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ABSTRACT

Some Quadratic Quantum P3s with a Linear

One-Dimensional Line Scheme

Ian Lim, Ph.D.

The University of Texas at Arlington, 2021

Supervising Professor: Dr. Michaela Vancliff

It is believed that quadratic Artin-Shelter regular (AS-regular) algebras of

global dimension four (sometimes called quadratic quantum P3s) can be classified

using a geometry similar to that developed in the 1980’s by Artin, Tate, and Van den

Bergh. Their geometry involved studying a scheme (later called the point scheme)

that parametrizes the point modules over a graded algebra. The notion of line scheme

(which parametrizes line modules) was introduced later by Shelton and Vancliff.

It is known that “generic” quadratic quantum P3s have a finite point scheme and

one-dimensional line scheme. A family of algebras with these properties is presented

herein where each member has a line scheme that is a union of lines. Moreover, we

prove that if a quadratic quantum P3, denoted A, is an Ore extension of a quadratic

quantum P2, denoted B, then the point variety of B is embedded in the line variety of

A. Indeed, this result is generalized to prove that, under certain conditions, if A is a

quadratic quantum P3 that contains a subalgebra isomorphic to a quadratic quantum

P2, then the point variety of the subalgebra is embedded in the line variety of A.
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CHAPTER 1

Introduction

In commutative algebra, within the class of noetherian local rings, there are

the following strict containments of subclasses:

{regular local rings} ⊂ {complete intersection rings} ⊂ {Gorenstein rings} ⊂ · · ·

· · · ⊂ {Cohen-Macaulay rings} ⊂ {universally catenary rings}.

There are many avenues of research in each subclass and the connections with algebraic

geometry are well known. In contrast, the heart of this dissertation seeks to study a

certain class of non-commutative algebras and their connection to objects in algebraic

geometry. In non-commutative algebra, there is not the structure pictured above, but

there are still many interesting classes of algebras to investigate that have connections

with algebraic geometry and even differential geometry.

Noetherian local rings are often quotients of polynomial rings or power series

rings, so it seems reasonable to consider non-commutative algebras that are described

by generators and relations. In the 1980’s, Artin and Schelter considered a certain

class of algebras, called regular algebras. In [1], they described regular algebras of

global dimension three using generators and relations, and they provided a partial

classification. In [2] and [3], Artin, Tate, and Van Den Bergh introduced a geometric

technique to complete the classification of regular algebras of global dimension three

that are generated by degree-one elements and proved they are noetherian.

This classification of regular algebras of global dimension three involved studying

certain cyclic graded modules called point modules. To such a module one can

associate a point in P2. The collection of all the points associated to the point
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modules of a quadratic regular algebra of global dimension three can be computed as

a subscheme in P2 × P2 and this scheme was later called the point scheme ([2, 20]).

This scheme is viewed as a parametrization of the point modules associated to an

algebra. In [2], it is shown for regular algebras of global dimension three, that the

point scheme is the graph of an automorphsim and with this geometric information,

Artin, Tate, and Van Den Bergh, were able to recover the description of the algebra

from its point scheme.

Many algebraists consider regular algebras of global dimension n + 1 to be

non-commutative analogues of polynomial rings and often refer to such algebras as

quantum Pns. The classification of quantum P3s is an open problem and it is believed

that the geometric techniques of Artin, Tate, and Van den Bergh will be a central

tool in the classification of such algebras. In [20], Shelton and Vancliff proved that,

under certain conditions, the defining relations of a quadratic quantum P3 can be

recovered from its point scheme, if the point scheme is finite. However, the method

in which one retrieves the defining relations from the point scheme can be involved,

so it seems that perhaps more tools or information is needed.

Line modules are a certain type of cyclic graded module that play the role of a

line in projective space. In [20], Shelton and Vancliff show there exists a scheme that

parametrizes the line modules over a quadratic quantum P3 and called it the line

scheme. In [21], Shelton and Vancliff provided a method of computing the line scheme

of a quadratic quantum P3 and provide various examples. Under certain conditions,

if the line scheme of a quadratic quantum P3 is one-dimensional, then it determines

the defining relations of that algebra. So further development of the theory seems to

depend on the study of quadratic quantum P3s that possess a finite point scheme

and a one-dimensional line scheme. A quadratic regular algebra with such associated
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geometries is considered to be a candidate for a generic quadratic quantum P3 (cf.

[26]).

Conveniently, in many cases, there are some limitations on the number of

components in the point scheme and line scheme of a quadratic quantum P3. An

unpublished work by Van den Bergh, outlined in [26], proves that if the point scheme

of a quadratic quantum P3 is finite, then it consists of twenty points counted with

multiplicity. Additionally, in [9], it is proved that if the line scheme of a quadratic

quantum P3 is one-dimensional, then it has degree twenty. This raises the question

on whether or not there exists a quadratic quantum P3 that has a point scheme

consisting of twenty distinct points and a one-dimensional line scheme consisting of

twenty distinct lines. Unfortunately, methods for constructing quantum P3s with

desirable geometric properties are quite limited.

In the early 2000s, it was still unknown whether a quadratic quantum P3 existed

that had exactly twenty distinct points in its point scheme and a one-dimensional line

scheme. In [19], Shelton and Tingey confirmed the existence of such an algebra with

a computational trial-and-error method. They, and others, were unable to produce

any more examples via this approach, so this discovery added only limited depth

to the subject. In [5], Cassidy and Vancliff introduced the notion of a graded skew

Clifford algebra and gave conditions when they are regular. This allowed for the

construction of many candidates of generic quadratic quantum P3s, some of which

possess a point scheme consisting of twenty distinct points.

There are not many candidates for generic quadratic quantum P3s with a

detailed description of their line scheme (cf. [7, 8, 17, 25]). It is believed by many

researchers that the study of line schemes will be essential in the classification of

quantum P3s. Producing more examples with a one-dimensional line scheme will

be necessary as geometric properties could yield hidden algebraic properties or vice
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versa. The algebras presented in [7, 8, 25] motivated the result in [9] which proves

that if a quadratic quantum P3 has a one-dimensional line scheme, then it has degree

twenty. In the same spirit, Theorem 3.3.1 provides an example of a line scheme that

motivates Theorem 4.4.2.

In [23], Stephenson and Vancliff presented two families of quadratic quantum P3s

that are infinite modules over their centers as a counterexample to a conjecture that

aimed to generalize a result regarding quantum P2s. Both families were constructed

via an Ore extension and have defining relations that depend on multiple parameters.

All, but a select few members of each family, have a finite point scheme and a

one-dimensional line scheme. In [17], Mastriania computed the line scheme of one of

these families, and in Section 3.3, Theorem 3.3.1 computes the line scheme of the

other family of algebras.

The discussion in Chapters 3 and 4 will contain a detailed analysis of the

family of algebras previously mentioned. The family depends on four parameters

and, in Section 3.2.1, we show that each member has a point scheme consisting of

2, 3, 4, or 5 distinct points where each case occurs depending on the value of each

parameter. The discussion in Section 3.2, regarding Theorem 3.2.1, focuses on the

case with five distinct points. The structure of the line scheme depends upon the

four parameters, but there is a choice of parameters for which the line scheme is the

union of four distinct lines, with various multiplicities; three of the lines are each

counted with multiplicity six and the fourth line is counted with multiplicity two (see

Theorem 4.1.1). We write Lbd to denote this line scheme. Theorem 4.1.1 answers

a long-standing open question on the possible existence of a quadratic quantum

P3 possessing a line scheme that is a union of lines, so we focus on these algebras

primarily.
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The computational method, provided in [21], for producing the line scheme

of a quadratic quantum P3 makes use of the Plücker embedding that takes a line

in P3 and associates it to a point in P5. For the sake of completeness, in Section

4.2 we describe the lines in P3 parametrized by the points of Lbd in P5. In [6, 24],

Chandler and Tomlin each presented a family of graded skew Clifford algebras and

their respective line schemes were computed. In both cases, the authors show that

the intersection points of the line scheme seem to “highlight” certain normalizing

sequences. So in Section 4.3, we undertake a comparable analysis.

At the end of Chapter 4, we prove Theorem 4.4.2, which is a general result

regarding certain quadratic algebras. This result was motivated by our study of

Lbd, since it is the line scheme of an Ore extension of a quantum P2. Theorem 4.4.2

proves that, under certain conditions, if a quadratic quantum P3, denoted A, has a

subalgebra isomorphic to a quadratic quantum P2, denoted B, then the point variety

of B is embedded in the line variety of A. On the level of point modules and line

modules, this means that each point module of B determines a line module of A. This

result could prove to be practical in the construction of quadratic regular algebras

with desirable point schemes and line schemes.
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CHAPTER 2

Preliminary Information

Throughout, it is assumed that all fields k are algebraically closed and char(k) =

0 unless otherwise stated. The set N denotes the set of all positive integers. If V is a

vector space, V ∗ denotes its dual space and V × denotes its nonzero elements. We

begin by defining terms in abstract algebra and then concepts from Artin, Tate, and

Van den Bergh’s geometry [2, 3].

2.1 Abstract Algebra

Definition 2.1.1 (cf. [11]). Let R be a commutative ring with unity. We say A is

an R-algebra if it is a ring with unity that satisfies the following:

• there exists a ring homomorphism φ from R to the center of A, and

• the homomorphism φ maps the unity element of R to the unity element of A.

Remark. Regarding Definition 2.1.1, if R is a field, say k, then A is also a vector

space over k. The reader should note that multiplication in an R-algebra is, by

definition, associative.

Definition 2.1.2 (cf. [16]). We say a k-algebra A is N-graded if

• A =
⊕∞

i=0Ai where each Ai is an abelian group, and

• AjAk ⊆ Aj+k for all j, k ∈ N ∪ {0}.

If A0 = k, we say A is connected. An element x ∈ A× is homogeneous of degree i if

x ∈ Ai.
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Definition 2.1.3 (cf. [16]). Let A =
⊕∞

i=0Ai be a connected N-graded k-algebra. A

left A-module M is a graded left A-module if M =
⊕∞

j=0Mj where Mj is a subspace

of M , for all j, and AiMj ⊂ Mi+j for all i, j. A graded right A-module is defined

similarly.

Definition 2.1.4 ([4, Definition I.1.1.3]). A k-algebra, A, is finitely generated if

there exists a finite set of elements a1, . . . , an ∈ A such that the set

{am1
1 am2

2 · · · amn
n | mi ∈ N ∪ {0} for all i} ∪ {1}

spans A as a vector space.

Example 2.1.5 ([4, pg. 15]). We write k〈x1, x2, . . . , xn〉 for the free algebra gen-

erated by indeterminates x1, . . . , xn. This algebra consists of linear combinations

of words in x1, . . . , xn and 1, which is considered the empty word. Addition and

scalar multiplication are defined the standard way, but multiplication is defined

by concatenation of words and distribution across addition. The free algebra is a

connected, N-graded, associative, k-algebra that is finitely generated by x1, . . . , xn.

One can assign degrees (or weights) to each xi, but we always assume each xi has

degree one.

Moreover, any connected, N-graded, associative, k-algebra A is finitely gen-

erated if and only if there exists a degree-preserving surjective ring homomor-

phism k〈x1, . . . , xn〉 � A for some free algebra k〈x1, . . . , xn〉 and suitable n ∈ N.

Thus, A ∼= k〈x1, . . . , xn〉/I where I is a homogeneous ideal. In the case where

I = 〈f1, . . . , fm〉, for some homogeneous f1, . . . , fm ∈ k〈x1, . . . , xn〉, we say A is

finitely presented with generators x1, . . . , xn and defining relations f1, . . . , fm.
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Definition 2.1.6 (cf. [18]). An N-graded k-algebra A =
⊕∞

i=0Ai is quadratic if it is

generated by homogeneous degree-one elements and each of its defining relations is

homogeneous of degree two.

Definition 2.1.7 (cf. [18]). Let A be a finitely generated quadratic k-algebra. It

follows that A ∼= T (V )/〈I〉, where V is a finite-dimensional vector space and I is a

subspace of V ⊗ V . The Koszul dual of A is the k-algebra A! = T (V ∗)/〈I⊥〉.

Definition 2.1.8 ([4, pg. 23]). Suppose A is a k-algebra and M is an A-module.

The projective dimension of M , denoted pdim(M), is the minimal n ∈ N such that

there is a projective resolution of M of length n (and pdim(M) = ∞ if no such n

exists). That is:

0→ Pn
dn−→ Pn−1

dn−1−−−→ · · · d2−→ P1
d1−→ P0

ε−→M → 0

is a projective resolution of M where each Pi is a projective module and no such

shorter resolution exists.

Definition 2.1.9 ([4, pg. 27]). The right global dimension of a k-algebra A is denoted

r.gldim(A), and is defined to be the supremum of the projective dimensions of all

right A-modules. The left global dimension of A is defined analogously.

Remark ([4, Proposition I.1.5.7]). Regarding Definition 2.1.9, for any k-algebra A

that is connected, N-graded, and finitely generated, then

r.gldim(A) = pdim(kA) = pdim(Ak) = l.gldim(A).

For the sake of clarity, kA is the one-dimensional graded right A-module, that is

k ∼= A/
⊕

i>0Ai. Hence, left global dimension and right global dimension agree and

we will refer to this homological invariant as the global dimension of an algebra.

8



Definition 2.1.10 ([1]). A k-algebra A =
⊕∞

i=0Ai that is connected and N-graded

is said to be Artin-Schelter regular, or AS-regular, if it satisfies the following three

conditions:

• gldim(A) = n <∞,

• the algebra A has polynomial growth, meaning there exist positive real numbers

c and δ such that dimk(Ai) ≤ ciδ, and

• the algebra A satisfies the Gorenstein condition, namely, a minimal projective

resolution of the left trivial module Ak consists of finitely generated modules

and dualizing this resolution yields a minimal projective resolution of the right

trivial module kA[`], where the grading is shifted by some degree ` ∈ Z.

We will refer to an algebra of global dimension n+ 1 satisfying this definition as a

quantum Pn.

Example 2.1.11 ([4, Examples I.1.5.3 & I.1.5.6]). To illustrate the third condition

of Definition 2.1.10, consider the algebra A = k〈x, y〉/〈yx− qxy〉 where q ∈ k×. We

will show that A satisfies the Gorenstein condition. The Gorenstein condition above

is equivalent to another statement involving Ext groups. As right A-modules:

ExtiA(kA, AA) ∼=


0 i 6= n,

Ak[`] i = n

where l is a shift in the grading and n is the global dimension of A.

To calculate the Ext groups of A, we first construct a minimal projective

resolution of kA. Denoting this resolution as P , we see

P : 0→ A[−2]


−qy

x


−−−−−→ A[−1]2

(
x y

)
−−−−→ A→ kA → 0

9



is a minimal projective resolution where the maps are given by left multiplication of

the matrices provided. The Ext groups are given by the homology of HomA(P,AA)

and this is

HomA(P,AA) : A[2]


−qy

x


←−−−−− A[1]2

(
x y

)
←−−−− A← 0

where the maps are given by right multiplication of the same matrices. We can

calculate homology in each position and see, ExtiA(kA, AA) ∼= 0 for i = 0, 1 and

ExtiA(kA, AA) ∼= Ak[3] for i = 2.

Furthermore, if we recognize HomA(P,AA) as

HomA(P,AA) : 0← Ak[3]← A[2]


−qy

x


←−−−−− A[1]2

(
x y

)
←−−−− A← 0

we see that this resolution is, in a sense, a “reflection” of P . For this reason, the

Gorenstein condition is viewed as imposing a symmetry condition on AS-regular

algebras.

Definition 2.1.12 ([5]). For this definition, we temporarily allow k to denote an

arbitrary field. Let µ = (µij) ∈M(n, k) be a matrix with the property that µijµji = 1

for all i, j such that i 6= j. A matrix M = (Mij) ∈M(n, k) is called µ-symmetric if

Mij = µijMji for all i, j = 1, . . . , n.

Definition 2.1.13 ([5]). For this definition, we temporarily assume char(k) 6= 2. Let

µ = (µij) ∈M(n, k) satisfy µkk = 1 = µijµji for all i, j, k, and suppose M1, . . . ,Mn ∈

M(n, k) are µ-symmetric matrices. A graded skew Clifford algebra A(µ,M1, . . . ,Mn),

associated to M1, . . . ,Mn and µ, is an associative Z-graded k-algebra on degree-1
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generators x1, . . . , xn and on degree-2 generators y1, . . . , yn with defining relations

given by:

(a) xixj + µijxjxi =
n∑
k=1

(Mk)ijyk for all i, j = 1, . . . , n, and

(b) the existence of a normalizing sequence {y′1, . . . , y′n} consisting of homogeneous

degree-2 elements of A(µ,M1, . . . ,Mn) that span ky1 + · · ·+ kyn.

Definition 2.1.14 (cf. [12]). Let R be a ring and σ : R→ R a ring homomorphism.

A left σ-derivation on R is a linear map δ : R→ R such that

δ(r1r2) = σ(r1)δ(r2) + δ(r1)r2

for all r1, r2 ∈ R. An Ore extension of R is the free left R-module R[x;σ, δ] with

basis {1, x, x2, x3, . . . } subject to

xr = σ(r)x+ δ(r)

for all r ∈ R.

Definition 2.1.15 (cf. [4, Definition I.1.2.4]). Let A be a k-algebra and let V be a

finite-dimensional subspace of A. Let V 0 = k, V 1 = V and V n be the span of all

monomials of length n, and write V ≤n =
n∑
i=0

V i. The Gelfand-Kirillov dimension of

A is

GKdim(A) = sup { lim
n→∞

logn(dimV ≤n) | V is finite-dimensional}.

Definition 2.1.16 ([14]). A noetherian k-algebra A is said to be Auslander regular

if

• gldim(A) <∞, and

• for all finitely generated modules M, and for all q ≥ 0, we have j(N) ≥ q for

every A-submodule N of ExtqA(M,A) where j(N) is the grade of N defined by

j(N) = inf {` | Ext`A(N,A) 6= 0}.
11



Remark ([14]). It is believed that the class of AS-regular algebras is more general

than the class of graded Auslander-regular algebras as, in particular, the noetherian

condition is part of the definition of Auslander regular. However, there is not a known

example of an algebra that is AS-regular, but not Auslander regular. In addition

to this, we will mention a few comments on properties of Auslander-regular, and

AS-regular, algebras:

• if A =
⊕∞

i=0Ai is N-graded, connected and Auslander regular, then A is a

domain ([14, Theorem 4.8]);

• if A =
⊕∞

i=0Ai is N-graded, connected and Auslander regular with polynomial

growth, then A is Artin-Schelter regular ([14, pg. 278]).

Definition 2.1.17 ([14]). A noetherian k-algebra A with GK-dimension n ∈ N∪{0}

is said to satisfy the Cohen-Macaulay property if GKdim(M) + j(M) = n for all

nonzero finitely generated A-modules M where j(M) is the grade of M as defined in

Definition 2.1.16.

2.2 Artin, Tate, and Van den Bergh’s Geometry

Definition 2.2.1 (cf. [10]). Consider an equivalence relation ∼ on kn+1 \ {0} where

(a1, . . . , an+1) ∼ (b1, . . . , bn+1) if and only if there exists λ ∈ k× such that ai = λbi for

all i. The definition of n-dimensional projective space is Pn = (kn+1 \ {0})/ ∼.

We will write ei or Ei to be the point (0, 0, . . . , 1, . . . , 0) ∈ Pn where the ith

entry is nonzero and all others are zero.

Definition 2.2.2 (cf. [10]). Suppose f1, . . . , fm ∈ k[x1, . . . , xn+1] are homogeneous

polynomials. The projective variety determined by f1, . . . , fm is

V(f1, . . . , fm) = {p ∈ Pn | fi(p) = 0 for all i}.
12



Remark. A rigorous definition of a scheme can be found in [13], but in this work, a

scheme can be considered as a projective variety that encodes multiplicity.

For example, let V = V(x) and W = V(x2) be projective varieties in P1. As

projective varieties, V = W = {(0, 1)}, but as schemes, V is the point (0, 1) counted

with multiplicity one and W is the same point counted with multiplicity two.

Definition 2.2.3 ([2]). Let A =
⊕∞

i=0Ai be a connected N-graded k-algebra gener-

ated by A1 where dimk(A1) = n <∞. A graded right A-module M =
⊕∞

i=0Mi is a

point module if:

• M is cyclic and generated by M0 and

• dimk(Mi) = 1 for all i.

Definition 2.2.4 ([3]). Let A =
⊕∞

i=0Ai be a connected N-graded k-algebra gener-

ated by A1 where dimk(A1) = n <∞. A graded right A-module M =
⊕∞

i=0Mi is a

line module if:

• M is cyclic and generated by M0 and

• dimk(Mi) = i+ 1 for all i.

Example 2.2.5. If A = k〈x, y〉/〈yx− qxy〉, where q ∈ k×, then A has a right point

module associated to every point in P1. Two examples are:

• M =
A

xA
with associated point (0, 1) ∈ P1,

• N =
A

(x− y)A
with associated point (1, 1) ∈ P1.

Remark. To justify the association between point modules and points, suppose A is

a k-algebra satisfying the hypothesis in Definition 2.2.3. Let M be a left point module

of A, then one can associate to it a point in Pn−1 as follows. Since M is graded

and dim(Mi) = 1 for all i, then M =
⊕∞

i=0 kmi. Furthermore, since am0 = αam1,
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where αa ∈ k for all a ∈ A1, we can define a k-linear epimorphism φ : A1 → k where

φ(a) = αa. If we write U = ker(φ), then k ∼= A1/U and dim(U) = n− 1. Now, if we

consider U⊥ ⊆ A∗1, then dim(U⊥) = 1. Hence, P(U⊥) is zero-dimensional in P(A∗1)

and so is a point in Pn−1 = P(A∗1).

A similar argument can be made for a right line module of A. Using the same

notation, one can say dim(U) = n− 2 and P(U⊥) is one-dimensional in P(A∗1) and so

is a line in Pn−1 = P(A∗1).

In [2], Artin, Tate, and Van den Bergh proved that, under certain conditions,

point modules are parametrized by a scheme, later called the point scheme in [27].

In [20], it was proved by Shelton and Vancliff that, under certain conditions, line

modules are parametrized by a scheme called the line scheme.

14



CHAPTER 3

A Family of Algebras and Their Quantum Spaces

3.1 The Family of Algebras

From [23], let A be the k-algebra generated by x1, x2, x3, x4 subject to the

defining relations:

x2x1 = −x1x2, x4x1 = −x1x4 + x22 + ax2x3 + bx23,

x3x1 = x1x3, x4x2 = −x2x4 + x21 + cx1x3 + dx23,

x3x2 = x2x3, x4x3 = x3x4 + x1x2,

where a, b, c, d ∈ k. The entirety of this chapter will consist of discussion around this

algebra and associated geometry.

In [23], this family of algebras was constructed via an Ore extension. In addition,

it is shown in that article that A has a finite point scheme when b 6= 0 or d 6= 0, and

has a one-parameter family of line modules if at least one of a, b, c or d is nonzero.

So, as previously discussed in Chapter 1, A is a candidate to be a generic quadratic

quantum P3.

3.1.1 Symmetry on A

In non-commutative algebra, it is often convenient to recognize symmetries that

exist. There is a hidden symmetry among the defining relations of A when a = c = 0

that we demonstrate before describing the geometry of A.

Theorem 3.1.1. Let A(b, d) denote a member of the subfamily of algebras A where

a = c = 0 and b, d ∈ k. For all b, d ∈ k, A(b, d) ∼= A(d, b).

Proof. Consider the map on A(b, d) given by:
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x1 7→ x2, x2 7→ x1, x3 7→ −x3, x4 7→ x4.

The image of this map yields another quadratic algebra. If we apply the map to the

defining relations of A(b, d) we obtain:

x1x2 = −x2x1, x4x2 = −x2x4 + x21 + bx23,

x3x2 = x2x3, x4x1 = −x1x4 + x22 + dx23,

x3x1 = x1x3, −x4x3 = −x3x4 + x2x1.

We can recognize these relations as the defining relations of A where a = c = 0,

except that the roles of b and d have been interchanged. Thus, A(b, d) is isomorphic

to A(d, b).

3.2 Description of the Point Scheme

3.2.1 The Point Variety

The description of the point variety can be found in [23] but, for the sake of

completeness, we present its computation below. In this computation, appropriate

conditions on a, b, c, and d will be imposed to ensure that A has a finite point

scheme. To begin, we factor the defining relations of A as the product Mx where M

is a six-by-four matrix and x = [x1, x2, x3, x4]
T and see:

M =



x2 x1 0 0

x3 0 −x1 0

0 x3 −x2 0

x4 −x2 −ax2 − bx3 x1

−x1 x4 −cx1 − dx3 x2

0 −x1 x4 −x3


.

By [2], the point scheme of A can be identified with the zero locus in P(A∗1) of the

16



maximal minors of M . The 15 maximal minors of M are homogeneous degree-four

polynomials and are listed in Section 6.1. To begin computing their zero locus,

we observe that 2x21x2x3 = 0 and proceed by separating the argument into cases

depending on whether or not x1, x2 or x3 is zero.

Case 1: Assume x1 = 0.

If x2 6= 0, we can restrict to an affine open subset by setting x2 = 1. A Gröbner basis

yields only two polynomials:

1 + ax3 + bx23 = 0,

−dx23 + 2x4 = 0.

From the first equation, x3 has one or two values depending on the values of a and b,

while x4 = d
2
x23. That is, if a 6= 0 or b 6= 0, then the point scheme contains points of

the form (0, 2, 2γ1, dγ
2
1) ∈ P3 where γ1 ∈ k× satisfies bγ21 + aγ1 + 1 = 0.

On the other hand, if x2 = 0, a Gröbner basis yields only two polynomials:

bx43 = 0,

dx43 = 0.

If b 6= 0 or d 6= 0, we can conclude x3 = 0 and the point scheme contains (0, 0, 0, 1) ∈ P3.

If b = d = 0, the point scheme contains the line V(x1, x2) and would not be finite. So

we will assume b 6= 0 or d 6= 0 when regarding the point scheme of A.

Case 2: Assume x1 6= 0.

The assumption implies that we may restrict to an affine open subset by taking

x1 = 1. A Gröbner basis yields only three polynomials:

x2 = 0,

1 + cx3 + dx23 = 0,
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−bx23 + 2x4 = 0.

From the second equation, we see x3 has one or two values depending on the val-

ues of c and d, while x4 = b
2
x23. It follows that if c 6= 0 or d 6= 0, then we obtain

points that are of the form (2, 0, 2γ2, bγ
2
2) ∈ P3 where γ2 ∈ k× satisfies 1+cγ2+dγ22 = 0.

Remark. Thus, for generic values of a, b, c, d, the point variety of A consists of the

five distinct points:

(a) (0, 2, 2γ1, dγ
2
1) ∈ P3 where γ1 ∈ k× satisfies bγ21 + aγ1 + 1 = 0,

(b) (2, 0, 2γ2, bγ
2
2) ∈ P3 where γ2 ∈ k× satisfies 1 + cγ2 + dγ22 = 0,

(c) e4 ∈ P3.

On the other hand, if one were to set a = b = 0, the point variety then contains

only three points: e4 and two points of the form described in (b). Choosing other

combinations of values for a, b, c, d, we now see the point scheme of A can consist of

2, 3, 4, or 5 distinct points. We will focus on the case when it consists of five distinct

points.

3.2.2 The Point Scheme

For a complete description of the point scheme, it remains to determine the

multiplicities of each component described previously. It is well known that if the

point scheme is finite, then it contains twenty points counted with multiplicity, thanks

to an unpublished work by M. Van den Bergh that was later outlined in [26]. It can be

interesting to see the distribution of multiplicity among the components. In Section

3.3, we show it is interesting to study the subfamily of algebras where a = c = 0, so

we will make this assumption now.
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To find the multiplicity of each point, let R = k[x1, x2, x3, x4]/J where J is

the ideal generated by the 15 polynomials described previously and listed in Section

6.1. If p is a point in the point scheme of A, we write Rp for the ring R localized at

the point p. The dimension of Rp will be equal to the multiplicity of p in the point

scheme. We will write J̄ and x̃i for the images of J and xi in Rp respectively.

Theorem 3.2.1. For A(b, d) as in Theorem 3.1.1, if b, d ∈ k×, then the point scheme

consists of:

(a) two points of the form (0, 2, 2γ1, dγ
2
1), each with multiplicity one where 1+bγ21 =

0,

(b) two points of the form (2, 0, 2γ2, bγ
2
2), each with multiplicity one where 1+dγ22 =

0, and

(c) e4 ∈ P3 with a multiplicity of 16.

Proof. In the ideal J , consider the polynomial:

x1x2x
2
3. (1)

Let us first consider the points of the form (0, 2, 2γ1, dγ
2
1) ∈ P3 where 1 + bγ21 = 0 and

notice that the condition on γ1 implies it is nonzero. Since x̃2 and x̃3 are nonzero

at (0, 2, 2γ1, dγ
2
1), equation (1) implies x̃1 is an element of J̄ . So we can compute a

Gröbner basis with this information and restrict to an affine open subset by setting

x̃2 = 2. This yields only the following four polynomials:

x̃1, −2 + x̃2,

4 + bx̃3
2, −dx̃32 + 4x̃4.

From these four polynomials, we see x̃4 ∈ k[x̃3], Rp
∼= k[x]/〈x2 + α〉 where α = 4

b
and

dimk(Rp) = 2. Since Rp is the localization at two distinct points, we conclude they

each have multiplicity one.
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Next, we consider the points listed in (b), but we will make use of the isomor-

phism in Theorem 3.1.1. Recall, A(b, d) ∼= A(d, b) via the map defined on A(b, d)

given by:

x1 7→ x2, x2 7→ x1, x3 7→ −x3, x4 7→ x4.

The isomorphism applied to our point yields (2, 0, 2γ2, bγ
2
2) 7→ (0, 2,−2γ2, bγ

2
2) where

γ2 satisfies 1 + dγ22 = 0. That is, our point maps to the point (0, 2, 2γ1, bγ
2
1) where

1 + dγ21 = 0, which is a point listed in (a) for A(d, b). Since we already proved that

such points have multiplicity one, it follows that the points in (b) have multiplicity

one.

Lastly we consider e4 ∈ P3. Since, as mentioned before, the sum of the

multiplicities will be equal to 20, we wish to show this point has multiplicity 16.

Firstly, we restrict to an affine open subset by setting x4 = 1. A Gröbner basis is

computed, and we make note of two polynomials it contains:

x̃1
7(2d+ bx̃1),

x̃1
2x̃3

2(2d+ bx̃1).

As d is nonzero and 2d + bx̃1 is nonzero at e4, it follows that x̃1
7 and x̃1

2x̃3
2 are

elements in J̄ . We compute another Gröbner basis with this information, and make

note of the polynomial:

x̃3
6(4b+ d2x̃3

2).

As b is nonzero and 4b+ d2x̃3
2 is nonzero at e4, we have x̃3

6 is an element of J̄ . One

last Gröbner basis is computed and it contains only the following nine polynomials:

x̃1
7, x̃1

5 + 2x̃1
3x̃2, x̃1

2x̃2
2,

x̃1
4 + 2x̃1

2x̃2 + x̃1x̃2
2, −x̃15 + 4x̃1x̃2

2 + 2x̃2
4, −2dx̃1

5 + bx̃1
6 + 8dx̃1

2x̃3,
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−x̃13 − 2x̃1x̃2 − x̃23 + 2dx̃1x̃3
2, 12bx̃1

4 − dx̃16 + 16bx̃1
2x̃2 − 16bx̃1x̃3 + 8b2x̃3

3,

12bd2x̃1
4 + 6b2dx̃1

5 + (b3− d3)x̃16 + 16bd2x̃1
2x̃2− 8b2dx̃1x̃2

2− 16bd2x̃1x̃3 + 16b2dx̃2x̃3.

A package, Affine, in the program Maxima can apply Bergman’s Diamond Lemma

to determine a basis of Rp. The dimension of Rp is 16 as expected and, thus, the

multiplicity of e4 is 16.

3.3 Description of the Line Scheme

In this section, we describe in detail the line variety of the family of algebras,

A, listed at the start of Section 3.1. We will refer to the line scheme of A as L when

the defining relations have generic values for a, b, c and d. Later in this section, we

will also consider A when a = c = 0 and bd 6= 0, and in this case, we will refer to the

line scheme as Lbd.

3.3.1 The Line Variety

In [21] Shelton and Vancliff describe a method for computing the line scheme

of a quadratic AS-regular algebra of global dimension four with six defining relations.

We will apply this method to A.

We begin by determining the Koszul Dual, A!, of A. As A is a quadratic algebra

with six defining relations, A ∼= T (V )/I where V is the vector space over k generated

by {x1, x2, x3, x4} and I is generated by I2 ⊂ V ⊗ V with dim(I2) = 6. In this

context, A! ∼= T (V ∗)/〈I⊥2 〉, where V ∗ is the vector-space dual of V , I⊥2 ⊂ V ∗ ⊗ V ∗,

and dim(I⊥2 ) = 10. Here, I⊥2 is the subspace of V ∗ ⊗ V ∗ consisting of those elements

that vanish on I2. We write {z1, z2, z3, z4} ⊂ V ∗ for the dual basis to {x1, x2, x3, x4}.

For our algebra, we can consider the defining relations of A! to be:
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h1 = z2z1 − z1z2 − z4z3, h6 = z4z3 + z3z4,

h2 = z3z1 + z1z3 + cz4z2, h7 = z21 + z2z4,

h3 = z3z2 + z2z3 + az4z1, h8 = z22 + z1z4,

h4 = z4z1 − z1z4, h9 = z23 + bz1z4 + dz2z4,

h5 = z4z2 − z2z4, h10 = z24 .

If h = (h1, h2, . . . , h10)
T is a column vector containing the above defining relations of

A!, then h = M̃z, where z = (z1, . . . , z4)
T and M̃ is a 10× 4 matrix whose entries are

linear combinations of the zi. We form a 10× 8 matrix by concatenating two 10× 4

matrices constructed from M̃ , the first of which is obtained by replacing each zi in

M̃ with ui ∈ k, and the second of which is obtained by replacing each zi in M̃ with

vi ∈ k. It is useful to assume
∑4

i=1 uixi and
∑4

i=1 vixi are linearly independent, in

which case their common zero locus is a line in P(V ∗).

For A, this process yields the following 10× 8 matrix:

M =



u2 −u1 −u4 0 v2 −v1 −v4 0

u3 cu4 u1 0 v3 cv4 v1 0

au4 u3 u2 0 av4 v3 v2 0

u4 0 0 −u1 v4 0 0 −v1

0 u4 0 −u2 0 v4 0 −v2

0 0 u4 u3 0 0 v4 v3

u1 0 0 u2 v1 0 0 v2

0 u2 0 u1 0 v2 0 v1

0 0 u3 bu1 + du2 0 0 v3 bv1 + dv2

0 0 0 u4 0 0 0 v4



.
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Each of the forty-five 8× 8 minors of M is a bihomogeneous polynomial of bidegree

(4, 4) in ui and vi. In addition, each polynomial may be expressed as a linear

combination of products of polynomials in Nij = uivj − ujvi for 1 ≤ i < j ≤ 4. Thus,

M produces forty-five quartic polynomials in six variables N12, N13, N14, N23, N24 and

N34. We next apply the orthogonality isomorphism on the generators as follows:

N12 7→M34, N13 7→ −M24, N14 7→M23,

N23 7→M14, N24 7→ −M13, N34 7→M12,

and thereby produce forty-five quartic polynomials in the Plücker coordinates,

M12,M13,M14,M23,M24 and M34, on P5. The line scheme, L, of A is isomorphic to

the zero locus in P5 of these forty-five quartic polynomials in the Mij coordinates

along with the Plücker polynomial P = M12M34−M13M24+M14M23. The addition of

the Plücker polynomial ensures L contains points in P5 that correspond to lines in P3.

For our algebra A, these polynomials are calculated by using Wolfram’s Mathematica.

As mentioned in [21], one can apply a similar process to A rather than A!.

Doing so yields a collection of polynomials for which the zero locus is isomorphic to L,

but the polynomials produced cannot entirely be converted into Plücker coordinates.

So the approach outlined above from [21], that makes use of A!, yields a more

user-friendly description of the line scheme.

In [23], it is shown that the line scheme of A is one-dimensional if at least one

of a, b, c or d is nonzero, but a detailed description is not given, so we will calculate

its line variety next.
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Theorem 3.3.1. For the family of algebras given at the start of Section 3.1, if at

least one of a, b, c, d is nonzero, then the line variety is one-dimensional. Moreover,

let

• L1 = V(M12,M13,M14,M23),

• L2 = V(M12,M13,M23,M24),

• L3 = V(M12,M13,M23,M34),

• L4 = V(M12, dM13 − bM23, dM14 − bM24, 2bd2M34 − (b3 + d3)M23),

• L5 = V(M12, γM13 − αM23, γM14 − αM24, 2αγ2M34 − (α3 + γ3)M23), where

α, γ ∈ k× satisfy α2 = a and γ2 = c,

• L6 = V(M12, αM23 + γM13, γM14 + αM24, 2αγ2M34 + (γ3 − α3)M23), where

α, γ ∈ k× satisfy α2 = a and γ2 = c, and

• L7 be the nonlinear variety determined by the affine open subset:

V(M23−1, M12M34−M13M24+M14, M
2
12−cM2

13+a, M12M13−M3
13+2M13M34−1,

cM12M13 − dM13 −M2
12M13 + 2M12M24 + b,

M2
12 −M3

12M13 + bM2
13 − dM3

13 + cM12M
3
13 + 2M12M13M14).

If at least one of a, b, c, d is nonzero, then the line variety is:

(a) L1 ∪ L2 ∪ L3 if a = b = c = 0 or a = c = d = 0;

(b) L1 ∪ L2 ∪ L3 ∪ L4 if a = c = 0 6= bd;

(c) L1 ∪ L2 ∪ L3 ∪ L4 ∪ L7 if ad 6= 0 or cd 6= 0;

(d) L1 ∪ L2 ∪ L3 ∪ L5 ∪ L6 ∪ L7 if b = 0 = d 6= ac;

(e) L1 ∪ L2 ∪ L3 ∪ L7 otherwise.

Proof. Using the process described above, the list of polynomials that give the line

scheme is calculated; the list is included in Section 6.2.1. Among these polynomials,
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we see M2
23(M

2
12 − cM2

13 + aM2
23) = 0, so we will continue the argument in two cases.

Case 1: Assume M23 = 0.

We can calculate a Gröbner basis after substituting M23 = 0. Among this list of

polynomials, we see M4
12 = 0 and M4

13 = 0. So we set M12 = 0 and M13 = 0 and one

last Gröbner basis tells us M14M24M
2
34 = 0, so either M14 = 0, M24 = 0, or M34 = 0.

It follows that Case 1 yields the union of three lines, specifically L1, L2 and L3 listed

above.

Case 2: Assume M23 6= 0.

We now restrict to an affine open subset by setting M23 = 1. With this assumption,

we see that M2
12(a + M2

12 − cM2
13) = 0, so we will continue Case 2 in two subcases

depending on the value of M12.

Case 2.1: Assume M12 = 0.

Calculating a Gröbner basis after substituting M12 = 0 and M23 = 1, we see that

one of the polynomials obtained is −b+ dM13 = 0. We will continue in two subcases

depending on the value of d.

Case 2.1.1: Assume d 6= 0.

Calculating a Gröbner basis after setting M13 = b
d

yields four polynomials:

M12 = 0,

−b+ dM13 = 0,

−b3 − d3 + 2bd2M34 = 0,

dM14 − bM24 = 0.

If b = 0, then this subcase yields only the empty set. Hence we assume b 6= 0 in the

remainder of Case 2.1.1. Homogenizing the latter four polynomials yields a line in P5.

Any other polynomials obtained from homogenizing a different Gröbner basis (such
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as one using degree lexicographical ordering) cannot yield a proper one-dimensional

subvariety of a line, as a line is irreducible and one-dimensional. Thus this component

of L is the line

L4 = V(M12, dM13 − bM23, dM14 − bM24, 2bd2M34 − (b3 + d3)M23),

which completes Case 2.1.1.

Case 2.1.2: Assume d = 0.

We can calculate a Gröbner basis after setting M23 = 1, M12 = 0 and d = 0, and,

among the polynomials it returns, we see a− cM2
13 = 0 and b = 0. From these two

polynomials, we see that if c = 0, then a = 0 and this violates our initial hypothesis,

so c must be nonzero for the zero locus to be nonempty. From the polynomial

a− cM2
13 = 0, we see that M13 = ±α

γ
where α2 = a and γ2 = c. When M13 = α

γ
, we

can calculate a Gröbner basis and it yields only the four polynomials:

M12 = 0,

α− γM13 = 0,

γM14 − αM24 = 0,

−α3 − γ3 + 2αγ2M34 = 0.

If a = 0 6= c, then this subcase yields only the empty set. Hence, we assume a 6= 0 6= c

in the remainder of Case 2.1.2. Homogenizing the latter four polynomials yields a

line in P5. Any other polynomials obtained from homogenizing a different Gröbner

basis (such as one using degree lexicographical ordering) cannot yield a proper one-

dimensional subvariety of a line, as a line is irreducible and one-dimensional. Thus

this component of L is the line

L5 = V(M12, γM13 − αM23, γM14 − αM24, 2αγ2M34 − (α3 + γ3)M23)).
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Similarly, when M13 = −α
γ

we can calculate a Gröbner basis and it yields only

the four polynomials:

M12 = 0,

α + γM13 = 0,

γM14 + αM24 = 0,

γ3 − α3 + 2αγ2M34 = 0.

Homogenizing these four polynomials yields a line in P5. Any other polynomials

obtained from homogenizing a different Gröbner basis (such as one using degree

lexicographical ordering) cannot yield a proper one-dimensional subvariety of a line,

as a line is irreducible and one-dimensional. Thus this component of L is the line

L6 = V(M12, αM23 + γM13, γM14 + αM24, 2αγ2M34 + (γ3 − α3)M23).

Case 2.1.2 is now complete.

Case 2.2: Assume M12 6= 0.

The first polynomial in our collection in Section 6.2.1 allows us to conclude that M13

is nonzero. So we calculate a Gröbner basis by setting M23 = 1 and ensuring that our

Mathematica calculations consider M12 6= 0 and M13 6= 0 by introducing variables y

and z that satisfy zM12 = 1 and yM13 = 1. This yields the five polynomials listed in

Section 6.2.3 which determine L7. However, if a = c = 0, then L7 ⊆ L4. Case 2 is

now complete and so is the proof.

We call the points of a one-dimensional line scheme that lie on two or more

components the intersection points of the line scheme. The next result computes the

intersection points of Lbd, but not their multiplicities.

Corollary 3.3.2. With the hypotheses of (b) in Theorem 3.3.1, the four distinct lines

of Lbd intersect at four distinct points:

27



L1 ∩ L2 = {E6}, L1 ∩ L3 = {E5},

L2 ∩ L3 = {E3}, L3 ∩ L4 = {(0, 0, b, 0, d, 0)}.

Proof. The result follows from direct computations using the polynomials from

Theorem 3.3.1.

Figure 3.3.3 is how one can imagine Lbd in P5. When viewing the figure, the

reader should note that components L1, L2 and L3 lie in the plane where M12 =

M13 = M23 = 0 and L4 does not.

Figure 3.3.3. A depiction of the line variety of A when a = c = 0 and b, d ∈ k×.

Theorem 3.3.1 is significant as it answers a long-standing open problem posed

by S.P. Smith on whether or not there exists a quadratic quantum P3 that possesses a

finite point scheme and a one-dimensional line scheme that is the union of lines. For

this reason, Chapter 4 will consist of discussion of the case a = c = 0 and b, d ∈ k×.
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CHAPTER 4

Properties of Lbd

In this chapter, we denote members of the subfamily of algebras A where

a = c = 0 and b, d ∈ k× by A(b, d) and Lbd will denote the line scheme of A(b, d).

Recall, from Theorem 3.3.1(b), Lbd is the union of four distinct lines with various

multiplicities. The multiplicities of the components of Lbd will be determined in

Theorem 4.1.1.

4.1 The Line Scheme Lbd

Similar to Section 3.2.2, to give a full description of Lbd we must determine

the multiplicity of each component. From [9], we know the degree of Lbd is 20, and

finding the multiplicity of each component corresponds to seeing how the degree is

distributed among the lines of Lbd . To determine the multiplicity of each component,

first consider the coordinate ring k[M12,M13,M14,M23,M24,M34]/I of Lbd, where I is

the ideal generated by the 46 polynomials in Section 6.2.2. By [20, Corollary 2.6] (cf.

[9, Theorem 2.1]), to compute the multiplicity of each component, it suffices to find

the dimension of the coordinate ring localized at one point lying on that component.

Consider any component Li ∈ Lbd and a point, p, on Li such that p is not a

point of intersection with any other component. We choose a homogeneous element

f , in the coordinate ring of Lbd, such that Li ∩ V(f) = {p}, |Lbd ∩ V(f)| < ∞ and

no point of Lbd ∩ V(f) is a point of intersection of the components of Lbd. Let

R = k[M12,M13,M14,M23,M24,M34]/J where J = I + 〈f〉, and let Rp denote R
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localized at p. We wish to determine the dimension of Rp. In each case below, we

will write mij and J̄ for the images of Mij and J (respectively) in Rp.

Theorem 4.1.1. The line scheme Lbd is the union of the following lines in P5:

• L1 = V(M12,M13,M14,M23) counted with multiplicity six,

• L2 = V(M12,M13,M23,M24) counted with multiplicity six,

• L3 = V(M12,M13,M23,M34) counted with multiplicity six, and

• L4 = V(M12, dM13 − bM23, dM14 − bM24, 2bd
2M34 − (b3 + d3)M23) counted with

multiplicity two.

Proof. We will begin with L1 and consider the hyperplane determined by

f = M34 − xM24 + β1M12 + β2M13 + β3M14 + β4M23

where x, βi ∈ k× for all i and β3 6= d
b
x. It follows that V(f) ∩ L1 = {(0, 0, 0, 0, 1, x)}.

The restrictions on x and the βi ensure that V(f) does not contain any of the points

in Corollary 3.3.2. Moreover, |V(f) ∩ Lbd| = 4. Using f to substitute for M34 and

setting M24 = 1, we can compute a Gröbner basis of J̄ . This yields an element in the

set:

m5
23(2b

2β3d− 2bd2x+ 〈m23〉)2.

Since β3 6= d
b
x, it follows m5

23 is an element of J̄ . With this information, we compute

a Gröbner basis and obtain the polynomial:

m5
14(β3m14 − x)5.

Since β3m14− x is nonzero at p, it follows that m5
14 is an element of J̄ . With this, we

can compute another Gröbner basis and obtain the polynomial:

m12m
3
14x

2.
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Since x is nonzero, it follows that m12m
3
14 is an element of J̄ . Using this and

introducing a variable y satisfying xy = 1, we compute one more Gröbner basis and

obtain only five polynomials, three of which are:

m5
23,

m23(−β3m3
23 − 2xβ4m

3
23 − 2x2m2

23 − bx2β3m3
23 + 4x3m13),

−m4
23 + 4x2m2

13 − b2x4m4
23,

and the other two polynomials belong to the sets:

8m12 + k[m13,m23],

16m14 + k[m13,m23].

The last two polynomials tell us m12,m14 ∈ k[m13,m23]. So Rp
∼= k[m13,m23]/J̄ ′

where J̄ ′ is generated by the first three of the latter five polynomials. Using Maxima

with one of its packages, Affine, we can apply Bergman’s Diamond Lemma to this

quotient ring and find that Rp has dimension six. Thus L1 has multiplicity six.

We will next consider the component L3 and the hyperplane determined by

f = M14 − xM24 + β1M12 + β2M13 + β3M23 + β4M34

where x, βi ∈ k× for all i and x 6= b
d
. It follows that V(f) ∩ L3 = {(0, 0, x, 0, 1, 0)}.

The restrictions on x and the βi ensure that V(f) does not contain any of the points

in Corollary 3.3.2. Moreover, |V(f) ∩ Lbd| = 4. Owing to computational limitations

of Mathematica, we will begin by computing a Gröbner basis of I. Since J = I + 〈f〉,

any information we find from a Gröbner basis of I can be considered for J̄ . We

restrict to an affine open subset by setting M24 = 1, and, among the elements of a

Gröbner basis for I, we see the two polynomials:

m5
14(b− dm14)

2m5
34,
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(b− dm14)
2m5

23.

Since b− dm14 and m14 are nonzero at p, we have m5
34 and m5

23 are in J̄ . With this

information, we are now able to compute another Gröbner basis for J̄ . In addition to

using m5
34 and m5

23, we will substitute for m14 using f and we find that the polynomial

m12m
3
34(β4m34 − x)

belongs to J̄ . Since β4m34− x is nonzero at p, it follows that m12m
3
34 is an element of

J̄ . We again introduce a variable y satisfying xy = 1 and compute one more Gröbner

basis and obtain only five polynomials, three of which are:

m5
23,

2m2
12 − b2m4

23 + 2bdxm4
23 − d2x2m4

23,

4xm12m23 + 2bxm3
23 − 2dx2m3

23 + β4dm
4
23 + 2β3dxm

4
23 + 2β2dx

2m4
23 + β4dx

3m4
23,

and the other two polynomials belong to the sets:

8m13 + k[m23],

16m34 + k[m12,m23].

The last two polynomials imply m13,m34 ∈ k[m12,m23]. So Rp
∼= k[m12,m23]/J̄ ′

where J̄ ′ is generated by the first three of the latter five polynomials above. Using

Maxima like before to apply Bergman’s Diamond Lemma, we see Rp has dimension

six so L3 has multiplicity six.

We now consider L4 and the hyperplane determined by:

f = bM23 − d(M13 +M14) + β1M12 + β2(dM13 − bM23) + β3(dM14 − bM24)+

β4(2bd
2M34 − (b3 + d3)M23),
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where βi ∈ k× for all i and β3 6= 1. It follows that

V(f) ∩ L4 = {(0, 2b2d, 0, 2bd2, 0, b3 + d3)}.

The restrictions on the βi ensure that V(f) does not contain any of the points in

Corollary 3.3.2. Moreover, |V(f) ∩ Lbd| = 4. We restrict to an affine open subset

by setting M13 = 2b2d. Using f to substitute for M34, a Gröbner basis yields the

polynomial:

4b4d2m2
12.

Since b and d are nonzero, m2
12 is an element of J̄ . Using this information we compute

one more Gröbner basis and obtain only four polynomials, two of which are:

m2
12,

m23 − 2bd2,

and the other polynomials belong to the sets:

2b2dm24 + k[m12],

2bd2m14 + k[m12].

The last two polynomials tell us m24,m14 ∈ k[m12]. Thus, from the first two polyno-

mials, we see Rp
∼= k[x]/〈x2〉 which has dimension two. Therefore L4 has multiplicity

two.

By [9], deg(Lbd) = 20, so it follows that L2 has multiplicity six. However, we

next compute the multiplicity of L2 explicitly as an independent check. Recall from

Theorem 3.1.1 that A(b, d) ∼= A(d, b). Thus, the line schemes of A(b, d) and A(d, b)

are isomorphic, so A(d, b) has a line variety that consists of four distinct lines. For

clarity, we write Li as Li(b, d) to show the dependence on the parameters b, d ∈ k×.

33



The isomorphism map described in Theorem 3.1.1 corresponds to a map on each Mij

as follows:

M12 7→ −M12, M13 7→ −M23, M14 7→M24,

M23 7→ −M13, M24 7→M14, M34 7→ −M34.

Notice that the line L1(b, d) = V(M12,M13,M14,M23) 7→ V(M12,M13,M23,M24) =

L2(d, b). So we can conclude that, for all b, d ∈ k×, the multiplicity of L2(d, b) is six.

It follows that L2(b, d) has multiplicity six.

4.2 The Lines in P3 Parametrized by Lbd

In order to determine the lines in P3 that are parametrized by the line scheme,

we first describe the Plücker embedding. Let l be any line in P3 and consider two

points a 6= b ∈ l and write a = (a1, a2, a3, a4), b = (b1, b2, b3, b4). We can represent l

as a 2× 4 matrix

M =

a1 a2 a3 a4

b1 b2 b3 b4


of rank two such that the homogeneous coordinates of any point on l can be realized

as a linear combination of the rows of M . We create coordinates for l using the 2× 2

determinants of M , denoted Mij = aibj − ajbi for 1 ≤ i < j ≤ 4. Consequently, to

describe the lines in P3 parametrized by Lbd, we will construct the 2 × 4 matrices

associated to points on each component.

4.2.1 Lines in P3 Parametrized by L1

For L1 = V(M12,M13,M14,M23), any line in P3 corresponding to a point on L1

can be represented by: 0 a2 a3 0

0 0 0 1


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where (a2, a3) ∈ P1. Hence, L1 parametrizes all lines on V(x1) that contain e4.

4.2.2 Lines in P3 Parametrized by L2

For L2 = V(M12,M13,M23,M24), any line in P3 corresponding to a point on L2

can be represented by: a1 0 a3 0

0 0 0 1


where (a1, a3) ∈ P1. Hence, L2 parametrizes all lines on V(x2) that contain e4.

4.2.3 Lines in P3 Parametrized by L3

For L3 = V(M12,M13,M23,M34), any line in P3 corresponding to a point on L3

can be represented by: a1 a2 0 0

0 0 0 1


where (a1, a2) ∈ P1. Hence, L3 parametrizes all lines on V(x3) that contain e4.

4.2.4 Lines in P3 Parametrized by L4

For L4 = V(M12, dM13 − bM23, dM14 − bM24, 2bd
2M34 − (b3 + d3)M23), any line

corresponding to a point on L4 can be represented by: 0 0 a3 a4

2b2d 2bd2 0 −(b3 + d3)


where (a3, a4) ∈ P1. Hence, L4 parametrizes all lines on V(dx1 − bx2) that contain

(2b2d, 2bd2, 0,−(b3 + d3)).
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4.3 Normalizing Sequences of A(b, d)

It was demonstrated in [6] and [24] that for two families of graded skew Clif-

ford algebras that are also quadratic quantum P3s, there is a relationship between

normalizing sequences in the algebra and the intersection points of the line scheme.

By construction, the defining relations of a graded skew Clifford algebra determine a

normalizing sequence consisting of four homogeneous elements of degree two. Now

consider the ideal, N , generated by these four elements. In the examples of [6, 24], if

Ip denotes the right ideal determined by an intersection point p of the line scheme,

then dimk((Ip)2 ∩N) = 2. Furthermore, if Ip′ denotes the right ideal determined by a

point p′ of the line scheme that is not an intersection point, then dimk((Ip′)2∩N) = 1.

So in a way, distinguished points of the line scheme “highlight” distinguished elements

of the algebra. Our algebra, A(b, d), does not appear to be a graded skew Clifford

algebra, but we wish to see if similar behavior is exhibited.

4.3.1 Normalizing Sequences of Degree-2 Elements

We begin by noting that A(b, d) has two normalizing sequences consisting of

four homogeneous elements of degree two. We will consider the two ideals generated

by both normalizing sequences:

N1 generated by {x21, x22, dx1x3 − bx2x3, x1x2},

N2 generated by {x21, x22, dx1x3 − bx2x3, x23}.

Next, we find the right ideals determined by each intersection point of Lbd. To

outline the process, we will consider the point L2 ∩ L3 = {E3} and denote its right

ideal as IE3 . Similar to our discussion in Section 4.2, the line in P3 to which this

point corresponds is represented by the matrix:
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1 0 0 0

0 0 0 1

 .

Hence, we seek two linearly independent elements of A(b, d)1 that vanish on

e1 and e4. So IE3 = x2A(b, d) + x3A(b, d). We apply the same process to each of the

intersection points listed in Corollary 3.3.2 and we write p = (0, 0, b, 0, d, 0).

E5 −→

0 1 0 0

0 0 0 1

 −→ IE5 = x1A(b, d) + x3A(b, d),

E6 −→

0 0 1 0

0 0 0 1

 −→ IE6 = x1A(b, d) + x2A(b, d),

p −→

b d 0 0

0 0 0 1

 −→ Ip = (dx1 − bx2)A(b, d) + x3A(b, d).

We are interested in elements in each right ideal that are homogeneous of degree two.

Since each of these right ideals determines a line module over A(b, d), their degree-two

subspaces have dimension seven and can be described as:

(IE3)2 = kx1x2 ⊕ kx22 ⊕ kx2x3 ⊕ kx2x4 ⊕ kx1x3 ⊕ kx23 ⊕ kx3x4,

(IE5)2 = kx21 ⊕ kx1x2 ⊕ kx1x3 ⊕ kx1x4 ⊕ kx2x3 ⊕ kx23 ⊕ kx3x4,

(IE6)2 = kx21 ⊕ kx1x2 ⊕ kx1x3 ⊕ kx1x4 ⊕ kx22 ⊕ kx2x3 ⊕ kx2x4,

(Ip)2 = kx1x3⊕kx2x3⊕kx23⊕kx3x4⊕k(dx21+bx1x2)⊕k(dx1x2−bx22)⊕k(dx1x4−bx2x4).

It follows that the intersection of N1 and the degree-two subspaces of each right

ideal are:

(IE3)2 ∩N1 = kx1x2 ⊕ kx22 ⊕ k(dx1x3 − bx2x3),

(IE5)2 ∩N1 = kx21 ⊕ kx1x2 ⊕ k(dx1x3 − bx2x3),
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(IE6)2 ∩N1 = kx21 ⊕ kx1x2 ⊕ kx22 ⊕ k(dx1x3 − bx2x3) = (N1)2,

(Ip)2 ∩N1 = k(dx21 + bx1x2)⊕ k(dxy − by2)⊕ k(dx1x3 − bx2x3).

Hence, we find the dimensions of the subspaces to be

dimk((IE3)2 ∩N1) = dimk((IE5)2 ∩N1) = dimk((Ip)2 ∩N1) = 3

and dimk((IE6)2 ∩N1) = 4.

The intersection of N2 and the degree-two subspaces are:

(IE3)2 ∩N2 = kx22 ⊕ kx23 ⊕ k(dx1x3 − bx2x3),

(IE5)2 ∩N2 = kx21 ⊕ kx23 ⊕ k(dx1x3 − bx2x3),

(IE6)2 ∩N2 = kx21 ⊕ kx22 ⊕ k(dx1x3 − bx2x3),

(Ip)2 ∩N2 = k(d2x21 + b2x22)⊕ kx23 ⊕ k(dx1x3 − bx2x3).

Each intersection has dimension three in this case.

Next, we will determine the intersection of N1 and N2 with right ideals deter-

mined by points that lie on only one component of the line scheme. We determine

these right ideals in a similar manner as before and will outline the process for L1.

Consider any point on L1 \ {E5, E6}. Such a point corresponds to a line in P3 given

by the matrix: 0 1 α 0

0 0 0 1

 ,

where α ∈ k×. We denote the right ideal determined by any one of these points as

JL1 . Again, we need two elements that are homogeneous of degree one to determine

this right ideal, so JL1 = x1A(b, d) + (αx2 − x3)A(b, d). Applying this to the other

components of the line scheme we find:
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L2 \ {E3, E6} −→

1 0 β 0

0 0 0 1

 −→ JL2 = x2A(b, d) + (βx1 − x3)A(b, d)

L3 \ {E3, E5, p} −→

1 γ 0 0

0 0 0 1

 −→ JL3 = x3A(b, d) + (γx1 − x2)A(b, d)

L4 \ {p} −→

 0 0 1 δ

2b2d 2bd2 0 −(b3 + d3)



JL4 = (dx1 − bx2)A(b, d) + ((b3 + d3)x2 − 2bd2(δx3 − x4))A(b, d)

where β, γ, δ ∈ k× and γ 6= d
b
. We now describe their degree-two subspaces, which,

like previously, have dimension seven:

(JL1)2 = kx21⊕kx1x2⊕kx1x3⊕kx1x4⊕k(αx22−x2x3)⊕k(αx2x3−x23)⊕k(αx2x4−x3x4),

(JL2)2 = kx1x2⊕kx22⊕kx2x3⊕kx2x4⊕k(βx21−x1x3)⊕k(βx1x3−x23)⊕k(βx1x4−x3x4),

(JL3)2 = kx1x3⊕kx2x3⊕kx23⊕kx3x4⊕k(γx21+x1x2)⊕k(γx1x2−x22)⊕k(γx1x4−x2x4),

(JL4)2 = k(dx21 + bx1x2)⊕ k(dx1x2 − bx22)⊕ k(dx1x3 − bx2x3)⊕ k(dx1x4 − bx2x4)⊕

⊕k(2bd2x21 + (b3 + d3)x22 − 2δbd2x2x3 + 2bd3x23 − 2bd2x2x4)⊕

⊕k(2bd2x1x2 + (b3 + d3)x2x3 − 2δbd2x23 + 2bd2x3x4)⊕

⊕k((b3 + d3)x2x4 − 2δbd2x3x4 + 2bd2x24).

It follows that the intersection of N1 with each degree-two subspace is:

(JL1)2 ∩N1 = kx21 ⊕ kx1x2 ⊕ k(dx1x3 + αbx22 − bx2x3),

(JL2)2 ∩N1 = kx1x2 ⊕ kx22 ⊕ k(dβx21 − dx1x3 + bx2x3),
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(JL3)2 ∩N1 = k(γx21 + x1x2)⊕ k(γx1x2 − x22)⊕ k(dx1x3 − bx2x3),

(JL4)2 ∩N1 = k(dx21 + bx1x2)⊕ k(dx1x2 − bx22)⊕ k(dx1x3 − bx2x3).

We see each intersection has dimension three.

On the other hand, the intersection of N2 with each degree-two subspace is:

(JL1)2 ∩N2 = kx21 ⊕ k(dx1x3 + αbx22 − bx2x3)⊕ k(dx1x3 − bx2x3 + α−1bx23),

(JL2)2 ∩N2 = kx22 ⊕ k(βdx21 − dx1x3 + bx2x3)⊕ k(dx1x3 − bx2x3 − β−1dx23),

(JL3)2 ∩N2 = kx23 ⊕ k(γ2x21 + x22)⊕ k(dx1x3 − bx2x3),

(JL4)2 ∩N2 = k(d2x21 + b2x22)⊕ k(dx1x3 − bx2x3).

We see each intersection has dimension three except dimk((JL4)2 ∩N2) = 2. Unfortu-

nately, there appears not to be a clear interplay between these normalizing sequences

in A(b, d) and intersection points of the line scheme like that demonstrated in [6] and

[24]. One could consider a few more normalizing sequences of greater length, such as:

{x21, x22, dx1x3 − bx2x3, x1x2, dx1x4 − bx2x4},

{x21, x22, dx1x3 − bx2x3, x1x2, x23},

{x21, x22, dx1x3 − bx2x3, x1x2, x23, dx1x4 − bx2x4},

but we leave that to future work.

4.3.2 An Interesting Normalizing Sequence

To conclude this section, we will consider one last normalizing sequence. As

previously stated, graded skew Clifford algebras of global dimension four are equipped,

by definition, with a normalizing sequence consisting of four homogeneous elements

of degree two. So in Section 4.3.1, we considered such normalizing sequences. What
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was not considered is that the normalizing sequence of a graded skew Clifford algebra

satisfies a certain property that we will try to duplicate in this section. Suppose B is

a quadratic AS-regular graded skew Clifford algebra of global dimension four and

that {α1, α2, α3, α4} is its normalizing sequence (provided by the definition of graded

skew Clifford algebra) consisting of homogeneous elements of degree two. In [5], it is

shown that B/〈α1, . . . , α4〉 is the Koszul dual of a quadratic AS-regular algebra of

global dimension four. So in this section, we will consider a normalizing sequence

that mirrors this property.

Consider the elements x21, x
2
2, dx1 − bx2, x

2
3, x

2
4 in A(b, d). Indeed, these

elements form a normalizing sequence of A(b, d). Furthermore, if N is the ideal

generated by these elements, then A(b, d)/N is isomorphic to a factor ring of a

quadratic quantum P2. We can write this factor ring using generators z1, z2, z3 and

defining relations:

z2z1 = z1z2, z21 = 0,

z3z1 = −z1z3, z22 = 0,

z3z2 = z2z3, z23 = 0.

Thus, if C is the quadratic AS-regular algebra generated by {y1, y2, y3} with defining

relations:

y2y1 = −y1y2, y3y1 = y1y3, y3y2 = −y2y3,

then A(b, d)/N ∼= C !.

Next, we will determine the intersection of N with the right ideals discussed in

Section 4.3.1. The degree-two subspace of N is:

(N)2 = kx21 ⊕ kx1x2 ⊕ k(dx1x3 − bx2x3)⊕ k(dx1x4 − bx2x4)⊕ kx22 ⊕ kx23 ⊕ kx24.
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We can describe the intersection of (N)2 with the right ideals associated to the

intersection points of Lbd by:

(IE3)2 ∩ (N)2 = kx1x2 ⊕ k(dx1x3 − bx2x3)⊕ kx22 ⊕ kx23,

(IE5)2 ∩ (N)2 = kx21 ⊕ kx1x2 ⊕ k(dx1x3 − bx2x3)⊕ kx23,

(IE6)2 ∩ (N)2 = kx21 ⊕ kx1x2 ⊕ k(dx1x3 − bx2x3)⊕ k(dx1x4 − bx2x4)⊕ kx22,

(Ip)2 ∩ (N)2 = k(dx21+bx1x2)⊕k(dx1x2−bx22)⊕k(dx1x3−bx2x3)⊕k(dx1x4−bx2x4)⊕kx23.

The first two subspaces have dimension four and the last two have dimension five.

The intersection of (N)2 with all the other right ideals are:

(JL1)2 ∩ (N)2 = kx21 ⊕ kx1x2 ⊕ k(α2x22 − x23)⊕ k(αbx22 + dx1x3 − bx2x3),

(JL2)2 ∩ (N)2 = kx1x2 ⊕ k(β2x21 − x23)⊕ kx22 ⊕ k(dx1x3 − bx2x3 − βdx21),

(JL3)2 ∩ (N)2 = k(γx21 + x1x2)⊕ k(γx1x2 − x22)⊕ k(dx1x3 − bx2x3)⊕ kx23.

The description of JL4 ∩ (N)2 is not user friendly, so we will not write it

explicitly. Nevertheless, the dimension of dim((JL4)2 ∩ (N)2) = 5 since one can show

dim((JL4 + (N)2) = 9. Initial findings of this discussion seem to show that L4 is

“highlighting” this normalizing sequence.

4.4 A Subalgebra of A(b, d)

In this section, we will let B denote the quadratic quantum P2 generated by

{x1, x2, x3} subject to the defining relations:

x2x1 = −x1x2, x3x1 = x1x3, x3x2 = x2x3.

In [23, Proposition 2.1], it is shown that A(b, d) is an Ore extension of B, which

allows us to conclude that B is a subalgebra of A(b, d). As B is a quadratic quantum
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P2, we begin by describing its point scheme in a manner similar to that in Section

3.2.1. We factor the defining relations as Mx where x = [x1, x2, x3]
T and M is the

3-by-3 matrix:

M =


x2 x1 0

x3 0 −x1

0 x3 −x2

 .

The point scheme of B can be computed as the zero locus in P2 where

det(M) = 2x1x2x3 = 0.

Thus, it is the union of three lines: V(x1) ∪ V(x2) ∪ V(x3) ⊂ P2. We remark that

the point scheme of B consists of a “triangle” of three lines in P2 and that the line

scheme of A(b, d) contains a “triangle” of three lines in P5. This type of behavior is

displayed in [17], where a quadratic quantum P3 has a subalgebra isomorphic to a

quadratic quantum P2 and there are similar components in each respective scheme.

We now seek to show that if A is a quadratic quantum P3 with a subalgebra

B isomorphic to a quadratic quantum P2, then the point variety of B is embedded

in the line variety of A. On the level of point modules and line modules, this would

mean that a point module of B determines a line module of A. We first consider the

following lemma to compare certain subspaces of degree-two elements.

Lemma 4.4.1. Suppose that A =
⊕∞

i=0Ai is a quadratic algebra where dim(A1) = 4

and that A contains a quadratic subalgebra B =
⊕∞

i=0 Bi where dim(B1) = 3 such that

B1 ⊂ A1. If u, v ∈ B1 satisfy dim(uB1 + vB1) ≤ 5, then dim(uA1 + vA1) ≤ 7.

Proof. Since B1 ⊂ A1 and dim(B1) = 3, we may write A1 = B1
⊕

ka for some

a ∈ A1 \ B1. It follows that uA1 + vA1 = uB1 + vB1 + kua+ kva. Thus

dim(uA1 + vA1) ≤ dim(uB1 + vB1) + dim(kua+ kva).
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Since dim(kua+ kva) ≤ 2, it follows that dim(uA1 + vA1) ≤ 7.

Theorem 4.4.2. Suppose A =
⊕∞

i=0Ai is a quadratic Auslander-regular algebra of

global dimension four that satisfies the Cohen Macaulay property with Hilbert series

(1 − t)−4. If A contains a quadratic AS-regular subalgebra B =
⊕∞

i=0 Bi of global

dimension three, where B1 ⊂ A1, then the point variety of B embeds in the line variety

of A.

Proof. Let M be a right point module over B. Since B is a quadratic AS-regular

algebra, then M ∼= B
uB+vB where u, v ∈ B1 are linearly independent and dim(uB1 +

vB1) = 5. The Hilbert series of A implies that dim(A1) = 4, so the previous lemma

implies that dim(uA1 + vA1) ≤ 7. Since A is connected and Auslander regular, it

follows from [14, Theorem 4.8] that A is a domain. Thus, uA1 ∩ vA1 6= 0 and [15,

Proposition 2.8] implies that A
uA+vA is a line module over A. That is, point modules

over the subalgebra B determine line modules over A, or in other words, the point

variety of B embeds in the line variety of A.

Corollary 4.4.3. Suppose A =
⊕∞

i=0Ai is a quadratic Auslander-regular algebra of

global dimension four that satisfies the Cohen Macaulay property with Hilbert series

(1 − t)−4. If A is an Ore extension of a quadratic AS-regular algebra B of global

dimension three, then the point variety of B embeds in the line variety of A. In

particular, the point variety of B embeds in the line variety of A(b, d).

Proof. The result follows from Theorem 4.4.2 and the Ore-extension construction.

Corollary 4.4.3 and the analyses in [6, 24] suggest that perhaps components or

points in the line scheme of a quadratic quantum P3 that have multiplicity strictly

greater than one are encoding algebraic properties of the quadratic quantum P3 (cf.

Question 5.0.1).
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CHAPTER 5

Closing Remarks

The classification of quantum P3s is a challenging open problem and detailed

analyses, such as this work, will be paramount. Within this problem, there are many

other interesting questions to ask, such as: does there exist a quadratic quantum

P3 that is not noetherian? Does there exist a quadratic quantum P3 that is not

Auslander-regular? Geometric methods have been shown to be fruitful in answering

various analogous questions. In [22], geometric methods, motivated by [2, 3], were

successful in proving that the universal enveloping algebra of the Witt algebra is not

noetherian.

It is believed by the author, and many others, that the line scheme and point

scheme of a quadratic quantum P3 will reveal hidden algebraic properties that could

perhaps answer questions like those above. Indeed, stemming from this work directly,

one could ask the following questions.

Question 5.0.1. Regarding Section 4.3, does there exist a relationship between

normalizing sequences of a quadratic quantum P3 and its point scheme or line

scheme? Based on our work in Section 4.3, if a component (respectively, point)

of the line scheme of a quadratic quantum P3 has multiplicity two or more, does

the component (respectively, point) necessarily determine right ideals that have

substantial intersection with ideals determined by normalizing sequences?
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Question 5.0.2. Regarding the algebras presented in Section 3.1 constructed via

an Ore extension, A ∼= [B;σ, δ], do σ and δ determine any properties of the point

scheme or line scheme of A?

Question 5.0.3. Do the applications of Theorem 4.4.2 for an algebra that is not an

Ore extension differ from those for an Ore extension?

Question 5.0.4. In [5], the notion of a graded skew Clifford algebra was introduced,

together with necessary and sufficient conditions to determine when such an algebra

is Auslander regular. Moreover, the construction of such an algebra sometimes allows

one to control the number of point modules it possesses. So it seems reasonable to

ask: what techniques, if any, could one use to control the components in the line

scheme of a quadratic quantum P3?

Question 5.0.5. Related to the previous question, we can also ask: does there exist

a quadratic quantum P3 that has a point scheme consisting of twenty distinct points

and a one-dimensional line scheme consisting of twenty distinct lines?
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CHAPTER 6

Appendix

In this appendix, we list the various polynomials that define the schemes of

interest.

6.1 Point Scheme Polynomials

1. 2x21x2x3

2. 2x1x
2
2x3

3. −2x1x2x
2
3

4. −x1(−ax22x3 − bx2x23 + cx21x3 + dx1x
2
3 + x31 + 2x1x2x4 + x32)

5. x1(−ax2x23 − bx33 + x21x2 + 2x1x3x4 + x22x3)

6. −x1(cx1x23 + dx33 + x21x3 − x1x22)

7. −x2(ax22x3 + bx2x
2
3 − cx21x3 − dx1x23 + x31 + 2x1x2x4 + x32)

8. x2(ax2x
2
3 + bx33 + x21x2 + x22x3)

9. −x2(−cx1x23 − dx33 + x21x3 − x1x22 + 2x2x3x4)

10. −ax21x2x3 + ax1x
3
2− ax22x3x4− bx21x23 + bx1x

2
2x3− bx2x23x4− cx31x2− cx21x3x4−

cx1x
2
2x3 − dx21x2x3 − dx1x23x4 − dx22x23 + x31x4 + 2x1x2x

2
4 + x32x4

11. x3(−ax22x3 − bx2x23 + cx21x3 + dx1x
2
3 + x31 − x32)

12. x3(ax2x
2
3 + bx33 + x21x2 − 2x1x3x4 + x22x3)

13. x3(cx1x
2
3 + dx33 + x21x3 + x1x

2
2 − 2x2x3x4)
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14. ax1x
2
2x3− ax2x23x4 + bx1x2x

2
3− bx33x4− cx31x3− cx1x2x23− dx21x23− dx2x33−x41−

x21x2x3 − x21x2x4 + 2x1x3x
2
4 + x22x3x4

15. −ax1x2x23−bx1x33−cx1x23x4−dx33x4−x31x2+x21x3x4−x1x22x3−x1x22x4+2x2x3x
2
4

6.2 Line Scheme Polynomials

6.2.1 Polynomials when a, b, c and d arbitrary

1. −M12(dM
3
13 − bM23M

2
13 − 2M12M14M13 − aM12M23M13 −M2

12M23)

2. −M13(dM
3
13 − bM23M

2
13 − 2M12M14M13 − aM12M23M13 −M2

12M23)

3. −M2
12(M

2
12 − cM2

13 + aM2
23)

4. M2
13(M

2
12 − cM2

13 + aM2
23)

5. −M23(dM
3
13 − bM23M

2
13 − 2M12M14M13 − aM12M23M13 −M2

12M23)

6. −M2
23(M

2
12 − cM2

13 + aM2
23)

7. −M12(−bM3
23 + dM13M

2
23 − cM12M13M23 − 2M12M24M23 +M2

12M13)

8. M13(−bM3
23 + dM13M

2
23 − cM12M13M23 − 2M12M24M23 +M2

12M13)

9. −M23(−bM3
23 + dM13M

2
23 − cM12M13M23 − 2M12M24M23 +M2

12M13)

10. M14M23 −M13M24 +M12M34

11. M13M
3
12−M2

23M
2
12+M13M34M

2
12−cM3

13M12−M13M14M23M12−M2
13M24M12−

bM2
13M

2
23 + dM3

13M23

12. M4
12+aM13M

3
12+bM

2
13M

2
12−cM2

13M
2
12+M14M23M

2
12+aM13M34M

2
12−acM3

13M12+

2M13M
2
14M12 − aM2

13M24M12 − bcM4
13 − dM3

13M14 + adM3
13M23 + bM2

13M14M23

13. M23M
3
12−M2

13M
2
12 +M23M34M

2
12 +aM3

23M12 +M14M
2
23M12 +M13M23M24M12 +

bM13M
3
23 − dM2

13M
2
23
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14. M4
12−cM23M

3
12+aM

2
23M

2
12+dM

2
23M

2
12−M13M24M

2
12−cM23M34M

2
12−acM3

23M12−

cM14M
2
23M12 + 2M23M

2
24M12 + adM4

23 − bcM13M
3
23 + bM3

23M24 − dM13M
2
23M24

15. −M12(−M3
13 +M12M23M13 + 2M23M34M13 −M3

23)

16. M12M
3
13−cM23M

3
13−M23M24M

2
13+aM3

23M13+M14M
2
23M13−M12M23M34M13+

M12M
3
23

17. M13M
3
12 +aM2

13M
2
12− cM13M23M

2
12−M23M24M

2
12 + bM3

13M12 +dM13M
2
23M12−

acM2
13M23M12 + 2M13M14M24M12 − aM13M23M24M12 − bM13M23M34M12 +

adM2
13M

2
23 + bM13M14M

2
23 − bcM3

13M23 − dM3
13M24

18. M14M
3
12−dM2

13M
2
12+cM13M23M

2
12−M23M24M

2
12−M14M34M

2
12−aM23M34M

2
12+

cM2
13M14M12+acM2

13M23M12−M2
14M23M12−M13M14M24M12+dM2

13M34M12−

bM13M23M34M12 − adM2
13M

2
23 − bM13M14M

2
23 + bcM3

13M23 + dM2
13M14M23

19. −M23M
3
12+cM

2
23M

2
12−M13M14M

2
12−aM13M23M

2
12−dM3

23M12+acM13M
2
23M12−

bM2
13M23M12 + cM13M14M23M12 − 2M14M23M24M12 + dM13M23M34M12

− adM13M
3
23 − bM14M

3
23 + bcM2

13M
2
23 + dM2

13M23M24

20. M13(M
3
13 −M12M23M13 − 2M23M34M13 +M3

23)

21. M23M
3
12+M13M14M

2
12+aM13M23M

2
12−dM3

13M12+M14M
2
23M12+bM2

13M23M12−

M13M23M24M12 −M13M14M34M12 + cM3
13M14 +M13M

2
14M23 −M2

13M14M24

− aM2
13M23M24 + dM3

13M34 − bM2
13M23M34

22. bM4
13+aM12M

3
13−dM34M

3
13+M

2
12M

2
13+dM

2
23M

2
13−bM12M23M

2
13−bM23M34M

2
13−

aM2
12M23M13 −M12M23M24M13 + 2M12M14M34M13 − aM12M23M34M13

−M12M14M
2
23 −M3

12M23

23. −M14M
3
13 + dM23M

3
13 − bM2

23M
2
13 − aM12M

2
23M13 −M12M14M23M13 +

2M14M23M34M13 −M14M
3
23 −M2

12M
2
23
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24. −M23(M
3
13 −M12M23M13 − 2M23M34M13 +M3

23)

25. bM23M
3
13+M12M14M

2
13+cM12M34M

2
13−dM23M34M

2
13+dM

3
23M13−bM12M

2
23M13−

cM12M
2
23M13 +M2

12M23M13 −M2
12M24M13 − bM2

23M34M13 −M12M
2
23M24

26. −M12M14M
2
13 + cM14M23M

2
13 + dM23M34M

2
13− aM2

23M24M13− bM2
23M34M13−

M12M
2
23M24

27. −bM23M
3
13 − M12M14M

2
13 − aM12M23M

2
13 + dM12M23M

2
13 + dM23M34M

2
13 −

dM3
23M13−M2

12M23M13+bM
2
23M34M13−M2

12M14M23+M12M
2
23M24+aM12M

2
23M34

28. M24M
3
12+bM2

23M
2
12−M13M14M

2
12+aM13M23M

2
12−cM13M34M

2
12−M24M34M

2
12−

acM13M
2
23M12+M13M

2
24M12−aM2

23M24M12+M14M23M24M12−bM2
23M34M12+

dM13M23M34M12 + adM13M
3
23 − bcM2

13M
2
23 + bM13M

2
23M24 − dM2

13M23M24

29. dM4
23−cM12M

3
23−bM34M

3
23+M

2
12M

2
23+bM

2
13M

2
23−dM12M13M

2
23−dM13M34M

2
23+

cM2
12M13M23+M12M13M14M23+cM12M13M34M23−2M12M24M34M23−M3

12M13+

M12M
2
13M24

30. M13M
3
12−cM13M23M

2
12−M23M24M

2
12−bM3

23M12+dM13M
2
23M12+M13M14M23M12−

M2
13M24M12 + M23M24M34M12 − cM13M14M

2
23 + M13M23M

2
24 + aM3

23M24 −

M14M
2
23M24 + bM3

23M34 − dM13M
2
23M34

31. M24M
3
13−M2

12M
2
13− dM2

23M
2
13 + cM12M23M

2
13 + bM3

23M13 +M12M23M24M13−

2M23M24M34M13 +M3
23M24

32. −M34M
3
12 − aM13M34M

2
12 + cM23M34M

2
12 +M13M

2
14M12 +M23M

2
24M12

− bM2
13M34M12 − dM2

23M34M12 + acM13M23M34M12 −M14M24M34M12

−M13M14M
2
24 +aM13M23M

2
24− cM13M

2
14M23 +M2

14M23M24−adM13M
2
23M34−

bM14M
2
23M34+bcM

2
13M23M34−dM13M14M23M34+dM

2
13M24M34+bM13M23M24M34
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33. M14M
3
13 − aM23M

3
13 + cM34M

3
13 − cM2

23M
2
13 − M12M24M

2
13 − M24M34M

2
13 +

aM12M
2
23M13 +M12M

2
34M13 +M2

23M24M13 + aM2
23M34M13−M14M23M34M13 +

M2
12M

2
23 −M12M

2
23M34

34. −M24M
3
12−M2

14M
2
12−aM2

34M
2
12−aM13M24M

2
12 +cM13M34M

2
12−M24M34M

2
12 +

M13M
2
24M12− bM13M

2
34M12 +dM2

13M14M12− bM2
13M24M12−M14M23M24M12 +

acM2
13M34M12 − cM2

13M
2
14 + aM2

13M
2
24 + bcM3

13M34 − adM2
13M23M34

− bM13M14M23M34 + bM2
13M24M34

35. cM13M
3
23 − M24M

3
23 − aM34M

3
23 + aM2

13M
2
23 + M12M14M

2
23 + M14M34M

2
23 −

cM12M
2
13M23 +M12M

2
34M23 −M2

13M14M23 − cM2
13M34M23 +M13M24M34M23 +

M2
12M

2
13 −M12M

2
13M34

36. −M12(M
3
12 + aM13M

2
12 − cM23M

2
12 + bM2

13M12 + dM2
23M12 − acM13M23M12 +

M14M23M12−M13M24M12 +M14M24M12 +M13M
2
14 + adM13M

2
23 + bM14M

2
23−

cM14M
2
23+M23M

2
24+dM13M

2
34+bM23M

2
34−bcM2

13M23−aM2
13M24−dM2

13M24−

bM2
13M34 − dM2

23M34 + cM13M14M34 − 2M14M24M34 + aM23M24M34)

37. −M14M
3
12 +M2

24M
2
12−cM2

34M
2
12 +cM14M23M

2
12−M14M34M

2
12 +aM23M34M

2
12−

dM14M
2
23M12 +dM23M

2
34M12−M2

14M23M12 +bM2
23M24M12 +M13M14M24M12−

acM2
23M34M12+cM

2
14M

2
23−aM2

23M
2
24+adM

3
23M34−bcM13M

2
23M34+dM14M

2
23M34−

dM13M23M24M34

38. −M12M
3
13 + cM23M

3
13 + M34M

3
13 + M23M24M

2
13 − aM3

23M13 − M14M
2
23M13 −

2M23M
2
34M13 −M12M

3
23 +M3

23M34

39. −M13(M
3
12 + aM13M

2
12 − cM23M

2
12 + bM2

13M12 + dM2
23M12 − acM13M23M12 +

M14M23M12−M13M24M12 +M14M24M12 +M13M
2
14 + adM13M

2
23 + bM14M

2
23−

cM14M
2
23+M23M

2
24+dM13M

2
34+bM23M

2
34−bcM2

13M23−aM2
13M24−dM2

13M24−

bM2
13M34 − dM2

23M34 + cM13M14M34 − 2M14M24M34 + aM23M24M34)
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40. −bM34M
3
13+M2

14M
2
13+dM2

34M
2
13−dM14M23M

2
13+bM23M24M

2
13−aM12M34M

2
13+

bM23M
2
34M13+aM12M23M24M13−M2

12M34M13−dM2
23M34M13−M14M24M34M13−

M12M14M
2
34 + aM12M23M

2
34 +M12M

2
14M23 +M14M

2
23M24 +M2

12M23M24

−M2
14M23M34 +M12M23M24M34

41. M14(M
3
12 + aM13M

2
12 − cM23M

2
12 + bM2

13M12 + dM2
23M12 − acM13M23M12 +

M14M23M12−M13M24M12 +M14M24M12 +M13M
2
14 + adM13M

2
23 + bM14M

2
23−

cM14M
2
23+M23M

2
24+dM13M

2
34+bM23M

2
34−bcM2

13M23−aM2
13M24−dM2

13M24−

bM2
13M34 − dM2

23M34 + cM13M14M34 − 2M14M24M34 + aM23M24M34)

42. −M2
24M

2
13+cM

2
34M

2
13+M12M14M

2
13−cM14M23M

2
13−aM23M34M

2
13+aM

2
23M24M13−

cM2
23M34M13 +M2

14M
2
23 + aM2

23M
2
34 +M12M

2
23M24

43. M23(M
3
12 + aM13M

2
12 − cM23M

2
12 + bM2

13M12 + dM2
23M12 − acM13M23M12 +

M14M23M12−M13M24M12 +M14M24M12 +M13M
2
14 + adM13M

2
23 + bM14M

2
23−

cM14M
2
23+M23M

2
24+dM13M

2
34+bM23M

2
34−bcM2

13M23−aM2
13M24−dM2

13M24−

bM2
13M34 − dM2

23M34 + cM13M14M34 − 2M14M24M34 + aM23M24M34)

44. dM34M
3
23−M2

24M
2
23−bM2

34M
2
23+dM13M14M

2
23−bM13M24M

2
23−cM12M34M

2
23−

dM13M
2
34M23−cM12M13M14M23+M

2
12M34M23+bM

2
13M34M23+M14M24M34M23−

M12M13M
2
24 + cM12M13M

2
34 −M12M24M

2
34 +M2

12M13M14 −M2
13M14M24

+M13M
2
24M34 +M12M13M14M34

45. −M24(M
3
12 + aM13M

2
12 − cM23M

2
12 + bM2

13M12 + dM2
23M12 − acM13M23M12 +

M14M23M12−M13M24M12 +M14M24M12 +M13M
2
14 + adM13M

2
23 + bM14M

2
23−

cM14M
2
23+M23M

2
24+dM13M

2
34+bM23M

2
34−bcM2

13M23−aM2
13M24−dM2

13M24−

bM2
13M34 − dM2

23M34 + cM13M14M34 − 2M14M24M34 + aM23M24M34)

46. −M34(M
3
12 + aM13M

2
12 − cM23M

2
12 + bM2

13M12 + dM2
23M12 − acM13M23M12 +

M14M23M12−M13M24M12 +M14M24M12 +M13M
2
14 + adM13M

2
23 + bM14M

2
23−
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cM14M
2
23+M23M

2
24+dM13M

2
34+bM23M

2
34−bcM2

13M23−aM2
13M24−dM2

13M24−

bM2
13M34 − dM2

23M34 + cM13M14M34 − 2M14M24M34 + aM23M24M34)

6.2.2 Polynomials when a = c = 0

1. −M4
12

2. M2
12M

2
13

3. −M2
12M

2
23

4. −M12(dM
3
13 − 2M12M13M14 −M2

12M23 − bM2
13M23)

5. −M13(dM
3
13 − 2M12M13M14 −M2

12M23 − bM2
13M23)

6. M4
12 + bM2

12M
2
13 − dM3

13M14 + 2M12M13M
2
14 +M2

12M14M23 + bM2
13M14M23

7. −M23(dM
3
13 − 2M12M13M14 −M2

12M23 − bM2
13M23)

8. −M12(M
2
12M13 + dM13M

2
23 − bM3

23 − 2M12M23M24)

9. M13(M
2
12M13 + dM13M

2
23 − bM3

23 − 2M12M23M24)

10. −M23(M
2
12M13 + dM13M

2
23 − bM3

23 − 2M12M23M24)

11. M12M
2
13M14 +M2

14M
2
23 +M12M

2
23M24 −M2

13M
2
24

12. M4
12 + dM2

12M
2
23 −M2

12M13M24 − dM13M
2
23M24 + bM3

23M24 + 2M12M23M
2
24

13. M14M23 −M13M24 +M12M34

14. M3
12M13 + dM3

13M23 −M12M13M14M23 −M2
12M

2
23 − bM2

13M
2
23 −M12M

2
13M24 +

M2
12M13M34

15. −M2
12M

2
13 +M3

12M23− dM2
13M

2
23 +M12M14M

2
23 + bM13M

3
23 +M12M13M23M24 +

M2
12M23M34

16. −M12(−M3
13 +M12M13M23 −M3

23 + 2M13M23M34)
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17. M12M
3
13 +M13M14M

2
23 +M12M

3
23 −M2

13M23M24 −M12M13M23M34

18. M3
12M13+bM12M

3
13+dM12M13M

2
23+bM13M14M

2
23−dM3

13M24+2M12M13M14M24−

M2
12M23M24 − bM12M13M23M34

19. −dM2
12M

2
13 +M3

12M14 + dM2
13M14M23 −M12M

2
14M23 − bM13M14M

2
23

−M12M13M14M24−M2
12M23M24+dM12M

2
13M34−M2

12M14M34−bM12M13M23M34

20. −M2
12M13M14−M3

12M23−bM12M
2
13M23−dM12M

3
23−bM14M

3
23+dM2

13M23M24−

2M12M14M23M24 + dM12M13M23M34

21. M13(M
3
13 −M12M13M23 +M3

23 − 2M13M23M34)

22. −dM12M
3
13+M

2
12M13M14+M

3
12M23+bM12M

2
13M23+M13M

2
14M23+M12M14M

2
23−

M2
13M14M24 −M12M13M23M24 + dM3

13M34 −M12M13M14M34 − bM2
13M23M34

23. M2
12M

2
13 + bM4

13 −M3
12M23 − bM12M

2
13M23 + dM2

13M
2
23 −M12M14M

2
23

−M12M13M23M24 − dM3
13M34 + 2M12M13M14M34 − bM2

13M23M34

24. −M3
13M14 + dM3

13M23 − M12M13M14M23 − M2
12M

2
23 − bM2

13M
2
23 − M14M

3
23 +

2M13M14M23M34

25. −M23(M
3
13 −M12M13M23 +M3

23 − 2M13M23M34)

26. M12M
2
13M14+M2

12M13M23+bM3
13M23−bM12M13M

2
23+dM13M

3
23−M2

12M13M24−

M12M
2
23M24 − dM2

13M23M34 − bM13M
2
23M34

27. −M12M
2
13M14 −M12M

2
23M24 + dM2

13M23M34 − bM13M
2
23M34

28. −M12M
2
13M14−M2

12M13M23+dM12M
2
13M23−bM3

13M23−M2
12M14M23−dM13M

3
23+

M12M
2
23M24 + dM2

13M23M34 + bM13M
2
23M34

29. −M2
12M13M14 + bM2

12M
2
23 +M3

12M24 − dM2
13M23M24 +M12M14M23M24

+ bM13M
2
23M24 +M12M13M

2
24 +dM12M13M23M34− bM12M

2
23M34−M2

12M24M34
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30. −M3
12M13 + M12M13M14M23 + M2

12M
2
23 − dM12M13M

2
23 + bM2

13M
2
23 + dM4

23 +

M12M
2
13M24 − dM13M

2
23M34 − bM3

23M34 − 2M12M23M24M34

31. M3
12M13+M12M13M14M23+dM12M13M

2
23−bM12M

3
23−M12M

2
13M24−M2

12M23M24−

M14M
2
23M24 +M13M23M

2
24 − dM13M

2
23M34 + bM3

23M34 +M12M23M24M34

32. −M2
12M

2
13 − dM2

13M
2
23 + bM13M

3
23 + M3

13M24 + M12M13M23M24 + M3
23M24 −

2M13M23M24M34

33. M12M13M
2
14+M

2
14M23M24−M13M14M

2
24+M12M23M

2
24−M3

12M34−bM12M
2
13M34−

dM13M14M23M34−dM12M
2
23M34−bM14M

2
23M34+dM

2
13M24M34−M12M14M24M34+

bM13M23M24M34

34. M3
13M14+M

2
12M

2
23−M12M

2
13M24+M13M

2
23M24−M13M14M23M34−M12M

2
23M34−

M2
13M24M34 +M12M13M

2
34

35. dM12M
2
13M14−M2

12M
2
14−M3

12M24−bM12M
2
13M24−M12M14M23M24+M12M13M

2
24−

bM13M14M23M34 −M2
12M24M34 + bM2

13M24M34 − bM12M13M
2
34

36. M2
12M

2
13−M2

13M14M23 +M12M14M
2
23−M3

23M24−M12M
2
13M34 +M14M

2
23M34 +

M13M23M24M34 +M12M23M
2
34

37. −M12(M
3
12+bM12M

2
13+M13M

2
14+M12M14M23+dM12M

2
23+bM14M

2
23−M12M13M24−

dM2
13M24 + M12M14M24 + M23M

2
24 − bM2

13M34 − dM2
23M34 − 2M14M24M34 +

dM13M
2
34 + bM23M

2
34)

38. −M3
12M14 −M12M

2
14M23 − dM12M14M

2
23 + M12M13M14M24 + bM12M

2
23M24 +

M2
12M

2
24 −M2

12M14M34 + dM14M
2
23M34 − dM13M23M24M34 + dM12M23M

2
34

39. −M12M
3
13−M13M14M

2
23−M12M

3
23+M

2
13M23M24+M

3
13M34+M

3
23M34−2M13M23M

2
34
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40. −M13(M
3
12+bM12M

2
13+M13M

2
14+M12M14M23+dM12M

2
23+bM14M

2
23−M12M13M24−

dM2
13M24 + M12M14M24 + M23M

2
24 − bM2

13M34 − dM2
23M34 − 2M14M24M34 +

dM13M
2
34 + bM23M

2
34)

41. M2
13M

2
14−dM2

13M14M23+M12M
2
14M23+M

2
12M23M24+bM

2
13M23M24+M14M

2
23M24−

M2
12M13M34 − bM3

13M34 −M2
14M23M34 − dM13M

2
23M34 −M13M14M24M34

+M12M23M24M34 + dM2
13M

2
34 −M12M14M

2
34 + bM13M23M

2
34

42. M14(M
3
12+bM12M

2
13+M13M

2
14+M12M14M23+dM12M

2
23+bM14M

2
23−M12M13M24−

dM2
13M24 + M12M14M24 + M23M

2
24 − bM2

13M34 − dM2
23M34 − 2M14M24M34 +

dM13M
2
34 + bM23M

2
34)

43. M23(M
3
12+bM12M

2
13+M13M

2
14+M12M14M23+dM12M

2
23+bM14M

2
23−M12M13M24−

dM2
13M24 + M12M14M24 + M23M

2
24 − bM2

13M34 − dM2
23M34 − 2M14M24M34 +

dM13M
2
34 + bM23M

2
34)

44. M2
12M13M14 + dM13M14M

2
23 − M2

13M14M24 − bM13M
2
23M24 − M12M13M

2
24 −

M2
23M

2
24+M12M13M14M34+M

2
12M23M34+bM

2
13M23M34+dM

3
23M34+M14M23M24M34+

M13M
2
24M34 − dM13M23M

2
34 − bM2

23M
2
34 −M12M24M

2
34

45. −M24(M
3
12+bM12M

2
13+M13M

2
14+M12M14M23+dM12M

2
23+bM14M

2
23−M12M13M24−

dM2
13M24 + M12M14M24 + M23M

2
24 − bM2

13M34 − dM2
23M34 − 2M14M24M34 +

dM13M
2
34 + bM23M

2
34)

46. −M34(M
3
12+bM12M

2
13+M13M

2
14+M12M14M23+dM12M

2
23+bM14M

2
23−M12M13M24−

dM2
13M24 + M12M14M24 + M23M

2
24 − bM2

13M34 − dM2
23M34 − 2M14M24M34 +

dM13M
2
34 + bM23M

2
34)
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6.2.3 L7 Polynomials

1. M2
12 − cM2

13 + a

2. M12M13 −M3
13 + 2M13M34 − 1

3. cM12M13 − dM13 −M2
12M13 + 2M12M24 + b

4. M2
12 −M3

12M13 + bM2
13 − dM3

13 + cM12M
3
13 + 2M12M13M14

5. M12M34 −M13M24 +M14
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