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ABSTRACT

HUMAN FACTORS ANALYSIS AND MONITORING TO ENHANCE

HUMAN-ROBOT COLLABORATION

AKILESH RAJAVENKATANARAYANAN, Ph.D.

The University of Texas at Arlington, 2021

Supervising Professor: Fillia Makedon

Human-Machine Interaction (HMI) can be defined as a way for us to com-

municate with machines through user interfaces. User interfaces have evolved from

complicated punch cards and levers in the first analog computers to a more natural

way of interaction using speech or gestures in today’s digital assistants. Techno-

logical advancements in computing devices have paved the way for smart, powerful

computers to be part of our everyday lives. There is also an increasing trend of us-

ing smart computing devices and robots in manufacturing lines, medical procedures,

rehabilitation, and personal care.

The umbrella of HMI typically covers several areas like Human-Robot Interac-

tion (HRI) and Human-Computer Interaction (HCI), but a new paradigm of Human-

Robot Collaboration (HRC) is required to cover the growing research in collaborative

robots. Collaborative robots or cobots are used where humans and robots work to-

gether as a team to achieve a common goal. Such a setup requires the robot system to

understand several aspects of the human partner’s behavior, including their physical

and mental states, based on the area of application. Advancements in wearable sen-
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sors, artificial intelligence, and robotics have made these collaborative systems smart,

personalizable, and safe. Despite the abundance of research in this field, there is a

lack of research to understand the different human factors, such as human behavior

and cognition, to create better HRC systems.

The central focus of this work is to advance research in the field of human

factors for HRC. It revolves in two axes that first explore the different cognitive and

behavioral assessment systems and finally exploit the domain expertise gained to build

a cognitive assessment system that simulates a real-world task. Different intelligent

cognitive assessment systems are built that are capable of using physiological data to

predict a specific cognitive ability effectively. Sensors such as Electroencephalogram

(EEG), Electrocardiogram (ECG), Electrodermal Activity (EDA), and RGB cameras

have been used to assess the user’s state. Subsequently, physiological sensors are

used in an industrial collaborative assembly scenario to predict user performance and

cognitive load to enhance HRC. A collaborative system is built using advanced HMI

concepts to simulate a real-world scenario and collect data from human subjects.

Several data, including system-specific performance metrics and multimodal sensor

data, are collected to perform a data-driven evaluation of the developed HRC system

for cognitive load prediction.
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CHAPTER 1

Introduction

1.1 A Gentle Introduction to Human-Robot Collaboration

Human-Robot Collaboration (HRC) is an interdisciplinary research area that

includes robotics, data science, psychology, and cognitive sciences, to name a few.

Technological advancements, consumer needs, and the need to meet personalized de-

mands paved the way for a fourth industrial revolution. This revolution is commonly

referred to as industry 4.0 [9]. Several companies have already employed robots in

their manufacturing line for mundane, repetitive tasks. Complete automation has not

yet been achieved in these industries because robots are not yet able to handle intri-

cate parts for assembly or are too costly to deploy. There is also a necessity to ensure

that the need to increase productivity does not remove human workers from the man-

ufacturing industry [10]. To address these challenges, a new paradigm of collaborative

robots or cobots is being used instead, where humans and robots work synchronously

to achieve a common goal. Such a setup ensures the incorporation of the creativity

and dexterity of the human worker and the intelligence and efficiency of the robot

system. This setup enables the human worker to be more creative in the workflow

rather than doing mundane tasks. This synergy between humans and autonomous

machines is also called the 5th Industrial revolution, ‘Industry 5.0’ [10, 11].

In this dissertation, the main focus is on the human factors that affect the

human worker’s performance while using cobots for manufacturing industries. This

setup requires the robot system to understand the human-partner-specific require-

ments to provide personalized adaptation to the human partner, resulting in increased

1



productivity and reducing errors. To this end, different cognitive human factors that

affect performance in an HRC setup are explored. In the following section (Section

1.2), we will go through the types of Human Factors that are important in an HRC

setup.

1.2 Understanding Human Factors in Human-Robot Collaboration

‘Human Factors’ may refer to several different things. For instance, it may refer

to ‘the human factor,’ which refers to the human as a factor in a system’s performance.

In this research, we refer to human factors as the different factors of a human that

focus on the humans’ abilities, limitations, and characteristics. According to a blog

post by Steven Shorrock [12], several types of factors exist that includes:

• Cognitive abilities such as attention, working memory, and reasoning that are

used to perform a task,

• Cognitive systems such as the dual-process theory, which implies that cognition

may involve the coordinated activity of two independent, but connected systems.

For instance, this may aid in a person’s problem-solving ability.

• Types of performance such as knowledge-based, skill-based, and rule-based per-

formance,

• Error types such as a lapse in judgment, reason’s slips, and mistakes,

• Physical functions and qualities such as strength, speed, accuracy, balance, and

reach that aids in task performance,

• Subjective behaviors and non-technical skills such as situation awareness, deci-

sion making, and teamwork that help enhance performance in HRC,

• Physical, cognitive, and emotional states such as stress, emotion, and fatigue

that may affect performance.
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Such factors must be understood at a basic level to design and implement an effective

collaboration system. Human factors engineering is a branch of psychology that

deals with the application of psychological principles in the design and development

of products or systems that involve a person and their working environment [13].

Research in this domain aims to minimize human error, enhance safety, increase

comfort, reduce workload, and at the same time, increase productivity [13, 14].

The focus of this dissertation is predominantly on analyzing cognitive factors

and how to assess them during interaction for adaptation and personalization. There

has recently been a growing interest in the monitoring and analysis of different sig-

nals generated by a person for safe interaction with robots and computers [15]. This

research focuses on using physiological and behavioral sensors for monitoring a per-

son’s cognitive and behavioral cues. These cues help predict the implicit and explicit

feedback from a person during interaction to assess physical, cognitive, and emotional

states. In order to understand these different states, the first step is to understand the

different cognitive abilities and how to monitor and assess them using physiological

sensors like Electroencephalogram (EEG), Electrocardiogram (ECG), Electrodermal

Activity (EDA), and behavioral sensors such as the RGB camera for the physical

state.

The reminder of this section discuss what cognition is and briefly introduce why

cognitive assessments are important.

1.2.1 What is Cognition?

According to Bence Ölveczky, at the Department of Organismic and Evolution-

ary Biology and the Center for Brain Science at Harvard University, cognition can

also be defined as the ability of a person to be able to understand their surround-

ings using their cognitive abilities to perform a specific task [16, 17]. For instance,
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to accomplish a simple task like crossing a road, a person may use several cognitive

abilities like perception (e.g: recognize and interpret a crossing junction), attention

(e.g: concentrate on the pedestrian signal to look out for change in the signal), motor

skills (e.g: mobilize the muscles to walk), visual and spatial processing (e.g: ability to

process the stop and walk signal appropriately), and executive functions (e.g: decide

to walk fast or slow).

Human activity involves using several cognitive abilities such as working mem-

ory, attention, problem-solving, or set-shifting, and continuous usage of cognition

leads to a cognitive load. The overuse of these abilities might lead to cognitive fatigue

that causes many issues for a worker in a manufacturing line or a nurse in emergency

care [18]. Thus, it is essential to monitor such loads in an automated closed-loop

system that can provide the necessary assistance to reduce errors or mistakes due to

cognitive fatigue or cognitive load.

1.2.2 Introduction to Cognitive Assessments

A cognitive assessment is commonly used to assess cognitive capabilities and to

determine cognitive impairment levels. While cognitive assessments like the Montreal

Cognitive Assessment [19] or the Mini-Mental State Exam [20] cannot give the exact

cause of the impairment, it helps a doctor or caregiver to get an idea of the level of

impairment so that more tests, if needed, can be performed to address the problem.

In rehabilitation and healthcare, specifically for patients suffering from neurological

conditions such as Traumatic Brain Injury or Multiple Sclerosis, cognitive assessments

are regularly performed to track and discover mental impairments and learning diffi-

culties. In this scenario, cognitive assessments are used to assess the mental capacity

of a person to think, solve problems, memorize, execute complex behaviors, and carry

out day-to-day activities. Several tests have been proposed to assess different types of

4



abilities in patients. The National Institute of Health Toolbox (NIH Toolbox) is one

of the most popular initiatives that provide a standardized and comprehensive set of

neuro-behavioral measures to assess cognitive, emotional, sensory, and motor func-

tions [21, 22]. The NIH Toolbox provides several easy-to-use cognitive assessments

that can be administered from a portable tablet. This research uses variations of

different tests proposed in the NIH toolbox and others to build intelligent cognitive

assessment systems to understand human cognition. The studies’ results are then

applied in a real-world setup.

1.3 Challenges and Motivation

Traditional Human Robot Interaction (HRI) design covers collision detection

and avoidance issues and ensures that the robot should not cause immediate injury or

harm the human user [23]. Recent research has shown how incorporating human fac-

tors in a manufacturing process can improve the HRC outcome [24, 25]. There is also

some focus on Ergonomic HRI in the industry by developing frameworks to improve

human posture and minimize the risk of developing work-related musculoskeletal dis-

eases, and disorders [26]. However, it is not clear about the types of cognitive or

behavioral factors that impact human performance in these systems.

To this end, a two-pronged research is adapted. Figure 1.1 shows a high-level

outline of this research. In the first step, intelligent assessment systems using a

closed-loop automated assessment system are built. These assessment systems incor-

porate physiological sensors to monitor the user’s cognition using implicit or explicit

feedback. Additionally, different intelligent user interfaces that help the caregiver

or test administrator to make informed decisions during assessments are developed.

Subsequently, other indirect factors from a human’s day-to-day lives that may affect

5



cognitive performance are explored. In the second step, these results are studied and

incorporated in an industrial assembly setup that resembles a real-world setup.

Cognitive Abilities
Attention
Working Memory
Problem Solving
Set-Shifting

Cognitive
Load

Cognitive
Fatigue

Cognitive
Assessments

Other Factors
Affecting Cognitive

Performance

Intelligent User
Interface

Intelligent
Assessment Systems

Predict Cognitive Load in a Real-World Industrial Setup

Figure 1.1: Research Overview

1.4 Dissertation Structure

The rest of this dissertation is outlined as follows. Chapter 2 makes an in-

depth discussion of the different cognitive assessment systems and the components of

an intelligent assessment system. It also presents how such systems are beneficial in

studying the human cognitive model. Chapter 3 discusses and evaluates a task-based

cognitive assessment system that tries to capture the user model using physiological

sensors. Chapter 4 presents different studies that examine different human factors

that affect task performance. Chapter 5 discusses the industrial assembly system,

which simulates the real-world scenario. Challenges in achieving this system are also

presented, along with the steps taken to address them. Finally, Chapter 6 concludes
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this dissertation with future research directions and highlights the takeaways of this

research.
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CHAPTER 2

Cognitive Assessments and Monitoring Systems

2.1 Introduction

While cognitive processes have been a topic of research in philosophy for several

centuries, recent advances in brain imaging and other technologies have shown that

human cognition works using neuronal activity in the brain. People suffering from

neurological diseases that affect the brain’s neuronal activities like Multiple Sclerosis

[27] and Parkinson’s disease [28] have shown a decline in cognitive abilities that may

lead to unemployment and disrupt the social functioning of patients. Although these

conditions can not be cured, proper rehabilitation and treatment may help them

manage several symptoms. Several cognitive assessments have been developed over

the years to assess the level of cognitive functioning to provide the patients with

a proper rehabilitation and treatment plan. This chapter introduces the different

components of a cognitive assessment and monitoring system and briefly explains

why there is a need for intelligent systems that can increase user engagement and

automatically monitor user performance.

2.2 Components of an Intelligent Assessment System

An intelligent cognitive assessment system consists of multiple components such

as cognitive assessments, an intelligent interface for the test administrator to easily

interpret the results, and sensors to monitor the user’s cognitive state. All these com-

ponents are essential for an effective assessment system. This section will introduce
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the cognitive assessments, sensors used, and our findings about intelligent cognitive

tests and interfaces.

2.2.1 Cognitive Assessments

As more industries adopt robots to increase productivity, there is an increased

need for effective HRI, especially when heavy and high precision robots are used.

In an HRI-based manufacturing industry, the cost of human errors due to high cog-

nitive workload, human decision making, situational awareness, and other cognitive

processes are very high [24]. Mistakes in industrial scenarios involving heavy machin-

ery and robots can turn out to be fatal. Cognitive ailments like cognitive fatigue,

high cognitive load, lack of concentration, or engagement also possess considerable

workplace safety risks [29]. Such an unsafe working condition may also induce health

issues in workers that will be harmful to their everyday lives. Hence, in an HRC

scenario, it is required to focus on human cognitive assessments that will help build a

synergistic collaborative framework. To address these requirements, the first compo-

nent of an intelligent assessment system is the cognitive assessment. In this research,

we have focused on understanding these conditions through several cognitive tests

that require the users to be vigilant and imposes a high cognitive load. The following

sections briefly discuss the different cognitive assessments used in this dissertation.

2.2.1.1 Sequence Learning

Sequence learning (SL) tasks [30, 3] evaluate a person’s ability to arrange

thoughts and information in a meaningful order. This ability has been recognized

as an essential ability for vocational assessment, especially in HRC, where the user

has to exercise attention, good working memory, and decision-making in order to

interact with robots safely and efficiently [31]. Several cognitive science research has
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shown that sequence learning can be used to assess human behavior towards learning

ability, working memory, and attention [32, 33]. Different types of SL tasks are used

to predict and assess different abilities, such as sequence prediction, sequence genera-

tion, sequence learning, and sequence recognition. This work focuses on studying the

users’ sequence learning and working memory, which is essential in industries involv-

ing assembly line work. The SL task involves listening or seeing a set of character

sequences and repeating them correctly in a certain amount of time. The sequences

are delivered via audio (speech) or image on a computer screen. In this research,

we used three alphabets such as a, b, and c to provide the participant sequences of

lengths varying from three to nine. The participant must remember the sequence

and then responds by pressing the buttons labeled A, B, C in front of them. Figure

2.1 shows the sample setup of the SL task. The performance outcomes from the SL

task can help therapists and other experts determine what particular treatment or

rehabilitation an individual might need to enhance his/her performance in a given

domain or application.

Figure 2.1: A sample Sequence Learning task setup. A computer plays audio of dif-
ferent sequences. The participant memorizes it and responds by pressing the labeled
buttons in front of them.
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2.2.1.2 Wisconsin Card Sorting Task

The Wisconsin Card Sorting Test (WCST) is a cognitive test used to test set-

shifting. Set-shifting is the ability of a person to display flexibility in the face of

changing schedules of reinforcement [34]. The WCST is a cognitive task that incor-

porates cognitive challenges such as short-term memory, adaptive decision-making,

and problem-solving that can be found in a great variety of daily living activities. In

this task, the user is shown several stimulus cards in random order. The stimulus

card can contain different shapes that vary in number and color. The user is told to

match the cards but not how to match them. The only feedback given to the user is

whether the match is right or wrong while they can choose to use several rules based

on color, shape, or number of the symbols. At each turn, only one rule applies,

Figure 2.2: The Wisconsin Card Sorting Task - Computerized version built by [1]. A
stimulus card is shown on the bottom left, the user must now choose a matching card
from the presented options on the top right based on color, number, or shape of the
presented stimuli

and the user’s goal is to derive the rule based on the feedback provided. The rule

keeps changing periodically after a few rounds, and the user must guess the new rule.
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Figure 2.2 shows a sample screenshot of the WCST, which shows the computerized

version of the task based on the test offered by PsyToolkit [35].

2.2.1.3 N-back Task

The N-back task is commonly used in cognitive neuroscience to measure working

memory and attention, two essential skills in an assembly task [36]. It has also been

used in the past to induce cognitive load, and cognitive fatigue [37, 8]. It is a sequential

cognitive task where the participant is presented with stimuli sequentially one-by-one.

For each stimulus, the participant needs to decide if it is the same as the one presented

N stimuli back.

Figure 2.3: The N-back Task. In this example, a 2-back task, sequences of shapes are
used

Several versions of the N-back task exist, such as the N-back task with alphabets

for sequences and the visual N-back task where stimuli appear on different screen

positions. In our proposed version in [8], we present the user with a sequence of

shapes one at a time, as shown in Figure 2.3, from a pool of eight shapes with eight

different colors. Shapes were chosen to induce additional cognitive processing, using

different shaped targets of different colors. Figure 2.3 depicts a 2-back task based only

on the shape. The user responds by pressing the space bar on the keyboard when

they see the second circle, which repeats after exactly two stimuli. The participant

was presented with a total of 64 stimuli, of which 12 were targets. Each stimulus

lasted for 2500 ms. Several levels of the task are possible starting from 0-back, where
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a participant is pre-informed with the target stimuli to respond to and can go up to

how much ever is required.

2.2.2 Sensors

This dissertation follows a data-driven approach involving several user studies

that comprise data collection from human subjects, data analysis, and user model-

ing. Data collection in our user studies involves physiological and behavioral data.

Physiological data is measured using sensors capable of measuring the autonomic

nervous system’s involuntary response to stimuli [38]. Thus, the second component

of an intelligent assessment system that monitors users’ physiology is the sensors.

This research uses data from EEG, ECG, and EDA sensors capable of recording user

data non-invasively. Physical reactions to stimuli such as body postures and facial

expressions are classified as behavioral data. RGB webcam and RGB-D RealSense

sensors are used to capture behavioral data.

The following subsections describe the sensors used in our studies classified

based on the type of data.

2.2.2.1 MUSE EEG headset

Muse EEG headset is a non-invasive wearable device, widely used for Brain-

Computer Interface systems [39]. Muse has four electrodes, two over the prefrontal

lobe and two behind the ears. It allows us to record EEG activation at a sampling rate

of 220 Hz. Using the digital signal processing unit embedded in the device, we can

store other information and features extracted from the individual EEG frequency

bands namely: gamma 32-100 Hz (g), beta 13-32 Hz (b), alpha 8-13 Hz (a), theta

4-8 Hz (t) and delta 0.5-4 Hz (d) at a sampling rate of 10 Hz. For each of the four

sensors, we record different types of data streams like Raw EEG, Absolute Frequency
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Bands (A), Relative Frequency Bands (R), Session Score for each Frequency Band

(s), and Signal Quality Indicator (h).

Figure 2.4: MUSE EEG Headset [2]

• Absolute Frequency Bands (A): The absolute band power for a given fre-

quency range is the logarithm of the sum of the Power Spectral Density of the

EEG data over that frequency range.

xA = log

f high∑
i=f low

|G(fi)|2 (2.1)

where f low and f high are the minimum and maximum frequencies of fre-

quency band x and G is the fast fourier transform (FFT) of the EEG signal

g.

• Relative Frequency Bands (R): The relative band powers are calculated

by dividing the absolute linear-scale power in one band over the sum of the

absolute linear-scale powers in all bands.

xR =
10xA

10aA + 10bA + 10dA + 10gA + 10tA
(2.2)

where x is one of the five frequency bands.
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• Session Score for each Frequency Band (s): is a value computed by com-

paring the current value of a band power to its history in sampling frequency of

10 Hz. This value is mapped to a score between 0 and 1 using a linear function

that returns 0 if the current value is equal to or below the 10th percentile of

the distribution of band powers, and returns 1 if it’s equal to or above the 90th

percentile. Linear scoring between 0 and 1 is done for any value between these

two percentiles.

• Signal Quality Indicator (h): is an integer value from 1 (optimal quality)

to 3 (very bad quality).

2.2.2.2 Biosignalsplux Kit

Biosignalsplux [40] is a wearable body sensing kit that is capable of collecting

data from different types of sensors. In our studies, we use the ECG and EDA sensors.

The data are transmitted via Bluetooth at 1000 Hz. ECG data were collected from

a standard 3-point bipolar limb leads configuration of the Einthoven’s triangle [41].

A Lead II setup in this configuration is used, where a positive electrode is on the left

leg, a negative electrode on the right arm, and a reference electrode on the right leg

for recording purposes. The EDA sensor measures the electrical potential produced

on the skin surface due to the sweat glands’ activity [42]. The best locations to

acquire such signals are spots where sweat glands are most active, like the palms and

the soles [43]. Raw data from the sensor is stored on a data server in a Comma-

Separated Values (CSV) format. Unit conversion is required for the data transmitted

by the sensor since the data is in digital units. For instance, ECG is measured in

millivolts and hence a unit conversion is applied with the formula:

ECG(V ) =
(ADC

2n
− 1

2
) ∗ V CC

GECG

(2.3)
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ECG(mV ) = ECG(V )/1000 (2.4)

where ECG(V ) is the ECG value in volt (V), ECG(mV ) is the ECG value in milli

volts, ADC is the value sampled from the channel, n is the number of bits per

channel equal to 16, V CC is the operating voltage equal to 3 V, and GECG is the

sensor gain equal to 1000. Figure 2.5 shows a sample snapshot of the ECG signal

after pre-processing.

Figure 2.5: ECG signal sample signal snapshot

Similarly, EDA signals are measured in microsiemens (µS) and hence a unit

conversion is required using the formula:

EDA(µS) =
ADC
2n
· V CC
k

(2.5)

where EDA(µS) is the EDA value in microsiemens, ADC is the value sampled from

the channel, n is the number of bits per channel equal to 16, V CC is the operating

voltage equal to 3 V, and k is a constant value 0.12. Figure 2.6 shows a sample

snapshot of the EDA signals after pre-processing the raw signals. The different com-

ponents of the signals are be explained in Chapter 5.
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Figure 2.6: EDA signal, Raw EDA and tonic component signal snapshot(top). Phasic
component signal snapshot(bottom)

2.2.2.3 Behavioral Data

User behavioral data such as body postures and facial expressions are captured

using sensors such as an RGB web camera (Figure 2.7a) and an RGB-D RealSense

D435i camera (Figure 2.7b). We use a Logitech HD Pro web camera that records RGB

data at the rate of 30 fps with 1920 x 1080 pixels. The Intel RealSense D435i camera

consists of depth and tracking technologies designed to give machines and devices

depth perceptions capabilities. The D435i version, as shown in fig 2.7a, consists of

a pair of depth sensors, an RGB camera, an inertial measurement unit, and infrared

projectors. The camera uses the active IR stereo technology [44] for depth data and

can capture data at the rate of up to 90 frames per second (fps) and 1280 x 720 pixels.

The RGB camera can capture data at the rate of 30 fps with 1920 x 1080 pixels.

2.2.3 Intelligent Cognitive Assessment Systems

Popular libraries such as the NIH Toolbox [21] and the Psy-Toolkit library

[35] have designed and released online tests for several cognitive abilities. These

libraries have proven to be very useful in a clinical setup. One of the major drawbacks
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(a) Intel RealSense D435i camera (b) Logitech HD Pro Webcam C920

Figure 2.7: Cameras for behavioral data collection

of such tests is the monotonous nature of these tests. The repetitive nature may

lead to frustration and boredom, thereby leading to ineffective data due to a lack of

engagement towards the task [45]. This drawback leads to the third component of

an intelligent assessment system, cognitive assessments that can innovatively engage

participants. Game-based training and assessment techniques have been developed

to improve the engagement towards the task while at the same time improving the

data quality. In our study [46], we developed an intelligent game-based cognitive

Figure 2.8: Game-based intelligent cognitive training system. Experimental setup of
the Towers of Hanoi Game

training system, shown in Figure 2.8 using a popular game, the Towers of Hanoi
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(TOH). The developed system provides personalized assistance to the trainee and

improves cognitive abilities like planning and problem-solving skills.

Figure 2.9: Different training methods. (a) - Computer-aided training. (b) - Human
trainer. (c) - Game-based training.

In this setup, the participants were trained to solve the TOH game using three

different training methodologies, as shown in Figure 2.9, and then tested to evaluate

each training method’s effectiveness. The different training methods were (a) tradi-

tional (with a human trainer), (b) gamification (game-based training simulation), and

(c) computer-aided training. In the training sessions, the participants were given step

by step instructions to solve the task using the optimal number of steps (31 steps).

However, in the testing session, there were no restrictions on the number of steps.

Participants had to solve the game from memory.

In the traditional method, the participants were trained with a personal human

trainer as shown in Figure 2.9b. The trainer went through the steps verbally to solve

the TOH with the participants. This training was timed and the number of errors

while solving was recorded manually. The game-based training (Figure 2.9c), used a
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TOH game was designed using Unity game engine. The game provided instructions

using audio and the score and number of steps were displayed on screen. In computer-

aided training method (Figure 2.9a), the participants were trained with instructions

that appeared on the screen. That is, instead of an individual trainer, participants

were asked to solve TOH with instructions flashing on the monitor in front of them.

Every step performed was captured through a webcam to evaluate the accuracy of

the steps from the instructions that appeared.

Results from this study indicated that the users not only liked the game-based

and computer-aided training better than the traditional human-based training, but

they also felt that the game-based training allowed the participants to think on their

own rather than someone often giving pointers at each mistake. Cognitive training

and abilities development systems need to allow participants to learn to solve the

problem independently and develop their knowledge. This also leads to an improve-

ment in their cognitive abilities.

2.2.4 Intelligent Interfaces

Traditionally, the focus of an intelligent assessment system is the end-user (pa-

tients or trainees). Few researchers have proposed cognitive assessment systems that

incorporate a secondary user (e.g., supervisor, teacher, therapist), who can moni-

tor and support the interaction between the intelligent system and the primary user

through Graphical User Interfaces (GUI) [47], the fourth component of an intelligent

assessment system. The secondary users conduct these assessments in most cases,

and it is important to focus some attention towards the development of intelligent

GUI that can be exploited to enhance secondary users’ decision-making.

In our study [48], we investigate which GUI feature (e.g., visualization, trans-

parency, etc.) enhances human decision making and efficiency in a user skill assess-
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ment task. To this end, we used an adaptive robot-assisted cognitive assessment and

training framework proposed by Tsiakas et al. [49]. Robot-Assisted Training (RAT)

is an HRI research area that studies how to use robots to assist users during a training

task [50]. Data collected using this framework was used to create a user simulation

model instead of a real human player (primary users).

In the user study, 30 participants were recruited to monitor and guide the robot-

assisted assessment session using the NAO, a socially-assistive robot 1. We used the

sequence learning task described in Section 2.2.1.1 for assessment. The participant

pool consisted of 24 male and six female participants, most of whom did not have

prior experience interacting with a socially-assistive robot. The study administrators

acted as “fake” primary users to provide a realistic environment for the participants.

Participants thought that the research administrators performed the task while, in

reality, they interacted with the user simulation model.

The participants run the assessment session by selecting different difficulty levels

for the assessment, using the GUI. Three different types of GUI were developed, as

shown in Figure 2.10. The control-only GUI includes only the buttons that control

the next difficulty level and a label that displays the outcome at the end of each

round. The history-based monitoring GUI displayed the score obtained at each round

in a graph apart from the label for outcome and buttons to control difficulty. The

graph displayed score as a function of outcome and difficulty level computed using

the formula: s = outcome ∗ level, where outcome = [−1, 1] and level = [1, 2, 3, 4].

The model-based monitoring GUI visualizes an estimation of the performance model

P (success|level), where the x-axis represents the difficulty level and the y-axis the

probability (frequency) of success at each level, updated after each turn. The goal of

the secondary user in this scenario was to be a trainer or a therapist who would want

1https://www.ald.softbankrobotics.com/en/cool-robots/nao
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Figure 2.10: The participant interacts with three different GUI during a robot-assisted
assessment session. The control-only GUI (a) , does not have any monitoring features.
The history-based GUI (b) provides a history of task performance over past rounds.
The model-based GUI (c), provides a visualization of the performance model as a set
of success probabilities at each level.

to increase the difficulty of the task gradually, but at the same time, they should take

in to account the errors and the user’s performance to decrease the difficulty level

if needed. Our goal was to evaluate what level of information helps the user better

understand the primary user’s performance.

Participant’s survey results shown in Figure 2.11 indicate that they preferred

the history-based monitoring GUI compared to the others. They reported that the

history-based GUI was more enjoyable and effective in judging a user’s performance.

It can be observed that it is essential to provide the users with as much information

as possible and, at the same time, present it in a transparent and simple manner.

The performance graphs and other details for the secondary users like supervisors,
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Figure 2.11: Participants’ feedback on the enjoyability and the effectiveness of the
three interfaces.

teachers, and therapists must be easy to understand, facilitating fast and reliable

assessment.

2.3 Conclusion and Discussion

In this chapter, we discussed the different components of an intelligent assess-

ment system, such as cognitive assessments, sensors, intelligent cognitive assessment

systems, and intelligent interfaces. We saw why these components are essential in an

intelligent system and the results of user studies that indicated the importance and

user-enjoyability of these components. Specifically, the user study discussed in Sec-

tion 2.2.3 indicated that the users felt an intelligent computerized system was more

helpful than a traditional system. These results indicate that our intelligent sys-

tem can provide the same functionality as the traditional system and provide more

long-term benefits to the users. Similarly, Section 2.2.4 discussed a user study that

explores a novel component for a cognitive assessment system, the expert user inter-

face. Such interfaces can provide all the test details in real-time during the assessment

transparently and straightforwardly.

23



Despite these results, the assessment systems discussed so far lack a major com-

ponent, human-sensing. The assessment system discussed in Section 2.2.3 considers

just the user responses for assessment. While this is similar to traditional cognitive

assessments, we are left to assume how the user felt or get a subjective idea of how

a user might feel after/during the assessment via surveys. While surveys are cur-

rently a gold standard to collect subjective user feedback in clinical studies, it suffers

from extreme bias from the user who takes the assessment and administers it. The

subjective nature of these surveys makes it complicated for an accurate assessment

and sometimes tends to delay the disease or assessment prognosis. In the following

chapters, we will discuss how this research address this problem.
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CHAPTER 3

Task-based Cognitive Assessment Framework using Physiological Sensors

3.1 Introduction

Fatigue is a common psychophysiological condition that is prevalent in people

caused due to physical or mental exertion. In the manufacturing industry, working

in shifts is common to increase production to meet global demands. This practice

tends to affect the sleep cycle and rest time of employees and may, in turn, result

in fatigue, which is a very unsafe workplace condition [51]. It is also a common

disabling symptom among several medical conditions like Multiple Sclerosis (MS)

[52], Traumatic Brain Injury [53] and Parkinson Disease [54], among others. Despite

its common occurrence in everyday life and different fields, there is no consensus on

the definition of fatigue. Cognitive fatigue may manifest as a loss in cognitive control,

high-level information processing, and attention [55]. In an HRC scenario, the human

partner must be vigilant and cognitively alert, which is an important human factor

to maintain the task’s safety and productivity [24].

While there is no golden standard for measuring fatigue, it is commonly mea-

sured in rehabilitation as a subjective measure using surveys and clinical tests based

on observation and patient self-report. These measurements are susceptible to errors

due to bias that may lead to a wrong diagnosis and, consequently, delays progress

[56]. Similarly, in an industrial environment, detecting that a person’s performance is

affected due to fatigue would be a great asset to an employer in avoiding workplace-

related injuries or fatalities. This chapter presents an intelligent, objective cognitive

assessment techniques that address these concerns. EEG signals are used to detect
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cognitive fatigue using a serious-game based framework to assess cognitive fatigue’s

impact on user performance.

3.2 Cognitive Fatigue Prediction using EEG and Subjective User Feedback

Cognitive Fatigue (CF) is a very common symptom caused due to mental ex-

ertion in healthy adults. In medicine, CF and physical fatigue are one of the most

disabling symptoms in patients suffering from diseases such as Multiple Sclerosis

(MS), Lupus [57], Parkinson’s disease [58], Chronic Insomnia or bad sleep quality

[59], Traumatic Brain Injury (TBI) [60], and others.

In behavior modeling, detecting and predicting CF is not a new problem. In the

past, various studies have tried to solve this problem by adopting different methods

under different experimental assumptions. However, due to its high degree of ambi-

guity, this is still an unresolved problem. Although it is vital for many applications,

there are very few (if any) datasets that can be used to solve this problem. In 2004,

Hursh et al. [61] was one of the first research groups that tried to use computer

modeling techniques to predict CF. Specifically they proposed FAST, a fatigue pre-

diction tool designed to help operators in the transportation industry. FAST used

the SAFTE model, a computational architecture used to model fatigue based on sig-

nal analysis related to the operator’s sleep activity and task performance. In 2007,

Donovan et al. [62] further emphasized the potential of cognitive models to predict

fatigue in a user study of 256 women receiving early breast cancer treatment. A few

years later, Gonzalez et al. [63] used the ACT-R [64] cognitive architecture to predict

the fatigue level of users when performing data entry task. Their method uses the

principles described in the ACT-R architecture and uses a rule-based decision-making

method to assess the impact of fatigue on certain performance parameters such as

task accuracy and response time. ACT-R has also inspired other advanced methods
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related to monitoring fatigue and performance in intelligent driving and occupational

safety applications. In 2018, Golan et al. [65] emphasized the importance of subjec-

tive reporting of CF and its impact on the cognitive function of MS patients. In this

work we take advantage of a cognitive assessment task to induce CF. Data from this

setup is then used to build a machine learning-based analysis of EEG signals towards

identifying CF.

3.2.1 Framework for Fatigue Analysis Using Serious Games

Serious games usually refer to virtual games used for training, simulation, or

education and can engage users in cognitive and physical tasks. For this study [1],

we used the Wisconsin Card Sorting Task (WCST) described in Section 2.2.1.2.

Figure 3.1: The WCST version implemented in [1]. Participants must play different
versions a–d) of the game. In V1, the game starts with two options (a), and then
gradually increases to 5 options (d), until the game is over. In V2, options a, b, c,
and d change randomly after every four rounds according to the same decision rules.
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To induce CF, two different versions of the WCST task were developed, as

shown in Figure 3.1, which aims to increase the complexity and user demands. In

version one (V1), the user is given two options to choose from at the start of the

game, in contrast to the original task’s standard four choices. The number of possible

choices is increased gradually up to five possible choices as the game progresses. In

version two (V2), the total number of choices displayed is changed randomly as the

decision rule changes. In both versions, the number of possible options ranged from

two to five. Compared to the original, the number of rounds in the game increased

from 60 to 128; the decision rule changes every four rounds instead of six rounds in

the original, and the maximum response time is four seconds while it is 6 seconds in

the original.

3.2.1.1 Real-Time User Reports on Cognitive Fatigue

During each session, participants were asked to report if they had difficulty

keeping up with the task by pressing a button in front of them (see Figure 3.2).

The button can be used at any time during a session as often as participants deem

appropriate. Therefore, the button push event would serve as an indicator that the

user is feeling overwhelmed with the game and could result from a person’s inability

to pay attention, boredom, difficulty remembering decision rule, or any other rea-

son/condition that could potentially affect the performance of the task according to

the participant’s subjective opinion. For this study, all conditions mentioned above

were considered indicators of cognitive fatigue and were thus used to label the dataset

for cognitive fatigue.
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Figure 3.2: The Data Collection Experimental Setup.

3.2.2 Experimental Setup

For this study, data was collected from 19 participants that include 13 male

and six female participants. The participants had no prior experience with the task,

and it took approximately up to 30 minutes to complete the game. The game was

designed to be demanding in terms of user engagement and attention. Hence, the

participants had to pay close attention to complete the game. Data were collected

over two sessions in order to include data from the two different versions of the task.

During each session, the participants played the original WCST designed by our

team, which follows the same rules and guidelines described by the original WCST

[35]. Then, the participants had to play either the V1 or the V2 of the modified

WCST. The main difference between the two sessions was in the second part of the

task. During the second part of the first session, participants were asked to play the

V1 version of the WCST, while in the second session, they had to play V2. The order

of the tasks presented to the users was randomized in order to avoid the order effect
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in the dataset.

During each collection, the following steps were followed:

1. Understand the instructions of the original WCST task as described by the

researcher

2. Play the original WCST task

3. Complete a post-completion questionnaire to report subjective fatigue

4. Understand the instructions of the modified WCST (V1 or V2) task.

5. Play the modified version of WCST

6. Complete a post-completion questionnaire to report subjective fatigue

No resting time was incorporated between the two tasks to incorporate the partici-

pants’ cumulative cognitive load to ensure the onset of cognitive fatigue.

3.2.2.1 Physiological and Task-based Data

Data was collected from the MUSE EEG headset (Section 2.2.2) to capture

the participant’s mental state during the interaction. The data collection resulted

in 76 sessions that were later used to build a machine-learning model to predict CF.

Moreover, task-based performance metrics were also stored for preliminary analysis.

During each of the different tasks, the designed game stores different metrics

such as:

• Outcome: A binary flag to indicate if the participant’s response in a round was

correct.

• P Errors : The cumulative number of perseverative errors until the current

round. Perseverative errors are errors committed by the participant using the

wrong rule despite several negative feedback.

• NP Errors : The cumulative number of non-perseverative errors until the cur-

rent round. Non-perseverative errors are errors committed by the participant
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when the game changes rules. Since there are three possible decisions in a

round (based on color or shape, or number), the participant must realize the

correct rule before the third round. All errors before the third round are non-

perservative errors, while after the third round are perservative errors.

• C Answers : The total number of correct answers.

• Response Time: Time to respond to stimuli at each round.

• Score: An indicative round-based score computed as:

score =
#available choices

response time×#round under same rule
(3.1)

The score is only computed if the participant’s answer was correct; otherwise,

the score is 0.

In addition, for every round the system logs the following game parameters:

• The number of possible choices offered by the system: 2, 3, 4, or 5.

• The type of the correct stimulus: color, shape, or number.

• The value of the correct stimulus:

– If color: green, yellow, blue, red, or magenta

– If shape: triangle, star, cross, circle, or heart

– if number: one, two, three, four, or five

3.2.2.2 Preliminary Analysis

A preliminary analysis based on the survey results found that of the 38 data

collection sessions (19 participants × two sessions) in 28 of them (∼ 74% of the time),

respondents reported being more tired by the end of the process versus what they

felt just before the experiment started. In addition, most participants suggested that

they had to work harder to adapt to the variety of options that the modified versions
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of the games offered. Survey results also showed that on a scale of 1 (no fatigue) to 5

(very tired), there was an average increase in fatigue of 1.05 points with a standard

deviation of 3.54 over the 38 data collection sessions. This analysis shows that the

data acquisition framework could induce fatigue.

Further analysis of the user fatigue self-report and task performance data are

shown in the Figures 3.3. Figure 3.3a shows the average P Errors during the game.

On average, each participant made 9.3 P Errors in each session and increased across

all users. P Errors are “unwanted” errors committed by the participants due to

choosing a wrong decision rule for a round, despite the system’s negative feedback.

An increasing number of perseverative errors in a healthy individual can be considered

as a clear sign of cognitive fatigue.

Figure 3.3b shows the analysis of user self report of fatigue during the game.

The percentage of participants fatigued during the game is shown in the top plot.

Out of the 38 sessions recorded, users reported experiencing at least some levels of

CF by the end of the game in 35 sessions. The bottom plot in Figure 3.3b shows the

average number of times the user reported fatigue which averaged to 2.2 times. As

illustrated by these plots, it is clear that the users felt more fatigued toward the end

of the game, reinforcing our hypothesis that the modified WCST does induce CF.

3.2.3 Machine Learning Analysis and Results

This study is exploratory, and there is still a long way to fully decipher and

model the concept of CF and its impact on human performance. However, this

work uses EEG data and subjective feedback from users to make cognitive fatigue

predictions. More specifically, the focus was on identifying the presence of fatigue in

a single round of WCST. For this analysis, all rounds of the three variations (original

WCST, V1, and V2) were combined into a single data set, resulting in 76 sessions.
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(a)

(b)

Figure 3.3: Analysis of the Self-reported CF and User Performance During game play
[1]. (a) Average P Errors during V1 and V2 WCST (b) Analysis of Self-Reported
Cognitive Fatigue during V1 and V2 versions of WCST

Instances where the participant did not press the self-report button were considered

“no fatigue,” while the remainder were considered “fatigue” samples. The temporal

relationship between successive rounds was not taken into account in the preliminary

experiments.
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3.2.3.1 EEG Feature Extraction

In order to represent EEG signals as a feature vector within a round, we ex-

tracted several spectral and time-domain features. These features are known for their

ability to describe the core behaviors of 1D signals and are used extensively in other

EEG classification tasks [66, 67]. In particular, the following six features were ex-

tracted for a given sequence of EEG measurements within a round of each cognitive

game:

1. Mean Value

2. Standard Deviation

3. Maximum Value

4. Minimum Value

5. Spectral Centroid

C =
N−1∑
i=0

Xip(Xi), (3.2)

where N is the size of the spectrum, X are the observed frequencies and p(X )

is the probability to observe a specific value in X. Spectral Centroid represents

the center of gravity of the spectrum.

6. Spectral Rollof

R = 0.9
N−1∑
i=0

|Xi|, (3.3)

where X is the spectrum of the signal and N is the size of the positive spectrum.

Spectral Rollof corresponds to the frequency below which 90% of the magnitude

distribution of the spectrum is concentrated.

Since the MUSE has a total of 4 electrodes, the final representation for each round

was a vector of features of the size 4electrodes × 6 features
electrode

= 24 features.
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While experimenting, other popular features such as zero-crossing rate, signal

energy, spectral spread, the entropy of energy, and spectral entropy were used, but

no significant improvements were seen in the classification results. In most cases, the

rating performance fell by 5% to 8% of the average F1 score when additional features

were added.

3.2.3.2 Classification Results

Different machine learning algorithms like Support Vector Machines (SVM),

SVMs with an RBF kernel (SVMr), Random-Forests (RF), Extra-Trees (ET), and

Gradient-Boosting (GB)that are commonly used in modeling similar problems were

used [68]. A 10-fold cross-validation approach was used to evaluate the model using

the dataset, split into a 20% testing set and 80% training set. In each fold, the

distribution of the two classes (Fatigue and No-Fatigue) in the training and testing

samples varied based on the total number of times users reported fatigue in the specific

sessions. However, in all cases, the two classes were highly unbalanced towards the

“No-Fatigue” class. To avoid overfitting and a bias toward one class in the models, the

majority (“No-Fatigue”) class was undersampled. The classifiers were then trained

using a balanced dataset with the total number of samples for each class being equal

to the available “Fatigue” samples in each fold. For testing, the original sample ratio

was retained to have a realistic representation of the targeted problem.

Table 3.1 shows the results of the machine learning analysis. All the available

feature streams (see Section 2.2.2) were used for an exhaustive grid search analysis

to choose the best signal representation. The table presents only the signal which

obtained the best results. The results indicate that the best results were using the

feature streams related to the beta 13–32 Hz (b) and gamma 32–100 Hz (g) wave-

lengths and, in particular, their absolute (A) and relative (R) values. This result is
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Table 3.1: Average classification results in all folds for different classifiers [1]. The
column S indicates the EEG feature stream that achieved the best results after a
comprehensive search in the grid. In the last row, the best results are obtained by
combining the predictions of all trained models. Values in bold correspond to the
methods that gave the best and most stable results. The abbreviations for Table 3.1
are as follows: Cl: Classifier, S: Signal, Pr: Precision, Rc: Recall and Ac: Accuracy.

Cl S
Rc Pr F1

Avg F1 Ac
NF F NF F NF F

SVM gA 0.6 0.7 0.83 0.43 0.7 0.53 0.61 0.63
SVMr gA 0.58 0.65 0.8 0.40 0.67 0.49 0.58 0.6

RF bA 0.75 0.46 0.7 0.51 0.72 0.48 0.60 0.64
ET dS 0.58 0.62 0.72 0.47 0.64 0.53 0.59 0.6
GB bR 0.59 0.64 0.74 0.40 0.66 0.54 0.60 0.61

combined 0.72 0.56 0.79 0.46 0.75 0.51 0.63 0.67

in line with previous research that suggests that beta and gamma waves are highly

related to mental states such as alert, normal alert consciousness, active thinking,

and problem-solving [69].

3.3 Conclusion and Discussion

As confirmed by the study discussed in this chapter, physiological signals can

model implicit user feedback while interacting with a system. This chapter proposed

a novel system to build a statistical model for cognitive fatigue detection in healthy

individuals. The system design is very unique compared to the state-of-the-art setups

discussed in Section 3.2, which comprises physiological data acquisition for objective

modeling of CF and collecting subjective user feedback of fatigue while playing the

game. The subjective user feedback is also incorporated into the data set as labels

for modeling (see Section 3.2.1.1). The results also provide confidence on off-the-shelf

sensors such as the MUSE EEG headset to retrieve learnable patterns in data. This
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is a beneficial finding because traditional EEG sensors can be cumbersome to set up

and collect data. It is also not practical to use in a real-world setup.

Additionally, the data collection platform used in this study and the collected

data are publicly available1 to advance research in the domain and to tackle the prob-

lem of limited data availability for researchers. However, it should be noted that the

total number of subjects offered by the dataset is relatively small to verify critical

observations related to CF. One can also argue that the low accuracy and F1 values

(Section 3.2.3.2) reported in the study could be because of the small dataset size.

Nevertheless, this problem is prevalent in human-centric studies where getting ap-

proved participants for the study is difficult. Therefore, there is a need to explore

other user data modeling techniques such as a multi-modal approach to see if we

can incorporate various information of the same event to improve model performance

and robustness. We must also look into how such user modeling techniques can be

incorporated in an end-to-end system to assess user’s performance. The following

chapter addresses these issues by using studies that examine human factors like phys-

ical, behavior, task-specific engagement, and other factors that impact performance.

A multi-modal approach to model user’s task-specific attention and engagement to

predict performance is also discussed.

1https://github.com/MikeMpapa/CogBeacon-MultiModal_Dataset_for_Cognitive_Fatigue
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CHAPTER 4

Human Factors Analysis for Task Performance Prediction

4.1 Introduction

Affective robotics is a branch of robotics that falls under the realm of HRC

that uses a human operator’s psychophysiological measurements to improve human

interaction by measuring his/her human factors [70]. Such robots consider the user’s

affective state, which can be measured physiologically or visually as a factor in the

design process. In HRI, a robot often supports the performance of a human partner

or provides feedback on the execution of a task. In such an interaction scenario, the

robot system must perceive the cognitive state of the human teammate, which can

influence the task performance. While human cognition is a critical human factor

that affects several essential mental capabilities [24], it is important to note that the

impairment in cognition can result from several reasons.

As discussed in Section 1.2.1, any task performed by humans uses several cogni-

tive abilities to achieve a task’s goal. Continuous usage of these abilities could lead to

an increase in cognitive load. Overuse of these abilities may lead to cognitive fatigue,

a debilitating symptom for people suffering from neurological disorders, a known

risk factor in motor vehicle, and workplace accidents [71]. Cognitive fatigue is the

primary reason most people suffering from neurological disorders such as Traumatic

Brain Injury [53], and Multiple Sclerosis [52] often tend to avoid any social interac-

tions and lose jobs or stay unemployed very long. A qualitative study by Aaronson

et al. [72] describes fatigue in healthy individuals as a temporary state of exhaustion

that manifests physically or emotionally and that it takes a toll on one’s life roles,
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which disrupts activity. Thus, it is essential to monitor such factors while working

with an HRC set up and in day-to-day life when possible. This chapter discusses

a multimodal solution to monitor cognitive human factors like task-based attention

and engagement using physiological sensors and engagement through body postures

using an RGB camera. We also present a quantitative study that shows other factors

in our daily life like lack of sleep also influence cognitive task performance.

Assessing and monitoring cognitive abilities using sensors and intelligent games

for cognitive training [46] and rehabilitation [73] have been addressed in recent re-

search. While unimodal approaches to monitor the user’s cognitive state during as-

sessment have been proposed [74, 75], multimodal approaches show improved results

assessing the user’s mental state [3, 4]. To address the lack of attention and engage-

ment of participants in monotonous and repetitive tasks, researchers have proposed

robot-assisted therapy and training systems capable of increasing user engagement

[76]. Similar research has used robot-assisted training systems to assess and adap-

tively train users in specific cognitive skills using task engagement as a vital factor

[77]. Implicit and explicit cues from the users have been considered to estimate task

engagement by utilizing several factors, including self-reports, facial expressions, and

task behavior. This section discusses how this research utilizes such factors to develop

a multimodal cognitive assessment framework for cognitive assessment and discusses

how a multimodal cognitive assessment system provides better task performance pre-

diction accuracy within the robot-assisted training framework.

4.2 Predicting Task Performance using Implicit and Explicit Cues

The components discussed in section 2.2.3 should be considered to develop an

effective cognitive assessment system. In this study [3, 4], a Multimodal Robot-

assisted Assessment System (MARS) is proposed based on the framework proposed
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by Tsiakas et al. [49]. The cognitive assessment framework, shown in Figure 4.1,

comprises a socially assistive robot, the NAO, conducting the assessment, an expert

GUI for supervisors, and the sequence learning cognitive assessment test. Multimodal

data from sensors such as the MUSE EEG sensor (see Section 2.2.2.1) and an RGB

web camera (see Section 2.2.2.3) are used to monitor the user’s physiological and

behavioral data during the assessment.

Figure 4.1: Experimental Setup [3]
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4.2.1 The Sequence Learning Task

The proposed framework MARS uses the sequence learning task described in

section 2.2.1.1. In this task, users were given sequences with three different levels of

difficulty. Level 1 with sequence length 5, level 2 with sequence length 7, and level 3

with sequence length 9. For example, the robot generates the sequence [c, a, c, c, b, c, a]

at random as a sequence of level 2. These levels are chosen empirically to increase

the user’s cognitive load. Any lesser sequence length, the participants felt it was easy.

Any longer sequence length, the participants felt it was tough and almost always

failed.

The robot-assisted task was designed to provide audio feedback to the partic-

ipant based on their responses. In order to capture the participant’s natural facial

expression and body pose changes to positive or negative feedback, two types of feed-

backs were provided: positive and negative. The robot provides positive feedback

like, ”Great! Go ahead.” or ”Oh! you missed it, but go ahead,” and negative feed-

back like ”Maybe it was too easy” or ”You do not seem to be paying attention.” The

robots’ feedback helped create facial expressions and posture changes that we could

capture with the RGB webcam.

4.2.2 The Expert GUI System

Based on the results of our previous study [48] presented in section 2.2.4, we

developed an expert GUI, which is shown in Figure 4.2. With this GUI, a supervisor

can manage tasks and view performance metrics such as user name, current sequence,

user response, assessment history, and engagement score calculated using EEG data

from the MUSE sensor (see Section 2.2.2.1).
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Figure 4.2: The Expert User-Interface [3]. The GUI displays performance metrics
such as current sequence, user response, and engagement value.

4.2.3 User Performance and Engagement

Performance metrics, such as total score, current response, and user perfor-

mance graph, are displayed on the GUI. The user performance graph displays the

outcome (success = +1, failure = -1) of the round color-coded based on the difficulty

level, as shown in Figure 4.2.

For the user performance graph, success is considered as +1, and failure is

considered -1 and plotted for each turn. The total score is computed based on the

score the participant achieved in each round. In level one, the participant gets +2 for

a correct response or -2 for a wrong response. In level two, the participant gets +3

or -3 and +4 or -4 for level three.

For the user engagement plot, the engagement value is computed for each round

using the alpha, beta, and gamma bands extracted using the MUSE headband at a

sampling rate of 20 Hz. Data from the four EEG sensors on the headband as shown

in Figure 2.4 (Section 2.2.2.1) are averaged to compute the mean engagement value
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for each round using the formula beta/alpha+theta [78]. During each round, the user

had to listen to the stimulus first and then respond by pressing the buttons in front

of them. The engagement value was computed during both these sessions separately,

as shown in Figure 4.2.

4.3 Convolutional Neural Networks to Predict Task Performance

EEG sensor and RGB camera data were used to predict the task performance

as success or failure. Convolutional Neural Networks (CNN) were used to build

prediction models for individual modalities such as physiological data from EEG,

facial expression, and body postures from the camera data. The output of these

networks are then fused using a late-fusion technique to predict task performance

results. The following sections will explain the individual networks and the data

fusion technique briefly.

4.3.1 Task Outcome Prediction using EEG

The first modality is the EEG signals collected from the MUSE headband,

which is used to predict task outcome. The MUSE headband collects five different

bands of EEG signals (alpha, beta, gamma, delta, and theta) along with the raw EEG

signal. Based on these signals, the features were extracted with a CNN. The NAO

robot conducts the SL task (Section 4.2.1) and ground truth data for each sample is

provided based on the success or failure in each round. Using this ground truth data

and the extracted features, the network was trained to predict task performance. EEG

signals are generally noisy. Hence, the noise was removed by applying an EWMA

(Exponentially Weighted Moving Average) filter [79]. Figure 4.3a represents the

architecture used to train and predict EEG signals.
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(a) (b)

(c)

Figure 4.3: Neural Network Architecture for (a) EEG Signal from Neural Network
(ENN), (b) Emotions from Facial Expression (EFE), (c) Emotions from Body Pose
(EBP) taken from Ramesh Babu, A. and Rajavenkatanarayanan A. et al. [4]

The architecture, EEG signal from Neural Network (ENN), consists of two con-

volutional layers, each followed by a batchnorm operation with Rectified Linear Unit

(ReLU) activation function, followed by two fully connected layers, and a softmax

layer. The softmax layer predicts the probability of success or failure in a task, and

the class that has the highest probability is considered the final prediction. The net-
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work weights were initialized with Xavier initialization [80], and the Adam optimizer

was used. The system was trained with 80% of the data and validated with 10%

of the data. The remaining 10% was used to test the final multimodal network. A

K-fold cross-validation process was performed ten times with different validation sets

to check the consistency of the model in all samples. The proposed model produced

83% accuracy and 82% F1 score as explained in Section 4.3.3.

4.3.2 Task Outcome Prediction using Facial Expression and Body Postures

The second and the third modality used for task outcome prediction is facial

expressions and body postures. To predict task performance as “success” or “failure”,

we follow a two-stage approach first to predict emotions from task performance first

and then predict task performance. We define task performance as the outcome of a

specific round of the task. The outcome, as mentioned earlier, can either be a success

or failure. Two separate networks are created to train the data from facial expression

and body postures. The following sections describe the individual networks first and

then the data fusion algorithm used to predict task performance.

4.3.2.1 Emotion Prediction Using Facial Expressions

The first subsystem, Emotions from Facial Expressions (EFE), uses a CNN-

based architecture proposed by Arriaga et al. [81] with minor modifications. The

modified architecture is a CNN with four deeply separable residual folds; each con-

volution is followed by a batchnorm operation and a ReLU activation function. The

last layer consists of a global average grouping and a softmax activation function,

and the Adam optimizer was used for network optimization. This architecture has

approximately 60,000 parameters representing the layer weights and the offset. The

complete sequence consists of face recognition and an emotion classification module.
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The emotion classification module extracts facial features such as eyes, eyebrows,

mouth, and others to classify frames into three classes, positive, negative, or neutral.

The network was trained and evaluated with the FER 2013 facial expression dataset

[82]. For the entire input sequence, an array of emotion values are computed based on

the above algorithm, which is then used for task outcome prediction. This subsystem

produced an accuracy of 91% for the classification of the faces during testing using

the FER 2013 dataset. Figure 4.3b shows the architecture for emotion recognition

based on facial expression.

4.3.2.2 Emotion Prediction Using Body Postures

The second subsystem is the Emotions from Body Postures (EBP) module.

Similar to EFE (Section 4.3.2.1), the pipeline for the emotion recognition from the

body poses consists of two stages, body key-points detection, and emotion recognition.

A deep-CNN was used to detect body key points [83, 84, 85]. The network’s input

is an RGB image of the format width x height x channels, and the output is a 2-

dimensional (2D) location of the body keypoints. The feed-forward network predicts

the 2D confidence of each keypoints and a set of 2D vector fields of part affinity fields

(PAF) that holds the degree of association between the body parts. Using a greedy

inference approach, the network predicts the final 2D keypoints using the confidence

maps and affinity fields. In the network architecture shown in Figure 4.3c, which was

initially proposed by Cao et al. [83], the confidence maps are predicted in the top

branch, and the affinity fields are predicted in the bottom branch. The input image is

first sent to a network (VGG-19 [86]) to generate a set of feature maps sent as input

to the first phase of each branch. In the next phase, the predictions from the two

branches are concatenated with the original features for the best results.
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The second stage of the EBP module is the emotion recognition from the de-

tected keypoints. The human body consists of several degrees of freedom and is

capable of exhibiting emotions using different postures. Extensive research has been

conducted in this field, and they indicate that humans exhibit different postures for

different emotions such as anger, sadness, disgust, and others [87, 88, 89]. For ex-

ample, Wallbott and Harald, in their paper [88], mention that humans tend to lean

their bodies forward when angry and tend to bend their head down when sad. In

our work, this critical information is utilized to predict emotions from the extracted

body keypoints. Intermediate data such as the position of the hands, head tilt an-

gle, body angles, and others were extracted from the body keypoints. The system

then detects the postures and classifies them to one of the categories, i.e., positive,

neutral, or negative, and produces an output of 1, 0, or -1, respectively. Similar to

the EFE module, an array of output predictions of emotions are generated for each

input sequence. Two hundred annotated images of different body postures were used

to test the subsystem, producing an accuracy of 71%.

4.3.2.3 Data Fusion for Multimodal Task Outcome Prediction

Calculating task outcome prediction from EFE and EBP modules:

A simple algorithm to predict the task outcome from facial expressions and body

postures was proposed for the second stage. The subsystems described in Sections

4.3.2.1 and 4.3.2.2 classifies the frames in the input sequence into one of the three

classes, positive, negative, and neutral. Each network produces an array of emotion

prediction for each input sequence which is then used as the input for the algorithm

shown in Algorithm 1. In this algorithm, the total number of frames with positive,

negative, and neutral emotions are calculated from the input sequence, and then the

class and the confidence values are predicted. The subsystems EFE (Section 4.3.2.1)
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Algorithm 1: Task Performance Prediction from Behavioral Data. Al-
gorithm proposed in the work published by A.R. Babu, A. Rajavenkata-
narayanan et al. [4]

Input: Frames of a sequence with emotions predicted, Threshold from
training

Output: Individual modality prediction, classes(Success, Failure)
neutral frames = total frames with neutral emotions in a sequence
positive frames = total frames with positive emotions in a sequence
negative frames = total frames with negative emotions in a sequence
Total frames = total number of frames in a sequence
if (number of predicted negative emotions ≥ Threshold) then

Prediction = Failure;

Confidence =
negative frames+ neutral frames

Total frames
(4.1)

end
if (number of predicted negative emotions < Threshold) then

Prediction = Success;

Confidence =
positive frames+ neutral frames

Total frames
(4.2)

end

and EBP (Section 4.3.2.2) were trained individually to find the optimal threshold

cutoff to predict negative and positive emotions in order to maximize successful pre-

dictions effectively. The SL data was split into 80% training data and 10% testing

data. The remaining 10% was used to test the final multimodal system. The system

was tested ten times using a different split of the testing set to ensure the consistency

of the model. The first subsystem EFE, produced a maximum accuracy of 75% while

the EBP subsystem produced a maximum accuracy of 62.5% as discussed in Section

4.3.3.

Final Task Performance Prediction:

From the individual predictions of each of the three modalities, the EEG data, and

image data from facial expressions and body postures, a combined decision is made
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for the final task outcome prediction using the algorithm mentioned in Algorithm 2.

Each of the individual modalities predicts the task performance outcome as success

Algorithm 2: Final Performance Prediction combined from three modal-
ities. Algorithm proposed in the work published by A.R. Babu, A. Ra-
javenkatanarayanan et al. [4]

Input: Prediction output and confidence from 3 modalities, pred(EFE),
pred(EBP), pred(ENN)

Output: Final Prediction, classes(Success, Failure)

if (any of the predictions is Failure) then

Confidence of that Modality ∗ = −1; (4.3)

end

Score = Confidence EFE + Confidence EBP + Confidence ENN
(4.4)

if (Score is positive) then
FinalPrediction = Success;

else
FinalPrediction = Failure

end

or failure. A confidence value is also computed, which is positive if the prediction

is success and negative if the prediction is failure. With these predictions and the

confidence values computed as part of each of the modalities, a score is computed in

algorithm 2 as the sum of the confidence values as shown in Equation 4.4. If this

score is still positive, the final prediction of the multimodal system will be “success”.

Else the prediction will be “failure.”

4.3.3 Results

This chapter discussed how multimodal data could be used to predict task

performance outcomes using emotions and engagement predicted from task-specific
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interaction data. In Table 4.1, the results of the model developed for predicting task

performance outcome using EEG, the ENN module, are shown. The results are com-

pared with related research by Papakostas et al. [90] that uses similar EEG data

from MUSE headband, collected from a Sequence Learning task to predict task per-

formance outcome. In this work, the authors presented the results of task outcome

prediction using several machine learning algorithms such as Support Vector Machines

(SVM), Gradient Boosting (GB), Random Forests (RF), Extra Trees (ET). As shown

in Table 4.1, our ENN model easily outperforms the best accuracy produced by the

ET algorithm by 8% and the best F1 score produced by the GB algorithm by 13%.

Table 4.2 shows the results of the individual modalities proposed in this chapter and

SVM GB RF ET ENN
F1 Score 0.62 0.69 0.56 0.54 0.82
Accuracy 0.65 0.74 0.67 0.75 0.83

Table 4.1: Task outcome prediction from EEG signal as presented in [4]. Abbrevia-
tions: SVM-Support Vector Machines, GB-Gradient Boosting, RF-Random Forests,
ET-Extra Trees

the combined multimodal approach. As mentioned earlier, the Emotions from Facial

Expressions (EFE) module produces an accuracy of 75% and an F1 score of 73.8%.

The Emotions from Body Pose (EBP) module produced an accuracy of 62.5% and

an F1 score of 54%. The EEG from Neural Network module (ENN) produced an

accuracy of 83% and an F1 score of 82%. These results show that a multimodal ap-

proach can outperform unimodal solutions. The multimodal approach also increases

the robustness of the prediction, as shown in the higher F1 score compared to the

unimodal solutions.

50



EFE EBP ENN EFE+EBP+ENN
F1 Score 0.738 0.540 0.820 0.870
Accuracy 0.75 0.625 0.83 0.875

Table 4.2: Prediction from individual modalities and combined as presented in [4].
Abbreviations: EFE-Emotion from facial Expression module, EBP-Emotions from
body postures and ENN-EEG signal with Neural Network

4.4 Everyday Activities that Affect Task Performance

So far, this chapter discussed how to monitor implicit and explicit cues from a

participant to predict task performance outcomes. The central underlying assumption

is that the user’s engagement and emotions directly affect performance. Despite the

high accuracy and F1 score, as discussed in Section 1.2, there are several types of

human factors, both physical and cognitive, that might affect performance in a system

in the real-world. It is thus essential to monitor and assess these different factors as

well. This section will take a brief look into a study by Rajavenkatanarayanan et

al. [8] that considers one of the important activities of daily life and how it affects

cognitive performance.

4.4.1 Sleep and its Effect on Cognitive Performance

It is a well known fact that a lack of good sleep or insomnia can cause an

impact in the circadian rhythm and causes deterioration of cognitive performance [91].

However, it has been quite difficult to incorporate such metrics in to an interaction

system such as the one discussed in Section 4.2.1. Advances in wearable technologies

and smartwatches have paved the way for development of small sensors that can

measure sleep quality. In this study, we take a look in to the correlation between the

percentages of sleep in light, heavy, and Rapid Eye Movements (REM) cycle collected

from the Fitbit smart watch [92] and performance in a cognitive task.
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4.4.2 Experimental Study

This user study was conducted over five days with 30 participants, which con-

sisted of 23 male and seven female participants. Over these five days, the participants

were provided with a Fitbit smartwatch that recorded the participant’s sleep patterns.

The participants’ cognitive performance was tested on two of these five days using

the N-back task described in Section 2.2.1.3. This task was chosen because it assessed

working memory and attention, which are essential cognitive abilities in everyday life.

This study used two repetitions of the 0-back task and two repetitions of the 2-back

task. In the 0-back task, the participant was presented with the target stimuli before-

hand and pressed a button when they recognized it. On the other hand, in a 2-back

task, the participant is shown a sequence of stimuli as shown in Figure 2.3. In this

task, the user responds by pressing a button when they see the same shape, irrespec-

tive of color, precisely after two stimuli. The two repetetions within each type of task

were played back to back. However, the order of each type of task was counterbal-

anced to avoid order effect among participants. The study lasted 45-minutes for each

participant. During the task, data was recorded from the MUSE EEG headband (see

Section 2.2.2.1), and task performance metrics such as errors, score, response time,

and reaction time were recorded.

4.4.3 Preliminary Results

The objective of this study is to show a correlation between sleep pattern and

task performance. Sleep quality data like total duration of sleep, percent of deep,

light, and REM sleep, and awake time were extracted from the Fitbit data recording.

Specifically, sleep data of the night prior to cognitive assessment was extracted for

analysis. Before computing the correlation between sleep quality and task perfor-
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Table 4.3: Summary of correlation analysis between stages of sleep and task perfor-
mance. (τ/ρ) denotes the degree of correlation while P denotes if the correlation is
significant. Initially presented by A. Rajavenkatanarayanan et al. in [8]

Kendall Spearman
Variable τ P ρ P
total -0.0483 0.760 -0.0261 0.901
%deep 0.0933 0.541 0.1169 0.578
%light -0.3519 0.018 -0.4593 0.021
%rem 0.3409 0.021 0.4689 0.018

%awake 0.0104 0.962 0.0033 0.988

mance, to determine the normality of the data collected, D’Agostino’s K2 test [93]

was performed, which suggested that the task performance metric did not follow a

normal distribution. Following this result, Kendall and Spearman correlation analysis

was performed between the three sleep quality features and performance metric, the

average score in each assessment. Preliminary results, as shown in Table 4.3 indicated

that the light sleep cycle had a moderate negative correlation with task performance,

while the REM sleep cycle has a moderate positive correlation with high confidence.

According to a blog post by Fitbit[94], on the types of the sleep cycle, research indi-

cates that the light sleep cycle is responsible for processing memory, emotions, and

metabolism regulation. On the other hand, the REM sleep cycle is responsible for

emotion regulation, memory, and protein synthesis. It is thus clear that sleep af-

fects memory, and the results presented indicate that the quality of sleep significantly

impacts task performance.

4.5 Conclusion and Discussion

In summary, this chapter discussed the MARS - Multimodal Robot-assisted As-

sessment System framework to predict task performance outcome using multimodal

data recorded during interaction in a cognitive assessment task. The Sequence Learn-
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ing task is utilized that assesses the learning ability, working memory, and attention.

Data recorded includes EEG from the Muse headband, facial expressions, and body

pose from an RGB camera. For each of these data modalities, a separate network was

trained. The EEG from Neural Network (ENN) module predicted task performance

outcomes using the EEG data. The Emotions from Facial Expressions (EFE) and the

Emotions from Body Posture (EBP) module classified emotions into the three classes

positive, negative, and neutral. The classified emotions from these two modules were

then used to compute a final task outcome as success or failure along with a confidence

score. This confidence score and the prediction from all three modalities are used to

make a final prediction using a late fusion approach. The results presented in Section

4.3.3 indicate that a multimodal approach outperforms the unimodal and traditional

machine learning approaches and is robust. While such intelligent systems provide

state-of-the-art performances, it is also important to consider other indirect factors

that may affect task performance. Section 4.4 discuses one such factor, sleep. This

longitudinal study over five days shows a correlation between sleep and cognitive task

performance using the N-back task, where a relationship between poor sleep patterns

and deteriorating cognitive performance is shown. Sleep is a well know human factor

that affects our ability to function at our full capability. Further research is required

in this field to incorporate improper sleep patterns and other similar factors into the

adaptive system for a better understanding of human performance.

The dissertation so far discussed various frameworks developed in this research

to monitor and predict different human factors during interaction in a specific cog-

nitive assessment system. While these assessment systems take into account several

cognitive factors that are relevant in an industrial scenario, one of the major points

missing is how these results can be applied to the real world. Do the same assumptions

hold? Can we still use the same sensors and data collection procedure to build an
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effective HRC system? To address these questions and explore several practical limi-

tations in implementing a real-world setup, the following chapter in this dissertation

introduces an HRC framework that simulates a real-world task.
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CHAPTER 5

CogniSmart: An Intelligent Human-Factors Monitoring Framework to Enhance

Human-Robot Collaboration

5.1 Introduction

The role of robots in our lives has increased from just industrial robots to per-

sonal assistants. Several collaborative robots are now prevalent that help industrial

workers [95, 96], people with disabilities in their daily activities [97], and children

and elderly people with entertainment and providing company [98, 99]. There are

also some collaborative robots that assist in rehabilitation [100]. With the advent of

Industry 5.0 [10], several industrial applications are now introducing smaller collabo-

rative robots rather than their large and costly counterparts. These emerging types

of robotic devices enable companies to enrich their workflows with a robot’s precision

and a human worker’s creativity to increase productivity. Research in this domain

is now at its peak, where people are focusing on achieving a safe HRC setup. Such

researches enable the adaptation of workflows that are ergonomic and do not threaten

or harm the physical health of the human in the loop [101, 102].

Despite the abundance of research in this domain, there is still limited under-

standing of the psychological impact on the human partner collaborating with robots

daily. It is essential to monitor cognitive human factors in an HRC setup so that

the human partner feels safe and comfortable while working and ensures maximum

efficiency and productivity. Cognitive Load (CL) is one of the critical human fac-

tors that affect an operator’s performance in an assembly line [103]. Arousal, time

limitations, and task difficulty are some of the factors that affect CL [104]. It is
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thus important to monitor CL which affects performance times and thereby affects

productivity. To this end, we propose CogniSmart, a framework to monitor CL and

enhance HRC. In this research [5], the participant’s extraneous CL, which can be

defined as the amount of energy expended to achieve a specific goal, is predicted

using the CogniSmart framework. Different types of physiological sensors are used

in a novel robot-assisted assembly task to capture the user’s cognitive state during

interaction. Wearable sensors such as ECG and EDA are used because of their less

obtrusive nature, and success in modeling user state [105, 8]. Some of the practical

limitations and questions about implementing an effective HRC system and how this

research addresses it are discussed in this chapter.

5.2 Background: Human Factors Modeling for Safe Human-Robot Interaction

Modeling human factors is not a new research area in behavioral modeling. Sev-

eral research works have addressed this problem by adopting various methodologies

under various assumptions. Despite its prevalence in research, very few datasets are

available for modeling CL and the available datasets are very small in sample size. In

2018, Nelles et al. [106] published a review of the evaluation metrics used to assess

human wellbeing in an HRI setup. The review highlights the heterogenic nature of

the experimental design, qualitative surveys, and other measures. This heterogeneity

could also be one reason for the limited availability of data for building a usable real-

time system. The research works reviewed by Nelles et al. use surveys from users

to evaluate the HRI design based on trust [107, 108, 109], usability [110, 111], safety

[112], cognitive and physical workload [113], and well-being [114]. One of the major

drawbacks of self-reported surveys is their subjective nature. This drawback makes

it very difficult to design an objective assessment system that is usable in a real-time

application.
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Another important component of the proposed framework is the physiological

sensors that help monitor CL during HRC. In a 2010 study by Novak et al. [115],

different sensors such as ECG for heart rate measurement, EDA for skin conductiv-

ity, thermistor flow sensor for respiratory rate, and a digital temperature sensor for

skin temperature were used to quantitatively evaluate the usability of the sensors to

estimate cognitive workload in haptic interaction. The study showed that the mean

and variability of the respiratory rate and skin temperature showed a significant dif-

ference between the difficulty levels, despite varying physical load levels. The study

highlighted that physiological sensors are able to measure CL in an interaction task.

However, the sensors used in the study such as the thermistor flow and skin temper-

ature sensors can not be used in an actual industry setting because of the coplicated

setup. Weistroffer et al. [116] used sensors such as Photoplethysmogram (PPG) and

EDA sensors to measure heart rate and skin conductivity during HRC. Despite not

being able to record data during interaction, the authors were able to compare the

usability of a virtual and physical system using pre/post measurements. Recently,

Villani et al. [117] proposed a CL assessment framework for HRI, which was used

to control a mobile robot. In this framework, a smartwatch was used to extract the

user’s heart rate variability for detecting the rest and stress conditions. In combi-

nation with the accelerometer, gyroscope, and magnetometer on the smartwatch, an

app was designed to provide commands to control the mobile robot. This framework

was later evaluated in a study by Landi et al. [118] in a teleoperation task where vir-

tual fixtures are used to operate a remote robot. Despite the usage of an unobtrusive

sensor such as the smartwatch, these studies [117, 118] do not discuss the accuracy

of the model that predicts CL.
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5.3 Proposed Framework

Taking all the results and limitations of these studies into account, we propose

CogniSmart, an intelligent framework (Figure 5.1) that aims to provide a reliable

human factors monitoring system using as few unobtrusive sensors as possible to

increase convenience. In contrast to the related works presented in Section 5.2, a

data-driven approach is used to design machine-learning-based models of physiological

sensors for identifying the cognitive human factor, Cognitive Load. A collaborative

assembly task is also proposed, which simulates a real-world setup in the industry.

In this framework, a user performs the collaborative robot-assisted assembly task
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Performance
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Figure 5.1: Overview of the proposed CogniSmart system architecture for HRC

during which different physiological sensors are used to record the user’s affective

state. This data is then used to predict CL, which helps decide the robot’s future
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actions like operation speed, the time interval between each assembly, and many

others. The main focus of this chapter will be on signal processing and user modeling

for CL prediction.

5.3.1 The Robot-Assisted Assembly Task

As shown in Figure 5.2, a robot-assisted assembly task was designed to assemble

a small sanding machine. In this task, a collaborative robotic arm, Sawyer, developed

by Rethink Robotics [119] was used to assist the participant in assembly. The moti-

vation behind the task’s design was to simulate a real-world assembly setup, where a

robot and a human partner collaborate synchronously to achieve a common goal. In

this task, referred to as RoboAssist from now on, the parts required for assembly of the

sanding machine are split into two sets; a set large enough for the robot to handle (set

1), and a set very small that the robot is not able to handle accurately (set 2). For

Figure 5.2: Setup of the Proposed Collaborative Assembly Scenario, RoboAssist. Top-
left image: Final Assembly Product - A Miniature Sanding Machine. [5] ©2020
IEEE.
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instance, as shown in Figure 5.2, the set 1 parts of the sanding machine were placed

to the right side of the robot, while set 2 parts like a screwdriver, nuts, and bolts were

placed in a separate bin on the right side of the user. The robot picks parts from set

1 and provides them to the user as the user uses the parts from set 2 for assembly. In

addition to this, a simple user interface was designed to provide detailed step-by-step

instructions to the user to assemble the sanding machine. Each instruction provides

detailed information regarding the parts the robot handles and the parts the user

needs to handle to complete an assembly step. Once each step was completed, the

user was required to press a button to proceed to the next step. The user interface

was integrated to the robot using the Robot Operating System (ROS) [120] in order

to recognize a step completion and move on to the next step. A video of the assembly

task can be found in the following link: https://youtu.be/m_dkLHflCUo.

5.3.2 Sensors and Data Stored

One of the main goals of this research is to explore sensors that are easy to use

and unobtrusive. In the previous chapters, EEG sensor was used predominantly to

monitor cognitive human factors for assessment. While the Muse EEG sensor pro-

vided promising results in cognitive fatigue prediction and engagement computation

for task performance prediction, such a sensor may not be helpful in an industry set-

ting. In an industrial setup, there are safety requirements expected of the employer.

According to the Occupational Safety and Health Act of 1970 [121], employers are

expected to provide protective equipments like goggles and helmets, making it diffi-

cult to use an EEG sensor. Moreover, the operator may not prefer additional sensors

that create more distractions to the working environment. It is thus essential to use

unobtrusive sensors that are easy and convenient to use. Previous research [105] has

shown the usability of biosignals from ECG and EDA sensors in different stress de-
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tection setups. In this research, ECG and EDA sensors are explored for cognitive

modeling as they are easy to use and are usually not in the operator’s way. Recent

advancements in sensor technologies have also incorporated these sensors in easily

wearable hand-worn devices like smartwatches or wearable smart T-shirts. The fol-

lowing sections will discuss in detail the different positions of the sensors used for

data collection and features extracted for training a machine learning model.

Figure 5.3: Sensor Placement of ECG and EDA sensors. The EDA sensor is placed
on the right shoulder. The ECG sensor is placed in a Lead II setup of the Einthoven’s
triangle.

5.3.2.1 ECG Sensor - Placement and Feature Extraction

An Electrocardiogram (ECG) is an easy and painless way of measuring a per-

son’s heart activity by recording the heart’s electrical signals. In medicine, it is

commonly used to monitor the heart’s function and detect any problem with the
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heart. Advances in sensor technology have enabled the easy availability and accessi-

bility of ECG sensors for researchers and the general public. In recent times, ECG

sensors are also incorporated into commercially available smartwatches like the Ap-

ple Watch [122]. In this study, the participant’s heart activity during interaction is

recorded using a single-lead ECG sensor developed by BioSignalsplux (Section 2.2.2)

at a sampling rate of 1000 Hz.

Sensor Placement: For this study, a lead II configuration of the standard 3-point

bipolar limb leads configuration of the Einthoven’s triangle was adapted [41]. Typi-

cally, in this configuration, a positive electrode is on the left leg, a negative electrode

on the right arm, and a reference electrode on the right leg for recording purposes.

However, the RoboAssist setup requires the participant to sit and work on an assem-

bly task. To facilitate this requirement and ensure ease of use by participants, the

electrodes were placed on the right shoulder and the lower torso as shown in Figure

5.3.

Feature Extration: Due to the position of the ECG electrodes on the right shoulder

and lower torso, the ECG signal is inverted compared to the actual data captured

using the standard lead II configuration. Therefore, the signal is first inverted to

represent the original waveform before preprocessing. Time and frequency domain

features from the ECG signal are extracted from the QRS complex (Figure 5.4) and

the RR interval (the time elapsed between two consecutive R waves). These features

are commonly used in Heart Rate Variability (HRV) analysis in mental stress assess-

ment studies [123]. The QRS complex forms the main component of the ECG signal

that represents the electrical activation in the sensor due to the contraction of ventri-

cles in the heart. It is the prominent peak in the ECG waveform and helps calculate

heart rate and various heart-disease states [124, 125]. The peak detection algorithm

developed by Van Gent et al. [126] is used to identify the R peaks. A notch
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Figure 5.4: Sample ECG signal acquired from the Biosignalsplux sensor. The green
dots indicate the peak detected using which the heart rate of the signal was estimated.
Q, R, S, T indicate the Q-wave, R-wave, S-wave, and T-wave component of the ECG
signal. ©2020 IEEE.

filter with a cut-off frequency threshold value of 0.05 Hz was empirically selected to

be applied before the peak detection algorithm. This step helps in improving the

peak detection accuracy due to additional noise by minimizing the T-wave and other

unwanted low-frequency noise. After this step, time-domain and frequency-domain

features are extracted from the preprocessed signal. Boonnithi et al. [123] proposed

the use of some time domain features for HRV analysis such as, the mean RR inter-

val or mean Inter-beat Interval (mRR), the mean heart rate (mHR), the standard

deviation of RR interval (SDRR), the standard deviation of heart rate (SDHR), the

coefficient of variance of RR intervals (CVRR), the root mean square successive dif-

ference (RMSSD), the proportion of successive differences above 20 ms in percentage

(pRR20), and the proportion of successive differences above 50 ms in percentage

(pRR50). Moreover, additional time domain features were extracted as follows; the

median RR Interval (R̃R), the range of the RR Interval (rRR), and median absolute

deviation of RR intervals (MAD). A list of all extracted time domain features are

listed in Table 5.1 with their formulas.
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Table 5.1: Time Domain Feature Extraction from ECG Data [5]. ©2020 IEEE.

Features Computation

Mean Heart Rate
mHR =

∑N
i=1 60000/RRi

N

where N :number of RR interval terms

Mean Inter-beat Interval mIBI =
∑N

i=1 RRi

N

Median RR Interval R̃R = median(RR)

Range RR Interval rangeRR = max (RR)−min (RR)

Standard Deviation of RR intervals SDRR =

√∑N
i=1(RRi−mIBI)2

N−1

Standard deviation of successive differ-

ences

SDSD =

√∑N
i=1(RRi+1−RRi)

2

N−1

Standard deviation of heart rate SDHR =

√∑N
I=1((60000/RRi)−mHR)2

N−1

Coefficient of variance of RR intervals CV RR = SDRR×100
mIBI

Root mean square of successive difference RMSSD =

√
(RRi+1−RRi)

2

N

Proportion of successive differences above

20 ms in percentage

pRR20 =
Count(|RRi+1−RRi|)>20ms×100

N−1

Proportion of successive differences above

50 ms in percentage

pRR50 =
Count(|RRi+1−RRi|)>50ms×100

N−1

Median absolute deviation of RR intervals MAD = median
(
RRi − R̃R

)

Additionally, the frequency-domain features extracted from the ECG signal

were Power Spectrum of Very Low Freq (LF) amd Power Spectrum of Very High

Freq (HF). These powers have been largely used in the literature by associating them

to autonomic nervous system activities (i.e., LF is associated with sympathetic activ-

ity and HF to parasympathetic). Other features extracted from these basic measures
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are the Sympathetic modulation index, the Vagal modulation index, and the Sym-

phatovagal balance index. A list of all the extracted frequency domain features is

listed in Table 5.2 with their formulas. In total, for ECG signal, 17 features were

extracted for machine learning analysis.

Table 5.2: Frequency Domain Feature Extraction from ECG Data [5]. ©2020 IEEE.

Features Computation
Low Frequency (LF) LF = Power spectrum from 0.04

to 0.15 Hz
High Frequency (HF) HF =Power spectrum from 0.15

to 0.5 Hz
Symphathetic modulation index (SMI) SMI = LF / (LF+HF)
Vagal modulation index (VMI) VMI = HF / (LF+HF)
Symphatovagal balance index (SVI) SVI = LF / HF

5.3.2.2 EDA Sensor - Placement and Feature Extraction

Electrodermal activity (EDA) is a measure of the change in electrical potential

between different parts of the skin [127]. These changes are caused by alterations in

sweat secretion and sweat gland activity due to changing sympathetic nervous system

activity. Several studies [128, 42] have used EDA sensors to detect CL, stress, and

other human factors. Recent research [129] has developed unobtrusive wearable solu-

tions for using EDA sensors for long-term use. In this dissertation, the EDA sensors

developed by BioSignalsplux (Section 2.2.2) is used for monitoring cognitive human

factors, which is capable of accurately measuring the electrical properties of the skin.

Sensor Placement: In a 2017 study by Zangróniz et al. [43], locations like the palm

and the soles are suggested to be the best spots for EDA data recording because

sweat glands are most active in these locations. However, due to RoboAssist’s de-

sign, participants could not use their palms or soles for sensor placement. Hence, in
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this study, data from the EDA sensor was collected from the shoulder, which was

proven to be one of the best alternate locations for measuring skin conductance [130].

More specifically, the sensor was placed on the right shoulder of all the participants

as shown in Figure 5.3.

Feature Extraction: Data collected from the EDA sensor is downsampled to 200 Hz

to reduce computation. The downsampled data is then filtered using a Butterworth

filter to remove high-frequency noise using methodology proposed by Bizzego et al.

[131]. Research indicates that EDA signals comprise two different superimposed com-

ponents; the phasic or the skin conductance response (SCR) and the tonic or the skin

conductance levels (SCL) [43, 132]. The phasic component varies based on the pro-

vided stimulus, where changes in the signal imply activation of the sudomotor nerve

due to activity in the sweat glands. On the other hand, the tonic component is the

baseline level of skin conductance, which varies from person to person [132]. Figure

5.5 shows a sample snapshot of the EDA signal with its phasic and tonic components.

The shape of the EDA signal is vital in signifying a change in nervous re-

sponse. Statistical features related to the amplitude, the first derivative, and the

second derivative of the signal were extracted. Additional spectral and energy fea-

tures that are commonly used to describe the characteristics of one-dimensional (1D)

signals were extracted. The following features were extracted from the SCR signal;

Mean Value, Standard Deviation, Maximum Value, Minimum Value, Range, Vari-

ance, first Derivative Mean, first Derivative Standard Deviation, second Derivative

Mean, second Derivative Standard Deviation, Zero Crossing Rate (the rate at which

the signal changes sign in a given window), Spectral Centroid, Spectral Rolloff, Spec-

tral Entropy, Energy, and Entropy of Energy.
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Figure 5.5: Downsampled EDA signal acquired from the Biosignalsplux sensor. The
top plot shows the preprocessed EDA signal in blue and the tonic component of the
signal in orange. The bottom plot shows the respective phasic component in blue.

The spectral centroid of the given frame of the spectrum is computed by the

following equation:

C =
N−1∑
i=0

Xip(Xi),

where N is the size of the spectrum, X is the observed frequencies and p(X) is the

probability to observe a specific value in X.

Spectral Rolloff corresponds to the frequency below which 90% of the magnitude

distribution of the spectrum is concentrated. It is given by the equation:

R = 0.9
N−1∑
i=0

|Xi|,

where X is the spectrum of the signal and N is the size of the positive spectrum.
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Spectral Entropy is the entropy of the normalized spectral energy of the given

signal and is computed by the formula:

SE = −
fs/2∑
f=0

P (f) log2 P (f),

where fs is the sampling frequency and P is the normalized power spectral density.

Energy is the sum of squares of the signal divided by the length of the frame

and it is calculated by the formula:

E =
1

N

N−1∑
I=0

|Xi|2,

where N is the length of the signal window and X is the observed frequencies.

The entrophy of energy of the given signal is given by the formula

EE = −
∑

E log2E,

where E is the energy of the signal given a window. These spectral and energy

features have also been for other 1D signals like EEG [1], and speech [133]. In total,

for EDA signal, 16 features were extracted for machine learning analysis.

5.4 User Study - Preliminary Analysis

A user study, approved by the Institutional Review Board at The University of

Texas at Arlington, was conducted to validate the framework and demonstrate the

feasibility of the RoboAssist task. Twenty-five participants enrolled for the study, of

which 15 were male, and 10 were female participants. The participant’s age range

was 19 to 30, except for one who was in the 31 to 40 age range. The study lasted
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for 40 minutes for each participant. The data collection for the study took place at

the “Heracleia Human-Centered Computing Lab” over two sessions, one following the

other with a short 3-minute break. In the first session (S1 ), the participants worked

with RoboAssist, where the system provided detailed step-by-step instructions for

each step. This session functioned as a practice round for the participants to get fa-

miliarized with the assembly setup. For the second session (S2 ), the participants were

expected to remember the assembly steps from S1. Moreover, in S2, the participants

were provided only 30 seconds per assembly step. This restriction was incorporated

to induce stress and high CL.

During the study, once the experimental procedure is explained and the par-

ticipants signed the consent form, a short baseline survey to assess the participant’s

baseline cognitive and physical state was conducted. Following the baseline survey,

session S1 was conducted, which enabled the participants to get familiarized with

the setup and memorize the assembly instructions. A post-task survey to assess the

user’s subjective experience was conducted after S1. Next, session S2 was conducted

where the participant’s stress to complete in time and CL was increased due to the

timer for each step. After this session, a final post-task survey was conducted to

assess the user’s cognitive and physical state after the second session. During each

session, data were recorded from ECG and EDA sensors. Other task-specific metrics

like completion time and errors were also recorded. A 3-minute break was included

between the sessions to avoid the cumulative effect of stress.

Time is a critical factor in an HRC assembly and production line where the

robot and the human operator’s moves must be in sync to ensure a successful assembly

workflow. To get the human operator to work synchronously, companies often train

their workers before working as a robot operator. This means that the practice effect

[134] is always present in a real-world operator. It is thus important to incorporate this

70



factor into the modeling process. In order to simulate an actual assembly operator’s

work, in this study, all participants first worked on a training session (S1 ) before

working on a timed session (S2 ) that simulates a real assembly setup.

5.4.1 Preliminary Results from Proposed Framework

5.4.1.1 Survey Results

Participants responded to three surveys in total. The first survey was “Base-

line,” which was collected before the start of the session. The second survey was

“post task1,” which was conducted right after S1. The third survey was “post task2,”

which was collected after S2. During these surveys, different questions were asked

to assess the participant’s cognitive and physical state, including some task-specific

questions. For each question, the participants were asked to rate the response to each

question from 0, meaning very low, to 10, meaning very high. The questions asked

in the baseline survey focused on assessing the participant’s physical and cognitive

state before the start of the task. The questions were:

• On a scale of 1 to 10 how sleepy or drowsy do you feel at the moment?

• On a scale of 1 to 10 do you have difficulties concentrating at the moment?

• On a scale of 1 to 10 do you feel physically tired at the moment?

• On a scale of 1 to 10 how distressed do you feel at the moment?

• On a scale of 1 to 10 how attentive do you feel at the moment?

In post task1 and post task2 surveys, additional task-specific questions were also

included. The questions included in post task1, and post task2 were:

• How much physical effort did you spend on this task?

• How difficult was this task?

• On a scale of 1 to 10 how sleepy or drowsy did you feel during the task?
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• On a scale of 1 to 10 did you have difficulties concentrating during the task?

• On a scale of 1 to 10 did you feel physically tired while assembling?

• On a scale of 1 to 10 how stressed did you feel during the task?

• On a scale of 1 to 10 how attentive were you during the task?

• On a scale of 1 to 10 how interested were you in the task?

Figure 5.6 shows a summary of the survey responses for all the questions. Figure

5.6a shows a comparison of the survey questions common for baseline, post task1,

and post task2. Figure 5.6b shows a comparison of the task-specific survey questions.

Some important responses to note in Figure 5.6 are responses to sleepiness, stress,

attention, and physical effort. The responses indicate that the the users felt more

stress during S2 than in S1. This indicates that the timed RoboAssist setup can

induce enough stress in the participant that they can actually feel, thus making this

system useful to assess stress-related measures. On the other hand, the participants

felt more sleepy or drowsy during S1 than in S2. This indicates that there is a negative

correlation between stress and sleep. That is, the participants felt less sleepy as the

stress increased while working on a task. Responses to attention and physical effort

for the two sessions imply that the participants had to apply more physical effort for

a timed session (S2 ) and a relatively high attention level during both sessions. This

could indicate that in an assembly task, there is a need for the participant to exert

more effort both cognitively and physically. This bolsters the need to implement

operator well-being measures in an HRC setup that assess human factors affecting

task performance, to provide personalized assistance and alleviate stress and fatigue.

However, it is important to note that the values obtained from the user surveys were

not significantly different between the two tasks. This is because of the small number

of participants in the study, and further experiments are required to validate these

findings.
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(a)

(b)

Figure 5.6: Subjective feedback from user feedback. (a) A comparison of user response
across the three Baseline, post task1, and post task2 surveys. (b) A comparison of
user response after post task1, and post task2 surveys.
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5.4.1.2 Machine Learning Results

As mentioned earlier, ECG and EDA data were recorded during RoboAssist to

model participants’ CL. Out of the data collected from 25 participants, three were

dropped due to sensor malfunction. The remaining data was split into two classes; S1

was considered “low CL” while S2 was considered “high CL”. A total of 44 data points

were available that were equally split across the two classes. After preprocessing the

signal to reduce noise, 17 time and frequency-domain features were extracted from

the ECG signal (Section 5.3.2.1) while 16 statistical, spectral, and energy-domain

features are extracted from EDA signals (Section 5.3.2.2). The EDA data comprises

two different components, the phasic and the tonic component, as shown in Figure 5.5.

For this preliminary analysis, the EDA phasic component was used to extract features

for analysis because the analysis focused on modeling the user’s cognitive load to the

presented stimuli. The Support Vector Machine (SVM) algorithm with a linear kernel

is used for this preliminary analysis to see if the data is viable for a classification task.

The number of features is also reduced using Principal Component Analysis (PCA) to

avoid overfitting and reduce computational complexity. Table 5.3 shows the results

Table 5.3: Preliminary results using Support Vector Machines (SVM) to predict cog-
nitive load using data collected from RoboAssist. Results are presented SVM with
and without Principal Component Analysis (PCA) for each signal: ECG, EDA Pha-
sic, and a combination of both signals. Abbreviation: F1 - F1 Score; Acc - Accuracy

ECG EDA Phasic ECG+EDA
F1 Acc F1 Acc F1 Acc

SVM 0.333 42.85 0.714 71.42 0.941 92.85
SVM (PCA) 0.667 57.14 (4) 0.833 78.57 (10) 0.933 92.85 (15)

of both SVM with linear kernel and SVM with PCA using a linear kernel which is

evaluated using accuracy and F1-scores. Generic accuracy and F1 scores are used
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where accuracy is defined as a measure of the total number of correctly identified

cases, and F1-score is a measure of the harmonic mean of the precision and recall

[135]. F1-score gives a better understanding of the misclassified cases as it is critical

in the framework’s design. These results show promising classification performance

and viability of the RoboAssist system.

5.4.2 Limitations and Research questions

Despite the high accuracy and F1 score produced by the algorithms discussed

in Section 5.4.1.2, more dataset is needed to generalize well. In an industrial setup,

multimodal data may not always be feasible. ECG and EDA sensors in the current

setup require many cables on the participant, which may not be preferred by an

assembly line worker or a robot operator. On the other hand, it is complicated to

design a single unobtrusive sensor that comprises different sensors, and an operator

may not choose to wear multiple sensors. These limitations in the RoboAssist system

gives rise to several questions such as:

• Is it possible to use data collected in a different experimental setup to train a

model and predict CL in RoboAssist?

• Can data collected from a different brand of the same sensors be used to build

machine learning models for RoboAssist?

• Does the distribution of the data affect the classification problem?

• Which of the several extracted ECG or EDA features are useful?

• In order to increase the number of samples for machine learning techniques,

how to augment data for ML models while traditional augmentation techniques

tend to induce noise?

In the following sections, different approaches used to answer these research questions

are discussed.
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5.5 Modeling Cognitive Load from Public Datasets

Training machine learning or deep learning models for modeling CL needs a

large dataset to generalize well in real-time. However, most human-centric research

studies in academia often face a shortage of participants and usually only manage to

collect data from the system using hundreds or fewer participants. Sometimes, data

collected in these studies may need to be removed during analysis due to issues with

the data collection procedure or too much noise in the data. For instance, physio-

logical sensor data collected using the RoboAssist system consists of 25 participants,

of which three were removed during analysis due to sensor malfunction while record-

ing. One solution to address this issue is to use publicly available datasets. However,

these datasets also face the same shortcomings. In addition to that, publicly available

datasets may not use the same set of sensors we want to use or may have a completely

different data collection methodology. This research explores the possibility of using

different publicly available datasets collected using different types of sensors and dif-

ferent experimental setups to increase corpus size and build better and generalizable

models. More specifically, the 9PM Cognition Dataset [7] and CLAS - Cognitive

Load, Affect, and Stress Detection Dataset [6] are explored. These datasets are used

for modeling cognitive load and tested on the RoboAssist dataset both individually

and by merging them.

5.5.1 9PM Cognition Dataset

The 9PM cognition dataset [7] is a publicly available dataset that comprises

data collected from different cognitive tests that cover a wide range of frequently

used assessments in research, and clinical practice [136]. It includes cognitive tests

such as, the Stroop Test [137], the Wisconsin Card Sorting Test (WCST) [138] and the
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NIH Toolbox Picture Sequence Memory Test (PSMT) [139] that was superimposed

in the 9 Hole Peg Test (9HPT)[140]. The participants performed the 9HPT based

on instructions provided using the cognitive tests. The dataset comprises data from

63 participants that include 56 male and seven female participants. The dataset

includes data from physiological sensors such as ECG, EDA, EEG, and an Inertial

Measurement Unit (IMU). ECG and EDA data are recorded using a Biosignalsplux

Explorer unit [40], EEG data is recorded using an OpenBCI ULTRACORTEX MARK

IV sensor [141], and IMU data is recorded using a MetaMotionR sensor [142]. For

this research, data from the ECG and EDA sensors recorded at 1000Hz were utilized

for modeling machine learning algorithms to predict cognitive load. The ECG sensor

is mounted on the participant using a lead II configuration of the standard 3-point

bipolar limb leads configuration of the Einthoven’s triangle. The EDA sensors were

attached to the two fingers of the non-dominant hand.

In the 9PM data collection setup, physiological data were recorded from the

participants while performing five different tasks (T1, T2, T3, T4, T5). T1 is a

classic 9HPT where the participants were asked to move pegs from the source area to

the destination area. T2 is a simple low cognitive load task where participants need to

follow the given instructions directly. T3 follows the Stroop Test, where participants

are given instructions based on Stroop Test, and appropriate action needs to be

taken. Similarly, T4 follows the WCST, and T5 follows PSMT. After each task, a

user survey was also collected that provides insight into the subjective user responses

regarding the task, such as task difficulty, cognitive load, physical load, and many

more. Responses from the user surveys were used to split the dataset into different

classes (see Section 5.5.4) for machine learning analysis.
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5.5.2 CLAS - Cognitive Load, Affect and Stress Detection Dataset

CLAS [6] is also a publicly available dataset consisting of data collected from

various interactive and perceptive tasks. An interactive task is a task that is designed

with the primary objective of obtaining a qualitative and quantitative assessment of

various cognitive aspects such as cognitive load, attention, and concentration. To this

end, Math Test, Logic test, and Stroop test are designed that has several questions

to respond to within a very short time limit. The Math test consists of a sequence

of 24 mathematical questions that the participants had to respond to within four

seconds. The Logic test consists of 20 questions, similar to questions often used

in IQ tests [143], that the participants had four seconds to respond. On the other

hand, in a perceptive task, the participants are presented with instructions to watch

images or videos curated to elicit specific emotions in the four different quadrants of

the arousal-valance space as shown in Figure 5.7, using the International Affective

Picture System (IAPS) dataset [144]. The different emotions are stress, excitement,

boredom, and calmness. The CLAS data consists of data collected from 62 healthy

participants that include 45 men and 17 women.

Physiological data from ECG, EDA, and PPG sensors were recorded during

the experiment protocol. ECG and PPG data were recorded using the Shimmer3

ECG Unit [145], while the EDA data was recorded using the Shimmer3 GSR+ Unit

[146]. The data from these sensors were recorded at a sampling rate of 250Hz. For

this research, data from the ECG and EDA sensors recorded during the Math and

Logic tests were utilized for modeling machine learning algorithms to predict CL in

RoboAssist. In addition to this data, the dataset also consists of a neutral dataset,

which is the sensor data collected when the participant is not performing any task in

order to relax the participants and restore their emotional state. The neutral sessions
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Figure 5.7: Illustration of the distribution of stimulus across the different quadrants
of the valance and arousal scale [6], ©2019 IEEE.

were conducted before and after the Math and Logic tests. In the CLAS dataset, ECG

was recorded from the Lead I configuration of the Shimmer3 ECG Unit, and EDA

was recorded from sensors attached to the two fingers of the non-dominant hand.

5.5.3 Differences Between the CLAS and 9PM Datasets

The CLAS and the 9PM datasets were specifically chosen to explore how

datasets with different properties like sensors used, sensor placement, and experi-

mental setup affect the modeling of CL in a real-world scenario. This section will

briefly go over some of the datasets’ key aspects and how the two datasets differ

between themselves and with the RoboAssist system setup.

Data Collection Setup: The 9PM dataset used long cognitive tests like the Stroop

Test, WCST, and PSMT superimposed in the 9HPT to induce cognitive load. The

CLAS dataset used short standardized tests such as Math and Logic tests to induce

cognitive load.
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Sensors Used: The 9PM dataset used the biosignalsplux sensor suite that collects

data at 1000 Hz, while CLAS uses the Shimmer3 ECG unit for ECG and the Shim-

mer3 GSR+ unit for EDA data that collects data at a sampling rate of 250 Hz to

record data. In the RoboAssist setup, the biosignalsplux sensor suite is used for ECG

and EDA data collection at a sampling rate of 1000Hz. Sensor Placement: In the

9PM dataset, ECG is collected from a Lead II setup of the Einthoven’s triangle sim-

ilar to the proposed RoboAssist system, while CLAS uses a Lead I configuration of

the Shimmer3 unit. On the other hand, for EDA data, both 9PM and CLAS datasets

record EDA data from the fingers of the non-dominant hand while the RoboAssist

system records EDA data from the right shoulder.

These differences clearly show that the two datasets used are fundamentally different

in how they induce CL and the sensors and sensor setup used for data collection.

5.5.4 Machine Learning Analysis to Predict Cognitive Load

An exploratory research was conducted with data from the 9PM dataset, the

Math test data, and the Logic test data of the CLAS dataset separately to train

different machine learning algorithms that predict CL in the RoboAssist system. The

data collected in the preliminary user study (Section 5.4) using the RoboAssist setup

was used as the test set. This section briefly explains how data is represented for

training from 9PM and CLAS and explains the machine learning pipeline used to

predic CL using the RoboAssist data.

5.5.4.1 Data Representation and Feature Extraction

9PM Dataset: Data from the 9PM dataset (Section 5.5.1) is split based on the

different tasks the user performed. Each task is assigned a class label based on the
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subjective user report for task difficulty. Figure 5.8 shows the average user response

to the task difficulty question on the user surveys.

Figure 5.8: A Graph of Task Difficulty from User Survey Data [7].

For the purpose of this study, the prediction of CL was modeled into a binary

classification problem by considering data from T1 as low CL class and T4 as high CL

class based on the results of the survey. Out of the data from 63 participants, data

from 13 participants were dropped for analysis because of extremely noisy data or

sensor malfunction. In T1, the participant performed the task for one round, while in

T4, the participant performed four rounds of the same task. Due to this, the Low CL

class consists of 50 samples, while the high CL class consists of 200 samples causing an

imbalance in the two classes. In machine learning, an imbalanced class can cause the

machine learning model to overfit the data and cause the model to predict only the

majority class during testing. This issue makes the model very unstable and unusable.

A property of the 9PM dataset is utilized to address this issue. As mentioned earlier,

the low CL class consists of only one round of data per user, whereas the high CL

class consists of four rounds of the same task per participant. Once the features were

extracted, the average features of each participant were calculated for the majority
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high CL class to make one sample per participant, thus reducing the number of

samples in the majority class to 50 samples.

Finally, features were extracted using the techniques discussed in Section 5.3.2

for each data sample of both the classes; 17 features were extracted for ECG data,

and 16 features were extracted for EDA data (Section 5.3.2). The phasic component

was extracted from the EDA data for analysis and feature extraction as it represents

the change in skin conductance response due to stimuli. During analysis, both the

Raw signal and the Phasic component were used to determine these individual sig-

nals’ efficacy in modeling CL.

CLAS Dataset: Data from the CLAS dataset (Section 5.5.2) is divided into

two classes based on the recording mode. Physiological data recorded during the

Math/Logic test was considered high CL, while data recorded during neutral stimuli

recorded at the beginning of each session and in-between the tasks were used as

low CL. This dataset consists of two types of tests that elicit different cognitive

responses and uses different cognitive abilities. Hence, data from Math and Logic

Tests were used as two different corpora for modeling CL. The Math Tests consists

of 24 questions, and each data recording lasts eight seconds long that includes 4

seconds for listening to questions, 3 seconds to respond, and 1 second to display the

result. The Logic Test consists of 20 questions, and each data recording lasts fifteen

seconds long that includes 10 seconds to display a question, 4 seconds to respond,

and 1 second to display the correct answer. In both these cases, each question was

considered as a sample. Data from the two classes were then preprocessed before

extracting features using the techniques discussed in Section 5.3.2. Because of the

different configuration of the ECG sensor during data collection, the data was not

inverted before feature extraction. Finally, 17 features were extracted for ECG data,
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but only 12 time-domain features were extracted for EDA data (Section 5.3.2) because

of the short signal length. Similar to the 9PM dataset, the phasic component was

extracted from the EDA signal for feature extraction and further analysis. During

analysis, both the Raw signal and the Phasic component were used to determine these

individual signals’ efficacy in modeling CL.

After feature extraction, for analysis using the Math test, the high CL class

consisted of 646 samples, and the low CL class consisted of 324 samples. Similarly,

while using the Logic test, the high CL class consisted of 1085 samples, and the low

CL class consisted of 324 samples. This data split indicates that there is an imbalance

in the two classes. Unlike the 9PM dataset, the issue is not straightforward because

there are no properties of the dataset itself that can address the issue. A Synthetic

Minority Class Oversampling Technique (SMOTE) [147] was performed to increase

the number of samples in the minority neutral class. This technique works by picking

a random example of the minority class and creating a synthetic example similar to

its neighbor. A borderline SMOTE [148] technique using SVM as a classifier is used.

This algorithm works by locating the decision boundary defined by the support vec-

tors, and examples in the minority class close to the support vectors became the focus

for generating synthetic examples. Based on the recommendation by Nguyen et al.

[148], the majority class is first undersampled, and then the minority class is oversam-

pled to avoid creating meaningless examples. After applying SMOTE, the number of

samples in the Math corpus was balanced to ‘high CL’ and ‘low CL’ with 516 samples,

whereas the Logic corpus was balanced to 868 samples in both the classes.

RoboAssist Dataset: As mentioned earlier, the physiological data recorded dur-

ing the RoboAssist preliminary study was used as the test set to predict CL. In this

dataset, 3 participant’s data were dropped due to sensor malfunction. Thus, the
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dataset comprised 22 samples in the low CL class and the high CL class. The pre-

processing and feature extraction steps were the same as explained in Section 5.3.2.

However, the number of features extracted for this dataset varied based on the train-

ing set used. When the 9PM dataset is used, 17 features were extracted for ECG that

includes time and frequency domain features, and 16 features that include spectral,

energy, and statistical-based features were extracted for EDA signal. On the other

hand, when the CLAS data was used for training, 17 ECG features and only 12 EDA

features were extracted. This is because the signal length of the CLAS data samples

was less than or equal to 10 seconds which is too little to extract any meaningful

frequency domain information.

5.5.4.2 Machine Learning Pipeline

For the classification of CL, several traditional machine learning algorithms

that are commonly used for modeling sensor data in HMI studies are used [68]. More

specifically, algorithms like Support Vector Machines (SVM), AdaBoost (AB), Ex-

treme Gradient Boosting (XGBoost), Random Forest (RF), and Naive Bayes (NB)

are used. Three different analyses were performed using the three combinations of

the data groups. They are:

1. ECG and EDA data from the 9PM dataset was used to train machine learning

models, while the data from the RoboAssist system was used to predict CL.

2. ECG and EDA data from the Math test of the CLAS dataset was used to train

machine learning models, while data from the RoboAssist system was used to

predict CL.

3. ECG and EDA data from the Logic test of the CLAS dataset was used to train

machine learning models, while data from the RoboAssist system was used to

predict CL.
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Before training the algorithms, different pre-training steps were performed to ensure

better algorithm performance on the testing data. Since the goal is to use these

algorithms in real-time, fewer features ensure less computational overhead. Hence,

different feature selection techniques were performed in all three analyses to ensure

fewer features are found to train on that yield the best results. Feature selection

techniques such as the Univariate feature selection using ANOVA (UFA) and dimen-

sionality reduction techniques such as the PCA were explored to see their effects

on different datasets. Depending on the type of technique used, the data were first

normalized using either robust or standard scaling. That is, for PCA, robust normal-

ization was used whereas, standard scaling was used for the UFA. Standard scaling

was used with UFA because the ANOVA test assumes that the data is normally dis-

tributed and has an equal variance. On the other hand, robust normalization was

used with PCA because visualization of the data samples showed several outliers on

the training data.

One of the main goals of this study was to combine different corpora so that

multiple data sources can be used to model a specific human factor for HRC studies.

To this end, based on the results discussed from these analyses, data from the 9PM

and CLAS are combined to predict CL. In the following sections, results from these

studies are discussed along with the final results from the combined dataset that

predicts CL in the RoboAssist System.

5.5.5 Machine Learning Results

A multimodal and unimodal approach is used for building machine learning

algorithms. Different combinations of sensor data such as only ECG (E), only EDA

Raw (ER), only EDA Phasic (EP), ECG and EDA Raw (E+ER), and ECG and

EDA Phasic (E+EP) are used. As mentioned earlier, it is essential to have a lower
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computational load on the system while building machine learning or deep learning

algorithms for real-time systems. A different number of features for PCA (C value)

and UFA (K value) were experimented with such as, a C/K value of 3 to 15 was

used for unimodal analysis, and a C/K value of 3 to 25 was used for multimodal

analysis. The minimum C/K value that provided the best weighted average F1 score

and accuracy was selected and presented. It is important to note that different C/K

values affect the accuracy of different machine learning algorithms differently [149].

Hence, for each algorithm and signal combination, the best C/K value that provides

the best precision and recall scores for each class, the weighted average F1 score, and

accuracy are reported and highlighted in green.

5.5.5.1 Results from the 9PM dataset

Table 5.4 shows the classification results of the RoboAssist system, which was

trained using the 9PM dataset. In this first analysis, PCA is used to reduce the

dimensionality of the features, and robust normalization is used to normalize the

data. The results reported are the best results achieved for each signal type and

lists the best algorithm and the C value that achieves it. From this result, it is

evident that EDA Raw data achieves the best results. The poor performance of the

ECG signal is because heart activity monitored using ECG may be different across

different activities whereas, EDA data is a signal that gets activated based on stimuli.

However, it must be noted that the phasic component of the EDA signal also shows

poor performance. This is because the phasic component varies based on the stimuli

shown. Because the task in the training set is entirely different from the task in the

test set, such a result is expected.

Similar results are observed in the second analysis as shown in Table 5.5, where

the UFA feature selection was performed on the 9PM dataset, and standard scaling is
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Table 5.4: Classification results of predicting cognitive load on the RoboAssist data.
For each combination, PCA was performed and the least best C value is shown.

MODEL BEST C SIGNAL RECALL PRECISION AVG F1 ACC
Low CL High CL Low CL High CL

NB 5 E 0.3636 0.7727 0.6154 0.5484 0.549326 0.568182
SVM 6 ER 0.8636 0.9091 0.9048 0.8696 0.886305 0.886364
SVM 5 EP 0.5455 0.6364 0.6 0.5833 0.590062 0.590909

AB 13 E+ER 0.4091 0.9545 0.9 0.6176 0.65625 0.681818
RF 13 E+EP 0.5909 0.5455 0.5652 0.5714 0.567959 0.568182

used to standardize the data. UFA provides a list of features that achieve these best

results. For the EDA raw signal, the SVM algorithm provided the best results using

features such as Mean, Min, Range, Energy, 1st Mean, 2nd Mean, 2nd Std, Spectral

Centroid, Spectral Entropy (see Section 5.3.2.2). These features are a combination of

statistical and spectral features.

Table 5.5: Classification results of predicting cognitive load on the RoboAssist data.
For each combination, Univariate feature selection was performed and the least best
K value is shown. Best Features: Mean, Min, Range, Energy, 1st Mean, 2nd Mean,
2nd Std, Spectral Centroid, Spectral Entropy

MODEL BEST K SIGNAL RECALL PRECISION AVG F1 ACC
Low CL High CL Low CL High CL

RF 3 E 0.6818 0.6364 0.6522 0.6667 0.658915 0.659091
RF 9 ER 0.8636 0.9091 0.9048 0.8696 0.886305 0.886364

SVM 9 EP 0.6818 0.5 0.5769 0.6111 0.5875 0.590909
AB 17 E+ER 0.5455 0.8636 0.8 0.6552 0.696873 0.704545
AB 18 E+EP 0.2273 0.9091 0.7143 0.5405 0.511397 0.568182

5.5.5.2 Results from the Math Test Data of CLAS dataset

The third analysis uses the Math test data from the CLAS dataset, where

physiological sensor data recorded during the Math test are used to train different

machine learning algorithms. These algorithms are then tested on the RoboAssist

data to predict CL. Table 5.6 shows the results which indicate similar performance
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compared to the 9PM results discussed above. The poor performance of ECG signals

could be explained because of the difference in the two activities performed. Similarly,

the performance of EDA phasic data can be explained because of the different tasks

in training and testing data.

Table 5.6: Classification results of predicting cognitive load on the RoboAssist data.
For each combination of sensor data from the Math test, PCA was performed and
the least best C value is shown.

MODEL BEST C SIGNAL RECALL PRECISION AVG F1 ACC
Low CL High CL Low CL High CL

RF 3 E 0.4545 0.7273 0.625 0.5714 0.583157 0.590909
AB 6 ER 0.5 1 1 0.6667 0.733333 0.75
RF 9 EP 0.5455 0.6364 0.6 0.5833 0.590062 0.590909
RF 5 E+ER 0.3636 0.9545 0.8889 0.6 0.626485 0.659090

XGBoost 7 E+EP 0.6364 0.5 0.56 0.5789 0.566165 0.568181

Table 5.7 shows the results of the fourth analysis where the UFA feature selec-

tion with standard scaler is used on the sensor data recorded during the Math test.

The results show much improved performance compared to the third analysis, provid-

ing the best prediction performance using the EDA Raw (ER) signal. The prediction

accuracy increased by 11% and the F1 score increased by 13% in comparison to the

PCA dimensionality reduction discussed in Table 5.6.

Table 5.7: Classification results of predicting cognitive load on the RoboAssist data.
For each sensor data combination fom Math Test, Univariate feature selection was
performed and the least best K value is shown. Best Features: Spectral Centroid,
Spectral Rolloff, Spectral Entropy.

MODEL BEST K SIGNAL RECALL PRECISION AVG F1 ACC
Low CL High CL Low CL High CL

RF 5 E 0.6364 0.6818 0.6667 0.6522 0.658915 0.659091
RF 3 ER 0.7273 1 1 0.7857 0.861052 0.863636

SVM 9 EP 0.3182 0.9091 0.7778 0.5714 0.576684 0.613636
NB 18 E+ER 0.4091 0.8182 0.6923 0.5806 0.596765 0.613636
AB 12 E+EP 0.3182 0.8636 0.7 0.5588 0.558036 0.590909
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5.5.5.3 Results from the Logic Test Data of CLAS dataset

In this fifth analysis, physiological data recorded during the Logic test was

used to train machine learning algorithms. The trained models were tested on the

RoboAssist dataset to predict CL. PCA is used to reduce the dimensionality of the

features, and robust normalization is used to normalize the data. The results shown

in Table 5.8 indicate that the EDA Raw (ER) signals perform the best. However, the

ECG data (E) and the multimodal data combination of ECG and EDA Raw (E+ER)

also improves its prediction. This could be because the Logic test emulates more

similar physiological response in heart rate in comparison to the RoboAssist data.

Table 5.8: Classification results of predicting cognitive load on the RoboAssist data.
For each combination of sensor data from Logic test, PCA was performed and the
least best C value is shown.

MODEL BEST C SIGNAL RECALL PRECISION AVG F1 ACC
Low CL High CL Low CL High CL

SVM 9 E 0.7273 0.6818 0.6957 0.7143 0.704393 0.704545
SVM 9 ER 0.5455 0.9545 0.9231 0.6774 0.739084 0.75

RF 7 EP 1 0.0909 0.5238 1 0.427083 0.545455
XGBoost 22 E+ER 0.6818 0.7727 0.75 0.7083 0.726708 0.727273
XGBoost 14 E+EP 0.8182 0.3636 0.5625 0.6667 0.568627 0.590909

In the sixth and final analysis, the UFA feature selection with standard scaling

predicts CL in the RoboAssist dataset. The machine learning algorithms are trained

using the physiological data recorded during the Logic test. The results shown in

Table 5.9 indicate the best performance in all the analyses performed so far. The

EDA Raw (ER) signal once again provides a high prediction accuracy that is increased

from the PCA analysis discussed in Table 5.8 approximately by 13% F1 score and 11%

accuracy. However, in this case, the multimodal data combination of ECG and EDA

raw signal (E+ER) provides the best results that improve from the PCA analysis
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by 18% both in terms of F1 score and accuracy. It is important to note that the

best K value is also higher in the multimodal scenario, which could mean a higher

computational load. Hence, a researcher must consider the tradeoff between higher

accuracy and better performance.

Table 5.9: Classification results of predicting cognitive load on the RoboAssist data.
For each combination of sensor data from Logic test, Univariate feature selection was
performed and the least best K value is shown. ER Best Features: Max, Range,
Standard deviation, Variance, Zero Crossing Rate E+ER Best Features: BPM,
IBI, medianNN, rangeRR, SDRR, SDSD, SDHR, CVRR, RMSSD, MAD RR, Mean,
Min, Spectral Centroid

MODEL BEST K SIGNAL RECALL PRECISION AVG F1 ACC
Low CL High CL Low CL High CL

RF 4 E 0.7727 0.5455 0.6296 0.7059 0.654631 0.659091
RF 6 ER 0.8181 0.9091 0.9 0.8333 0.863354 0.863636

XGBoost 11 EP 0.4545 0.8182 0.7143 0.6 0.623932 0.636364
AB 13 E+ER 0.9091 0.9091 0.9091 0.9091 0.909091 0.909091
AB 7 E+EP 0.4545 0.8636 0.7692 0.6129 0.644205 0.659091

5.5.5.4 Results from the Combined Data

The original goal of this study is to combine different datasets to increase the

data available for training a machine learning algorithm. A high number of samples

in a training set improves the robustness of the model’s performance. To this end,

based on the results of the analysis performed so far, different inferences were made

from the results. The inferences are:

• The UFA feature selection performs better across different corpora.

• Raw EDA signals are best when working across different setups.

• A multimodal setup seems to work best in the data from the Logic test that

indicates that heart activity may be similar in Logic test and RoboAssist.
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• The best performing algorithms include Support Vector Machines, Random

Forest, and Adaboost, which explains that the data may be non-linear.

Based on these findings, the data from the 9PM dataset and the data from the Logic

test of the CLAS dataset are merged to address the lack of data available for HRC

studies to predict CL. Two different signals, the EDA Raw (ER) and ECG with EDA

Raw (E+ER) are used to predict CL in the RoboAssist dataset from this merged

dataset. The UFA feature selection is applied on a dataset that is standardized using

the standard scaling technique to train different machine learning algorithms like

SVM, RF, and AB. The results shown in Table 5.10 show that when different corpora

Table 5.10: Classification results of predicting cognitive load on the RoboAssist data.
For each combination of sensor data from the combined dataset, Univariate feature
selection was performed and the least best K value is shown. Best Features: EDA
Raw - RF - Mean, Min, Max, Energy, 2nd Std, Spectral Centroid, Spectral Rolloff,
Spectral Entropy, Entropy of Energy Best Features: EDA Raw - SVM - Mean, Min,
Energy, Spectral Centroid, Spectral Rolloff, Spectral Entropy, Entropy of Energy

SVM RF AB
Best K Avg F1 Acc Best K Avg F1 Acc Best K Avg F1 Acc

ER 7 0.840166 0.840909 9 0.863636 0.863636 9 0.746729 0.75
E+ER 3 0.608582 0.613636 13 0.576684 0.613636 13 0.705357 0.727273

of data are combined, EDA raw signal seems to provide the most valuable information

for the algorithm to model cognitive load. Thus confirming our previous analysis.

The feature combination that provides the best results are, Mean, Min, Max, Energy,

2nd Std, Spectral Centroid, Spectral Rolloff, Spectral Entropy, Entropy of Energy.

While other signals provide better than random results, further research is needed

to understand the interaction between the features as the chosen feature extraction

techniques do not address the non-linearity across the features.
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5.6 Conclusion and Discussion

In this chapter, an intelligent HRC framework that monitors cognitive human

factors to enhance interaction, CogniSmart, is presented. For this framework, a

robot-assisted assembly task called RoboAssist is developed. This task simulates

a real-world scenario where a robot and a human operator work together to achieve

a common goal. To assist the human operator and enable a safe and productive

workflow, unobtrusive and wearable physiological data from sensors like ECG and

EDA are monitored to predict the user’s cognitive load. This information can be

used further in the CogniSmart framework to change or adapt the robot’s behavior

like speed and other parameters to make the collaboration productive.

Initial findings from the user survey (Section 5.4.1.1) show that the participant’s

answer to their attention level during the task indicated an increase in cognitive

load exertion, indicating that the RoboAssist system can be used to induce cognitive

load. The responses also showed that the participants felt less sleepy as the task

progressed, which also indicated increased attention to the task. The responses also

show increased physical effort and attention exertion that bolsters the need to build

well-being measures into the HRC system. This is because a continuously increased

physical and cognitive exertion may lead to cognitive fatigue that may lead to severe

physiological and mental problems if left unchecked.

Different limitations of an HRC system are discussed in Section 5.4.2 which

gives rise to the need for using public datasets despite the restriction of various

sensors or experimental setup used. Two different datasets, the 9PM cognition dataset

and the CLAS dataset, are explored in Section 5.5. As discussed in Section 5.5.5,

an exploratory research to find the performance of these datasets in predicting CL

indicates that data from EDA Raw signals performs better than ECG and EDA Phasic
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signals. These results suggest few crucial facts about the underlying physiology of the

participants. The EDA raw signal seems to provide general information regarding the

user’s affective response to the given task, which helps model the generic cognitive

behavior. However, the EDA phasic component may be too specific to the stimuli

presented for a task and hence does not provide any helpful information to learn for

the machine learning algorithm. Additionally, the tasks used for data collection in

the 9PM and CLAS datasets are entirely different from RoboAssist. Different data

collection setups elicit different physiological responses from the ECG sensor and

provide poor prediction performance. Data from the Logic test of the CLAS dataset

shows the best results for EDA Raw and ECG signals and a combination of both. This

indicates that the Logic test elicits a similar physiological response when compared

to the RoboAssist data. Based on these results, data from the 9PM dataset and the

Logic Test of the CLAS dataset are combined to increase the number of samples in

the training data. The results discussed in Section 5.5.5.4 show the best performance

using EDA Raw signal and the best features are Mean, Min, Max, Energy, 2nd Std,

Spectral Centroid, Spectral Rolloff, Spectral Entropy, Entropy of Energy.

Research using the Cognismart framework is only getting started because, in

this study, only one cognitive aspect is explored. However, the results discussed in

Section 5.5.5 provide a promising lead for using different corpora for modeling different

cognitive and physical conditions. For instance, similar research [150] has used facial

expressions to detect fatigue in a robot-assisted setup. By using several such corpora,

a database of different cognitive and physical conditions can be created for a holistic

HRC system that takes in to account the robot operator’s well-being.
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CHAPTER 6

Concluding Remarks and Future Directions

6.1 Concluding Remarks

This dissertation focuses on cognitive human factors monitoring for HRC in the

context of an industrial assembly system that uses a collaborative robot. To this end,

a two-pronged research approach is followed that first explored building intelligent

cognitive assessment systems and then exploit the domain expertise gained to build

a cognitive assessment system in an HRC framework. More specifically, intelligent

cognitive assessment systems are developed that used physiological data to model a

cognitive ability for assessment.

Chapter 3 discusses a novel fatigue assessment framework, CogBeacon, that

uses the participant’s real-time feedback as a label to model cognitive fatigue that

the participant might feel during the WCST cognitive assessment task. This chapter

also discussed a traditional machine learning approach to model physiological EEG

data that is collected using a wearable EEG headset, MUSE (see Figure 2.4). Fol-

lowing this study, in Chapter 4, the EEG data is used in combination with facial

expressions and body posture to build a holistic system to assess user performance

using task engagement and emotions as factors. In this study, the Sequence Learning

task is utilized to assess engagement and predict user performance. This study also

introduces a novel expert user interface that can be used by the person administering

the study. This user interface design follows a user-centric design approach where a

user study (see Section 2.2.4) was conducted to find the appropriate visualization of

information to maximize ease of use and effectiveness. This chapter also discusses
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the other indirect factors such as sleep (see Section 4.4) that affect cognitive perfor-

mance. The results indicate a direct correlation between lack of proper sleep and

deterioration in performance.

Personalization based on user behavior and emotions to ensure the health and

safety of human robot-operator is a popular area of research in recent times. Despite

the state-of-the-art results achieved by these assessment systems, these assessment

systems can’t be directly implemented in the real world. Two major drawbacks

that add to this issue are, lack of a large baseline dataset and sensors that are not

practical in the real world. For instance, despite being very minimal and wearable,

the MUSE EEG headset can’t be used in an industrial assembly setup because the

robot operator may wear protective headgear and goggles for safety. Hence there is

a need to explore alternate wearable and discreet options for cognitive modeling. To

this end, an intelligent cognitive human factor monitoring and assessment framework,

CogniSmart, is proposed in Chapter 5 to enhance HRC. This framework addresses the

need for a unified framework that can assess cognitive abilities and use the information

to predict the next robot action for interaction. In this framework, physiological

sensors such as ECG and EDA are explored for cognitive modeling.

On the other hand, limited datasets are available for modeling cognitive abilities

for HRC. This field of research is still in its infancy, and further research needs to

be done to produce more stable datasets. There is also a limitation on the type of

dataset to choose based on the sensors used and the data collection methodology

followed. To address this issue, this dissertation performed an extensive study on

two different corpora as explained in Section 5.5. The results indicate that due to

the difference in the tasks used for data collection, not all datasets can model ECG

signals as they tend to differ based on the activity performed. Similarly, the phasic

component of the EDA signal was too specific to the task’s stimuli that it did not
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provide better prediction results. However, the results showed that the EDA Raw

signal was able to capture the generic cognitive model of the user. Based on these

results, the two corpora were merged for training a machine learning model for the

prediction of CL. The results provide a promising start to vast research in cognitive

modeling for HRC that can use public datasets despite the differences in sensors used

and data collection methodology. It is also clear that an EDA sensor is sufficient to

build an effective system for modeling CL.

6.2 Future Directions

This research proposed an intelligent human factors monitoring system for HRC

that uses physiological signals for modeling CL. A novel HRC task that simulates

real-world assembly called RoboAssist is developed to implement and analyze the

proposed framework. Despite promising results in predicting CL, there are several

avenues for improvement and development. In section 5.5.4, a machine learning ap-

proach is used to model CL using specific hand-crafted features. However, there is a

lack of understanding of the inter-feature relation and the non-linearity of the data.

There is a need for research on representation learning for sensor data which can help

understand the signals better. Several representation techniques, such as the deep

embedded classification, can be used for representation learning that uses an encoder-

decoder network to learn features that maximize the classification results. To ensure

that the classification yields the best results, there is a need to explore expert label-

ing and sampling techniques. Online learning methodologies that use real-time expert

labeling for the sensor on the fly can better understand the signal and yield better

classification results. This dissertation is the first step towards building a holistic sys-

tem that can understand general human models for integrating personalized feedback

for better engagement and satisfaction with the system. Novel machine learning tech-
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niques such as reinforcement learning and interactive machine learning can be used

for active learning and expert labeling for adaptation and personalization. Some re-

search in this domain is already underway. Still, progress needs to be made for a

real-time system to ensure safe HRC and improve the human partner’s well-being.

6.3 Publicly Available Datasets and Implementations

Several open-source contributions were made as a direct result of this research.

Data collected from the studies conducted as part of this dissertation are released for

public use to further the research in this area. The following are the list of datasets

and a data collection platform that is freely available for research use:

1. CogBeacon - A Multi-Modal Dataset for Fatigue Prediction. Available Online:

https://github.com/MikeMpapa/CogBeacon-MultiModal_Dataset_for_Cognitive_

Fatigue.

2. The CogBeacon Data Collection Platform to Collect Multimodal data using

the WCST task. This task supports three variations of the WCST cognitive

test (see Section 3) and three variations of stimuli such as visual, audio, and

text. Available Online: https://github.com/MikeMpapa/CogBeacon-WCST_

interface

3. An EEG, EDA, and ECG dataset to Model Cognitive Fatigue and Cogni-

tive Load using the N-back Task. Available Online: https://github.com/

akileshrajan/N-back_Cognition.

4. The 9PM Cognition Datast - A Multimodal Dataset of Behavioral, Perfor-

mance, and Physiological Data to predict cognitive factors. Available Online:

DatasetforBehavioral,Performance,andPhysiologicalData.
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