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ABSTRACT

LOW-DOSE CT IMAGE DENOISING USING DEEP LEARNING METHODS

ZEHENG LI, M.S.

The University of Texas at Arlington, 2021

Supervising Professor: Dr. Junzhou Huang

Low-dose computed tomography (LDCT) has raised highly attention since the

counterpart, full-dose computed tomography (FDCT), brings potential ionizing ra-

diation influence to patients. However, LDCT still suffers from several issues such

as relatively higher noise level, which limits its uses in practical applications. To

improve LDCT image quality, conventional denoising methods, such as KSVD and

BM3D, are first introduced to suppress noise in low-dose images. These methods,

however, works under assumptions that are not robust to various data. In this pa-

per, we conduct an extensive research on deep learning based denoising method in

LDCT images. We mainly base on Generative-Adversarial Network (GAN) variants,

such as CycleGAN, IdentityGAN and GAN-CIRCLE, and compare their performance

in low-dose image denoising. Compared to supervised deep learning methods, these

GAN based methods effectively learn image translation from the low-dose domain to

the full-dose (FD) domain without the need of aligning FDCT and LDCT images,

which is usually required in other methods for domain translation. Experiments on

real and synthetic patient CT data show that these methods can achieve comparable

peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM) to, if not
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better than, the other state-of-the-art denoising methods. Among CycleGAN, Iden-

tityGAN, and GAN-CIRCLE, the later achieves the best denoising performance with

the shortest wall clock time. In addition, we use GAN-CIRCLE to demonstrate that

the increasing number of training patches and training patients can improve denois-

ing performance. Finally, two non-overlapping experiments, i.e., no counterparts of

FDCT and LDCT images in the training data, further demonstrate the effectiveness

of unpaired learning methods. This work paves the way for applying unpaired GAN

based methods to enhance LDCT images without requiring aligned FD and low-dose

images from the same patient.
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CHAPTER 1

INTRODUCTION

1.1 Low-dose CT denoising

In modern medicine, computed tomography (CT) is a common technique to pro-

duce cross-sectional images of the human body to find abnormalities through X-ray

scanning around the patient. However, ionizing radiation in X-ray CT can potentially

introduce adverse effects on patients [1], [2], especially for full-dose computer tomog-

raphy (FDCT). To alleviate this problem, low-dose CT (LDCT) is pursued to scan

the patient with the radiation dose lower than the regular dose without compromising

the diagnostical accuracy of CT images [3], [4]. Compared to FDCT, the lower radia-

tion dose of a CT scan features lowering X-ray tube cur- rent, lowering tube voltage,

shortening exposure time, using sparse sampling, or combining the aforementioned

techniques. In order to maintain the image quality, special image reconstruction and

processing algorithms are needed to address the elevated noise and artifacts arisen

in LDCT. In this work, we are particularly interested in addressing such high noise

problem for LDCT using low tube current.

There are three major categories of LDCT denoising methods: 1) preprocessing

of projection data [5]; 2) post- reconstruction image processing [6]–[12]; and 3) sta-

tistical iterative reconstruction [13]–[25]. All three categories of methods were under

active research. For the preprocessing methods, the noise or artifacts in the projection

data are either smoothed out or removed first. Then, the clean projection data can be

used in a common reconstruction method such as filtered back-projection (FBP). For

the statistical iterative reconstruction methods, the statistical nature of the projection
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(a) full dose CT (b) low dose CT

(c) noise

Figure 1.1: The examples of computed tomography

data and the desired image properties (using priors or regularizations) are modeled in

the CT imaging process and solved iteratively. The methods in both categories have

achieved much-improved image quality for LDCT. However, these methods require

projection data, which is usually difficult to access due to the protection of the intel-

lectual properties of the CT manufacturers. In addition, the iterative reconstruction

methods usually suffer high computation complexity, which takes significant time if

no special computational tools, such as high-end parallel hardware, are used. To

address these issues, the post-reconstruction image processing methods directly work

on the reconstructed images and provide an efficient tool for LDCT denoising. In this

work, we extend the research along this direction.
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1.2 Conventional Methods for Denoising

There are mainly two kinds of methods to suppress the noise in LDCT images:

1) conventional methods and 2) deep learning-based methods. The conventional

methods usually first construct a simple relation between useful information and noise

in images, then apply optimization algorithms to obtain denoised images. Toward

this end, this type of method needs some prior knowledge or assumptions of noisy

data. For example, a dictionary learning method, KSVD, was proposed to effectively

reduce noise and artifacts in images using sparse representations of an overcomplete

dictionary [26]. Both the atoms in the dictionary and the sparse representation of

the dictionary are updated alternatively until the optimal denoising performance is

achieved. Another popular and effective technique is the nonlocal means (NLM)

filtering [9], [27]–[29], where the denoised pixel is computed as a weighted average of

all the pixels in a search window, not like the conventional local filtering methods.

NLM filtering can not only suppress noise in low-dose images but also preserve their

details and texture. A patch-based NLM method (block-matching 3-D filter (BM3D)

[30]) further improves denoising performance by block-matching and empirical Wiener

filtering.

1.3 Deep Learning-based Methods for Denoising

The conventional denoising methods though effectively suppress noise in LDCT

images, some important and detailed local information is usually suppressed too due

to the generic principle of removing high-frequency components as noise. Besides,

these handcrafted algorithms are usually only effective to a certain type of noise,

but may perform badly if the prior knowledge is not accurate or the assumptions

do not hold. Considering the high variety of CT images, more robust methods are
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needed to provide a general solution for low-dose image denoising. Recently, the

deep-learning-based methods are emerging as a promising alternative for CT image

denoising. Without strong assumptions and manual feature engineering, these meth-

ods can automatically extract useful features in image data, which makes it easier

to evolve the trained model by accommodating new data. In [31] and [32], convo-

lutional neural networks (CNNs) were applied to CT denoising, which shows CNNs

are very effective on learning features in full-dose (FD) high-quality CT images in a

supervised manner. A follow-up development, RED-CNN [33], adopts encoder and

decoder strategies to extract detailed structures in residual images. A wavelet-based

deep learning method also demonstrates superior denoising performance for low-dose

CT [34]. In addition, CNNs are also used to denoise CT perfusion maps instead of raw

data [35]. In addition to the CNN-based methods, generative adversarial networks

(GANs) [36], [37] are also playing an increasingly significant role in CT denoising. In

GANs, by conducting a min–max learning between the discriminator and the gen-

erator, the “fake” images generated by the generator can be indistinguishable from

real images even for a well-trained discriminator. A another interpretation of GANs

is that it learns data distribution of real images and manages to generate “fake” im-

ages with similar distribution. This characteristic enables GAN to effectively denoise

CT image by learning data distribution of FD images, and generate indistinguishable

FD images from low-dose images. Inspired by this powerful model, a GAN-based

denoising method is proposed for cardiac CT images in [38]. Another GAN-based CT

denoising method adapted the Wasserstein distance instead of the Jensen–Shannon

divergence for the adversarial loss [39]. These methods deliver promising results on

image denoising and post-reconstruction. However, they have a big limitation in prac-

tical use: paired images are required during supervised training. Not only does the
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creation of paired images demand a huge amount of effort but also a large amount of

unpaired data cannot be utilized for training.

1.4 Goal of Thesis

To overcome such limitation, we propose a novel LDCT denoising method by

learning unpaired image-to-image translation based on cycle-consistent GAN (Cy-

cleGAN) [40], [41]. The essence of CycleGAN is to enforce a cycle-consistency loss

to learn image translation between two different domains (e.g., LDCT images and

FDCT images) without requiring paired images. In the meantime, we noticed that

a similar algorithm, GAN-CIRCLE [42], has been developed for super resolution and

denoising of CT images. Another variant, IdentityGAN, was also proposed for LDCT

angiography [43]. The unique contributions of our work are as follows: 1) we propose

a different network structure for LDCT denoising and compare it with two other vari-

ants, GAN-CIRCLE and IdentityGAN; 2) we compare these unpaired deep learning

denoising methods with the conventional KSVD and BM3D methods and a paired

deep learning method, RED-CNN; and 3) we thoroughly investigate the influence of

the number of patches, the number of patients, and totally non-overlapping domain

images in training data on denoising performance using GAN-CIRCLE because it

provides the best performance and the shortest training time for the data used in

this work. This work will provide important information on the further development

of unpaired deep learning methods for image enhancement of LDCT images using

unpaired data.

5



CHAPTER 2

RELATED WORK

In this chapter, we first provide necessary background about CT image and the

noise model. Then, we briefly discuss related works on CT image denoising using

both conventional methods and machine learning based methods.

2.1 CT Image Noise Model

For a regular dose of high-tube current with high minimum noise equivalent

quanta, the projection data after logarithm operation can be well approximated by an

additive Gaussian noise [18]. On the other hand, at a low dose of low-tube current, the

compound Poisson model is the most accurate to date, which can be approximated

by a shifted Poisson distribution [44]. In addition, the noise properties in the CT

images also depend on the reconstruction algorithms. The noise model in the image

domain can be generalized as Eq(2.1):

X = T (Y ) +N, (2.1)

where X ∈ Rm×n denotes the distorted and noise corrupted image (i.e., the

low-dose image), Y ∈ Rm×n is the original image to be recovered (i.e., the high-

dose image), T is a transform function that distorts the original image or creates

content-related artifacts, and N ∈ Rm×n is the additive noise. Note that N does not

necessarily follow the normal distribution even for the regular dose CT images.

The basic filtering methods usually have a couple of parameters to enforce

the smoothness in a trial-and-error fashion. With increased computing power, more
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elaborate filters, such as NLM, can be optimized iteratively based on the certain

optimal criterion. Generally, a denoising operator G can be obtained by minimizing

the following loss function:

Ĝ = min
G
Loss(G(X)−X,G(X)) (2.2)

This loss function often balances the data fidelity, i.e., G(X) − X, and the

desired properties in the denoised image G(X). G usually takes a fixed formula

and its parameters will be determined through the iterative process. Afterward, the

denoised image is obtained by applying G on X. Since there is no prior knowledge

of T and Y , the success of these methods heavily relies on the assumption of the

randomness of the noise.

When the images in both domains are available and ample, the denoising prob-

lem can be further formulated as Eq(2.3)

Ĝ = min
G
Loss(G(X)− Y ) (2.3)

It is easy to see that a good operator of G will first suppress the noise, then

do an inverse transform of T to recover Y . The advance of deep learning provides a

powerful tool to solve Eq(2.3) since any nonlinear operation can be achieved by a deep

network with sufficient capacity. However, the paired data are needed in this case,

which can be circumvented by a cycle-consistency strategy deliberated in Chapter 3.

2.2 Generative Adversarial Network

The GAN is originally proposed to generate fake data samples that resemble the

real counterparts. A typical GAN comprises one generator G and one discriminator

D. G is to generate near-real fake images, while D is designed to discriminate fake

images from real ones. During training, the min–max learning scheme is adopted,
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Figure 2.1: Basic GAN architecture

i.e., minimizing the classification error for G and maximizing it for D. The scheme

will finally lead to a point where G generates images indistinguishable by D. Math-

ematically, the basic GAN objective function is defined as Eq(2.4)

min
G

max
D

LGAN(D,G) =

Ey∼pdata(y)[logD(y)] + Ez∼pz(z)[log(1−D(G(z)))]

(2.4)

where y denotes real data samples, z is a random seed or data from another

domain, E is the expectation operator. pdata(y) captures the real data distribution,

while pz(z) denotes the random distribution.

During training, various optimizers can be used to optimize loss functions. In

addition, other constraints such as L2 regularization for generated data can be in-

cluded. Essentially, GAN map the distribution of the source data (z in Eq(2.4)) to
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that of the target data (y in Eq(2.4)). Relating to low-dose image denoising, given

an LDCT image x as the source, GAN can be trained to obtain the corresponding

FD image y.

Although GAN holds a great potential to LDCT denoising, its training requires

sufficient number of data samples. Furthermore, in the original form of GAN, the

paired images, namely LDCT and FDCT images denotes the same object, are needed

to establish the relation between the low-dose domain and full-dose domain. The

collection of a large number of paired images requires huge efforts, even in some

case is an impossible job considering ethics and patient safety issues. To attack this

issue, we introduce a CycleGAN based denoising method that uses unpaired images

between LDCT and FDCT data domain. Specifically, LDCT and FDCT data used in

CycleGAN represent different domains, but not necessarily denote the exactly same

object.
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CHAPTER 3

UNPAIRED DEEP LEARNING METHODS

3.1 Conditional GAN

Generative adversarial networks (GANs) use a generative model G to learn the

distribution and generate images given random noise as input. On the other hand

a discriminative model D in GANs is a classification network which is to evaluate

model G.

Original GAN can only generate images similar with real counterpart, like hand-

written digits in MNIST, but are unable to tell the label of which is being generated.

By adding auxiliary information y to both generator and discriminator, latter condi-

tional generative adversarial nets can generate exact digits given certain label. y could

be class labels or other relevant information. The objective function of conditional

GAN is as Eq(3.1).

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x | y)]

+Ez∼pz(z)[log(1−D(G(z | y)))]

(3.1)

where, x are real images, z are random noise.

The structure of conditional GAN is shown as in Figure 3.1. Input of generator

includes more information in addition to the noise. In Figure 3.1, we use a cartoon

building as an example, which guide the generator to generate a fake building almost

the same as the real one.
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Figure 3.1: Conditional GAN architecture

3.2 CycleGAN

CycleGAN [41] is designed to effectively translate images from one domain X

to another domain Y without requiring paired images. Figure3.2 shows an interesting

application of CycleGAN, which transfer zebras to horses (and the other way around).

In the following context, we denote X as the LDCT domain and Y as the full-dose

CT (FDCT) domain. CycleGAN consists of two generators (G and F ), as well as

two discriminators (DX and DY ). The goal is to build two mappings between X

and Y . Specifically, the generator G is trained to map images from the domain

X into the domain Y (G : X → Y ), and the generator F is trained to map images

from the domain Y to the domain X(F : Y → X). Two discriminators are used to

differentiate images from different domains: DX aims to discriminate images in the

11



Figure 3.2: Application of CycleGAN

domain X from generated images from the domain Y , while DY distinguishes images

in the domain Y from generated images from the domain X.

The basic structure of CycleGAN is shown in Figure 3.3, where the upper GAN

is to learn the forward mapping from X to Y (blue arrows) and the bottom GAN is to

learn the backward mapping from Y to X (red arrows). If there are no paired images

for training and two GANs are trained separately, both of them will not converge to

a good mapping between two domains.

In order to learn two mappings (G : X → Y and F : Y → X) without paired

samples, the cycle consistency loss is added to the CycleGAN structure as shown on

the red and blue dashed arrows in Figure 3.3. Specifically, a sample in the domain X

(a real LDCT image) first goes through G to generate a sample G(x) in the domain Y

(a fake FDCT image). Then, G(x) is fed into F (red dashed arrow in Figure 3.3) to
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Figure 3.3: CycleGAN architecture

map it back to the domain X, i.e., F (G(x)). Finally, F (G(x)) will be discriminated

with x in the domain X. A similar consistency loss is also applied to discriminate

G(F (y)) with y in the domain Y (blue dashed arrow in Figure 3.3).

3.2.1 Loss Functions

In summary, the cycle consistency loss based on the forward consistency as-

sumption, x → G(x) → F (G(x)) ≈ x, and the backward consistency assumption,

y → F (y)→ G(F (y)) ≈ y, can be defined as Eq(3.2).

LCY C(G,F ) = Ex∼Pdata(x)[‖F (G(x))− x‖1]

+Ey∼Pdata(y)[‖G(F (y))− y‖1]
(3.2)

where ‖·‖1 denotes the L1 norm, which can also be replaced by other metrics.

In addition, adding an identity loss was shown to significantly improve the

quality of translated images. The function of the identity loss is to learn and keep
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important structures and features in the image itself. The identity loss can be ex-

pressed as Eq(3.3)

LIDT (G,F ) = Ey∼Pdata(y)[‖G(y)− y‖1]

+Ex∼Pdata(x)[‖F (x)− x‖1]
(3.3)

Finally, the objective function for CycleGAN can be written Eq(3.4).

LCycleGAN(G,F,DX , DY ) = LGAN(G,DY ) + LGAN(F,DX)

+λLCY C(G,F ) + µLIDT (G,F )

(3.4)

where the hyperparameters λ and µ control the relative importance of the orig-

inal GAN losses, the cycle consistency loss, and the identity loss. In our work, we

investigate the impact of λ on learning performance, while keeping µ as 0.5 ·λ (which

can provide good results as long as it is not too small).

To avoid vanishing gradients when updating the generators G and F , we used

the least-squares loss for LGAN in Eq(3.4) [47] with the label “1” for the true data and

the label “0” for the generated data, instead of the original negative log-likelihood

loss function.

3.2.2 Network Structures

Different networks for the generators and discriminators in CycleGAN can lead

to different performances. In this work, the generators (G and F ) are built using

residual blocks, while lightweight VGG-like networks are used for the discrimina-

tors (DX and DY ). Batch normalization is also used for stable learning for both

generators and discriminators. To effectively discriminate the large size images, the

discriminator takes the following process: first, the full image is broken down into

70 × 70 overlapping patches. Then, the patches are fed into the discriminator in a

batch fashion. Instead of discriminating the full image directly, the discriminator first
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Figure 3.4: Generator structure of CycleGAN

makes a decision on every single patch, then synthesizes all patch results to get the

final decision. The advantages of this process are that it greatly reduce the size of

the discriminator, whose parameters are in a manageable order even for large images,

and are adaptive to images with different sizes.

The detailed structures of the generator and the discriminator of CycleGAN

used in this work are shown in Figure 3.4 and 3.5. For the generator in Figure 3.4, the

yellow blocks represent convolutional layers, the blue ones are batch normalization,

the red ones are rectified linear unit (ReLU) activation, and the shaded black-white

ones are deconvolutional layers. The first three convolutional layers are used to down-

sample original images, followed by a nine-layer residual network to further extract

and synthesize features. The generators end with two deconvolutional layers for up-

sampling and one convolutional layer for output. For the discriminator in Figure 3.5,
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Figure 3.5: Discriminator structure of CycleGAN

the first four convolutional layers are used to extract features, then ending with a

convolutional layer and a loss function 3.4 (greed block) for classification. Note that

the red blocks represent leaky ReLU in the discriminator. The kernel sizes and stride

sizes are noted in figures.

3.3 GAN-CIRCLE

In a recent work for CT super resolution and denoising, GAN-CIRCLE was

proposed based on the CycleGAN principle. Here is a brief introduction and the

details and the default hyperparameters can be found in [42].

3.3.1 Loss Functions

GAN-CIRCLE uses an additional loss function, joint sparsity transform (JST)

loss, as shown in Eq(3.5).

LJST (G) = τ ‖G(x)‖TV + (1− τ) ‖y −G(x)‖TV (3.5)
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where τ is a weighting factor and ‖·‖TV denotes the total variation (TV) norm.

The two terms of this loss function serve two purposes: 1) the first term enforces

sparsity on the generated images to remove artifacts and 2) the second term is to

preserve anatomic details by minimizing the difference between y and G(x). Thus,

the overall objective function for GAN-CIRCLE becomes

LGAN−CIRCLE = LWGAN(DY , G) + LWGAN(DX , F )

+λLCY C(G,F ) + µLIDT (G,F ) + νLJST (G)

(3.6)

where the GAN losses adopt the Wasserstein distance (for the forward mapping)

LWGAN(DY , G) = Ex[Dy(G(x))]− Ey[Dy(y)]

+αEŷ[(‖ODy(ŷ)‖2 − 1)2]

(3.7)

The first two terms in the Wasserstein loss function calculate the Wasserstein

estimation, and the third term penalizes the deviation of the gradient norm of Dy(ŷ)

from one, ŷ is uniformly sampled along straight lines for pairs of G(x) and y, and

α is a weighting parameter. A similar Wasserstein GAN loss can be defined for the

backward mapping. Note that the JST loss was not used in this work since it did not

improve the denoising performance significantly and increases the computation and

the number of hyperparameters.

3.3.2 Network Structures

We summarize the network structures of GAN-CIRCLE based on their shared

code at GitHub repo in Figure 3.6 and 3.7. Note that they are slightly different

from that described in [42]. GAN-CIRCLE simplifies the generator by shrinking

the kernel and channel sizes and adding more bypass connections. It also omits the

batch normalization following the convolutional layers in the generator. As shown

in Figure 3.6, each output feature is garnered at the end of the feature extraction
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Figure 3.6: Generator structure of GAN-CIRCLE

stage, which can preserve information in previous convolutional layers. During up-

sampling, two-way convolutional layers are first used, then followed by a convolution

layer and a deconvolution layer. The discriminator follows the same structure as that

in CycleGAN, but with eight convolutional layers as shown in Figure 3.7. The block

color and style represent the same functions as that in CycleGAN, except for the loss

function [using Eq(3.6) instead of Eq(3.4)] (green block).
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Figure 3.7: Discriminator structure of GAN-CIRCLE
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CHAPTER 4

EXPERIMENTAL RESULTS

4.1 Experimental setup

To evaluate the denoising performance of CycleGAN, IdentityGAN, and GAN-

CIRCLE, we performed the whole image-based learning, and then picked the best

performer for patch-based training using a real clinical dataset from the 2016 NIH-

AAPM-Mayo Clinic Low Dose CT Grand Challenge (Link). Single-image iterative

denoising methods, KSVD [26] and BM3D [30], and a paired deep learning denoising

method, RED-CNN [33], were also implemented for comparison.

4.1.1 Training

The LDCT dataset contains ten anonymous patients’ FD thoracic and abdom-

inal CT data (close to 6000 2-D images for all patients) and corresponding low-dose

(1/4 of the full-dose) CT data. The experiments are conducted in a system with

NVIDIA Tesla V100 GPUs support. PyTorch (≥1.4.0) and Tensorflow (≥1.11) are

used to train RED-CNN, CycleGAN, IdentityGAN, and GAN-CIRCLE.

1. Whole Image Training: The original images are resized from 512 × 512 to

256× 256 to enable fast whole image-based training. We choose images of the

2nd to 10th patient as the training set (5376 images) and the 1st patient as the

test data (560 images). Note that the training images are randomly scrambled,

so there is no paired correspondence between the FD and low-dose images for

each training batch.
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2. Patch-Based Training: Since the original training dataset only has less than

6000 images, it is necessary to augment the training set to investigate the sample

size influence on deep learning models for LDCT denoising. Specifically, if

64× 64 overlapping patches were extracted from the original 512× 512 images

with a stride of 32, each image can produce 255 training patches. The whole

process can lead to sufficient data (>1.5 million patches in total) to investigate

the influence of the sample size on training performance. Since GAN-CIRCLE

with simpler generator structures computes much faster (see Table 4.4) and has

the best denoising performance among the three methods based on CycleGAN,

we use GAN-CIRCLE for experiments in this part. Instead of fixing the training

and test data sets, the tenfold cross-validation is used to get the estimate of

expected performance on PSNR and SSIM on 512× 512 images.

First, we investigate the influence of the number of patches on the denoising

performance of GAN-CIRCLE. One of ten patients is used as the test set and

the other nine patients are used for training. The number of patches randomly

selected from each image is 1, 4, 7, 13, 25, and 50, which leads to a total

number of patches approximate 5000, 21000, 37000, 69000, 134000, and 268000

from images of nine training patients (where the exact number depends on

the particular test patient selected). It repeats ten times until each of the ten

patients was used as a test set. The quantitative evaluation metrics are averaged

over ten trials for different numbers of training patches.

Second, we investigate the influence of the number of patients on the denoising

performance of GAN-CIRCLE. We use one patient as the test data and ran-

domly select 1, 2, 4, and 6 patients in the other patients as the training data.

The training is repeated ten times for each of the ten patients as the test set.

The last experiment is the ten-fold cross-validation with one patient as the test
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data and the other nine patients as the training data. Twenty-five patches per

image are used to form the training data.

Finally, we conduct two additional experiments to demonstrate the effectiveness

of denoising methods using unpaired deep learning: (1) non-overlapping patient

training: the training set comprises FDCT images of patients 2–6 and LDCT

images of patients 7–10, and the test data are patients 1. (2) non-overlapping

organ training: the training set is composed of FDCT images for thoracic slices

and LDCT images for abdominal slices of patients 2–9 and the test data are

patient 1. In both cases, there is no corresponding FDCT image for the LDCT

image.

4.1.2 Evaluation Metrics

Two metrics are used to quantitatively evaluate different methods: 1) peak

signal-to-noise ratio (PSNR) and 2) structural similarity index (SSIM). PSNR mea-

sures denoising performance by calculating the overall difference between the denoised

LDCT image and the original FDCT image and is defined as

PSNR = 10 · log10(
MAX2

Y

MSE
) (4.1)

where MSE stands for mean-squared error and MAXY denotes the maximum

intensity value, which was set as 4095 for 12-bit CT images in this work. The MSE

is calculated as

MSE =
1

mn

m−1∑
i=0

n−1∑
j=0

[x(i, j)− y(i, j)]2, (4.2)

where x denotes the LDCT image or the corresponding region of interest (ROI),

y is the corresponding FDCT image or ROI, and m and n denote the size of the image

or ROI.
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In addition to PSNR, the SSIM is also used to measure the perceptual similarity

between the denoised LDCT and FDCT images

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(4.3)

where µx and µy are the averages of x and y, σ2
x, σ2

y, and σxy are the variance

and covariance, and c1 and c2 are two variables to stabilize the division operation.

The higher PSNR and SSIM represent the better performance. Note that the re-

sults calculated on the down-sampled 256× 256 images are usually better than those

calculated on the original 512× 512 images.

4.2 Results

4.2.1 Hyperparameter Tuning

Base on the metrics defined above, we explore influences of hyperparameters,

including the learning rate (LR) and the regularization factor λ (for the cycle consis-

tency loss), as well as the GAN loss functions (least-squares loss versus Wasserstein

loss) by evaluating the test dataset (patient 1). We use fixed 150 epochs.

The LR is fixed for the first 100 epochs, and then linearly decays to a half

for the last 50 epochs. Tables 4.1 and 4.2 show how the combinations of LRs and

the regularization factor λ (for GAN-CIRCLE with the least-squares loss) change

the PSNR and SSIM performance, respectively. The large LR causes the training

divergent, while the small LR fails to efficiently update model parameters, thus leading

to inferior PSNR and SSIM performance. We chose the LR of 1×10−4 and λ = 100 as

the hyperparameters for GAN-CIRCLE for the following experiments unless otherwise

stated.

23



Table 4.1: Influence of LR and λ on PSNR (dB)

LR/λ 0.1 1 10 100 500

1× 10−5 44.07 44.32 45.15 46.28 46.24

1× 10−4 43.30 47.80 47.68 47.90 47.80

1× 10−3 Divergent

Table 4.2: Influence of LR and λ on SSIM

LR/λ 0.1 1 10 100 500

1× 10−5 0.9637 0.9610 0.9649 0.9686 0.9675

1× 10−4 0.9583 0.9696 0.9743 0.9753 0.9747

1× 10−3 Divergent

For µ, we tested the values of [0, 0.1λ, 0.5λ, 0.75λ, λ] and found that the good

PSNR could be obtained as long as µ 6= 0. Thus, we use µ = 0.5λ in the following

experiments.

Compared Wasserstein loss to lease-square loss, we found that the least-squares

loss works better than the Wasserstein loss based on PSNR. Therefore, the least-

squares loss is used in the following experiments.

For CycleGAN and IdentityGAN, we conduct a similar hyper parameter ex-

ploration. The optimal setting is: for CycleGAN, LR = 2 × 10−4 and λ = 10; for

IdentityGAN, LR = 2 × 10−4 and λ = 10. Similarly, we tuned the parameters for

KSVD (noise σ = 0.007), BM3D (noise σ = 0.009) and RED-CNN (LR = 1× 10−5)

to get their best PSNR values averaged on all images of patient 1.

The detailed results (averaged on all image slices of patient 1) for different

methods are listed in Table 4.3. All denoising methods lead to better PSNR and SSIM

than the original LDCT images (44.89 dB and 0.9372). GAN-CIRCLE achieves the
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Table 4.3: Quantitative Results Averaged over 560 Test Images of 1st Patient

Method PSNR(dB) SSIM

LDCT 44.89(1.01) 0.9372(0.0165)

KSVD 47.34(0.77) 0.9638(0.0085)

BM3D 47.76(0.73) 0.9662(0.0075)

RED-CNN 47.82(0.74) 0.9730(0.0070)

CycleGAN 47.09(0.98) 0.9717(0.0080)

IdentityGAN 47.59(0.72) 0.9674(0.0085)

GAN-CIRCLE 47.90(0.69) 0.9753(0.0074)

best performance in PSNR and SSIM, followed closely by RED-CNN. CycleGAN and

IdentityGAN also yield decent results. KSVD and BM3D work well on PSNR, but

suffer lower SSIM values. Note that the PSNR and SSIM values obtained from our

implementation of (unsupervised) GAN-CIRCLE are much higher than that in [42],

likely due to the resized images and different parameters used in the calculation of

these metrics, such as the dynamic range of converted images and MAXY in PSNR.

Thus, the head-to-head comparison is not meaningful.

4.2.2 Denoised Images

To visualize the denoising performance of different methods, we select one tho-

racic slice containing the lungs and one abdominal slice containing the liver from the

test dataset (patient 1) as shown in Figure 4.1 and Figure 4.3, respectively. The

zoomed-in ROIs for details in the lung and the liver are shown in Figure 4.2 [red rect-

angle in Figure 4.1(a)] and Figure 4.4 [red rectangle in Figure 4.3(a)], respectively.

As shown in Figure 4.1, the LDCT image shows streak noise compared to the FDCT

image. All denoising methods alleviate the streak artifacts. Among them, KSVD
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and BM3D seem to suppress these artifacts more at the expense of oversmoothing.

The deep learning methods not only suppress the noise effectively but also preserve

structural details. The PSNR and SSIM for this slice are listed in the caption. RED-

CNN achieves the best quantitative accuracy, closely followed by GAN-CIRCLE. This

phenomenon is more apparent in zoomed-in views in Figure 4.2. KSVD and BM3D

oversmooth the region (e.g., the red circle area) and lead to low PSNR and SSIM.

The BM3D image shows smoother looking, but suffers a great loss of details. Thus,

its PSNR and SSIM are worse than LDCT, because the parameters of BM3D were

tuned for all images of a patient, instead of the current slice. The paired deep learning

method, RED-CNN, achieves the best noise removal performance and three unpaired

deep learning methods with CycleGAN perform similarly.

The abdominal slice in Figure 4.3 shows more organs and structural details.

Again, all denoising methods effectively remove the grainy and streak noise and lead

to improved PSNR and SSIM. Among all methods, BM3D provides the best PSNR

and GAN-CIRCLE yields the best SSIM. BM3D gains an advantage in more uniform

regions in this slice although the texture of its denoised image is different from the

FDCT image. In the zoomed-in view of Figure 4.4 for the liver region, BM3D shows

the smoothest look, which strongly boosts its PSNR performance. However, the

texture inside the liver is largely lost. The deep learning-based denoising methods

achieves good performance on both suppressing noise and preserving texture details.

The smoothness of this ROI is in the order of RED-CNN, GAN-CIRCLE, CycleGAN,

and IdentityGAN. From these images, we can see that: 1) the deep learning-based

denoising can adapt to different targets in the images with different noise properties

and structural details compared to the conventional methods, which are less adaptive

and 2) the unpaired deep learning methods based on CycleGAN are comparable to,

if not better than, the paired deep learning method on LDCT denoising.
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Figure 4.1: Thoracic transverse slice for different methods. (a) FDCT. (b) LDCT
(PSNR: 44.64 dB and SSIM: 0.9565). (c) KSVD (46.25 dB and 0.9726). (d) BM3D
(46.40 dB and 0.9719). (e) RED-CNN (46.57 dB and 0.9776). (f) CycleGAN (44.72
dB and 0.9756). (g) IdentityGAN (45.71 dB and 0.9619). (h) GAN-CIRCLE (46.31
dB and 0.9772). (Display window [-1350 150] HU).

4.2.3 Influence of the Size of Training Samples

GAN-CIRCLE has lightweight generators (0.168 million parameters for each

generator), which is much more computationally efficient than CycleGAN and Iden-

tityGAN (see Table 4.4). Furthermore, the hyperparameters are thoroughly inves-

tigated and optimized in [36] for patch-based learning. Therefore, we use GAN-

CIRCLE to evaluate the influence of the size of training samples using image patches.

Note that the PSNR and SSIM results in the following sections are calculated based

on 512× 512 images, which are different from previous sections using down-sampled
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Figure 4.2: Zoomed-in lung region for different methods (the red rectangle in Fig.
4.1(a)). (a) FDCT. (b) LDCT (PSNR: 46.78 dB and SSIM: 0.9370). (c) KSVD
(47.17 dB and 0.9409). (d) BM3D (46.59 dB and 0.9229). (e) RED-CNN (48.01 dB
and 0.9515). (f) CycleGAN (47.55 dB and 0.9479). (g) IdentityGAN (47.17 dB and
0.9437). (h) GAN-CIRCLE (47.01 dB and 0.9435). (Display window [-1350 150]HU)

256× 256 images. The baseline PSNR and SSIM of LDCT images averaged over ten

patients are 40.88 dB(1.22) and 0.8710(0.0387), respectively.

1. Influence of the Number of Training Patches: As the patches extracted

from each single 512×512 image increase from 1 to 50, the total training patches

increase from about 5000 to about 268000. The average PSNR and SSIM values

for ten trails are plotted in Figure 4.5 with error bars denoting the standard

deviation. These values are significantly greater than the original LDCT values

and indicate effective denoising. As can be seen, both PSNR and SSIM values

increase with the number of training patches, except for from 4 patches/image

to 7 patches/image. It implies that the larger the number of training samples,

the better the denoising performance. However, the gain from the increased
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Figure 4.3: Abdominal transverse slice for different methods. (a) FDCT. (b) LDCT
(PSNR: 43.23 dB and SSIM: 0.9149). (c) KSVD (45.82 dB and 0.9534). (d) BM3D
(46.31 dB and 0.9572). (e) RED-CNN (46.23 dB and 0.9606). (f) CycleGAN (45.70
dB and 0.9554). (g) IdentityGAN (45.38 dB and 0.9523). (h) GAN-CIRCLE (46.21
dB and 0.9611). (Display window [-160 240]HU)

number of patches per image diminishes as it goes beyond 25 patches/image.

The use of 25 patches/image seems to have a good balance between the denoising

performance and computational burden.

2. Influence of the Number of Patients for Training: In this part, the num-

ber of patches per image is fixed as 25. As the number of patients for training

increases from one to nine, both average PSNR and SSIM values increase as

shown in Figure 4.6. Note that the data of every patient are served as the test

data once for each condition of the number of training patients (1, 2, 4, 6, and

9). The error bar denotes the standard deviation of ten trials. The largest
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Figure 4.4: Zoomed-in liver region for different methods (the red rectangle in Fig.
4.3(a)). (a) FDCT. (b) LDCT (PSNR: 41.96 dB and SSIM: 0.6354). (c) KSVD
(45.80 dB and 0.7404). (d) BM3D (46.60 dB and 0.7177). (e) RED-CNN (45.92 dB
and 0.7363). (f) CycleGAN (45.13 dB and 0.7300). (g) IdentityGAN (44.83 dB and
0.7162). (h) GAN-CIRCLE (46.07 dB and 0.7423). (Display window [-160 240]HU)

increase is from one patient to two patients. Afterward, the increase becomes

marginal. It demonstrates that the sufficient patient variety can significantly

improve deep learning-based LDCT denoising. However, this improvement mea-

sured by PSNR and SSIM may reach a plateau at a certain number of training

patients, e.g., four patients for the current dataset.

4.2.4 Totally Non-Overlapping Training

For non-overlapping patient training, the PSNR and SSIM are 43.31 dB and

0.9259, respectively. For non-overlapping organ training, the PNSR and SSIM are

43.47 dB and 0.9262, respectively. Even though there are no pairs of FDCT images

and LDCT images in training, GAN-CIRCLE is able to extract useful features to
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Figure 4.5: Influence of the number of training patches per image on denoising per-
formance. The horizontal axis denotes the number of patches per image that are
randomly extracted from each 512× 512 image. Each of ten patients was used as the
test data once and the results were averaged over ten trials for each data point.

Figure 4.6: Influence of the number of patients in training (the horizontal axis on
denoising performance. Twenty-five patches are randomly extracted from each 512 ×
512 image. Each of ten patients was used as the test data once and the results were
averaged over ten trials for each data point.
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Table 4.4: Computation Time for Different Methods (Training for Each Epoch and
Test for Each Image)

RED-CNN Cycle-GAN IdentityGAN GAN-CIRCLE

Train 1.20 min 21.12 min 119.78 min 5.95 min

Test 0.01 sec 0.05 sec 0.04 sec 0.02 sec

effectively remove noise. These two values are better than the original LDCT values

(PSNR: 40.08 dB; SSIM: 0.8541), mixed training with one patient (PSNR: 43.25 dB;

SSIM: 0.9236), and comparable to mixed training with four patients (PSNR: 43.50

dB; SSIM: 0.9268). The mixed training means that the FDCT and LDCT images of

the same patient are used in the training although the one-to-one correspondence is

scrambled and not utilized. One abdominal slice is shown in Figure 4.7. Even without

pairs of of FDCT and LDCT images, non-overlapping training of GAN-CIRCLE

effectively suppresses noise and achieves similar performance to the mixed training

with four patients. This result provides preliminary evidence that large patient data

without one-to-one correspondence, i.e., no need of registration or alignment, could be

utilized for effective LDCT denoising through the cycle consistent adversarial learning.

4.2.5 Network Complexity and Computation Time

Three variants, CycleGAN [41], GAN-CIRCLE [42], and IdentityGAN [43], have

been proposed for LDCT denoising or super resolution. Their network structures

are at different complexity levels: 11.378 million parameters for one generator in

CycleGAN, 0.168 million in GAN-CIRCLE, and 6.477 million for IdentityGAN. The

training of deep learning-based methods for LDCT denoising is time consuming. The

training time (min per epoch) and the test time (sec per slice) for the whole 256×256

image training are listed in Table IV using NVIDIA Tesla V100. For patch-based
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Figure 4.7: Abdominal transverse slice for (a) FDCT; (b) LDCT (PSNR: 38.28 dB
and SSIM: 0.7960); (c) 1-patient mixed training (41.47 dB and 0.8891); (d) 4-patient
mixed training (41.81 dB and 0.8952); (e) non-overlapping patient training (41.75 dB
and 0.8924); and (f) non-overlapping organ training (41.74 dB and 0.8928). (Display
window [-160 240] HU)

training, GAN-CIRCLE (13440064× 64 patches by extracting 25 patches per image

and a total of nine patients) takes about 23.5 h for 150 epochs with a batch size

of 40 on the NVIDIA Tesla V100. The computation time linearly increases with

the number of training patches. Once the training is done, the deep learning-based

methods are much faster than KSVD and BM3D to denoise images (see test time in

Table 4.4).
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CHAPTER 5

CONCLUSION

In this work, we developed a novel image-to-image translation method based

on CycleGAN and compared it with two other variants in LDCT image denoising.

These cycle-consistent based GAN methods do not require aligned image pairs and

yet provide the denoising performance comparable to the paired training, RED-CNN,

which makes them particularly valuable to utilize abundant unpaired training sam-

ples. Among three variants, CycleGAN, IdentityGAN, and GAN-CIRCLE, the latter

uses a lightweight network and achieves the best denoising performance for the NIH-

AAPM-Mayo Clinic Low Dose CT data. The much more complicated network struc-

tures in CycleGAN and IdentityGAN do not improve the denoising performance, but

demand much more computational resources. Although the LDCT data used in this

study were synthesized using a validated noise insertion method, further investigation

using real LDCT data would be preferred to verify the findings in this work and to

improve unpaired deep learning methods. However, these studies are out of the scope

of this work and will be investigated in the future.

Using patch-based training where more training samples are generated from

patches, we investigated the influence of the size of training samples and the variety of

training patients on denoising performance of the unpaired deep learning method. Our

results show that increasing the number of training patches and the number of patients

can improve the denoising performance as shown in Figure 4.5 and 4.6. The increase

of the number of training patches saturates the improvement for 25 random patches

per image even though more patches per image are available. This is likely due to the
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information carried by the training data (of nine patients) is sufficiently represented

by these patches. With further increase of the patches, the redundant information

has none or little help on better training. The extra information introduced by

new patient data can also boost the performance of deep learning-based denoising

as shown in Figure 4.6. However, benefits of additional patient data diminish after

using more than four patients. It seems that the current network structures can use

less than nine patient data to achieve a denoising performance close to the optimum.

We attempted to add the layers of GAN-CIRCLE and obtained a similar PSNR

performance. Whether the network structures can be further optimized to achieve

better denoising performance or the upper bound of denoising for the current dataset

has been reached is worth further investigation.

The semi-unsupervised deep learning methods (using unpaired images), such as

CycleGAN, have a unique advantage over the supervised deep learning methods (using

paired images). They include more training data as no alignment of images in two

domains is needed. (Note that we call this unpaired learning as “semi-unsupervised”

learning because it still needs labels to denote which domain the training data belong

to, while the unpaired learning was simply called “unsupervised” learning in [42]

where semi-unsupervised was used for mixed paired and unpaired learning.) Although

the LDCT and FDCT data in training were scrambled to void direct use of image

pairs, the LDCT and FDCT pairs did exist in the training data, which could provide

information leading to spurious good performance. The additional non-overlapping

experiment was conducted to demonstrate the effectiveness of CycleGAN for unpaired

training without counterparts in two domains, i.e., LDCT and FDCT, in terms of both

patient-wise non-overlapping and organ-wise non-overlapping (Figure 4.7). These

promising results show that unpaired learning based on CycleGAN can provide a
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powerful tool to use a large number of images in two domains without the requirement

of alignment.

In future work, we will investigate how to systematically optimize network ar-

chitectures and hyperparameters since the empirical trial and error is not only subop-

timal but also is unbearably time consuming. The investigation of the upper bound

of denoising performance for the supervised deep learning methods (using paired

images) and the semi-unsupervised deep learning methods (using unpaired images)

based on CycleGAN for LDCT denoising will be another interesting direction. With

a sufficiently large number of patient data, we envision that the unpaired learning

can approach and go beyond the performance of the supervised learning.
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