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ABSTRACT

AN INTELLIGENT FRAMEWORK TO ASSESS EMBODIED COGNITION

FROM PHYSICAL ACTIVITIES IN CHILDREN

Ashwin Ramesh Babu, Ph.D.

The University of Texas at Arlington, 2021

Supervising Professor: Prof. Fillia Makedon

Cognition refers to “The mental actions or process of acquiring knowledge and

understanding through thought, experience, and the senses”. It encompasses many

aspects of intellectual functions and processes such as attention, working memory, re-

sponse inhibition, motor functions and more. Humans start to develop these cognitive

skills right from their childhood and become fully developed through their adulthood.

Impairments in these cognitive functions, specifically in Executive Functions

(Higher-order cognitive functions), disrupt their everyday life leading to a troubled

childhood and lifelong difficulties in family, employment, and community functioning

leading to socio-economic repercussions. Identifying such impairments at the right age

(early childhood) provides the best opportunities for remedial intervention, as brain

plasticity is highest in children and diminishes with age. Attention Deficiency Hy-

peractivity Disorder (ADHD) is one of the common psychiatric neuro-developmental

disorders that often could cause cognitive impairments, specifically with executive

abilities/functions. They are commonly found in children and young adolescents,

starting at the age of 6, and occur three times more frequently in boys than in girls.
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There is a need for assessments to estimate the level of cognitive development so that

proper intervention can be offered when problems with executive functions arise.

The main aim of this research is to develop an automated and non-intrusive

system to measure the level of cognitive development in children (e.g., early, mid-

dle, full development) with various cognitive tasks assessing different cognitive skills.

The Activate Test of Embodied Cognition (ATEC) is an assessment test designed to

measure executive functions in children through physically and cognitively demanding

tasks and provides measurements for attention, working memory, response inhibition,

self-regulation, rhythm, and coordination as well as motor speed and balance. The

proposed tool takes advantage of state-of-the-art knowledge from both the fields of

Artificial Intelligence and Cognitive Sciences to provide accurate measures of cogni-

tive development. The tool aims to assist therapists in decision-making by providing

performance metrics regarding the subject’s performance. This work also advances

computational methods for human action recognition to provide automatic measure-

ments of various metrics of performance. These metrics are related to generic motion

features as well as metrics explicitly defined by cognitive experts.
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CHAPTER 1

TECHNOLOGY AS A TOOL FOR COGNITIVE ASSESSMENT

1.1 Introduction

The term Cognition can be defined as mental actions or process of acquiring

knowledge and understanding through thought, experience, and senses. It comprises

several intellectual functionalities such as attention, engagement, long and short-term

memory, cognitive flexibility and task-switching ability, problem-solving and decision-

making skills, and many others. These cognitive processes have their impact on every

aspect of life, from school to work to relationships. When individuals have difficulty

in successfully performing one or more of the above cognitive functionalities, they are

considered to have deficits/impairments in their cognitive functionalities. Deficits or

impairments in these cognitive functions are not associated with any particular condi-

tion but could be one of the manifestations of multiple underlying conditions. Some of

the causes of cognitive deficits in childhood include Autism Spectrum Disorder (ASD),

Attention-deficit/hyperactivity disorder (ADHD), etc. At the same time, for adults,

a decline in their cognitive performance can be seen as their age progresses. Addition-

ally, certain conditions such as Alzheimer’s disease, Multiple Sclerosis, Parkinson’s

disease, etc., could cause cognitive and motor impairments in adults as well [14]. It is

necessary for healthcare professionals to identify these cognitive impairments in their

early stages and help patients with the proper intervention.

As part of identifying these cognitive deficits, cognitive assessments and reha-

bilitation become a significant part of the process. These assessments can diagnose

major cognitive impairments and can provide more detailed information on the deficits

1



in the functionalities. In addition, work has shown that these cognitive assessments

help in improving their cognitive functionalities [15]. Assessing and observing these

cognitive functionalities demand long-term assessment and monitoring of individuals

with different sets of tasks to assess various cognitive behaviors. Most of the time,

these assessments take place in a controlled environment. NIH toolbox[16] and the

psy-toolkit[17] library are some of the very popular cognitive assessment tool-kits that

comprise of multiple tests aiming to assess various cognitive functionalities.

Figure 1.1. Relation between Actions, Cognition, and Emotions in Human Behavior.
Actions can trigger emotions and thoughts, while at the same time, they can be the
result of our feelings and cognition. Their highly dependent relation and interaction
enable us to perceive the world around us and respond to the different stimuli of our
surroundings. [18].

With the improvement in technology, researchers are focusing on interpreting

such functionalities in the wild, which is still a challenging problem in the field of be-

havioral and cognitive science [19]. Artificial Intelligence (AI) has been used widely

to understand and analyze human behaviors in the environments in which they inter-

2



act, as it is one of the important indicators of their cognition. As humans, we can

consider ourselves as active agents that are continuously interacting with

their environment, producing and perceiving countless information at any

given moment. A non-stop process that eventually affects drastically our

bodily needs, our reactions and our mental desires (Figure 1.1) [18]. Hence,

human behavior is one of the important indicators of cognition in individuals.

1.2 Technology to Understand Human Behavior

Given a controlled environment with a defined set of possibilities, current tech-

nologies can provide good results in understanding the behaviors of the individuals

such that this information could be used to extract useful cognitive information. This

could further assist the therapists in estimating their cognitive state and thus provide

useful insights on possible cognitive impairments [20]. For example, extracting the

behavioral information could help workers in the assembly line improve productivity,

monitoring patients during rehabilitation, and assessments towards detecting various

cognitive impairments.

1.2.1 Understanding Physical Actions

Human Action Recognition (HAR) is one of the popular approaches to un-

derstand individuals’ behavior. Some of the commonly used approaches include us-

ing cameras (RGB and Depth), wearable sensors such as accelerometers, gyroscope,

etc., towards recognizing actions performed by individuals. In recent times, methods

that are images and video based are preferred due to their non-invasive nature and

their ability to track multiple people in the scene. This is achievable with improve-

ment in the machine and deep learning techniques. In the past, researchers have

worked on extracting features that are oriented to actions to understand the behav-
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iors [21, 22, 23]. But in recent times, deep learning has revolutionized the area of

human action recognition which are capable of modeling the behaviors by automat-

ing the complete recognition process from the input source (RGB video frames, depth

frames) to the action classes [24, 25, 26, 27]. Additionally, depth information can be

considered as an enhanced vision-based device since it can additionally provide depth

data that can facilitate the detection of human movements. This helps to imple-

ment crucial processes such as the extraction of a human silhouette, reducing the

dependencies of shadows, light reflection, and color similarity [28, 29].

On the other hand, action recognition based on wearable sensors provides more

accurate representation of the user’s motions and activity as they directly contact

the user’s body. This approach also facilitates avoiding other noise in the scene, such

as objects, the place or recording, etc. Work in this area has provided a variety of

features that can be extracted from these sensors that can describe what action is

being performed. Although the extracted features are generally dependent on the

type of sensors, standard statistical features from both time and spectral domain are

sufficient to distinguish different activities that are performed. [30, 31, 32, 33, 34].

1.2.2 Understanding User Emotions

Emotions are one of the important indicators of cognition, and it has been

researched lately in the field of behavioral analytics. As mentioned in Figure 1.1,

actions, emotion and cognition are highly interconnected. Cognition can trigger emo-

tions, and emotions can trigger actions. Hence, recognizing emotions could provide

information about the cognitive state of the user. Still, recognizing emotions is a chal-

lenging problem due to the great variability that is observed across different subjects

when expressing the same emotions. In recent times, many approaches have been

proposed for emotion detection, with the most popular one from the audio sentiment
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analysis [35] extracting and video data. Specifically from their facial expressions and

body postures [36, 37, 38, 39]. Some of the other commonly used methods include an-

alyzing fEMG [40], monitoring arousal using ECG [41], galvanic skin response (GSR)

[42], respiration sensors [43] or EEG based approaches [44].

1.3 Motivation and Thesis Outline

1.3.1 Motivation

The main motivation of this research is to develop an automated and non-

intrusive system that is capable of measuring the level of cognitive development in

children with various novel cognitive tasks that are both physically and cognitively

demanding. Such systems are required to be low-cost and easy to use by medical

experts. To the best of our knowledge there is no such tool that can measure various

cognitive skills from physical activities that are intended to assess various neurological

conditions.

1.3.2 Thesis Outline

This section discussed the overview of cognition and how cognitive assessment

evolved through the years. We discussed some of the common challenges in identifying

deficits in cognitive functionalities and how users’ behavioral information can be used

to solve this problem. Further, an extensive review of some of the existing methods

and approaches to learn user behavior through various technologies was presented in

this chapter.

In the following chapters, we will look into how the mentioned technology has

been used in multiple scenarios, such as in the workplace and at schools to measure

cognitive functioning and deficits in these cognitive functionalities. Chapter 2 we

explore the need for cognitive assessment and training in the workplace. As part
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of this work, we devised an elaborate study on cognitive training in the workplace

using the Towers of Hanoi (TOH) task and the different training approaches that

could provide the most benefit in the training process. Conclusions were based on

how well the participants performed the task and user study as well. Further, the

need to understand the users’ emotional state while performing cognitive training

was identified. Other than just the metrics from the task, emotional information

is extracted from the user from their body postures, facial expressions, and from

their EEG signals which were recorded through a non-invasive headband to predict

the emotional state of the user from which the task outcome was predicted. This

information was used to build an adaptive system.

Subsequently, Chapter 3 presents the importance of cognitive assessment for

children and the need for such assessment and evaluation right from the young age. An

extensive study is presented on cognitive functions and their association with various

neurological conditions, such as ADHD and Autism. Further, this chapter discusses

about some of the popular and commonly used approaches to evaluate deficits in

various cognitive functionalities and discusses their current drawbacks. One central

research question that arises is the association between cognitive functionalities and

physical movements. Hence, in Chapter 4, the ATEC system is introduced to evaluate

various cognitive functionalities through tasks that are both physically and cognitively

demanding. As part of this work, a set of tasks and an automated system were

developed that can automatically capture the movements performed by the children

and automatically score the correctness of the task performed. Chapter 5 uses state-

of-the-art computer vision techniques to evaluate the finger opposition task that has

been proved to identify deficits in motor functions. Further, Chapter 6 introduces

some of the popular computer vision-based motion analysis techniques that have been

used to evaluate cognitive functionalities such as attention and response inhibition
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through a novel ”Ball drop to the beat” and ”Tandem Gait” tasks. Finally, this work

discusses some of the recent works in self-supervised techniques that take advantage

of the unlabelled data to build effective representation, which could further be used

towards human action recognition. We extend some of the new approaches on images

to videos and present their results on our dataset. Finally, we summarize our findings,

highlight the takeaways of this research and provide suggestions for future directions

in the area of understanding cognition from physical movements.
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CHAPTER 2

COGNITIVE ASSESSMENT AND TRAINING IN WORKPLACE

2.1 Introduction

In Chapter 1 we discussed the individual components that compose human

behavior, namely: actions, thoughts, and emotions. We highlighted the dependency

that is observed between the actions and emotions and reviewed recent work in human

behavioral analysis with technologies such as motion capture, sensors, etc. This

chapter discusses how cognitive training and assessment have the potential to help

employees in the workplace [45]. Additionally, multiple training methodologies and

the impact of those methods on employees were investigated. Further, the behavioral

and physiological information of the participants, such as their facial expressions,

body postures, and EEG signals, were extracted to understand the emotional state of

the participant during the cognitive training and assessment. The correlation between

emotion and cognition was studied, which was later used towards personalizing the

assessment task based on the individual’s cognitive state.

2.2 Need for Cognitive Assessment in Workplace

Cognitive assessment and cognitive rehabilitation in the workplace are becom-

ing very popular/necessary in recent times, especially for workers who are involved

with jobs requiring high precision and concentration. Generally, cognitive training is

predictive of job performance across all domains. Employees with higher cognitive

ability tend to adjust better to new tasks with their ability to learn and apply new

information. Work has proved that this cognitive training and frequent assessment
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have sustainably improved executive functions in middle-aged industry workers [46];

hence, companies that are involved in manufacturing are enforcing their employees to

take such tests in frequent intervals as the industries are making their environment

smarter where humans and machines collaborate in achieving their goals. With the

increase in implementation of technical systems to work with humans comes the com-

plexity for humans’ to maintain a proper overview. Usually, new employees undergo

extensive training with existing experts tutoring them. These trainings are common

to all employees to provide the required knowledge on how to handle the system but do

not consider the mental/physical health, history, etc. These cognitive rehabilitation

techniques not only help workers towards their roles but also provide assistance for

workers with any kind of cognitive impairments [47]. Also, cognitive/mental health

decline over aging [48]. With the improvement in Augmented Reality and Virtual

Reality, people have started to use them in various training scenarios as it helps to

simulate the environment [49, 50] and computer game-based training is one of the

commonly used methods for cognitive training [51, 52, 53, 54, 55].

2.3 Towers of Hanoi as a Tool for Cognitive Training and Assessment

Towers of Hanoi(TOH) is a well-known executive function task that is used

to assess cognitive skills, such as working memory, procedural learning, problem-

solving, and inhibition process [56, 57, 58]. This work utilizes TOH tasks to simulate

cognitive training for employees at the workplace. In addition, this work compares

three different approaches of training to find the most effective training method that

involves procedural learning and problem-solving. The three training approaches used

are personal trainer, computer-based training, and game-based training. To evaluate

the effectiveness of the task and the training method, different evaluation metrics
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such as time taken to solve the complete task, the average time taken for every move,

the total number of moves made, errors made during task, etc.

2.3.1 Experimental Setup

The experimental setup consists of a webcam, a computer, a physical TOH as

represented in Figure 2.1. A computer game replicating the physical experimental

setup was developed using Unity game engine. The number of disks in the TOH game

was set to 5 as we found that it was neither too difficult nor easy. The minimum

number of steps taken to solve a TOH task is represented as 2n−1, where n represents

the number of disks. In our case, the minimum number of steps is 31. The TOH

were in a stationary position facing the webcam with the pegs labeled as column 1,

column 2, and column 3.

Figure 2.1. Experimental setup for cognitive training and assessment with Towers of
Hanoi(TOH) task.
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2.3.2 Towers of Hanoi Rules

By default, there are some standard rules to solve the Tower of Hanoi problem.

No additional rules were added to make the game easier for participants. These

include,

• Move only one disk at a time.

• All disks, except the one being moved, must be on a tower.

• User will use only one hand to deal with the disk.

2.3.3 Experiment

The participants were undergraduate students in the Department of Computer

Science and Engineering at the University of Texas at Arlington. There were no

restrictions based on their age and gender. The age of the participants ranged between

18 to 30. A total of 30 participants were divided randomly for each of the three

training methods, and they did not have prior knowledge about the TOH task. The

experiment was divided into training phase and testing phase.

2.3.3.1 Training Phase

During the training phase, the participants were provided with the rules of the

TOH. Each participant was presented with one of the training methods, which were

randomly assigned prior to the study.

Human Trainer

With this method, the participants were trained with a personal human trainer

as shown in Figure 2.2. The trainer went through the steps verbally to solve the

TOH with the participants. This training was timed, and the number of errors while

solving was recorded.
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Figure 2.2. Human Trainer. Human trainer(left) gives verbal instructions to the
participant(right) to solve the TOH task.

Game Based Training As mentioned before, a game simulation of the TOH

task was made with Unity game engine. The participants solved the game using mouse

clicks on the disks. Instructions were given in the form of text on the screen. An

example instruction will look like, ”Move the red disk to column 3”. To notify wrong

moves, error messages were displayed on the screen along with sound notifications.

The setup is represented in Figure 2.3.

Figure 2.3. Game-based training. Participant plays the unity game.

Computer Based Training

12



In this method, the participants were trained with computer-aided instructions.

That is, instead of an individual trainer, participants were asked to solve TOH with

instructions flashing on the screen. This is similar to the Game-based training, but

this will have a physical TOH setup rather than a game.

The system was implemented using MATLAB. A webcam placed in front of

the TOH capturing ten frames per second, recognizing the disks and their positions.

To identify individual colors, HSV (Hue, Saturation, and Value) color space was

used. The size of the disks was considered to avoid shadow based errors, noise, and

other objects that impeded the frame. Next, to identify the position of each disk,

the centroid of each disk was calculated, and the tower to which it belonged was

identified. The system considered the disks for evaluation only when they were in a

stationary position. Each step was considered a separate state. Every time a change

is made, the system compared the current position of the disks with the position of

the expected state. If they matched, it was considered a successful move, and the

current and the past states were updated. If they did not match, it meant that the

disks were not in the expected position and were considered an error. In such cases,

the system asked the participants to go to the previous move or to the actual move,

as shown in Figure 2.4, and then the system proceeded.

2.3.3.2 Test Phase

Once the training was completed, all participants were asked to complete the

task(without any assistance) using the physical TOH as shown in Figure 2.5. The

results of this phase helped us evaluate the functional capacity of the participants

and the effectiveness of the training.

The system kept track of the past and of current state. Initially, when the test

began, there was no past state, and the starting position was updated as the current
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Figure 2.4. Computer based training. The system asks the participant to go to
the previous move or to the actual move to be made when they fail to follow the
instructions.

state. For every move, the system checked the position of the disks and compared it

with the rules. If the position of the rings satisfies the rules, the system updates the

current position as the new present state and updates the past state.

Figure 2.5. Test phase. The system does not provide the participant any instructions.

2.3.4 Data Analysis

The criteria on which the analysis was made include the total number of moves,

total time taken to solve TOH, the time taken for each step, and the number of errors
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made during the training and testing phase. Figure 2.6 shows the average number of

steps each group of participants needed to complete the TOH. All participants were

trained to finish the task in 31 moves, and any extra moves were considered as an

error during testing. The average number of moves in the testing phase was nearly

the same in all groups, and the participants performed extra moves in the testing

phase compared to the training phase.

Figure 2.6. Average number of moves(steps) each group of participants performed in
both the training and testing phase.

Figure 2.7 shows that the participants took greater time to complete the testing

phase compared to the training phase. It also shows that the participants took less

time to complete the game-based task in the training phase. The reason may be

explained by the fact that the participants did not interact with the physical TOH in

the Game-based Training, which resulted in less physical effort and time. However,

the completion time in the testing phase was very similar in all three groups. The

results of the number of moves and the completion times might indicate that the dif-
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ferent training approaches did not have a major effect on how the trainees performed.

It also indicates that performing the training twice had a very low practice effect

since the participants took longer time and more moves to complete the testing phase

compared to the training phase.

Figure 2.7. Average time to finish the TOH task by each group of participants in
both the training and testing phase.

Figure 2.8 shows the average number of errors performed by each group. In

the training phase, both extra and illegal moves (i.e., large disk placed on smaller

disk) are considered errors, and in the testing phase, only illegal moves are considered

errors. The participants in the human training group performed with few errors when

compared with the older groups. This may indicate, although the performance is very

similar in all the three groups, the participants who were given the rules for the task

by the human trainer could follow the rules better. In the Game-based training group,

the game restricted the participants from making illegal moves. When the participants

tried to make illegal moves, the disks stayed in the original towers/columns and did
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not move to the wrong columns. The lack of hands-on experience during game-based

training may have contributed to the increased number of errors in the testing phase.

Figure 2.8. Average number of wrong/illegal moves(steps) each group of participants
performed in both the training and testing phase.

2.3.5 User Survey Results

At the end of every experiment, participants were asked to fill out a survey form

about their experience with the system. From the survey, more than 90 percent of

the participants liked the experiment as they were new to the TOH. They also stated

that they required complete focus and concentration while solving the TOH with

minimum steps and errors. When the participants were asked how they liked their

training method, computer-aided training group had the highest rating, followed by

the human trainer training group, and then the Game-based training (GBT) group.

Contrary to the above statement, when the participants were asked to rate how much
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Figure 2.9. User survey result for the likeability and helpfulness of the training
approaches.

their training method helped to complete the task, the highest ratings were received

from the GBT group, whereas the human trainer group had the lowest rating as shown

in Figure 2.9. Specifically, one of the trainees in the human trainer group commented

that ‘listening to a human trainer is helpful, but it does not help me think on my

own.’

2.3.6 Inference from Participants’ Performance

One of the advantages of the Computer-based training and testing is that the

system provides feedback based on user performance while the user gets the actual

experience of the TOH task. The data that is collected during the testing phase

can be used to measure cognition for various disorders and can be tracked over time

with slight modifications to the came, such as changing the number of disks to track

improvements. However, understanding the user’s cognition cannot be achieved with

just the metrics from the task. It requires more information, such as the user’s
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emotional state, which impacts their behavior. The following section describes how

user’s behavior can be understood using data from multiple external sensors.

2.4 Multi-Modal Data for Cognitive Assessment

Designing a Multi-modal system is not a trivial task given the possibility of

multiple outcomes and their dependence on multiple input combinations. Depending

on the application and the data that is being considered, the weights for the modalities

differ. Work proposed by Huang et al. [1] explains data fusion as the process of joining

data from multiple modalities with the aim of extracting complementary and more

complete information for better prediction. The authors explain three main data

fusion strategies, namely, early, joint and late fusion.

Early fusion is commonly known as feature level fusion points to combining

multiple input modalities into a single feature representation before feeding into a

machine learning model. These modalities can be fused in a variety of ways, including

concatenation, pooling, and using a gated unit. Fusing the original features represents

early fusion type 1 represented in Figure 2.10 (Left) while fusing the extracted features

from another neural network represents early fusion type 2.

Joint Fusion is the process of joining learned feature representations from

intermediate layers of neural networks with features from other modalities as input

to the final model. The difference in this approach compared to the early fusion is

that the loss is propagated back to the features extracting Neural Network, which

can also be termed as end-to-end learning. This approach is represented in Figure

2.10 (Middle).

Late Fusion approach represented in Figure 2.10 (Right), refers to the process

of leveraging predictions from multiple models to make a final decision, which is why

it is often known as decision-level fusion. Typically, different modalities are used to
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Figure 2.10. Model architecture for different fusion strategies. Early fusion (left
figure) concatenates original or extracted features at the input level. Joint fusion
(middle figure) also joins features at the input level, but the loss is propagated back
to the feature extracting model. late fusion (right figure) aggregates predictions at
the decision level [1].

train separate models, and the final decision is made using an aggregation function

to combine the predictions of multiple models. Some examples of aggregation func-

tions include: averaging, majority voting, weighted voting, or meta-classifier based

on the predictions from each model. The choice of the aggregation function is usually

empirical, and it varies depending on the application and input modalities.

2.4.1 Multi-Modal User Monitoring for Cognitive Assessment and Rehabilitation

Based on the mentioned Multi-modal data fusion theories, an intelligent system

for cognitive assessment and rehabilitation is proposed, which not only assesses the

participant based on the scores from the task but also monitoring his behavior such as
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emotions for better understanding. In this proposed approach, a late fusion strategy

has been used where the decision from multiple modalities are combined to make

the final decision. The experimental approach was based on the theory that Actions

can impact cognition which in turn will be reflected through emotion [59]. With the

cognitive task, we increase the difficulty level of the task so as to induce stress which

is reflected in their emotion which in turn triggers both physiological and behavioral

signals [60, 61]. Positive or negative emotions triggered while performing these tasks

affect the outcome of the task as they consume their cognitive resources [62, 63, 64].

The proposed system uses a combination of non-invasive sensors such as elec-

troencephalography(EEG) headband and image sensors to capture participants’ brain

wave patterns, body postures, facial expressions to analyze their emotions and stress.

The proposed system uses Machine Learning and Computer Vision techniques to au-

tomatically analyze the data recorded and predicting the user’s stress. We also built

a GUI to visualize the signals that were recorded.

2.4.2 Sequence Learning Task for Cognitive Assessment

This is part of the work published by [38] where we used the sequence learn-

ing(SL) task as an assessment tool. The SL task is recognized as an important tool for

assessing cognitive load and its relation to training by therapists and performance ex-

perts [65, 66, 67]. The SL task involves listening or seeing a set of character sequences

and hearing able to repeat them correctly in a certain amount of time. The sequence

could be delivered via speech or image on a computer screen. Performance outcomes

from SL task can help therapists and other experts to determine what particular

treatment or rehabilitation an individual might need to enhance his/her performance

in a given domain or application.
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For the task setup, the user had three buttons with labels (”A”,”B”,”C”). The

NAO robot dictated the alphabetical sequence of either 5, 7, 9 characters in length.

Each comprised of only the above-mentioned characters. The user was expected to

reproduce the sequence dictated by the NAO robot by pressing the button within

a time duration. The NAO robot verified the sequence reproduced by the user and

recorded the outcome. The outcome of this task is a binary data where ’0’ represents

failure, and ’1’ represents success. To complete the task, the participant had to

reproduce 12 such sequences. The task was built in such a way that the complexity

of the task increases gradually to induce stress. Figure 2.11 represents the task setup

for the experiment.

Figure 2.11. Sequence Learning Task Setup.

2.4.3 Experimental Setup

For the experiment, we used a socially assistive humanoid robot, NAO, to in-

struct and monitor the user. An image sensor and an EEG headband, MUSE was

used for the experiment. Figure 2.12 represents the experimental setup of the assess-

ment. Data is collected from two sources, the MUSE headband that collects EEG

signals of the user and the image sensor, which records the person performing the

task. The image sensors monitor both the facial expressions of the participant and

the body postures of the user to detect stress.
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Figure 2.12. The proposed system for cognitive assessment system with multi-modal
data.

2.4.4 Data Collection

For the data collection, 15 graduate students were recruited. They were in the

age group of 22 to 35. Each user completed one full session (12 sequences) of the SL

task. The MUSE headband was used to collect the EEG signals from each participant.

The MUSE headband consists of a total of 7 sensors, two forehead sensors, two sensors

near the ears, and three reference sensors. The signals are generated at a sampling rate

of 220Hz and provide access to the raw EEG signals. The frequency bands provided

by the device are α(9to13Hz), β(12to30Hz), γ(30to50Hz), θ(5to8Hz) and δ(1to4Hz).

The data were separately stored during the listening phase and performance phase.

Research shows that information listening is the key element in the proposed task.
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Hence, to predict the user performance, only the data collected during the listening

phase was considered. For the first and second modalities, which are the emotion

recognition system from the body pose and the facial expression, a camera was setup

in front of the user. The camera collects RGB images at a rate of 30 frames per

second, and they were also collected separately for the listening and performance

phases throughout the session. Data from the image sensors were used to predict

the emotions of a user using two separate modalities: facial expressions and body

postures.

2.4.5 Emotion Recognition with Image Sensor

The data from the image sensors were used to predict the emotions of a user

using two separate modalities: facial expression and body posture. From the detected

emotions, task performance was predicted. The input images collected were RGB

images in the format (Format : Width x Height x Channels).

2.4.5.1 Emotion recognition from Facial Expression

To predict emotions from facial expressions, a Convolutional Neural Network-

based architecture was used. The architecture was inspired by Arriaga et al. [2]. The

model was trained with multiple publically available datasets to recognize stress and

emotion from facial expression. The model consists of 4 residual depth-wise separable

convolutional operations. Each convolution is followed by a batch normalization

operation and a ReLU activation function. The last layer of the neural network

consists of a global average pooling and a softmax operation. Adam optimizer was

used for optimization. The complete sequence consists of a face detection module and

an emotion classification module. The emotion classification network extracts facial

features such as the eyes, eyebrows, mouth, etc., to classify the frames into one of
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the three classes, positive, negative, and neutral. All levels of stress were combined

to negative emotion class. Figure 2.13 represents the model architecture for emotion

prediction from facial expression.

Figure 2.13. Architecture for emotion prediction from facial expression (inspired from
[2]).

2.4.5.2 Emotion Recognition from Body Poses

As represented in Figure 2.14, the pipeline for the emotion recognition from the

body poses consists of two stages, body key-points detection and emotion recognition

part. A deep convolution-based architecture was used for keypoints detection [68, 69].

The system takes in an RGB image (Format : Width x Height x Channels) and

produces as output the 2-dimensional locations of the anatomical key-points for each

person in the image. The feed forward network of the neural network predicts a set
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of 2-Dimensional confidence maps of body part locations and a set of 2-Dimensional

vector fields of part affinity fields which holds the degree of association between the

parts. The confidence maps and the affinity fields are parsed by greedy inference for

the final output of the 2-Dimensional key-points. In the architecture, the network is

split into two branches; the top branch predicts the confidence maps, and the bottom

branch predicts the affinity fields. The input image is first sent to a VGG-19 model to

generate a set of feature maps which is sent as input to the first stage of each branch.

In the subsequent stage, the predictions from the two branches are concatenated with

the original features for better results.

Figure 2.14. Architecture for body Key-points detection [3].

The second part is the emotion recognition from the key points detected. The

human body is a complex structure with several degrees of freedom. Research has

shown that people can exhibit emotion through their body postures. Extensive re-

search has been performed on how humans behave and exhibit emotions under various

conditions [70, 71, 72]. Wallbott and Harald, in their paper [71], mention the various

possible postures for different emotions such as anger, sadness, happiness, disgust,

etc. For example, the authors mention that humans tend to lean their body forward
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when angry, and they tend to bend their head down when sad, etc. Based on the

information from these papers and the results extracted from body key-points detec-

tion, intermediate data were extracted, such as the position of the hands, head tilt

angle, body angles, etc. The system then detects the postures and classifies them

to one of the categories, i.e., ”positive,” ”neutral,” or ”negative,” and produces an

output of 1, 0, or -1, respectively. The system was tested with 200 annotated images

of different human body postures and produced an accuracy of 71 percent.

2.4.5.3 Calculating Task Outcome Prediction from Image Sensors

The above sub-systems described in Section 2.4.5.1 and Section 2.4.5.2 classify

the input image frames into one of the three classes. For each sequence, both the

modules predict the emotional state of the user in each frame, and an array of emotion

state is generated. Figure 2.15 represents the output of emotion recognition from

facial expression and body postures in one frame. It shows the body key points

represented with colored dots joined by lines and a bounding box around the face

for facial expression. The image also shows the final output of the two sub-systems,

which displays a ’0’, meaning that the emotion recognized was neutral.

The above sub-systems (Sections 2.4.5.1, 2.4.5.2) were individually trained to

find the optimum threshold cutoff of negative and positive emotions to maximize

successful predictions. The data was split into 90% training and 10% test data. The

system was trained and tested multiple times with different test data to check the

consistency of the method. The first modality (EFE - Emotions from facial expression,

Section 2.4.5.1) achieved a maximum accuracy of 75%. The second modality (EBP-

Emotions from the body postures, Section 2.4.5.2) was able to achieve maximum

accuracy of 62.5 %. The accuracy is also mentioned in Table 2.2.
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In Algorithm 1, for every sequence, the total neutral frames, positive frames,

and the negative frames are computed. With the threshold and the estimation of

emotions for every frame in a sequence as parameters, this data is sent to Algorithm

1 which predicts the user performance outcome. For each sequence, the algorithm

finds the prediction class and confidence of prediction from which the final prediction

is made in Algorithm 2.

Figure 2.15. Output of emotion from facial expression and body postures. Zeros
represent the prediction of the individual modalities.

2.4.6 Predicting Task Performance Outcome from Physiological Data

The third modality is to predict task outcome from EEG signals collected with

the MUSE headband. The MUSE headband collects five different bands of EEG sig-

nals (alpha, beta, gamma, delta, and theta) based on which the signal’s features were

extracted with a CNN. With the ground truth data from the NAO robot and the

features extracted, the network was trained to predict the task performance. Usu-

ally, EEG signals are noisy. The noise was removed by applying an Exponentially

Weighted Moving Average (EWMA) filter and was normalized. Figure 2.16 repre-

sents the architecture for training and predicting the EEG signals. The architecture
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Algorithm 1 Task Performance Prediction from Behavioral Data

Input: Frames of a sequence with emotions predicted, Threshold from training

Output: Individual modality prediction, classes(Success, Failure)

neutral frames = total frames with neutral emotions in a sequence

positive frames = total frames with positive emotions in a sequence

negative frames = total frames with negative emotions in a sequence

Total frames = total number of frames in a sequence

if (number of predicted negative emotions >= Threshold) then

Prediction = Failure;

Confidence =
negative frames+ neutral frames

Total frames
(2.1)

end

if (number of predicted negative emotions < Threshold) then

Prediction = Success;

Confidence =
positive frames+ neutral frames

Total frames
(2.2)

end

consists of two convolutional layers, and each of them followed by a batch normal-

ization operation with a ReLU activation function. They are followed by two fully

connected layers and a softmax layer which produces the probabilities of the partici-

pant succeeding and failing the task. The class which has the highest probability will

be considered. The network weights were initialized with Xavier initialization [73],

and Adam optimizer was used as an optimizer. The system was trained with 90% of
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the data and tested with 10% of the data. The cross-validation process was performed

ten times with different validation sets to check for consistency of the model across

all samples. The proposed model produced 83% accuracy as mentioned in Table 2.1

and Table 2.2.

Figure 2.16. Network to predict task outcome from EEG signal.

2.4.7 Final Task Performance Prediction

From the individual predictions of each of the three modalities, a combined

decision is made for the final prediction as mentioned in Algorithm 2. The individual

modalities predict user performance outcome which is a success or a failure. With

the prediction and the confidence values of the individual modalities, the total score

is calculated which can be found in Equation 2.4, Algorithm 2. A negative confidence

value is assigned if prediction is ”failure” and a positive confidence value is assigned

if prediction is ”success”. If the total score is still positive, the final prediction will
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belong to the ”success” class and if the total score is negative, the final prediction

will belong to the class ”failure”.

Algorithm 2 Final Performance Prediction Combined from Three Modalities

Input: Prediction output and confidence from 3 modalities, pred(EFE),

pred(EBP), pred(ENN)

Output: Final Prediction, classes(Success, Failure)

if (any of the predictions is Failure) then

Confidence of that Modality ∗ = −1; (2.3)

end

Score = Confidence EFE + Confidence EBP + Confidence ENN (2.4)

if (Score is positive) then

FinalPrediction = Success;

else

FinalPrediction = Failure

end

2.4.8 Results and Discussion

The collected data was split to 90 percent training and 10 percent validation.

The training and testing procedure was performed multiple times with different train-

ing and testing samples to check the consistency of the system. The mentioned results

in Table 2.2 are the average of the results. Accuracy and F1 score were calculated for

individual modalities, EFE(Emotion from Facial Expression module), EBP(Emotions

31



Table 2.1. Task outcome prediction from EEG signal. Abbreviations: SVM-Support
Vector Machines, GB-Gradient Boosting, RF-Random Forests, ET-Extra Trees

SVM GB RF ET ENN
F1 Score 0.62 0.69 0.56 0.54 0.82
Accuracy 0.65 0.74 0.67 0.75 0.83

from body postures), and ENN(EEG signal with Neural Network) the combined re-

sults were calculated as mentioned in Algorithm 2. In addition, the results from [74]

where task outcome prediction was performed on EEG signals with SVM(Support

Vector Machines), GB(Gradient Boosting), RF(Random Forests), ET(Extra Trees)

were also compared in Table 2.1. It is clear from the results that the accuracy of the

combined system has outperformed the accuracies of the separate modalities. Also,

the results provide higher accuracy than the existing traditional algorithms.

From the above experiment and results, it was observed that when we induced

stress by increasing the length of the sequence, both the facial expression and the

body posture modalities predicted more negative emotion frames, thus explaining

that stress is reflected in the emotions. Moreover, there was a change in the ex-

tracted features of the EEG signals when there was a sudden increase in complexity

of the sequence. A combined prediction having the highest accuracy in the task

performance prediction provides some evidence that cognitive stress are observed in

human behaviors, and combining physiological and behavioral information helps us

understand more about the individuals.
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EFE EBP ENN EFE+EBP+ENN
F1 Score 0.738 0.540 0.820 0.870
Accuracy 0.75 0.625 0.83 0.875

Table 2.2. Prediction from individual modalities and combined. Abbreviations:
EFE-Emotion from facial Expression module, EBP-Emotions from body postures
and ENN-EEG signal with Neural Network

2.4.9 Future Work

There is plenty of scope to extend this research down this line. The Emotion

recognition from the body pose system produced the lowest accuracy of 62 percent. It

could be because of various factors. The system considered only the current position

and the state of the user during every prediction. Moreover, bodily expressions change

based on cultural background. There is a need to detect motions and gestures, which

might increase the accuracy. There was a shortage of annotated data for this specific

setup. Increasing the number of training samples will have a positive impact on

accuracy. Additionally, based on the information from the modalities, personalization

will be implemented. This means the task aims at improving/training individual’s

cognitive capabilities. Since its subjective, the information will be used to personalize

the task for the individual.
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CHAPTER 3

ASSESSING COGNITIVE SKILLS IN CHILDREN

3.1 Introduction

In the previous chapter, we investigated how technology and Machine Learning,

in particular, can be used to understand various aspects of human behavior, primarily

related to emotion recognition in assessing cognitive skills in adults. Most of our

applications were to evaluate them in their workplace. Therefore, monitoring the

game/task metrics was comparatively easy, from which multiple meaningful cognitive

measures were extracted. Yet, it was not complete with just the metrics from the task

being performed, and hence there was a need to understand the behavior of the adult

while performing the given task. Therefore, several methods were proposed, such

as monitoring the physiological signals and the external behaviors while the adult

was performing the task to extract information about the participant’s emotion with

which the adult’s mental state was predicted.

In recent years, some researchers have proved that assessing cognition and diag-

nosing various cognitive impairments in the early stage (childhood) could positively

impact the person’s growth [75]. However, children with these cognitive problems are

also more likely to grow up to have substance use disorders, impulse disorders, and

other types of mental illness, which need to be detected early in life. In addition,

identifying cognitive problems early childhood provides the best opportunities for

remedial intervention, as brain plasticity is highest in children and diminishes with

age. Therefore, it is essential to improve our understanding of how to assess cognitive

functionalities in children better.
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Executive Functions include cognitive processes that coordinate, integrate and

control cognition, particularly in novel situations, and are necessary for high-order

problem solving and goal-directed behavior [76, 77, 78]. They are predominantly

divided into three major categories, Inhibitory Control, Cognitive/mental flexibility,

working memory, as represented in Figure 3.1. Cognitive impairments, particularly in

executive functions, can lead to poor academic performance and lifelong difficulties in

family, employment, and community functioning. Ackerman et al. [79] analyzed the

role executive function plays in preschoolers’ academic performance and development.

Attention Deficiency Hyperactivity Disorder (ADHD) is a common psychiatric neuro-

developmental disorder that often could cause cognitive impairments, specifically with

executive abilities/functions. They are commonly found in children and young ado-

lescents, starting at the age of 6, and occur three times more frequently in boys

than in girls [80]. ADHD is generally associated with greater risks for low academic

achievement, poor school performance, retention in grade, school suspensions and

expulsions, poor peer and family relations, anxiety and depression, aggression, con-

duct problems and delinquency, early substance experimentation and abuse, driving

accidents and speeding violations, as well as difficulties in adult social relationships,

marriage, and employment [81]. Children with ADHD often exhibit a slower growth

in certain cognitive skills known as Executive Functions such as working memory,

cognitive flexibility, response inhibition, planning, and sequencing, etc. [82]. In addi-

tion, in 2009, researchers found that the brains of students with ADHD mature more

slowly than their peers, and the part of the brain that enables students to work on

”boring tasks,” such as school work, has a reduced number of dopamine receptors

and transporters, which explains why students can play video games for hours but

struggle to complete their homework on time [83]. Thus, it is vital to improving our

understanding of how to assess cognitive capabilities in children better.
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Figure 3.1. Three category model of Executive Function.

3.2 Traditional Tests to assess ADHD and Cognitive Impairments in Children

Research on cognitive impairments has been conducted for more than five

decades to understand the relationship between cognitive impairments due to var-

ious psychiatric neuro-developmental disorders. Work has been done with various

approaches for a proper diagnosis and intervention in the past. Traditionally, the

diagnosis starts with gathering comprehensive background information through in-

terviews with the children, parents, and school teachers, followed by trained psychol-

ogists administering standardized tests and a feedback session on the performance to

explain the findings, provide recommendations for possible treatments or interven-

tion. Figure 3.2 represents the steps involved in the assessment of suspected ADHD.

The procedure usually starts with a psycho-social intake questionnaire to understand

the medical history, developmental history, immediate environment, social history,

family psychiatric history, etc., followed by tests to understand the child’s behavior

to various circumstances. The following sections provide a brief introduction to some

of the commonly used approaches to assessing ADHD and cognitive impairments.
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Figure 3.2. Overview of procedural heuristic for the assessment of suspected ADHD
[4].

3.2.1 Swanson Nolan and Pelham (SNAP) Questionnaire

The Swanson, Nolan, and Pelham Teacher and Parent Rating Scale (SNAP),

developed by James Swanson, Edith Nolan, and William Pelham, is a 90-question

self-report inventory designed to measure Attention Deficit Hyperactivity Disorder

(ADHD) and Oppositional Defiant Disorder (ODD) symptoms in children and young

adults [84]. Each question measures the frequency of a variety of symptoms or be-

haviors, in which the respondent indicates whether the behavior occurs ”not at all,”

”just a little,” ”quite a bit,” or ”very much.” The questionnaire is designed for use

with children and young adults ages 6-18. The results provide insights on measures

such as inattention, hyperactivity, impulsivity, etc.
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3.2.2 Computerized Assessment Tests

Computerized tests to assess various cognitive measures provide a more signif-

icant benefit of speed, accuracy, and low cost. Furthermore, automated tests have

several advantages over paper-based tests. These include standardized administra-

tion of the test across a wide range of subjects, automatic scoring, and reporting,

self-paced instructions. In addition, computerized tests are consistent in providing

quantitative analysis of performance, allow for frequent assessment of cognitive func-

tion, and in some instances can also be self-administered inexpensively at home. One

such toolkit which is widely used is the NIH toolbox cognitive Battery (CB) [5]. In

this section, we review existing computerized neurocognitive tests and their effective-

ness for an executive behavior assessment. In recent years, many assessment tests

have been published to assess various aspects of Executive Functions (EFs) such as

Inhibitory Control, Working memory, Cognitive or mental flexibility.

Eriksen Flanker Test is a set of response inhibition tests that are used to assess

the ability to supress responses that are inappropriate in a particular context. In this

test, the participants are required to indicate the left-right orientation of a centrally

presented stimulus while inhibiting attention to the potentially in-congruent stimuli

surrounding it (i.e., the flankers, two on either side), in this case, the stimuli are

arrows pointing left or right. The modified flanker task [5] is a version of the Eriksen

Flanker [85] task was adapted from the Attention Network Test [86]. In the modified

version, which is used with children, the stimuli are fish (designed to be more engaging

and larger, making the task easier). The version created for the CB includes both an

easier fish block and a more difficult arrow block. On some trials, the orientation of

the flanking stimuli is congruent with the orientation of the central stimulus, and on

others, it is in-congruent. Performance on the in-congruent trials provides a measure
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of inhibitory control in the context of selective visual attention (which can also be

considered a measure of executive attention). Figure 3.3 represents a trial sequence

for the flanker inhibitory control and attention test.

Figure 3.3. Trial sequence for the Flanker inhibitory Control and Attention Test [5].

The Dimensional Change Card Sort (DCCS) Test was proposed to

measure cognitive flexibility, also known as task switching or set-shifting. This task,

designed by Zelazo and colleagues based on Luria’s seminal work on rule use, has been

used extensively to study the development of cognition in childhood. In the standard

version of the DCCS, children are shown two target cards (e.g., a blue rabbit and a red

boat) and asked to sort a series of bivalent test cards (e.g., red rabbits and blue boats)

first according to one dimension (e.g., color), and then according to the other (e.g.,

shape). Most 3-year-olds perseverate during the post switch phase, continuing to sort

test cards by the first dimension, whereas most 5-year-olds switch flexibly. Both the

standard version of this task and a more challenging version show excellent test-retest

reliability in childhood. Figure 3.4 represents a trial sequence for the DCCS test.

The List Sorting Working Memory Test is a sequencing task requir-

ing children and adults to sort information and sequence it. Items are presented

both visually and auditorily. First, participants are presented with a series of illus-
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Figure 3.4. Trial Sequence for the Dimensional Change Card Sort Test [5].

trated pictures, each depicting an item on the computer, along with their auditory

names—each item is displayed for 2 seconds. Next, participants are instructed to

remember the stimuli and repeat them verbally to the examiner in order of size, from

smallest to largest. The number of objects in a series increase on successive items,

thereby taxing the working memory system when longer sequences need to be remem-

bered. Furthermore, the task starts with a ”1-list” version where the children have

to sequence one type of stimuli according to size order and then switch to a ”2-list”

version where two types of stimuli have to be sequenced, each in size order.

The stop-signal task has been built to assess response inhibition and re-

sponse time where the participants are expected to respond based on visual cues

[6]. Participants were asked to press a button as quickly as possible when the tar-

get appeared. If participants did not respond within 650 ms, they received negative

feedback. During ’Stop trials,’ a centrally displayed red stop signal was presented

after the green target appeared at various delays, and participants were asked not to

respond. Figure 3.5 represents a sequence of the stop-signal task.
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Figure 3.5. Schematic representation of stop-signal task. During GO trial, partici-
pants responded to a peripheral target appearing on the right or left side by pressing
the corresponding button. During STOP trial, a centrally presentaed red stop-signal
appeared at a variable delay follwoing the GO cue. Participants were instructed to
inhibit their response when the STOP cue appeared [6].

3.3 Drawbacks of the Current Methods in Measuring Cognitive Skills

The discussed traditional and Computer-Based Assessment tests in this chapter

have proved to be very effective in assessing cognitive skills. The NIH toolbox has

been a standardized tool for such assessment tests in recent years. However, these

tasks, being computer based do not require much body movements of the participants

as part of the assessment process. Studies have shown significant improvement in

cognitive skills of children who are more active physically, which establishes a stronger

connection between physical movements and cognitive skills [87, 88]. Thus, there

is a need for assessment tests that are both physically and cognitively demanding

and are closer to the daily functions of children. The next chapter introduces a

novel assessment test, Activate Test for Embodied Cognition which intends to assess

cognitive skills through physical tasks.
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CHAPTER 4

THE ATEC SYSTEM

4.1 Introduction

In the previous chapter, we presented some of the popular techniques to as-

sess cognitive impairments in children and how cognitive impairments are among

the common effects of ADHD. We discussed how these assessments were made in

earlier times, which was more of a subjective measure that demanded objective mea-

sures to assess cognitive aspects in children. Advances in technology and Artificial

Intelligence (AI) facilitated building computerized assessments to produce more ac-

curate measurements to determine various cognitive elements, specifically executive

functions. This chapter presents the impacts and effects of physical exercises and

activities on cognition and cognitive training.

4.2 Physical Tasks to Assess Cognition in Children

Physical activities are an essential manifestation of cognitive functions [89].

Consequently, physical activities can be used to assess and train cognitive skills [90]

and such assessments are easy to implement in school settings. At the same time,

understanding how physical manifestations of cognitive skills correlate with other

types of manifestations (such as response to problem-solving computer-based tasks)

remains far from complete [91]. A key hurdle in improving this understanding is the

difficulty and time expense of measuring performance in physical activities.

The inclusion of physical exercises in cognitive training is motivated by research

illustrating that physical fitness and activity in children lead to measurable improve-
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ments in cognitive skills and academic performance [87]. The physical tasks should

be designed so that their cognitive demands should be similar to the cognitive de-

mands made by the computer-based training tasks. Thus, these physical exercises

can be used to train sustained attention, self-regulation, working memory, cognitive

flexibility, and multiple simultaneous attention [92].

4.3 The Head-Toes-Knees-Shoulders (HTKS) Test

Head-Toes-Knees-Shoulders (HTKS) is one of the prevalent and established

tasks to assess various cognitive measures. HTKS measures behavioral self-regulation

integrates aspects of Executive Function into a short game appropriate for children

aged 4-8 years. Using no materials but rather relying on interactions between the

examiner and the child, the HTKS has three sections with up to four paired behavioral

rules: ”Touch your head,” ”touch your shoulders,” ”touch your toes,” and ”touch your

knees.” Children first respond naturally and then are instructed to switch rules by

responding in the ”opposite” way (e.g., touch their head when told to touch their

toes) [93]. If children respond correctly after all four paired behavioral rules are

introduced, the pairing is switched in the third session (i.e., head goes with knees

and shoulders go with toes). HTKS measures behavioral self-regulation by requiring

children to integrate into their behavior the following EF skills: (a) Paying attention

to the instructions, (b): using working memory to remember and execute new rules

while processing the commands, (c) using inhibitory control through inhibiting their

natural response to the test command while initiating the correct, unnatural response,

and (d) using cognitive flexibility and working memory when rules accumulate and

then change in the second and third sessions. Performance in the HTKS task was

shown to correlate with academic achievement outcomes in young children [94]. HTKS

is not a task that children participants explicitly receive training on; hence, HTKS
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is a valuable measure of improvement in physical manifestations of cognitive skills,

independent of the specific training tasks.

4.4 Activate Test of Embodied Cognition

The Activate Test of Embodied Cognition(ATEC) system [95] has been specif-

ically built to assess various cognitive measures such as working memory, response

inhibition, coordination from physical exercises which children perform as part of

the test. Table 4.1 represents the list of ATEC tasks that has been formulated for

various measures. It consists of 17 physical exercises with different variations and

difficulty levels, designed to provide measurements of executive and motor functions,

including sustained attention, self-regulation, working memory, response inhibition,

rhythm and coordination, and motor speed and balance. The measurements are con-

verted to ATEC scores which describe the level of development (early, middle, full

development).

Table 4.1. ATEC tasks to assess various Cognitive Measures

Category Test

Gross Motor Gait and Balance
Natural walk, gait on toes, Tandem Gait, Stand
eyes closed hands outstretched, stand on One Foot

Synchronous Movements March Slow, March Fast
Bilateral Coordination and Re-
sponse Inhibition

Bi-Manual Ball Pass with Red Light, Green Light,
and Yellow Light

Visual Response Inhibition Sailor Step Slow, Sailor Step Fast
Cross Body Game Cross your body (Ears, Shoulders, Hips, Knees)
Finger-Nose Coordination Hand Eye Coordination

Rapid Sequential Movements
Foot Tap, Foot-Heel, Toe Tap, Hand Pat, Hand
Pronate/Supnate, Finger Tap, Appose Finger Suc-
cession
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4.4.1 Gross Motor Gait and Balance

Generally, people with cognitive impairments can experience motor dysfunc-

tions, including deficits in gait and balance. The tasks include walking forward,

where the participants were made to walk in a straight line for x number of steps.

The main goal was to analyze if there is any abnormality in walking patterns and

balancing.

4.4.1.1 Gait on Toes

In this task, the participants are asked to walk for eight steps on their toes(sneaky

toes). The task assesses how many correct steps the child can make out of 8 expected

number of steps. In this scenario, the correct number of steps means a correct step

on toes.

4.4.1.2 Tandem Gait Forward

In this task, the participants are asked to walk in a straight line where for

every step, the heel of the foot moving forward is expected to touch the toes of the

leg behind. The correct steps here is calculated through the total number of correct

steps performed out of the total number of expected steps(i.e. eight steps)

4.4.1.3 Stand-Arms Outstretched

This task mainly aims to assess balance in children. The participants are ex-

pected to stand still with their both hand out-stretched for 10 seconds. Participants

are scored based on their ability to stand for the given time duration. In addition,

scores were provided based on the number of seconds they can stand without giving

up.

45



4.4.1.4 Stand on One Foot

In this task, the participants are expected to stand on one foot for 10 seconds.

Participants are scored based on their ability to stand for the given time duration.

Scores were provided based on the number of seconds they can stand without giving

up. In the first trial, this was performed with the left foot, and in the second trial,

the same was performed with the right foot.

4.4.2 Bilateral Coordination

Bilateral coordination refers to the ability to coordinate both sides of the body

at the same time in a controlled and organized manner. For example, a child who is

delayed in developing bilateral coordination skills may prefer to use one hand alone

rather than both hands together. Good bilateral integration/coordination indicates

that both sides of the brain are communicating effectively and sharing information.

Children who have difficulty coordinating both sides of their body can have difficulty

completing daily living takes(dressing, tying shoes), fine motor activities(stringing

beads, buttoning), visual-motor tasks (drawing, writing) and gross motor activities

such as walking, climbing stairs, etc.

Bi-manual Ball Pass

During this task, the participants are expected to juggle a ball based on auditory

cues. During the task, the participant is expected to pass the ball from one hand to

another hand for every beat accurately and in a timely manner. This is done for

two trials, with the first trial where the commands are provided for every 1.5 seconds

(slow) and the commands are provided for every 1 second (fast) for a total of 8

repetitions.
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4.4.3 Attention, Response Inhibition

Attention is one of the important components of cognitive functions. Attention

is defined as the ability to focus and process information in the environment. In this

process, it is important to ignore and filter out unrelated information and to be able

to perform a task despite the presence of a distraction. Similarly, Inhibitory control,

also known as response inhibition, is a cognitive process and, more specifically, an

executive function that permits an individual to inhibit their impulses and natural,

habitual, or dominant behavioral responses to stimuli in order to select a more ap-

propriate behavior that is consistent with completing their goals. Self-control is an

important aspect of inhibitory control. For example, attempting to cross a road and

to stop on seeing a vehicle on the way.

Ball Pass to the Beat

Similar to the bi-manual Ball Pass, in this task, the participants are expected

to juggle the ball based on both auditory and visual commands. In addition to just

passing the ball, the task had additional constraints such as ”No ball pass” and ”hand

raise.” The commands were provided in the form of lights,

”Green light” - Make the pass

”Yellow light” - Hand Raise

”Red Light” - No Pass

The commands are provided in the form of both ”auditory” and ”visual” ques.

There are two trials for each kind of cue: one where the commands are fired for

every 1.5 seconds (slow) and the other where the commands are provided for every 1

second(fast) as represented in Figure 4.3.
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Figure 4.1. Audio visual stimuli during the task. The speaker represents the audio
cues and the display represents the colors displayed on a screen.

4.4.4 Motor speed

Foot Tap - Tap the toes of the feet as fast as possible for 10 seconds.

Heel-to-Toe Tap - Alternate between heel and toe-tapping

Hand Pat - Tap the hand to the leg as fast as possible for 10 seconds.

Hand Pronate/Supinate - Alternate between the back of the hand and palm

Finger Tap - Tap the index and thumb together as fast as possible for 10 seconds.

Oppose Finger Succession - Tap the thumb and each finger together in succes-

sion.

4.5 ATEC Data Acquisition System

In this section, the data collection setup for the ATEC system is defined. Chil-

dren between the age of 6-10 years were invited to participate in the ATEC assessment

after the required parent consenting and screening procedure required by the study

protocol. The ATEC administration includes a recording and administrative inter-

face created to streamline assessments with as little distraction and interruption as

possible. The ease of use is paramount as the assessment suite will be by both experts

and non-experts. Video data is preferred as the sensor-based data collection can be
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more expensive and distracting, especially with child participants. Two Microsoft

Kinect V2 cameras record a front and side view of the participants. RGB, depth,

audio, and skeleton data are stored. The recording modules are connected to the

Android-based administrative interface, which controls the flow of the assessment. It

allows the administrator to select between all the tasks in the ATEC suite. Figure 4.2

represents the data collection setup. Each task has an instructional video and one or

more assessment videos, while there are also practice videos to ensure that the child

has understood the rules. An instructional video gives a brief demonstration of the

current exercise and how it is performed. Selecting an assessment video triggers the

recording modules to activate while Aliza, the on-screen instructor, guides the children

through each task. An annotation software was developed to enable both computer

scientists and cognitive experts to visualize and annotate the collected data. The soft-

ware performs automated segmentation given the timestamps of the presented stimuli

for each task. For each assessment recording, an expert evaluates the performance

against a set of task-specific criteria. The annotation and scoring guidelines were

designed considering both computer vision and related cognitive aspects of the task.

This expert annotation is then used as the benchmark for automated approaches.

Figure 4.3 represents a screenshot of the annotation software.

4.6 ATEC Dataset

Data were collected from 55 children between the age of 6 - 10 years. The

procedure starts with the parents completing pre-screening paperwork which col-

lects information about the child’s history and family history. This is followed by

paper-based assessment tests such as the Psycho-social intake questionnaire, Social

Responsiveness Scale, Swanson, Nolan, and Pelham questionnaire, etc., that were

discussed in the previous chapter.
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Figure 4.2. The ATEC setup includes two kinect cameras, a large screen and a tablet
interface for the administrator. Administration takes place in classroom environ-
ments.

Figure 4.3. Annotation software was developed to enhance manual scoring and anno-
tate the collected data, given the task rules and the cognitive measures to be assessed.

This is followed by standard computer tests from the NIH toolbox to measure

various cognitive measures such as attention, response inhibition with tests such as

go/no go tests, flanker tests, etc. Finally, the children perform all the tasks from the

ATEC program. Data were collected for two trials, with each trial a week apart.
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4.7 Automated System to Assess Physical Exercises

Unlike computer-based exercises, there are currently no automatic methods for

assessing individual performance during training from physical activities. Therefore,

it isn’t easy for these embodied cognitive exercises to collect a large amount of data

to study correlations between performance in those exercises and overall level and

improvement in specific cognitive skills. Furthermore, there is also no way to do

precise error analysis for feedback and correction. Thus, a computational goal of the

proposed research is to overcome these limitations by developing human motion anal-

ysis algorithms that measure performance for the exercises mentioned above through

various computational techniques.
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CHAPTER 5

ASSESSING MOTOR SKILLS WITH RAPID SEQUENTIAL MOVEMENTS

5.1 Introduction

In this work, published by Babu et al. [7], a novel intelligent system to monitor

and assess motor speed in children while they perform rapid sequential hand move-

ments through which the cognitive development of the child can be estimated. The

system uses computer vision techniques to detect hands automatically and predict the

gesture as they are performed. At the end of the task, the system provides statistics

on the performance of the subject. We use a task from the proposed ATEC system,

which is the ”Finger Opposition” task. The task is a well-established task to assess

sensorimotor function for various neurological disorders. Students are instructed to

tap the index, middle, ring sequentially, and little finger against their thumb during

this task, as shown in Figure 5.1. The subjects are expected to perform the sequential

movement for every count/beat provided by the system. The proposed approach has

a user interface that can automatically record performed actions using a simple cam-

era, predict actions, and visualize the performance statistics. The proposed system

was built with state-of-the-art deep learning techniques for hand detection and action

recognition.

5.2 Finger Opposition Dataset

As part of this work, a dataset was created for the finger opposition task with

five subjects (2 males and 3 Females) and combined with an existing dataset [96].

The combined dataset consists of data from 10 subjects (approximately 4500 images)
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Figure 5.1. Finger Opposition task: The four hand represents the four classes [7].

with various hand angles to increase the robustness of the system. The image frames

were manually divided into sequences(set of image frames determining a class) and

were annotated as depicted in Figure 5.2. A sequence is complete when one of the

four fingers touches the thumb and returns to the original position. We annotated a

total of 200 training sequences with sequence lengths ranging from 10 frames to 28

frames. Similarly, there were 50 validation sequences, and the system was tested with

30 sequences that were collected in real-time.

Figure 5.2. Sample image sequence for class 1 (top) and class 3 (bottom) [7].
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5.3 Proposed System

The primary goal of the proposed method is to build an intelligent system that

can automatically capture the actions performed by the subjects, classify them and

generate scores as shown in Figure 5.3. This will serve as a tool to evaluate and assess

physical activities which can disclose executive function disabilities. The proposed

system consists of multiple parts functioning together to achieve this goal.

Figure 5.3. Proposed Architecture.

5.3.1 Intelligent GUI

The GUI that has been developed allows the therapist to have control over the

complete system. The GUI has two main components, Recording and Analysis. The

interface was developed with Flask, a web development framework for Python. The

modular design provides a comfortable and easy-to-use interface for both recording

and analysis.
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5.3.1.1 Recording Interface

This module of the interface is primarily used by the therapist to initiate or

to stop the recording. The interface can produce beeps while recording to guide the

subject. It also facilitates managing the frame rate and resolution of the image frame

is recorded. The interface also provides a view of what is being recorded during the

task. This way, the therapist can keep track of how and what is being recorded. For

the image frames recorded through the interface, we define a temporal window with

its size based on the average time taken to complete a sequence (i.e., Switch from

one finger to another finger). Predictions are made on the image frames at every

step of the sliding window. The predictions are reflected on the interface for real-

time visualization. Figure 5.4(a) shows a sample screenshot of the fully functional

interface.

5.3.1.2 Analysis Interface

Once the recording is stopped, the therapist has the option to visualize the

performance statistics of the subject. The interface provides a consolidated score

for the subject and step-wise scores allowing the therapist to see where the subject

missed the sequence. From Figure 5.4(b), which shows a screenshot of the score

table, The therapist will be able to see a detailed view for every sequence (consists

of all four subsequences). Column 2 (Performed Sequence) explains the order in

which the sequence was performed. The abbreviations represent I - Index Finger,

M - Middle Finger, R - Ring Finger, L - Little finger. For example, in sequence 1,

the order is ”IMRL,” which means the participant has performed it in the correct

order. Hence, the correctness for that sequence is 100 percent, with a full score of 1

point. In sequence 2, the participant has correctly performed only one subsequence;
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hence the correctness percentage is 25 percent with a score of zero. Similarly, Figure

5.4(c) allows the therapist to visualize the correctness as a graph where each column

represents a sequence, and each colored square represents a finger. The column is

generated based on the fingers that were correctly performed in a sequence. For

example, in Figure 5.4(b), sequence 2, the subject performed only the little finger in

the correct order, and hence only its respective color is shown in Figure 5.4(c)

Figure 5.4. (a) Screenshot of the Recording Interface, (b) Screenshot of the Score
table, (c) Screenshot of the performance table.

5.3.2 Hand Detector

The first part of the computer vision pipeline is the Hand Detector. This part

aims to detect the active hand in the scene and pass it on to the action recognition

system. Even though there are numerous traditional approaches such as HOG clas-

sifiers, Ada-boost classifier, etc., it is possible to build a more robust, accurate, and

time-efficient system for real-time processing by exploiting recent developments in

Deep Neural Networks.

For hand detection, we use an approach called Single Shot Multi-Box Detector

(SSD)[97] which was built using EgoHands Dataset [98, 99]. The feature that sets

SSD apart is that it uses only a single deep neural network for the entire process of
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detecting the hands. In contrast, other methods such as Fast-RCNN [100] employ

multiple elements in their pipeline, which makes SSD more time-efficient [97]. The

algorithm splits the given input frame into a grid of size N×N , where for every cell in

the grid, a set of default boxes with different ratios and scales are generated. During

prediction, the network generates scores for the presence of objects(hand) in each

of the default bounding boxes. If the score is greater than a certain threshold, the

system assumes a hand in that particular generated default box. The system finally

performs non-maximum suppression to remove duplicate predictions. In addition,

this procedure is performed at various scales of the feature map to capture hands of

different sizes.

5.3.2.1 Training, Validation, and Testing

As mentioned above, the system was trained with EgoHands dataset [98] which

contains more than 4800 image frames with approximately 15000 ground-truth labeled

hands. This dataset was chosen because it includes images of people performing dif-

ferent activities that involved hand movements (playing chess, playing cards, solving

puzzles, etc.).

The dataset was split into train(80%), validation(10%) and Test(10%). In ad-

dition, the system was tested on numerous image frames collected throughout the

Finger Opposition task. The detector was evaluated with Mean Average Precision

(mAP). The system’s mAP was the highest of 96 percent when tested at a 0.5 thresh-

old. The system works at a rate of 15 frames per second on a single GPU. Only the

detected hand is passed on to the next stage as other parts of the captured frames

are not relevant for the classification. Figure 5.5 represents a sample output of the

Hand Detector system.
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Figure 5.5. Prediction from Hand Detector.

5.3.3 Action Recognition System

Our system classifies a sequence of images of a specific window size into one

of the four classes mentioned above, as shown in Figure 5.1. Our action recognition

system is based on 3D Convolutional Neural Networks (CNNs) [101]which is a natural

successor of standard 2D CNNs [102]. CNNs have achieved state-of-the-art results in

many computer vision applications. They are a variation of artificial neural networks,

which are translation invariant, and weights of spatial filters in each layer are shared

across the entire image. In 3D CNNs, instead of 2D spatial filters, 3D Spatio-temporal

filters are employed, which means they extract features from both the spatial and the

temporal dimensions by performing 3D convolutions, thereby capturing the motion

information encoded in the multiple adjacent frames.

In this work, we used a particular variant of CNNs called Residual Deep Neural

Networks (ResNet)[103] which has been one of the most successful architectures for

image classification and feature extraction. The residual neural network utilizes skip

connections or short-cuts to jump over some layers. The motivation for skipping

over layers is to avoid vanishing gradient problems, facilitating building more deeper

networks that are easy to train and optimize.
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One of the main challenges of 3D CNNs is that they have a huge number of

learnable variables, and as a result, they require a huge amount of data for training.

Training such deep networks with fewer data leads to overfitting of the model. Thus

in our experiment, we used a comparatively shallow network 3D-ResNet10 [104] which

is basically a ResNet with ten layers. We also attempted to pretrain the network on

general activity recognition datasets like kinetics [105], but it did not contribute much

towards better performance. Each block of 3D-ResNet10 comprises convolutional

layers with a 3D kernel of size 3 × 3 × 3, Batch Normalization (BN), and Rectifier

Linear activation units (ReLu).

5.3.3.1 Training, Validation and Testing

During training, we split our dataset into training and validation with a ratio

of 4 to 1. We performed K-fold cross-validation during our training process. For

testing, we used 30 sequences that were collected in real-time. During the training,

the length of the sequence was 8, i.e., we trained our network with 8 images for every

sample. The image frames were RGB images with a resolution of 64× 64

Our network was optimized with Adam optimizer with a learning rate of 0.1,

which was divided by 10 when validation loss saturated. Figure 5.6 represents the

Confusion Matrix generated for the test dataset with the best performing model based

on Table 5.1. From the confusion matrix, we observed that the system classified class

1 and 2 perfectly while there was some miss classification for class 3 and class 4.

5.3.4 Scoring System

The Scoring system calculates the scores for the task performed by the subject

based on the task rules and guidelines. Before calculating the scores, the predictions

are pre-processed in order to smooth the prediction made by the action recognition
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Figure 5.6. Confusion Matrix for the Action Recognition tested real time.

Table 5.1. Comparison with 3D ResNet and its variants

Model Val. Pre. Recall Test acc. (Sec.)
ResNet10 0.89 0.88 0.88 0.80 0.12

ResNet10 Pre. 0.92 0.91 0.91 0.625 0.11
ResNet18 0.39 0.17 0.39 0.37 0.18

ResNext 50 0.26 0.28 0.24 0.20 0.23

system. The smoothing stage is expected to handle any of the misses in the right

prediction from the computer vision system.

5.3.4.1 Smoothing Process

During testing, we use the Sliding Window Approach to make predictions for

the frames that are being collected. Depending on the subject’s speed performing the

task and the frame rate at which the system works, there is a possibility for multiple

predictions when the subject switches from one finger to another. An example out-

put of prediction will look similar to (1,1,1,1,2,2,2,3,3,3,3,4,4,4,4), where the number

represents the class predictions of a window, and a confidence score is associated with

each prediction is also generated. Then, we perform a smoothing process similar to
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the Moving Average approach, where it helps fix any miss classification with the help

of the confidence score. For every prediction, if the confidence score is less than a

certain threshold (i.e., the system is not confident about its prediction) and if the

current prediction is different from its neighbors, then the current prediction will be

updated. After the smoothing process, the duplicate predictions are combined into

one prediction by averaging their confidences.

5.3.5 Calculating Scores

The Scoring System generates a score for the exercise performed. A complete

sequence is when the subject performs all four subsequences, i.e., Thumb to the Index

finger, Thumb to Middle finger, Thumb to the Ring finger, and Thumb to Little finger.

The subject receives a full point when a complete sequence is achieved. The score

ranges from a minimum of zero to a maximum of the number of times the complete

sequence is performed (The maximum is considered as five in this case). The subject

is expected to switch from a subsequence to another only after hearing the beat from

the system.

Figure 5.7. (Left): Training curve comparisons for different architectures considered.
(Right): Validation curve comparisons for the architectures considered.
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5.4 System evaluation, analysis, and Discussion

As mentioned, action recognition is still an unsolved problem, and it is highly

dependent on large datasets. Therefore, multiple attempts were made to choose the

suitable method for the Finger Opposition task. Based on the recent surveys on

action recognition [106, 26, 107], we built methods that have been proven to work

best on public datasets, trained, fine-tuned them. Table 5.2 shows the attempted

ways, and the optimal method was chosen based on the validation results.

3D Convolutional Networks was the right approach for this problem, and it has

been observed that residual networks work better for action recognition [13], still,

we attempted to train on other popular networks such as DenseNet, which did not

yield good results. ResNet 18 was built and trained; the model performed poorly

with validation and test accuracy less than 40 percent. One of the reasons for this to

happen could be the model’s inability to generalize. Hence, an attempt was made to

vary the depth of the network by using ResNext-50 and ResNet-10. While ResNext-50

performed poorly as predicted, we observed that ResNet-10 achieved both validation

and testing accuracy and precision and recall more than 80 percent, which was the

best among all the attempted approaches. We also tried to pretrain ResNet-10 with

other public datasets such as Kinetics, UCF-101, etc. but failed to beat the one

trained from scratch. We also evaluated the system on its time taken to process a

sub-sequence. Table 5.1 shows the time taken for each of the models to predict one

sequence.

Also, we plotted the error percentage of the different ResNet models during

training and validation. ResNet-18 and ResNext-50 shows high error rate. Based

on all the above observations, we concluded that ResNet-10, which was trained from
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scratch, performed better than all other attempted models and methods, including

CNN+RNN(LSTM, GRU), Multi-Stream Networks.

Table 5.2. Table showing the comparison with other state-of-the-art methods

Method Val. Accuracy
2D-CNN+LSTM 0.65
2D-CNN + GRU 0.60

Multi-Stream Network 0.76
3D Convolutional Networks 0.89

5.5 Evaluation of the End-to-End System

The accuracy of the end-to-end system is measured in terms of the performance

attained by the complete pipeline (Hand Detector, Action Recognition, and Scoring)

in successfully scoring the exercise. The input to the system will be a stream of

RGB image frames, and the output of the system will be scored. We collected data

from 5 new subjects who were not involved in the initial data collection to assess

the complete system. This was done to ensure that the system is user-independent.

With the manual annotations, we calculated sequence-wise and total scores for all

the participants. Figure 5.8 represents the performance of all 5 participants. In the

figure, the columns (pair of bars) represent individual participants, the left bar in each

column represents what the participant actually performed, the right bar represents

system predictions, and the colors in each bar represent different sequences. As

mentioned above, every participant performed the sequence five times; hence, the

maximum step-wise score can be attained 20 (5 × (Index,Middle, Ring, Little)).

The scoring in the graph is similar to the correctness column in Figure 5.4(B). For

example, in Figure 5.8 first column, the ground truth score is a perfect 20 as the
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subject performed all the five sequences perfectly while the prediction system correctly

predicted the actions. Similarly, we can observe that in column 2, even though the

participant performed all the sequences perfectly with a ground truth score of 20,

the system missed classifying sequences 3 and 4 correctly. From Figure 5.8 we can

observe that the system generated score accurately 96 percent of the time.

Figure 5.8. End-to-End System Performance. Left bar represents the actual perfor-
mance of the subjects and right bar represents the system’s prediction. Each column(2
bars) represents a participant .

5.5.1 Observations

From Figure 5.8, we can observe that the system scored the performance accu-

rately for most of the sequences. While measuring the system accuracy, we observed a

few different scenarios where the system did not perform as expected. Such scenarios
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include a drop in frames which sometimes missed temporal information leading to

wrong predictions. Also, during the sliding window process, there were times when

the window had frames from more than one class leading to ambiguity in classification

for the system. These could be avoided by improving the model performance with

additional data during the training, specifically for classes three and four.
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CHAPTER 6

AN AUTOMATED SYSTEM TO ASSESS GAIT, ATTENTION AND RESPONSE

INHIBITION

6.1 Introduction

This chapter introduces some of the important cognitive functionalities such as

gait, attention, and response inhibition, followed by an automated system that can

measure these functionalities through a physical task. The preliminary approach that

uses a simple threshold-based algorithm is introduced, followed by the drawbacks of

such approaches. Next, we introduce some of the work that has been proposed in

recent years to solve the action recognition problem and evaluate their performance on

our dataset, followed by a multi-modal approach that uses different features extracted

from the RGB images. Finally, we compare the performance of the proposed multi-

modal approach with some of the state-of-the-art approaches published in the recent

past.

6.2 Computer Vision for Motion Analysis

Human activities are a sequence of body configurations and postures. Therefore,

physical activity recognition can be characterized as a simultaneous alignment and

recognition problem. This consists of recognizing body gestures from videos and

measuring the correctness of the movement performed based on the alignment of

these body configurations with expected movement. Specifically, in computer vision,

this has been a long-existing problem. The motion boundaries around the person’s

contour seem to contain information for the action recognition that is as important
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as the optical flow within the region of the body. This hints at the idea that flow

may help extracting the motion and form that is the shape of the object performing

the action [9]. Similarly, human skeleton information also has been proved to capture

the motion dynamics of people in the scene as the human body can be viewed as an

articulated system of rigid bones connected by hinged joints. As the area evolved,

multiple approaches have been attempted and applied to solve this problem.

In addition to working directly on the RGB video/sequence of images, work has

proved that extracting valuable features from the video/sequence of images plays a

vital role in solving this problem. In the following section, we will look into some of

the commonly extracted features for Human action recognition.

6.2.1 Body Pose Estimation

One popular approach in recent years for human action recognition is to extract

the body pose information from the scene, which is used as features to solve the

Human action recognition problem. The extracted features from the sequence of

frames are used to solve the temporal alignment problem. Many techniques have been

proposed in recent years to model human body models. Some of the popular ways of

representing/modeling humans are skeleton-based models, contour-based models, and

volume-based models, as mentioned in Figure 6.1. Skeleton-based models, also known

as stick figures or kinematic models, represent joint locations and the corresponding

limb orientations following the human body skeleton structure. The skeleton-based

model can also be described as a graph where vertices indicate joints and the edges

encoding constraints or prior connections of the joints within the skeleton structure.

Generally, for skeleton-based pose estimation, two different approaches are followed;

The top-down approach employs person detectors to obtain a set of the bound-

ing box of people in the input image. It then directly leverages existing single-person
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Figure 6.1. Commnly used human body models. (a) Skeleton-based models; (b)
contour-based models; (c) volume-based models [8] .

pose estimation to predict human poses. The expected poses heavily depend on the

precision of the person’s detection. While bottom-up methods directly indicate all the

2D joints of all persons and then assemble them into independent skeletons. Some of

the popular bottom-up approaches existing today include Deep Cut employing Fast

R-CNN-based body part detector first to detect all the body part candidates, labeling

each part to its corresponding part category, and assembling these parts integer lin-

ear programming to complete the skeleton. Similarly, OpenPose uses Convolutional

Pose Machines (CPM) to predict candidates of all body joints with part affinity fields

(PAFs). The proposed PAFs can encode locations and orientations of the limbs to

assemble the estimated joints into different poses of persons. Similarly, Pose Partition

Network (PPN) aims to conduct both joint detection and dense regression for joint

partition. In addition, the PPN performs local inference for joint configurations with

joint partitions.
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6.2.2 Optical Flow

Optical flow is one of the popular motion representations for action recognition

[9]. Optical flow is often formulated as estimating the 2D projection of the true

3D motion of the world. The field of optical flow has made significant progress by

focusing on improving the numerical accuracy on the standard benchmarks. The

first end-to-end trainable deep convolutional network is FlowNet [108] which was

trained on synthetic data. To fill the shortcomings of the above method, SpyNet [109]

was proposed a combination of the traditional pyramid approach and convolutional

networks.

Figure 6.2. Sample results from SpyNet. The first image represents the input image,
the two flow fields and the euclidean distance between the two flow vectors at each
pixel. Flow vectors noticeably change more around motion boundaries and where
humans are located [9].
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6.3 Assessing Response Inhibition and Attention with Ball Drop to the Beat Task

Inhibitory control, also known as Response Inhibition, is a cognitive process

and, more specifically, an executive function that permits an individual to inhibit

their impulses and natural responses to stimuli to select more appropriate behavior

that satisfies the required goal. Some of the existing popular neuropsychological tests

include Flanker task, go/no-go, primarily computer-based, which were discussed in

Chapter 3. Ball Drop to the Beat is a physical task that has been built to assess

response inhibition. As part of this task, the child is expected to juggle the ball based

on auditory and visual commands. In addition to just passing the ball, the task had

additional constraints such as ”No ball pass” and ”hand raise.” The commands were

provided in the form of lights,

• Green light” - Make the pass

• Yellow light” - Hand raise

• Red Light” - No pass

Instructions were provided through visual and auditory cues and at a different

pace. The automated system aims to detect the actions performed and score them

according to the rules. The scores were generated based on the following two criteria,

Accuracy: In the given time, for the given command, what action was performed

by the child.

Rhythm: How accurately in terms of time the child performed the task.

The ball drop dataset consists of a total of 3300 video segments that were ex-

tracted from the video recordings of 25 children. These video segments were manually

segmented and annotated.
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6.3.1 Preliminary Approach

The complete pipeline to score the ball drop task consists of multiple parts

as explained in [110] and is represented in Figure 6.3. First, videos are recorded

at the rate of 30 frames per second. Second, the input video is broken down into

image frames which are decoded. As the first step, for feature extraction, we extract

the body key points of the participants. The body key points considered for this

experiment are wrist points, elbow points, and shoulder points. A Convolutional

Neural Network (CNN)-based approach is used to extract the body keypoints [111].

The system uses the decoded image as input of size w×h. The Deep Neural Network-

based model predicts 2D confidence maps of the body joint locations and a set of 2D

vector fields of part affinity fields which is the degree of association between the parts.

With the key points extracted for every frame in the segment, more detailed

features such as the x-distance, y-distance between the wrist points, elbow points,

wrist, and shoulder points were extracted. These features were used to detect various

events during the exercise. For every segment, the features were pre-processed to

remove noise. Noise includes any wrong detection of body key-points, key-points

not being detected, etc. First, the moving average is computed on the features for

every segment, followed by applying a low pass filter to remove the high-frequency

components caused by hand jitters and minor movements.

A ball pass event occurs when the participant moves the hand holding the

ball towards the other hand, makes the transfer, and moves back to the original

position. In such a scenario, the distance between the wrist points decreases until the

transfer happens and increases again. Similarly, a hand raise event occurs when the

participant moves the hand holding the ball towards the hand’s shoulder holding the

ball and retreats to the original position where the distance between the wrist and
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Figure 6.3. The overall architecture for threshold-based approach to score ball-drop
task.

the shoulder joint initially increases and starts to decrease while retreating. A peak

is formed every time such an event occurs.

After processing the segmented features, peak and valley detection is performed

for the segment. Mathematically, peaks and valleys represent local maxima and

minima. A video segment T which consists of n image frames, with x being the

features for every image frame, is defined by

T = {(f1, x1), (f2, x2), ..., (fn, xn)} (6.1)

Where f represents the frame number. Peaks (P) and valleys (V) for a segment are

defined by,

P = {(fi, xi)|(xi−1 < xi > xi+1) ∨ (x1 > x2) ∨ (xn > xn−1)

and

V = {(fi, xi)|(xi−1 > xi < xi+1) ∨ (x1 < x2) ∨ (xn < xn−1),

∀i = 2, 3, ...n− 1}

(6.2)

With the above equations, peaks and valleys are detected, which correspond

to the respective events. Figure 6.4 (left) represents a ball pass event in a video
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Figure 6.4. Ball pass event in a video segment (left). Segmentation of features, given
the stimuli timestamps (right). The x-axis represent the frames in the video segment
and y-axis represent the vertical distance between the joint locations.

segment. Figure 6.4 (right) represents the task being divided into different segments.

In this approach, noise in the signal was detected as a ball pass when there was no

pass. Hence, a threshold on the height of the peak was considered. The height of

the peak is the distance between a peak and a valley in the segment. We used 998

segments from our dataset for this experiment. Fifteen percent (144 segments) of the

data was used to identify the right threshold for different events, and 85 percent (854

segments) of the data was used for evaluation. For these evaluations, we use data

from 7 subjects performing ten ball drop-related tasks. Each subject performed the

exercises twice, one week apart, to determine test-retest reliability.

6.3.2 Rhythm Detection

The goal of detecting rhythm was to identify how timely the child performs the

action in the given time duration. In order to identify this, the complete segment was

considered, along with the key points being detected for every frame in the segment.

Since the goal here was to identify at what point an action took place in a segment,

only the upper body key points were considered. This includes the shoulder, elbow,
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and wrist of both hands. In Figure 6.5(b), the colored keypoints(hands) represent the

features considered for the detection. For a given time t, f1 represents the features

of the left hand and f2 representing the features of the right hand and they are

computed as follows:

f1 = [z11, y11, z12, y12, ...z1n, y1n],

f2 = [z21, z21, z22, y22, ...z2n, y2n]

(6.3)

where n represents the number of keypoints being considered for the detection. The

distance dt between the feature f1 and f2 is computed as follows:

dt = f(f1, f2) (6.4)

Hence, for a given video segment containing sequence of images, the distance

between f1 and f2 in every image can be represented as D = [d1, d2, ...., dt]. After

a series of processing, such as normalizing, inverting the distance, smoothing, and

plotting the distances for every frame, it was observed that a peak formed when an

action took place. It was also observed that whenever there was no action happening

in a segment, there would be a flat line representing no action. Figure 6.5(a) represents

a sample segment with the curve representing D. The red lines in the graph represent

the upper bound and the lower bound, between which if a peak occurs, it is assumed

that the action has started and completed correctly in the given time.

6.3.3 Priliminary Results

The proposed method performs highest with 78 percent accuracy. Figure 6.6

represents the confusion matrix of the validation set using the proposed method. The

rhythm detection system was evaluated on the test set. The data in the training set

was used to empirically identify the optimal upper bound and lower bound in order
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Figure 6.5. Rhythm Detection. (a) represents the distances D plotted in a segment.
(b) represents the keypoints considered for rhythm detection .

to maximize the prediction accuracy. On the test set, the system was able to achieve

an average accuracy of 88.5 percent in detecting the rhythm score.

Figure 6.6. Confusion Matrix of Proposed method for Ball Drop to the Beat task.

The score for Response Inhibition (RI) is calculated with,

RI =
number of correct nopass/redlight actions

Total number of nopass/redlight commands
(6.5)

Similarly, the score for attention (Attn.) is calculated with,

Attn. =
number of correct raise& pass actions

Total number of raise& pass commands
(6.6)
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6.4 Tandem Gait to Assess Motor and Gait Functions

The Tandem gait is a task that is part of the ATEC system to assess gait

and balance in children. Children generally affected neurological conditions such as

ADHD exhibit motor and gait abnormalities [112]. The target is for the kids to walk

in a straight line for every beat provided with the heel of the moving foot touching the

toe of the stationary leg as represented in Figure 6.7. The dataset of the Tandem gait

task consists of 432 video segments that were manually extracted and annotated. For

all the experiments, the dataset was split such that 90 percent were used for training

and 10 percent for testing.

Figure 6.7. (a): Skeleton keypoints, (b) Example of a invalid step, (c): Example of
an valid step.
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6.4.1 Priliminary approach and Results

To automate the evaluation for the tandem gait task, the Video Inference for

Body Pose and Shape Estimation (VIBE) system [113] was used to extract the 3D

joint locations of the child from the recorded videos. VIBE is a video pose and shape

estimation method that predicts the parameters of the SMPL body model. The VIBE

system estimates a total of 25 body joints shown in Figure 6.7 (a). Since a valid step

is only when the participant’s heel touches their opposite leg’s toe, the horizontal

position of both foot heels and big toes was extracted. Further in our pipeline, the

distance between left foot toe and right foot heel and the distance between right

foot toe and left foot heel were calculated, represented in Figure 6.8. These two

signals were first filtered (by a moving average filter) to remove the high-frequency

components caused by foot jitters and minor movements and then combined to form

a single signal. Finally, a peak detection algorithm was used on both the signals to

detect valid valleys (which infer valid steps) in each signal, similar to the approach

mentioned in Section 6.3.1. The sum of the valleys that are extracted from the

mentioned algorithm provides the total score. However, for detecting the valid steps,

only valleys with certain characteristics were chosen. We set up a threshold in our

algorithm that differentiates all valid steps from the invalid ones. First, the local

minima (valley) value which corresponds to the distance between heel and toe, should

be below the threshold to be considered a valid valley. Secondly, if multiple small

valleys are close to each other in each signal, they were considered one valid valley.

For example, in Figure 6.8 there are four significant red valleys and four significant

blue valleys. The dataset was divided into 10 percent for training and 90 percent for

testing. The training data was used in identifying the right threshold for detecting

valid valleys was chosen as 0.2. Comparing the scores predicted by the computer
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vision system with the manual scores shows that the proposed method can achieve

an accuracy of 81.25%.

Figure 6.8. Distance between children heels and toes. The blue curve represents
the distance between Left toe and right heel. The red curve represents the distance
between right toe and left heel.

6.5 Supervised Learning for Human Action Recognition

As observed from the previous section results, a simple threshold-based ap-

proach is not robust in classifying the actions performed for the above-described

tasks. Therefore, this section discusses the various state-of-the-art deep learning

methods in human action recognition and its performance on the ATEC dataset and

a multi-modal supervised approach that extracts multiple features from the RGB

video to perform the classification. As part of this, some of the most popular video
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architectures for action recognition were implemented to see its performance on our

dataset.

6.5.1 Convolutional Neural Network with Recurrent Networks

This approach [114] takes advantage of convolutional networks that have been

proved in the past decade for their high performance to extract features from the

individual image frames in a video clip independent of each other. A recurrent layer

such as Long Short Term Memory units or Gated Recurrent Units LSTM/GRUs with

batch normalization is used to process the output of the convolutional layer based

architecture such as the Inception model. The combined model is trained using cross

entropy loss on the outputs at all time steps. The high level architecture has been

represented in Figure 6.9 (a).

Figure 6.9. Existing State-of-the-art video processing architectures. K represents the
total number of frames in a video, N stands for a subset of neighboring frames in the
video [10].

6.5.2 3D-Convolutional Networks

3D convolutional networks have been commonly used to extract features from

videos in recent times. This is very similar, but in place of 2-D kernels, 3D Spatio-
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temporal kernels were used [13]. Their unique characteristics to directly create hi-

erarchical representations of spatiotemporal data have made them very successful.

One of the possible drawbacks of this approach is its number of parameters compared

to traditional 2D convolutional architectures. The high level architecture has been

represented in Figure 6.9 (b).

6.5.3 Two-Stream Networks

This approach uses a two-stream convolutional network based architecture that

incorporates spatial and temporal networks [115]. The spatial stream is used to take

advantage of the spatial features, whereas for the temporal features, an off-the-shelf

optical flow extractor was used for the givens video clip. The input to the spatial

stream is an image frame that is randomly sampled from the given video clip. The

output from the optical flow was stacked as input to the temporal stream. The

output of the temporal stream and the spatial stream were averaged towards the

final prediction. The architectural representation of this approach is in Figure 6.9

(c). The extension of this approach uses a 3D-Fused two-stream method that stacks

multiple two-stream modules [116]. 3D kernels are used to combine information from

the individual modules. The architecture of this method is represented in Figure 6.9

(d).

6.5.4 2-Stream 3D Convolutional Networks

This approach is an improvisation of the above method as explained in [10]. The

approach uses two separate 3D convolutional Networks two extract information from

the RGB-based video clips and optical flow-based video clips. The individual models

were trained separately, and during inference time, the results from both models were

combined to make the final prediction. The approach is represented in Figure 6.9 (e).
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6.5.5 Multi-modal Data Fusion for Human Action Recognition

This section presents a multi-modal approach for human action recognition

which was published by Babu et al. [117]. Inspired by the previous works [118, 119,

120], using multiple modalities has resulted in improving the results specifically for

human action recognition. Literature has shown that extracting various information

from the raw RGB input such as Body Keypoints, Optical flow information, tracking

objects in the scene provides a varied set of information that one modality cannot

provide, thus improving the final prediction results. Inspired by the previous work,

multiple modalities (optical flow, object trajectories, body pose) were used to classify

the actions performed by the kids. We use an attention mechanism to combine

features from individual modalities towards the final prediction.

6.5.5.1 Individual Modalities

Modality 1: Optical Flow

With an extensive review of the advantages of using optical flow to understand motion

as described in section 6.2.2, an off-the-shelf implementation [121] of optical flow was

used to capture the motion information between the consecutive frames in a video.

With optical flow being computed, a deep neural network based architecture

inspired from [13] was used to extract useful information from the optical flow data.

The architecture is based on 3D Convolutional Neural Networks (CNNs), which is a

natural successor of standard 2D CNNs. In 3D CNNs, instead of 2D spatial filters, 3D

Spatio-temporal filters are employed to extract features from both the spatial and the

temporal dimensions by performing 3D convolutions, thereby capturing the motion

information encoded in multiple adjacent frames. In addition, for this modality, a

special variant of the CNNs called Residual Deep Neural Networks (ResNet) was
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built with 3D filters (3x3x3). Figure 6.10 (a) represents the architecture used, with

the dotted blocks representing the residual blocks. Every convolutional operation

was followed by a batch normalization operation to reduce the internal covariate

shift and a Rectified Linear Activation Unit (ReLU). Down-sampling of the inputs is

performed at conv 3 x, conv 4 x, and conv 5 x while increasing the feature size. A

comparatively shallow network with 18 layers was empirically selected as represented

in Figure 6.10(a). After training, the features were extracted from the pre-logit layer,

which was used during fusion.
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Figure 6.10. (a) Optical flow based method to predict actions performed. The dot-
ted blocks represents residual block. (b) Action prediction using sequence of body
keypoints. Conv. represents a convolutional operation and BN represents a batch
normalization operation. (c) Objects coordinates in the scene based action predic-
tion.

Modality 2: Human Poses

An open-source pose estimation framework was used to detect 3D joint locations from

the RGB video [122]. As a pre-processing step, any missing key points in a given image

frame are fixed with information from the previous frames. This top-down method
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first detects humans in the scene and subsequently performs pose estimation on each

detected region.

For a given video segment containing n frames in it, 18 key points are extracted

from each frame that represents various body joint positions, including facial key

points such as eyes, ears, and nose. In this work, only nine key points (only upper

body excluding facial key points) out of the 18 key points are considered as the

remaining key points do not contribute significantly towards predicting actions in

this scenario. Each keypoint is represented as a 3D coordinate (z, y, v) on the image

plane. Hence, a given frame P at time t is represented by the coordinates of the nine

key points as shown in the following equation:

Pt = [(z1,t, y1,t, v1,t), (z2,t, y2,t, v2,t), ..., (z9,t, y9,t, v9,t)] (6.7)

Where z denotes the coordinate extending from left to right and y extending

top to bottom, and v representing the depth for each keypoint, hence, for a given

frame, the input dimension is of size (9,3).

The proposed subnet to extract spatial and temporal features from skeletal

points is comprised of a series of 1D convolutional layers and batch normalization

followed by a pooling layer. A single-layered Long-Short Term Memory (LSTM) unit

with a hidden state (h) dimension of 32 is used to capture the temporal relation

among the frames. The architecture is initially trained with a softmax layer at the

end. During the fusion process, features ht, which is the hidden state of the last

LSTM block, are extracted. The subnet is represented in figure 6.10(b).

Modality 3: Object detection

This modality aims at detecting objects in the scene. It is essential to identify the

objects being interacted with along with their positional information at a given point

of time to predict the actions. Identification of the positional information of objects
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in the scene provides a sequence of coordinates. This sequence of coordinates is fed

into a subnet to identify the trajectories of the objects being interacted with, leading

to the identification of the actions [120]. Objects recognized in the scene oi = { li,si }

consists of a bounding box li and its category si ∈ S, where S is the set of all possible

object categories (e.g., ball, person) being encoded in the form of Binary Presence

Vector (BPV) and i ranging from 0 to k with k representing the total number of

objects detected in the scene. A popular object detection algorithm YOLO V3 [123]

is used to identify the objects of interest in the scene at any time t. During detection,

any missing objects in a given image frame were fixed with information from the

previous frames.

For every image frame, the object’s coordinates are normalized and concate-

nated along with the class vector. A single layered LSTM layer with a hidden state(h)

size being 32 is built to capture the temporal relation between the frames. The archi-

tecture is initially trained with a softmax layer at the end. During the fusion process,

features ht, which is the hidden state of the last LSTM block, are extracted. The

subnet is represented in Figure 6.10(c) represents the architecture to predict actions

through objects in the scene.

6.5.5.2 Multi-Modal Fusion

In a multi-modal scenario, not all modalities equally contribute towards the

final prediction. Identifying the modalities and features within them that have the

most contribution and prioritizing them have proved to be very effective in every

domain. In order to solve this problem, a self-attention-based fusion approach is

proposed inspired by [124]. In this approach, every feature within each modality is

provided with a corresponding weight which learns during the training process based

on their contribution towards predicting the target.
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Figure 6.11. Multi-modal fusion.

The overall architecture, including the attention-based fusion module is repre-

sented in Figure 6.11. In order to calculate the weights of features of each modality,

first all features are concatenated into one vector as follows:

x = [xf , xk, xb] (6.8)

where xf ∈ RCf is the feature vector obtained from optical flow subnet, Figure 6.10(a),

xk ∈ RCk is the feature vector from the pose subnet, Figure 6.10(b), xb ∈ RCb is

the feature vector from objects position based subnet, Figure 6.10(c) and finally

x ∈ RC (C = Cf + Ck + Cb) comprising of features from all modalities. Further, to

calculate attention weights for features of x, function Fw is introduced as represented

in equation 6.9. For Fw to fully capture feature-wise dependencies, it should meet two

criteria. First, it must be capable of learning nonlinear interaction between features.

Second, it must learn a non-mutually-exclusive relationship that ensures multiple

features are allowed to be emphasised. To meet these criteria, a gating mechanism

with a sigmoid activation is employed.

α = Fw(x,W ) = σ(g(x,W )) = σ(W2δ(W1x)) (6.9)
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where δ refers to the ReLU [125] function, W1 ∈ RC
r
×C and W2 ∈ RC×C

r . In

order to generalize, the gating mechanism is parameterized by forming a bottle-

neck with two Fully-Connected (FC) layers (W1 & W2) around the non-linearity,

i.e., a dimensionality-reduction layer with reduction ratio r, a ReLU and then a

dimensionality-increasing layer returning to the original feature dimension of X. The

final output is obtained by element-wise product of combined feature vector X and

calculated attention weights vector α:

x′ = Fa(x, α) = αx (6.10)

Where x′ represents the output of the attention block with the features from

the modalities combined and weighted, which in turn is succeeded by a softmax layer

for final prediction.

6.5.5.3 Experimental Results

Table 6.1 conveys that many state-of-the-art methods did not perform as ex-

pected on the ball drop dataset, with the proposed method outperforming all of them,

which could be because of the nature of the data. For example, the ball drop task

contains actions that are very similar to each other such as raising the hand and pass-

ing the ball, unlike actions in other popular datasets, requiring multiple modalities to

solve the problem. It can be observed in Table 6.1 that two-stream I3D has produced

second to the best results showing that optical flow could play a vital role in solving

the problem.

In Table 6.2 it can be observed that the body keypoint-based model has achieved

the highest accuracy as a single modality. Although usage of three modalities has

produced satisfactory results when compared to the previous works for action recog-

nition, extensive tests were necessary with a different combination of modalities and
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Table 6.1. Existing State-of-the-Art methods (VS) proposed approach on Ball drop
dataset. The results are averaged over 5-folds. KP - Key points, flow - Dense optical
flow, RGB - RGB image frames, Object Pose - Objects in the scene

Method Test. Acc. Features

1D CNN 0.59 KP
3D CNN [13] 0.73 RGB

Two-Stream Network [115] 0.76 RGB+flow
Two-Stream 3D ConvNet [10] 0.82 RGB+flow

CNN + RNN(LSTM) [126] 0.69 RGB
DeepGRU [127] 0.61 KP

Dillhoff et. al. [110] 0.78 KP
Attnsense [128] 0.81 flow+KP

Proposed approach 0.89 KP+Object Pose+flow

fusion strategies to find an optimal solution with a much less complex method. It

was observed that no other combination of modalities and fusion methods outper-

formed the proposed method. Adding object detection as an additional modality has

improved the accuracy by 5.2 percent for attention-based fusion. Moreover, it can be

observed that the combination of optical flow and object position and the combina-

tion of optical flow and body keypoints provide similar accuracy, and it is higher than

the combination of keypoints with object position. This result verifies the important

contribution of optical flow as an additional modality. When looking at the fusion

strategies, literature has proven that usage of attention to weigh features based on

their importance has worked, similarly, Table 6.2 proves the same. Irrespective of

what the modalities are being combined, the attention-based fusion produces slightly

better results.
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Table 6.2. Experimental results for multi-modal approach. nat. Concat: Natural
Concatenation, bal. Concat: Balanced Concatenation, Self-Attn.: Self Attention.
All results averaged over multiple folds.

Method Test. Time(Sec.)

Optical Flow (opt flow) 0.720 0.229
Body Keypoints(KP) 0.760 0.106

Objects Trajectories (Obj Pos) 0.680 0.103
opt flow+KP(nat. Concat.) 0.820 0.236
opt flow+KP(bal. Concat.) 0.839 0.239

opt flow+KP(Self-Attn.) 0.846 0.240
opt flow+Obj Pos (nat. Concat.) 0.841 0.232

opt flow+Obj Pos (Bal. Concat.) 0.839 0.236

opt flow+Obj Pos (Self-Attn.) 0.840 0.241

KP+Obj Pos (nat. Concat.) 0.790 0.118

KP+Obj Pos (bal. Concat.) 0.763 0.123

KP+Obj Pos (Self-Attn.) 0.795 0.139

KP+Obj Pos+flow (nat. Concat.) 0.890 0.254

KP+Obj Pos+flow (Bal. Concat.) 0.875 0.259

KP+Obj Pos+flow (Self-Attn.) 0.898 0.260

6.6 Conclusion

This section concludes with the results of some of the existing state-of-the-

art action recognition approaches in the literature, followed by a multi-modal fusion

approach to recognize the actions performed by the children. To identify the right

combination of modalities and various fusion strategies, multiple combinations were

attempted from which the architecture with three modalities produces the best re-

sults.
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CHAPTER 7

SELF-SUPERVISED LEARNING FOR HUMAN ACTION RECOGNTION

7.1 Introduction

In chapter 6, we observed that Deep Neural Networks, with their powerful

ability to learn different levels of general visual features, forming the backbone for

many approaches we discussed. However, one of the significant drawbacks of the

previous supervised techniques is that they rely heavily on expensive manual labeling

and suffer from generalization error, spurious correlations, etc. [129]. Moreover,

the performance of deep convolutional neural networks dramatically depends on the

amount of training data.

As a promising alternative, self-supervised learning has drawn massive atten-

tion for its data efficiency and generalization ability [130, 131]. Many self-supervised

methods were proposed to learn visual features from large-scale unlabelled images

or videos without using any human annotations. To learn such visual features from

unlabeled data, a typical solution is to formulate pretext tasks using Deep Neu-

ral Network architectures where these networks can learn objective functions. These

pretext tasks utilize the structure of the data as a supervisory signal such that the

method is unsupervised in the sense that it does not require human annotation. The

pretext tasks are generally built not to solve the intended problem but an additional

step to learn good data representation. Some of the popular pretext tasks to learn im-

age/video representation include colorizing grey-scale images [132], image in-painting

[133], image jigsaw puzzle [134], Generative models [135]. Compared to supervised

learning methods, which require a data pair (Xi, Yi) where Xi represents the data
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sample, and Yi represents the label for the respective data sample, pseudo label Pi is

automatically generated for a pre-defined pretext task without involving any human

annotation. The pseudo label Pi can be generated using attributes of the images or

by traditional hand-designed methods. Given a set of N training data D = {Pi}Ni=0,

loss function can be defined as:

One major advantage of such self-supervised learning approaches is that they

are generic in learning the features so that they could be used for any downstream

tasks (E.g., Classification, object detection, etc.).

7.2 Context based Video Representation Learning

As videos consist of frames that are stacked together, they contain both spatial

and temporal information. The temporal information between frames is used as

supervision criteria for self-supervision feature learning.

7.2.1 Temporal Order Verification

The goal is to learn a feature representation using only the Spatio-temporal

features that are available naturally in the videos inspired from the work of Misra

et al. [136]. Figure 7.1 represents the overall architecture used for this method. In

this approach, a tuple of frames are extracted from the video sample, and the model

investigates whether the frames are in the correct temporal order or not. This task

aims to encourage the model to learn the dynamics and motion of objects in the scene,

thus learning the temporal structure of the tuple. Some of the critical challenges we
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observed were, a) choosing the total number of frames in the tuple, b) how a subset

of frames can be sampled from the data to form a tuple. During our experiments, we

observed that sampling the tuple uniformly from the input data did not yield good

results as there were parts of the sample that had very minimum motion. Hence,

the tuple was sampled from the middle region of the data sample that contained

maximum motion in the dataset. For our dataset, we empirically identified that a

tuple length of 16 yielded the best results.

Further, we used a ResNet-based architecture with 3D kernels to extract fea-

tures from the input tuple for the encoder. Although, this could be replaced with

other types of encoders such as Convolution + Recurrent network-based models,

transformers, etc.

Figure 7.1. Overall architecture for temporal order verification .
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7.2.2 Order Prediction Network (OPN)

This approach, inspired by the work presented by Lee et al. [137] proposes that

successfully solving the sequence sorting task allows the model to learn useful repre-

sentation by observing the dynamics of objects in the scene. As part of this work, a

tuple of length four were extracted from the data sample and was shuffled. Given the

length of the tuple, the maximum possible combination will be 4! = 24 combinations.

Similar to the previous approach, given the frames with maximum motion lies in the

middle of the data sample, the tuples were a sample from the middle region of the

input data sample. Furthermore, temporally consistent spatial augmentation for the

extracted tuple that includes random cropping and color transformation was applied.

Figure 7.2 represents the overall architecture. The red dotted box represents tempo-

rally consistent random crop-based spatial augmentation. The numbers represent the

frames that were chosen from the input data.

As an extension of this work, multiple non-overlapping clips were extracted

from the data sample and were shuffled. The overall architecture of this method is

represented in Figure 7.3. Then, a 3D encoder was used to extract features from the

individual clips, which were further pairwise concatenated, and a fully connected layer

was placed to predict the order of the clips. The length of the individual clips was

empirically selected as 16, and the number of clips being 3 yielded the best results for

the ATEC dataset. The significant advantage of this approach over the traditional

OPN network is its ability to include more frames while training which helps the

model learn long-term dependencies.
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Figure 7.2. Overall architecture for Order Prediction Network (OPN).

7.3 Self-Supervised Contrastive Learning

Contrastive learning has recently become a dominant component in self-supervised

learning for computer vision and other domains. It aims at generating embeddings of

samples such that embeddings of similar classes should be similar to each other and

so encouraged to be close to each other while trying to push away embeddings from

different samples. To achieve this, a similarity metric is used to measure how close two

embeddings are. For instance, one sample from the training dataset is taken from

which two transformed/augmented versions are created, which are called ”positive

samples.” During the training phase, the model aims to generate embeddings for the

samples in the batch/dataset. The model encourages the embeddings of the positive

samples to be close to each other while the rest of the samples (Negative samples)
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Figure 7.3. Overall architecture for Clip Prediction Network (CPN).

to be far. The model learns effective representations of the samples and is used later

for transferring knowledge to downstream tasks. In Image classification, some of the

recent contrastive techniques have produced results comparable to state-of-the-art

results on the ImageNet dataset.

7.3.1 Data Augmentation

Given the scenario, the type of data augmentation plays a vital role during the

training process. The choice of spatial and temporal augmentation is important as

sometimes, changes induced by stronger augmentation could change the structure of

the data such that it cannot be viewed as the same anymore. For example, learning

image representation by identifying the degree of rotation of the image has been

proved to be effective [138]. Still, In our experiments, we found that rotation does

not work well in predicting the actions. This could also be due to the fact that the
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dataset has action classes such as ”passing the ball from right hand to left hand”

and ”Passing the ball from left to right,” and applying rotation-based transformation

alters the meaning of the videos. Similarly, Work from Yamaguchi et al. [139] points

out some drawbacks of rotation-based transformations affecting the model’s ability

to learn. Further, in our experiments, we found that applying spatial augmentation

independent of the video frames breaks the natural motion in the scene, resulting in

much poorer performance.

Hence, as part of this work, data augmentations were carefully designed to

consider spatial and temporal cues. We applied temporally consistent spatial aug-

mentation during the training process to not break the natural motion in the scene.

The spatial augmentation during training contains a random factor in which transfor-

mations such as cropping, color jittering, blurring are applied. Similarly, for temporal

augmentation, a straight forward approach was to take two clips from the input video

being the positive pairs but, given the nature of the dataset, this approach did not

work, as there is a possibility of these two video clips containing different motions

which would not help in the learning process. Hence the entire video was divided into

n bins where ′n′ represents the clip length. So, to build a clip from the video, one

image frame was randomly sampled from each bin for which the spatial augmentation

was applied.

7.3.2 Methodology

A self-supervised contrastive architecture was built to learn effective represen-

tation as represented in Figure 7.4. The approach utilizes an infoNCE contrastive

loss [140] for optimization during training.

From the equation 7.1, N represents the total number of videos considered in the

batch, from where 2N clips are generated with augmentation. zi and z
′
i as the encoded
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representations of the positive sample, and zk represents the negative sample for the

ith input video. sim in the equation represents the similarity calculated between

two embeddings. sim(u, v) = uTv/||u||2|v||2 is the inner product between the two

embeddings.

Figure 7.4. Overview of Self-supervised Contrastive approach for video representation
learning.

7.3.3 Encoder

3D Convolution based architecture is used for the encoder due to its ability

to capture information from the adjacent frames in contrast to the traditional 2D
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convolutional kernels. Specifically, a ResNet-based architecture [13] with 34 layers

was used as we empirically found them to yield better results compared to the other

architectures. The details of the architecture is shown in Figure 7.5. During the

evaluation, only the encoder is considered where a layer replaces the final layer with

the actual number of classes in the dataset followed by a softmax function.

Figure 7.5. 3D ResNet Architecture. Residual block are shown in brackets. Each
convolutional Layer is followed by batch normalization[11] and ReLU activation
function[12]. Downsampling is performed by conv3 1, conv4 1 and conv5 1 with
stride of 2. The dimension of the last fully connected layer is set to the number
of class in the dataset proposed by [13].

7.3.4 Downstream Task

Downstream tasks are generally used to evaluate the quality of features learned

through the pretext tasks. Given that this scenario being a classification problem,

the pretext task was trained using the pseudo labels to learn the video representation

from which, encoder part is extracted from the architecture. The final layer of the

encoder is replaced with the total number of classes in the dataset to make the model

97



suitable for classification problem. We froze the weights of the pretrained encoder,

and only the final linear layer was trained with 10 percent of the labeled data.

Table 7.1. Self-supervised approaches on the Ball Drop dataset.

Method Test. Acc.

Temporal Order Verification[136] 0.60
OPN [137] 0.56

Clip Order Prediction [141] 0.69
Odd one out network [142] 0.51

ST Puzzle [143] 0.64
Self-Supervised Contrastive Approach 0.72

7.3.5 Implementation Details

For the implementation, Stochastic Gradient Descent (SGD) with a momentum

was used with momentum set to 0.9. The starting learning rate was set to 0.01 and

divide by 10 every time the validation loss saturates. The mentioned spatial and

temporal augmentation techniques was used during the training of the pretext task.

The size of the clips were empirically identified as 16 frames from the experiments.

InfoNCE loss was used during the training with the temperature coefficient set to 0.1.

7.3.6 Experimental Results and Conclusion

From Table 7.1 we observed that the contrastive learning approach inspired by

[144] produced the highest accuracy of 72 percent in our Ball Drop dataset, which

is followed by the Clip Order prediction method produced by [141]. Similarly, for

the Tandem Gait task, the Contrastive approach has produced an accuracy of 0.70,

which is the highest accuracy achieved so far when compared to other self-supervised

approaches.
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This section concludes by discussing the results of some of the recent work

in self-supervised approaches to learning video representation. Although the best re-

sults from the self-supervised approaches are comparatively lower than the supervised

learning approaches discussed in the previous chapter, they have a huge advantage

when it comes to learning representation from unlabelled data. Unlike the supervised

approaches, which we were able to integrate with the automated tool, work is required

to improve the performance of the self-supervised approaches.
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CHAPTER 8

CONCLUSION AND FUTURE WORK

8.1 Conclusion

The first part of this work introduces the benefits of cognitive assessment and

training in the industrial workplace. First, it introduces a computer-based assessment

tool that involves the physical setup yet monitored and scored by an intelligent sys-

tem. Further, three different training approaches were compared to understand the

effectiveness and the impact of the training approaches on the individual’s learning.

As a next step, extracting physiological and behavioral information from the partic-

ipants while performing a cognitive task proved to help create a more personalized

assessment system that could adapt based on the participant’s cognitive state.

In the next part of the work, I have developed an automated and non-intrusive

system to estimate cognitive development in children with multiple novel physical

tasks. These systems assist cognitive therapists in diagnosing various neurodevelop-

mental conditions, such as Executive Function Disorder, ADHD, etc. The developed

system consists of two main components, a) A simple user interface capable of record-

ing and giving instructions simultaneously, b) An analysis module that uses state-

of-the-art motion analysis and Deep learning techniques to extract information from

the collected data. Preliminary data were collected from 55 children as part of the

initial work, which was used to build an automated tool using state-of-the-art super-

vised deep learning techniques. The drawbacks of the threshold-based approach were

solved with supervised deep learning approaches. Specifically, we built a multi-modal

fusion method with a self-attention mechanism which provided the best results so
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far in our ball drop dataset. Further, we explored various self-supervised approaches

to take advantage of the available un-annotated data to learn data representation.

Although the results of the self-supervised approaches were comparatively lower than

the supervised approaches on the ”Ball Drop” and ”Tandem Gait” dataset, it has

a greater advantage in learning data representation without labels. Hence explor-

ing self-supervised approaches in the future is definitely a promising direction in

solving real world problems. To our knowledge, this is one of the few end-to-end

systems that are capable of assessing various cognitive functionalities from physical

tasks. Furthermore, given that annotating the data for machine learning models is

time-consuming, this work explores some recent and state-of-the-art self-supervised

learning approaches to build models to learn visual features to learn effective data

representation. Given that these systems are extremely simple to use and low in cost,

they are ideal for deploying across schools in the country towards early detection of

such conditions to provide proper intervention.

8.2 Future Work

The future goals of this work can be focused on in multiple directions. First, we

have implemented the system to evaluate Ball-Drop-to-the-Beat, Finger Opposition,

and tandem gait as part of this work. Further, building an automated system to

include more tasks mentioned in Table 4.1. Adding additional tasks to the system

makes the system more accurate in estimating cognitive development. Secondly, given

the data being collected frequently, to take advantage of the unlabelled data, more

self-supervised approaches should be built to learn effective data representation, which

will help improve the overall accuracy. Currently, work has been done to identify

psychosis in adults with the proposed assessment systems.
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Another functionality that can be integrated with the system is the ability to

provide remote monitoring and assistance. The current setup requires a controlled

environment where cameras are setup in a specific position to collect data which

reduces the ability to be used in home environments. The ability to collect the data

in home environments and analyze such data might be more helpful to provide remote

assistance.
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F. Tecchia, “Evaluating virtual reality and augmented reality training for in-

dustrial maintenance and assembly tasks,” Interactive Learning Environments,

vol. 23, no. 6, pp. 778–798, 2015.

[51] D. E. Barnes, K. Yaffe, N. Belfor, W. J. Jagust, C. DeCarli, B. R. Reed, and

J. H. Kramer, “Computer-based cognitive training for mild cognitive impair-

ment: results from a pilot randomized, controlled trial,” Alzheimer disease and

associated disorders, vol. 23, no. 3, p. 205, 2009.

[52] P. Pivec, “Game-based learning or game-based teaching?” 2009.

[53] S. J. Johnstone, S. J. Roodenrys, K. Johnson, R. Bonfield, and S. J. Bennett,

“Game-based combined cognitive and neurofeedback training using focus pocus

reduces symptom severity in children with diagnosed ad/hd and subclinical

ad/hd,” International Journal of Psychophysiology, vol. 116, pp. 32–44, 2017.

[54] J. W. Rice, “The gamification of learning and instruction: Game-based methods

and strategies for training and education,” International Journal of Gaming and

Computer-Mediated Simulations, vol. 4, no. 4, 2012.

[55] A. Rajavenkatanarayanan, V. Kanal, M. Kyrarini, and F. Makedon, “Cogni-

tive Performance Assessment based on Everyday Activities for Human-Robot

109



Interaction,” in Companion of the 2020 ACM/IEEE International Conference

on Human-Robot Interaction, 2020, pp. 398–400.

[56] M. C. Welsh, T. Satterlee-Cartmell, and M. Stine, “Towers of hanoi and london:

Contribution of working memory and inhibition to performance,” Brain and

cognition, vol. 41, no. 2, pp. 231–242, 1999.

[57] T. E. Goldberg, J. A. Saint-Cyr, and D. R. Weinberger, “Assessment of proce-

dural learning and problem solving in schizophrenic patients by tower of hanoi

type tasks.” The Journal of Neuropsychiatry and Clinical Neurosciences, 1990.

[58] M. Bustini, P. Stratta, E. Daneluzzo, R. Pollice, P. Prosperini, and A. Rossi,

“Tower of hanoi and wcst performance in schizophrenia: problem-solving ca-

pacity and clinical correlates,” Journal of Psychiatric Research, vol. 33, no. 3,

pp. 285–290, 1999.

[59] G. Kielhofner, A model of human occupation: Theory and application. Lippin-

cott Williams & Wilkins, 2002.

[60] L. Pessoa, The cognitive-emotional brain: From interactions to integration.

MIT press, 2013.

[61] C. D. Salzman and S. Fusi, “Emotion, cognition, and mental state representa-

tion in amygdala and prefrontal cortex,” Annual review of neuroscience, vol. 33,

pp. 173–202, 2010.

[62] R. Pekrun, “The impact of emotions on learning and achievement: Towards a

theory of cognitive/motivational mediators,” Applied Psychology, vol. 41, no. 4,

pp. 359–376, 1992.

[63] ——, “The control-value theory of achievement emotions: Assumptions, corol-

laries, and implications for educational research and practice,” Educational psy-

chology review, vol. 18, no. 4, pp. 315–341, 2006.

110



[64] R. Pekrun and L. Linnenbrink-Garcia, “Academic emotions and student en-

gagement,” in Handbook of research on student engagement. Springer, 2012,

pp. 259–282.

[65] J. J. Van Merrienboer and J. Sweller, “Cognitive load theory and complex

learning: Recent developments and future directions,” Educational psychology

review, vol. 17, no. 2, pp. 147–177, 2005.

[66] B. Weiner, “Theories of motivation: From mechanism to cognition.” 1972.

[67] M. Bannert, “Managing cognitive load—recent trends in cognitive load theory,”

Learning and instruction, vol. 12, no. 1, pp. 139–146, 2002.

[68] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh, “Realtime multi-person 2d pose

estimation using part affinity fields,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2017, pp. 7291–7299.

[69] N. Fourati and C. Pelachaud, “Emilya: Emotional body expression in daily

actions database.” in LREC, 2014, pp. 3486–3493.

[70] N. Bianchi-Berthouze, P. Cairns, A. Cox, C. Jennett, and W. W. Kim, “On

posture as a modality for expressing and recognizing emotions,” in Emotion

and HCI workshop at BCS HCI London, 2006.

[71] H. G. Wallbott, “Bodily expression of emotion,” European journal of social

psychology, vol. 28, no. 6, pp. 879–896, 1998.

[72] M. M. Gross, E. A. Crane, and B. L. Fredrickson, “Methodology for assessing

bodily expression of emotion,” Journal of Nonverbal Behavior, vol. 34, no. 4,

pp. 223–248, 2010.

[73] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedfor-

ward neural networks,” in Proceedings of the thirteenth international conference

on artificial intelligence and statistics, 2010, pp. 249–256.

111



[74] M. Papakostas, K. Tsiakas, T. Ginnakopoulos, and F. Makedon, “Towards pre-

dicting task performance from eeg signals.”

[75] C.-Y. Chen, J. P. Lawlor, A. K. Duggan, J. B. Hardy, and W. W. Eaton, “Mild

cognitive impairment in early life and mental health problems in adulthood,”

American Journal of Public Health, vol. 96, no. 10, pp. 1772–1778, 2006.

[76] J. H. Bernstein and D. P. Waber, “Executive capacities from a developmental

perspective,” Executive function in education: From theory to practice, pp. 39–

54, 2007.

[77] C. Hughes and A. Graham, “Measuring executive functions in childhood: Prob-

lems and solutions?” Child and adolescent mental health, vol. 7, no. 3, pp.

131–142, 2002.

[78] T. Shallice and P. W. Burgess, “Deficits in strategy application following frontal

lobe damage in man,” Brain, vol. 114, no. 2, pp. 727–741, 1991.

[79] D. J. Ackerman and A. H. Friedman-Krauss, “Preschoolers’ executive func-

tion: Importance, contributors, research needs and assessment options,” ETS

Research Report Series, vol. 2017, no. 1, pp. 1–24, 2017.

[80] M. G. Sim, E. Khong, G. Hulse, et al., “When the child with adhd grows up,”

Australian family physician, vol. 33, no. 8, p. 615, 2004.

[81] M. Adamou, M. Arif, P. Asherson, T.-C. Aw, B. Bolea, D. Coghill,

G. Gujónsson, A. Halmøy, P. Hodgkins, U. Müller, et al., “Occupational is-

sues of adults with adhd,” BMC psychiatry, vol. 13, no. 1, pp. 1–7, 2013.

[82] R. A. Barkley, “Behavioral inhibition, sustained attention, and executive func-

tions: constructing a unifying theory of adhd.” Psychological bulletin, vol. 121,

no. 1, p. 65, 1997.

[83] C. Dendy, “Executive function. . . “what is this anyway?”,” 2008.

112



[84] M. S. Atkins, W. E. Pelham, and M. H. Licht, “A comparison of objective

classroom measures and teacher ratings of attention deficit disorder,” Journal

of abnormal child psychology, vol. 13, no. 1, pp. 155–167, 1985.

[85] B. A. Eriksen and C. W. Eriksen, “Effects of noise letters upon the identification

of a target letter in a nonsearch task,” Perception & psychophysics, vol. 16, no. 1,

pp. 143–149, 1974.

[86] M. R. Rueda, J. Fan, B. D. McCandliss, J. D. Halparin, D. B. Gruber, L. P.

Lercari, and M. I. Posner, “Development of attentional networks in childhood,”

Neuropsychologia, vol. 42, no. 8, pp. 1029–1040, 2004.

[87] C. L. Davis and S. Cooper, “Fitness, fatness, cognition, behavior, and academic

achievement among overweight children: do cross-sectional associations corre-

spond to exercise trial outcomes?” Preventive medicine, vol. 52, pp. S65–S69,

2011.

[88] E. E. Davis, N. J. Pitchford, and E. Limback, “The interrelation between cog-

nitive and motor development in typically developing children aged 4–11 years

is underpinned by visual processing and fine manual control,” British Journal

of Psychology, vol. 102, no. 3, pp. 569–584, 2011.

[89] J. E. Donnelly and K. Lambourne, “Classroom-based physical activity, cogni-

tion, and academic achievement,” Preventive medicine, vol. 52, pp. S36–S42,

2011.

[90] D. P. Van Dusen, S. H. Kelder, H. W. Kohl III, N. Ranjit, and C. L. Perry, “As-

sociations of physical fitness and academic performance among schoolchildren,”

Journal of School Health, vol. 81, no. 12, pp. 733–740, 2011.

[91] M. E. Hopkins, F. C. Davis, M. R. VanTieghem, P. J. Whalen, and D. J.

Bucci, “Differential effects of acute and regular physical exercise on cognition

and affect,” Neuroscience, vol. 215, pp. 59–68, 2012.

113



[92] B. E. Wexler, “Integrated brain and body exercises for adhd and related prob-

lems with attention and executive function,” International Journal of Gaming

and Computer-Mediated Simulations (IJGCMS), vol. 5, no. 3, pp. 10–26, 2013.

[93] M. M. McClelland, C. E. Cameron, R. Duncan, R. P. Bowles, A. C. Acock,

A. Miao, and M. E. Pratt, “Predictors of early growth in academic achievement:

The head-toes-knees-shoulders task,” Frontiers in psychology, vol. 5, p. 599,

2014.

[94] D. R. Becker, M. M. McClelland, P. Loprinzi, and S. G. Trost, “Physical ac-

tivity, self-regulation, and early academic achievement in preschool children,”

Early Education & Development, vol. 25, no. 1, pp. 56–70, 2014.

[95] B. Muppala, K. Tsiakas, C. Fleury, A. Weinstein, and M. D. Bell, “1.39 acti-

vate test of embodied cognition (atec): A new automated assessment system

using cognitively demanding physical tasks to assess development of executive

function,” Journal of the American Academy of Child & Adolescent Psychiatry,

vol. 58, no. 10, p. S159, 2019.

[96] S. Gattupalli, A. R. Babu, J. R. Brady, F. Makedon, and V. Athitsos, “Towards

deep learning based hand keypoints detection for rapid sequential movements

from rgb images,” in Proceedings of the 11th PErvasive Technologies Related to

Assistive Environments Conference, 2018, pp. 31–37.

[97] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.

Berg, “Ssd: Single shot multibox detector,” in European conference on computer

vision. Springer, 2016, pp. 21–37.

[98] S. Bambach, S. Lee, D. J. Crandall, and C. Yu, “Lending a hand: Detecting

hands and recognizing activities in complex egocentric interactions,” in The

IEEE International Conference on Computer Vision (ICCV), December 2015.

114



[99] D. Victor, “Real-time hand tracking using ssd on tensorflow,” https://github.

com/victordibia/handtracking, 2017.

[100] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE international conference

on computer vision, 2015, pp. 1440–1448.

[101] D. Tran, H. Wang, L. Torresani, J. Ray, Y. LeCun, and M. Paluri, “A closer

look at spatiotemporal convolutions for action recognition,” 2017.

[102] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with

deep convolutional neural networks,” in Advances in neural information pro-

cessing systems, 2012, pp. 1097–1105.

[103] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-

nition,” in Proceedings of the IEEE conference on computer vision and pattern

recognition, 2016, pp. 770–778.

[104] K. Hara, H. Kataoka, and Y. Satoh, “Can spatiotemporal 3d cnns retrace the

history of 2d cnns and imagenet?” 2017.

[105] W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier, S. Vijayanarasimhan,

F. Viola, T. Green, T. Back, P. Natsev, M. Suleyman, and A. Zisserman, “The

kinetics human action video dataset,” 2017.

[106] S. Herath, M. Harandi, and F. Porikli, “Going deeper into action recognition:

A survey,” Image and vision computing, vol. 60, pp. 4–21, 2017.

[107] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learning spa-

tiotemporal features with 3d convolutional networks,” in Proceedings of the

IEEE international conference on computer vision, 2015, pp. 4489–4497.

[108] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov, P. Van

Der Smagt, D. Cremers, and T. Brox, “Flownet: Learning optical flow with

convolutional networks,” in Proceedings of the IEEE international conference

on computer vision, 2015, pp. 2758–2766.

115

https://github.com/victordibia/handtracking
https://github.com/victordibia/handtracking


[109] A. Ranjan and M. J. Black, “Optical flow estimation using a spatial pyramid

network,” in Proceedings of the IEEE Conference on Computer Vision and Pat-

tern Recognition, 2017, pp. 4161–4170.

[110] A. Dillhoff, K. Tsiakas, A. R. Babu, M. Zakizadehghariehali, B. Buchanan,

M. Bell, V. Athitsos, and F. Makedon, “An automated assessment system for

embodied cognition in children: from motion data to executive functioning,” in

Proceedings of the 6th international Workshop on Sensor-based Activity Recog-

nition and Interaction, 2019, pp. 1–6.

[111] Z. Cao, G. Hidalgo, T. Simon, S.-E. Wei, and Y. Sheikh, “Openpose: realtime

multi-person 2d pose estimation using part affinity fields,” in arXiv preprint

arXiv:1812.08008, 2018.

[112] H. Naruse, T. X. Fujisawa, C. Yatsuga, M. Kubota, H. Matsuo, S. Takiguchi,

S. Shimada, Y. Imai, M. Hiratani, H. Kosaka, et al., “Increased anterior pelvic

angle characterizes the gait of children with attention deficit/hyperactivity dis-

order (adhd),” PLoS one, vol. 12, no. 1, p. e0170096, 2017.

[113] M. Kocabas, N. Athanasiou, and M. J. Black, “Vibe: Video inference for human

body pose and shape estimation,” 2019.

[114] J. Donahue, L. Anne Hendricks, S. Guadarrama, M. Rohrbach, S. Venugopalan,

K. Saenko, and T. Darrell, “Long-term recurrent convolutional networks for

visual recognition and description,” in Proceedings of the IEEE conference on

computer vision and pattern recognition, 2015, pp. 2625–2634.

[115] K. Simonyan and A. Zisserman, “Two-stream convolutional networks for action

recognition in videos,” arXiv preprint arXiv:1406.2199, 2014.

[116] C. Feichtenhofer, A. Pinz, and A. Zisserman, “Convolutional two-stream net-

work fusion for video action recognition,” in Proceedings of the IEEE conference

on computer vision and pattern recognition, 2016, pp. 1933–1941.

116



[117] A. Ramesh Babu, M. Z. Zadeh, A. Jaiswal, A. Lueckenhoff, M. Kyrarini, and

F. Makedon, “A multi-modal system to assess cognition in children from their

physical movements,” in Proceedings of the 2020 International Conference on

Multimodal Interaction, 2020, pp. 6–14.

[118] W. Wang, J. Zhang, C. Si, and L. Wang, “Pose-based two-stream relational

networks for action recognition in videos,” arXiv preprint arXiv:1805.08484,

2018.

[119] Z. Cai, H. Neher, K. Vats, D. A. Clausi, and J. Zelek, “Temporal hockey ac-

tion recognition via pose and optical flows,” in Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition Workshops, 2019, pp.

0–0.

[120] G. Kapidis, R. Poppe, E. Van Dam, L. Noldus, and R. Veltkamp,

“Egocentric hand track and object-based human action recognition,” in

2019 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced &

Trusted Computing, Scalable Computing & Communications, Cloud & Big

Data Computing, Internet of People and Smart City Innovation (Smart-

World/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). IEEE, 2019, pp. 922–

929.

[121] T. Brox, A. Bruhn, N. Papenberg, and J. Weickert, “High accuracy optical flow

estimation based on a theory for warping,” in European conference on computer

vision. Springer, 2004, pp. 25–36.

[122] M. Kocabas, N. Athanasiou, and M. J. Black, “Vibe: Video inference for human

body pose and shape estimation,” in Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, 2020, pp. 5253–5263.

[123] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,” arXiv

preprint arXiv:1804.02767, 2018.

117



[124] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in Proceedings

of the IEEE conference on computer vision and pattern recognition, 2018, pp.

7132–7141.

[125] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann

machines,” in Proceedings of the 27th International Conference on International

Conference on Machine Learning, ser. ICML’10. Madison, WI, USA: Omni-

press, 2010, p. 807–814.

[126] H. Gammulle, S. Denman, S. Sridharan, and C. Fookes, “Two stream lstm: A

deep fusion framework for human action recognition,” in 2017 IEEE Winter

Conference on Applications of Computer Vision (WACV). IEEE, 2017, pp.

177–186.

[127] M. Maghoumi and J. J. LaViola Jr, “Deepgru: Deep gesture recognition utility,”

in International Symposium on Visual Computing. Springer, 2019, pp. 16–31.

[128] H. Ma, W. Li, X. Zhang, S. Gao, and S. Lu, “Attnsense: multi-level attention

mechanism for multimodal human activity recognition,” in Proceedings of the

28th International Joint Conference on Artificial Intelligence. AAAI Press,

2019, pp. 3109–3115.

[129] X. Liu, F. Zhang, Z. Hou, Z. Wang, L. Mian, J. Zhang, and

J. Tang, “Self-supervised learning: Generative or contrastive,” arXiv preprint

arXiv:2006.08218, vol. 1, no. 2, 2020.

[130] A. Jaiswal, A. R. Babu, M. Z. Zadeh, D. Banerjee, and F. Makedon, “A survey

on contrastive self-supervised learning,” Technologies, vol. 9, no. 1, p. 2, 2021.

[131] L. Jing and Y. Tian, “Self-supervised visual feature learning with deep neural

networks: A survey,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, 2020.

118



[132] R. Zhang, P. Isola, and A. A. Efros, “Colorful image colorization,” in European

conference on computer vision. Springer, 2016, pp. 649–666.

[133] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros, “Context

encoders: Feature learning by inpainting,” in Proceedings of the IEEE confer-

ence on computer vision and pattern recognition, 2016, pp. 2536–2544.

[134] M. Noroozi and P. Favaro, “Unsupervised learning of visual representations by

solving jigsaw puzzles,” in European conference on computer vision. Springer,

2016, pp. 69–84.

[135] M. Z. Zadeh, A. R. Babu, A. Jaiswal, and F. Makedon, “Self-supervised hu-

man activity recognition by augmenting generative adversarial networks,” arXiv

preprint arXiv:2008.11755, 2020.

[136] I. Misra, C. L. Zitnick, and M. Hebert, “Shuffle and learn: unsupervised learn-

ing using temporal order verification,” in European Conference on Computer

Vision. Springer, 2016, pp. 527–544.

[137] H.-Y. Lee, J.-B. Huang, M. Singh, and M.-H. Yang, “Unsupervised representa-

tion learning by sorting sequences,” in Proceedings of the IEEE International

Conference on Computer Vision, 2017, pp. 667–676.

[138] S. Gidaris, P. Singh, and N. Komodakis, “Unsupervised representation learning

by predicting image rotations,” arXiv preprint arXiv:1803.07728, 2018.

[139] S. Yamaguchi, S. Kanai, T. Shioda, and S. Takeda, “Multiple pretext-task

for self-supervised learning via mixing multiple image transformations,” arXiv

preprint arXiv:1912.11603, 2019.

[140] A. v. d. Oord, Y. Li, and O. Vinyals, “Representation learning with contrastive

predictive coding,” arXiv preprint arXiv:1807.03748, 2018.

[141] D. Xu, J. Xiao, Z. Zhao, J. Shao, D. Xie, and Y. Zhuang, “Self-supervised

spatiotemporal learning via video clip order prediction,” in Proceedings of the

119



IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp.

10 334–10 343.

[142] B. Fernando, H. Bilen, E. Gavves, and S. Gould, “Self-supervised video rep-

resentation learning with odd-one-out networks,” in Proceedings of the IEEE

conference on computer vision and pattern recognition, 2017, pp. 3636–3645.

[143] D. Kim, D. Cho, and I. S. Kweon, “Self-supervised video representation learn-

ing with space-time cubic puzzles,” in Proceedings of the AAAI Conference on

Artificial Intelligence, vol. 33, no. 01, 2019, pp. 8545–8552.

[144] R. Qian, T. Meng, B. Gong, M.-H. Yang, H. Wang, S. Belongie, and Y. Cui,

“Spatiotemporal contrastive video representation learning,” arXiv preprint

arXiv:2008.03800, 2020.

120



BIOGRAPHICAL STATEMENT

Ashwin Ramesh Babu was born in Salem, India, in 1992. In 2014, he received

his B.Tech in Information Technology from Anna University, India and his M.S degree

from the University of Texas at Arlington, USA in 2016.

In September 2016, he joined the HERACLEIA Human-Centered Computing

Laboratory at the University of Texas at Arlington as a Ph.D. student. He partici-

pated as a Graduate Research Assistant in multiple NSF-funded projects under the

supervision of Prof. Fillia Makedon. Since 2018, he led the NSF-funded project from

the Cyber Human Systems (CHS) program with the title “Computational Science

for Improving Assessment of Executive Function in Children”. Further, he served

as a “Graduate Teaching Assistant” for courses such as “Introduction to Program-

ming” and “Advanced Topics in Human-computer Interaction” classes. During sum-

mer 2019, Ashwin worked as a Deep Learning/Machine Learning Intern at Hewlett

Packard Enterprise, where he was awarded for “Best Technical Presentation” for his

contribution as an intern.

In addition, Ashwin received the “Outstanding Doctoral Dissertation Award

2021” by the Computer Science and Engineering Department at University of Texas

at Arlington. During his time at HERACLEIA lab, he co-authored several peer-

reviewed papers published in technical conferences and has served as a reviewer in

several international conferences and journals. Ashwin’s research interests revolve

around applying Deep Learning and Computer vision in healthcare and cognitive

science, specifically towards data-driven personalization.

121


	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF ILLUSTRATIONS
	LIST OF TABLES
	TECHNOLOGY AS A TOOL FOR COGNITIVE ASSESSMENT
	Introduction
	Technology to Understand Human Behavior
	Understanding Physical Actions
	Understanding User Emotions

	Motivation and Thesis Outline
	Motivation
	Thesis Outline


	COGNITIVE ASSESSMENT AND TRAINING IN WORKPLACE
	Introduction
	Need for Cognitive Assessment in Workplace
	Towers of Hanoi as a Tool for Cognitive Training and Assessment
	Experimental Setup
	Towers of Hanoi Rules
	Experiment
	Data Analysis
	User Survey Results
	Inference from Participants' Performance

	Multi-Modal Data for Cognitive Assessment
	Multi-Modal User Monitoring for Cognitive Assessment and Rehabilitation
	Sequence Learning Task for Cognitive Assessment
	Experimental Setup
	Data Collection
	Emotion Recognition with Image Sensor
	Predicting Task Performance Outcome from Physiological Data
	Final Task Performance Prediction
	Results and Discussion
	Future Work


	ASSESSING COGNITIVE SKILLS IN CHILDREN
	Introduction
	Traditional Tests to assess ADHD and Cognitive Impairments in Children
	Swanson Nolan and Pelham (SNAP) Questionnaire
	Computerized Assessment Tests

	Drawbacks of the Current Methods in Measuring Cognitive Skills

	THE ATEC SYSTEM
	Introduction
	Physical Tasks to Assess Cognition in Children
	The Head-Toes-Knees-Shoulders (HTKS) Test
	Activate Test of Embodied Cognition
	Gross Motor Gait and Balance
	Bilateral Coordination
	Attention, Response Inhibition
	Motor speed

	ATEC Data Acquisition System
	ATEC Dataset
	Automated System to Assess Physical Exercises

	ASSESSING MOTOR SKILLS WITH RAPID SEQUENTIAL MOVEMENTS
	Introduction
	Finger Opposition Dataset
	Proposed System
	Intelligent GUI
	Hand Detector
	Action Recognition System
	Scoring System
	Calculating Scores

	System evaluation, analysis, and Discussion
	Evaluation of the End-to-End System
	Observations


	AN AUTOMATED SYSTEM TO ASSESS GAIT, ATTENTION AND RESPONSE INHIBITION
	Introduction
	Computer Vision for Motion Analysis
	Body Pose Estimation
	Optical Flow

	Assessing Response Inhibition and Attention with Ball Drop to the Beat Task
	Preliminary Approach
	Rhythm Detection
	Priliminary Results

	Tandem Gait to Assess Motor and Gait Functions
	Priliminary approach and Results

	Supervised Learning for Human Action Recognition
	Convolutional Neural Network with Recurrent Networks
	3D-Convolutional Networks
	Two-Stream Networks
	2-Stream 3D Convolutional Networks
	Multi-modal Data Fusion for Human Action Recognition

	Conclusion

	SELF-SUPERVISED LEARNING FOR HUMAN ACTION RECOGNTION
	Introduction
	Context based Video Representation Learning
	Temporal Order Verification
	Order Prediction Network (OPN)

	Self-Supervised Contrastive Learning
	Data Augmentation
	Methodology
	Encoder
	Downstream Task
	Implementation Details
	Experimental Results and Conclusion


	CONCLUSION AND FUTURE WORK
	Conclusion
	Future Work

	REFERENCES
	BIOGRAPHICAL STATEMENT

