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ABSTRACT

This thesis describes in detail a developed end-user framework for a human-

robot collaborative system for common tasks, such as pick and place. The sys-

tem is designed for semi-automated pick and place tasks as well as manual op-

eration making it flexible for multiple use-case scenarios. The goal of the system

is to make the robotic system multi-functional, easy to use with a graphical user

interface and should perform common tasks with the help of a human team-

mate. Integration with object recognition neural networks (YOLOv3) and an

RGB-Depth camera help automate pick and place tasks with a wide variety of

objects.
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CHAPTER 1

INTRODUCTION

Ever since the industrial revolution came about, humans have longed to

optimize manufacturing practices [19]. This thirst for optimizing work ways

slowly extended to other disciplines such as surgery [10], search and rescue [2]

[41], healthcare [28], logistics [45], service and assistive robots [52] [16]. One

thing common between all these areas is that there are often repetitive and sim-

ple tasks involved which are commonly done by a human worker. Robots came

about changing this scenario as they could do a lot more work done in such

tasks than a comparable human worker. Initially robots were limited to a fixed

operating pattern and a fixed location commonly known as ”cages” in the in-

dustrial automation domain. As the inclusion of robotics grew, there was a need

for the robots to perform a diverse range of tasks and not being restricted to a

constant environment.

Human-Robot Collaborative (cobot) applications started becoming more

and more common as robots were freed from their cages. Cobot application

reduce the effort for the human counterpart and improve task times [14]. There

are some challenges which need to be addressed with cobot applications. The

robots involved should be safe to operate in the same environment as the user,

should offer easy to use control for the user and should react in real-time input

[6]. These challenges were solved by introducing collision detection systems, in-

tuitive user interfaces by using augmented reality, traditional computer based

GUI’s, gesture based control systems and voice based systems.

In further surveys conducted for the adoption of cobot applications, having

a user interface which was easy to deploy, worked in a noisy and cluttered envi-
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ronment and was cost effective to deploy were preferred. This meant that using

fancy hardware based user interfaces such as AR, VR [15], gesture based [35]

[51] and voice based user interfaces [36] were only applicable in special use case

scenarios. Having a computer based user interface was considered most generic

for cobot applications.

A framework is proposed in this thesis that enables novice end-users to con-

trol a robotic system in an easy-to-use approach through a Graphical User Inter-

face (GUI) from a remote computer. Adding useful automation systems, such as

object detection and position estimation of objects, enable the user to efficiently

perform common manipulation tasks. The robotic system consists of a robotic

arm which is mounted on a mobile base.

1.1 Motivation

Robot automation is quickly becoming the norm in many industries such as

manufacturing [19], logistics[45], healthcare [28], or even personal use robots

[8]. There is a growing demand for robots and humanoids which stem from

both intrigue and functional use of the machines. Along with the excitement

in the adoption of these technologies, there also is a growing fear among labor

unions across the globe fearing the loss of their jobs [11]. The proposed frame-

work in this thesis not only helps existing workers adapt to new and better

work environments but also helps the companies with a smooth transition to

automation.

As we have shifted to automated systems, there always has been a fear of

robots malfunctioning [17]. Having a human supervise the actions of the robot
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is often the chosen direction to ensure the operational security of the robots.

Such an example can be seen in self-driving cars where the driver must be sitting

in the driver’s seat despite the car being perfectly capable of navigating through

regular traffic situations. Having a human collaborate with a robot makes even

more sense when we want the robot to perform a wide range of tasks.

Currently implemented Graphical User Interfaces (GUIs) for the most com-

mon industrial robots require the end-user to have robotic expertise [23]. Al-

though existing software enables the end-user to program the robot in limitless

ways, there often is a steep learning curve associated with using it and is prone

to human error [1]. This makes the software complicated for the non-experts to

use, discouraging wide spread adoption of robotic systems. Thus there is need

for a GUI which makes it is easy to use for operating robotic systems in common

world scenarios.

1.2 Objectives

The main objective of this thesis is to develop an intuitive and easy to use frame-

work that would enable novice users to interact with a robotic system for basic

pick and place tasks. To achieve this, a camera is required to enable the robot

to ”see” the environment. The robotic system is required to detect and recog-

nize objects in the scene and the user provides instructions from a Graphical

User Interface, which is easy to use. More specifically, the tasks of this thesis are

defined as follows:

• Implement easy to use GUI for robot arm control.
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• Add automation to common tasks such as pick and place.

• Implement effective motion control for mobile base.

• Integrate object detection with GUI.

• Evaluate usability of system.

1.3 Thesis Overview

This thesis is structured in the following chapters:

• Chapter 2 discusses the related work in building user interfaces for tele-

operation and human-robot interaction.

• Chapter 3 explains the background concepts of ROS, Stereo Depth Imag-

ing, Neural Networks and the MoveIt Framework which are needed to

understand the implementation of the framework.

• Chapter 4 explains the proposed framework and the workings of its vari-

ous components.

• Chapter 5, Evaluation details the evaluation methods used to measure the

usability of the system.

• Chapter 6 summarizes the conclusions of the thesis and discusses new

possible research from the presented work.
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CHAPTER 2

RELATED WORK

In this chapter, we explore the different types of user interfaces used for

teleoperation and robot control mechanisms for robotic systems. These user

interfaces are differentiated by their use case, operating methods and the levels

of autonomy. The user interface implemented in this thesis aims to be for a

generic use case, controlled by a computer using button based graphical user

interface and should provide complete manual control (teleoperation) and semi-

autonomous operation for pick and place tasks.

2.1 User Interfaces for Service Robots

The primary function of these robotic systems is to be as a support for the el-

derly or people with disabilities. The user interfaces used in these type of sys-

tems need to be easily understandable by any user and should require minimum

effort for completing a task. In [31], the author has proposed an user interface

which is controlled by a handheld device. The systems is developed with three

levels of autonomy. The first level is the fully autonomous mode which will

be used by the elderly to instruct the robot for a task. The second level is the

semi-autonomous mode where if the robot is not able to complete the task au-

tonomously, it will call for assistance from caretakers. The third level is com-

plete teleoperation mode which is meant for trained users to perform complex

tasks.

Shwarz et al. [43] propose a similar system where the interface is divided in

three levels of autonomy, body, skill and task control. This systems is meant to
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be used by a user who can operate a user interface from a remote computer. It

adds a live camera image, external robot views and 2D laser scans to provide

situational awareness to the user. The body level of autonomy is used when the

robot recognises a completely automated task, the skill level is used to partially

autonomous task such as moving the robot to a specific coordinate or grasping

objects in the camera view. The task level is used when the user knows what

operation is required with the respective values to complete the task. For exam-

ple in task level autonomy the user has to select the move robot operation and

then specify the coordinates.

Peppoloni et al. [35] implements a robot control interface in which the robot

is controlled by tracking the movements of the user. The user’s movements are

tracked using a leap motion device. The robot systems operates on two levels

of autonomy, direct control and waypoint following. When using direct control,

the robot mimics the hand movements of the user. The user can also control the

end-effector by using his hand to make a grasp gesture. In waypoint following,

the user defines certain positions for the robot to follow through. The robot will

follow the trajectory which passes through the all the positions. In this system,

the user receives feedback using a Kinect camera sensor and a head mounted

display.

2.2 Industrial Robots

Industrial robots are commonly used in assembly lines of factories. The user

interface requirements for this use case scenario are having high dexterity and

time required to complete a task. Industrial robots are also used in isolation
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hence require two separate machines to achieve teleoperation. The host ma-

chine runs the user interface and the data is sent to the machine connected to

the robot. To achieve real-time operation, latency issues must be taken care of

in both the network and the host machine. Zhao et al. [51] implement a user

interface similar to [35] where the robot mimics the actions of the human arm.

In [35] the robot mainly follows the position of the hand and not necessarily in

the orientation of the human arm. [51] use a human arm teleoperation which

mimics the robotic arm in both the position and orientation of the human in-

put gesture. The system they propose builds a model of the arm and calculates

the rotation of each joint in the arm and moves the corresponding joints in the

robotic arm by the same value. To adjust for size difference between the human

and robot arm they use inverse kinematics which gives the joint angles needed

for the robot arm to achieve the same displacement as the human arm.

An virtual reality based approach for controlling an industrial robot is de-

tailed by Gonzalez et al. [15]. In an unique approach, the authors of this paper

use a mini-robot arm to control the physical robot arm. The device used to con-

trol is the Phantom Mini Optic Device seen in Figure 2.1.

To give the user contextual awareness, an Amalgamated Vision (AV) head

mounted display is used which run in the unity framework to provide the user

with location and depth information of the environment. To include the depth

information for the user, the authors use a trio of 3D cameras to eliminate blind

spots for the user and provide a immersive experience as if the user is operating

the robot from the shop floor. A force sensor is also attached to the end-effector

of the robot to give the user feedback on how tight the grasp is. Haptics of the

robot motion are provided through the phantom mini optic device. The authors
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Figure 2.1: Phantom Mini Optic Device

do not mention any separate autonomy modes which means that the system

purely runs as a teleoperation interface.

Another approach to control a robot was by using voice commands as

demonstrated by Poncela et al. [36]. Speech recognition was implemented us-

ing the Julius/Julian voice decoder. The user can say a command such as move

1 meter, and the robot arm will move 2 meters linearly in is current orienta-

tion. This voice decoder in implemented in spanish. There is no support for any

other language. This system only works in teleoperation mode as automation

requires complex commands which the voice decoder has difficulty to parse it

to commands.

2.3 Manufacturer Specific User Interfaces

Some robots come with a user interface with the robot to get the user started

in using the robot. They are often built to provide semi-autonomous motion
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controls. The user interface is focused more on achieving a large variety of tasks

as the manufacturer wants the robot to be used in a wide variety of scenarios.

2.3.1 Franka Emika Desk

Franka Emika Desk is a web interface which enables user to easily program the

robot to perform various tasks. The GUI provides the user to program the robot

using block based actions. For example, if an user wants to perform a pick and

place task, he needs to define a Cartesian movement block, End-effector move-

ment block, Post grasp Cartesian movement block and an end-effector move-

ment block. This process needs to repeated for every object which needs to be

picked up and placed.

Figure 2.2: Franka Emika Desk [22]

This process as you can see is lengthy and not viable for a dynamic environ-

ment. The user also needs to have knowledge of every block and what informa-
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tion is needed for every block. This GUI is also only useful if the robot and the

objects are at a fixed position. The software also does not provide functionality

to add external sensors such as a camera. The software also doesn’t support

adding another robot such as a mobile base to make a multi-robot robotic sys-

tem. This software is also useful for a specific robot, the Franka Emika Panda.

2.3.2 RoboDK

RoboDK [32] is a software which is exclusively used by robots manufactured

by Universal Robots. This is a highly functional software which is used in an

industrial setting where the entire pick and place is automated. The automation

steps are programmed as fixed tasks which run in a loop as long as the robot is

powered.

Figure 2.3: RoboDK Software [32]

The software requires user to know knowledge of the robot to program it.
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Once programmed the robot will perform a fixed task until it is reprogrammed

which makes it unsuitable for dynamic environments. It also depends on the

CAD file of your robotic system, preventing it from using it in multi-robotic

systems. Since there is no integration available for camera systems, objects can-

not be tracked hence have to kept at a fixed location.

2.4 Robot Learning by Demonstration

Learn by demonstration is a method of programming the robot by manually

teaching the robot to do a certain task. Once the robot learns a certain task it

will repeat it on its own without human supervision. It is quicker than pre-

programming as the user doesn’t need to have knowledge of the robot. To teach

the robot, the user only has to move the robot to positions of pick and place.

Learning by Demonstration can be divided into two approaches by Argall et

al. [3] and by Billard et al. [7] namely low-level skill learning at trajectory level

(or low-level motor control learning) and high-level symbolic task learning (or

high-level symbolic reasoning).

2.4.1 High-Level Symbolic Task Learning

In high-level symbolic task learning, the task is encoded according to the se-

quences of predefined actions. This approach allows the robot to learn the se-

quence of actions, so the robot can learn high-level tasks [7]. It relies on a priori

knowledge to be able to abstract the important key-points of the demonstrated

task [27]. For eg, to perform a pick and place task using this method, the robot

11



learns the following steps:

• Identify object to pick.

• Move to pre-grasp pose.

• Grasp object.

• Move to place position.

• Return to home pose.

2.4.2 Low-Level Motor Control Learning

In low-level motor control learning, the robot learns the orientations of the joints

required to perform a certain motion. This approach allows the robot to learn

a sequence of poses, so the robot can perform movements. This approach does

not allow the robot to learn high level tasks such as pick and place as it is only

limited to learning the motion of the robot arm and not the sensors involved to

identify objects. A typical motion pipeline for a low-level motor control learning

system can be seen in industrial applications where the robot moves in fixed

trajectories.

The two approaches can be summarized in following table 2.1:

2.5 Robot Control Mechanisms

In this section. we discuss various ways of controlling a robot. We discuss the

merits and de-merits of each of the approaches to find how they are useful in
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Table 2.1: Comparison of High Level and Low Level Learning [26]

different scenarios. All the methods of robot control mentioned in this section

are used in our framework.

2.5.1 Torque Control

Every joint of the robot can be controlled by specifying the rotation angle the

joint needs to rotate. This method of control is commonly known as torque con-

trol. Such controllers are common in low-level robot controllers which commu-

nicate with the motors of the robot at a physical level. These controllers can be

communicated with from a GUI but the usage of these is not intuitive as there

are many joints in the robotic and their combined rotation produces a simple

motion which the user cannot intuitively control.

2.5.2 Motion Planning

Motion Planning is a path solving algorithm to move the robot from start to

destination coordinates. The movements of the robot can be achieved by spec-

ifying a destination coordinate from the GUI. The motion planning algorithm
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returns back a set of configurations which is passed to the low-level controlled

to achieve motion. A configuration consists of the rotation angles of every joint

for the robot to move from start to end coordinate. The coordinate system is

much easier to understand for the user than torque control as there is a direct

correlation from coordinate axes to real-world motion of the robot. For example

+0.1 on y axis will move the robot arm upwards by 10 cm. It is still difficult for

the user to identify exact coordinates of an object which needs to be picked as

the user is not familiar with coordinate frame of references. This can be solved

by implementing position estimation of objects using a camera preferably with

a depth sensor.

2.5.3 Velocity Control

Velocity Control is a common control method for mobile bases. In this a speed

value is set for the robot in a particular direction. For example 0.5 m/s in the

x axis. This method is easy for the user to use as there is a direct correlation

between input and motion. For a user not familiar with velocities, the GUI can

implement velocity control similar to a car game by providing control using

keyboard arrow keys.
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CHAPTER 3

BACKGROUND

In the previous chapter, various systems of robot control such as GUI’s and

programming methods were explored. From those developing a GUI which

implemented motion planning and velocity control in an intuitive manner is

chosen for the framework. These methods were chosen as they are well suited

for dynamically changing environments and their ability to move the robot in

any direction with ease. To simplify motion planning, object position estimation

is also implemented. Velocity control is implemented using keyboard keys. In

this chapter, various concepts are explained which will help in understanding

the system architecture explained in the next chapter.

3.1 Robots

This section describes the different robots used for building the free moving

robotic system. A robotic arm is used for handling the objects for pick and place

and a mobile base is used as a mounting platform for the robotic arm so that it

can be moved around.

3.1.1 Robotic Arms

A robotic arm is a type of mechanical arm, usually programmable, with similar

functions to a human arm; the arm may be the sum total of the mechanism or

may be part of a more complex robotic system. The links of such a manipulator

are connected by joints allowing either rotational motion (such as in an articu-
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lated robot) or translational (linear) displacement. The robot we are using uses

rotational motion for its joints. Since the arm used has more than 3 joints, it is

classified as an articulated robot.

3.1.2 Mobile Bases

A mobile base is a type of robot which moves using wheels commonly attached

to the bottom of its chasis. A mobile base can be used to add movement to a

static robotic system by mounting another robot on top of it. Mobile bases can

vary by differing load carrying capacities and their ability to function in differ-

ing environments. Their movement is restricted to a certain plane of operation,

meaning they cannot jump or duck.

3.2 Robot Operating System (ROS)

Robot Operating System, despite what the name would suggest is not an operat-

ing system but a collection of useful software tools built for robot development

[47]. ROS implements a distributed architecture for easily accommodating sen-

sors and motors to the robotic software. ROS divides the various components

in the system into ROS nodes which can communicate with each other. For eg,

The camera could have its own node and it could send the video to the neu-

ral network node for object detection. To understand how such processes work

we need to understand the system architecture of ROS. The ROS architecture

mainly consists of the following components: -
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• Master

• Packages

• Node

• Publisher

• Subscriber

• Service

• Message

In the next sections, the ROS components are breifly explained.

3.2.1 ROS Packages

ROS Packages are folders which contain the ROS software you want to write.

You can use pre-existing packages for your application or build one for you

specific application. A ROS Package is organized in the following manner: -

Figure 3.1: ROS Package File System

package.xml file describes the package and it’s dependencies. CmakeList.txt

file finds other required packages and messages/services/actions.
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3.2.2 ROS Node

Each component in a ROS framewok is called as a ROS Node. A Node

is essentially a process which communicates with other nodes through top-

ics/services/actions. A ROS Node consists of publisher and subscribers. Pub-

lishers send data on topics and subscribers accept the data from the topic and

process it. A ROS Node can have multiple publishers and subscribers.

3.2.3 ROS Master

A ROS Master is the master node for all ROS Nodes. There is only one master

node per system. Every node is a slave to the master node. As with all dis-

tributed systems, the master node allocates separate threads for each ROS node

running. The ROS Master acts like a server for all ROS services and actions.

The slave nodes are clients which can communicate using pre-defined topics

with the server. A ROS topic does not have a pre-defined topic, therefore the

ROS Master acts as an intermediary between nodes so that the topics created by

other nodes are accessible every node connected to the master. A ROS Node can

create a topic which is kept track of the ROS Master Node.

3.2.4 ROS Publisher

A ROS Publisher is a process within a node which is used to publish messages

on a topic. The publishers implemented in the robotic system are a camera

image publisher, the neural network publisher, the summit publisher and move
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Figure 3.2: ROS Master with Camera Node and Neural Network Node

group publisher for visualizations on rviz. A ROS Publisher can create a topic

to publish any data which is formatted as a ROS Message.

3.2.5 ROS Subscriber

A ROS Subscriber is a process within a node which accepts information pub-

lished on a ROS Topic by a publisher. The subscribers implemented in the

robotic system is the neural network subscriber which processes the informa-

tion of the objects location. The subscriber calls a function ”callback” as soon as

a new message is published on the topic. The implementation of this function is

dependant on the developer. The message passed on the topic can be processed

by passing as an argument to the callback function.
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3.2.6 ROS Messages

ROS Messages are essentially struct type data structures which ROS defines.

Each publisher and subscriber has a unique message type that it can send on a

topic or process. Some of the messages used in our system are a bounding box

message, image message.

Figure 3.3: Image message [47]

Figure 3.3 shows the structure of a image message which is formed after

processing the image frame output from the camera.

3.3 ROS Transform

ROS Transform is a tool which is used to transform coordinates from one frame

of reference to another. Commonly in robotic arms, there are a lot of joints with
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separate axes and keeping track of each of them becomes a hassle as each one of

them changes with movement. Using ROS Transform can help deal with this is-

sue, especially when you have separate sensors like a camera in my case whose

coordinate frames need to be transformed to the panda’s frame of reference. The

transformations used in the system are origin shift transformation and rotation

transforms.

3.4 MoveIt Framework

MoveIt is a motion planning framework used to communicate with the robot

[9]. Motion planning is a computational problem to find a sequence of valid

configurations that moves the object from the source to destination. The term is

used in computational geometry, computer animation, robotics and computer

games. Although there are controllers provided for the robot which work with

ROS, using those is a hassle as they do not support moving the robot using co-

ordinates. MoveIt is also useful is it implements collision detection and gives

us libraries which work in python instead of C++. MoveIt implements a conve-

nient move group interface built on top of ROS to give high level abstraction of

movement controls.

3.5 RGB-Depth Cameras

RGB-Depth Cameras are a specific type of depth sensing devices that work in an

association with a RGB camera, that are able to augment the conventional image

with depth information (related with the distance to the sensor) in a per-pixel
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basis. This type of camera is used in our system to get the position of the object

in the real world. There are a few ways the camera can calculate the depth of an

object.

3.5.1 Pattern Matching Depth Imaging

In this approach of depth calculation, the camera emits a pattern of infra-red

light and observes the change in the pattern. If an object has a pattern projected

on it, it will curve the light around it hence changing the pattern. An example

of this can be seen in Figure 3.4.

Figure 3.4: Structured and Coded Light [21]

This approach has some drawbacks. It cannot be used in an environment

with lot of disturbance. Any other light falling on the object changes the IR

Pattern projected. For the same reason, multiple camera setups cannot be used
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with such a depth imaging technique as the patterns projected from other cam-

eras interfere with each other.

3.5.2 Stereo Depth Imaging

In this approach, two cameras are used in a stereo configuration like the human

eyes. The working principal of this approach is the same as used by our human

eyes. Whenever we see an object with two eyes, each eye sees a different version

of the object, either shifted to the left or right depending on the eye you see it

from. These two versions are combined in our brains and triangulation is used

to calculate the depth of the object. This phenomenon is demonstrated in the

Figure 3.5.

Figure 3.5: Stereo Depth Vision [44]
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3.5.3 LiDAR Imaging

LiDAR stands for Light Detection and Ranging. As the name suggests, it uses

light to calculate the depth of an object. It leverages the fact that the speed of

light is known. A LiDAR scanner bounces the light of the object and measures

the time required for it to return. Instead of using normal light, LiDAR’s use

lasers to avoid diffraction and loss of signal in the environment. As was the

case with pattern imaging, LiDAR depends on the object and environment for

it to receive the reflected light. This makes it unreliable in environments with

lot of light such as outdoors. It also struggles with other LiDAR scanners in the

environment as lasers from other cameras might be captured. Figure 3.6 shows

the working principal of LiDAR.

Figure 3.6: LiDAR Working Principal [21]

3.6 Deep Learning

Deep Learning is a part of machine learning which aims to solve a given prob-

lem by mimicking the problem solving methods used by our brains. Our brains

consist of a interconnected layer of cells known as neurons which fire in a cer-

tain pattern to process information. Deep Learning uses a similar approach by
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Figure 3.7: Deep Learning [42]

building a network of neurons. Each neuron has a certain value after which it

”activates” passing along its value to neurons it is connected to. The final layer

of neurons is used for classification of the data. For e.g, to classify hand written

digits, the final layer will consist of 10 neurons each corresponding to digits 0-9.

If the 4th neuron is activated, 4 was the digit in the image provided as input.

Unlike machine learning, the problem to be solved is not divided into smaller

tasks but solved as a whole. For e.g, to do image classification with traditional

machine learning, the image must be first segmented to isolate the objects from

the background, and then individual objects must be separated from one an-

other using clustering and then finally shape matching can be applied. On the

other using a neural network eliminates all these stages and simplifies the prob-

lem to accept input image as an array and output the class of the image. Deep

learning is also able to identify complex relations in data such as contextual in-

formation. This does mean it takes longer for the model to train but testing data
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is fast.

3.6.1 Neural Networks

Deep Learning is implemented by a neural network. As the name suggests,

a neural network is a network of neurons. In this section, the most basic im-

plementation of a neural network the multi-layer perceptron is explained. The

neurons are arranged in layers known as the input layer, hidden layer and out-

put layer. The general design of a Multi-Layer Perceptron (MLP) for classifying

hand written digits is shown in Figure 3.8.

Figure 3.8: Multi-Layer Perceptron
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Each neuron except ones part of the input layer has a bias value and an

activation function associated with it. Every connection in the network has a

weight. An activation function transforms the input into a fixed range output.

A common example is a sigmoid function 3.1 which gives the output between

0 and 1. An activation function is needed to add non-linearity to the model.

This is useful to identify complex patterns in the data. Without the activation

function, the output will be a direct linear relation of the input. The entire model

will act like a linear regression model with limited learning power.

σ(z) =
1

1 + e−z (3.1)

z ∈ ζ (3.2)

When the network is initialized it has random weights and biases. All the

weights and biases must be adjusted for the network to produce meaningful re-

sults. This is known as training the network. For a supervised neural network,

training is done with the help of a loss function. A loss function calculates the

error in the output. A common loss function is the Mean Square Error (MSE)

function as shown in equation 3.3. The goal of training the network is to min-

imize this loss function so that the predicted output is as close to the actual

output.

MS E =
N∑

i=1

(xa − xp)2 (3.3)

where xa is the actual output, xp is the predicted output and N is the total num-

ber of neurons in the output layer.
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To minimize the cost function, a technique known as gradient descent is used.

To understand gradient descent lets take a simple example. Lets say we have

a class of students. The teacher of the class wants the average of the class at a

certain value for example 85% at the end of the term. The class is not an honest

class, therefore every student copies from a bunch of students. After the first

test in the term was graded a student scored 50% which was the lowest in class.

Due to this student, the class average dropped considerably. The teacher being

smart, focuses on bringing the score of this student higher than somebody who

has scored 80% as him improving will have a greater effect on the average than

the one who scored 80%. Subsequently to increase his own score, the student

asks the other students from which he copied to score better than last time (An

assumption that the student improves on the next test is made). The teacher

repeats this process with every lowest scoring student per test until eventually

by end of term, the class average is near 85%. This process of iteratively mov-

ing towards the steepest descent as defined by the negative of the gradient is

known an gradient descent. In the example, the steepest descent was the stu-

dent scoring the lowest in each test thus having a largest difference with the

target average value.

In a neural network, to minimize the cost function we adjust the parameters

(weight and bias) of the output neuron which is most away from the actual

value. Doing this makes it modify the parameters of the neurons which are

connected to it as the student did by asking the other students from which he

cpopied from to perform better. This process is known as back propagation.

This process is repeated for every input data until all the parameters of the neu-

rons are adjusted to produce the lowest MSE. To train the model effectively,

large quantity of input data with variety is required to produce a network which
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is not biased towards a particular input.

3.6.2 Convolutional Neural Network

A Convolutional Neural Network (CNN) is a modification to the traditional

MLP described in the previous section. One application of the CNN is image

classification. To understand why CNN is used we must look at the drawbacks

of an MLP when dealing with images.

Large Input Layer

An MLP’s input layer consists of one neuron for each pixel in the image.

Due to this, for high resolution images, the number of weights and biases

becomes too large to train the model effectively in a reasonable time.

Loss of spatial information

The input layer flattens the image for input to the MLP. Commonly the

neighboring pixel’s are useful in identifying the image. Flattening the im-

age causes the neighboring pixels to drift away from each other leading in

lower accuracy.

Erroneous classification of shifted image of input

A shifted image is a variant of the image where the subject is moved to a

different part of the image. With sufficient training the MLP expects the

subject in the image at a specific region in the input image. When the

subject is not in the same region, the network fails to identify the image.

A CNN fixes the drawbacks of an MLP by reducing the size of the image

by using convolution and pooling operations. It reduces the size of the image
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so that the MLP which is used after the convolution and pooling operations is

much smaller in size resulting in quicker and efficient training.
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CHAPTER 4

PROPOSED SYSTEM

This chapter provides detail information of the proposed end-user frame-

work and its functionality. This chapter also includes information about the

hardware setup of the proposed system.

4.1 Hardware Setup

Figure 4.1: Robotic System

In Figure 4.1 we can see how the robotic system in real life. The robotic

arm and camera are mounted on top of the mobile base. This setup allows for
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free motion of the system without interfering with the camera view for object

detection. The respective coordinate frames are also shown for each component.

In the next sections, these components are discussed in detail.

4.1.1 Franka Emika Panda

The robotic arm we are using is the Franka Emika Panda robot arm. We chose

this robot because of its torque-driven characteristics that can detect the smallest

of collisions making it safe in collaborative environments. The panda is also

faster and precise to 0.1mm. The safe operative nature, low cost, precise and

fast speed make it an ideal product for industry-wide cobot (collaborative robot)

applications [13].

Figure 4.2: Franka Emika Panda
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4.1.2 Robotnik Summit XL Steel

SUMMIT-XL STEEL is a robotic platform for application development (logistics,

indoor transport, etc.). It has a robust design and can carry up to 250 kg payload.

The mobile platform has skid-steering / omnidirectional kinematics based on

4 high power motor wheels. Each wheel integrates a brushless motor with a

high precision odometer sensor. The robot base can navigate autonomously or

teleoperated by means of a PTZ camera that transmits video in real time. This

camera is not used as we have an external camera. For teleoperating the mobile

base we use human input. SUMMIT-XL STEEL can be configured with a wide

range of sensors. It also has internal (USB, RS232, GPIO and RJ45) and external

connectivity (USB, RJ45, power supplies 5, 12 VDC and battery) to add custom

components easily such as the Franka Emika Panda arm. SUMMIT-XL STEEL

uses the ROS open architecture.

Figure 4.3: Robotnik Summit XL Steel
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4.1.3 Intel RealSense D435i

The Intel RealSense D435i is a RGB-Depth camera. The camera uses stereo depth

imaging for accurate depth maps. The resolution used is 640 X 480 at 30 frames

per second (fps). This resolution was chosen as higher resolutions were not

processed quickly enough by the system to be suitable for real-time execution.

Figure 4.4: Intel RealSense D435i

Stereo Depth Vision

Stereo depth cameras project infrared light onto a scene to improve the accuracy

of the data, but unlike coded or structured light cameras, stereo depth cameras

can use any light to measure depth. For a stereo depth camera, all infrared

noise is good noise. Stereo depth cameras have two sensors, spaced a small

distance apart. A stereo depth camera takes the two images from these two

sensors and compares them. Since the distance between the sensors is known,

these comparisons give depth information. Stereo cameras work in a similar

way to how we use two eyes for depth perception. Our brains calculate the

difference between each eye. Objects closer to appear to move significantly from
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Figure 4.5: Stereo Depth Camera Working Principal [34]

eye to eye (or sensor to sensor), where an object in the far distance appear to

move very little.

The Figure 4.5 contains equivalent triangles. Writing their equivalent equa-

tions will yield us result equation 4.1.

disparity = x − x′ = (B f )/Z (4.1)

where x and x′ are the distance between points in image plane corresponding

to the scene point 3D and their camera center, B is the distance between two
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cameras (which we know) and f is the focal length of camera (already known).

Z is the depth of the object. So in short, the above equation says that the depth

of a point in a scene is inversely proportional to the difference in distance of

corresponding image points and their camera centers. So with this information,

we can derive the depth of all pixels in an image.

Because stereo depth cameras use any light to measure depth, they will work

well in most lighting conditions including outdoors. The addition of an infrared

projector means that in low lighting conditions, the camera can still perceive

depth details.

4.2 Software Tools

4.2.1 YOLO (You Only Look Once)

YOLO is a singular Convolutional Neural Network designed for fast object

recognition purposes. It takes RGB images as input and outputs the bound-

ing box with its probability. A popular neural network which provides such

an output is a Region Based Convolutional Neural Network (R-CNN). In a R-

CNN, a region proposal method is used to generate the output. It uses a part of

the image, known as a region to train the model to detect objects. A bounding

box is first produced and a classifier is then applied to it to generate the prob-

abilities for it. Following classification, the bounding boxes are further refined,

duplicates are eliminated and are re-scored based on other objects in the im-

age. Unsurprisingly, this approach is very slow to train and test making it less

optimal in real-time applications. YOLO solves this approach by incorporating
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all these processes in a single CNN. It simplifies the entire pipeline from the

input, image pixels to output, bounding box with probabilities making it signif-

icantly faster than the R-CNN. This also means that since there are no stages,

the input image has to be looked at only once, hence the name You Only Look

Once (YOLO). YOLO treats the classification as a regression problem. The main

benefits of YOLO over other approaches are:

• Fast Performance at 45 fps with a latency of less than 25 ms.

• Lower background error rates than R-CNN as it uses the entire image to

train and infer.

• Accuracy is comparable to state of the art object detection systems.

• Can be used in varying situations as it is trained on the images with con-

textual information.

How YOLO Works?

YOLO divides the input image into an S × S grid. If the center of an object

falls into a grid cell, that grid cell is responsible for detecting that object. Each

grid cell predicts B bounding boxes and confidence scores for those boxes. These

confidence scores reflect how confident the model is that the box contains an

object and also how accurate it thinks the box is that it predicts. If no object

exists in that cell, the confidence scores should be zero. Otherwise we want

the confidence score to equal the Intersection Over Union (IOU) between the

predicted box and the ground truth. IOU is defined as the the ratio of area of

overlap and area of union of the bounding boxes as shown in Figure 4.6.
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Figure 4.6: Intersection over Union [39]

Each bounding box contains 5 predictions, 4 coordinates of the bounding

box (xmax, xmin, ymax, ymin) and confidence which is the IOU value for the box

with respect to the ground truth. Figure 4.7 shows these steps.

Figure 4.7: YOLO Object Detection Methodology [37]

Structure of the CNN
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Figure 4.8: Structure of YOLO [37]

YOLO consists of 24 convolutional layers followed by 2 fully interconnected

layers as shown in Figure 4.8. This structure was updated to 53 convolutional

layers in YOLOv3 as shown in Table 4.1 which is what is used in the framework

proposed in this thesis.

Table 4.1: YOLOv3 Structure [38]

YOLOv3 improves on YOLO in the following aspects:
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• Improved localized detection to detect smaller objects. It was achieved by

normalizing the training dataset making the layers learn more evenly and

independently.

• Applying k-means clustering to training images to give priors to the net-

work for choosing bounding boxes.

• Introducing multiple size bounding boxes for each object to find optimal

IOU.

• Using linear regression to predict objectness score. Objectness score tells

us how well the bounding box fits the object with respect to the ground

truth.

All these improvements result in almost twice the performance than the orig-

inal version of YOLO. We can see how YOLOv3 compares with other object

detection systems in Table 4.2.

Table 4.2: Performance of YOLOv3 compared with other object detection sys-
tems. [38]

YOLOv3 performs at par with other systems when compared in the AP50

metric. It suffers with smaller objects as compared to others, but there is a sig-

nificant improvement than YOLOv2 which itself improves on YOLO. The main

thing to note here is that, YOLO is as much as 3.8× faster than RetinaNet which
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Figure 4.9: Speed vs Accuracy tradeoff at AP50 [38]

is the state of the art approach and yet it comes close to matching its accuracy. A

comparison of YOLOv3 with other systems with respect to the speed/AP ratio

is seen in Figure 4.9.

Inference time is the time required to process the output. We can see that

YOLOv3 performs almost four times faster than RetinaNet despite maintaining

high enough accuracy. The unit used to measure accuracy is the mAP AP50

measure from the COCO dataset [30]. COCO is a large-scale object detection,

segmentation, and captioning dataset developed by Microsoft.

4.2.2 PyQt5

PyQT5 is a Graphical User Interface (GUI) framework for Python. It is very pop-

ular among developers and the GUI can be created by coding or a QT designer.

A QT Development framework is a visual framework that allows drag and drop
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of widgets to build user interfaces. PyQt is a mature set of Python bindings to

Qt for cross-platform development of desktop apps. It offers a rich selection of

built-in widgets and tools for custom widgets creation to shape sophisticated

GUIs.

4.3 Proposed End-User Framework for Robot Control

In this section the proposed end-user framework for robot control is presented.

Figure 4.10: System Architecture Diagram

Figure 4.10 shows how the various components in the system interact with

each other to perform any instructed task from the user. The entire system is

built using two ROS Nodes. The first contains the Camera Publisher, YOLO

subscriber, ROS TF Listener and move group interface and the other for YOLO

Publisher and Camera subscriber. There are additional ROS tf nodes which

publish the static transforms for the camera, summit and panda robots. The

camera, YOLO, tf and move group were integrated in a single node to reduce

communication delays caused by message passing.
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Figure 4.11: Camera Node

4.3.1 Camera Module

The camera module interfaces the Intel RealSense camera with the ROS frame-

work. We use the pyrealsense2 library to get the image frames from the camera

which is connected to the computer with a USB 2.0 connection. The image frame

needs to be converted to an image message to be published on a ROS Topic of

the camera (/camera/image/image raw). We use the cv bridge library for this

operation. An image frame is published at the frame rate (30 fps) specified

from the code creating a video stream. pyrealsense2 is also used to get the real

world coordinates of the object to be picked by passing its pixel position from

the video stream. This process is called as de-projection. This process uses the

depth sensor present in the camera.

4.3.1.1 Camera Publisher

The camera publisher sends an image message on the ROS topic /cam-

era/image/image raw. The working of this is explained in Figure 4.12.

The color image frame is retrieved from the camera sensor using pyre-

alsense2. NumPy [20] converts the color image frame to a OpenCV [24] im-
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Figure 4.12: Camera Publisher

age which is a numpy array. This image is converted to a Image.msg using

cv bridge library and is published on /camera/image/image raw ROS topic.

This process repeats every time a new image frame is received from the camera

sensor at a fixed frame rate which is 30 fps.

4.3.2 Object Detection Module

Figure 4.13: Object Detection Module

The object detection module has to perform object detection using YOLO

and get the real-world coordinates for the object in the panda frame of ref-

erence. YOLO requires a video stream as input and it publishes the bound-

ing box information as a bounding box message on a ROS topic (dark-
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net ros/bounding boxes). The bounding boxes can be seen in Figure 4.14 as

boxes surrounding recognized objects.

Figure 4.14: YOLO Output

A bounding box message contains the name of the object the box surrounds

and xmax, xmin, ymax and ymin values of the box. Assuming the object is in

the center of the box we can find its pixel position by calculating the centroid of

the box by using equations 4.2.

xp = (xmax + xmin)/2 (4.2)

yp = (ymax + ymin)/2 (4.3)

xp and yp are used to obtain real-world (x, y, z) coordinates using de-

projection from the camera module. Bounding boxes are published every time

a new image frame is received from the camera. The process of centroid calcu-
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lation takes place every time a bounding box is published. We can use this to

track objects in real-time by dynamically updating their locations every time a

new bounding box for the object is published. The (x, y, z) obtained from de-

projection are in the camera color optical frame and need to converted to the

panda’s frame which is world. To convert we can publish the coordinates to

ROS tf and listen to the transformed coordinates. This process takes place when

we want to pick a selected object from the GUI.

4.3.2.1 Camera Subscriber and YOLO Publisher

This pair of subscriber and publisher is part of the darknet ros node. This node

runs the YOLO neural network. For the CNN to have the input the camera

subscriber is used to get the video feed from the /camera/image/image raw

ROS Topic. The output of YOLO is the bounding box. The YOLO Publisher

combines all the bounding boxes for each image message and publishes this

array of bounding box’s on the /darknet ros/bounding boxes ROS Topic.

4.3.2.2 YOLO Subscriber

YOLO publishes the bounding box information on a ROS topic /dark-

net ros/bounding boxes. It publishes a bounding boxes msg which is an array

of bounding boxes. The YOLO subscriber aceepts this array of bounding boxes

and parses through it. If it finds an object name it has previously stored, it up-

dates its pixel position. If a new object is found it will create a new entry storing

the object name and its pixel position.
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4.3.2.3 ROS TF Listener

A ROS TF Listener is a subscriber to the ROS TF Publisher. The publisher node

is initialized separately from the main node. Unlike a traditional subscriber,

a ROS TF listener does not have a callback function. The publisher keeps on

updating the transforms in the background continuously. The ROS TF listener

will when required to transform the point will send the target frame, the source

frame and the point in the source frame. The listener will return the transformed

coordinate in the target frame.

4.3.3 Robot Module

The robot module performs all the robot movements. This robot is controlled

by specifying velocities, joint angles or Cartesian coordinates in the panda’s

frame of reference (world). MoveIt is used as a motion planning framework.

Figure 4.15 shows the structure of the MoveIt Framework. MoveIt provides

a move group interface which is implemented using a moveit commander

namespace. This namespace provides us with a MoveGroupCommander class,

a PlanningSceneInterface class, and a RobotCommander class. All the move-

ments are performed using objects of the MoveGroupCommander class using

Cartesian coordinates and joint angles for the home pose. The PlanningSceneIn-

terface class is used to add the camera mounting hardware in the environment

to avoid collision with it using the built in collision detection provided by the

move group interface. Move group applies inverse kinematics using the co-

ordinates to get the desired joint angles for the robot to move to the specified

position. It uses popular motion planning libraries such as OMPL (Open Mo-
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Figure 4.15: Robot Control Framework [33]

tion Planning Library) to find optimal values for the joint angles. The action of

the robot is performed by the Trajectory Execution Manager using a JointTrajec-

toryAction which is connected to the franka ros robot controller. To move the

summit it requires the velocities to be published on a ROS Topic which the con-

troller is subscribed to. The velocities are published as a twist message on the

ROS topic.
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Figure 4.16: Graphical User Interface with YOLO Output

4.3.4 The Graphical User Interface Module

The Graphical User Interface (GUI) is built using the PyQt5 library. Any python

library can be used to make the GUI as long as it implements a class which

contains all the user interface elements, such as buttons, labels etc and can pro-

cess keyboard input. The primary goals of the GUI were to making the robotic

system easy to move, easily select objects for pick and place and design safety

features to avoid collisions of the robots with themselves and with objects in

the environment The most simplest of controls for the mobile base is using the

keyboard for movement using the W, A, S, D keys. The summit moves in a

fixed velocity in the desired direction. Rotation of the robot is implemented by

pressing the W, A together for anti-clockwise rotation and pressing W, D keys

together for clockwise rotation. To stop the mobile base from moving one sim-

ply has to stop pressing the control keys. Since the mobile base does not move

at a high enough speed, implementing braking separately was not necessary.

For the robotic arm, having simple step based motion based controls was cho-

sen to be the safest option as the user cannot accidentally induce jerks in the

robotic arm causing it to degrade or even break in the worst case. Various end-
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effector orientations were implemented to give the user the choice to grip the

object from the top, side or front. The default is vertical orientation which can

be used pick up an object from the top. Rotate Gripper orientation can be used

to pick up the object from the side and horizontal orientation can be used to

grip an object from the front. Motion control of the arm is implemented using

a combination of directional buttons and radio buttons for step size. The slow

option takes small steps of 1 cm, medium takes steps of 3 cm and fast takes

steps of length 5 cm. The user can see the YOLO output beside the GUI so he

can chose to pick up objects identified in the scene automatically using the pick

button which moves the gripper to the front/top of the object depending on the

gripper orientation. The user can then move to the robot manually to grasp the

object from any part. The place button places the object at a pre-defined loca-

tion specified in the code. Objects detected by YOLO are loaded into the combo

box for selection using the load objects button. Object locations are dynamically

updated, therefore the user does not need to use this button unless a new object

is added into the scene or the combo box is empty.

4.3.5 Computer Setup

This section explains the details of the computer used to run the application.

4.3.5.1 Computer Specifications

Table 4.17 provides the information about the Computer Specifications
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Processor Intel Core i5-2400
GPU NVIDIA GTX 1050Ti (4 GB VRAM)

GPU Driver 411.xx
RAM 16 GB

OS Ubuntu 16.04 LTS
ROS Version Kinetic
Linux Kernel Liquorix 5.8

Figure 4.17: Computer Specifications

4.3.5.2 Linux Kernel

Franka Emika, the makers of the panda robot recommend using a Real Time

(RT) linux kernel for the machine used to connect to the robot arm. Using a

RT Kernel is not possible in our case as there is also a NVIDIA GPU installed

in our system to run YOLO. The NVIDIA GPU does not have drivers for a RT

Kernel. If we decide to run YOLO just on the CPU, the system would not run

in real-time as performance is very poor (2-3 fps). The solution for this is to

use a PREEMPT-RT Kernel for which NVIDIA Drivers are available. On its

own if an PREEMPT-RT Kernel is used, the code would not run as the franka

controllers would throw errors for the missing RT Kernel. To solve this issue,

the franka library libfranka was patched to remove all RT Kernel checks which

threw the error. The kernel was also patched to include the RT Flags making the

controller think the system is running on an RT Kernel. Though this is not the

recommended software setup for the computer, in our testing using the patched

kernel and libfranka was not an issue. The robotic system ran reliably and all

the safety mechanisms included with the franka controllers were found to work

as intended.
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4.3.5.3 Docker Container

For the system to be used on another machines, the user cannot be expected to

have all the libraries and drivers setup on his machine. For this reason a docker

container is being implemented and will be uploaded to docker hub with the

host requiring only to run the patched kernel which is uploaded to git along

with the setup instructions for it.

Link to the patched kernel: - https://github.com/heracleia/lab kernel.git
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CHAPTER 5

EVALUATION

To evaluate the system, we can test the working in a practical use-case sce-

nario such as pick and place tasks in various modes of operation. Apart from

the scenarios tested, the potential use of the robotic system is described to be

used in a hospital environment as a nurse assistant. To test the usability of the

system, the methodology proposed by Weiss et al. [50] is used.

5.1 Scenarios

There are two scenarios discussed which are dependant on the object being

detected or not. Since there is not a physical button to switch between the

semi-automated and teleoperation mode, it is decided by the actions the user

performs using the GUI. If the user is able to load objects from the scene (the

combo box for object selection has an object upon pressing the load object but-

ton), he/she can use the pick object button to move the robot arm to the vicinity

of the object and grasp the object manually. This mode of operation is defined

as the semi-automated mode. It is called as semi-automated and not fully au-

tomated as the user has to manually grasp the object. If the user chooses to

move the robot arm manually using the directional buttons to the object it is

defined as operating using the manual mode or teleoperation. The teleopera-

tion mode is needed as YOLO is only able to detect objects if it is close enough

to the camera. YOLO was also found to be unreliable in identifying common

objects in sub-optimal lighting. Having the ability to control the robotic system

manually solves these issues as the robot can be moved closer using the mobile

base for the objects to be detected reliably. In the worst case that object is still
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not detected, the user can manually move the robot to complete the task.

5.1.1 Scenario 1: Object Stacking in Semi-Automated Mode

In this scenario several cups are placed on a table in front of the robot. The task is

to stack the cups together. For this operation, the user uses the semi-automated

mode of operation. In this mode, the user presses the pick object button to move

the robot arm to the object. The orientation of the gripper is at default, therefore

the robotic arm moves to the top of the cup as seen in Figure 5.2a. The user

manually moves the robot arm using the buttons to pick up the cup from the

side as seen in Figure 5.2b. The user can then press the place button to place

the cup at a pre-defined coordinate seen in Figure 5.2c. The user repeats the

procedure for the second cup making sure to grasp it from the side and placing

using the place button to stack the two cups as seen in Figure 5.2d.

Figure 5.1: Scenario with two cups
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(a) Pre-Grasp pose (b) Grasp pose

(c) Place pose (d) Task Complete

Figure 5.2: Semi-Automated Scenario: Object Stacking

5.1.2 Scenario 2: Pick and Place Task in Manual Operation

(Teleoperation)

In this scenario, the object to be picked and placed is not detected by YOLO. The

user moves the arm manually using the GUI to pick and place an object. Since

the object is not detected, the load objects button and the pick object button are

not active. The place button is not dependent on the object, therefore we can

still use it to place the object at a certain pre-defined position. Figure 5.3 is one

such case where teleoperation is needed. Figure 5.4 showcases the object being

grasped from the side using the rotate gripper orientation. It can be placed

using the place button are wherever the user chooses by manually moving the

robot arm, mobile base or both.
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Figure 5.3: Teleoperation GUI

Figure 5.4: Teleoperation in action

5.1.3 Mobile Intelligent Nurse Assistant

The role of robotics in healthcare has been growing in the last decade [29]. This

is due to the need to improve the quality and safety of care while controlling
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expenses [12]. Moreover, the shortage of nurses and healthcare personnel sig-

nificantly impacts the quality of care [18, 46]. The COVID-19 pandemic demon-

strated how vulnerable the healthcare workers are and at risk to be exposed to

the virus [5].

Several robotic systems are introduced to assist with hospital logistics, dis-

infection of spaces, and patient screening [25, 4]. Robots have the potential to

support caregivers in several routine tasks, while caregivers can focus on the

actual patient care. For example, there is a variety of commercially available

robots that are currently used in hospitals to take care of delivery tasks, such

as the mobile robots TUG [49] and Relay [48], or fetching objects, such as Moxi

[40], a mobile robot equipped with a robotic arm

The robotic system implemented in this thesis can be used by the nurses to

fetch objects for the patient, use as a walking aid for patients using the robotic

arm as support, disinfect spaces or operate machinery by using the robot arm

to press buttons of a machine using teleoperation.

5.2 Proposed Evaluation

Due to the ongoing COVID-19 pandemic, a comprehensive user study was not

possible to be conducted. The methodology used to evaluate user data is de-

tailed in this thesis. According to [50], to test the usability of a HRI system, the

following factors must be evaluated:

• Effectiveness

• Efficiency
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• Learnability

• Flexibility

• Robustness

• Utility

The next sections provide information on how these factors are evaluated.

5.2.1 Effectiveness Evaluation

The effectiveness measure aims to quantify how well the system works in suc-

cessfully completing a given task. It can be measured by the ”success rate” or

”task completion rate”. To obtain this data the user is asked to complete the

following tasks:

• Pick and Place a specific object from a table reachable by the arm.

• Use teleoperation to fetch any object from the environment.

• Use semi-automated mode to fetch any object from the environment.

The user is asked to perform each task 10 times, and the number of attempts

required to complete each task is recorded. The goal is to have at an average

score of 1.1 for all the tasks. This score for each task is calculated by equation 5.1.

An attempt is defined as a sequence of operations done by the user to perform

the task successfully without having to abort back to the start state either by

pressing the home button or restarting the robotic system.
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score = totalno.o f attempts/10 (5.1)

If the user attempts to perform the task 11 times meaning he/she will fails to

complete the task in one attempt but successfully completes in another attempt

the total attempts will be 9 successful attempts + 1 failed attempt + 1 successful

attempt for the failed attempt = 11 attempts. Using equation 5.1 we get the score

as 1.1 for a particular task.

5.2.2 Efficiency Evaluation

The efficiency measure aims to measure the speed of operation of the robot for

a task. This measure is not particularly important for our system as the goal

is not to decrease time required for a specific task but to enable the user to do

a wide variety of tasks remotely. That being said, the system should perform

the task fast enough so that the user prefers it over doing it himself. This can

be evaluated by asking the user to perform the tasks mentioned in the previous

section and then asking them to score the efficiency on a likert scale from 0-10

with 0 being too slow and 10 being too fast. The mode of the values gives us

the overall user efficiency of the system. Efficiency of the system can be further

tested by conducting the tests when running the software on different machines

or the user’s personal machine.
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5.2.3 Learnability Evaluation

As the name suggests, learnability defines how easy is the system to use for a

novice user. In this measure we want to gauge how familiar is the GUI to the

user, are the actions performed be the controls consistent and predictable and

how generalized is the system.

5.2.4 Familiarity

To measure familiarity, the user can be shown different user interfaces and asked

to chose which interface they feel more comfortable using. The measure of the

success of the GUI can be measured by the number of users that pick the GUI

implemented in this thesis.

5.2.5 Consistency and Predictability

To measure consistency and predictability, the user can be asked to predict the

action performed by the robot if pressed a certain button. The system can be

then scored on the number of times the user is able to predict accurately. Con-

sistency can also be measured additionally performing an action such as picking

up and object repeatedly.
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5.2.6 Robustness

Robustness is a measure of the effectiveness of the fail-safe systems imple-

mented in the robotic system. This measure is an important aspect as the system

is intended for use by novice users. Fail-safe mechanisms implemented in the

system will help keep the system operational even if the user moves the robot

in ways that can damage it. To evaluate the robustness of the system, a user

study can be conducted where the user can be asked to use the robot in ways

that it can damage itself. For e.g, the user can press the pick object without an

object in the scene, try to jam the robot arm by moving it beyond its joint lim-

its and intentionally moving the robot so it hits the camera pole behind it. The

experiment can be evaluating if the user is successful in doing these tasks. The

user can also be asked to find ways in which he/she thinks the software can be

crashed.

5.2.7 Utility

Utility of the system is a combination of effectiveness and efficiency. This mea-

sure helps us understand how a given interface helps the user to achieve his/her

goal or perform a specific task. Effectiveness was measured as success rate and

efficiency was measured using likert scale data. To combine these two, the likert

scale data is converted to percentage by 5.2. The effectiveness measure can also

be converted to percentage using 5.3.

E f f iciencyPercentage = (mode/10)x100 (5.2)
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E f f ectivenessPercentage = (100 − (score − 1)x100) (5.3)

The average of these 2 percentages gives us an utility score.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

The broad vision of this thesis was to implement an end-user framework for

robot control which allowed novice users to perform common tasks such as

pick and place with ease by teleoperation. The work presented in this thesis

provides the user with the following abilities:

• Operating the robotic system which includes the robotic arm and mobile

base using an intuitive and simple graphical user interface.

• Performing pick and place using a semi-automated mode or teleoperation.

• Selecting objects for pick and place through the GUI for semi-automated

pick and place.

To develop the framework, the open-source Robot Operating System (ROS)

was used along with the MoveIt framework to provide motion control for the

robotic arm. The mobile base was controlled using the summit controller which

was interfaced directly through ROS. Object detection used deep learning tech-

niques to perform object detection in real-time. Computer vision techniques

were utilized to transform camera images to ROS messages thus integrating the

camera into the framework.

Chapter 1 discussed the motivation for the thesis and the objectives for the

framework were outlined. In Chapter 2, the related work in building user-

interface for human robot collaborative systems was detailed. Various ap-

proaches such as block based programming, task based programming and tra-

ditional code based programming approaches were analyzed. Drawbacks in

these approaches were analyzed in these in building the framework.
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Chapter 3 provided some background knowledge required for the under-

standing of the framework. The basics of ROS, MoveIt, RGB-Depth Cameras

and Neural Networks was explained. Chapter 4 explained the proposed frame-

work and explained all the components, both hardware and software. Details

about the implemented ROS Publishers, Subscribers and their relations were

explained on detail. The user interface implemented was discussed and the

functionality of each element in the GUI was detailed.

Chapter 5 explained the evaluation methods used to understand the usabil-

ity of the system. Some practical scenarios were explained from as how the user

operates the system in a scenario. The two modes of operation semi-automated

and teleoperation were discussed in regards to why and how an user would

use these in a practical world scenario. An application of the system as a Med-

ical Intelligent Nurse Assistant was explained to demonstrate the operational

efficiency of the framework. The testing methodology for a user study was ex-

plained.

6.1 Future Work

Although the framework achieves all the objectives mentioned in this thesis,

there are a few areas where the work from this thesis can be extended to build

an even more comprehensive framework. The following areas were identified

which could be improved:

• Improving the camera performance on limited bandwidth connections

such as Ethernet.
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• Automating the entire pick object pipeline by gripper orientation estima-

tion.

• Improving the object detection system to produce unique bounding boxes

for objects of the same class.

• Wireless interface for communication between robot and computer.

• Conducting the user evaluation once COVID-19 restrictions are lifted.
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Girbés-Juan, and Josep Tornero. Advanced teleoperation and control sys-
tem for industrial robots based on augmented virtuality and haptic feed-
back. Journal of Manufacturing Systems, 59:283–298, 2021.

[16] Axel Graser, Torsten Heyer, Leila Fotoohi, Uwe Lange, Henning Kampe,
Bashar Enjarini, Stefan Heyer, Christos Fragkopoulos, and Danijela Ristic-
Durrant. A supportive friend at work: Robotic workplace assistance for
the disabled. IEEE Robotics & Automation Magazine, 20(4):148–159, 2013.

[17] Jérémie Guiochet, Mathilde Machin, and Hélène Waeselynck. Safety-
critical advanced robots: A survey. Robotics and Autonomous Systems, 94:43–
52, 2017.

[18] Jérémie Guiochet, Mathilde Machin, and Hélène Waeselynck. Safety-
critical advanced robots: A survey. Robotics and Autonomous Systems, 94:43–
52, 2017.

[19] Jérémie Guiochet, Mathilde Machin, and Hélène Waeselynck. Safety-
critical advanced robots: A survey. Robotics and Autonomous Systems, 94:43–
52, 2017.

[20] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gom-
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