
Unsupervised Data Driven Machine Learning in Hyperspectral Imaging and

Echocardiography Videos

by

KAZI TANZEEM SHAHID

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY IN ELECTRICAL ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

May 2021



Copyright © by KAZI TANZEEM SHAHID 2021

All Rights Reserved



ACKNOWLEDGEMENTS

There have been many people in my life that have blessed me to be standing here

today. I am thankful to all of the experiences and influences from them, that I cherish, and

shall do so in all my future endeavors.

First and foremost would be Dr. Ioannis D. Schizas. I consider myself truly lucky

to have him as my supervising professor. He has acted not only as a supervisor, but as a

mentor in the truest sense of the word. He taught me not only theoretical subjects, but he

has also taught me how to understand and tackle the daunting task of learning new and

unfamiliar concepts, the value of hard and sincere work, how to be patient in the face of

failures, and to appreciate them as experiences for future. Dr. Schizas has been a brilliant

blend of intelligence, respect, professionalism, and kindness, and I have often bragged to

my friends and family about how great of a mentor he has been, for good reason.

I would also like to thank Dr. Michael T. Manry, Dr. Ramtin Madani, Dr. Saibun

Tjuatja, and Dr. Venkat Devarajan for taking time off their busy schedules to be in my PhD

defense committee.

I would also like to appreciate my former colleagues for their invaluable help and

lessons, Guohua Ren, Jia Chen and last but far from the least, Akshay Malhotra. Akshay

has been one of the few people without whom my PhD would have been an insurmountable

challenge. He has been a crucial companion in my academic life, helping with studies in

coursework as well as my doctoral research. On top of that, he has been a strong source of

support in my personal life throughout my PhD, being a source of advice and wisdom in

critical times. I have been very fortunate to have him as a friend.

iii



I am also thankful for my friend Pratik Ghate, who has been a colleague during my

role as a Graduate Teaching Assistant, and has gone out of his way countless times to help

me understand how to perform my duties. Once we were matched in experience, he has

been a consistence source of morale throughout my studies, and his friendship has been a

great aid on many occasions.

Among the friends I have made through my life in UT Arlington, I shall also mention

Cyndi Needels, Jerry Sandoval, Emily Goodyear Klophaus and Kara Lindsey Milton for

their insightful and meaningful conversations, and their time as a sympathetic ear during

the mental hurdles faced throughout the daunting challenges of a PhD. Through you, I

understand truly what it means to say ”you are doing God’s work”.

The Bangladesh Student Organization at UT Arlington has been a large group of

Bangladeshi students who have been a slice of home away from home, and their friendship

has been nothing short of invaluable in upholding my morale, and mitigating my home-

sickness while pursuing my PhD in a country far from my family.

I would also like to extend my heartiest gratitude to Dr. Alan Taylor of Cardiology

Partners, who very kindly showed me the theoretical background behind echocardiograms,

and generously provided echocardiogram data for my applications. The staff at Cardiology

Partners deserve recognition as well in this regard, particularly Renuka Shah, given how

they spent time throughout their busy schedules to accommodate my request.

Lastly, I would like to extend my sincere gratitude to the family members without

whom I would not be the person I am today. My parents, and brothers, through their strong

and ethical professional principles, have instilled in me a desire to carve my own path in

life, and their humility have taught me to appreciate the value of creating achievements

for the sake of values that go beyond personal gain. My mother, Dr. Momtaz Begum has

been a direct influence in my PhD on another unique aspect, given that she lent her medical

expertise in expanding the theoretical background behind one of my publications. I am also

iv



fortunate to have the support of my wife, Fairuz Maliha, through her wisdom and foresight,

which has been a support whose value I shall never be able to measure, though not for lack

of trying.

April 30, 2021

v



Unsupervised Data Driven Machine Learning in Hyperspectral
Imaging and Echocardiography Videos

KAZI TANZEEM SHAHID

Supervising Professor: Ioannis D. Schizas

ABSTRACT

This work discusses the problem of unsupervised classification in images. Conven-

tional methods approached this problem with the naive assumption that the relationship

among the pixels’ information can be expressed sufficiently in a linear manner. However,

higher accuracy was established by implementing kernel-based expressions of data to ex-

press the non-linear relationship of that data in a linear manner, when mapped in a higher

dimensional space. This process allows much more effective clustering performances by

increasing the informativeness of the data. Hyperspectral images, being limited in spa-

tial resolution as a tradeoff for the significantly higher number of channels compared to

traditional images, often face the challenge of having pixels that, instead of showing one

material, show a mixture of multiple materials. It then becomes a challenging task of un-

mixing those materials, whose challenge is greatly exacerbated with the presence of strong

noise, and/or the data being corrupted due to some damage to the sensor, causing dead pix-

els in the form of data entries containing zero values. Unlike a large body of work which

focuses on a simpler approach, where it is assumed that the mixtures are obtained through

a linear combination of the contributing materials, nonlinear mixtures are a more accurate

representation of the mixtures obtained in real-life scenarios, and are thus tackled in our

work. The unmixing problems were addressed via formulation of a constrained optimiza-

tion problem which utilizes nonlinear mixing models, efficiently addressing the limitation
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of having a limited window of kernel parameters, tackling more complex mixture models,

and reducing computational complexity by automatically reducing dimensions containing

irrelevant data, with the added challenge of performing in a fully unsupervised setting. The

design and implementation of a nonlinear autoencoder neural network further improves

work in this respect, by fully customized designs of layers, which not only utilize spatial

information via weighted averaging of the pixels based on their perceived similarities in

the kernel space, but also have the added versatility in accommodation of higher degree

nonlinear interactions, a technique unavailable in major current works. Going beyond hy-

perspectral remote sensing images, a unique approach was tackled in unsupervised heart

disease diagnosis through observation of the mitral valve, and potential diseases affecting

its ability to function effectively. A wide variety of datasets were used in measuring its

efficacy, including data that was noisy and of lower resolutions, further increasing the diffi-

culty of implementing a fully unsupervised heart disease diagnosis algorithm that detected

the location of the mitral valve within the videos, and observed its movement to detect

whether it was diseased or healthy.
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CHAPTER 1

INTRODUCTION

When a sensor observes an environment, a particular measured data entry might give

very similar quantities across multiple samples, if the data entry across those samples are

affected by the same source. As an example, consider a hyperspectral remote sensing image

of an agricultural landscape. If multiple pixels encompass an area containing apples, these

pixels will contain similar spectral signatures across various spectral bands, and will thus

be correlated. In this manner, covariances or correlations among pixels’ reflectance values

can be used to cluster together pixels in an image that contain the same type of material.

Hyperspectral images enable information acquisition about an area of interest in dif-

ferent spectral bands of light [1]. Different materials on a hyperspectral image give rise

to different spectral signatures that can be utilized to cluster the hyperspectral pixels in

different groups according to their information content. A considerable amount of work

exists for clustering and classifying hyperspectral pixels according to the materials they

observe [2–6]. The majority of existing clustering techniques are supervised and rely on

training data to operate. However, when acquiring hyperspectral images a major chal-

lenge is the lack of training data that are needed to train supervised pixel classifiers [7, 8].

The aforementioned challenge has been addressed via the derivation of unsupervised tech-

niques [9, 10] that bypass the need for training, while compromising some clustering per-

formance. As part of the work in this thesis, I work towards implementing a Canonical

Correlations analysis (CCA) framework [16] in order to extract maximally correlated com-

ponents from a collection of data. However, as the correlations is usually nonlinear in hy-

perspectral images, the Kernel Trick [17] was applied in order to map the data to a higher
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dimensional space where the usually nonlinear correlations of the hyperspectral pixel in-

formation will be expressed linearly. Thus, in an unsupervised manner, the scheme will

accurately cluster together pixels that contain information of the same materials.

The nature of hyperspectral images is that they contain hundreds of different spectral

bands. These bands encompass the visible light spectrum, including short wave infrared, as

well as long wave infrared and ultraviolet. As opposed to traditional images, the advantage

of receiving spectral reflectance values across many separate bands is the encapsulation of

far more additional information regarding different materials/objects that are present in the

images. This extra information comes at a price, however. The extra information across

the spectral domain contained in vector pixels, results in a tradeoff where the spatial infor-

mation is significantly lower, causing each pixel of an image encompassing a much larger

area. This results in mixed pixels that can contain information regarding multiple materials,

and makes it essential to design a scheme that is able to separate from a collection of mixed

pixels, the spectral reflectances of the original pure materials. Spectral unmixing is a well-

researched topic in remote sensing, with considerable work relying on the assumption that

mixtures are formed from a linear combination of pure materials’ signatures [11–13]. To

that end, my scheme revises the regularized CCA formulation to unmix the hyperspectral

image pixels with mixed spectral signatures and isolate pure materials’ spectral responses,

while being fully unsupervised, which further implies no need for training data, or knowl-

edge of the number of different materials contributing to the mixing process.

Sensor damage, speckle dust can cause the hyperspectral image sensor to have ar-

tifacts that render pixels unresponsive, causing data entries in the images to have no re-

sponse [14]. These dead pixels cause disruption in the data, rendering many established

methods inefficient in spectral clustering and unmixing. My developed scheme is shown to

be robust even in the case of severe dead pixel presence.
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Neural networks have been a realm of study that has gained traction with regards to

hyperspectral unmixing in recent years. In unsupervised settings, the formation of autoen-

coders have been used to tackle both linear and nonlinear mixing models, with utilization

of spatial information [81, 82], as well as without [62, 71]. The application of nonlinear

mixing models has been explored to a limited degree in [71], due to the complexity of im-

plementation of more sophisticated nonlinear mixing models into a neural network setting.

To that end, my work focused on building an autoencoder neural network structure with

layers that were custom-built in order to tackle the unmixing problem effectively. To that

end, the advantage of RBF (Radial Basis Function) kernel transformation was exploited to

measure the similarities of the various mixed pixels w.r.t. K-means cluster centers that act

as initial representations of the pure materials. This similarity, which can be interpreted as

estimations of the fractions of these materials, can then be fed into subsequent layers in this

neural network structure, where the weights of these layers are initialized as estimations of

the pure materials, and can be optimized through training of the autoencoder structure.

Although nonlinear mixing models usually calculate upto 2nd degree cross-products

of the materials to replicate the nonlinear interactions among them, higher degree cross-

products from nonlinear interactions of more than two materials can also exist, but they are

usually ignored. This is due to the fact that as the values pertaining to these materials are

usually normalized to be between 0 and 1, higher degree products of such fractional values

yield smaller and more insignificant magnitudes, that may not warrant the complexity to

consider such terms in the unmixing algorithms. However, with the goal of having a very

versatile and highly accurate unmixing method, I have also designed the neural network

structure to accommodate higher degree cross-products as well.

It is common practice in hyperspectral unmixing to assume prior knowledge of the

number of materials that exist in the datasets. However, it would be of significant advantage

if the unmixing algorithm is able to estimate this number, further bolstering its character-
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istics as a fully unsupervised method. To that end, the kernel covariance matrix, which

would have a block diagonal structure, having as many blocks as there are materials, is cal-

culated, and its reconstruction errors w.r.t. various rank-equivalent matrices are observed to

effectively estimate the number of materials contributing to the datasets. On top of that, the

problem of dead pixels is further observed, utilizing the spatial property present in these

images, to employ an RBF-based weighted averaging filter throughout the data to fill the

gaps obtained from unresponsive pixels with values that accurately represent the data that

would have been observed had the sensors not contained dead pixels.

In the realm of image processing, medical imaging is another field that has received

a great deal of attention. Heart disease is a leading cause of death among adults world-

wide. As the heart’s function is to pump blood throughout the body with valves regulating

blood flow, a very common cause of crippling heart disease comes from infections prevent-

ing proper function of the valves and preventing blood flow. A popular medical imaging

procedure for diagnosing potential heart disease is through ultrasound (echocardiograms),

as it is noninvasive, relatively cheaper and requires little preparation on the patients’ side.

Although some schemes exist for diagnosis through valve tracking from echocardiography

videos, they are supervised, and unsupervised schemes are very difficult as the hearts vary

noticeably among various patients. On top of that, this is exacerbated by involuntary move-

ment of the heart. My scheme was able to effectively observe a wide array of echocardiog-

raphy videos, and in a fully unsupervised manner, use valve tracking to determine whether

a particular heart is diseased or not, with reasonable accuracy.

As part of my work, I have attempted to implement unsupervised algorithms to clus-

ter and unmix hyperspectral remote sensing images, and observing ultrasound videos of the

human heart to diagnose heart disease. Some key contributions of my work encompass:

1. A kernelized form of the regularized CCA based clustering scheme.

4



2. A reformulation of the regularized kernel-based CCA scheme into a constrained

optimization problem that performs unsupervised unmixing of mixed signals.

3. A custom-built autoencoder network that performs nonlinear hyperspectral un-

mixing through implementation of the RBF kernel trick.

4. A customized autoencoder for nonlinear unmixing, that tackles dead pixels, while

also estimating the number of materials contributing to the datasets.

5. Unsupervised valve tracking-based heart disease diagnosis in echocardiography

videos.

The rest of the document is structured as follows. Chapter 2 introduces the linear

CCA based clustering framework. Chapter 3 illustrates the kernelized variant of the CCA

framework. Chapter 4 shows the kernelized CCA framework extended for spectral unmix-

ing. Chapter 5 details the autoencoder network for nonlinear unmixing. Chapter 6 describes

the aforementioned autoencoder structure with further implementation of endmember num-

ber estimation while tackling dead pixels with a novel averaging filter. Chapter 7 discusses

the heart disease diagnosis framework for echoardiography videos, and Chapter 8 closes

the report with concluding remarks, and directions of future work.
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CHAPTER 2

LINEAR CCA FRAMEWORK

Hyperspectral images consist of vector pixels in which each entry corresponds to the

intensity on different spectral bands of the electromagnetic spectrum [1]. Let F denote

the number of spectral bands information that is acquired for each pixel, while set Fs :=

{1, . . . , F} denote the spectral band indices. Further, let Xf denote a Sx × Sy matrix that

contains the intensity of all the pixels of a hyperspectral image acquired at spectral band f ,

for f = 1, . . . , F with Sx and Sy denote the number of pixels per row and column in Xf .

The main goal of this work was to develop an unsupervised framework to cluster pixels of

hyperspectral images according to the material they contain information about. In detail,

our goal is to cluster a collection P of p ≤ Sx · Sy pixels, that contain information about

q materials, into q different groups according to their information content without using

training pixels.

The set of pixels in P is splitted into two data vector sequences xf ∈ Rpx×1 and

yf ∈ Rpy×1, that contain the intensity of the corresponding pixels at spectral band f such

that px+py = p. The sequences xf and yf do not contain overlapping pixels. For simplicity

in exposition and without loss of generality it is assumed here that px = py. Moreover, let

f ∈ Fs, where Fs is a subset of all available spectral bands in F which will be used

for the clustering; and Fs := |Fs|. It is also assumed that the pixels in both xf , and yf

sequences contain information about all the q materials of interest. This assumption can

be easily satisfied when the number of pixels p is sufficiently larger than the number q of

different materials. In practice, sensing units acquiring information across different spectral
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bands may be malfunctioning causing certain pixel intensities in xf , and yf to be missing.

Missing pixels (a.k.a. dead pixels) here will be assumed to have a zero intensity value.

To perform clustering of the p pixels of interest according to the material they sense,

statistical correlation between pixels with similar information content in xf , and yf will

be exploited. The novel framework proposed here is built on the canonical correlation

analysis (CCA) framework [16] that is capable of linearly extracting maximally correlated

common objects/features present in two data sequences xf , and yf . In fact, it was demon-

strated in [15] that information clustering via CCA can be achieved by utilizing norm-one

regularization mechanisms in the standard CCA formulations [15] , i.e.,

(Ê, D̂) = arg min
E,D

F−1
s

∑
f∈Fs
||yf − EDxf ||22

+
∑q

ρ=1 λ
E
ρ ||E:ρ||1 +

∑q
ρ=1 λ

D
ρ ||Dρ:||1, (2.1)

where D̂ ∈ Rq×px and Ê ∈ Rpy×q correspond to pertinent sparse clustering matrices that

are obtained such that the nonzero entries (support) of each of the q rows and columns in

D and E respectively point to the entries (pixels) in xf , and yf with similar information

content [15]. The operator ‖ · ‖1 denotes norm-one, while the parameters λDρ and λEρ

correspond to sparsity controlling coefficients that adjust the number of nonzero entries in

D and E, respectively [15].
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CHAPTER 3

KERNELIZED CCA FOR CLUSTERING

A main limitation of the sparse CCA formulation in (2.1) is that it relies on extracting

linear data correlations, whereas the pixels in hyperspectral images are in practice nonlin-

early related [7,8]. To this end, nonlinear kernel mappings will be introduced in the formu-

lation in (2.1) to address nonlinear pixel dependencies. Further, the kernel trick [17] will

be utilized to obtain an efficient minimization technique that will allow computationally

efficient extraction of pertinent sparse clustering matrices D and E.

3.1 Regularized Kernel-Based CCA

In order to determine the presence of nonlinear correlations present among pixel

entries in xf and yf , we introduce nonlinear mappings φx(xf ) and φy(yf ). These are

representations of xf and yf in a higher dimensional space, obtained by row-wise imple-

mentation across the entries of xf and yf . The main goal of these nonlinear mappings is

to transform as much as possible pixel correlations to linear dependencies. In this higher

dimensional space, we can exploit the potentially linear correlations using the formulation

in (2.1). So we replace xf and yf with nonlinear mappings φx(xf ) and φy(yf ) in (2.1) to

obtain the kernel regularized canonical correlations (KRCC) formulation

(Ê, D̂) = arg min
E,D

F−1
s

∑
f∈Fs
||φy(yf )− EDφx(xf )||22

+
∑q

ρ=1 λ
E
ρ ||E:ρ||1 +

∑q
ρ=1 λ

D
ρ ||Dρ:||1. (3.1)
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Let Js(E,D) denote the first term, while J(E,D) denotes the entire cost function

in (3.1). The cost in (3.1) will be minimized by implementing the subgradient descent

method [18]. In this way, at iteration k, the updates for the clustering matrices E and D

can be found by replacing D and E with their updates obtained from the latest iteration,

and utilizing the following rules to recursively update E and D until convergence

Êk = Êk−1 − c∇E
Êk−1,D̂k−1

J(E,D), (3.2)

D̂k = D̂k−1 − c∇D
Êk−1,D̂k−1

J(E,D). (3.3)

Here c > 0 represents the step-size, which is chosen on a trial and error basis to ensure

convergence on eqs. (3) and (4). Also, ∇E
Êk−1,D̂k−1

J(E,D) and ∇D
Êk−1,D̂k−1

J(E,D) are

the partial subgradients of J(E,D) with respect to E and D respectively, with Êk−1 and

D̂k−1 taken as input parameters in the cost J(E,D).

Writing the subgradient terms in (3.2) and (4) in more detail we obtain the following

detailed expressions

∇EJ(E,D) =
δJs(E,D)

δE
+ sgn(E)diag(λE) (3.4)

∇DJ(E,D) =
δJs(E,D)

δD
+ diag(λD)sgn(D). (3.5)

The second term in the rhs (right hand side) of eqs. (5) and (6) corresponds to a

subgradient of the norm-one terms in (3.1), with respect to E and D respectively. Ob-

serve that diag(λD) corresponds to a diagonal matrix, where the diagonal entries contain

[λD1 , . . . , λ
D
q ], while sgn(M) is the matrix we obtain after applying the sign operator across

the entries of matrix M.

Application of the kernel trick, after properly selecting the nonlinear mapping φ(·)

as detailed in [17], enables to rewrite the term Js(E,D) in (3.1) as follows

Js(E,D) = tr(K̂y − 2·E·D·K̂xy + E·D·K̂x·DT ·ET ). (3.6)
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Here the matrices K̂x, K̂y, K̂xy denote the weighted-average (cross)-covariance matrices

of the transformed data as follows

K̂x :=
∑
f∈Fs

wxfK̂x(f), (3.7)

K̂y :=
∑
f∈Fs

wyfK̂y(f), (3.8)

K̂xy :=
∑
f∈Fs

wxyf K̂xy(f). (3.9)

Here, wxf , wyf and wxyf represent the weights placed upon each spectral band f . The afore-

mentioned weights will be set proportionally to the variability of each of the kernel covari-

ance matrices entries generated by K̂x(f) := φx(xf )φ
T
x (xf ), K̂y(f) := φy(yf )φ

T
y (yf ),

and K̂xy(f) := φx(xf )φ
T
y (yf ) corresponding to spectral band f . The larger the variance

of the covariance matrix entries is at a specific spectral band, the larger the corresponding

weight will be set and vice versa. Details on how the weighting scheme works in (3.7)-(3.9)

are given in the section 3.3 and specific details on how to obtain the kernel matrices K̂x(f)

and center them are presented in section 3.2 and section 3.5, respectively.

Further, the first term of the rhs in Eqs. 3.4 and 3.5 denote the partial derivatives

of the term Js(E,D) with respect to E and D respectively, that may be obtained after

differentiating (3.6) with respect to E and D as follows

δJs(E,D)

δD
= −2·K̂T

xy·DT + E·D·K̂T
x ·DT + E·D·K̂x·DT ,

δJs(E,D)

δE
= −2·ET ·K̂T

xy + ET ·E·D·K̂T
x + ET ·E·D·K̂x.
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3.2 Kernel Variance Selection

A kernel utilized in hyperspectral images successfully [7, 8] is the Gaussian radial

basis function (RBF) kernels which can be expressed as follows

kx(xf ,xf ′) = exp

(
−||xf − xf ′||2

2σ2

)
, (3.10)

where xf and xf ′ correspond to the pixel vectors at different spectral bands. The kernel

variance, σ2, represents the allowable within class variance and it is a crucial parameter

because it controls the data in the infinite dimensional space, and thus affects the shape of

the kernel covariance matrix and inherently, the overall clustering accuracy. An incorrect

choice of the σ2 value can thus result a non-informative kernel covariance matrix which

may be insufficient in providing acceptable clustering performance.

To demonstrate the importance of σ2 in pixel clustering, consider an example with

20 hyperspectral image pixels, from the Indian Pines dataset [51], representing 4 different

materials/classes. The pixels are arranged such that each set of 5 sequential pixels represent

one of the 4 different materials. Using a mapping derived by employing a Gaussian kernel

of the most suitable variance, we obtain a covariance matrix like the one shown in Fig.

3.1(a). The four visible diagonal blocks correspond to the highly correlated pixels observ-

ing the same material, while the low magnitude in the remaining entries of the covariance

matrix shows the uncorrelatedness between pixels of different materials.

However, if the value of σ2 is set too high, as per (6.5), irrespective of the value of

||xf −xf ′ ||2, all the entries of the covariance matrix will be close to one. Such a covariance

matrix provides no meaningful information towards the clustering task considered here.

The kernel covariance matrix for a variance σ2 = 1010 is shown in Fig. 3.1(b). On the other

hand, if we choose a variance σ2 that is too small, then the diagonal covariance entries for

which xf would be equal to xf ′ , are equal to one, while the majority of the nondiagonal

entries will be close to zero as demonstrated in Fig. 3.1(c). This diagonal covariance matrix
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Figure 3.1: Effect of selecting different kernel variance σ2 in the kernel covariance struc-
ture: (a) σ2 = 103.5, (b) σ2 = 1010, (c) σ2 = 10−5

is not pertinent for the clustering task considered here. Through extensive numerical tests,

it has been observed that as the kernel variance σ2 increases within the range 10−5 to 1010

the approximately diagonal kernel covariance matrix depicted in Fig.3.1(c) transforms into

a block diagonal matrix given in Fig. 3.1(a) before transforming into the matrix depicted in

Fig. 3.1(b) whose entries are all equal. This reflects that the matrix elements corresponding

to the covariance between pixels from the same material increase in magnitude much earlier

than the elements corresponding to covariance across different materials as the variance σ2

is increased. The block diagonal structure of the covariance matrix is highly desirable as

diagonal blocks point to the hyperspectral pixels that need to be clustered together. Clearly,

from Fig. 3.1(a), there are 4 block diagonals, each of the size 5 × 5, that have a large
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magnitude. This basically indicates that amongst the pixels considered as input, the first

5 are derived from the same source or represent the same material and so on for the other

three sets of 5 pixels.

Let the variability νf of the kernel covariance matrix entries for spectral band f be

defined as

νf =

p/2∑
i=1

p/2∑
j=1

(K̂f
x(i, j)− m̄K̂f

x
)2, (3.11)

where K̂f
x(i, j) corresponds to the (i, j)th entry of φx(xf )φ

T
x (xf ) at spectral band f while

m̄K̂f
x

=
1

(p/2)2

p/2∑
i=1

p/2∑
j=1

K̂f
x(i, j) (3.12)

corresponds to the average of the kernel covariance entries.

Interestingly, numerical experiments show that νf increases as the value of σ2 in-

creases until it reaches a maximum value during which covariance K̂f
x becomes block

diagonal in structure. After this point νf decreases as σ2 keeps increasing. Therefore, νf

can be used as a metric to choose a pertinent value for the variance σ2 value by observing

when νf reaches its maximum value.

As discussed earlier, as the σ2 increases, the block diagonal elements of the kernel

covariance matrix increase in magnitude. Simultaneously, the variability νf also increases

since the magnitude of only a few elements (the block diagonals) has increased and all the

other elements are still constant. But post a transition point in the range of σ2, all the other

elements of the covariance matrix increase in magnitude too and as a result νf decreases

beyond this transition point. At the transition point, the block diagonal structure is most

well formed. Intuitively, the variability, namely νf is an indicator of the informativeness of

the kernel covariance matrix, and thus a large value for νf is desirable.

For each spectral band f ∈ Fs, a grid of n possible values of the variance σ2 is

formed. For each of these n values and spectral bands the corresponding kernel covariance
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matrices K̂f
x are evaluated by employing the kernel trick. Using (3.11), n different vari-

abilities νif , i = 1, . . . , n are calculated for each spectral band f . For each spectral band f ,

the variance resulting the maximum variability νmax
f := maxi=1,...,n(νif ) is then used as the

kernel variance parameter to evaluate the corresponding kernel covariance K̂f
x (a similar

process is done also for K̂f
y and K̂f

xy).

3.3 Covariance Weighting Scheme

Among the F spectral bands present in a hyperspectral image, not all spectral bands

exhibit the same amount of useful information that can be exploited via kernel-based cor-

relation analysis to perform clustering. In fact, in many datasets, some spectral bands are

removed as a preprocessing measure, because atmospheric water absorption causes little to

no information from the objects to reach the image sensor at all. The information present

in a particular spectral band will be dependent on the nature of the object present in the

image, as well as its particular spectral reflectance. Thus, the most informative spectral

bands correspond to the ones in which the objects/materials of interest exhibit the strongest

spectral responses.

To this end, we utilize an unsupervised scheme similar to the one discussed for kernel

variance selection in Section 3.2 to sort the spectral bands according to their informative-

ness. Specifically, the spectral bands are allocated weights in proportion to the information

they contain. Thus, the kernel covariance matrices in (3.7)-(3.9) utilized by the KRCC

framework will be formed as a weighted average giving more emphasis to the informative

spectral bands.

To determine the weights in (3.7)-(3.9), the variability measure νmaxf for each of the

|Fs| covariance matrices is utilized. As mentioned in Section 3.2, a high value for νmaxf

implies more information. Thus, the highest νmaxf will point to the spectral band which
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would provide the most useful information pertaining to the materials/objects represented

by the pixels. The weights wxf , wyf and wxyf are calculated as a proportion of the variability

νmaxf obtained from K̂f
x, K̂

f
y and K̂f

xy respectively, where f ∈ Fs. The weights are then

normalized such that their sum equals one. Thus, for the weights wxf , we have

wxf =
νmaxf∑|Fs|
f=1 ν

max
f

, (3.13)

while wyf and wxyf can be found similarly.

3.4 Stitching Algorithm

Even though having much greater information along the third dimension correspond-

ing to spectral reflectance in various spectral bands causes a tradeoff in having a lower spa-

tial resolution compared to RGB images, the resulting spatial resolution in hyperspectral

images is still substantial causing high complexity issues when attempting to cluster all

pixels on the image. To address complexity we devise the following three-stages scheme:

3.4.1 Stage 1

We split the image into small 5×5 patches of pixels, and assume all labeled pixels in

each patch to represent the same material. Beginning from the upper leftmost portion, we

take each portion and perform the KRCC framework with adjacent portions, and recursively

perform this operation until the opposite corner of the image is reached, and the entire

image has been covered.

For each pixel patch, KRCC is performed with the neighboring portion on its right,

then with the neighboring one on its bottom, using a small number (8 were used in our

experiments) of representative pixels randomly selected from the patches to form the

KRCC input vectors xf and yf . For a relatively large patch of pixels representing the same
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material, this would imply that by implementing this broom-like scheme, such patches will

be initially split into multiple separate portions, and then eventually be merged together. If

at some point, two adjacent 5 × 5 portions are merged, then we would not take represen-

tative pixels from only one of these merged 5 × 5 portions, we would take them from all

pixels that were merged together from previous steps. This would ensure a more accurate

pattern that would be exhibited by an object represented by these merged pixels, since the

same object might exhibit pronounced variability across certain spectral bands depending

on surrounding conditions (For example, the same crop would exhibit spectral reflectance

values if growing on healthy soil, which might be profoundly different from the same crop

growing in unhealthy soil). If, however, KRCC deems that two adjacent portions do not

belong together, then they will not be merged. Note that choosing a small selection of rep-

resentative pixels is crucial to avoid the immense computational complexity arising from

generating kernel matrices of large magnitudes. Since the time in the generation of kernel

matrices increases exponentially with the size increase of the matrices.

3.4.2 Stage 2

After the initial stitching algorithm, KRCC may cluster in the same group patches of

data separated by unlabeled pixels. However, if such adjacent patches are close together,

they will exhibit some similarity in spectral reflectance that will be caused by its adjacency

in the spatial domain. This will cause patches surrounded by unlabeled pixels which are

from different sources, to be merged together by KRCC. To alleviate this, after completing

the stitching algorithm, isolated patches of data that KRCC groups together will undergo

another KRCC step, where the number of rows in clustering matrices D and ET will be

the same as the number of isolated patches present. This will utilize a larger number of

representative pixels because we now have patches that are much greater than 5x5 portions,
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Figure 3.2: Summary of the proposed algorithm showing the three stages of the algorithm
using a hyperspectral example having 4 classes spreading across 5 patches.

and thus more pixels will make it easier for KRCC to find a correlation that will effectively

cluster together patches containing the same object.

3.4.3 Stage 3

Alternatively, we might come across patches in the image from the same object,

but distant from each other from a spatial standpoint. Since the stitching algorithm will

consider only adjacent patches, such cases (depending on the distribution of the objects in

the image) would cause these patches to be misclassified as separate objects. To this end,

after the KRCC stage mentioned above, we implement another pairwise KRCC, where

this time it is implemented across separated patches, as opposed to merged patches. This

will ensure that we have considered all possible combinations of the data existing in the

hyperspectral image. The stiching algorithm is summarized in Fig. 3.3

3.5 Algorithmic Details

When generating the kernel matrices according to (3.7)-(3.9) the transformed data

φx(xf ) and φy(yf ) need to be centered by subtracting the ‘average’ quantities from them
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φ̄x(x) := F−1
s

∑
f∈Fs

φx(xf ) and φ̄y(y) := F−1
s

∑
f∈Fs

φy(yf ), respectively [42]. This

eventually leads to the centering operation applied in the kernel matrices as shown below.

The centered kernel matrices can be formed using the following formula:

K̂x = F−1
s

∑
f∈Fs

[φx(xf )− φ̄x(x)][φx(xf )− φ̄x(x)]T

where the (i, j)th entry of K̂x, namely [K̂x]i,j can be written as [K̂x]i,j = F−1
s

∑
f∈Fs

[K̂x(f)]i,j

with

[K̂x(f)]i,j : = [[φx(xf )− φ̄x(x)]i] · [[φx(xf )− φ̄x(x)]j]
T

= ki,jx (f, f)− F−1
s

∑
f ′∈Fs

ki,jx (f, f ′) (3.14)

− F−1
s

∑
f ′∈Fs

kj,ix (f, f ′) + F−2
s

∑
f ′,f ′′∈Fs

ki,jx (f ′, f ′′),

while ki,jx (f, f ′) := [φx(xf )]i ·φx(xf ′)]j while [φx(xf )]i represents the ith row of φx(xf ).

This is a row vector of infinite dimensionality, and it can be determined from the RBF

kernel in (6.5) (see kernel trick in [17]).

As discussed in Section 3.3, data from some of the frequency components is more

informative than the others and thus we introduce the idea of weighing each component

in proportion to its informativeness. To incorporate this weighting, the centering scheme

has to be altered too. Therefore we appropriately scale the φx(xf ) with the weights to get√
wxfφx(xf ). The average is then given by φ̄x(x) := F−1

s

∑
f∈Fs

φx(xf )
√
wxf and the

centered kernel with the weighting factor is given as:

wxf [K̂x(f)]i,j : = [[φx(xf )
√
wxf − φ̄x(x)]i] · [[φx(xf )

√
wxf − φ̄x(x)]j]

T (3.15)

= wxfk
i,j
x (f, f)− F−1

s

(∑
f ′∈Fs

ki,jx (f, f ′) +
∑

f ′∈Fs
kj,ix (f, f ′)

)√
wxfw

x
f ′

+ F−2
s

∑
f ′,f ′′∈Fs

ki,jx (f ′, f ′′)
√
wxf ′w

x
f ′′ ,

to be used in equations (3.7)-(3.9).
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Figure 3.3: Summary of the proposed algorithm showing the three stages in a block dia-
gram

We initialize the entries of D and E with random values at the first iteration, where

k = 0 in (3.2). The novel clustering algorithm is summarized in the block diagram as

shown in Fig 3.3.

3.6 Numerical Results

The Salinas dataset contains 54129 labeled pixels, making this the most time-consuming

dataset among the ones implemented. The resolution is 512 × 217 × 224, with 224 being

the number of spectral bands. Traditionally, 204 spectral bands are used after removing 20

bands containing atmospheric water absorption, but in the KRCC scheme, these contain
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the lowest variances in the corresponding kernel covariance matrix, thus their weights will

be extremely low, implying that identifying and isolating such spectral bands will be un-

necessary. Furthermore, we found with further testing, that including these spectral bands

can improve the clustering performance, implying that even such spectral bands will have

some information useful to our novel clustering scheme.

For the initial stitching algorithm, we take 8 representative pixels from each 5x5

portion, while the values of the λ parameters were chosen to be 0.5. This finally resulted

in approximately 45 classes, where 34 of them contained less than 150 pixels, and were

subsequently ignored as negligible errors. What remained were 11 classes, where there

are actually 16 in total, implying that several classes were misclassified as belonging to-

gether. Since KRCC took isolated patches surrounded by unlabeled pixels to belong to the

same object, we can conclude that each of these patches contain one object, as opposed to

containing multiple objects. Following with this conclusion, we take those combination of

patches that the stitching algorithm concluded to belong to the same object, and run KRCC

on them again. This time, however, we take 10 representative pixels from each isolated

patch, and use a smaller value of λ parameters, equal to 0.1.

After this step, we have 16 classes in total, but we need to take into consideration that

we might obtain multiple patches that actually belong to the same object, but are distant

enough from each other so that the stitching algorithm will fail to merge them. To this

end, we take 10 representative pixels from each class as declared by the first two stages of

KRCC, and run a final stage of KRCC among each other in a pairwise manner, meaning that

KRCC will be implemented on two classes at a time. Comparisons were made with KSVM,

Kmeans and KSEM [10], where Table 4.5 shows the accuracy of clustering for each class,

as well as average and overall accuracy of different methods. Note that for the obtained

results, the values pertaining to KSEM were quoted directly from [10]. We can observe that

KRCC not only measures several objects with complete accuracy, but overall maintains
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Class names KSVM
(1% train)

Kmeans Biophy-
-sical
method

KSEM KRCC

Brocoli Green Weeds 1 96.72 98.25 62.71 93.34 100
Brocoli Green Weeds 2 95.82 43.86 25.06 99.67 90
Fallow 95.30 63.78 30.06 75.64 100
Fallow Rough Plow 95.01 95.48 64.06 99.19 56.25
Fallow Smooth 94.77 58.75 52.83 91.37 40.96
Stubble 94.63 61.19 32.83 99.73 92.28
Celery 97.14 69.46 27.66 77.51 59.31
Grapes Untrained 69.88 49.87 18.15 99.57 98.70
Soil Vinyard Develop 96.68 77.01 46.10 95.65 100
Corn Senesced Green
Weeds

80.54 35.07 27.18 63.26 100

Lettuce Romaine 4wk 88.96 7.45 39.79 47.07 100
Lettuce Romaine 5wk 98.02 4.58 40.84 100 100
Lettuce Romaine 6wk 94.93 40.27 55.45 88.92 100
Lettuce Romaine 7wk 79.51 36.60 31.30 88.94 100
Vinyard Untrained 62.08 44.07 18.91 0 20
Vinyard Vertical Trellis 97.00 32.69 15.44 99.22 100
Overall Accuracy 84.65 58.96 31.55 79.17 81.14
Average Accuracy 89.81 51.15 36.77 82.44 84.84

Table 3.1: Clustering Performance in Salinas for 0% dead pixels.

a performance that is of a competitive degree with a supervised method, despite being

unsupervised. Objects such as Fallow-Smooth and Fallow-Stubble are different forms of

the same object, and thus would exhibit spectral patterns that may be too similar for KRCC

to accurately separate, thus some challenge in this regard is expected.

Next, we introduce dead pixels within the data, and repeat the whole process for this

corrupted data. Fig. 3.4 illustrates the classification accuracies of different methods based

on varying percentages of dead pixels within the given data. It can be clearly observed,

that KRCC is not only on par with KSVM with no dead pixels, it is capable of consistent

performance even when missing pixels are implemented. The performance degradation of

KSVM is even further than for Kmeans after going beyond 1 % of dead pixels. This is
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Figure 3.4: Probability of correct clustering versus percentage of dead pixels in Salinas

because even though both methods will suffer with missing entries, since any change of

value along even one dimension will alter the position of the data points when we consider

its mapping along a Euclidean space, thus making clustering difficult for such points, but

this is even more disadvantageous for KSVM, since if such corrupted pixels are randomly

selected to be training samples, then the classifier will attempt to cluster data with a cor-

rupted training scheme. However, since we are taking a weighted average of the kernel

matrices for KRCC, such entries containing missing data will have little impact when they

are among other entries that will be averaged out, thus explaining the consistency of per-

formance in KRCC. A side-by-side comparison of the estimated map in comparison with

the reference map has been illustrated in Fig. 3.5.
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Brocoli green weeds 1
Brocoli green weeds 2
Fallow
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Fallow smooth
Stubble
Celery
Grapes untrained
Soil vineyard develop
Corn senesced green weeds
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Lettuce romaine 5wk
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Vinyard untrained
Vinyard vertical trellis
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Figure 3.5: Maps of Salinas generated by various methods compared to the reference map,
(a) Ground Truth, (b) KSVM, (c) Kmeans, (d) Biophysical method, (e) KRCC
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CHAPTER 4

KERNELIZED CCA FOR UNMIXING

As mentioned previously, the hyperspectral image pixels have higher spectral resolu-

tion at the sacrifice of a lower spatial resolution. If a hyperspectral remote sensing image is

acquired across a large area, then each pixel will encompass an area that can contain mul-

tiple materials. This will result in a pixel containing spectral reflectances that are a mixture

of those materials, as opposed to containing only one material. To this end, it is necessary

to unmix the spectral reflectances of the contributing materials, a nontrivial problem when

tackled from an unsupervised perspective.

4.1 Unsupervised Hyperspectral unmixing

Consider a set of hyperspectral pixels that contain information across S spectral

bands, while let set S := {1, . . . , S} contain the indices of the spectral bands across which

information is gathered. Further, let M ∈ RY×S contain the intensities of Y pixels of a

hyperspectral image across the spectral bands in S. The linear mixing model (LMM) has

been used extensively to emulate the mixing effect [11]. In this model, the reflectance val-

ues from a mixed pixel is assumed to be a linear combination of multiple objects. Such

materials are ‘pure’ (no mixing exists in them), and they are known as endmembers. For

the remainder of this chapter, the terms endmembers and pure pixels will be used inter-

changeably.
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The mixed hyperspectral pixels in matrix M can be modeled via the linear mixing of

R endmembers which gives

M = P ·U + ε, (4.1)

where P ∈ RY×R represents the matrix of abundances, where each entry quantifies the

contribution of each endmember, i.e., Pi,j ∈ [0, 1], while the rows of U ∈ RR×S contain

the unknown endmembers, and ε represents white Gaussian noise. Since the abundances

represent the fractional contributions of endmembers, by definition the entries of P would

have nonnegative entries, while the sum of each row of P equals to 1. Further, as the entries

of U represent reflectance values, they will be nonnegative as well. Furthermore, the data

provided is assumed to be normalized to unit energy, thus Ui,j ∈ [0, 1].

Mixtures in hyperspectral data can be more accurately represented by a nonlinear

mixing model as opposed to a linear one [19,20,55]. A better representation of the mixing

effect can be achieved by utilizing a polynomial nonlinear mixing model, commonly known

as the Fan model [21], which for the ith row of M gives

Mi,: =
R∑

=1

Pi,jUj,: + b

R−1,R∑
j=1,l=j+1

(Pi,jPi,l)Uj,: �Ul,: + ε, (4.2)

for i = 1, 2, . . . , Y , while � represents the Hadamard product (elementwise prod-

uct), while b is a coefficient that controls the strength of the nonlinear polynomial part.

Note that b = 0 reverts (4.2) back to the LMM in (6.1).

The set of pixels in M is split evenly into two vectors xs ∈ Rpx×1 and ys ∈ Rpy×1,

that contain the reflectance values of the pixels at spectral band s, while px + py = p, and

the pixels are non-overlapping among the two sets. We also assume that the pixels in both

the {xs} and {ys} sets contain information regarding all R materials present.
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The CCA formulation can initially be considered to be similar to the formulation

described in Eq. 2.1 in Chapter 2, but as shown below, the D and E matrices have added

constraints.

(Ê, D̂) = arg min
E,D

S−1
∑

s∈S ||ys − EDxs||22 +
∑R

γ=1 λ
E
γ ||E:γ||1 +

∑R
γ=1 λ

D
γ ||Dγ:||1,

(4.3)

s. to D(γ, j) ≥ 0,E(i, γ) ≥ 0, E(i, :)1 = 1,

where i, j = 1, . . . p, γ = 1, . . . , R, and the operator ‖ · ‖1 denotes norm-one, with 1

indicating a vector of ones. The matrix Ê ∈ Rpy×R can be viewed as an estimate of the

abundances of the endmembers that form the pixel intensities in ys for spectral band s.

The nonnegativity constraints for D and E correspond to the nonnegativity property of

the entries in matrices P and U. Proper selection of the nonnegative parameters λEγ and

λDγ , controls the population of zeros, known as sparsity, in E and D corresponding to the

rationale that only a handful of endmembers contribute to a mixed pixel.

Similar to (4.3), we can formulate a similar equation for the abundances pertaining

to the mixed pixels in the set xs

(Ê′, D̂′) = arg min
E′,D′

S−1
∑

s∈S ||xs −D′E′ys||22 +
∑R

γ=1 λ
D′
γ ||D′:γ||1 +

∑R
γ=1 λ

E′
γ ||E′γ:||1,

(4.4)

s. to D′(i, γ) ≥ 0,E′(γ, j) ≥ 0, D′(i, :)1 = 1.

The matrices D̂′ ∈ Rpx×R and Ê′ ∈ RR×py have similar definitions as the E and

D matrices given earlier, except here, they correspond to the pixels in xs, and as such the

nonnegativity constraints similarly apply, while the unit summation constraints will apply

to the rows of D′.
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4.2 Regularized Kernel-Based Correlation Analysis

Akin to the previous chapter, the kernelized version of the CCA formulation in 4.3

can be written as follows to create the kernel regularized canonical correlation unmixing

(KRCCU) formulation

argmin
E,D

tr(K̂y − 2·E·D·K̂xy +E·D·K̂x·DT ·ET ) +
∑R

γ=1 λ
E
γ 1

TE:γ +
∑R

γ=1 λ
D
γ Dγ:1, (4.5)

s. to D(γ, j) ≥ 0,E(i, γ) ≥ 0, E(i, :)1 = 1.

Different from the formulation in Chapter 3, the KRCCU framework in (4.5) involves

nonnegativity constraints for D and E, and unit summation constraints for the rows of E

that facilitate the task of unmixing. Due to the nonnegativity constraints on E and D the

corresponding norm-one terms in (4.3) boil down to a sum. The constrained kernelized

nature of (4.5) calls for a completely novel approach for tackling this unmixing framework

not addressed in Chapter 3.

We can similarly obtain the transformation of the cost in (4.4) for the ys data to

obtain the KRCCU formula as follows

J(E′,D′) = tr(K̂x − 2D′·E′·K̂yx +D′·E′·K̂y·E′T ·D′T )

+
∑R

γ=1 λ
D′
γ 1TD′:γ +

∑R
γ=1 λ

E′
γ E′γ:1 (4.6)

It should be noted that in this case, though the nonnegativity constraints hold for E′ and D′

akin to before, here the unit summation constraints will be considered for each row of D′,

as opposed to each row of E previously.

4.3 Kernel Selection and Weighting

While the same problem with kernel variance selection from Sec. 3.5 exists here, a

novel approach was taken to tackle this problem, from some preliminary work in [22].

We first consider V different values for the kernel variance on a discrete 1-D grid. Let

K̂j
x(s) correspond to the kernel covariance matrix obtained when the jth kernel variance
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value is used. Having R endmembers forming the mixed pixels, and also assuming that

for each pixel, we have one endmember whose abundance is higher than the rest, allows

the grouping of the pixels in R groups, where each group has one dominant endmember

different from the other groups. When the kernel variance is selected properly such that

it linearizes inter-pixel correlations data, then the kernel-transformed pixel covariance ma-

trices, namely K̂x(s) and K̂y(s), are expected to contain R row- and column-permuted

diagonal block submatrices of rank one (when sensing noise is weak). This stems from the

presence of R dominant and uncorrelated endmembers that result in R uncorrelated groups

of correlated pixels.

To this end, the objective is to select a value of the variance whose resultant K̂x(s)

has a rank close to R. In detail, a proper variance value is chosen such that it results in

a matrix K̂x(s) with the strongest Rth eigenvalue, which leads to a covariance rank close

to R (see also [22]). For this purpose, we obtain the eigenvalues and their corresponding

eigenvectors for all V possible kernel matrices {K̂j
x(s)}Vj=1 for variance values {σ2

j}Vj=1.

For the jth kernel matrix, consider the eigenvectors to be {vj1, . . . ,v
j
i , . . . ,v

j
px}, and the

corresponding eigenvalues to be {λj1, . . . , λ
j
i , . . . , λ

j
px}, where the λji ’s are sorted such that

λj1 ≥ . . . ≥ λjpx . The desired kernel covariance matrix K̂j?
x (s) is chosen by finding variance

σ∗2j maximizing

max
{σ2

j }Vj=1

||K̂j
x(s)−

R−1∑
i=1

λjiv
j
iv

j
i

T ||2F − ||K̂j
x(s)−

R∑
i=1

λjiv
j
iv

j
i

T ||2F . (4.7)

The variance value maximizing (4.7) gives a kernel covariance K̂j?
x (s) with the strongest

Rth eigenvalue for each spectral band s. This further implies that the resulting kernel

covariance matrix K̂j?
x (s) is expected to have a rank close to R.

When calculating the K̂x to be used in (4.5), one way would be to take the average

of all S kernel matrices K̂j?
x (s) = φx(xs)φx(xs)

T obtained earlier. However, since not all

spectral bands yield equally useful information for unmixing, it would be advantageous to

reward informative spectral bands, and consequently put less emphasis, or weights, on the
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less informative bands. To this end, we choose weights that are proportional to the largest

difference between the Rth and (R − 1)th eigenvalue for each of the S kernel matrices

after (4.7) is applied. In other words, wxs = ρR(K̂j?
x (s))∑

s∈S ρR(K̂j?
x (s))

, where ρR(·) refers to the

largest difference between the Rth and (R − 1)th eigenvalue of K̂j?
x (s). Thus, we obtain

the final kernel matrices as K̂x :=
∑

s∈S w
x
s K̂x(s), K̂y :=

∑
s∈S w

y
sK̂y(s) and K̂xy :=∑

s∈S w
xy
s K̂xy(s).

4.4 Reducing complexity

Now, the V kernel variances used to implement this method necessitate generating S

kernel matrices for each variance. For a large V , we would obtain a large range of kernel

variances, which would surely include the ideal value for any provided data, but it would

be time-consuming. On the other hand, using a small V would be much faster, but the best

variance may be missed since the range is smaller. To achieve the best of both situations,

we propose below a novel technique, that starts with a large V, and uses a small portion

of the data to quickly estimate a smaller range where the ideal kernel variances will be

located.

To account for the sensitivity of the kernel variance to data, we start with a wide range

of kernel variance values, but only the average value of the entries of the first row for each

of these kernel covariance matrices is calculated and used to shrink the range of variance

values of interest. Calculating the row average value is much faster than calculating matrix

eigenvalues, but it still suffices in finding a smaller proper range of variance values. After

finding the shrunk range, the process in Sec. 4.3 is applied to refine the variance selection.

When the kernel variance is too small, then the resulting diagonal matrix will have

a value 1 in each diagonal entry, while the rest of the entries will be close to zero. Thus,

the average of each row of entries will have a small magnitude. Increasing the kernel
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variance would have little effect, until we reach a value close to the one maximizing the

Rth eigenvalue. At that point the entries in every row, corresponding to pixels containing

the same materials, will start increasing, and thus the row average along with it. However,

after the ‘ideal’ variance is reached, and increased even more, the entries corresponding to

pixels containing uncorrelated materials will increase as well. However, due to the kernel

centering operation (see details later), the row average actually decreases when the variance

is increasing more than the ‘ideal’ range. Fig. 4.1 (top) depicts the first row average value

versus different variance values selected from a grid in [10−19, 1021], where it can be seen

that the ‘ideal’ variance value is around 105. Thus, the range of variance values can be

reduced to the set {100, . . . , 107}.

It is of interest to determine how small the largest variance value of the grid can be

without missing the pertinent variance value. Fig. 4.1 (bottom) depicts the difference of the

first row average values between kernel covariance matrices constructed using neighboring

variance values on the grid. As the row average eventually dips by continuously increasing

the kernel variance, the sharpest dip takes place between kernel variances 106 and 107. For

this reason, any kernel matrix from this variance and beyond is not of interest. Thus, the

ideal smaller range of kernels would be V kernel variances prior to this value. For example,

considering V = 8, the range here would be the discrete grid of values {100, · · · , 107}.

Extensive testing has proven that this approach consistently and effectively chooses a small

but informative range from a much wider range of variance values.

4.5 Regularized Kernelized Correlations Based Unmixing

To minimize the kernelized formulation in (5), we will employ the Lagrange mul-

tipliers method, see e.g., [23, Chp. 4], combined with coordinate and gradient descent

iterations. Coordinate descent will be utilized to minimize the nonconvex (5) wrt E while

fixing D and vice versa. The task of minimizing (5) either wrt E or D will be done via the
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Figure 4.1: The average of the first row entries of kernel matrices versus variance (top);
Difference of first-row average values between covariance matrices formed by neighboring
variance grid values versus variance (bottom).

method of multipliers. We first determine the augmented Lagrangian of the cost in (4.5)

and constraints in (3)

JL(E,D,Q,M,N) = tr(K̂y − 2E·D·K̂xy +E·D·K̂x·DT ·ET ) +
∑R

γ=1 λ
E
γ 1

TE:γ +
∑R

γ=1 λ
D
γ Dγ:1

+
∑py

i=1

[
Qi·(Ei:1− 1) + c1

2 ·||Ei:1− 1||2F
]
+ 1

2c2
·
∑py

i=1

∑R
j=1{(max{0,Mij − c2Eij})2 −M2

ij}

+
1

2c2
·
∑R

i=1

∑px
j=1{(max{0, Nij − c2Dij})2 −N2

ij}, (4.8)

where Qi corresponds to the Lagrange multiplier associated with the unit summation con-

straint for the ith row of E, while Q := [Q1 . . . Qpy ], and let M ∈ Rpy×R and N ∈ RR×px

represent the Lagrange multipliers corresponding to the nonnegativity constraints for E and

D respectively Also, c1 and c2 are fixed step-size constants to be used during the update of

the Lagrange multipliers corresponding to the equality and inequality constraints for E and

D, respectively.
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Let Eτ and Dτ denote updates for matrices E and D at block coordinate iteration

τ . During block coordinate iteration τ the update Eτ is first formed, along with the corre-

sponding Lagrange multiplier updates Qτ+1 and Mτ+1, while fixing Dτ−1 and multipliers

Nτ−1, according to the Lagrange multipliers method [23, Chp. 4] involving the following

steps:

S.1) Determine

Eτ,`+1 = argmin
E

JL(E,Dτ−1,Qτ,`,Mτ,`,Nτ−1), (4.9)

S.2) Update the multipliers Q, M as follows:

Qτ,`+1 = Qτ,` + c1 · (Eτ,`+11− 1) (4.10)

Mτ,`+1 = max(0,Mτ,` − c2 · Eτ,`+1). (4.11)

Note that ` = 0, 1, 2... refers to the multipliers method iteration index, and it is running

faster than block coordinate index τ (since it is nested). S.1 and S.2 are repeatedly applied

until convergence, which is guaranteed from [23, Chp. 4] since the minimization problem

in S.1 is convex for fixed Dτ−1 and Nτ−1, while Eτ = lim`→∞Eτ,`, Qτ = lim`→∞Qτ,`

and Mτ = lim`→∞Mτ,`. Note that the multipliers can be initialized using warm starts, i.e.,

Qτ,0 = Qτ−1, and Mτ,0 = Mτ−1.

After Eτ , Qτ and Mτ have been updated, they are fixed in the augmented Lagrange

function JL, while Dτ and its corresponding multiplier Nτ are calculated using similar

reasoning as in S.1 and S.2. Specifically:

S.3) Dτ,`+1 = arg minDJL(Eτ ,D,Qτ ,Mτ ,Nτ,`),

S.4) Update Nτ,`+1 = max(0,Nτ,` − c2 ·Dτ,`+1).

Again S.3 and S.4 are applied recursively until convergence which is ensured since the

cost involved in S.3 is convex for fixed Eτ ,Qτ and Mτ . Again Dτ = lim`→∞Dτ,`, Nτ =

lim`→∞Nτ,` and the multiplier can be initialized in a warm start fashion, i.e., Nτ,0 = Nτ−1.
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Towards evaluating the minimizer updates Eτ,`+1 and Dτ,`+1 in steps S.1 and S.3

we will employ nested gradient descent iterations with updating index k which runs faster

than ` and τ (thus this is the third nested layer). The needed derivatives of the augmented

Lagrangian JL with respect to D and E can be found as follows [for notational simplicity

we dropped the dependence of JL on Q,M and N below]

δJL(E,D)

δD
= −2·ET ·K̂T

xy +ET ·E·D·K̂x +ET ·E·D·K̂x

+ λD1Tpx −max(0,N− c2 ·D)

δJL(E,D)

δE
= −2·K̂T

xy·DT +E·D·K̂T
x ·DT +E·D·K̂x·DT

+ 1py(λ
E)T +Q · 1TR + c1 · (E · 1R · 1TR

− 1py · 1TR)−max(0,M− c2 ·E), (4.12)

where λE := [λE1 . . . λ
E
R]T and λD := [λD1 . . . λ

D
R ]T . Then, the gradient descent updates for

D and E for carrying out the minimization tasks in S.1 and S.3 are implemented as

Eτ,`+1
k+1 = Eτ,`+1

k − c
δJL(E

τ,`+1
k ,Dτ−1,Qτ,`,Mτ,`,Nτ−1)

δE
, (4.13)

Dτ,`+1
k+1 = Dτ,`+1

k − c
δJL(E

τ ,Dτ,`+1
k ,Qτ ,Mτ ,Nτ,`)

δD
, (4.14)

where Eτ,`+1
k+1 refers to the gradient descent update during gradient descent iteration k to-

wards obtaining the minimizer Eτ,`+1 (similarly for Dτ,`+1
k+1 ), while c refers to the step-

size parameter used for gradient descent, and it is different than the step-sizes c1, c2 used

to update the Lagrange multipliers. Gradient descent iterations are run for a sufficiently

larger number of iterations until convergence of Eτ,`+1
k+1 . Note that for proper selection of c,

limk→∞Eτ,`+1
k+1 = Eτ,`+1, similarly limk→∞Dτ,`+1

k+1 = Dτ,`+1. The algorithm for determin-

ing the matrices E and D is summarized in the following table.

Note that steps 4-12 in Algorithm 1 involve the combination of multipliers method

with gradient descent to find an update Eτ for fixed Dτ−1. These steps, as explained earlier,

converge due to the convexity of the associated cost when fixing Dτ−1 and corresponding
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Algorithm 1 Recursive Estimation of the Abundance Matrices.

1: Initialize matrices D0, E0 randomly, and set matrices Q0,M0,N0 to zero.

2: for τ = 1, 2, . . . do

3: Set Qτ,0 = Qτ−1 and Mτ,0 = Mτ−1.

4: for ` = 0, 1, 2 . . . do

5: Set Eτ,`+1
0 = Eτ,` obtained from recursion `.

6: for k = 0, 1, . . . , do

7: Update Eτ,`+1
k+1 using (14).

8: If ‖Eτ,`+1
k+1 −Eτ,`+1

k ‖2 < ε then break gradient descent loop; return Eτ,`+1.

9: end for

10: Update Qτ,`+1 and Mτ,`+1 via (11) and (12), respectively.

11: If ‖Eτ,`+1 −Eτ,`‖2 < ε then break multipliers loop; return Eτ .

12: end for

13: Set Nτ,0 = Nτ−1.

14: for ` = 0, 1, 2 . . . do

15: Set Dτ,`+1
0 = Dτ,` obtained from recursion `.

16: for k = 0, 1, . . . , do

17: Update Dτ,`+1
k+1 using (15).

18: If ‖Dτ,`+1
k+1 −Dτ,`+1

k ‖2 < ε then break gradient descent loop; return Dτ,`+1.

19: end for

20: Update Nτ,`+1 via S.4.

21: If ‖Dτ,`+1 −Dτ,`‖2 < ε then break multipliers loop; return Dτ .

22: end for

23: If ‖Eτ −Eτ−1‖2 + ‖Dτ −Dτ−1‖2 < ε then stop updating.

24: end for
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multiplier Nτ−1. Similarly, steps 14-22 of Alg. 1 involve a combination of multipliers

method with gradient descent to find the update Dτ for fixed Eτ . Thus, at every coordinate

iteration τ the update Eτ corresponds to the optimal solution of (5) for fixed Dτ−1 which

is convex, while Dτ corresponds to the optimal solution of (5) for fixed Eτ , thus given the

coordinate descent convergence results in [24], Alg. 1 is guaranteed to converge at least to

a stationary point of (5).

Starting from Alg. 1, a simpler approach was devised to carry out the numerical tests.

Specifically, the two gradient loops with iteration index k for updating D and E are grouped

in one. After D and E are updated, the multipliers Q, M and N are updated together,

running the ` multipliers loop for one iteration. Thus, the algorithm was completed with

only two level nesting instead of three. This was done to reduce running time and does

not guarantee convergence from a theoretical perspective, nonetheless extensive numerical

testing showed that convergence was consistently reached.

A similar process is implemented for the values of D′ and E′ in (6). The augmented

Lagrangian is similar to (4.8), except for the unit summation constraint being applied

to D′, whereas previously it was applied for E, while using λE′ := [λE
′

1 . . . λE
′

R ]T and

λD′ := [λD
′

1 . . . λD
′

R ]T . Then, the gradient descent updates for D′ and E′ are carried out in

a similar fashion as before, while the updated multipliers in this case Q′ ∈ RR correspond

to the unit summation constraints for D′, while N′ ∈ Rpx×R and M′ ∈ RR×py represent

the Lagrange multipliers corresponding to the nonnegativity constraints for D′ and E′, re-

spectively. These quantities are updated in a manner similar to the one summarized in

eq. (10)-(15). Alg. 1 can still be applied here after replacing E and D with D′ and E′

respectively, while replacing Q, M, and N with Q′, N′, and M′, respectively.

Note that the mapped data φx(xb) and φy(yb) needed in (4.5) and (4.6) also need to

be centered by subtracting from them the kernel ‘mean’ values φ̄x(x) := S−1
∑

s∈S φx(xs)

and the similarly defined φ̄y(y), see details in [42]. This is also mentioned in Sec. (4.4),
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where this subtraction of the ‘mean’ will cause the kernel row average to reduce when

considering higher values of kernel variance. Note that during centering for lower kernel

variance values, approximately only one entry of each kernel covariance row will have a

significant value, resulting in subtracting the mean to have a negligible effect.

Remark: It should be emphasized that the nonlinear kernels applied are due to the fact

that the relationship among the spectral responses from the materials in the hyperspectral

images are usually nonlinear in nature. The nonlinear mixing model applied here in no

way necessitates application of the nonlinear kernels. In other words, if the materials were

linearly related to each other (for example, if the materials were simply linearly scaled

versions of each other), then linear CCA based unmixing would have sufficed, even when

the mixing model utilized has a nonlinear part.

4.6 Endmember and Nonlinear Coefficient Estimation

We utilize the estimated abundances for xs and ys contained in the D′ and E, to find

the unknown endmembers and nonlinear coefficient that are used in the available hyper-

spectral pixels. The P and b in the mixing models (1) or (2) can be obtained by stacking

the rows of D′T and E alternatively.

Previous work on unmixing uses an endmember extraction algorithm such as VCA

[11] to extract the endmembers and then use the values to get U in (4.2), but as our approach

estimates P first, estimating U and b becomes more challenging due to the fact that the

endmembers are present in multiple pixels. To this end, endmember extraction is relying

on the following least-squares formulation

argmin
U,b

||M−
∑R

j=1 P:,j ·Uj,:

− b
∑R−1

j=1

∑R
l=j+1 P:,j ·P:,l ·Uj,: �Ul,:||2F . (4.15)
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The cost in (4.15) is tackled via an alternating gradient descent approach, where the end-

member matrix U is determined recursively as

Uκ+1 = Uκ − c∇JLS(Uκ
k , b

k),

bκ+1 = bκ − c∇JLS(Uκ+1
k , bκ)

where JLS(U,b) refers to the cost in (4.15), κ refers to the iteration steps for updating U

and b, and c refers to a predetermined step-size. Here, U can be initialized by U0 = M ·

pinv(P), where pinv refers to the pseudoinverse of a matrix, so essentially U is initialized

using the LMM endmembers least-squares estimate. On the other hand, b can simply be

initialized as 0. The matrix U obtained through this process, normalized to unit energy,

will finally give the estimated endmember matrix. Note that the nonnegativity constraints

for U in (4.15) are unnecessary since any negative value in U would cause the 2nd and 3rd

terms in (4.15) to have a higher value, consequently increasing the overall cost.

4.7 Clipping of Low-Variance Spectral Bands

To further reduce computational complexity, we propose a scheme that discards spec-

tral bands among which the pixels’ spectral responses have low variability. Spectral bands

in which different materials exhibit different spectral reflectance (low correlation), are ex-

tremely informative and useful in distinguishing among materials, and therefore help to

perform efficient unmixing. Thus, it is of benefit to identify those spectral bands in which

the selected kernel covariance matrices exhibit high variance across their entries. Follow-

ing a similar strategy as in the clustering approach in [52], the entry-variance of the kernel

covariance matrices along all spectral bands is calculated, then the spectral bands with the

lowest variance are identified and discarded.

As an example, some mixed hyperspectral pixels are synthetically generated using as

endmembers, pixels from the Salinas dataset [51]. We generate 40 mixed pixels, and apply
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Figure 4.2: Kernel covariance entries variance versus spectral band index.

the kernel trick to obtain 224 kernel covariance matrices for the 224 spectral bands present

there. Measuring the kernel matrix entry variances across each spectral band (see Fig. 4.2),

we observe that little to no variance exists in some bands, implying that those bands will

not be beneficial for the unmixing task. Thus, clipping such bands will yield more efficient

computation, with no losses in terms of performance results.

4.8 Numerical Results

The performance of our novel unmixing algorithm is compared against both super-

vised and unsupervised methods. Specifically, KRCCU is compared with the unsupervised

VCA method in [11]. For VCA, the MATLAB code provided in [34] is utilized, which gen-

erates the endmember matrix U in an order that is shuffled compared to the original order of

the endmembers rows. Thus, in order to obtain the best results from VCA, the order had to

be manually reshuffled, resulting in some supervision being involved. Two other supervised

unmixing methods were implemented for comparison purposes. The first approach in [29],

which is customized for the Fan model in [21], relies on VCA for endmember extrac-

tion, thus the results related to endmember estimation performance will be the same as in

VCA. Further, [29] estimates the nonlinear coefficient b, where it uses a Bayesian approach
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along with subgradient optimization to estimate abundances. This method is abbreviated as

PPNMM (Polynomial Post-Nonlinear Mixing Model). Another supervised method tested

here is the one in [30], which calculates distances among the pixels projected onto a feature

space to find points which would best represent the simplex that contains all the available

pixels. This will be referred to as DMaxD. The distance used here was the PPNM dis-

tance shown in [30]. Since for the LMM, the nonlinear coefficient b = 0, the distance

function used in that particular case for DMaxD is the Euclidean distance. Furthermore,

another unsupervised kernel-based unmixing method was implemented as a comparative

metric, the FKAA method [26]. In order to utilize the entire information from the kernel

matrix, the FKAA method without the low-rank approximation of the kernel matrix was

also implemented, noted as the KAA [27], where the kernel variance selection was adopted

from [28].

Noise was added such that the sensing SNR was set to be 30dB. Since VCA is based

on the LMM, abudance estimations were also done based on that model. For estimating

abundance in VCA with nonlinear mixing models, a fully constrained least-squares (FCLS)

approach is usually utilized, which was also employed here. The formulation is similar to

the one shown in (4.15), only here the variable U is replaced with the abundances in Pi:.

Numerical tests have been conducted using the two supervised (PPNMM and DMaxD),

and two unsupervised methods, which correspond to the linear and nonlinear variations of

VCA. For VCA with FLCS, the value of b was estimated with the algorithm provided in

Sec. 4.6. The true value of b was assumed to be known in DMaxD, while PPNMM has its

own algorithm for estimating b.

Four different performance metrics are considered during comparisons. The quality

of endmember estimation is quantified via the Spectral Angle Measurements (SAM), taken

in degrees, and calculated as 1
R

∑R
i=1 cos−1(

ei·êTi
||ei||2·||êi||2 ), where e and ê are the actual and

estimated endmembers, respectively. Another measure for endmember estimation accuracy
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is the Normalized Euclidean Distances (NED), calculated by 1
R

∑R
i=1

||ei−êi||2
||ei||2 . For evaluat-

ing the quality of abundance estimation, Abundance Angle Measurements(AAM) are taken

in degrees, with the formula 1
Y

∑Y
i=1 cos−1(

ai·âT
i

||ai||2·||âi||2 ), where a and â are the actual and

estimated abundances respectively, and Y is the number of mixed pixels. Another metric

used is the Abundance Error (AE) given by 1
Y

∑Y
i=1 ||ai − âi||2.

4.8.1 Synthetic Data

For the simulated data, a 40 × 40 pixel field was synthetically generated consisting

of four types of crops, created through combinations of four endmembers taken from the

hyperspectral dataset in [51]. The simulated field is essentially divided into four parts,

where each 40 × 10 pixel part has a major portion containing 70% − 90% purity of one

endmember, with the fringes containing 55% − 70% purity of the same endmember. The

two parts on the middle, would have 60% of the pixels in the center to contain the highest

purity, with 20% on either side containing lower purity. For the two parts on either end

of the field, 80% of the pixels on the outer side would contain higher purity, with 20% on

the inner side containing lower purity. This configuration simulates a real-world scenario,

where a crop has lower density the further we exit the crop and enter an adjoining one. Fig.

4.3 is an example of the field, where the four endmembers are obtained from four pixels

from the Pavia University dataset. Note that the majority of each crop may have uniform

color, but the color mixes with the color of other crops when the fringes are approached.

Besides considering lightly mixed data where the major portion has 70%− 90% purity and

the fringes have 55%− 70% purity, we also generated another synthetic field with heavily

mixed pixels in which the major portions have 65% − 75% purity, while the fringes have

55%− 65% purity.

For KRCCU, as the data has to be kernelized, increasing the computational time

combinatorially with the size of the data, it is not wise to perform the operation on the
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entire data at once. A more efficient approach is to perform the algorithm on a smaller

part of the data, as long the separate parts are independent of each other, and obtain results

for the smaller parts separately, then finally combine them together. To this end, KRCCU

was implemented across each 40-pixel row of the synthetic field separately. The Pavia
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Figure 4.3: Reflectance on the 1st spectral band of a synthetically generated field.

University dataset [51] was chosen since it is a very diverse hyperspectral imageset, as it

not only contains various materials pertaining to life forms, but also other materials such

as bricks, soil etc. To preserve this diversity in the data, the four materials chosen for the

synthetic dataset were Meadows, Bitumen, Self-Blocking Bricks, and Shadows.

4.8.1.1 Lightly Mixed Data

Table 4.1 shows the performance results of various unmixing methods. For ease

of reading, we placed a notation (A) for the two accuracy results for abundances, and a

notation (E) for the two accuracy results for endmembers. Across each row, the most

accurate results are highlighted in bold. Note that as the two versions of VCA differ only

on the abundance estimation algorithm, the results pertaining to endmember estimation

will be the same. These numbers will be the same also for PPNMM, as it relies on VCA

41



Mea-
sures

(b) % of
Dead
Pixels

KRCCU DMaxD VCA
(LMM)

VCA
+
FCLS

PPNMM FKAA KAA

AAM

0
0 19.89 4.83 5.13 6.08 5.22 13.48 13.74

(A)

5 19.13 53.98 80.33 63.63 63.28 60.75 63.18

1
0 18.97 13.27 6.45 6.00 5.78 13.56 13.79

5 18.54 53.57 80.47 63.64 63.07 62.81 63.23

5
0 22.03 22.37 12.01 9.19 12.51 14.27 15.25

5 21.92 50.37 78.10 62.91 62.22 63.34 63.39

0 0 0.28 0.10 0.11 0.11 0.10 0.24 0.24

AE

5 0.27 0.70 2.07 0.76 0.77 0.83 0.82

(A)

1
0 0.27 0.19 0.14 0.11 0.11 0.24 0.24

5 0.26 0.68 2.09 0.76 0.77 0.85 0.82

5
0 0.30 0.30 0.29 0.14 0.18 0.24 0.25

5 0.30 0.64 1.83 0.77 0.76 0.85 0.82

SAM

0 0 1.51 1.34 1.60 1.60 1.60 2.51 2.56

5 1.31 18.32 19.07 19.07 19.07 8.14 15.00

(E) 1
0 1.39 1.52 1.40 1.40 1.41 2.57 2.61

5 1.40 18.22 19.11 19.11 19.12 13.52 14.98

5
0 1.75 1.64 2.28 2.28 2.28 2.89 2.91

5 1.89 16.42 19.47 19.47 19.47 14.07 14.92

0 0 0.02 0.02 0.03 0.03 0.03 0.04 0.04

NED

5 0.02 0.31 0.34 0.33 0.34 0.14 0.26

(E)

1
0 0.02 0.02 0.03 0.02 0.03 0.04 0.05

5 0.02 0.31 0.33 0.33 0.33 0.24 0.26

5
0 0.03 0.03 0.09 0.04 0.09 0.05 0.05

5 0.03 0.28 0.34 0.38 0.34 0.24 0.26

Table 4.1: Comparison of accuracies in endmembers and abundances for various forms of VCA, with
KRCCU, DMaxD, PPNMM and FKAA for Lightly Mixed Data, with and without dead pixelsand varying
values of nonlinear coefficients.
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for endmember estimation, while the supervised endmember shuffling for VCA was also

applied to the PPNMM algorithm. As we can observe, during endmember estimation,

KRCCU has either accuracy measures close to the most accurate (and supervised) method

(DMaxD), or the best among all the methods. As for the abundance estimation, although

KRCCU can trail comparative methods with no dead pixels, introducing only 5% dead

pixels significantly impacts all methods except for KRCCU. Note that among the other

methods, the method least impacted is FKAA, due to this method also relying on kernels.

It should also be stressed, that DMaxD is the only method here where the value of the

nonlinear coefficient b is known a priori. One reason for KRCCU being superior to FKAA,

is that FKAA uses a low-rank approximation of the kernel matrix instead of generating the

kernel matrix directly, which is done in KRCCU.

4.8.1.2 Heavily Mixed Data

The dataset was generated using the same approach as before, except that the purity

had the values given in Sec. 4.8.1. Table 4.2 illustrates the performance comparisons for

the various methods. For fairness, the same pixel entries were made zero when introducing

dead pixels.

Table 4.2 shows that when faced with heavily mixed data, KRCCU outperforms ev-

ery other method in most scenarios. The supervised method DMaxD is better at estimation

of abundances, owing partly to its prior knowledge of the value of b, but KRCCU is close to,

or better than the unsupervised methods, depending on the value of b. However, even with

just 5% of pixels becoming unresponsive, KRCCU is mostly unaffected by this change,

while it severely affects all other methods to varying degrees.
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Measures (b) % of
Dead
Pixels

KRCCU DMaxD VCA
(LMM)

VCA
+
FCLS

PPNMM FKAA KAA

AAM

0
0 22.32 13.56 18.45 15.96 15.58 18.54 18.43

(A)

5 22.05 52.26 75.56 57.30 55.80 61.41 55.83

1
0 21.65 15.62 21.48 17.91 16.90 18.75 18.58

5 21.76 52.29 76.03 58.30 59.19 62.72 55.91

5
0 23.07 16.13 26.65 24.48 20.70 19.58 19.41

5 23.81 49.22 74.36 51.01 51.29 62.75 55.98

0 0 0.31 0.23 0.37 0.27 0.26 0.33 0.33

AE

5 0.30 0.65 2.22 0.64 0.62 0.84 0.73

(A)

1
0 0.30 0.26 0.42 0.30 0.29 0.33 0.33

5 0.30 0.66 1.57 0.66 0.67 0.85 0.74

5
0 0.32 0.24 0.53 0.35 0.32 0.33 0.33

5 0.32 0.59 2.39 0.58 0.58 0.85 0.74

SAM

0 0 2.62 3.19 3.83 3.83 3.83 3.69 3.78

5 2.40 16.07 18.35 18.35 18.35 7.90 8.25

(E) 1
0 2.68 3.47 4.93 4.93 4.93 3.75 3.83

5 2.59 16.18 18.71 18.71 18.71 13.52 8.48

5
0 2.92 3.49 5.84 5.84 5.84 4.27 4.35

5 3.23 17.30 16.99 16.99 16.99 14.53 9.17

0 0 0.04 0.06 0.07 0.07 0.07 0.06 0.07

NED

5 0.04 0.27 0.32 0.32 0.32 0.14 0.14

(E)

1
0 0.04 0.06 0.09 0.09 0.09 0.07 0.07

5 0.04 0.28 0.32 0.32 0.32 0.23 0.15

5
0 0.05 0.06 0.17 0.17 0.17 0.07 0.08

5 0.05 0.30 0.30 0.30 0.30 0.25 0.16

Table 4.2: Comparison of accuracies in endmembers and abundances for VCA, with KRCCU, DMaxD,
PPNMM and FKAA for Heavily Mixed Data, with and without dead pixels and varying values of nonlinear
coefficients.
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4.8.1.3 Nonlinear Coefficient Estimation

Among the methods discussed here, three had some approach towards estimation of

the nonlinear coefficient b. In order to compare the performance of b estimation across

these three methods, the Mean Square Error (MSE) of the estimated bs was measured. It

is worth noting that, in VCA+FCLS and PPNMM, as endmembers were first estimated,

abundances can be calculated separately for each mixed pixel as these abundances do no

affect each other. Thus, for N mixed pixels, we can obtain N estimations of abundances,

and consequently, N estimations of b. On the other hand, KRCCU estimates the abun-

dances first, and estimates b alongside the estimation of the endmembers, which contribute

to every mixed pixel. Therefore, only one estimation of endmembers, and consequently,

only one estimation of b is obtained. The best accuracies are in bold.

Also, when tackling such a large number of samples, PPNMM’s somewhat inconsis-

tent estimations of b cause some to reach extremely high numbers, which result in a very

high MSE. To give a fairer idea of the accuracy of most of the estimations of PPNMM, we

also adjusted the estimations to remove a number of the ones that caused the most error.

The performance of PPNMM with, and without these adjustments are shown in Table 4.3.

Note that in some cases of PPNMM and VCA+FCLS, some improvement was noted with

the introduction of dead pixels. This is presumed to be coincidental, as upon our obser-

vation, introduction of dead pixels introduced a higher minimal cost in the optimization

problem used for the estimation.

4.8.1.4 PBRT Data

Another form of synthetic data generation is with implementation of the PBRT (Phys-

ically Based Ray Tracing) Model [31]. We have measured unmixing accuracy of the various

methods over a synthetic dataset generated using this model [32]. The data is of a forest
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Mixture
Type

Nonlinear
Coefficient
(b)

% of Dead
Pixels

PPNMM
(adjusted

PPNMM (no
adjustment)

VCA +
FCLS

KRCCU

Lightly

0 0 0.03 4.02x107 1x10−5 0

5 19.44 1.86x105 0.03 0

Mixed 1
0 0.34 1.31x103 2.51 0.05

5 12.30 4.09x103 0.30 0.04

5
0 12.52 5.31x106 7.19 0.80

5 5.26 5.28x104 9.90 8.18

0 0 1.71 5.05x1025 4x10−5 0

Heavily

5 10.90 11.98 0.02 0

Mixed

1
0 1.2x107 6.75x1026 2.72 0.05

5 4.12 5.43 0.73 1

5
0 3.77x108 3.67x1028 13.07 0.01

5 4.85 4.88 5.08 4.33

Table 4.3: MSE of estimated values of nonlinear coefficients for VCA, with PPNMM, DMaxD and KRCCU
in Heavily Mixed Data, with and without dead pixels and varying values of nonlinear coefficients.

with two types of trees, called ’Beech’ and ’Poplar’, composed of almost 80% of the for-

mer and 20% of the latter. The remaining small contributions to the mixture come from the

soil, which is negligible as the trees are expansive enough to cover the area. As we can ob-

serve from Table 4.4, KRCCU outperforms all other methods. DMaxD was implemented

with b = 1 as that gave it the best accuracy, and FKAA faced difficulty with making the

estimated abundances have unit summation, so that was manually implemented afterwards

to give it an advantage. The best accuracies are shown in bold.

4.8.2 Real Data

For real hyperspectral data, we utilized two types of datasets. For the first one, the

reference data available is a class label for one material only in each pixel. Since there

are no ground truth abundances available, a more prudent approach would be to apply
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Methods AAM
(deg)
(A)

AE
(A)

SAM
(deg)
(E)

NED
(E)

KRCCU 13.73 0.17 3.70 0.06

DMaxD 42.61 0.57 5.21 0.09

VCA(LMM) 26.14 0.35 3.99 0.07

VCA + FCLS 26.37 0.35 3.99 0.07

PPNMM 26.41 0.35 3.99 0.07

FKAA 35.63 0.50 3.99 0.07

KAA 37.28 0.52 4.59 0.08

Table 4.4: Comparison of endmember and abundance accuracy measures for VCA, with PPNMM, DMaxD
and KRCCU in PBRT Dataset.

unmixing, and consider the material with the highest abundance to be the sole material

in that corresponding pixel. Thus, unmixing is employed to perform clustering on real

hyperspectral datasets. For the second dataset, the actual abundance values are unavailable,

and only the spectral signatures of the pure materials are known. Thus, we measure only

the accuracy of the estimated endmembers.

Instead of applying the unmixing scheme on the entire dataset, a ‘divide and con-

quer’ approach is implemented as a workaround, where the data are segmented into smaller

non-overlapping square patches, and the algorithm is performed separately on the patches,

introducing further computational savings (for details see clustering approach in [52]).

4.8.2.1 Salinas

The Salinas dataset contains 54129 labeled pixels. The resolution is 512 × 217 ×

224, where 224 is the number of spectral bands. Usually, 204 spectral bands are left after

removing 20 bands due to atmospheric water absorption, but in the proposed KRCCU

scheme, this will be unnecessary for two reasons. Firstly, because there is little variation

present between the pixels in such spectral bands, the clipping algorithm proposed in Sec.
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4.7 will discard the data in these bands. Secondly, even if one such band is not clipped,

having little useful information means that this will have a very low weight assigned to it

during the weighting process in Sec. 4.3.

Regardless, the clipping algorithm removed around 10 spectral bands that were con-

sidered to have no relevant information for the unmixing task at hand. Table 4.5 gives

in detail, the accuracy averaged across multiple iterations for each of the 16 individual

classes. Averaging was performed by running each method for 50 independent trials. The

mean of these accuracies yield the Average Accuracy(AA), while the accuracy of all the

pixels considered together yield the Overall Accuracy (OA) estimate. For each row, the

highest accuracy is given in bold.

As we can observe in Table 4.5, KRCCU significantly outperforms all other methods,

both supervised and unsupervised. Materials that contributed to some of the inaccuracy

come from two versions of Fallow, where as the spectral responses come from the same

type of crop, they can cause high correlation to come from each other, causing KRCCU to

face difficulty in separating the two classes apart.

Fig. 4.4 depicts the Overall Accuracy across a varying percentage of dead pixels.

KRCCU is noticeably more accurate than existing methods, while it is also the most robust

even with ten percent dead pixel entries. On the other hand, note that the two versions

of VCA, and PPNMM, have a similar pattern, since all three of them are using the same

endmember estimation method. Also, the presence of dead (zero) pixels entries causes a

number of pixel points to shift location, heavily impacting methods, such as DMaxD, that

rely on the pixel position on a vector subspace (see Fig. 4.4). FKAA is also impacted

severely, even more so with further dead pixels. It is, however, interesting to note FKAA’s

performance compared to KAA even when using a lower rank approximation of the kernel

matrix.
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Figure 4.4: Unmixing accuracy versus percentage of dead pixels in Salinas dataset.

Fig. 4.5 shows a comparison of estimated class labels for the Salinas map, using the

estimated abundances from all the unmixing methods under comparison. It is worth noting

that VCA+FLCS and PPNMM have nearly the same estimated map. Notice that KRCCU

clusters correctly the majority of hyperspectral pixels. This can be seen by the same color

pixels in Fig. 5 (b) arranged in almost identical shapes with the ground truth clusters in Fig.

5 (a). On the contrary, there is noticeable erroneous clustering in competing alternatives as

indicated by the non-uniform coloring of pixels that belong to the same ground truth group.

4.8.2.2 Cuprite

The Cuprite dataset [33] consists of 224 channels encompassing wavelengths from

370nm to 2480nm, of which 36 are removed due to atmospheric water absorption. Table

4.6 illustrates the accuracy measures in endmember estimations for different methods. Note

that since the endmember extraction is identical in VCA, VCA+FCLS, and PPNMM, only

VCA’s accuracy was shown here among these three. We can observe that KRCCU yields

the least error among all the comparable methods, with FKAA coming second.
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Class names KRCCU DMaxD VCA VCA +
FCLS

PPNMM FKAA KAA

Brocoli Green
Weeds 1

100 99.85 81.41 99.01 98.98 98.75 99.67

Brocoli Green
Weeds 2

100 37.60 69.71 9.45 9.41 70.24 57.97

Fallow 100 99.79 41.72 76.59 74.67 56.02 54.56
Fallow Rough
Plow

41.96 99.85 34.95 56.20 56.85 99.06 96.51

Fallow Smooth 40.96 0.03 22.31 39.39 35.74 49.47 59.63
Stubble 47.94 99.87 64.08 85.19 86.57 99.54 97.55
Celery 56.46 99.18 33.90 36.56 35.59 85.12 77.00
Grapes Untrained 93.52 91.51 48.17 69.53 68.97 55.15 55.95
Soil Vinyard De-
velop

100 0 42.15 14.81 11.09 49.35 35.01

Corn Senesced
Green Weeds

100 29.10 23.90 14.89 14.56 50.48 47.31

Lettuce Romaine
4wk

100 0 3.33 0.17 0.20 4.30 2.13

Lettuce Romaine
5wk

100 0 0.97 0.20 0.21 0 11.38

Lettuce Romaine
6wk

100 0 4.51 4.28 4.17 98.14 78.79

Lettuce Romaine
7wk

100 41.12 3.55 0.73 0.90 86.72 70.37

Vinyard Un-
trained

100 0.04 2.30 1.41 1.31 33.10 17.28

Vinyard Vertical
Trellis

100 30.38 25.60 41.05 40.24 39.01 45.76

OA 87.55 52.84 42.51 50.33 50.19 57.86 52.89
AA 86.30 45.52 31.41 34.34 33.72 60.91 56.68

Table 4.5: Clustering Performance in the Salinas dataset.

KRCCU DMaxD VCA FKAA KAA

SAM 3.35 5.97 6.39 4.62 4.40

NED 0.06 0.10 0.10 0.08 0.08

Table 4.6: Endmember estimation performance in the Cuprite dataset.
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Figure 4.5: Clustering maps in the Salinas dataset: (a) Ground Truth, (b) KRCCU, (c)
DMaxD, (d) VCA, (e) VCA + FCLS, (f) PPNMM (g) FKAA (h) KAA (i) False-color RGB
image.

The performance of the algorithms in endmember estimation was also measured in

the presence of corrupted data, simulated by dead pixels. Fig 4.6 shows the SAM values

across varying percentages of dead pixels. As we can clearly observe, not only is KRCCU

outperforming all other methods, its performance with increasing introduction of dead pix-

els has the highest consistency. Understandably, since FKAA also works with the kernel

trick in averaging kernel matrices, its performance is noteworthy. DMaxD, however, has

considerable difficulty in tackling this corruption, even more so than VCA, presumably be-

cause of the reliance on the distance between the now shifted points in the feature space.

Also, KAA’s advantage in using the entire kernel matrix brought some improvement com-

pared to FKAA, though as it was not performing as well in Salinas, this improvement is

clearly inconsistent.

We also consider observing the estimated endmembers across 3 materials, in com-

parison with the actual endmembers (after normalizing all of them with unit energy) in Fig
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Figure 4.6: Unmixing accuracy versus percentage of dead pixels in Cuprite dataset.

4.7. The upper, middle and lower plot represents the materials with the closest, median,

and most challenging estimation respectively. As we can see, except for minor instances

like spectral bands 100∼108 in Chalcedony, the estimation of KRCCU (red) is usually

closest to the actual endmember’s spectral reflectance (blue), further illustrating KRCCU’s

superior performance in endmember estimation.
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Figure 4.7: Endmember estimation for various methods across three endmembers in
Cuprite
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CHAPTER 5

UNSUPERVISED HYPERSPECTRAL UNMIXING VIA NONLINEAR

AUTOENCODERS

5.1 Problem Statement and Preliminaries

Hyperspectral images contain information in hundreds of bands, thus providing a

finer view of different materials being observed. Let B be the number of spectral bands

across which information is obtained per pixel, while the set B := {1, . . . , B} denotes the

indices of the spectral bands. Let M ∈ RN×B contain the reflectances of N pixels. One

major issue in hyperspectral images is that of mixing where pixels are formed as (non-

)linear combinations of reflectances of pure materials; the endmembers.

A popular mixing model where the reflectance values of mixed pixels M are ex-

pressed as a linear combination of P endmembers is the linear mixing model (LMM), i.e.,

M = A · E + ε, (5.1)

where A ∈ RN×P represents the matrix of fractional contributions of the endmembers,

also known as abundances. Matrix E ∈ PP×B contains the endmember reflectances, and ε

represents white additive noise. From Eq. (6.1) the mixed pixels can be expressed individ-

ually as

Mi,: =
∑P

j=1 Ai,j · Ej,: + ε,∀i ∈ 1, 2, . . . , N. (5.2)

Since the abundances represent the fractional contributions of endmembers, matrix A has

nonnegative entries. Further, the sum of the entries in each row of A will sum up to one.

Similarly, the entries of matrix E are nonnegative being the reflectance values of endmem-
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bers across the sampled spectral bands. Thus, Ai,j ≥ 0,Ej,: ≥ 0,∀i ∈ 1, 2, . . . , N and

∀j ∈ 1, 2, . . . , P , and also
∑P

j=1 Ai,j = 1,∀i ∈ 1, 2, . . . , N .

There are three main nonlinear mixing models often used. These are the Fan model,

the bilinear model [72], and the PPNM (Post Polynomial Nonlinear Mixing) model [75].

Mi,: =
P∑
j=1

Ai,j · Ej,: + γi

P−1∑
j=1

P∑
l=j+1

Ai,j ·Ai,l · Ej,: � El,:

+ ε,∀i ∈ 1, 2, . . . , N. (5.3)

First, the Fan model in Eq. (6.3) takes cross-products across different endmembers to model

the nonlinear mixing part with � representing the Hadamard product, or elementwise mul-

tiplication of two arrays. The values γi are scaling factors that control the strength of the

nonlinear components with respect to (w.r.t.) the overall mixture. Typically, these hyper-

parameters are defined by the user. However, our framework will treat them as unknown.

Second, the bilinear model is given as

Mi,: =
P∑
j=1

Ai,j · Ej,: + γi

P∑
j=1

P∑
l=1

Ai,j ·Ai,l · Ej,: � El,:

+ ε,∀i ∈ 1, 2, . . . , N. (5.4)

Note the similarity to the Fan model, with the one difference being that it will also include

self-interacting terms in the nonlinear components, as that has been shown to be a factor to

also be considered [73, 74].

Third, the PPNM [75] model will simply take the LMM mixture, and sum it with the

square of itself.

Mi,: =
P∑
j=1

Ai,j · Ej,: + bi(
P∑
j=1

Ai,j · Ej,:)� (
P∑
j=1

Ai,j · Ej,:)

+ ε,∀i ∈ 1, 2, . . . , N. (5.5)
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Here, the unknown vector b with length N , has values that determine the strength of the

nonlinear components of the mixtures, thus it is similar to the vector γi in Eqs. (6.3)-(5.4).

Hyperspectral images are found to be unmixed with much greater ease if the unmix-

ing process takes place in properly selected kernel spaces of higher dimensionality than

the original data space; see details in [52, 61, 68]. Kernels often used in practice include

the linear kernel, polynomial kernel and Gaussian kernel [17] etc. The Gaussian (RBF)

kernel has been shown to be effective with hyperspectral images, and will be employed

here. In detail, the mixed pixels are represented as points in the Gaussian kernel space, and

the endmembers will be treated as cluster centers in that kernel space. Thus, for a certain

mixed pixel, the lower its distance is from a particular center, the closer the mixed pixel is

in resemblance to that corresponding endmember, and thus the higher the abundance will

be for that endmember. The RBF distance of mixed pixel x from endmember center ci is

written as

[âx]i = exp(−β · ||x− ci||2),∀i ∈ 1, 2, . . . , P. (5.6)

Here, β is a parameter that controls the spread of the Gaussian center. Since our framework

is unsupervised, there will be no prior knowledge of the endmembers, and so they will be

estimated using K-means [76] on the mixed pixels, thus the Gaussian centers are initially

estimated to be the cluster centers. In order to effectively visualize the concept, an example

is shown in Figure 5.1 where a mixed pixel is depicted in the kernel space, with three end-

members as the centers of three circular areas. As the mixed pixel is closer to endmember

1, it will have a higher abundance corresponding to that endmember. Similarly, for that

mixed pixel, the abundance of endmember 2 will be lower, and the abundance for end-

member 3 will be even lower. It should be noted that, the areas in Fig. 5.1 are circular, in

order to depict neighborhoods using Euclidean distance. This better illustrates the concept

of the nearest neighbors concept being implemented in the kernel space.
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Endmember 1

Endmember 2

Endmember 3

Mixed 
Pixel

Figure 5.1: Kernelized mixed pixel and endmembers’ geometry.

Note that since these distances are a measure of the abundances, the notation [âx]i has

been used, with [âx] denoting a row of the estimated abundance matrix Â. After obtaining

the P distances, normalizing them to unit summation will yield the abundance vector for

this mixed pixel. It should also be noted, that since these values are a measure of distance,

they cannot be negative and thus, the nonnegativity constraint of the abundances will be

automatically met.

The reason behind using K-means in conjunction with the RBF kernel trick is the

similarity in their concepts. As the K-means is being performed in the feature space, it

can reasonably be assumed that mixed pixels with a higher abundance towards the same

endmember, will encompass the same area in the feature space. Thus, the center of that area

would be where the corresponding endmember will likely reside, and so K-means would

be likely able to yield a point in the feature space that would be a close approximation of

that endmember. This idea is similar to the area in the kernel space around which data

points would reside, where they have a higher abundance of one endmember. The center

of that area, which would be circular defined by the Gaussian kernel being used, would

thus likely be an accurate representation of the corresponding endmember. This similarity
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between Gaussian centers in the RBF space, and the K-means cluster centers in the feature

space, make the K-means a logical choice to implement in obtaining an estimation of the

endmembers.

5.2 Unsupervised Hyperspectral Unmixing Autoencoders

5.2.1 Autoencoders for Nonlinear Unmixing

5.2.1.1 Fan & Bilinear Models

A novel autoencoder neural network structure is outlined next for the task of nonlin-

ear unmixing. Fig. 6.2 depicts the network structure for the three different models, where

it is assumed (for simplicity and without loss of generality) to have 4 endmembers. Each

mixed pixel vector of the hyperspectral image is fed at the input layer and the RBF dis-

tance from the 4 K-means estimated endmember centers is calculated. After normalizing

the RBF distances to unit summation, they are treated as the abundance estimates forming

the RBF layer. To account for the bilinear and Fan nonlinear mixing models, a generator is

introduced where crossproduct terms involving the abundances are formed. The vector of

abundances, along with their crossproducts are then fed through the final layer, where the

weights of the layer will be multiplied with the expanded abundance vector which includes

the higher order crossproducts, to reconstruct the input mixed pixel. As the calculation

of the product closely resembles the mixing models in Eqs. (6.3) and (5.4), it can be ob-

served that these weights can be interpreted as the endmembers’ reflectance values and

their crossproducts, and thus these weights can be used to estimate the endmembers.

Although Fig. 6.2 (top right) depicts the crosproduct terms corresponding to the Fan

model, modifications to accommodate the bilinear model are straightforward by incorpo-

rating the extra self-interacting terms present in the bilinear case and adjusting the final

layer weights to account for the extra terms in the crossproduct generator. It should also
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be noted that, since the RBF centers, and the weights in the final layer are both learnable

parameters initialized with the K-means centers, both can actually act as estimates of the

endmembers.

The autoencoder weights E in the final layer are trained to minimize the mean square

error of some input mixed pixel x

min
E,γx

B−1||x− x̂(E, γx)||22 (5.7)

Here, x̂(E, γx) represents the estimated reconstruction of the input pixel at the final out-

put layer, and γx refers to the value of γ pertaining to pixel x. Thus, after obtaining the

estimated abundance vector [âx] from Eq. (6.5), depending on whether the Fan or bilinear

model is used, x̂(E, γx) can take two forms. If the Fan model is used then

x̂(E, γ) =
P∑
j=1

[âx]j · Ej,: + γx

P−1∑
j=1

P∑
l=j+1

[âx]j · [âx]l · Ej,:�El,:

whereas if the bilinear model is used then

x̂(E, γ) =
P∑
j=1

[âx]j · Ej,: + γx

P∑
j=1

P∑
l=1

[âx]j · [âx]l · Ej,:�El,:.

5.2.1.2 PPNM Model

The network architecture when PPNM mixing model is utilized is depicted in Fig.

6.2 (bottom right). The PPNM layer has the nonlinear component formed as the Hadamard

product of the linearly mixed pixel summation with itself, which is added to the linearly

mixed pixel.

The learnable parameters here would be nearly the same for the RBF layer. The

exception is that for the PPNM layer, the b values are the learnable parameters. The cost

function to minimize here would be very similar to Eq. (6.18), with the difference of having

the nonlinear coefficient γx being replaced by bx. The training cost takes the form

min
E,bx

B−1||x− x̂(E, bx)||22. (5.8)
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Figure 5.2: Autoencoder setup for the Fan, bilinear and PPNM mixing models(solid and
dashed lines represent forward and backward propagation respectively).

Similarly, the reconstruction x̂ can be expressed as

x̂(E, γ) =
P∑
j=1

[âx]jEj,: + bx(
P∑
j=1

[âx]jEj,:)� (
P∑
j=1

[âx]jEj,:).

5.2.2 RBF Layer

For each hyperspectral pixel feeding the autoencoder neural network in Fig. 6.2

as input, the RBF distances from the kernelized endmember centers are calculated. As

explained in Sec. 6.1, the RBF distances quantify the contribution of each endmember

in the input mixed pixel, thus providing an estimate for the unknown abundances. After

the P RBF distances are obtained, they are simply normalized to unit summation, and the

estimated abundances are obtained.
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In the RBF layer, the learnable parameters would be the RBF centers, as well as the

β value in Eq. (6.5). The β value basically controls the radius of the multidimensional

Gaussian bell footprint area (which depicts the area in which approximately ∼99% of the

probability mass is). As this radius is dependent upon the distance of the mixed pixels

from the centers they belong to, β is taken as the inverse of the squared average distance

of the mixed pixels from the cluster centers that they belong to; with the centers found via

K-means. This will ensure that approximately 99% of the time the mixed pixels will belong

to the right center area when β is selected as described. Then, for a mixed pixel Mi,:, let

the label for one of the contributing classes be LMi,:
, and the corresponding cluster center

be cLMi,:
. Thus, β is calculated as

β = (N−1 ·
∑N

ı=1 ||Mi,: − cLMi,:
||2)−2. (5.9)

Since the weights E in the autoencoder configuration represent the endmember entries,

they are initialized with the K-means cluster centers of all the mixed pixels in the dataset.

Even though VCA [11] is more popular as an initialization option, and can be argued as

a better alternative, there is one issue. With a dataset having high SNR, VCA performs

endmember estimation with slightly higher accuracy, however, with low SNR, K-means is

found to be more accurate. This is because, VCA will choose P mixed pixels and consider

them to be the best estimations of the endmembers. Not only would this be less accurate

with a dataset having pixels where pure pixels do not exist, but also when dealing with data

having high noise, this will compromise the endmember estimation. Additionally, if severe

noise distorts the endmember, there is a possibility of VCA finding multiple endmembers

from one material, while disregarding other materials. However, with K-means, since the

centers are pixel averages within some cluster, the noise will be reduced leading to more

accurate endmember estimation.
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Recall that the RBF distances are nonnegative, therefore the abundances estimated

will satisfy the nonnegativity constraints. The RBF layer’s output values would need to be

normalized to conform to the unit summation constraint, i.e.,

[âx]i =
[âx]i∑P
j=1[âx]j

,∀i ∈ 1, 2, . . . , P. (5.10)

Then, the vector of abundances needs to be mapped to a higher dimensional space to include

the crossproducts vector, the length of which is dependent upon whether the Fan or bilin-

ear model is chosen. The expansion is a straightforward method, which can be achieved

without defining a new layer. This will result in the vector labeled ’crossproducts’ in Fig.

6.2.

5.2.3 Backpropagation

Simplifying Eq. (6.18) the error can be rewritten as e := ||x− x̂||22. Thus, in the RBF

layer, after taking the K-means cluster centers as an initial estimate of the endmembers,

let the first cluster center vector be denoted c1. The dimensions of β is P × 1, where P

represents the number of endmembers. Although these values are all initialized by a single

scalar following the value obtained by Eq. (6.16), as they are weights, they can update

to different values. The cluster centers have dimensions P × B, where B represents the

number of spectral bands. Let f1 denote the activation function giving the first estimated

abundance in the RBF layer, i.e.,

f1 = exp(−β1 · ||x− c1||22). (5.11)

Here, β1 will be the value of β corresponding to the first cluster center (or estimated end-

member) c1. Performing backpropagation, the derivative of the function f1 w.r.t. c1 is

δf1

δc1

= −2β1 exp(−β1 · ||x− c1||22)(x− c1).
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The derivative of the function f1 w.r.t. β1 is

δf1

δβ1

= −||x− c1||22 exp(−β1 · ||x− c1||22).

For properly selected step size α, the weights during iteration i+1 are updated using gradi-

ent descent as

ci+1
1 = ci1 − α

δe

δci1
, βi+1

1 = βi1 − α
δe

δβi1
. (5.12)

In the final layer, let the first value in the estimated pixel vector be x̂1. Thus, following the

Fan model from Eq. (6.3)

x̂1 =
P∑
i=1

[âx]i · Ei,1 + γ
P−1∑
i=1

P∑
j=i+1

[âx]i · [âx]j · Ei,1 · Ej,1,

Note that γ has no subscript here as it is assumed to be a scalar for one mixed pixel. The

derivatives of output x̂1 w.r.t. E1,1 and γ would be

δx̂1

δE1,1

= [âx]1 + γ
P∑
j=2

[âx]j · Ej,1,

δx̂1

δγ
=

P−1∑
i=1

P∑
j=i+1

[âx]i · [âx]j · Ei,1 · Ej,1, (5.13)

Similarly to Eq. (5.12), the weights during iteration i+1 are updated using gradient descent

as

Ei+1
1,1 = max(Ei

1,1 − α
δe

δEi
1,1

, 0), γi+1 = γi − α δe
δγi

. (5.14)

where the projected gradient step imposes the nonnegativity constraints for the weights Ei,j .

A similar procedure can be followed for the rest of the weights and other nonlinear models

considered. Notice also from (6.21) that each weight Ei,j will be updated while fixing the

other ones to their most recent update. Since the Adam optimizer will be used here, there

is no need to explicitly define such equations for backpropagation during implementation,

rather the optimizer will account for this automatically. Nevertheless, these equations have

been provided for further clarity.
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5.2.4 Higher degree cross-products

Earlier a crossproduct generator was introduced to calculate the nonlinear compo-

nents of the mixture via second degree products of the abundances and endmembers, thus

emulating the interactions between light from the materials as they propagate towards the

sensor. This is the reason why the mixing models in Eqs. (6.3)-(6.4) addressed the nonlin-

ear components via second degree crossproducts only. It is possible that light from more

than two materials can interact with each other, which justifies the additional calculation of

higher degree products of corresponding endmembers and abundances.

In certain cases, higher degree terms can be significant enough to warrant their cal-

culations [59]. To that end, our novel autoencoder setup in Fig. 6.2 for the Fan and bilin-

ear models facilitates the incorporation of higher degree crossproducts. This can be done

readily by stacking higher-order crossproduct terms right below the second-order terms,

while introducing additional endmember weights in the output layer. For example, when

considering a nonlinear mixing model accounting for fourth-order crossproduct terms, the

reconstructed mixed pixel at the output of the autoencoder structure can be expressed as

x̂(E, γ) =
P∑
j=1

[âx]j · Ej,: + γx(
P−1∑
j=1

P∑
l=j+1

[âx]j · [âx]l · Ej,:�El,:

+
P−2∑
j=1

P−1∑
l=j+1

P∑
m=l+1

[âx]j · [âx]l · [âx]m · Ej,:�El,:�Em,:

+
P−3∑
j=1

P−2∑
l=j+1

P−1∑
m=l+1

P∑
n=m+1

[âx]j · [âx]l · [âx]m · [âx]n

· Ej,:�El,:�Em,:�En,:). (5.15)

The introduction of higher degree terms can be computationally taxing. Nevertheless, the

inclusion of this feature significantly adds to the proposed scheme’s versatility, and results

will be shown of the proposed framework’s performance advantage when working with

higher degree terms. Note that existing works are usually limited to bilinear terms only.
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Also, note that due to the unique dynamic structure of the output layer due to this property,

although the layer is similar in ways to a fully connected layer, this causes the number of

nodes in the input to be variable. The PPNM model will be an exception to this fact, as that

model cannot accommodate this feature. As an example, if the chosen mixing model has

P endmembers and is considering upto the nth degree nonlinear terms,then the Fan model

will have
∑n

i=2
PCi and the Bilinear model will have

∑n
i=2 i

P nodes in the input, where

PCi denotes denotes ‘P choose i’.

5.3 Numerical Tests

The proposed novel unmixing scheme is compared with four other methods: 1)

the linear autoencoder in [62], 2) the nonlinear autoencoder in [71], 3) the MVCNMF

(minimum volume constrained non-negative matrix factorization) [54] method, and 4) the

VCA [11] with FCLS (fully constrained least squares) for abundance calculation, since

VCA is used only for endmember extraction. These methods encompass all possible com-

binations of hyperspectral unmixing schemes that are either neural network-based or not,

and focused either on the linear or a nonlinear mixing model.

[62] is an autoencoder network that uses mainly fully connected layers in order to

take the input layer and compress it into a latent vector that represents the abundances. For

the activation functions in the layers of this network, the leaky rectified linear unit (ReLU)

was used. This method will be referred to as the LNN (linear neural network). [71] is an

autoencoder network that performs unsupervised nonlinear unmixing, and it utilizes the

PPNM mixing model. Here, the ReLU activation was used for the layers. This method will

be referred to as the NLNN (non-linear neural network). [54] is an unsupervised scheme

that aims to minimize the volume spanned by the endmembers, and uses that as a constraint

to perform nonnegative matrix factorization for unmixing.
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The tests were conducted using both semi-synthetic and real datasets. For the semi-

synthetic datasets, three source datasets were used, namely the Pavia Center, Botswana and

Pavia University datasets [51]. Four classes from each dataset were chosen, and for every

1000 pixels, one class had a majority abundance of between 80% and 90%, which was

randomly chosen. The remaining abundances were randomly split between the other three

classes. Doing this for every class, each dataset had a total of 4000 pixels. During creation

of the data, for the Fan and bilinear models, the values for γi were set to 1, while for the

PPNM model, the values of bi were following a uniform distribution within the interval

[-0.3,0.3]. For the VCA+FCLS method specifically, for the Fan and bilinear models, the

values for γi were presumed to be known, while for the PPNM model, the values for bi

were assigned by a different set of randomly generated values using the same uniform

distribution, within the same interval [-0.3,0.3]. This implies that the VCA+FCLS method

has an advantage over the other methods in the PPNM model.

As mentioned before, the K-means initialization of the endmember weights is a better

choice compared to the well-used VCA when dealing with significant noise. To further

challenge the methods used, the data were contaminated with white additive noise, such

that the signal-to-noise ratio (SNR) values for the data were ranging from 0dB to 20dB.

For all datasets, all SNR values, and all mixing models, each accuracy metric was obtained

by averaging across 50 independent trials.

The autoencoder used the Adam optimizer [78] implementing the updating recur-

sions in Eqs. (5.12) and (5.14) to learn weights that would yield an output that minimizes

the RMSE (root mean square error) between the output and the input. The number of

epochs was set to 50, and the learning rate was set to 10−4. For the Fan and bilinear

models, the learnable weights for γ were initialized to be equal to 1, while the learnable

weights for values of the vector b in the PPNM model, were initialized to be equal to 0.

The weights for the RBF centers in the RBF layer, as well as the weights in the final layer
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for the Fan and bilinear models, were initialized to be equal to the Kmeans cluster centers

of the dataset. The tests were conducted on a PC with a core i5 6400 processor with an

Nvidia RTX 2060 GPU in Tensorflow 2.1.0. Since the centers in the RBF layer, as well

as the weights in the final layer can both be used as endmember estimations, either can be

used to measure endmember estimation accuracy. However, the weights in the final layer

form more accurate endmember estimates as they interact directly with the nonlinear terms

of the abundances. The novel framework code is available at [79].

To measure endmember estimation accuracy, the spectral angle distance (SAD) met-

ric was used. For some actual endmember e and its estimation ê, the SAD is

SAD = P−1
∑P

i=1 cos
−1( ei

T ·êi
||ei||2·||êi||2 ). (5.16)

For abundance estimation, the metric used was the RMSE found as

RMSE = (P ·N)−1
∑N

i=1(||ai − âi||2), (5.17)

where the actual abundance for some mixed pixel is a, and its estimation is â.

5.3.1 Semi-Synthetic Data

For the generation of semi-synthetic data, the AVIRIS airbone sensor acquiring hy-

perspectral images over Pavia University and Pavia Center, of Pavia, Italy, and of a region

over the country of Botswana were used [51]. The batch size was set to 4000. This is

convenient in the sense that it allows for faster operations, while giving a smoother reduc-

tion of the cost function over the epochs. The reason is that the gradient descent calculates

the gradients for all the samples in a batch, and takes the average of those gradients when

updating the weights. If the batch size is small, then gradient descent moves towards a

direction that optimizes taking into consideration only samples in the batch. Since sam-

ples in subsequent batches can cause the gradient to descend in a different direction, the
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resultant gradient descent updates have a higher likelihood to fluctuate and have an erratic

pattern. Contrary, larger batch sizes will allow for a smoother and more stable descent over

the entire dataset. It should be noted that for simplicity, the results obtained here were with

assumption of prior knowledge of the correct mixing model during the unmixing process,

since extensive testing showed that choosing a different unmixing layer produced a negli-

gible difference. Although this means that the network could have been designed with only

one mixing model, the three major mixing models have nevertheless been incorporated in

order have a highly versatile network architecture.

5.3.1.1 Pavia University

Fig. 5.3 shows the plots of the SAD and RMSE values for the various methods in

the Pavia University dataset. It can be seen that for low SNR, VCA will be susceptible to

the high noise, and its accuracy will be quite low compared to the proposed method. For

higher SNR, given the high effectiveness of VCA, it will have a slight edge over K-means

as far as endmember estimation is concerned. However, the key advantage in the proposed

method lies in its ability to achieve higher separability in the kernel space, given that some

hyperspectral materials might have properties that are too similar in the feature space for

VCA to find correct endmembers. Due to this, VCA may erroneously ignore materials,

and instead take multiple endmembers from the same material instead. Although VCA

might still be better than K-means for endmember estimation in high SNR values, VCA

can perform worse during abundance estimation, since the higher abundances might be

attributed to the wrong endmember. This is observed in the RMSE, as the LNN and NLNN

methods face considerable difficulty. VCA+FCLS and the MVCNMF have a slight edge

over the proposed method in higher SNR values, but depending on the mixing model, this

edge is inconsistent.
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Figure 5.3: SNR (dB) vs. SAD and SNR (dB) vs. RMSE in all methods for the Pavia
University dataset.

Furthermore, it is likely that the LNN and NLNN are facing further difficulties due

to the structure of using fully connected layers to obtain a latent vector that is assumed to

contain the features of the endmember materials in a highly compressed fashion. Although

this can be effective, it can be highly sensitive to the nature of the materials involved,

and will be vulnerable if the spectral reflectances of different materials are too similar.

Evidently, the kernelized pixels will be facilitating better the separation of features of even

challenging data such as this, and will yield much better accuracies with greater consistency

than MVCNMF and VCA+FCLS.

5.3.1.2 Botswana

Fig. 5.4 shows the accuracy measures of the various methods vs. SNR values. The

proposed method will either have extremely better values, or noticeably better values until
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Figure 5.4: SNR (dB) vs. SAD and SNR (dB) vs. RMSE in all methods for the Botswana
dataset.

15dB SNR, then the performance of our method will be slightly behind the MVCNMF

and the VCA+FLCS methods. The RMSE is a different matter however. Not only are the

LNN and NLNN methods considerably inaccurate, MVCNMF faces significant difficulty

for the PPNM model, while VCA+FCLS fares a little better for higher SNR. This dataset

is particularly challenging for 0dB SNR, as shown by the fact that the proposed method’s

SAD and RMSE are almost as high as the other methods. However, for 5dB SNR, the

proposed method is far better at accurately unmixing the pixels. In fact, above 5dB SNR,

the SAD values plateau, showing that it is performing at its peak even in severe noise. The

RMSE does not trail far behind as well, reaching its peak accuracy at 5dB.

70



5.3.1.3 Pavia Center

The third semi-synthetic dataset to test is the Pavia Center. This was a particularly

interesting dataset, because the materials in this dataset exhibited similarities that were too

high for VCA to discern well. Fig. 5.5 depicts that this caused high inconsistencies even in

higher SNR values, especially in the 15dB value. In fact, across the 50 iterations being run,

nearly all of them caused especially high SAD and RMSE values, as can be observed in

the plots. For SAD values, only MVCNMF had slightly better accuracy than the proposed

method for 20dB. However, for RMSE values, except only for the bilinear model at 20dB

compared to MVCNMF, the proposed method not only achieved the best accuracies for all

values of SNR, it began to plateau at 5dB, further showing its extremely high effectiveness

in the presence of high noise. Note that the SAD of the proposed method is nearing the

plateau at 0dB SNR, showing its robustness to severe noise.

5.3.1.4 Higher Degree Cross-Products

As mentioned previously, the proposed framework is versatile for easily allowing

high-degree nonlinear terms. To this end, as there were four classes making up the various

mixed pixels, the Fan model was expanded upon, and allowed for up to third degree, and

also up to fourth degree cross-products [cf. Eq. (5.15).].

The plots in Fig. 5.6 show that there is little to no difference in the RMSE values.

These is, however, a small difference in SAD values for the Pavia University and Pavia

Center datasets.

Since the higher order crossproducts have little effect in the unmixing performance

results, the experiments were re-run with a higher magnitude of γ, raising its value from

1 to 10, thus making the nonlinear component much more significant in the mixture. De-

spite not changing the initial value of the weights pertaining to γ in the final layer of our
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Figure 5.5: SNR (dB) vs. SAD and SNR (dB) vs. RMSE in all methods for the Pavia
Center dataset.

neural network, it was clearly the most robust with respect to the new mixtures. Fig. 5.7

clearly indicates that the other methods, especially the MVCNMF method was impacted

with the now-stronger nonlinear component in the mixture. However, the performance of

our proposed method is largely unaffected.

5.3.1.5 K-means vs. VCA Initialization

In all existing neural network-based unmixing schemes where weights are being used

for endmember estimation, VCA will usually be chosen for initializing. Differently, here

K-means was utilized. The primary reason is for dealing with severe data noise. As seen in

the semi-synthetic results, the competing methods using VCA for endmember initialization

had higher SAD values than the proposed method, only in the highest SNR values, and even

then those superior scores were not consistent among all the datasets. In order to further
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Figure 5.6: SNR (dB) vs. SAD and SNR (dB) vs. RMSE of the proposed method with
varying maximum crossproduct degrees.

illustrate the advantage of K-means initialization in our scheme over VCA, K-means was

replaced with VCA instead, then all the previously conducted tests were re-run for 50

trials each. The plots in Fig. 5.8 show the advantage of having K-means as the choice of

initialization over VCA for the Pavia Center dataset.

It should be mentioned, that this advantange of K-means over VCA is not effective

solely with the proposed method. To show how robust K-means is over VCA for severe

noise, the NLNN method was re-run such that the initialization of the endmember weights

were done with K-means instead of VCA for the Pavia Center dataset. Fig. 5.9 shows

that when initializing the NLNN method’s endmember weights with K-means instead of

VCA, the SAD values have an advantage over VCA in most cases for SNR values of 5dB,

and every case for 0dB. Furthermore, in the case of RMSE values, the novel framework

achieves better accuracy over nearly all SNR values and over all mixing models.
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Figure 5.7: SNR (dB) vs. SAD and SNR (dB) vs. RMSE for all methods with up to 3rd

degree crossproducts with γ = 10.

5.3.1.6 Choice of Unmixing Layer

In the performance results provided above, the unmixing layer was always chosen

to be the same as the mixing model for generating the semi-synthetic datasets. However,

through extensive testing it was found that even if the unmixing layer is different from the

mixing model, the difference in performance was negligible. Indeed, this was the case when

the nonlinear terms during the mixing are noticeably weak compared to the linear terms.

On the other hand, the stronger the nonlinear terms are, the worse the performance will be

when the unmixing model is chosen incorrectly. As an example, consider the Botswana

dataset where, the mixed pixels are generated with γ = 50. In Fig. 5.10 we can see that

if the nonlinear components are extremely strong, the correct choice of the unmixing layer

becomes significant. Thus, in the case of the datasets used previously, even though the
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Figure 5.8: SNR (dB) vs. RMSE and SAD in the novel method for Pavia Center with
varying endmember weight initializations.

proposed method will be highly accurate regardless of the unmixing layer used, it will

still be extremely effective as long as the nonlinear terms are not significantly amplified

with respect to the linear terms. Under such a setting in Fig. 5.7 (where γ = 10), existing

alternatives behave much worse than our method. Nonetheless, when nonlinear terms are

strong knowledge of the mixing model is required.

5.3.2 Real-World Data

5.3.2.1 Samson

For emulating real-world scenarios, the well-used Samson dataset [77] was used for

testing. This is a 95×95 pixel image of a waterside area. Fig. 6.9 shows the heatmaps for

the ’Soil’, ’Tree’, and ’Water’ classes. The NLNN method faces considerable difficulty with
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Figure 5.9: SNR (dB) vs. SAD and SNR (dB) vs. RMSE in the NLNN [71] method for
Pavia Center with varying endmember weight initializations.
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Figure 5.10: SNR (dB) vs. SAD and SNR (dB) vs. RMSE in the proposed method for
Botswana, with only PPNM unmixing layer against various mixing models having γ = 50.
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the ’Soil’ class of the data, and the LNN method found it challenging to tackle the same

class. In the ’Tree’ class, the outer fringes of the corresponding areas provided a challenge

for the proposed novel method, but it showed the best balance among all the three classes.

In the lower left portion of the image, a small area proved difficult to correctly classify

as part of the ’Tree’ class, instead it was misclassified as belonging mostly to the ’Water’

class.

For VCA+FCLS, the PPNM mixing model was used, while for the proposed method,

the Fan model was employed.

5.3.2.2 Jasper Ridge

Another dataset to observe is the Jasper Ridge dataset [77]. This is a 100×100 pixel

image of an area with a body of water through the middle. Fig. 5.12 shows the heatmaps for

the ’Tree’, ’Water’, ’Dirt’ and ’Road’ classes. Although all the classes fared well with the

’Water’ class, the MVCNMF method found higher abundances for water in the rest of the

image. The proposed method was significantly accurate with the ’Dirt’ class, and was also

the most accurate with the ’Road’ class, with MVCNMF identifying the road as well, but

also considered the body of water to partly contain the same material as well. In the ’Tree’

class, some areas had significantly high abundances in the ground truth, characterized by

the highly bright areas. Although the MVCNMF did relatively well with this class, the

proposed method fared the best particularly in classifying these brighter areas. Overall, the

proposed method clearly performed the best.
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Figure 5.11: Heatmaps of the Samson dataset for different unmixing methods.
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Figure 5.12: Heatmaps of the Jasper Ridge dataset for different unmixing methods.
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CHAPTER 6

SPATIAL AWARE HYPERSPECTRAL NONLINEAR UNMIXING AUTOENCODER

WITH ENDMEMBER POPULATION ESTIMATION

6.1 Problem Statement and Preliminaries

Hyperspectral images contain information in hundreds of bands, and so record much

finer information pertaining to the sensed materials. Assume S to be the number of spectral

bands across which the hyperspectral image sensor gathers information. The set S :=

{1, . . . , S} contains the indices of the respective spectral bands. Let the information across

the aforementioned spectral bands stored among N pixels, be represented by matrix L ∈

RN×S . A key obstacle with hyperspectral images due to lower spatial resolution is that,

as opposed to each pixel containing one material, the pixels are affected by a mixture of

materials known as endmembers.

A well-known model that emulates these mixtures, encapsulated by L, coming from

linear combinations of R endmembers, is the linear mixing model (LMM), i.e.,

L = F ·P + ε. (6.1)

Here, F ∈ RN×R is a matrix that quantifies the fractional contributions of the endmem-

bers in the mixed pixels. These contributions are known as abundances. As mentioned

previously, unlike a majority of existing methods where R is assumed to be known, in our

framework is an unknown to be estimated. The endmembers are represented by P ∈ RR×S ,

and ε denotes sensing noise. Following this formula, each mixed pixel can be modeled in-

dividually as

Li,: =
∑R

j=1 Fi,j ·Pj,: + εi,:,∀i ∈ 1, 2, . . . , N. (6.2)

80



Because F represents the abundances, or fractional contributions of the endmembers, its

values are non-negative, and will sum to one for every mixed pixel (across each row). Being

spectral reflectance values, the entries of P will also be nonnegative, and these conditions

can thus be written as Fi,j ≥ 0,Pj,: ≥ 0, ∀i ∈ 1, 2, . . . , N and ∀j ∈ {1, 2, . . . , R}, and

also
∑R

j=1 Fi,j = 1,∀i ∈ {1, 2, . . . , N}.

The LMM however, is limited in that it cannot account for light from the same,

or differing endmembers from scattering with each other. Such interactions are instead

accounted for, mainly in three nonlinear mixing models used in current literature. These

are known as the Fan model, the Bilinear model [72], and the PPNM (Post Polynomial

Nonlinear Mixing) model [75]. The Fan model

Li,: =
∑R

j=1 Fi,j ·Pj,: + γi
∑R−1

j=1

∑R
l=j+1 Fi,j · Fi,l

·Pj,: �Pl,: + ε,∀i ∈ 1, 2, . . . , N. (6.3)

incorporates interactions across different endmembers through their Hadamard products

(elementwise products). The γi values represent scaling factors to control the strength of

the nonlinear mixtures in relation to the overall mixture. Since it has been established

that nonlinear interactions can also occur among the same endmember [73, 74], they are

included in the Bilinear model, which is the same as Eq. (6.3), with the exception that both

the summation limits in the nonlinear components, range from 1 to R.

Finally, the PPNM [75] model is simpler, in that it will take the LMM mixture, and

add it to the square of itself.

Li,: =
∑R

j=1 Fi,j ·Pj,: + bi(
∑R

j=1 Fi,j ·Pj,:)

� (
∑R

j=1 Fi,j ·Pj,:) + ε,∀i ∈ 1, 2, . . . , N. (6.4)

The vector b of length N resembles γ in Eq. (6.3), as well as for the Bilinear model, as it

controls the strength of the nonlinear part of the model.
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6.1.1 Kernel Data Mappings

Mixed pixels can be represented as points in the feature space, while estimation of

the endmembers is obtained through calculating the K-means [76] cluster centers, and the

distances from the mixed pixels w.r.t. the cluster centers gauge the similarities between

the endmembers and the mixed pixels. This in turn points to how much the endmembers

may be contributing to the mixed pixels to result in these similarities, thus providing esti-

mations of the abundances. However, in the feature space, similarities between different

endmembers can cause unmixing to be highly challenging. Rather, this can be achieved

with greater ease and accuracy, as has been shown in [52, 61, 68], if the data is mapped

from the feature space to a higher dimensional space through implementation of the kernel

trick [17]. In particular, the Gaussian Radial Basis Function (RBF) kernel has proven to be

particularly effective with hyperspectral images, and will thus be used here. As the RBF

distance is a measure of similarity, the higher the RBF distance is between two points, the

greater their similarity. Using this logic, with the mixed pixels and K-means cluster centers

obtained in the feature space, the higher the RBF distance is of a mixed pixel from a cluster

center that represents an estimated endmember, the higher the similarity between them can

be inferred. This, in turn, implies that this higher similarity exists due to that respective

endmember contributing more towards the mixed pixel, which consequently translates to

that endmember having a higher abundance in that mixed pixel. Thus, the RBF distance of

some mixed pixel x from an estimated endmember/cluster center ci can be expressed as

[f̂x]i = exp(−β · ||x− ci||2), ∀i ∈ 1, 2, . . . , R, (6.5)

where β is a parameter which controls the spread of the cluster center in the kernel space.

Since our framework is unsupervised, there will be no prior knowledge of the endmembers,

and so they will be estimated using K-means on the mixed pixels, thus the Gaussian centers

are initially estimated to be the cluster centers. See more details in [84]. What remains then
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is to calculate these abundances, normalize them to unit summation, and they will represent

vector f̂x for a given mixed pixel x, which would be a row of the abundance matrix F̂.

One key point to observe is that these values, being distances, cannot be negative, which

automatically helps to satisfy the nonnegativity constraint without added effort.

Another challenge that can hamper the classification results considerably, is the pres-

ence of noise in the images, which can emanate from dust particles in the air, adverse cli-

mate and weather conditions, and simply the quality of the sensor. Further, any damage or

malfunction in the image sensor’s equipment can cause parts of the sensor to become un-

responsive, creating entries in the image arrays to be equal to zero, since no information is

being gathered. To tackle this issue, spatial information will be utilized in that the pixels in

the images are recalculated to be a weighted averaged version of itself and its surrounding

neighborhood. The weights to be determined, are calculated as a proportion of the simi-

larity between the center pixel and the pixels in the neighborhood, and the RBF distance

is an effective similarity metric. The averaging calculation done here, in conjunction with

the averaging performed with Kmeans as part of the endmember estimation algorithm, as

well as the weighted averaging filters implemented in the neural network, are extremely

effective in mitigating noise and dead pixels.

6.2 Unsupervised Hyperspectral Unmixing Autoencoders

6.2.1 Spatial Averaging Filter

During hyperspectral image acquisition, faulty equipment can cause some pixels in

the images to become unresponsive. Such ’dead’ pixels in the image data, carry no infor-

mation and are set at a zero value. With the simple presumption that adjacent pixels are

likely to contain information from the same material, the effect of dead pixels, as well as

cases where the data contains high noise, are both alleviated by designing a proper spatial
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moving average filter. Before the image is fed through the network, an averaging filter is

applied to every pixel. Let the size of this filter be n× n, where the value of n is odd. For

any given pixel, it will be the center of an n× n neighborhood. The weights in the averag-

ing will be calculated based on the RBF distance of the center pixel w.r.t the surrounding

pixels in its neighborhood. Denote the pixel of interest as x, and let A represent the set

of pixels in the neighborhood surrounding x, so A = {yi},∀i = 1, · · · , n2, note that A is

inclusive of x. The weights are calculated as

wi = exp(−1 · βa · ||x− yi||22),∀i = 1, · · · , n2, (6.6)

where βa = (n−2
∑n2

i=1 ||x− yi||22)−2, ∀yi ∈ A. Thus, βa is calculated by taking the inverse

squared average of the Euclidean distances between x and yi, where the subscript a signifies

that this is the β specifically for the averaging filter. This formula for βa is chosen because,

the Euclidean distances among the surrounding pixels w.r.t. the center pixel gives a good

idea of the span of the pixels’ positions in the kernel space, thus ensuring that the RBF

distances are scaled appropriately. Once all the wi values are calculated, normalizing them

to unit summation will yield the weights used to calculate the average for each pixel across

all the spectral bands as

wi =
wi∑n2

j=1wj
,∀i = 1, · · · , n2, with x =

n2∑
i=1

wi ∗ yi (6.7)

The averaged pixel x thus replaces the original pixel x for all subsequent steps in the al-

gorithm, and the same applies to all other pixels in the dataset. This averaging filter also

works very effectively even with introduction of dead pixels. The reason can be found in

Eq. (6.6). If one or more entries in x and yi are zero, since the norms of their differences

are calculated, the impact from the zero entries is far less significant.
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6.2.2 Unsupervised Endmember Number Estimation

Different from the majority of existing unmixing approaches, the number of end-

members is not available. After the moving averaging filter is applied, a novel scheme is

utilized to determine the number of endmembers in the data. As the kernel covariance ma-

trix of the data would ideally have a block diagonal form, where the diagonal blocks are

present due to the existence of the various endmembers, a rank equivalent matrix - where

the rank number is equal to the number of endmembers - would ideally be a close approx-

imation of the original kernel covariance matrix with minimal mean-square error. This

block diagonal structure arises since the endmembers being sufficiently dissimilar can be

viewed as uncorrelated in the kernel space (negligible RBF distances). Thus, the number of

unknown endmembers will be found by estimating the rank of the kernel covariance matrix

corresponding to the mixed pixels. To that end, the RBF kernel covariance matrix of the

data is first calculated. For a hyperspectral image containing N pixels, the pairwise pixel

distance matrix C ∈ R(N×N) is defined by

Ci,j = ||xi − xj||2. (6.8)

Since the number of endmembers R is unknown, it is assumed to be within [2, Z] where Z

is an adequately high number. The BRF kernel covariance matrix K

Ki,j = exp(−βc ∗ Ci,j), ∀i, j = 1, · · · , N (6.9)

where the calculation of βc will be explored later on. Once K is calculated, the task remains

to find which lowest rank equivalent matrix of K will provide minimal reconstruction error,

which would point towards the most likely number of endmembers. Thus, we calculate the

reconstruction error for different rank approximations of K, with the, zth rank reconstruc-

tion error being found as

ez = ||K−
z∑
i=1

λivivTi ||2, ∀z = 1, · · · , Z (6.10)
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Here, λi, vi represent the ith most significant eigenvalue and the corresponding eigenvector,

respectively. Once the Z reconstruction errors are calculated, we have to observe where the

error stabilizes. For this purpose, we calculate the differences of the errors between every

two consecutive ranks Thus, we obtain the vector of differences ẽ as

ẽi = ei − ei+1,∀i = 1, · · · , Z − 1. (6.11)

6.2.2.1 Calculation and scaling of βc

During RBF kernel mapping, since the values inside the exponential are scaled by

a value commonly denoted in a generalized way as β, obtaining the kernel covariance

matrix K also concerns the choosing of a proper value for β value, known as βc, where the

subscript c signifies that this is related to the matrix C. This is calculated by averaging the

row-wise max values of the upper triangular of C, which we shall denote as CU . Thus,

βc = (N)−1

N∑
i=1

max(CU [i, i :]). (6.12)

Now, Eqs. (6.9)-(6.11) can be implemented with the strict assumption that the value of

βc is ideal for the kernel covariance matrix. However, given the diversity of the data in

hyperspectral images, this might not be the case. Because of this, the value of βc should be

appropriately scaled. As we are dealing with an unsupervised model and thus have no prior

information regarding how to appropriately scale βc, the best way to approach this problem

is to measure for a range of values to scale βc with. Let us assume the vector of scaling

values to be sc, whose length is Q and chosen manually, so Eq. 6.9 will be rewritten to look

like

[Ki,j]k = exp(−sck · βc · [Ci,j]k), (6.13)
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∀i, j = 1, · · · , N, k = 1, · · · , Q. For Q different kernel matrices, we would be repeating

Eqs. (6.10)-(6.11) and obtain Q different ẽ vectors, which we can group into a matrix Ẽ of

size Q×(Z − 1), where Ẽ = [ẽ1, · · · , ẽQ]T . Ideal values in sc will yield corresponding ẽ’s

(each ẽ being a row in Ẽ), where values in the corresponding ẽ1, · · · , ẽR−1’s will be high and

subsequent values will be low, thus causing a steep drop between ẽR−1 and ẽR. However,

non-ideal values in sc will cause lower values in ẽ1, · · · , ẽR−1 as well, due to the resultant

kernel covariance matrix not being the best representation of the data. Thus, for all rows

in Ẽ, the values across the first R columns will vary significantly, while values between

R, · · · , Z − 1 will be consistently low, thus varying very little. Logically, measuring the

variance across the columns of Ẽ, and seeing where the variance drops will lead us towards

the number of endmembers in the data.

To this end, we calculate the variance of the columns of Ẽ, using the formula

σ2
z = Q−1

∑Q
i=1(Ẽi,z −

∑Q
j=1 Ẽj,z/Q)2, (6.14)

∀z ∈ {1, · · · , Z − 1}. Then, we observe where the variance drops to a low value. We have

set this to be below a predetermined threshold, which is a fraction of the peak variance.

The drop below this threshold, as discussed previously, will point us towards the correct

number of endmembers.

The drop in the variance is calculated by measuring the differences of variances

across adjacent columns of Ẽ. While this works well, there is one risk with this approach.

Among the first variances prior to reaching R, if two adjacent variances are high, but co-

incidentally very similar in value, their difference might be so low that it goes below the

threshold, and the algorithm mistakenly chooses a value of R̂ < R. To tackle such fringe

cases, the variances themselves are also observed alongside their differences. To illustrate

how this works, consider a dataset with 4 endmembers, and observe the plots in variances
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for the corresponding Ẽ matrix in Fig. 6.1. Note that when reaching index 4 (correspond-

ing to 4 endmembers), because the variance drops from index 3 to 4, this can be used to

conclude that there are indeed 4 endmembers in the data. Also, note that in the differences

of variances across Ẽ’s columns (orange line), the value drops significantly between indices

1 and 2. This might have caused R̂ to be erroneously estimated as 2, but if validated with

the blue line, this can be avoided.

1 2 3 4 5 6 7 8
0

500

1000

1500

2000

Variances across E's columns
Differences of variances

Figure 6.1: Plots of variances for Ẽ matrix’s columns.

6.2.3 Autoencoders for Nonlinear Unmixing

The autoencoder unmixing neural network structure is shown in Fig. 6.2 with R=4

endmembers for illustration purposes and without loss of generality.. This network can ac-

commodate the three different mixing models, where we can assume unmixing of a dataset

containing 4 endmembers. After the mixed pixel is fed into the proposed neural network

structure along with its neighborhood, it is averaged with the RBF weights, and then the
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RBF distance of this averaged pixel is calculated w.r.t. the estimated endmember centers

obtained through K-means, where the number of centers is the same as the estimated num-

ber of endmembers R̂ from Sec. 6.2.2. When these RBF distances are normalized to unit

summation, they will represent the estimation of abundances. After this step, unmixing is

performed according to the user’s choice of model (see details in [84]). Note that [84] is

limited in the sense that the true number of endmembers is assumed to be known while spa-

tial information is not exploited to address dead pixels and noise. The generalized objective

of the autoencoder would be to take input pixel x and minimize its mean square error from

the reconstructed estimation of the input, x̂ summarized in

minS−1||x− x̂||22. (6.15)

Averaged Pixel

a1

a2

a3

a4

RBF Layer

Abundance
Vector

5x5
Cube input

RBF-based 
Averaging

Endmember 
Number Estimation

RBF Filter Layer

Kernel Covariance 
Matrices Rank Equivalent 

Matrices

Unmixing Layer From [84]

Reconstructed 
Output 

(Center pixel 
from 5x5 

cube)

Fan, Bilinear, or PPNM 
Model

Autoencoder Neural 
Network

Figure 6.2: Autoencoder setup for the Fan, Bilinear and PPNM mixing models.
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The novel neural network structure consists of:

6.2.3.1 RBF Filter Layer

With the number of endmembers estimated, the task remains to feed the pixels into

the autoencoder neural network in order to perform unmixing. The first step in the proposed

neural network model, is the formation of a weighted average of the input pixel that takes

into account its neighboring spatial information. A weighted average is taken of the pixel

with its neighborhood, that resembles the RBF-based filter in Sec. 6.2.1, so that the pixel

is averaged with higher weights given to adjacent pixels that come from the same material.

It should be noted that the spatial filter weights [similar to the wi’s in Eq. (6.7)] will

be learnable weights in the network, and will be initialized according to Eqs. (6.6),(6.7),

with the update rules given in Sec. 6.2.4. Thus, the dimensions of these weights will be

Nb×n×n, where Nb represents the number of samples in one batch. The averaged pixel

finally becomes the output. Note that the weights would be repeated across the spectral

bands.

6.2.3.2 RBF Layer

Once the averaged pixel is calculated, it is then fed into the next layer, where its

RBF distance is measured from the R̂ K-means centers that are representing the estimated

endmembers of the mixed image data. As the layer is described in detail in [84], this will

be discussed briefly here. The learnable parameters here would be the β value, and the

cluster centers cj . While the cluster centers are initialized via K-means, the β parameter is

initialized with the formula given below. If one pixel is Li.:, and its nearest cluster center is

cj , β is initialized by

β = (N−1 ·
∑N

i=1 ||Li,: − cj||2)−2, ∀j = 1, · · · , R̂. (6.16)
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The autoencoder network initializes the weights representing the estimated endmembers

P through K-means. Since K-means measures cluster centers via averaging of the pixels,

represented by points in the feature space, dead pixels can cause a major concern. This

is because since dead pixels would cause certain pixel entries to be zero, the points along

those corresponding dimensions in the feature space will be shifted towards the origin.

This shifting causes clustering techniques such as K-means to face considerable difficulty.

However, thanks to the spatial averaging filter introduced in Sec. 6.2.1, this concern is

alleviated and K-means performs effectively.

Another major advantage is that since RBF distances are nonnegative by nature, the

estimated abundances will automatically satisfy its nonnegativity constraints. However, in

order to satisfy the unit summation constraint, the output from the RBF layer would need

to be normalized to unit summation,

[f̂x]i =
[f̂x]i∑R̂
j=1[f̂x]j

,∀i ∈ 1, 2, . . . , R̂. (6.17)

After this step, if the Fan or Bilinear model is chosen for unmixing, the abundance vector

is expanded to include its cross-products. This is a straightforward method that does not

necessitate the utilization of any layer.

6.2.3.3 Fan, Bilinear & PPNM Models

In [84], the process of obtaining the vector containing the cross-product terms of the

abundances is described in detail. The vector in question can be expanded to accommodate

both the Fan and Bilinear models, in which case the cost in Eq. (6.15) becomes

min
P,γx

S−1||x− x̂(P, γx)||22, (6.18)
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where γx refers to the value of γ related to mixed pixel x. Once the abundance [f̂x] is

obtained from Eq. (6.17), x̂(P, γx) will be obtained from the mixing model used, e.g., for

the Fan model,

x̂(P, γ) =
R̂∑
j=1

[f̂x]j·Pj,: + γx

R̂−1∑
j=1

R̂∑
l=j+1

[f̂x]j·[f̂x]l·Pj,:�Pl,:,

The Bilinear model would be the similar, only with both the limits in the summations of

the nonlinear components, being between 1 and R̂. On the other hand, if the PPNM model

is used then x̂(P, bx) in the cost in Eq. (6.18) would resemble the form in Eq. (6.4) with γx

being replaced by bx.

6.2.4 Backpropagation

From Eq. (6.18), we can define the error as e := ||x − x̂||22. In the RBF layer, let

the first estimated endmember obtained through K-means clustering be c1. Further, first

estimated abundance g1 is formulated as

g1 = exp(−β1 · ||x− c1||22). (6.19)

Here, β1 will be the value of β relevant to the first estimated endmember c1. Essential in

backprpagation will be the derivative of the function g1 w.r.t. c1 is

δg1

δc1

= −2β1 exp(−β1 · ||x− c1||22)(x− c1).

The derivative of the function g1 w.r.t. β1 is

δg1

δβ1

= −||x− c1||22 exp(−β1 · ||x− c1||22).

Since x is obtained from the RBF filter layer, it is obtained through filter weights wj , mul-

tiplied by the pixels yj in the neighborhood Ax, so x =
∑n2

j=1wjyj , ∀yj ∈ Ax . Since in

the RBF filter layer, the learnable weights are wj , the derivative of function x w.r.t. w1 is

δx
δwj

=
δ(
∑n2

i wiyi)
δwj

= yj, ∀j = 1, · · · , n2.
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For an appropriately chosen step size α, the weights during iteration i+1 are updated im-

plementing gradient descent

ci+1
1 = ci1 − α

δe

δci1
, βi+1

1 = βi1 − α
δe

δβi1
, wi+1

1 = wi1 − α
δe

δw1

. (6.20)

In the final layer, let us assume the first value in the reconstructed pixel to be x̂1. Using the

Fan model in Eq. (6.3)

x̂1 =
R̂∑
i=1

[f̂x]i ·Pi,1 + γ
R̂−1∑
i=1

R̂∑
j=i+1

[f̂x]i · [f̂x]j ·Pi,1 �Pj,1.

Note that γ has no subscript here. This is because it represents a scalar value for one mixed

pixel. The derivatives of x̂1 w.r.t. P1,1, and also γ would be

δx̂1

δP1,1

= [f̂x]1 + γ
R̂∑
j=2

[f̂x]j ·Pj,1,

δx̂1

δγ
=

R̂−1∑
i=1

R̂∑
j=i+1

[f̂x]i · [f̂x]j ·Pi,1 �Pj,1. (6.21)

Similar to Eq. (6.20), for iteration i+1, the weights will be updated through gradient descent

as

Pi+1
1,1 = Pi

1,1 − α
δe

δPi
1,1

, γi+1 = γi − α δe
δγi

. (6.22)

A similar process can be considered for the remaining weights in this model, and also

the bilinear and PPNM models. Also, note that in (6.21), every weight Pi,j will be up-

dated while other ones remain fixed to their most recent update. Originating from [84], the

proposed neural network structure also has the unique property of accommodating higher

degree cross-products, unlike traditional unmixing algorithms that only allow up to second

degree cross-products. As this property is not the main focus of the work formulated here,

this property was not utilized, but it nevertheless exists, and is implemented extensively

in [84].
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6.3 Numerical Tests

The proposed novel unmixing scheme is compared with three other methods (avail-

able at the time the paper was finalized) that also utilize spatial information. These methods

are: 1) the 3D CNN autoencoder in [81], 2) the 2D CNN autoencoder in [82], and 3) the

VCA [11] with FCLS (fully constrained least squares) for abundance calculation, since

VCA is used only for endmember extraction.

[81] is an autoencoder network that utilizes 3D convolutional layers (CNN3D) in

conjunction with fully connected layers for hyperspectral unmixing. [82] on the other hand,

is a 2D CNN method (CNN2D) that estimates both the endmembers and abundances, and

will thus be measured in both SAD and RMSE values.

The tests were conducted using both semi-synthetic and real datasets. For the semi-

synthetic datasets, two source datasets were used, namely the Pavia Center and Pavia Uni-

versity datasets [51]. The data was created to resemble a field, having 20 × 20 pixels of

crops from each material, adjacent to each other. For each dataset, when considering 4 end-

members, there were thus 4 20 × 20 crops side by side, creating a field of 20 × 80 pixels.

For every 20 × 20 crop, one class had a majority abundance of between 80% and 90%,

which was randomly chosen. The remaining abundances were randomly split between the

other classes. While generating the data, for the Fan and Bilinear models, the values for

γx were set to 1, and for the PPNM model, the values of bx were according to a uniform

distribution within the interval [-0.3,0.3]. Also, during the VCA+FCLS method, for the

Fan and Bilinear models specifically, the values for γi were presumed to be known a pri-

ori, whereas for the PPNM model, the values for bx were assigned by creating a different

set of randomly generated values, which had the same uniform distribution, and the same

interval [-0.3,0.3]. Because of this, in the PPNM model, the VCA+FCLS method has a

distinct advantage over the other methods. In addition, white additive noise was added in

the data where signal-to-noise ratio (SNR) values were ranging from 0dB to 20dB. Also,
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to simulate the presence of dead pixels, a percentage of the data entries were set to zero.

These were done for 0 and 20 percent of the data. Accuracy values were calculated as an

average of 20 Monte Carlo trials.

The autoencoder used the Adam optimizer [78] implementing the updating recur-

sions in Eqs. (6.20) and (6.22) to learn weights that would yield an output that minimizes

the RMSE (root mean square error) between the output and the input. The number of

epochs was 100, and the learning rate was 10−4. For the Fan and Bilinear models, the

learnable weights for γ were initialized to 1, whereas the learnable weight vector b in the

PPNM model, was initialized with zeros. The weights for the centers in the RBF layer, and

the endmember weights in the final layer were initialized to be equal to the K-means cluster

centers of the dataset. The tests were conducted on a PC with a Core i5 6400 processor

with an Nvidia RTX 2060 GPU in Tensorflow 2.1.0. One interesting point to note is that

due to similar initializations, both the RBF centers and the weights in the final layer can be

used as endmember estimations. However, as the weights in the final layer interact with the

nonlinear cross-products directly, that was more preferable. The Python code of the novel

framework is available at [80].

To measure endmember estimation accuracy, the spectral angle distance (SAD) met-

ric was used. For some actual endmember pi and its estimation p̂i, the SAD is

SAD = R−1
∑R

i=1 cos
−1( pi

T ·p̂i

||pi||2·||p̂i||2 ). (6.23)

It should be noted that for CNN3D, the SAD values are not calculated as they assume

knowledge of the original endmembers. For abundance estimation, the metric used was the

RMSE found as

RMSE = (R ·N)−1
∑N

i=1(||fi − f̂i||2), (6.24)

using the actual abundance fi and its estimate is f̂i.
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However, this is the process to measure SAD and RMSE if the number of estimated

endmembers is correct (R̂ = R). If this is not the case, then each actual endmember is

chosen one at a time, to find the estimated endmember that is the best match. If R̂ > R,

then theR best matches are taken and the rest discarded. If, on the other hand, R̂ < R, then

the matching is done R times, while ensuring that each estimated endmember is chosen at

least once.

6.3.1 Semi-Synthetic Data

For the generation of semi-synthetic data, the AVIRIS airbone sensor acquiring hy-

perspectral images over Pavia University and Pavia Center were used [51]. Unlike the pro-

posed method, all other methods assume prior knowledge of the number of endmembers.

In order to give some idea as to the difference in performance due to the proposed method

estimating the number of endmembers, the tests will also be re-run under the assumption

that the number of endmembers are known. This will be referred to as ”Proposed++”.

The batch size was set to 1600, thus the entire dataset was put into one batch. The

reason behind this is twofold. Firstly, this allows for faster operations since only one batch

is dealt with instead of multiple batches. Secondly, when calculating gradient descent, all

the samples in a batch are considered in calculating gradients via averaging. This process

enables calculation of gradient descent directions that are optimal for a larger portion of

the dataset at a time, thus making them less likely to fluctuate due to noise.

6.3.1.1 Pavia University

The first dataset to observe is the Pavia University dataset. In Fig. 6.3, it can be

observed that VCA+FCLS begins to catch up with the proposed method at relatively higher

SNR values, which is understandable because the dataset has no dead pixels, allowing the

method to perform effectively. CNN2D has significantly worse SAD performances, likely
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owing to its difficulty in differentiating between the endmembers without initialization with

endmember estimation algorithms such as VCA. However, it can also be observed that

the proposed method’s SAD score is nearly a flat line from 5dB SNR and onwards. The

reason behind higher values in 0dB SNR, is due to its difficulty in correct estimation of

endmember numbers with such considerable noise. This fact is attested by Proposed++

achieving excellent values even at 0dB SNR. This shows the very high effectiveness of

the proposed method’s neural network structure in tackling extreme noise. In the RMSE

values, CNN3D and CNN2D both face considerable difficulty throughout the whole range

of SNR values, due to the challenging nature of the dataset having some similarity among

the endmembers.

The superior performance of the proposed method remains consistent with the in-

troduction of dead pixels. As shown in Fig. 6.4 unlike the other methods, the proposed

method remains largely unaffected. Again, except 0dB SNR, the performance is highly

consistent, even though the other methods are affected with 20% of the pixels being dead,

as depicted in Fig. 6.4.

6.3.1.2 Pavia Center

The other semi-synthetic dataset to test is the Pavia Center. This dataset is partic-

ularly challenging because of the higher similarities present in the spectral reflectances

among the endmembers, and is effective in highlighting the proposed method’s superiority

in differentiating between them, owing to the better separability in the kernel space and

the RBF-based layers’ effectiveness in exploiting this property. In Fig. 6.5, even in the

presence of no dead pixels, the proposed method is consistently superior to the other meth-

ods. CNN2D faces considerable difficulty, while for 0% dead pixels, VCA faces difficulty

with 15dB SNR. This challenge is also considerable for CNN3D. Also, in the case of SAD

values, it can be seen that in 0dB SNR, the task of the estimation of endmember numbers
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0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
RMSE PROPOSED
RMSE PROPOSED ++
RMSE VCA+FCLS
RMSE CNN2D
RMSE CNN3D

(f) SNR vs. RMSE in PPNM model.

Figure 6.3: SNR (dB) vs. SAD and SNR (dB) vs. RMSE for 0% dead pixels for 4 classes
in Pavia University dataset.

pose a challenge for the proposed method. However, as Proposed++ shows, if the proposed

method, similarly to the other methods, knows the correct number of endmembers, then the

performance in 0dB SNR is nearly the same as any other value of SNR, creating a near-

flat line. This further attests to the proposed autoencoder network’s high robustness with

extreme noise. In the case of added dead pixels, the superiority of the proposed method is

even more significant, as shown in Fig. 6.6.

6.3.2 Accuracy in Counting Endmembers

Another accuracy measure to observe was the proposed method’s ability in estimat-

ing the number of endmembers correctly. Since it has been observed that 0dB SNR creates

a significant challenge in finding the correct number of endmembers, Table 6.1 measures

the number of correct estimations of endmember numbers for 0dB separately from the rest.
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(e) SNR vs. RMSE in Bilinear model.
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Figure 6.4: SNR (dB) vs. SAD and SNR (dB) vs. RMSE for 20% dead pixels for 4 classes
in Pavia University dataset.

As can be observed, while 0dB SNR is a difficult setting to find the correct number of

endmembers, the proposed method has very high accuracy from SNR values that are even

slightly higher than 0dB.

6.3.3 Comparison of Other Methods With Incorrect Endmember Numbers

In order to illustrate the impact of correctly estimating the number of endmem-

bers, the other compared methods were re-run with an incorrect estimated number of end-

members, since in these methods, the number of endmembers are usually assumed to be

known.We used the Pavia University dataset with 20% dead pixels and employing the Fan

model. The tests were re-run assuming that there were 3 endmembers, and also assum-

ing that there were 5 endmembers, instead of the correct number of 4. Note that for the

CNN3D method, as the actual endmembers were known, re-running this method while as-
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0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

SAD PROPOSED
SAD PROPOSED ++
SAD VCA+FCLS
SAD CNN2D

(c) SNR vs. SAD in PPNM model.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
RMSE PROPOSED
RMSE PROPOSED ++
RMSE VCA+FCLS
RMSE CNN2D
RMSE CNN3D

(d) SNR vs. RMSE in Fan model.
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(e) SNR vs. RMSE in Bilinear model.
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Figure 6.5: SNR (dB) vs. SAD and SNR (dB) vs. RMSE for 0% dead pixels for 4 classes
in Pavia Center dataset.

Dead Pixel
Percentage

Dataset Mixing
Model

% Correct
(0dB)

% Correct (5
- 20dB)

Pavia University

Fan 5 100

0%

Bilinear 0 86.25

PPNM 5 90

Pavia Center

Fan 50 96.25

Bilinear 5 98.75

PPNM 40 91.25

Pavia University

Fan 25 100

20%

Bilinear 0 80

PPNM 15 100

Pavia Center

Fan 55 87.50

Bilinear 25 98.75

PPNM 45 88.75

Table 6.1: Accuracy of endmember number estimation across various dead pixel percent-
ages, datasets and mixing models.
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(e) SNR vs. RMSE in Bilinear model.
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Figure 6.6: SNR (dB) vs. SAD and SNR (dB) vs. RMSE for 20% dead pixels for 4 classes
in Pavia Center dataset.

suming 3 or 5 endmembers, was achieved by removing and duplicating the 4th endmember

respectively.

As we can observe in Fig. 6.7, VCA+FCLS was strongly impacted when the number

of endmembers was 3 or 5. The accuracy measures in the other methods were also affected,

but with less of an impact, which is understandable given the accuracy was relatively low

even with the correct number of endmembers. This further attests to the proposed method’s

versatility having the ability to estimate the number of endmembers with high accuracy,

especially with datasets as challenging as the ones used.

Another case to observe was the proposed method’s accuracy w.r.t. [84], which we

shall refer to as NUA (nonlinear unmixing autoencoder). Fig. 6.8 plots the NUA for the

same dataset as in Fig 6.7 with 20% dead pixels, with assumed endmember numbers having

a difference of ±1 from the correct value of 4. As can be seen in Fig. 6.8, the effect of dead
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(d) SNR vs. SAD in VCA+FCLS.
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Figure 6.7: SNR (dB) vs. SAD and SNR (dB) vs. RMSE for Pavia University, with
Fan model and 20% dead pixels for 4 classes, compared to estimating for ±1 number of
endmembers.

pixels makes a huge impact on NUA’s ability to perform unmixing even when knowing

the correct number of endmembers. The plot of the proposed method shows its superiority

when dead pixels are present, and when it does not have prior knowledge of the number of

endmembers.

6.3.4 Real-World Data

For testing the methods in a real-world scenario, the Samson dataset [77] was used.

This is a 95×95 pixel image, with three classes, namely ’Soil’, ’Tree’, and ’Water’. The

proposed method was noticeably effective at the portions of the images with higher abun-

dances for all the materials. The VCA+FCLS method faced noticeable difficulty with the

’Water’ class, as did CNN2D. CNN2D, on the other hand, showed good performances in
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Figure 6.8: SNR (dB) vs. SAD and SNR (dB) vs. RMSE for Pavia University, with Fan
model and 20% dead pixels for 4 classes, compared to estimating for ±1 classes in NUA
and the proposed method.

the ’Soil’ and ’Tree’ classes, showing its effectiveness when the endmembers have signifi-

cant differences among each other. In the ’Water’ class, only the proposed method correctly

found zero abundance in the bottom right. For VCA+FCLS, the mixing model considered

here was the PPNM model. For the proposed method, the Fan model was considered since

it showed the best accuracies.
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Figure 6.9: Heatmaps of the Samson dataset for various methods.
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CHAPTER 7

HEART DISEASE DIAGNOSIS THROUGH MITRAL VALVE TRACKING IN

ECHOARDIOGRAMS

The heart is composed primarily of four chambers. They are the left atrium, left

ventricle, right atrium and right ventricle. The right atrium and ventricle pump blood only

to the lungs, while the left chambers pump blood throughout the rest of the body. Because

of this, the left ventricle is larger, and more often looked at during heart checkups. Oxy-

genated blood enters the heart through the pulmonary veins, into the left atrium. From

there, the left ventricle expands, and allows blood from the left atrium to enter it. This

is called the systole phase. As the ventricle fills up with blood, it squeezes and pumps it

through the aorta, and on throughout the body. This is called the diastole phase [36]. As

the blood flow from the left atrium to the ventricle is a crucial step of the whole process,

proper maintenance of blood flow is very important. As this is controlled by the mitral

valve, any disease affecting its function needs to be dealt with to ensure the body’s health.

Some very common heart diseases affecting the mitral valve include mitral stenosis,

where the mitral valve is thickened due to calcification, or deposits of calcium on the mi-

tral valve leaflets, or endocarditis which causes bacteria to grow around the leaflets. These

growths restrict blood flow during the systole phase, and force insufficient quantities of

blood pumped through the body. Another common affliction is mitral stenosis [37], where

the valve is unable to close fully during the diastole phase. This causes some part of the

blood being pumped through the aorta, to instead divert back through the left atrium. This

is known as mitral regurgitation [38]. This will ultimately also cause the body to receive
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insufficient blood. Other diseases will cause abnormally fast or irregular heartbeats, poten-

tially causing exhaustion and heart failure.

7.1 Otsu’s thresholding

Consider an ultrasound video with N frames, where each frame Fn, ∀n = 1, . . . , N

is an Rw×h array, where w and h represent horizontal pixel length (width) and vertical

pixel length (height) respectively. The values in this array represent pixel values, where

higher values correspond to whiter pixels. Otsu’s thresholding [39] is a method to choose

a threshold which would turn the frame into a binary image, where 0’s and 1’s would

correspond to pixel values below and above the threshold respectively. The threshold would

be chosen in such a way, that minimizes intra-class variance, meaning that the threshold

would ensure that pixel values below and above the threshold would have minimal variance

among themselves. If we wish to binarize an image, some parts of the image will be part

of the foreground, and the rest will be in the background.

Consider the pixel values in a frame Fn to be pi, ∀i = 1, . . . , w × h. For some

threshold t, all pixel values below it will be considered part of the background pbj , ∀j =

1, . . . , Pb and all others will be part of the foreground pfk , ∀k = 1, . . . , Pf . Pb and Pf

represent the number of pixels in the background and foreground respectively, meaning

that Pb + Pf = w × h. Thus, for a given threshold t,

pi = pbj , if pi < t

pi = pfk , if pi ≥ t (7.1)

The value of the threshold t, is the one that minimizes the intra-class variance, which

is a weighted sum of the variances of the foreground σ2
f and background σ2

b
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t = arg min
t

[wf (t)σ
2
f (t) + wb(t)σ

2
b (t)]

where, wb(t) =
Pb

Pf + Pb

wf (t) =
Pf

Pf + Pb

σ2
b (t) =

∑Pb

j=1(pbj − µb)2

Pb
where, µb =

1

Pb

Pb∑
j=1

pbj

σ2
f (t) =

∑Pf

j=1(pfk − µf )2

Pf
where, µf =

1

Pf

Pf∑
k=1

pfk (7.2)

Note that the value of t affects the values of Pf and Pb via Eq. 7.1. This effectively

aids with the background noise present in the frame, while also binarizing the image and

make its processing much faster.

After all theN frames are binarized, we obtainN binary arrays where each array has

1’s in the pixels where tissues are likely to be present. We thus obtain N binary frames Bn,

∀n = 1, . . . , N . Note that in Eq. 7.1, the frames were vectorized as part of the generalized

formula. However, it is not necessary and we did not vectorize the frames in our application

as well.

Separately, we apply background subtraction to Fn. Assume the background to

be S, where each pixel of S is the median value across frames 1 through N , so S =

median(F1,F2, · · · ,FN) on an entry-by-entry basis, ∀n = 1, . . . , N . We thus obtain the

background subtracted images FSn = Fn − S. We binarize these images using the same

process in Eqs. 7.1 and 7.2 and obtain the binarized versions of FSn , denoting them as BSn .

After this step, we take the coordinates of the remaining pixels containing 1’s and find

their centroid, and measure the Euclidean distance of the centroids across different frames.

This is done so that we find the two frames that exhibit the maximum range of motion

shown by the mitral valve, as the two frames with the farthest centroids will correspond to

the frames where the mitral valve leaflets are fully open and closed. We assume the two
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frames to be BSx and BSy . After finding these two frames, they are combined, along with

the previously subtracted background. The final combined image is essentially Bx+By. We

label this combined image as C ∈ Rw×h. We consider the background subtracted version

of this to be CS. Figure 7.1 shows three images, where (a), (b) and (c) would be Bx, By and

C respectively. Note that C allows us to observe a closed boundary around the left atrium,

while even (a) is unable to do so, since the involuntary movement of the heart makes the

interatrial septum to be out of the viewing plane. To reiterate, Bx is the binarized version

of Fx, and BSx is the binarized version of FSx . The presence of S signifies the presence of

background subtraction.

    (a)           (b)      (c) 

 

Figure 7.1: Two frames of a heart’s ultrasound video after binarizing, (a) and (b) are the
two frames whose centroids are farthest from each other, (c) is obtained by combining the
two, i.e. Bx + By

7.2 Contour and Atrial Centroid Estimation

Next, we design an unsupervised approach which determines the left atrium’s bound-

ary automatically without human intervention. Due to the severe noise expected from

echocardiograms, it is possible that the muscles and other tissues making up the boundary

of the left atrium might not be clearly defined in every frame. This is particularly problem-
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atic with the thinness of the interatrial septum, the wall between the two atria, which can be

normally as thin as ≤1mm. Because of this, a recursive loop is established to find a closed

contour surrounding the left atrium.

We take the combined image Fx+Fy and perform Otsu’s thresholding on it, with and

without background subtraction. This is because in usual cases, the mitral valve is thinner

compared to the muscles surrounding the left atrium, necessitating a lower threshold for

the background subtracted image, as that contains little else but the mitral valve. Thus,

we would obtain two thresholds, for the image with background (Fx + Fy) and without

background (FSx + FSy ), namely l1 and l2 respectively. Then, with the simple rationale that

the left atrium will be situated at the bottom right corner in the apical 4 chamber view, we

observe how many closed boundaries exist inside the bottom right corner of the image. As

no chambers exist besides the left atrium in the image’s bottom right corner, any closed

boundaries besides it will be formed by small noise artifacts. Thus, if a closed boundary

exists that is adequately large, it would be sufficient to consider that as the left atrium. For

our experiments, we consider a boundary that contains pixels more than 10% (parameter p)

of the box’s length and height to be adequately large. This particular value was chosen on

a trial-and-error basis. In other words, bx and by are the pixel lengths of the bottom right

corner of the image, meaning bx = 0.5× w and by = 0.5× h.

If, however, we are unable to find a closed boundary that is large enough, it is safe

to presume that the Otsu’s threholds obtained were too large to create the boundary around

the atrium. So, we implement a recursive loop, where the values of l1 and l2 are incre-

mentally decreased by a small step size c until a closed boundary is obtained. Note that

with the lowering of the threshold, more and more noise will be added to the image, but

they will generally be small specks, creating closed boundaries far lower than the given

10% minimum. When a value is obtained that creates the desired boundary, the centroid is

calculated from it. Algorithm 1 shows the recursive loop algorithm at work. The method
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used for finding closed boundaries was a combination of the Moore-Tracing algorithm,

with Jacob’s stopping criterion [40].

Algorithm 2 Recursive Estimation of the Closed Boundary of the Left Atrium.
1: Initialize values l1, l2 from binarizing matrices Fx+Fy and FSx+FSy . Set step size c, percentage

threshold p. Set box to be bottom right corner of image, input box length bx and height by.

Coordinate of top left corner of box is {cx,cy}.

2: for s1 = 0, 1, · · · do

3: Set l1 = l1 − c

4: for s1 = 0, 1, · · · do

5: Set l2 = l2 − c

6: Use updated l1 and l2 to obtain new C := Bx + By and CS := BSx + BSy .

7: Calculate number of closed boundaries NB in C + CS.

8: for i = 1, · · · , NB do

9: Set maximum and minimum coordinates along both axes to be xmax, ymax, xmin and

ymin respectively.

10: If xmax − xmin ≥ p × bx, ymax − ymin ≥ p × by, xmin ≥ cx and ymax ≤ cy end

update. Otherwise continue.

11: end for

12: end for

13: If condition in Step 6 is still not met, reinitialize l2.

14: end for

15: Calculate centroid of obtained closed boundary.

As we can see, the closed boundary is obtained once four conditions are met. The

first two are to ensure that the closed boundary is large enough, the latter two ensure that

the boundary is within the box. It should be noted also that, in our experiments, it has
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been observed that due to involuntary movement of the heart, the atrium has a possibility

of moving beyond this box. Thus for added safety, the box is taken to be slightly larger,

taking 60% of the pixels on each dimension instead of 50%. Also, we set p = 0.1 and

c = 0.001 in our experiments.

Figure 7.2: Binarized version of the combined frame, after finding a large contour (green)
within the box defined in the bottom right corner of the image.

Figure 7.2 depicts the given algorithm finding the correct closed boundary around

the left atrium, which is within the automatically generated box in the bottom right corner,

where the left atrium always resides.

7.3 Creating Prongs

After finding the centroid of the closed boundary, in the apical 4 chamber view, the

mitral valve leaflets will always be above the centroid. Now that the left atrium’s location is

known, we can safely presume that taking a group of prongs protruding from the centroid

in the upward direction will meet the mitral valve leaflets. These prongs should form a cone

within the width of the mitral valve. The length of these prongs should be long enough to
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ensure that even if the shrinking of the left ventricle during the diastolic phase causes the

mitral valve to move farther away from the atrium’s centroid, it will still be long enough to

meet the valves. The advantage to keep this range as short as possible is that, longer prongs

need to be created using a higher number of points, affecting processing speeds. To this

effect, the length of the prongs, as well as the density of points defining these prongs will

depend on the size of the estimated contour of the left atrium. We have defined the length

of the prongs as a percentage of the height of the contour around the left atrium, in other

words, ymax− ymin once the algorithm is complete. Thus, the value lP = 25, means it is to

be 25% of ymax − ymin. The cone is set to span 40◦ above the centroid. Figure 7.3 shows

the prongs being generated. We have chosen the number of prongs to be 5.

Figure 7.3: 5 prongs centered at the atrium boundary centroid and spanning 40◦.

7.4 Estimating Movement of Mitral Valve

The penultimate section of the proposed method is to estimate whether the mitral

valve is open or not. If the mitral valve is closed, then the prongs protruding from the
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centroid of the left atrium will not only touch the mitral valve leaflets, but since the leaflets

will be more or less horizontal, the points where the prongs will meet the mitral valve

would be close to each other. This means that their coordinates will have little standard

deviation σ among each other. Alternatively, if the mitral valve is open, then the prongs

would be touching the valve at points more distant from each other, or touching nothing

at all. This will cause the points to have a much higher σ among them. Therefore, if a

threshold is determined where the value of σ of the points in a particular frame is less than

that threshold, we can label the frame’s mitral valve to be ‘closed’, and the frame with a σ

value above the threshold to be ‘open’. As the threshold can depend on key factors like the

size of the the left atrium, the amount of involuntary movement in the heart, the size of the

opening of the mitral valve during the systole phase, the angle of the viewing plane due to

placement of the probe, this threshold can vary greatly depending on the patient. Thus, we

developed a method to determine the threshold in an unsupervised manner.

Depending on the echocardiogram video, no matter what the values of the σ might

be, it will always be the case that closed valves will have a much smaller value compared

to valves that are open. So if the values of σ across various frames are sorted in ascending

order, the threshold is chosen to be the value just before the largest shift in the value of σ.

Figure 7.4 shows the obtained values of σ for the video whose frames were used in

Figs. 7.1, 7.2 & 7.3. As we can see, the value of σ just before the largest shift across the

frames is 15.04 in the 35th frame, so anything equal to or below this threshold will signify

a ‘closed’ valve, and anything above it will be ‘open’.

7.5 Disease Estimation

Now that estimates are done in each frame of whether the mitral valve is open or

closed, we use it to estimate whether the heart whose ultrasound video is being observed
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Figure 7.4: Coordinate standard deviation in a configuration involving 5 prongs within a
40 degree cone from the centroid

is healthy or diseased. We would consider a healthy heart to have an adequate number

of frames with ‘open’ and ‘closed’ states, as well as an adequate number of consecutive

frames having one state at a time. There are three possible scenarios being considered for

the heart’s state:

1) Too few consecutive frames switch between ‘open’ and ‘closed’ states multiple

times. This would imply diseases like tachycardia, arrhythmia, and any disease causing

abnormal heart rates [38].

2) Too many frames in the ‘closed’ state. This would indicate diseases where the

mitral valve leaflets have some form of blockage preventing the valve to open properly,

such as mitral stenosis [37].

3) Too many frames in the ‘open’ state. This would point to diseases where the

mitral valve leaflets lack the ability to close fully during the diastole phase, such as mitral

prolapse [41].
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For these effects, three thresholds are put in place. The first threshold measures how

often states change twice in 3 consecutive frames. Instead of giving a fixed number for

this, we set it as 5% of the number of frames of a given video, as the videos used have

significantly different numbers of frames. The second and third threshold is set as 0.85,

meaning that if more than 85% of the frames are either ‘open’ or ‘closed’, the heart will be

classified as diseased. These thresholds are obtained on a trial-and-error basis, as will be

explained in the following section.

7.6 Numerical Results

For our numerical tests, 62 samples were obtained from 59 patients. The videos

were obtained online from YouTube, as well as some taken from tests conducted under a

local cardiology clinic named Cardiology Partners in Mansfield, Texas. The videos had 42

healthy and 20 diseased hearts, with diseases encompassing prolapse, stenosis, endocardi-

tis, fibrillation, tachycardia, hypertrophy, mitral calcification, to name a few. The presence

of extreme noise present in ultrasound videos was exacerbated to some extent by the lossy

compression technique used in storing YouTube videos, which made accurate estimations

even more difficult.

In order to test the efficacy of our proposed method, it was compared with two other

methods, [43] and [44]. [44] used graph cuts with a lower rank approximation of a matrix

containing the pixel information of the video, to find the faster moving pixels, which would

contain the mitral valve as it was presumed that all other parts of the heart would not move

as fast. As in the original paper, the frames were cropped to contain only the left chambers,

the same was done with our data when applying this method. To apply this method, we

utilized the graph cut method in [45–48]. This method will be referred to as LRRGC

(Low-Rank Representation Graph Cuts). As the scheme did not classify as to whether the
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valve was open or not, a manual feature was added, which would observe the span of the

area tracked by the algorithm, and see how it is spread out. A valve that is horizontal is

likely to be closed, while being vertical would be open.

The method in [43] does not work in an unsupervised manner, instead it relies on one

supervised part. The coordinates of the initial point are hand-picked by the user, which is

the point where the anterior mitral leaflet connects with the wall of the atrium. The anterior

mitral leaflet is the larger of the two leaflets that make up the mitral valve. After that,

estimation of the leaflet is unsupervised. This method will be referred to as the VM-Mode.

One thing to note is that the method in [43] worked with the parasternal long axis

view, where the mitral leaflet’s movements are horizontal. However, our proposed method

works with the apical 4 chamber view, where the mitral valve’s movements are vertical. To

accomodate this, the apical 4 chamber videos were rotated to fit the perspective of the views

that [43] is accustomed to. As a form of compensation, in comparing the performances of

our proposed method with [43], the comparative method has been given a major advantage.

As the initial point has to be selected carefully, we have designed a scheme where the

method will not only take the given initial point, but it will consider the points in a box

around the selected point. The size of this box will be 10% of the length of the frame

across both dimensions, and will have 10 equidistant points on each dimension. In other

words, instead of using only one point, the method will use 100 points from a box of

size 0.1 ∗ w × 0.1 ∗ h around the given point, and so 100 iterations of the method will

be taken. Among these, the iteration with the highest accuracy will be chosen as the ‘true’

initialization point. Figure 7.5 shows the difference between taking 1 point only, and taking

a box of points around the given point.

Table 7.1 shows the comparison among the four methods discussed. The method

used to determine accuracy measures described in Sec. 7.5 were used on both methods to

obtain performance results. The figures of merit to use were i) the number of frames cor-
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Figure 7.5: An ultrasound image with one initialization point (left) and 100 points (right)

rectly classified as open or closed, ii) the number of videos correctly classified as healthy

or diseased, and iii) the time taken to obtain these results. The overall % of correct classi-

fication of frames calculates the percentage of correct frames across all the videos, while

the mean % calculates the percentage of correct classification of each video separately, then

takes the average of those values. The times per sample and frame, were obtained by simply

taking the total time to run the algorithm for all 62 samples, and then divide by the number

of samples (62), and the total number of frames across all videos respectively. The method

with better results for each parameter is highlighted in bold. As we can observe, despite

the advantage given to [43], our novel method was still performing better in every measure,

despite being fully unsupervised as well. In order to provide an idea of the severity of the

advantage given to [43], the performance of the VM-Mode without the advantage is also

shown. Clearly, the improvement with the advantage is minimal. Furthermore, the number

of classified diseased hearts did not improve at all.

On the other hand, for LRRGC, the issue was that due to a number of the hearts hav-

ing significant involuntary movement, parts like the interatrial septum were also moving

too fast to be considered as part of the background. This led to the scheme erroneously
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segmenting these parts as belonging to the mitral valve. Because of this, even if the valve

was closed, it would be observed as open. As this caused a significant impact in the mis-

classification of the frames, it also caused most of the frames to be estimated as being in

the ‘closed’ state, causing a lower accuracy in frames, and it also meant that many healthy

hearts were misclassified as diseased. Consequently, it also caused a higher rate of videos

that were actually diseased, to be coincidentally correctly classified. However, due to the

complexity of the scheme, as well as dealing with extremely large arrays containing pixel

information of an entire video, this came at great computation cost, causing much higher

runtimes.

We have also added the precision, recall and f1 square values of the methods. Pre-

cision is the ratio of true positives (correctly classifying healthy hearts) and the sum of

true positives with false positives (misclassifying diseased hearts as healthy). On the other

hand, recall is the ratio of true positives, and the sum of true positives with false nega-

tives(misclassifying healthy hearts as diseased). The f1 score is basically 2 precision×recall
(precision+recall)

.

We can see that the proposed method outperforms all the other methods, except for in Re-

call, which is understandable as the VM-Mode was unable to classify any heart as diseased,

giving the number of false negatives to be zero, and thus making the ratio equal to 1.
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Test Parameters Proposed
Method

VM -
Mode (with
advantage)

VM - Mode
(without ad-
vantage)

LRRGC

% of Correct Classification
(All)

83.87 64.71 63.27 32.26

% of Correct Classification
(Diseased)

85.00 0 0 95

Mean Time(s) per Sample 2.11 2.63 2.81 39.58

Mean Time(s) per Frame 0.03 0.04 0.04 0.61

Mean % of Correct Frame
Classification

62.08 32.69 30.17 47.91

Overall % of Correct
Frame Classification

59.90 33.62 31.22 46.89

Precision 0.92 0.65 0.64 0.50

Recall 0.83 1.00 1.00 0.02

F1 Score 0.88 0.79 0.78 0.05

Table 7.1: Performance Comparison between Proposed method, VM-Mode [43] and LR-
RGC [44].
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CHAPTER 8

CONCLUSION

In this work, effective kernel mapping maximized the information extracted from

hyperspectral pixels to achieve highly accurate clustering performances in an unsuper-

vised setting, even being robust under the crippling handicap of having dead pixels which

severely impacted competitive methods. For mixed pixels, the unmixing performance was

achieved with high accuracy that outperforms existing schemes, and also tackles significant

challenges such as estimating the number of endmembers, dealing with extreme noise and

unresponsive pixels. The utilization of spatial information is achieved effectively by imple-

menting weighting averaging that measures the RBF distance, in other words the similarity

in the data in the kernel space. This is effective due to exploiting the property of materi-

als present in these hyperspectral images exhibiting high intraclass correlations, and low

interclass correlations in the RBF kernel space. The use of the kernel covariance matrix

in the datasets to measure reconstruction error in lower rank equivalent matrices helped to

estimate the number of endmembers with high accuracy. The ability to choose between

three major unmixing models, and the unique ability to incorporate higher degree cross-

products in estimating the nonlinear interactions among the endmembers with the ease of

only two hyperparameters aided greatly in the versatility of the novel autoencoder struc-

ture. The relationship among the data in the images being far more informative in the RBF

space was further advantageous in estimating the endmember vectors and abundance val-

ues, which was evident in the numerical results when the proposed methods significantly

outperformed comparative methods in very low SNR values.
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The echocardiography-based heart disease estimation was highly unique, in that con-

ventional methods went so far as to observe the movement of the mitral valve, but to ex-

tract features in order to provide a decision on the health of the heart was rarely done. The

data collected was also unique in that conventional methods would gather data with the

specific intent of implementation of their algorithm, which greatly lowers difficulty since

it eliminates factors such as the subjectivity in the technician’s angle of application of the

ultrasound probe during data acquisition, and the particular conditions of the patients them-

selves. Our approach in gathering data from a very wide variety of sources ensured that the

proposed novel method will exhibit accurate diagnosis performance in any adverse setting.

8.1 Future Directions

There are some aspects that have scope for improvement and further development.

The approach for estimation of the number of endmembers in Chapter 6 is effective because

it observes a range of values for the βc variable in order to find the most informative kernel

covariance matrix for that purpose, but there is a tradeoff here. If the range of values is

sufficiently wide, it can perform with far better accuracy, with far more robustness w.r.t. to

the diversity of the datasets being applied. However, a wider range can significantly impact

the computational complexity in that the calculation of the kernel covariance matrix is an

intensive process. Finding an approach to achieve a wider range without increasing the

computational time would be one of the problems to tackle in future.

121



REFERENCES

[1] M. F. Baumgardner, L. L. Biehl, and D. A. Landgrebe, (2015). 220 Band AVIRIS Hy-

perspectral Image Data Set: June 12, 1992 Indian Pine Test Site 3. Purdue University

Research Repository.

[2] G. Camps-Valls, T. V. B. Marsheva, and D. Zhou, “Semi-supervised Graph-based Hy-

perspectral Image Classification,” IEEE Transactions on Geoscience and Remote Sens-

ing, vol. 45, no. 10, pp. 3044–3054, 2007.

[3] A. Plaza, J. A. Benediktsson, J. W. Boardman, J. Brazile, L. Bruzzone, G. Camps-

Valls, J. Chanussot, M. Fauvel, P. Gamba, A. Gualtieri, M. Marconcini, J. C. Tilton,

and G. Trianni,“Recent Advances in Techniques for Hyperspectral Image Processing,”

Remote Sensing of Environment, vol. 113,pp. S110-S122, 2009.

[4] Y. Tarabalka, J. Benediktsson, and J. Chanussot, “Spectral-spatial Classification of Hy-

perspectral Imagery Based on Partitional Clustering Techniques,” IEEE Transactions

on Geoscience and Remote Sensing, vol. 47, no. 8,pp. 2973–2987, 2009.

[5] A. Martinez-Uso, F. Pla, J. Martinez Sotoza, P. Garcia-Sevilla, “Clustering-based Hy-

perspectral Band Selection using Information Measures,” IEEE Transactions on Geo-

science and Remote Sensing, vol. 45, no. 12, pp. 4158-4171, 2007.

[6] G. Camps-Valls and L. Bruzzone, “Kernel-based Methods for Hyperspectral Image

Classification,” IEEE Transactions on Geoscience and Remote Sensing, vol. 43, no. 6,

pp. 1351–1362, 2005.

[7] J. Li, P. R. Marpu, A. Plaza, J. M. Bioucas-Dias and J. A. Benediktsson, “Generalized

Composite Kernel Framework for Hyperspectral Image Classification,” IEEE Transac-

tions on Geoscience and Remote Sensing, vol. 51, no. 9, pp. 4816–4829, Sep. 2013.

122



[8] G. C-Valls and L. Bruzzone, “Kernel-Based Methods for Hyperspectral Image Classifi-

cation,” IEEE Tans. on Geoscience and Remote Sensing, vol. 43, no. 6, pp. 1351–1362,

June 2005.

[9] C. McCann, K. S. Repasky, M. Morin, R. L. Lawrence, and S. Powell,“Novel His-

togram Based Unsupervised Classification Technique to Determine Natural Classes

From Biophysically Relevant Fit Parameters to Hyperspectral Data,” IEEE Journal of

Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Early Ac-

cess Article, 2017.

[10] C. Cariou and K. Chehdi, “Unsupervised Nearest Neighbors Clustering with Applica-

tion to Hyperspectral Images,” IEEE Journal of Selected Topics in Signal Processing,

vol. 9, no. 6, pp. 1105–1116, 2015.

[11] J. M. P. Nascimento and J. M. B. Dias,“Vertex component analysis: a fast algorithm

to unmix hyperspectral data,” IEEE Transactions on Geoscience and Remote Sensing,

vol. 43, no. 4, pp. 898–910, April 2005.

[12] J. Sigurdsson, M. O. Ulfarsson and J. R. Sveinsson, “Endmember constrained semi-

supervised hyperspectral unmixing,” 6th Workshop on Hyperspectral Image and Sig-

nal Processing: Evolution in Remote Sensing (WHISPERS), Lausanne, pp. 1–4, 2014.

[13] M. D. Iordache, A. Plaza and J. Bioucas-Dias, “On the use of spectral libraries to per-

form sparse unmixing of hyperspectral data,” 2nd Workshop on Hyperspectral Image

and Signal Processing: Evolution in Remote Sensing, Reykjavik, pp. 1–4, 2010.

[14] R. Zhu, M. Dong, and J.-H. Xue, “Spectral nonlocal restoration of hyperspectral im-

ages with low-rank property,” IEEE Journal of Sel. Topics in Applied Earth Observa-

tions and Remote Sensing, vol. 8, no. 6, pp. 3062–3067, June 2015.

[15] J. Chen and I. D. Schizas, ”Online Distributed Sparsity-Aware Canonical Correlation

Analysis,” IEEE Transactions on Signal Processing, vol. 64, no. 3, pp. 688–703, Feb.

2016.

123



[16] D. R. Brillinger, Time Series: Data Analysis and Theory. Expanded Edition, Holden

Day, 1981.

[17] B. Schölkopf and A. J. Smola, Learning with Kernels. The MIT Press, Cambridge,

Massachusetts, 2000.

[18] D. Bertsekas, Nonlinear programming. Belmont: Athena scientific, 1999.

[19] N. Keshava and J. F. Mustard, ”Spectral unmixing,” IEEE Signal Processing Maga-

zine, vol. 19, no. 1, pp. 44-57, Jan 2002.

[20] T. W. Ray and B. C. Murray, “Nonlinear spectral mixing in desert vegetation,” Remote

Sens. Environ., vol. 55, no. 1, pp. 59–64, Jan. 1996.

[21] W. Fan, B. Hu, J. Miller, and M. Li, “Comparative study between a new nonlinear

model and common linear model for analysing laboratory simulated-forest hyperspec-

tral data,” Remote Sens. Environ., vol. 30, no. 11, pp. 2951–2962, Jun. 2009.

[22] A. Malhotra, K. T. Shahid and I. D. Schizas, ”Unsupervised Kernel Learning for Cor-

relation Based Clustering,” Asilomar Conference on Signals, Systems and Computers

(ACSSC 2018), Pacific Grove, CA, 2018, pp. 2007-2011.

[23] D. P. Bertsekas, ”Penalty and augmented lagrangian methods” in Nonlinear program-

ming, 2nd ed. Belmont: Athena scientific, U.S.A., 1999, pp 397-416.

[24] P. Tseng, “Convergence of a block coordinate descent method for nondifferentiable

minimization,” J. Opt. Theory Appl., vol. 109, no. 3, pp.

[25] A. Malhotra, K. T. Shahid, I. D. Schizas and S. Tjuatja, ”Fault tolerant unsupervised

kernel-based information clustering in hyperspectral images,” 2017 IEEE International

Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, 2017, pp.

2191-2194.

[26] C. Zhao, G. Zhao and X. Jia, ”Hyperspectral Image Unmixing Based on Fast Kernel

Archetypal Analysis,” in IEEE Journal of Selected Topics in Applied Earth Observa-

tions and Remote Sensing, vol. 10, no. 1, pp. 331-346, Jan. 2017.

124



[27] M. Mørup and L. K. Hansen (2012). “Archetypal analysis for machine learning and

data mining,“ Neurocomputing, vol. 80, no. 15, pp. 54–63, Mar. 2012.

[28] S. Khazai, A. Safari, B. Mojaradi, and S. Homayouni, “Improving the SVDD ap-

proach to hyperspectral image classification,” IEEE Trans. Geosci. Remote Sens., vol.

9, pp. 594–598, Jul. 2012

[29] Y. Altmann, A. Halimi, N. Dobigeon and J. Y. Tourneret, ”Supervised nonlinear spec-

tral unmixing using a postnonlinear mixing model for hyperspectral imagery,” IEEE

Transactions on Image Processing, vol. 21, no. 6, pp. 3017-3025, June 2012.

[30] R. Heylen, P. Scheunders, A. Rangarajan and P. Gader, ”Nonlinear unmixing by us-

ing different metrics in a linear unmixing chain,” IEEE Journal of Selected Topics in

Applied Earth Observations and Remote Sensing, vol. 8, no. 6, pp. 2655-2664, June

2015.

[31] M. Pharr,W. Jakob, and G. Humphreys. Physically based rendering: From theory to

implementation. Morgan Kaufmann, 2016.

[32] L. Tits, B. Somers, J. Stuckens and P. Coppin, ”Validating nonlinear mixing models:

Benchmark datasets from vegetated areas,” in 2014 6th Workshop on Hyperspectral

Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Lausanne,

2014, pp. 1-4.

[33] Cuprite images: [Online] Available: http://lesun.weebly.com/hyperspectral-data-

set.html

[34] VCA Matlab® Script: [Online] Available: http://www.lx.it.pt/ ~bioucas /code.htm

[35] W. Wang and H. Qi, “Unsupervised nonlinear unmixing of hyperspectral images us-

ing sparsity constrained probabilistic latent semantic analysis,” 2013 Workshop on Hy-

perspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS),

Gainesville, FL, pp. 1–4, 2013.

125



[36] E.P. Widmaier, H. Raff, and K.T. Strang,”Cardiovascular Physiology”, in Vander’s

Human Physiology: The Mechanisms of Body Function, 13th edition, McGraw Hill

Education, 2014, ch. 12, pp. 378.

[37] B. A. Carabello, ”Modern Management of Mitral Stenosis.”, in Circulation, vol. 112,

issue 3, pp. 432-437, 2005.

[38] E. D. Agabegi, and S. S. Agabegi, ”Chap. 1: Diseases of the Cardiovascular Sys-

tem/Section: Valvular Heart Disease”, in Step-up to medicine, Step-up series, Philadel-

phia: Lippincott Williams & Wilkins, 2008, ch. 1.

[39] N. Otsu, ”A Threshold Selection Method from Gray-Level Histograms,” in IEEE

Transactions on Systems, Man, and Cybernetics, vol. 9, no. 1, pp. 62-66, Jan. 1979.

[40] A. Ghuneim, ”Contour Tracing”, 2015, [Online] Available:

http://www.imageprocessingplace.com/downloads V3/root downloads/ tutori-

als/contour tracing Abeer George Ghuneim/moore.html

[41] E. Hayek, C. N. Gring, and B. P. Griffin, ”Mitral Valve Prolapse.”, in The Lancet, vol.

365, issue 9458, pp. 507-518, 2005.

[42] D. Chu, L. Liao, M. Ng, and X. Zhang, “Sparse kernel canonical correlation analysis,”

Proc. of Intl. Multiconference of Engineers and Computer Scientists, Hong Kong, 2013.

[43] M. S. Sultan, N. Martins, E. Costa, D. Veiga, M. J. Ferreira, S. Mattos and M. T. Coim-

bra, ”Virtual M-Mode for Echocardiography: A New Approach for the Segmentation

of the Anterior Mitral Leaflet,” in IEEE Journal of Biomedical and Health Informatics,

vol. 23, no. 1, pp. 305-313, Jan. 2019.

[44] X. Zhou, C. Yang and W. Yu, ”Automatic Mitral Leaflet Tracking in Echocardiog-

raphy by Outlier Detection in the Low-Rank Representation,” in IEEE Conference on

Computer Vision and Pattern Recognition, Washington, DC, USA, 2012, pp. 972–979.

126



[45] Y. Boykov, O. Veksler and R. Zabih, ”Efficient Approximate Energy Minimization via

Graph Cuts”, in IEEE transactions on PAMI, vol. 20, no. 12, p. 1222-1239, November

2001.

[46] V. Kolmogorov and R. Zabih, ”What Energy Functions can be Minimized via Graph

Cuts?”, in IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI),

vol. 26, no. 2, pp. 147-159, February 2004.

[47] Y. Boykov and V. Kolmogorov, ”An Experimental Comparison of Min-Cut/Max-Flow

Algorithms for Energy Minimization in Vision”, in IEEE Transactions on Pattern Anal-

ysis and Machine Intelligence (PAMI), vol. 26, no. 9, pp. 1124-1137, September 2004.

[48] S. Bagon, ”Matlab Wrapper for Graph Cut”, December 2006, [Online] Available:

https://github.com/shaibagon/GCMex.

[49] L. Yu, Y. Guo, Y. Wang, J. Yu and P. Chen, ”Segmentation of Fetal Left Ventricle in

Echocardiographic Sequences Based on Dynamic Convolutional Neural Networks,” in

IEEE Transactions on Biomedical Engineering, vol. 64, no. 8, pp. 1886-1895, Aug.

2017.

[50] D. Bibicu and L. Moraru, ”Cardiac Cycle Phase Estimation in 2-D Echocardiographic

Images Using an Artificial Neural Network,” in IEEE Transactions on Biomedical En-

gineering, vol. 60, no. 5, pp. 1273-1279, May 2013.

[51] Hyperspectral Images. Accessed: Jun. 5, 2020. [Online]. Available:

http://www.ehu.eus/ccwintco/index.php?title= Hyperspectral Remote Sensing Scenes

[52] K. T. Shahid, A. Malhotra, I. D. Schizas, and S. Tjuatja, “Unsupervised kernel corre-

lations based hyperspectral clustering with missing pixels”, IEEE J. Sel. Topics Appl.

Earth Observ. Remote Sens., vol. 11, no. 6, pp. 1799–1810, Jun. 2018

[53] M. C. Torres-Madronero and M. Velez-Reyes, “Integrating spatial information in un-

supervised unmixing of hyperspectral imagery using multiscale representation”, IEEE

127



J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 6, pp. 1985–1993, Jun.

2014.

[54] L. Miao and H. Qi, “Endmember extraction from highly mixed data using minimum

volume constrained nonnegative matrix factorization”, IEEE Trans. Geosci. Remote

Sens., vol. 45, no. 3, pp. 765–777, Mar. 2007.

[55] K. T. Shahid and I. D. Schizas, “Unsupervised hyperspectral unmixing via kernel-

ized correlations”, in Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS), Valencia,

Spain, Jul. 2018, pp. 6388–6391.

[56] G. A. Licciardi and F. Del Frate, ”Pixel Unmixing in Hyperspectral Data by Means

of Neural Networks”, IEEE Transactions on Geoscience and Remote Sensing, vol. 49,

no. 11, pp. 4163-4172, 2011.

[57] X. Feng, H. Li, J. Li, Q. Du, A. Plaza and W. J. Emery, ”Hyperspectral Unmixing

Using Sparsity-Constrained Deep Nonnegative Matrix Factorization With Total Vari-

ation”, IEEE Transactions on Geoscience and Remote Sensing, vol. 56, no. 10, pp.

6245-6257, 2018.

[58] S. Ozkan, B. Kaya and G. B. Akar, ”EndNet: Sparse AutoEncoder Network for End-

member Extraction and Hyperspectral Unmixing,” IEEE Transactions on Geoscience

and Remote Sensing, vol. 57, no. 1, pp. 482-496, 2019.

[59] B. Hapke, “Bidirectional reflectance spectroscopy. 1. Theory”, J. Geophys. Res., vol.

86, pp. 3039–3054, 1981.

[60] N. Dobigeon, L. Tits, B. Somers, Y. Altmann, and P. Coppin, “A comparison of non-

linear mixing models for vegetated areas using simulated and real hyperspectral data”,

IEEE J. Sel. Topics Appl. Earth Observat. Remote Sens., vol. 7, no. 6, pp. 1869–1878,

Jun. 2014.

128



[61] K. T. Shahid, and I. D. Schizas, ”Unsupervised Kernelized Correlation-Based Hyper-

spectral Unmixing With Missing Pixels”, IEEE Trans. Geosci. Remote Sens., vol. 57,

no. 7, pp. 4509-4520, Feb. 2019.

[62] B. Palsson, J. Sigurdsson, J.R. Sveinsson and M.O. Ulfarsson, ”Hyperspectral un-

mixing using a neural network autoencoder”, IEEE Access, vol. 6, pp.25646-25656,

2018.

[63] Y. Su, A. Marinoni, J. Li, J. Plaza, and P. Gamba, ”Stacked nonnegative sparse au-

toencoders for robust hyperspectral unmixing”, IEEE Geosci. Remote Sens. Lett., vol.

15, no. 9, pp. 1427-1431, Jun. 2018.

[64] R. A. Borsoi, T. Imbiriba, and J. C. M. Bermudez, ”Deep generative endmember

modeling: An application to unsupervised spectral unmixing”, IEEE Trans. Comput.

Imag., vol. 6, pp. 374-384, Oct. 2019.

[65] F. Khajehrayeni and H. Ghassemian, ”Hyperspectral unmixing using deep convolu-

tional autoencoders in a supervised scenario”, IEEE J. Sel. Topics Appl. Earth Observ.

Remote Sens., vol. 13, pp. 567-576, Feb. 2020.

[66] Y. Qian, F. Xiong, Q. Qian, and J. Zhou, ”Spectral Mixture Model Inspired Network

Architectures for Hyperspectral Unmixing”, IEEE Trans. Geosci. Remote Sens., pp

1-17, Apr. 2020

[67] A. Marinoni, J. Plaza, A. Plaza and P. Gamba, “Integrating multiple nonlinear estima-

tors into hyperspectral unmixing”, in Proc. 6th Workshop Hyperspectral Image Signal

Process., Evol. Remote Sens. (WHISPERS), Lausanne, Switzerland, Jun. 2014.

[68] B.-C. Kuo, H.-H. Ho, C.-H. Li, C.-C. Hung, and J.-S. Taur, “A kernel-based feature

selection method for SVM with RBF kernel for hyperspectral image classification”,

IEEE J. Sel. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 1, pp. 317–326,

Jan. 2014.

129



[69] S. Yang, H. Jin, M. Wang, Y. Ren, and L. Jiao, “Data-driven compressive sampling

and learning sparse coding for hyperspectral image classification”, IEEE Geo. Rem.

Sens. Lett., vol. 11, no. 2, pp. 479–483, 2014

[70] Y. Altmann, N. Dobigeon, S. McLaughlin, and J.-Y. Tourneret, “Nonlinear unmixing

of hyperspectral images using radial basis functions and orthogonal least squares”, in

Proc. IEEE Int. Conf. Geosci. Remote Sens. (IGARSS), Vancouver, Canada, Jul. 2011,

pp. 1151–1154.

[71] M. Wang, M. Zhao, J. Chen, and S. Rahardja, ”Nonlinear unmixing of hyperspectral

data via deep autoencoder networks”, IEEE Geosci. Remote Sens. Lett., vol. 16, no. 9,

pp. 1467-1471, Sep. 2019.

[72] R. Heylen and P. Scheunders, “A multilinear mixing model for nonlinear spectral

unmixing”, IEEE Trans. Geosci. Remote Sens., vol. 54, no. 1, pp. 240–251, Jan. 2016.

[73] X. Chen and L. Vierling, “Spectral mixture analysis of hyperspectral data acquired

using a tethered balloon”, Remote Sens. Environ., vol. 103, pp. 338–350, 2006.

[74] N. Raksuntorn and Q. Du, “Nonlinear spectral mixture analysis for hyperspectral im-

agery in an unknown environment”, IEEE Geosci. Remote Sens. Lett., vol. 7, no. 99,

pp. 836–840, 2010.

[75] Y. Altmann, N. Dobigeon, and J.-Y. Tourneret, “Unsupervised postnonlinear unmix-

ing of hyperspectral images using a Hamiltonian Monte Carlo algorithm”, IEEE Trans.

Image Process., vol. 23, no. 6, pp. 2663–2675, Jun. 2014.

[76] J. MacQueen, ”Some Methods for classification and Analysis of Multivariate Ob-

servations”, Proc. 5th Berkeley Symp. Math. Statist. Probability, Vol. 1, No. 14, pp.

281-297, 1967.

[77] Samson and Jasper Ridge Dataset. Accessed: Jul. 5, 2020. [Online]. Available:

https://rslab.ut.ac.ir/data

130



[78] D. P. Kingma and J. Ba. (Dec. 2014). “Adam: A method for stochastic optimization.”

[Online]. Available: https://arxiv.org/abs/1412.6980

[79] Nonlinear Hyperspectral Unmixing Autoencoder. [Online]. Avail-

able: https://github.com/KaziTShahid/Nonlinear-Hyperspectral-Unmixing-

Autoencoder/blob/master/autoencoder main.py

[80] Nonlinear Hyperspectral Unmixing Spatial Filters Autoencoder. [Online]. Available:

https://github.com/KaziTShahid/Nonlinear-Hyperspectral-Unmixing-Spatial-Filters-

Autoencoder/blob/master/autoencoder main.py

[81] F. Khajehrayeni and H. Ghassemian, “Hyperspectral unmixing using deep convolu-

tional autoencoders in a supervised scenario,” IEEE J. Sel. Topics Appl. Earth Observ.

Remote Sens., vol. 13, pp. 567–576, Feb. 2020

[82] B. Palsson, M. O. Ulfarsson, J. R. Sveinsson, ”Convolutional Autoencoder for Spec-

tral–Spatial Hyperspectral Unmixing”, IEEE Trans. Geosci. Remote Sens., vol. 59, no.

1, pp. 535-549, May 2020.

[83] A. Malhotra and I.D. Schizas. ”On unsupervised simultaneous kernel learning and

data clustering”, Pattern Recognition, vol. 108, no. 107518, Dec. 2020

[84] K. T. Shahid and I. D. Schizas, “Unsupervised Hyperspectral Unmixing Via Nonlinear

Autoencoders”, IEEE Trans. Geosci. Remote Sens., (Accepted)

[85] R. Heylen, M. Parente, and P. Scheunders, “Estimation of the number of endmembers

in a hyperspectral image via the hubness phenomenon,” IEEE Trans. Geosci. Remote

Sens., vol. 55, no. 4, pp. 2191–2200, Apr. 2017.

[86] X. Tao, T. Cui, A. Plaza, and P. Ren, “Simultaneously counting and extracting end-

members in a hyperspectral image based on divergent subsets,” IEEE Trans. Geosci.

Remote Sens., vol. 58, no. 12, pp. 8952–8966, Dec. 2020

131



[87] X. Zhang, Y. Sun, J. Zhang, P. Wu, and L. Jiao, “Hyperspectral unmixing via deep

convolutional neural networks,” IEEE Geosci. Remote Sens. Lett., vol. 15, no. 11, pp.

1755–1759, Nov. 2018

[88] K. T. Shahid and I. D. Schizas, “Unsupervised Mitral Valve Tracking for Disease

Detection in Echocardiogram Videos”, J. of Imaging, vol. 6, no. 9, pp. 93, Sep. 2020

[89] K. T. Shahid and I. D. Schizas, “Spatial-Aware Hyperspectral Nonlinear Unmixing

Autoencoder With Endmember Number Estimation”, IEEE Trans. Geosci. Remote

Sens., (Accepted)

132



BIOGRAPHICAL STATEMENT

Kazi Tanzeem Shahid has finished his B.Sc. in Electrical and Electronic Engineering

from Bangladesh University of Engineering and Technology in 2014. He has worked for

Synergic Improvement Solutions Pty Ltd from January 2015 to July 2015 as a Forex Trader,

and began his direct B.Sc.-to-Ph.D. program in the University of Texas at Arlington in Fall

2015. His research focuses on machine learning, unsupervised learning and artificial neural

networks.

133


