µ converge to the optimal gain −BT
a P

in less than 15 iterations with the norm difference of 3.2641. After that, the improvement is slow

and the error reaches the value 1.1966 at iteration 60. In conclusion, the policy µj(w) converges to

its optimal value, which again confirms the Statement ii).

Figure 5.1: The norm distance between the optimal feedback gain matrix−BT
a P in (5.31) and the

learned policy weights W j
µ in (5.46) updated by least squares.

Finally, Statement iii) is addressed by constraining the first two actuators (u1, u2) inside the

range [u1,2
L , u1,2

U] and setting β = 1, l = 4 in (5.40). The features σµ(w), σd(w) are taken as

polynomials of all powers up to 5 and σJ(w) of all even powers up to 6. All other parameters and

initialization are the same as in previous simulation. The learned policy is applied at t = 37.5s.

Figure 5.2: Actuators allocated by policies µj(w) that minimize (5.40) for constrained case (β =
1). Constraints are imposed on actuators (u1, u2) selected as u1,2

L , u1,2
U = (−0.5, 0.0).

85

Figure 5.3: Dashed lines show the actuators allocated by optimal control allocation input (5.31).
Solid lines show the actuators allocated by policy µj(w) in (5.43). The initial stabilizing policy
µ0(w) is applied during data collection phase [0s − 37.5s]. The policy µj(w), j = 1, 2, ... is then
updated by least squares using new data samples.

Figure 5.4: Overview of Dynamic Control Allocation Design

Compare Figure 3 with Figure 1 and note that during the learning period the actuators u1,2

assume values outside the range [−0.5, 0.0] in unconstrained case. On the other hand, the con-

strained case in Figure 3 shows that the actuators u1,2 are successfully constrained at the cost of

increase in value of the actuator u3.

86

5.7 Conclusion

A novel approach for solving the dynamic control allocation problem is developed. We have proved

that our approach is a generalization of standard solutions in the literature. A non-quadratic cost

function is introduced that imposes constraints on the actuators. Finally, a reinforcement learning

algorithm was successfully used to determine the optimal actuators in real-time.

87

Chapter 6: DISTRIBUTED FORMATION CONTROL OF MULTI-AGENT

SYSTEM OF UAVS

6.1 Introduction

Cooperative control of multiple unmanned aerial vehicles (UAVs) that share a global task has

recently drawn a lot of attention. The last decades have witnessed a rapid development of micro

UAVs and the idea of multi-agent UAV systems performing tasks grew with it. This is due to

the fact that a group of simple individual vehicles may facilitate the execution of a complex task

with higher robustness to potential technical faults. Moreover, multi-agent systems also have an

economical and logistical advantage, simply because the failure of a single agent does not put the

whole mission into jeopardy. That makes a single agent in the system expendable and its design

requirements less rigorous.

We are interested in the consensus control of multiple UAVs, especially quadcopters. It is

shown in [22] that a two-loop nonlinear scheme using input-output linearisation technique can be

employed to satisfy the tracking performance. Moreover, a neural network based backstepping

design for UAV is provided in [21], where an inverse kinematics solution is applied akin to that

in the manipulator control such as [62]. Non-linear models of UAV and linearization procedure is

covered in [115], [85] New control techniques have been proposed to allow multiple vehicles to

work cooperatively (see [79], [87], [5], [65]).

More recently, further work is considered to quantify the performances of the whole multi-UAV

system and the local UAV. Its formulation falls into a category of cooperative optimal control and

game theory. In particular, [124] uses linear quadratic regulator based optimal control to achieve

the synchronization of linear systems. Non-zero-sum games are studied for multiple players in

[111], [110], [108], where the adaptive algorithm learns online the solution of coupled Riccati

equations and coupled HamiltonâJacobi equations. Even though good results were obtained, little

research has been carried out to handle the measurement noise imposed on each local UAV.

88

Note that when the noise is injected into the measurement signals of each local UAV, the im-

perfect information propagates through distributed control protocols, which makes the multi-UAV

system vulnerable to uncertainties and thus severely degrades the cooperative performance. Due

to the fact that this work considers actual implementation of the system in the lab environment,

it is of great importance to treat the poor information quality in the control law accordingly. To

address that problem, [121] proposed an adaptive stabilization control for cyber-physical systems

against measurement noises. Moreover, a distributed adaptive leaderless control for multi-agent

systems was proposed in [3]. However, current results in ([121], [3]) require that the measurement

noises are restricted to certain simple types. More importantly, these papers only theoretically

analyzed the measurement noise problem in the cooperative control, but few results have been

experimentally validated.

In this chapter, we aim to design the cooperative control of multiple UAVs under measurement

noises with theoretical analysis and physical experiments. To do this, we first model the dynamics

of each individual UAV and its measurement noises. Based on the sliding mode control design,

we propose a distributed control protocol that stabilizes all signals in the closed-loop multi-UAV

systems and ensures that the consensus errors are uniformly ultimately bounded. Moreover, we

use local information to define the trustworthiness, based on which we tune the edge weights to

compensate for the negative effect from noisy measurements. In addition, we bridge the gap be-

tween the theoretical framework and the physical experiment and implement our results by using

Crazyflie 2.0 platform. In our experiments, we utilize the motion capture system (VICON) to co-

ordinate UAVs through the communication topology based on a master-slave model. Furthermore,

a hierarchical motion control state machine is designed in a distributed fashion and implemented

as a software solution based on robot operating system environment (ROS). To ensure low latency

and smooth control loop, data pipeline is implemented as a multi-threaded routine specifically tai-

lored for the high-speed control requirements of dynamically rich UAVs. Several experiments are

designed to validate the effectiveness of our algorithms.

The remaining parts of this chapter are outlined as follows. In Section II, some preliminaries

89

on graph theory are provided. In Section III, the dynamics of UAV are detailed. In Section IV, the

controller for coordinating UAVs is proposed, and its stability analysis is carried out. In Section

V, the trustworthiness based approach is proposed to tune the edge weight. The experimental

environment is detailed in Section VI, and the experimental results are given in Section VII. Finally,

the conclusion is contained in Section VII.

6.2 Preliminaries on Graph Theory

In this section, we briefly give some preliminaries on graph theory that will be used in our analysis

and experiments.

Definition 14. Let graph G be the pair

G = (V,E), (6.1)

where V denotes vertices (nodes) of a graph and E denotes the edges of a graph. In that context

V can be represented as

V = {v1, v2, ..., vN}, (6.2)

where vi is vertex (node) i of a graph. Nodes are connected by links (edges). Edge E

E = (vi, vj),∀i, j ∈ [0, N], i 6= j (6.3)

is a connection between two nodes i and j.

If edges are not directed (which means that they are bidirectional), then the graph is said to

be undirected. Each edge has a weight that can model the strength of the connection between the

nodes. The number of edges that enter a node is called in-degree, while the number of edges that

exit a node is called out-degree. The graph can be presented in the form of a matrix where column

index corresponds to a source of an edge and row index to a sink of an edge. Matrix element aij

indicates the weight of the corresponding edge in the graph. Matrix constructed of elements aij

90

is called adjacency matrix (A). A is very convenient as it enables analysis of graph theory from

the perspective of linear algebra. Structural properties of the graph are embedded in matrix A and

can be extracted by examining that matrix. di =
∑n

i=1 aij is a row sum of A and it is introduced

for convenience in the future analysis. Matrix D is diagonal matrix of in-degrees, D = diag(di).

Therefore, the Laplacian matrix is formulated as L = D −A.

6.3 Quadrotor dynamics

When dealing with UAVs, states used for expressing dynamics are position ξi, velocity ξ̇i, attitude

ηi and angular rate η̇i. Quadrotor dynamics are expressed as follows

mξ̈i =Fg + Fd(ηi), (6.4)

J(ηi)η̈i =C(ηi, η̇i) + τi, (6.5)

where Fg is a gravitational force, and Fd is a nonlinear input that depends on the attitude, η are

rotational states (roll, pitch and yaw), and τ is the torque generated by propellers.

Note that the focus of this chapter is on efficiency of the cooperative control policy rather than

the design of effective dynamical controller for a single UAV. Without the loss of generality, certain

simplifications are used. UAVs that we worked with are very lightweight (27 g) which permits us to

linearize the dynamical system. Consensus controller will be tested only in the x-y plane. After the

linearization around the equilibrium point (similar to [53]), systems (6.4) and (6.5) can be reduced

to following form

ẍi =

ξ̈x,i

ξ̈y,i

ξ̈z,i

η̈r,i

η̈p,i

η̈y,i

=

−gηp,i

gηr,i

−fT,i

m

τx,i
Ix

τy,i
Iy

τz,i
Iz

(6.6)

91

where the system state xi is given as

xi =

ξx,i

ξy,i

ξz,i

ηr,i

ηp,i

ηy,i

(6.7)

where Ix, Iy and Iz denote the idealized moments of inertia for each axis and m is the mass of the

UAV. After separating the input terms from the state transition matrix, we can change (6.6) into

ẍi = Axi +Bvi, (6.8)

where

A =

0 0 0 0 −g 0

0 0 0 g 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

, (6.9)

B =

0 0 0 0

0 0 0 0

− 1
m

0 0 0

0 1
Ix

0 0

0 0 1
Iy

0

0 0 0 1
Iz

, (6.10)

92

and the control input is

vi =

fT,i

τx,i

τy,i

τz,i

. (6.11)

Considering that there are N UAVs in this chapter, we present the system dynamics in a global

form as

ẍ = (IN ⊗ A)x+ (IN ⊗B)v. (6.12)

To model the group of agents with distributed information we use the graph theory. In the light

of that, every link of the graph represents communication capability between connected agents,

while nodes represent dynamical agents. The objective of this chapter is to make the follower

quadrotors in the graph G track the desired trajectory based on the distributed information, where

the trajectory is generated by the leader.

The objective of this section is to develop distributed cooperative control protocol. In this

chapter we study how the distributed flow of information impacts the state of single dynamical

agent. In cooperative control, each agent communicates only with its neighbors. The goal is to

solve the consensus problem, where the resulting distributed control protocol drives all the states

to the same constant steady-state value.

Consensus controller for each agent i

ui =
∑
j∈Ni

aij(xj − xi) + gi(x0 − xi), (6.13)

with aij the communication graph edge, and gi is the weight gain describing the communication

of the leader with agent i, known as the pinning gain.

93

6.4 Position consensus controller

We introduce ∆i as a displacement of UAV i from the center of the formation. Different combi-

nations of ∆i can now be used to encode various formations. x0 is the agent leader and is directly

linked to those agents that have non-zero pinning gain gi. The reference is generated by the leader

and is effectively transmitted to the whole system through the distributed communication network.

The neighbourhood error is defined as

ei =
∑
j∈Ni

aij(xj −∆j − xi + ∆i) + gi(x0 − xi + ∆i), (6.14)

and neighbourhood time derivative of the error

ėi =
∑
j∈Ni

aij(ẋj − ∆̇j − ẋi + ∆̇i) + gi(ẋ0 − ẋi + ∆̇i). (6.15)

If we assume that the position of the leader (x0) and the relative positions between the agents

(∆i,∀i) are not changing during the experiment then

ėi =
∑
j∈Ni

aij(ẋj − ẋi) + gi(−ẋi). (6.16)

The alias of ideal positions displaced by ∆i is introduced

xai = xi −∆i, (6.17)

for i = 1, 2, . . . , N . From (6.17), position errors between the two agents are given as

δij = xaj − xai . (6.18)

94

From (6.18), the neighbourhood error defined in (6.14) now has the form

ei =
∑
j∈Ni

aij(x
a
j − xai) + gi(x0 − xai), (6.19)

ėi =
∑
j∈Ni

aij(ẋj − ẋi) + gi(−ẋi). (6.20)

Define 1N = [1, 1, . . . , 1]TRN with all N elements ones. The global forms of (6.19) and (6.20) are

now expressed as

e =− ((L+ G)⊗ In)(xa − 1N ⊗ x0), (6.21)

ė =− ((L+ G)⊗ In)ẋ. (6.22)

In order to further develop the discussion on that hypothesis, the second order error dynamics is

first calculated

ë = −((L+ G)⊗ In)ẍ. (6.23)

Plugging (6.12) in (6.23) gives

ë =− ((L+ G)⊗ In)[(IN ⊗ A)x+ (IN ⊗B)v]

=− ((L+ G)⊗ In)(Agx+Bgv),

(6.24)

where Ag = IN ⊗ A, and Bg = IN ⊗ B. Without the loss of generality, further simplification is

introduced

ë = −((L+ G)⊗ In)(Agx+ u) (6.25)

where u = Bgv is defined as the global vector of inputs.

To drive both position and velocity to zero, we use the sliding mode control and define the

sliding mode error as

r = ė+ Λe, (6.26)

95

where Λ is positive definite. From [95], e is bounded as long as r is bounded. Let λ = diag(λi)

be N dimensional diagonal matrix with λi on the diagonal, each corresponding to one agent. Then

Λ = λ⊗ In. Taking the time derivative of (6.26) yields

ṙ = ë+ Λė =− ((L+ G)⊗ In)(Agx+ u)

− Λ((L+ G)⊗ In)ẋ. (6.27)

By using Kronecker rule (A⊗B)(C⊗D) = (AC)⊗(BD) (under the assumption that dimensions

of A,B,C,D allow multiplications AC and BD), we introduce the following for convenience

Z =((L+ G)⊗ In) (6.28)

ZA =((L+ G)⊗ In)Ag = ((L+ G)⊗ A)

Zλ =(λ⊗ In)((L+ G)⊗ In) = ((λ(L+ G))⊗ In)

Rewrite (6.27) as

ṙ = −ZAx− Zλẋ− Zu. (6.29)

Based on the undirected graph topology, we make some assumptions useful for the control design.

L is irreducibly diagonally dominant matrix. G has at least one diagonal entry. G has at

least one diagonal entry. It is not restrictive to make Assumptions 1 and 2, since many practical

multi-agent systems fall under that category.

We introduce the control law locally and globally as

ui = u1i+Kiri (6.30)

u = u1 + (IN ⊗Ki)r = u1 +Kr (6.31)

where matrix Ki = Kj,∀i, j is used for control design. Assume that u1 cancels first two terms

96

in (6.29). u1 is specified later in the theorem. Under that assumption re-write (6.29) in the global

form

ṙ = −((L+ G)⊗Ki)r = −ZKr (6.32)

Let Assumptions 1 and 2 hold. If we define

W = diag(wi) = diag(1/qi), (6.33)

where

q = (L+ G)−11N , (6.34)

then, both W and Q = W (L+G)+(L+G)TW are positive definite. Additionally, if Q is positive

definite then Q⊗ In is also positive definite. Q = W (L+ G) + (L+G)TW

Proof. The first assertion follows the results in [65, 83]. For the second assertion, we obtain that

eigenvalues of a matrix generated by Kronecker product are cross-products of all possible combi-

nations of eigenvalues from matrixQ and In. BothQ and In are positive definite and corresponding

eigenvalues all positive. This completes the proof.

Let x̄ be the measurement of ideal state vector x

x̄ = x+ µ1

˙̄x = ẋ+ µ2

x̄0 = x0 + µ0,

(6.35)

then define the bound on sensor noise

||µ1|| < µ1,B

||µ2|| < µ2,B

||µ0|| < µ0,B,

(6.36)

97

where µ0,B denotes the measurement error of leader’s position.

Sliding mode error injected with noises is

r̄i = ˙̄ei + λiēi, (6.37)

where

ēi =
∑
j∈Ni

aij(x̄j −∆j − x̄i + ∆i) + gi(x̄0 − x̄i + ∆i), (6.38)

˙̄ei =
∑
j∈Ni

aij(˙̄xj − ˙̄xi) + gi(− ˙̄xi). (6.39)

The global form of noisy error is

r̄ = ˙̄e+ Λē, (6.40)

where

ē =− ((L+ G)⊗ In)(x̄a − 1N ⊗ x̄0)

=− ((L+ G)⊗ In)(xa + µ1 − 1N ⊗ x0 − 1N ⊗ µ0)

=− ((L+ G)⊗ In)(µ1 − 1N ⊗ µ0) + e,

=− Z(µ1 − 1N ⊗ µ0) + e, (6.41)

˙̄e =− Zµ2 + ė, (6.42)

¨̄e =− (Agx̄+ u)

=− ZAgµ1 + ë. (6.43)

Extracting the ideal sliding mode error from the measured error gives

r̄ =r − ΛZ(µ1 − 1N ⊗ µ0)− Zµ2. (6.44)

98

Substituting (6.43) and (6.42) into (6.27) yields

˙̄r = ṙ − ZAgµ1 − ΛZµ2. (6.45)

Definition 15. The signal z(t) is said to be uniformly ultimately bounded (UUB) with the ultimate

bound b, if given positive constants b and c, for every d ∈ (0, c), there exists T (d, b), independent

of t0, such that

‖z(t0)‖ ≤ d⇒ ‖z(t)‖ ≤ b, ∀t ≥ t0 + T. (6.46)

Here, we propose our distributed consensus control for UAVs in the following theorem.

Theorem 6. Let Assumptions 1–3 hold. Define the sliding mode error dynamics as (6.27). Select

the control policy for the local agent as

ui =Kir̄i − Ax̄i − λi ˙̄xi, (6.47)

Assume that λi = λj,∀i, j, (6.47). Consider the error dynamics (6.32) and design matrices Q and

R. Pick following control gain

Ki = R−1P (6.48)

K = (IN ⊗Ki) (6.49)

where P is the unique positive definite solution of control algebraic Riccati equation

0 = Q−PR−1P . (6.50)

The control law (6.47) with the gain (6.48) guarantees asymptotic stability for (6.32). Moreover it

99

stabilizes the system (6.12) and makes the ideal tracking error (6.14) UUB.

Proof. Let eigenvalues of (L+ G) be νi = αi+jβi. Matrix L+ G has αi > 0 because of Assump-

tion 1 and 2. System (6.32) is asymptotically stable if matrices −νiKi are asymptotically stable

(see [65]). Since P > 0, R > 0 and αi > 0 it follows that matrix −νiKi is Hurwitz and (6.32) is

asymptotically stable. From Lyapunov theory, the stability condition for (6.32) is equivalent to

(−ZK)TP + P (−ZK) = Q (6.51)

where Q < 0 and P > 0, P T = P , and K from (6.49). (6.51) is equivalent to

PZK = −1

2
Q. (6.52)

To prove stability in the presence of noisy measurements, consider following Lyapunov function

candidate for multi-agent systems in global form

V =
1

2
rTPr. (6.53)

Differentiating (6.53) with respect to (6.27) yields

V̇ =rTP ṙ

=rTP [((L+ G)⊗ In)(−Λẋ− Agx− u)]

=rTP [((L+ G)⊗ In)(−Λẋ− Agx−Kr̄

+ Agx̄+ Λ ˙̄x]

=rTPΛ((L+ G)⊗ In)µ2+

+ rTP ((L+ G)⊗ In)Agµ1

− rTP ((L+ G)⊗ In)Kr̄. (6.54)

100

For brevity, we use (6.28). Combined with (6.44) gives

V̇ =rTPZλµ2 (6.55)

+ rTPZAµ1

− rTPZK[r − Zλ(µ1 − 1N ⊗ µ0)− Zµ2]

=− rTPZKr + rTP (Zλ + ZKZ)µ2

+ rTP (ZA + ZKZλ)µ1

− rTPZKZλ(1N ⊗ µ0). (6.56)

Note that the upper bound on V̇ can be found through the norm algebra and the bounds that are

previously assumed to limit the measurement noise vectors. To be specific, from (6.55), we have

V̇ ≤−min{||PZK|| · ||r||2}

+max{||r|| · ||P (ZA + ZKZλ)|| · ||µ1||}

+max{||r|| · ||P (Zλ + ZKZ)|| · ||µ2||}

+max{||r|| · ||PZKZλ|| · ||1N ⊗ µ0||}. (6.57)

based on which (6.57) is changed into

V̇ ≤− σmin{PZK} · ||r||2

+ ||r|| · σmax{P (ZA + ZKZλ)} · µ1,B

+ ||r|| · σmax{P (Zλ + ZKZ)} · µ2,B

+ ||r|| · σmax{PZKZλ} · µ1,0,B. (6.58)

Where σmax(M) and σmin(M) denote maximum and minimum eigenvalue of matrix M. From

101

(6.58), it is clear that V̇ is always negative for

||r|| >σmax{P (ZA + ZKZλ)}
σmin{PZK}

µ1,B

+
σmax{P (Zλ + ZKZ)}

σmin{PZK}
µ2,B

+
σmax{PZKZλ}
σmin{PZK}

µ1,0,B.

(6.59)

Moreover, if r is outside the bounding set given in (6.59), our controller will eventually drag the

error inside the set. In other words, the sliding mode error r is bounded to a set which makes all

the signals in the closed-loop multi-agent system UUB.

The controller drags all aliases xai for i = 1, . . . , N to the center of the formation. If all aliases

are in the center of the formation, no action from the controller is required. Neighbourhood errors

quantify the spatial disharmony of the formation. The controller determines an action ui of the

agent i such that it recovers consensus. Λ is a tuning parameter. As given, controller resembles

well known standard PD controller.

6.5 Modifying Edge Weights Based on Trust

In this section, it is shown how UAVs in the graph can distributively modify the graph weights

based on their measure of trustworthiness of the neighbors. The purpose is to maintain the consen-

sus by eliminating negative influence of stubborn agents or extremely noisy measurement imposed

on the local agent.

The trust that agent i has for agent j can be calculated as deviation from the intended average

state of neighboring agents

τij =
θij

‖x̄aj − 1
Ni+1

(x̄ai +
∑

j∈Ni
x̄aj)‖+ θij

. (6.60)

where θij is a certain positive constant that serves as a threshold value. From (6.60), when the local

agent j approaches the average of the neighbourhood agents, the trust value τij approaches one;

102

otherwise, τij approaches zero. With this trust metric, we further propose a mechanism to modify

the graph weights. To this end, we use the differential equation

ḋij = −ηdij + ητij, (6.61)

where η is a certain positive constant. To take into account the trust value calculated for neigh-

bors, the controller (6.47) is now revisited by weighting all edge weights aij by dij . That is all

occurrences of aij in (6.47) are replaced by dijaij .

6.6 Experimental Environment

Figure 6.1 shows an entire system designed at UTA Research Institute for testing distributed con-

trollers on UAVs. Basic four elements are VICON, Crazyflie 2.0 UAVs, and the workstation that

runs master program. Master is implemented as ROS package and it handles consensus controller

calculation as well as local manipulation over UAVs.

As already mentioned, Crazyflie 2.0 is used as UAV and it communicates with master worksta-

tion using radio transceiver. In order to have reliable feedback information, we use motion capture

system VICON. Data is transmitted to master through wireless local area network. Such commu-

nication architecture enables consensus controller to send the control commands to UAVs at 200

Hz, which is more than sufficient.

103

Figure 6.1: Motion capture and communication topology based on master-slave model architec-
ture. robustness constraint introduced in the chapter.

6.6.1 Crazyflie 2.0

Crazyflie 2.0 is a commercially available UAV suitable for research and development. It is cre-

ated by Bitcraze AB. We use their hardware and modify the firmware to implement our control

laws. IMU data collection, four motors with corresponding PWM modules and communication

with radio (nRF51822) is all handled by micro-controller (STM32F405). Attitude controller is

implemented on firmware side rather than on master/server. It uses inputs from outer control loop

(commanded velocities in all three dimensions and commanded yaw rate) and IMU data to sta-

bilize UAV and to drive it to the desired position. Desired values are received from nRF51822,

previously sent from the master. The output of attitude controller are signals that determine PWM

cycle duty and eventually produce propeller thrusts and torques.

104

6.6.2 Master workstation

Figure 6.2 shows the software architecture that is executed on the master workstation. The master

controller is a ROS node that manages general control of all UAVs. Each UAV is controlled by

individual outer loop controller.

Figure 6.2: Distributed multi-threaded software architecture with data pipeline.

The master controller is, in fact, a mission planner. It commands different tasks to UAVs by

communicating with corresponding position controller. It also listens to external user input to

allow manual task switching, manual take off, manual landing, and manual emergency landing.

State machine seems to be a plausible design solution for master controller, considering its cur-

rent function of switching states. As Figure 6.3 clearly shows, there are three different states in

state machine. In waypoint tracking state, master controller simply sets waypoints to position con-

105

trollers. Consensus controller is slightly more complex, as generalized formation error for each

UAV has to be recalculated at every iteration. The idle state is active when all Crazyflies are off.

It is important to notice that user has the control over whole state machine which is a security

requirement.

Figure 6.3: Distributed hierarchical motion control statemachine.
The described procedure can be broken down into following main steps

Check the link quality. If link quality is low proceed to Step 7. Otherwise continue to Step

2. Collect data from VICON, distribute information to agents according to adjacency matrix.

Update trust values and apply them to modify adjacency matrix. Call local distributed controllers.

Send calculated roll, pitch, yaw and thrust commands to each agent. Calculate PWM locally on

each agent and generate forces. If no user interrupt, go back to Step 1. Otherwise go to Step 7.

Start landing sequence. Land.

Algorithm 6.1 Software solution pseudocode
VICON link quality < requirements Switch state to landing Reiterate master loop Collect data
from VICON Distribute position data to linked agents Update trust values Call local controllers
CF link quality < requirements Send desired R,P,Y,T to UAVs Request landing Calculate PWM
based on R,P,Y,T Land and turn off

106

6.7 Flight Tests

Three flight tests are carried out in this section, where different adjacency matrices are picked. For

each experiment, we show two plots, x position and y position for all three UAVs. The desired

reference is set (0, 0, 0.7) and disturbance is applied to one of three UAVs to test the behaviour of

the group. To be specific, we push the UAV away from the point of global equilibrium imposed

by consensus controller. Displacements from the desired reference are ∆1 = (−0.5, 0.5, 0.0),

∆2 = (0.5, 0.5, 0.0), and ∆3 = (−0.5,−0.5, 0.0). Note that in the experiment, we define the

virtual input u as

u = (IN ⊗B)v = Bgv. (6.62)

Technical control vector v can now be calculated from virtual inputs u through

u = (IN ⊗B)v (6.63)

vi = BT (BBT)−1ui (6.64)

In fact, the ability to calculate v is not only a matter of convenience, but rather a necessity, since v

is the command vector that is transmitted to UAV agents. ui is a distributed control signal (6.47). In

first 5 seconds, altitude control is applied to take off UAVs, and after that our consensus controller

is activated.

6.7.1 Experiment 1

In this case, we define the adjacency matrix as

A =

0 0 2

0 0 3

2 3 0

 (6.65)

107

and the pinning gains as g2 = 3 and g1 = g3 = 0. After applying our controller, the experimental

results are presented in Figures 4 and 5, where UAVs 1, 2, and 3 are labelled in red, blue, and green.

Here, UAV 1 is the agent that is injected with disturbances. In this experiment, UAV 1 moves away

from the consensus due to disturbances, while UAVs 2 and 3 try to follow. From (6.65), UAV 3

strictly follows movements of agent 1 in order to keep consensus, since it has direct link to agent

1. Note that UAV 2 is less responsive to position change of agent 1 due to the fact that agent 2 is

connected to the leader.

Also notice that UAV 1 is first sent way out of desired position at around 9th second. At the

very peak, when UAV 1 is more than 0.5 m away from desired position, UAV 3 does not follow

UAV 1 to the extreme deviation because it has lost trust in UAV 1 (a13 was close to 0). The fact

that trajectories of UAVs 1 and 3 have slightly different shapes at that point confirms that (Figure

5). As UAV 1 returns and distance between UAVs 1 and 3 is back as expected, trust increases and

consensus is re-established.

Figure 6.4: Experiment 1, positions x of UAVs

108

Figure 6.5: Experiment 1, positions y of UAVs

109

6.7.2 Experiment 2

Here, we define the adjacency matrix as

A =

0 2 2

2 0 3

2 3 0

 (6.66)

and the pinning gains as g2 = 3 and g1 = g3 = 0. Adding a direct link between agents 1 and 2

makes UAV 2 a bit more responsive. Formation control in Figures 6 and 7 is better compared to

that in the previous experiment.

Figure 6.6: Experiment 2, positions x of UAVs

110

Figure 6.7: Experiment 2, positions y of UAVs

6.7.3 Experiment 3

In the final experiment, the adjacency matrix is designed as

A =

0 1 1

1 0 1

1 1 0

 (6.67)

and pinning gains are given as g1 = g2 = g3 = 1. Compared to the previous experiments, (6.67)

gives the best performance, as shown in Figures 8 and 9. Such results are expected because the

graph is dense and weights are not giving preference to any neighbouring agent.

111

Figure 6.8: Experiment 3, positions x of UAVs

Figure 6.9: Experiment 3, positions y of UAVs

112

Figure 6.10: Photograph of the experiment during consensus

6.8 Conclusion

Consensus control design introduced in this chapter is effective in keeping a group of UAVs in the

formation. Confirmation is given by using Lyapunov theory to prove the stability of the group and

later in the experimental environment on the system of multi UAVs.

It is shown that the robustness of consensus depends highly on the graph topology. In that

aspect, fully connected graphs will provide better basis for firm consensus control. Unfortunately,

it is often the case that practical multi-agent network topology is inherent to the system to which

control is applied. In other words, while designing controller, graph is predefined and cannot be

changed in favor of better control. However, one thing we can do is to update the values of the

links that are present based on the trustworthiness of a neighbouring agent. Our approach achieves

that.

Due to certain practical assumptions about dynamics of the nano UAV and by restricting ex-

periments to a slow flight, we were able to make some reasonable simplifications on the dynamical

model of the UAV. That allowed for more transparent design of the consensus controller in the light

of measurement noises imposed on the system. Future work should extend current design to the do-

main of non-linear control, allowing for dynamically rich experiments and treat the measurement

113

noise with advanced tools such as distributed Kalman filter.

114

Chapter 7: CONCLUSION AND FUTURE DIRECTIONS

The fields of optimal control, reinforcement learning, inverse optimal control and inverse rein-

forcement learning all deal with different partial aspects of rational objectives and behavior of

dynamic agents. None of these different fields deal with the complete picture. Moreover, the

relations among these fields are not fully understood since they come from different disciplines

including feedback control, computer science, machine learning, game theory among others. In

this dissertation, we have worked on 4 important problems in optimal decision making.

First contribution of this dissertation is to provide a unified theoretical framework that joins op-

timal control, reinforcement learning, inverse RL and inverse OC and shows how they are related.

Moreover, rigorous mathematical proofs of convergence, stability and optimality of model-based

and model-free Inverse RL algorithms are provided.

All optimal decision making frameworks require that the cost function is given upfront. It is

hard to choose a cost function when the performance criteria are subjective and human dependent

(e.g. comfort). We have developed iterative algorithm for learning the objectives that an expert

agent is optimizing. With our algorithm, the cost of underlying LQR can be attuned to human

preferences.

Second important contribution is the development of dynamic intelligent control allocation

mechanism that can be used for actuator allocation in redundant robotic systems. This contribution

is important as the redundancy in aerial vehicles as well as ground robots is an emerging necessity

out of safety reasons. We show that data-driven reinforcement learning algorithm can be used to

accomplish this task.

In our third contribution, we developed a mechanism for including uncertainty information

from learned model of system dynamics into existing trajectory optimization, state-of-the-art meth-

ods. We proposed a robust method for capturing the uncertainty information that is initially esti-

mated by machine learning models such as Gaussian Process.

Finally, we have studied decision-making in multi-agent scenarios and developed a distributed

115

controller that can navigate a flock of UAVs in a decentralized fashion.

We envision a few research directions that can further improve on our work.

1) Inverse Reinforcement Learning in combination with Optimal Control is a promising frame-

work for capturing human intentions and objectives based on data. In general, all optimal con-

trollers (LQR, MPC, Hinfinity, iLQR, trajectory optimization,...) have associated cost. All these

controllers appear in standard robotic systems such as self-driving car or robot manipulator. Opti-

mal controllers are extremely good at accomplishing optimal behaviour if the right cost function is

provided. The method developed in this dissertation can be used for data-driven tuning of the cost

function. Experimental studies are needed to test the scalability of this method on various real life

applications.

2) Optimal decision making (RL) and the inference of objectives and intents (Inverse RL) can be

studied in the multi-player setting. The behavior of agents in a network of agents can be best

explained by studying the objectives of these agents.

3) Control allocation is another topic that can be further extended. In our work, we take advantage

of linear relationship to identify the null-space of allocation matrix as the space that contains all

redundant solution. An important extension of this work is to consider nonlinear actuators.

4) Uncertainty informed robust decision making can be improved by considering the hybrid of our

solution and sampling based solution. This work can also be extended by considering more pow-

erful machine-learning models such as multi-modal distributions that can model different modes

of behaviours.

116

BIBLIOGRAPHY

[1] Pieter Abbeel, Adam Coates, and Andrew Y. Ng. Autonomous helicopter aerobatics through

apprenticeship learning. The International Journal of Robotics Research, 29(13):1608–

1639, 2010.

[2] Pieter Abbeel and Andrew Y. Ng. Apprenticeship learning via inverse reinforcement learn-

ing. International Conference on Machine Learning, 2004.

[3] E. Arabi, T. Yucelen, and W. M. Haddad. Mitigating the effects of sensor uncertainties in

networked multiagent systems. In 2016 American Control Conference (ACC), pages 5545–

5550, 2016.

[4] John Baras and Tao Jiang. Cooperation, Trust and Games in Wireless Networks, pages

183–202. 01 2005.

[5] Randal W. Beard and Timothy W. McLain. Small Unmanned Aircraft. Princeton University

Press, 2012.

[6] Richard Bellman. Dynamic programming. Science, 153(3731):34–37, 1966.

[7] Dennis S. Bernstein. Matrix Mathematics: Theory, Facts, and Formulas. Princeton Univer-

sity Press, second edition, 2011.

[8] Dimitri Bertsekas. Dynamic Programming and Optimal Control, volume 1. 01 1995.

[9] Dimitri P Bertsekas. Nonlinear programming. Journal of the Operational Research Society,

48(3):334–334, 1997.

[10] K. Bordignon. Constrained control allocation for systems with redundant control effectors.

1996.

117

[11] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear Matrix Inequalities in System

and Control Theory, volume 15 of Studies in Applied Mathematics. SIAM, Philadelphia,

PA, June 1994.

[12] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Eckstein, et al. Distributed

optimization and statistical learning via the alternating direction method of multipliers.

Foundations and Trends® in Machine learning, 3(1):1–122, 2011.

[13] T. BÃCchle, K. Graichen, M. Buchholz, and K. Dietmayer. Model predictive control alloca-

tion in electric vehicle drive trains. IFAC-PapersOnLine, 48(15):335–340, 2015. 4th IFAC

Workshop on Engine and Powertrain Control, Simulation and Modeling E-COSM 2015.

[14] A. Chakrabarty, D. K. Jha, and Y. Wang. Data-driven control policies for partially known

systems via kernelized lipschitz learning. In 2019 American Control Conference (ACC),

pages 4192–4197, July 2019.

[15] A. Chakrabarty, R. Quirynen, C. Danielson, and W. Gao. Approximate dynamic program-

ming for linear systems with state and input constraints. In 2019 18th European Control

Conference (ECC), pages 524–529, June 2019.

[16] Ankush Chakrabarty, Devesh K Jha, Gregery T Buzzard, Yebin Wang, and Kyriakos

Vamvoudakis. Safe approximate dynamic programming via kernelized lipschitz estimation.

arXiv preprint arXiv:1907.02151, 2019.

[17] Yevgen Chebotar, Mrinal Kalakrishnan, Ali Yahya, Adrian Li, Stefan Schaal, and Sergey

Levine. Path integral guided policy search. In 2017 IEEE international conference on

robotics and automation (ICRA), pages 3381–3388. IEEE, 2017.

[18] Seungwon Choi and Suseong Kim. Inverse reinforcement learning control for trajectory

tracking of a multirotor uav. International Journal of Control, Automation and Systems, 15,

07 2017.

118

[19] John J. Craig. Introduction to Robotics: Mechanics and Control. Addison-Wesley Longman

Publishing Co., Inc., USA, 2nd edition, 1989.

[20] Abhijit Das and Frank Lewis. Cooperative adaptive control for synchronization of second-

order systems with unknown nonlinearities. International Journal of Robust and Nonlinear

Control, 21:1509 – 1524, 09 2011.

[21] Abhijit Das, Frank Lewis, and Kamesh Subbarao. Backstepping approach for controlling

a quadrotor using lagrange form dynamics. Journal of Intelligent and Robotic Systems,

56(1-2):127–151, April 2009.

[22] Abhijit Das, Kamesh Subbarao, and F. Lewis. Dynamic inversion with zero-dynamics sta-

bilisation for quadrotor control. Control Theory Applications, IET, 3:303 – 314, 04 2009.

[23] Gianmaria De Tommasi, Sergio Galeani, Alfredo Pironti, Gianluca Varano, and Luca Za-

ccarian. Brief paper: Nonlinear dynamic allocator for optimal input/output performance

trade-off: Application to the jet tokamak shape controller. Automatica, 47(5):981â987, May

2011.

[24] Mao de Yan, Xu Zhu, Xun xun Zhang, and Yao hong Qu. Consensus-based three-

dimensionalmulti-UAV formation control strategy with high precision. Frontiers of Infor-

mation Technology & Electronic Engineering, 18(7):968–977, July 2017.

[25] Marc Deisenroth and Carl E Rasmussen. PILCO: A model-based and data-efficient ap-

proach to policy search. In Proceedings of the 28th International Conference on machine

learning (ICML-11), pages 465–472, 2011.

[26] Haitham El-Hussieny, Ahmed Ali, Samy Assal, and Said Megahed. Adaptive learning of

human motor behaviors: An evolving inverse optimal control approach. Engineering Appli-

cations of Artificial Intelligence, 50:115–124, 02 2016.

[27] C. M. Elliott, G. Tallant, and A. Dogan. On probability collectives for distributed control

allocation. In 2017 IEEE Aerospace Conference, pages 1–11, 2017.

119

[28] S. Elvira-Ceja and E. N. Sanchez. Discrete-time inverse optimal control for stochastic non-

linear systems trajectory tracking. In 52nd IEEE Conference on Decision and Control, pages

2483–2487, 2013.

[29] F. Facchinei and J.-S. Pang. Finite-Dimensional Variational Inequalities and Complemen-

tarity Problems, Volume II. Springer, New York, NY, 2003.

[30] T. Fernando, S. Denman, S. Sridharan, and C. Fookes. Deep inverse reinforcement learning

for behavior prediction in autonomous driving: Accurate forecasts of vehicle motion. IEEE

Signal Processing Magazine, 38(1):87–96, 2021.

[31] Sergio Galeani, Andrea Serrani, Gianluca Varano, and Luca Zaccarian. On input allocation-

based regulation for linear over-actuated systems. Automatica, 52(C):346â354, February

2015.

[32] Hongbo Gao, Guanya Shi, Guotao Xie, and Bo Cheng. Car-following method based on in-

verse reinforcement learning for autonomous vehicle decision-making. International Jour-

nal of Advanced Robotic Systems, 15(6):1729881418817162, 2018.

[33] Wassim Haddad and Vijaysekhar Chellaboina. Nonlinear Dynamical Systems and Control:

A Lyapunov-Based Approach. Princeton university press, 2008.

[34] Dylan Hadfield-Menell, Stuart J Russell, Pieter Abbeel, and Anca Dragan. Cooperative

inverse reinforcement learning. Advances in Neural Information Processing Systems, pages

3909–3917.

[35] Weiqiao Han and Russ Tedrake. Local trajectory stabilization for dexterous manipulation

via piecewise affine approximations. arXiv e-prints, 2019. https://arxiv.org/abs/

1909.08045.

[36] O. Harkegard. Efficient active set algorithms for solving constrained least squares problems

in aircraft control allocation. In Proceedings of the 41st IEEE Conference on Decision and

Control, 2002., volume 2, pages 1295–1300 vol.2, 2002.

120

https://arxiv.org/abs/1909.08045
https://arxiv.org/abs/1909.08045

[37] Ola Harkegard. Dynamic control allocation using constrained quadratic programming. In

AIAA Guidance, Navigation, and Control Conference and Exhibit. American Institute of

Aeronautics and Astronautics, June 2002.

[38] Ola Harkegard and S. Torkel Glad. Resolving actuator redundancy-optimal control vs. con-

trol allocation. Automatica, 41(1):137â144, January 2005.

[39] G.A Hewer. Analysis of a discrete matrix riccati equation of linear control and kalman

filtering. Journal of Mathematical Analysis and Applications, 42(1):226 – 236, 1973.

[40] N. J. Higham. Functions of matrices: theory and computation. Society for Industrial and

Applied Mathematics, 2008.

[41] Ola HÃCrkegÃ¥rd and S. Torkel Glad. Flight control design using backstepping. IFAC

Proceedings Volumes, 34(6):283–288, 2001. 5th IFAC Symposium on Nonlinear Control

Systems 2001, St Petersburg, Russia, 4-6 July 2001.

[42] Auke Jan Ijspeert, Jun Nakanishi, Heiko Hoffmann, Peter Pastor, and Stefan Schaal. Dy-

namical movement primitives: learning attractor models for motor behaviors. Neural com-

putation, 25(2):328–373, 2013.

[43] David H Jacobson. New second-order and first-order algorithms for determining optimal

control: A differential dynamic programming approach. Journal of Optimization Theory

and Applications, 2(6):411–440, 1968.

[44] D. K. Jha, D. Nikovski, W. Yerazunis, and A. Farahmand. Learning to regulate rolling ball

motion. In 2017 IEEE Symposium Series on Computational Intelligence (SSCI), pages 1–6,

Nov 2017.

[45] Devesh Jha, Patrik Kolaric, Diego Romeres, Arvind Raghunathan, Mouhacine Benosman,

and Daniel N Nikovski. Robust optimization for trajectory-centric model-based reinforce-

ment learning. In Workshop on Safety and Robustness in Decision Making at NeurIPS 2019.

NeurIPS, 2019.

121

[46] Sang-Won Ji, Van Phuoc Bui, B. Balachandran, and Young-Bok Kim. Robust control allo-

cation design for marine vessel. Ocean Engineering, 63:105–111, 2013.

[47] T. Jiang and J. S. Baras. Trust evaluation in anarchy: A case study on autonomous networks.

In Proceedings IEEE INFOCOM 2006. 25TH IEEE International Conference on Computer

Communications, pages 1–12, 2006.

[48] Yu Jiang and Zhong-Ping Jiang. Computational adaptive optimal control for continuous-

time linear systems with completely unknown dynamics. Automatica, 48(10):2699–2704,

2012.

[49] Tor A. Johansen and Thor I. Fossen. Control allocationâa survey. Automatica, 49(5):1087–

1103, 2013.

[50] R. E. Kalman. When Is a Linear Control System Optimal? Journal of Basic Engineering,

86(1):51–60, 03 1964.

[51] S. Khoo, L. Xie, and Z. Man. Robust finite-time consensus tracking algorithm for multirobot

systems. IEEE/ASME Transactions on Mechatronics, 14(2):219–228, 2009.

[52] D. L. Kleinman. On the iterative technique for riccati equation computations. IEEE Trans-

actions on Automatic Control, 13:114â115, 1968.

[53] Y. Kuriki and T. Namerikawa. Formation control of uavs with a fourth-order flight dynamics.

In 52nd IEEE Conference on Decision and Control, pages 6706–6711, 2013.

[54] Y. Kuriki and T. Namerikawa. Consensus-based cooperative formation control with collision

avoidance for a multi-uav system. In 2014 American Control Conference, pages 2077–2082,

2014.

[55] P. Lancaster and L. Rodman. Algebraic Riccati Equations. Clarendon Press, 1995.

122

[56] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of

deep visuomotor policies. The Journal of Machine Learning Research, 17(1):1334–1373,

2016.

[57] Sergey Levine and Vladlen Koltun. Guided policy search. In International Conference on

Machine Learning, pages 1–9, 2013.

[58] F. L. Lewis and M. Abu-Khalaf. A hamilton-jacobi setup for constrained neural network

control. In Proceedings of the 2003 IEEE International Symposium on Intelligent Control,

pages 1–15, 2003.

[59] F. L. Lewis and D. Vrabie. Reinforcement learning and adaptive dynamic programming for

feedback control. IEEE Circuits and Systems Magazine, 9(3):32–50, 2009.

[60] F. L. Lewis and D. Vrabie. Reinforcement learning and adaptive dynamic programming for

feedback control. IEEE Circuits and Systems Magazine, 9(3):32–50, 2009.

[61] F. L. Lewis and D. Vrabie. Reinforcement learning and adaptive dynamic programming for

feedback control. IEEE Circuits and Systems Magazine, 9(3):32–50, 2009.

[62] F W Lewis, S. Jagannathan, and A Yesildirak. Neural Network Control Of Robot Manipu-

lators And Non-Linear Systems. CRC Press, August 2020.

[63] Frank Lewis, Draguna Vrabie, and Vassilis Syrmos. Optimal Control. Wiley, 2012.

[64] Frank L. Lewis, Draguna L. Vrabie, and Vassilis L. Syrmos. Optimal Control. John Wiley

& Sons, Inc., January 2012.

[65] Frank L. Lewis, Hongwei Zhang, Kristian Hengster-Movric, and Abhijit Das. Coopera-

tive Control of Multi-Agent Systems: Optimal and Adaptive Design Approaches. Springer

Publishing Company, Incorporated, 2014.

[66] X. Lin, P. A. Beling, and R. Cogill. Multiagent inverse reinforcement learning for two-

person zero-sum games. IEEE Transactions on Games, 10(1):56–68, 2018.

123

[67] Anirudha Majumdar, Amir Ali Ahmadi, and Russ Tedrake. Control design along trajectories

with sums of squares programming. In 2013 IEEE International Conference on Robotics

and Automation, pages 4054–4061. IEEE, 2013.

[68] S. Martinez. Uav cooperative decision and control: Challenges and practical approaches

(shima, t. and rasmussen, s.; 2008) [bookshelf]. IEEE Control Systems Magazine,

30(2):104–107, 2010.

[69] H. Modares, F. L. Lewis, and Z. Jiang. H∞ tracking control of completely unknown

continuous-time systems via off-policy reinforcement learning. IEEE Transactions on Neu-

ral Networks and Learning Systems, 26(10):2550–2562, 2015.

[70] Timothy L. Molloy, Jason J. Ford, and Tristan Perez. Finite-horizon inverse optimal control

for discrete-time nonlinear systems. Automatica, 87:442 – 446, 2018.

[71] William H Montgomery and Sergey Levine. Guided policy search via approximate mirror

descent. In Advances in Neural Information Processing Systems, pages 4008–4016, 2016.

[72] Richard M. Murray. Recent Research in Cooperative Control of Multivehicle Systems.

Journal of Dynamic Systems, Measurement, and Control, 129(5):571–583, 05 2007.

[73] Mehdi Naderi, Ali Khaki Sedigh, and Tor Arne Johansen. Guaranteed feasible control

allocation using model predictive control. Control Theory and Technology, 17(3):252–264,

July 2019.

[74] Anusha Nagabandi, Gregory Kahn, Ronald S Fearing, and Sergey Levine. Neural network

dynamics for model-based deep reinforcement learning with model-free fine-tuning. In

2018 IEEE International Conference on Robotics and Automation (ICRA), pages 7559–

7566. IEEE, 2018.

[75] Andrew Y. Ng, Daishi Harada, and Stuart J. Russell. Policy invariance under reward trans-

formations: Theory and application to reward shaping. In Proceedings of the Sixteenth

124

International Conference on Machine Learning, ICML â99, page 278â287. Morgan Kauf-

mann Publishers Inc., 1999.

[76] Andrew Y. Ng and Stuart Russell. Algorithms for inverse reinforcement learning. In in

Proc. 17th International Conf. on Machine Learning, pages 663–670. Morgan Kaufmann,

2000.

[77] Jorge Nocedal and Stephen Wright. Numerical optimization. Springer Science & Business

Media, 2006.

[78] R. W. Obermayer and F. A. Muckler. On the inverse optimal control problem in manual

control systems. National Aeronautics and Space Administration, 1965.

[79] R. Olfati-Saber, J. A. Fax, and R. M. Murray. Consensus and cooperation in networked

multi-agent systems. Proceedings of the IEEE, 95(1):215–233, 2007.

[80] M. W. Oppenheimer, D. B. Doman, and M. A. Bolender. Control allocation for over-actuated

systems. In 2006 14th Mediterranean Conference on Control and Automation, pages 1–6,

2006.

[81] Yonmook Park. Inverse optimal and robust nonlinear attitude control of rigid spacecraft.

Aerospace Science and Technology, 28(1):257 – 265, 2013.

[82] J. A. M. Petersen and M. Bodson. Constrained quadratic programming techniques for con-

trol allocation. IEEE Transactions on Control Systems Technology, 14(1):91–98, 2006.

[83] Z. Qu, J. Wang, and R. A. Hull. Cooperative control of dynamical systems with application

to autonomous vehicles. IEEE Transactions on Automatic Control, 53(4):894–911, 2008.

[84] Zhihua Qu. Cooperative control of dynamical systems: Applications to autonomous vehi-

cles. Cooperative Control of Dynamical Systems: Applications to Autonomous Vehicles, 01

2009.

125

[85] Guilherme V. Raffo, Manuel G. Ortega, and Francisco R. Rubio. An integral predic-

tive/nonlinear hâ control structure for a quadrotor helicopter. Automatica, 46(1):29–39,

2010.

[86] Carl Edward Rasmussen. Gaussian processes in machine learning. In Summer School on

Machine Learning, pages 63–71. Springer, 2003.

[87] W. Ren, R. W. Beard, and E. M. Atkins. Information consensus in multivehicle cooperative

control. IEEE Control Systems Magazine, 27(2):71–82, 2007.

[88] Diego Romeres, Devesh K Jha, Alberto DallaLibera, Bill Yerazunis, and Daniel Nikovski.

Semiparametrical gaussian processes learning of forward dynamical models for navigating

in a circular maze. In 2019 International Conference on Robotics and Automation (ICRA),

pages 3195–3202. IEEE, 2019.

[89] Ornelas-Tellez F. Sanchez, E.N. Discrete-Time Inverse Optimal Control for Nonlinear

Systems. CRC Press, 2013.

[90] Stefan Schaal. Is imitation learning the route to humanoid robots? Trends in Cognitive

Sciences, 3(6):233 – 242, 1999.

[91] A. Serrani. Output regulation for over-actuated linear systems via inverse model allocation.

In 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), pages 4871–4876,

2012.

[92] Zhifei Shao and Meng Joo Er. A survey of inverse reinforcement learning techniques. Int.

J. Intelligent Computing and Cybernetics, 5:293–311, 2012.

[93] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van

Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc

Lanctot, et al. Mastering the game of go with deep neural networks and tree search. nature,

529(7587):484, 2016.

126

[94] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang,

Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Master-

ing the game of go without human knowledge. Nature, 550(7676):354, 2017.

[95] J.J.E. Slotine and W. Li. Applied Nonlinear Control. Prentice-Hall International Editions.

Prentice-Hall, 1991.

[96] Brian L. Stevens, Frank L. Lewis, and Eric N. Johnson. Aircraft Control and Simulation:

Dynamics, Controls Design, and Autonomous Systems. John Wiley & Sons, Inc, November

2015.

[97] H. J. Sussmann and J. C. Willems. 300 years of optimal control: from the brachystochrone

to the maximum principle. IEEE Control Systems Magazine, 17(3):32–44, 1997.

[98] Richard Sutton and Andrew Barto. Reinforcement learning: An Introduction, 2nd edition.

MIT press.

[99] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction (2nd

Edition), volume 1. MIT press Cambridge, 2018.

[100] C. Tan, Y. Li, and Y. Cheng. An inverse reinforcement learning algorithm for semi-markov

decision processes. In 2017 IEEE Symposium Series on Computational Intelligence (SSCI),

pages 1–6, 2017.

[101] Yuval Tassa, Tom Erez, and Emanuel Todorov. Synthesis and stabilization of complex be-

haviors through online trajectory optimization. In 2012 IEEE/RSJ International Conference

on Intelligent Robots and Systems, pages 4906–4913. IEEE, 2012.

[102] Russ Tedrake, Ian R Manchester, Mark Tobenkin, and John W Roberts. LQR-trees:

Feedback motion planning via sums-of-squares verification. The International Journal of

Robotics Research, 29(8):1038–1052, 2010.

127

[103] Evangelos Theodorou, Jonas Buchli, and Stefan Schaal. A generalized path integral control

approach to reinforcement learning. journal of machine learning research, 11(Nov):3137–

3181, 2010.

[104] Johan Thunberg, Wenjun Song, Yiguang Hong, and Xiaoming Hu. Distributed attitude syn-

chronization using backstepping and sliding mode control. Control Theory and Technology,

12(1):48–55, January 2014.

[105] J. Tjonnas and T. A. Johansen. Optimizing adaptive control allocation with actuator dynam-

ics. In 2007 46th IEEE Conference on Decision and Control, pages 3780–3785, 2007.

[106] Johannes Tjonnas and Tor A. Johansen. Adaptive control allocation. Automatica,

44(11):2754â2765, November 2008.

[107] S.S. Tohidi, Y. Yildiz, and I. Kolmanovsky. Adaptive control allocation for over-actuated

systems with actuator saturation **author yildiray yildiz would like to thank the scientific

and technological research council of turkey (tubitak) for its financial support through the

2232 reintegration scholarship program. IFAC-PapersOnLine, 50(1):5492–5497, 2017. 20th

IFAC World Congress.

[108] K. G. Vamvoudakis and F. L. Lewis. Online solution of nonlinear two-player zero-sum

games using synchronous policy iteration. In 49th IEEE Conference on Decision and Con-

trol (CDC), pages 3040–3047, Dec 2010.

[109] K.G. Vamvoudakis, P.J. Antsaklis, W.E. Dixon, J.P. Hespanha, F.L. Lewis, H. Modares,

and B. Kiumarsi. Autonomy and machine intelligence in complex systems: A tutorial. In

American Control Conference (ACC), 2015, pages 5062–5079, July 2015.

[110] Kyriakos G. Vamvoudakis and Frank L. Lewis. Multi-player non-zero-sum games: Online

adaptive learning solution of coupled hamiltonâjacobi equations. Automatica, 47(8):1556–

1569, 2011.

128

[111] D. Vrabie and F. Lewis. Adaptive dynamic programming algorithm for finding online the

equilibrium solution of the two-player zero-sum differential game. In The 2010 Interna-

tional Joint Conference on Neural Networks (IJCNN), pages 1–8, July 2010.

[112] D. Vrabie, O. Pastravanu, M. Abu-Khalaf, and F.L. Lewis. Adaptive optimal control for

continuous-time linear systems based on policy iteration. Automatica, 45(2):477 – 484,

2009.

[113] D. Vrabie, K. G. Vamvoudakis, and F. L. Lewis. Optimal Adaptive Control and Differential

Games by Reinforcement Learning Principles. IET control engineering series. Institution of

Engineering and Technology, 2013.

[114] Jing Wang, Xiaohong Nian, and Hai-bo Wang. Consensus and formation control of discrete-

time multi-agent systems. Journal of Central South University of Technology (English Edi-

tion), 18:1161–1168, 08 2011.

[115] P. Wang, Z. Man, Z. Cao, J. Zheng, and Y. Zhao. Dynamics modelling and linear con-

trol of quadcopter. In 2016 International Conference on Advanced Mechatronic Systems

(ICAMechS), pages 498–503, 2016.

[116] Tingwu Wang, Xuchan Bao, Ignasi Clavera, Jerrick Hoang, Yeming Wen, Eric Langlois,

Shunshi Zhang, Guodong Zhang, Pieter Abbeel, and Jimmy Ba. Benchmarking Model-

Based Reinforcement Learning. arXiv e-prints, page arXiv:1907.02057, Jul 2019.

[117] Grady Williams, Nolan Wagener, Brian Goldfain, Paul Drews, James M Rehg, Byron Boots,

and Evangelos A Theodorou. Information theoretic mpc for model-based reinforcement

learning. In 2017 IEEE International Conference on Robotics and Automation (ICRA),

pages 1714–1721. IEEE, 2017.

[118] Markus Wulfmeier, Dushyant Rao, Dominic Zeng Wang, Peter Ondruska, and Ingmar Pos-

ner. Large-scale cost function learning for path planning using deep inverse reinforcement

learning. The International Journal of Robotics Research, 36(10):1073–1087, 2017.

129

[119] Xiang Xu, Lu Liu, and Gang Feng. Consensus of single integrator multi-agent systems with

directed topology and communication delays. Control Theory and Technology, 14(1):21–27,

February 2016.

[120] Yu Luo, A. Serrani, S. Yurkovich, D. B. Doman, and M. W. Oppenheimer. Model predictive

dynamic control allocation with actuator dynamics. In Proceedings of the 2004 American

Control Conference, volume 2, pages 1695–1700 vol.2, 2004.

[121] T. Yucelen, W. M. Haddad, and E. M. Feron. Adaptive control architectures for mitigating

sensor attacks in cyber-physical systems. In 2016 American Control Conference (ACC),

pages 1165–1170, 2016.

[122] Luca Zaccarian. Dynamic allocation for input redundant control systems. Automatica,

45(6):1431–1438, 2009.

[123] H. Zhang, T. Feng, G. Yang, and H. Liang. Distributed cooperative optimal control for

multiagent systems on directed graphs: An inverse optimal approach. IEEE Transactions

on Cybernetics, 45(7):1315–1326, 2015.

[124] H. Zhang, F. L. Lewis, and A. Das. Optimal design for synchronization of cooperative

systems: State feedback, observer and output feedback. IEEE Transactions on Automatic

Control, 56(8):1948–1952, Aug 2011.

[125] Han Zhang, Jack Umenberger, and Xiaoming Hu. Inverse optimal control for discrete-time

finite-horizon linear quadratic regulators. Automatica, 110:108593, 2019.

[126] Brian D. Ziebart, Andrew Maas, J. Andrew Bagnell, and Anind K. Dey. Maximum entropy

inverse reinforcement learning. pages 1433–1438, 2008.

130

VITA

Patrik received B.S. in 2013 and M.S. in 2015 from University of Zagreb, both in electrical

engineering. He achieved Ph.D. degree at University of Texas, Arlington in 2021. During the

time of Ph.D.He worked at UTA Research Institute as a researcher and manager of Autonomous

System Lab. He was awarded Enhanced GTA scholarship at UTA. His research insterest include

data-driven intelligent control, reinforcement learning, machine learning, robotics and distributed

systems.

	Acknowledgements
	Abstract
	List of Figures
	Chapter 1: Introduction
	Chapter 2: Review of Optimal Decision Making: Optimal Control and Reinforcement Learning
	Optimal Control Problem
	Solving Optimal Control Problem
	Reinforcement Learning Problem
	Continuous-Time Reinforcement Learning Algorithms
	Continuous-Time On Policy Reinforcement Learning
	Continuous-Time Off-Policy Reinforcement Learning

	Chapter 3: Inverse Reinforcement Learning
	Problem Formulation
	Set of optimal solutions to LQR
	Expert Policy and Expert Subset
	Inverse Reinforcement Learning Problem Definition

	The Expert Subset Analysis
	Analytical expression for the elements of the Expert Subset

	Model-Based Inverse Reinforcement Learning Algorithms
	Model-Based Inverse Reinforcement Learning - Riccati Iterations
	Model-Based Inverse Reinforcement Learning - Value Iteration

	Data-Driven algorithm
	Integral Inverse Reinforcement Learning
	Data-Driven Algorithm Implementation

	Simulation Results
	Conclusion
	Proofs
	Proof of Lemma 5
	Proof of Lemma 6

	Chapter 4: Model Based Reinforcment Learning for Safe Trajectory Optimization
	Motivation for Model based Reinforcement Learning
	Introduction
	Related Work
	Problem Formulation
	Trajectory Optimization as Non-linear Program
	Trajectory Optimization with Local Stabilization

	Solution Approach
	Experimental Results
	Simulation Results for Underactuated Pendulum
	Results on Ball-and-Beam System

	Conclusion and Future Work

	Chapter 5: Optimal Dynamic Control Allocation of Input Redundant Systems
	Introduction
	Mathematical Preliminaries
	Actuator Redundancy

	Optimal Dynamic Allocator
	Optimal Dynamic Allocator Problem
	Comparison with Optimal Static Allocators

	Linear Quadratic H allocation
	Constrained model-free optimal control allocation
	Online Reinforcement Learning (RL) algorithm
	Approximate Neural Network Solution to IRL

	Experimental Validation
	Conclusion

	Chapter 6: Distributed Formation Control of Multi-agent System of UAVs
	Introduction
	Preliminaries on Graph Theory
	Quadrotor dynamics
	Position consensus controller
	Modifying Edge Weights Based on Trust
	Experimental Environment
	Crazyflie 2.0
	Master workstation

	Flight Tests
	Experiment 1
	Experiment 2
	Experiment 3

	Conclusion

	Chapter 7: Conclusion and Future Directions
	Bibliography
	Vita

