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Pose estimation using Deep Neural Networks (DNNs) has shown outstanding perfor-
mance in the recent years, due to the availability of powerful GPUs and larger train-
ing datasets. However, there are still many challenges due to the large variability of
human body appearances, lighting conditions, complex background, occlusions and
postures. Among all these peculiarities, partial occlusions, and overlapping body
poses often result in deviated pose predictions. These circumstances can result in
wrong and sometimes unrealistic results. The human mind can predict such poses
because of the underlying structural awareness of the geometry, of a human body. In
this thesis, we discuss an efficient training technique that helps us to correct struc-
turally implausible poses caused due to partial occlusions. We introduce a pose
discriminator which helps us to incorporate priors about the human-body’s struc-
ture, into our model. As shown in the experiments, using this pose discriminator

results in improved accuracy.
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Table 1: Table of Symbols and Acronyms

G Generator Network

D Discriminator Network

Lo Generator Loss

Lp Discriminator Loss

M Number of heatmaps (or poses)

N Number of stacks

1 Input image

) Ground truth heatmaps / label

9 Predicted heatmaps

E FExpected value

d; Normalized distance between the predicted and ground-truth location
of the i, body part

dfake 16 x 1 unit vector, containing 0 and 1

0 Normalized distance threshold

« Discriminator loss coefficient

MSE Mean Squared Error

PCK Percentage Correct Keypoints

DCNN Deep Convolutional Neural Network

GAN Generative Adversarial Network

DCGAN | Deep Convolutional Generative Adversarial Network

MPII Maz-Planck-Institut fir Informatik




Chapter 1

Introduction

Human pose estimation has an important impact on a wide range of applica-
tions from activity recognition, gaming, surveillance, animation to human computer
interactions. For human pose estimation, joint obstructions and overlapping body

poses result in deviated pose estimation.

Human vision can learn the variety and structural limits of a human body
from observations. Even under extreme occlusions, human mind can deduce the
possible poses. It is, however, very difficult to incorporate priors about the struc-
tural geometry of a human body into DCNNs, because DCNNs are most capable of
learning features. In, this thesis we discuss a novel learning approach which uses a
Discriminator to incorporate priors about the structure of a human-body into our

training model, or the Generator.

Having said that, in the recent years, there have been many approaches to
incorporate structure awareness while doing pose estimation. Like HRNet by sun et
al. [12] does it by maintaining high resolution of the input data, PGCN by bin et al.
[7] do it by modelling the structural relationships using the Graph Convolutional



Neural Networks and MSS-Net by lipeng et al. [6] fuses multiple scales of keypoint
heatmaps to determine the pose output. However, [12],[7] and [6] do achieve struc-
ture awareness but at the cost of making the model bulkier, or computationally
heavy. Our research focuses on an improvised learning method that helps us incor-
porating structure awareness into an existing pose network, without changing the

network architecture.

For our research, we have taken a Stacked Hourglass network [4], as our Gen-
erator. Hourglass Network has a multi-stage conv-deconv network architecture. It
focuses on contextual feature learning i.e., in matching body keypoints by combining
feature heatmaps across scales. The repeated bottom-up and top-down processing
within the hourglass modules can reliably extract posture features across scales and
viewing variabilities, they are very good in locating local features but they do not

effectively use the global relations between these features.

This thesis focuses on an adversarial learning method like Boundary aware
face-alignment algorithm, by wu et al. [2] and adversarial-posenet, by chen et al.
[1], which aims on improving the ezxisting deep learning algorithms involved in the
2D human pose estimation problem. It does not deal with changing the architecture
or parameters of the pose model in any way. Instead, it introduces a learning ap-
proach that exploits these extracted features from the pose model, by establishing

a structural dependency between those features.

Using a discriminator to predict the likelihood of the pose being real or fake,
we can instill the structural dependency of the human key joints into our model
(or generator). We do this by establishing global relations between the locally

extracted posture features by our pose model. To achieve such goals, the discrimi-



nator should be fed with sufficient information to perform classification, while the

generator should have the ability to extract complicated features in pose estimation.

1.1 Thesis Outline

The thesis is organized as follows:

Chapter 1 :: Introduction - Provides a general introduction to the problem
statement and proposed method.

Chapter 2 :: Related Work - Discusses a brief history of 2D Human Pose
Estimation and the challenges faced by them while dealing with occlusions in the
poses.

Chapter 3 :: Methodology - Talks about the proposed method.

Chapter 4 :: Datasets - Mentions the benchmark datasets used for the 2D
Human Pose Estimation

Chapter 5 :: Training and Experiment Settings - Explains the training and
experimental setup of our system.

Chapter 6 :: Experimental Results - Discusses the experimental results of the
proposed system.

Chapter 7 :: Ablation Study - Provides the Ablation study for the proposed
methodology.

Chapter 7 :: Conclusion - Concludes the work and discusses the scope for

future work



Chapter 2

Related Work

2.1 Human Pose Estimation

Human pose estimation is an active research topic for decades. Human pose
estimation refers to the process of inferring poses in an image. Essentially, it is
predicting the positions of a human body’s joints (also known as keypoints - elbows,
wrists, etc) in an image or a video. This problem is also sometimes referred to as the
localization of human joints. It’s also important to note that pose estimation has
various sub-tasks such as single pose estimation, estimating poses in an image with
many people, estimating poses in crowded places, and estimating poses in videos.
It can be performed in either 3D or 2D. Some common applications of Human Pose
estimation are: Activity Recognition, Augmented Reality, Animation, Gaming, and

many more.

Early traditional methods used to rely on hand-craft features, which formu-
late the problem of human keypoints estimation as a tree-structured or graphical
model problem. Many recent methods on human pose estimations use Deep Con-

volutional Networks to predict the keypoints of the human body in an image.



2.2 Literature Review

DeepPose by toshev et al. [9] began the shift from classic approaches to the
use of deep neural networks. Most of the recent pose estimation systems have univer-
sally adopted Convolutional Neural Networks as their main building block, largely
replacing hand-crafted features and graphical models; this strategy has yielded dras-

tic improvements on standard benchmarks.

The work by tompson et al. [10] adopted the heatmap representation of
human body keypoints to improve their localization during training. They used a
multi-resolution CNN architecture (coarse heatmap model) to implement a sliding

window detector to produce a coarse heatmap output.

Followed by the work of Tompson, came Convolutional Pose Machines by
shihen et al. [14]. This was an interesting work, Convolutional Pose Machines used
a sequential prediction framework to learn long range spatial relationships by using

larger receptive fields and they proved to work very well for Human Poses.
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Down the line, came the Stacked Hourglass Network, proposed by Newell et
al. [4]. This was a landmark paper that introduced a novel and intuitive architec-
ture and beat all previous methods. It’s called a Stacked hourglass network since
the network consists of series of downsampling and upsampling layers which looks

like an hourglass, and these are stacked together.

To understand Stacked Hourglass network, first we need to understand con-

volutional autoencoders.

Input image Reconstructed image

Latent Space
Representation

Figure 2.2: Convolutional Auto Encoders [15]

Convolutional autoencoders Fig. 2.2, are used to reduce the high-dimensional
image input into a lower dimensional state-space using downsampling layers, and
then try to reconstruct the input from this representation using upsampling layers.
Downsampling is called as encoding and upsampling is the decoding phase. By
reducing the number of dimensions, we force the model to learn how to keep only

meaningful information, from which the input is reconstructable.

The design of the hourglass is motivated by the need to capture information
at every scale. While local evidence is essential to identify features like neck or
hands, a final pose estimate requires a global context. The person’s orientation, the

arrangement of their limbs, and the relationships of adjacent joints are among the



many indications that are best recognized at different scales in the image.

Figure 2.3: Single Hourglass Module [4]

Fig 2.3 Illustrates a single "hourglass” module. Each box in the figure corre-
sponds to a residual module. The number of features is consistent across the whole

hourglass.

Figure 2.4: Stacked Hourglass Network [4]

Intermediate supervision is applied to the predictions of each hourglass stage.
The hourglass captures information at every scale. [4] This way, global and local in-

formation is captured efficiently and are used by the network to learn the predictions.

However, DCNNs are still limited in the capability of modeling human body’s

structural integrity. Existing methods rely on a brute-force approach, of increasing



the network depth to implicitly enrich the keypoint relationship modelling capability,
which makes them very good in locating local features but tends to ignore the global
relation between these features. This leads to implausible pose predictions in cases

involving partial occlusions and overlapping body poses.

Figure 2.5: Relevant example showing failure of DCNN dealing with heavy occlu-
sions

In the recent years, there have been some significant approaches to incorpo-
rate structure awareness while doing pose estimation. The use of graph convolutional
network by bin et al. [7] focuses on exploiting correlations between the local areas

of adjacent key points to refine the location of predicted keypoints.

Some works tend to increase the receptive field large enough for learning the
long-range spatial relationship [12] and [6], refining the process by doing interme-
diate supervision. Taking HRNet (High-Resolution Network) by sun et al. [12] for
example. Most of the previous papers went from a high to low to high resolution
representation. HRNet maintains a high-resolution representation throughout the
whole process and out performs all existing methods on keypoint detection.

Although approaches taken by [6],[12] and [7] focuses on structure awareness

of the human body, they do so either by increasing the resolution or by increasing
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the receptive field large enough for learning the long-range spatial relationship, in

both the cases the computational or memory-usage demands of the model increases

significantly which again is undesirable when you have processing constraints.

But then there are other works which introduced a novel approach to use

conditional GANs for instilling structural awareness into the DCNN pose model.
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Figure 2.7: Look at Boundary: A Boundary-Aware Face Alignment Algorithm [2]

Fig 2.7 is an overview of the Boundary-Aware Face Alignment framework



which is a facial landmark detection algorithm by wu et al. it uses a discriminator to
further improve the quality of boundary heatmaps generated by the generator (here

a stacked hourglass network) and lead to better landmark coordinates prediction.
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Figure 2.8: Adversarial PoseNet [1]

Adversarial Posenet [1] by chen et al. works on a similar approach. But they

use two discriminators to train their generator adversarially as shown in Fig. 2.8.

Generative adversarial networks (GANs) excel in generating natural images
such as human faces and indoor scenes. With the introduction by Goodfellow et
al. [16], the two-player minimax game allows unsupervised training of generative

models and avoids the blur effect of using variational autoencoders.

Radford et al. [17] introduce DCGAN, an all convolutional architecture
which is easier to train. They propose some elements to increase the model stability
such as eliminating the fully connected layer and employing batch normalization to

prevent from mode collapsing. DCGAN uses an effective network configuration to

10



make the training of GANs more feasible.

Due to the success of GANs on generating images, it also drew attention to
the field of supervised learning. The concept of conditional GAN [18] is introduced
for incorporating class information. Several methods combine the conditional GAN
loss and the L1 or L2 distance between generated data and ground-truth data. The
methods of [19], [20], and [21] use this solution to perform tasks of super-resolution,
image in-painting, and image translation. Also, the methods of [2] and [1] also dis-
cusses the use of conditional GANs for keypoint detection in facial alignment, and

pose estimation.

We have proposed a method which also focuses on improving structure aware-
ness by using conditional GANs. Our approach is very similar to that of [2] and
[1]. The detailed explanation is provided into the next chapter i.e. Chapter 3. The
benefit of using this method over other methods like [12], [6] or [8] is that we achieve

structural awareness into our model without making it computationally heavy.

11



Chapter 3

Methodology

3.1 Overview

Our model splits into two networks, the pose generator and the discrimina-
tor. The first network, pose generator, is a fully convolutional network with residual
blocks and a conv-deconv architecture, also known as stacked hourglass network. We

have used 4 stacks for our purpose unlike 8 stacks used by newell et al. [4].

The inputs to the generator G are RGB images, after feeding forward through
the generator network, we get a set of heatmaps that indicate the confidence score
at every location for each keypoint, corresponding to the 16 keypoints of the human
body specified in the MPII dataset [13]. The second network, discriminator D, has
the same architecture as the generator but it encodes the collective heatmap predic-
tions, generated by the Generator G, combined with the original RGB images and

decodes them into new set of heatmaps.

The set of new heatmaps is then used to discriminate the real heatmaps from

fake ones. The framework of our model is illustrated in Fig. 3.1.

12
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Pose Generator G Discriminator D
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Inputimage 7

Ground-truth Real

Heatmaps Heatmaps

Figure 3.1: The framework of our structure aware convolutional pose network. We
incorporate a Autoencoder Convolutional Network based pose estimator as the
generator (on the left) with a discriminator (on the right) that aims to discrimi-
nate whether the generated pose is reasonable or not by reconstructing the input
heatmaps. The generator and the discriminator have the same architecture.

3.2 Generator

The task of the generator G is to learn map the relations from an RGB image
to keypoint heatmaps. The DCNN architecture allows itself to learn contextual fea-
ture representation from the input images. Furthermore, the adversarial loss from
the discriminator is also combined with the mean-squared error between the gener-
ated heatmaps and the ground-truth heatmaps. This process helps the generator to
learn not only the local features and spatial dependencies, but also the priors of the

human body configurations.

3.2.1 Pose Gnerator Network Architecture

We have used the stacked hourglass architecture [4] as our pose generator

network. It is a fully convolutional network with residual modules as its building

13



blocks as shown in Fig 3.2. The network starts with an initial process of a 7 x
7 convolution with stride 2, followed by several residual modules and max-pooling
layers. The initial process reduces the resolution of the feature maps from 256 x 256
to 64 x 64 [4][22]. Then, a sequence of hourglass modules are stacked to predict the

keypoint heatmaps.

A single hourglass module is an encoder and decoder design, Fig. 2.2, to
extract the features at every scale. For human pose estimation, we need to explore
both the local evidence, such as a small region around the neck, and the relative
relationships between the joints. To maintain this information and to integrate
global and local context simultaneously, skip connections are required, and features
at each resolution can be better preserved [22]. A single hourglass module is shown

in Fig 3.2 ref [4], each box corresponds to a residual module.

Figure 3.2: Single Hourglass module, each box represents a residual module

14



3.2.2 Training the Pose Generator

Training the generator is done by back-propagating the loss L, which is the
loss Lyrsg from generator itself combined with the discriminator loss L4, from the
discriminator. The generator consists of 4 stacks of hourglass modules as shown in
Fig 3.1. The expected output for each hourglass module contains M heatmaps, each
of which is a 64 x 64 heatmap with a Gaussian centered at the ground-truth location
of the jy, pose-joint. The supervision is conducted at the end of each hourglass. The
Lyse can be expressed as.

] MM
Lyse = MZZH% — il ? (1)

n=1i=1
where y;; is the ground-truth heatmap of the j;, pose-joint at the iy, stack, and g;;
is the predicted heatmap. We calculate the MSE loss between them to impose the
generator to learn the features of the pose, as well as learn to localize the pose

keypoints.

In addition to the MSE loss described in Eq. (1), we add a discriminator loss,
which helps G to produce plausible poses. The discriminator loss Lp is explained
in later sections, ref Eq. (3) and Eq. (3.1).

Therefore, the training loss for the generator L is defined as follows.

Lo=Lysg+axLp (2)

where « is the hyperparameter to control the influence of the discriminator loss.

3.3 Discriminator

The purpose of the discriminator is to differentiate between the fake poses

(poses which do not satisfy the constraints of the human body joints) and real

15



poses. The inputs to the Discriminator are the generated heatmaps or the ground
truth heatmaps, combined or added together with the corresponding RGB image,

as shown in Fig. 3.3

RGB Image Predicted Heatmaps

N/

2

Figure 3.3: Discriminator input and output explained

Discriminator network architecture is same as of the generator network, we
have used a single stack hourglass architecture [4], described in the generator sec-
tion, as our discriminator network. The discriminator attempts to reconstruct a

new set of heatmaps.

3.3.1 Training the Discriminator

For each training image I, the discriminator will be forwarded with the gen-
erated and ground-truth heatmaps separately. The pose GAN is set in the condi-
tional manner. Unlike GANs which focuses on generative modelling, conditional
GANs (cGANSs) learn a conditional generative model [19]. The objective function

for the conditional discriminator network D is expressed as follows:
Lp = Ellog(D(y))] + Ellog(1 — |D(G(I)) — dakel)] (3)

Where, y is the ground truth pose heatmap combined with the original image I

and D(G(I)) gives the predicted heatmaps also combined with the corresponding

16



RGB image I as shown in Fig. 3.

In traditional GAN, the term d .. is usually kept as 0, but to achieve con-
vergence using the conditional GAN loss as prescribed by [2], we have taken d¢qke

as a 16 x 1 unit vector containing 0 and 1. d .. is calculated as follows.

1, if dj <é
dfake = (3.1)
0, ifd; =96
where 6, is the normalized distance threshold parameter and d; is the normalized

distance between the predicted and ground-truth location of the ji, body part.

As prescribed by [21], [2] and [1], conditional GANs perform better when
GAN objective is combined with a traditional loss, such as £y distance. For our
task, like [2] and [1], the generator will try to fool the discriminator but, at the
same time it will also learn to approximate ground-truth in an 5 manner as shown

in Eq. (3). Therefore, final mini-max objective function is presented as follows:

arg mGin maz La(I)+aLlp(G,D) (4)

3.4 Adversarial Training

Based on generative adversarial networks (GANs) [16] and conditional GANs
(cGANS) [19], our training scheme is supervised learning along with a two-player
mini-max game. As evident from Eq. (4), the generator aims to minimize Ly/sp
from Eq. (1), and the discriminator focusses on maximizing the Lp given in Eq.

(3). Algorithm 1 demonstrates the whole training process as the pseudo codes.

17



3.5 Algorithm

Algorithm 1: The training process of our method

input : Training images: I, the corresponding ground-truth heatmaps y;

while ¢ improves do

Forward G by § = G(I);

Compute gradient VG w.r.t. Eq. (1);

Forward D by §reqr = D(39), and optimize D by maximizing the first
term in Eq. (3);

Forward D by §tqke = D(G(I)), and optimize D by maximizing the

second term in Eq. (3);

Optimize G according to Eq. (2)

end

3.6 Hyperparameters a and ¢ mentioned in this chapter

Hyperparameters

Hyper- Value Description

parameters

« 2—(1)0 « is the hyperparameter to control the influence of the
discriminator loss.

1) 0.003 ¢ is the normalized distance threshold parameter and
d; is the normalized distance between the predicted
and ground-truth location of the i;;, body part

Table 3.1: Training hyperparameters o and ¢

Training hyperparameters is discussed in detail, in Chapter 5, training

and experimental settings.
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Chapter 4

Datasets

The two widely used benchmarks for 2D Human Pose Estimation are MPII
Human Pose [13], and extended Leeds Sports Poses (LSP) [23].

4.1 MPII Dataset

MPII Human Pose dataset is a benchmark dataset for 2D human pose es-
timation evaluation. The dataset includes 25K images containing 40K+ people
with annotated body joints. The images were methodically collected using an es-
tablished taxonomy of general human activities. The dataset covers 410 human

activities, where each image is provided with its activity label.

rist. R

Figure 4.1: Shows 16 key-joints present in the MPII Dataset [13]

19



4.2 Leeds Sports Pose (LSP) Dataset

The Leeds Sports Pose (LSP) dataset is widely used as the benchmark for
human pose estimation. The extended LSP dataset consists of 11,000 poses for
training and 1,000 for testing. Each image is annotated with 14 keypoint locations.
The images are gathered from Flickr and contain people who are doing sports such

as baseball, parkour, tennis, and so on.

Figure 4.2: Shows 14 key-joints present in the Leeds Sports Pose (LSP) Dataset [13]

For our experiments we have trained and tested our model on MPII
dataset. Further elaborated in Chapter 5, training and experimental

settings.

20



Chapter 5

Training and Experimental

Settings

5.1 Dataset

As discussed in the previous chapter, we evaluate our method on MPII Hu-
man Pose Dataset [13]. In the following experiments, we train our model on a subset
of training images and evaluate on a validation set of 2958 images, along with a test

set of 300 images.

5.2 Data Augmentation

We have followed the same data augmentation methods as used by newell
et al. [4]. We randomly flip an input image horizontally, rotate it by an angle in
[—30,+30] degrees, and scale it in [0.75,1.25] to make the network more robust to

different scales and directions.
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5.3 Training configurations

We followed the standard routine to crop image patches using the given posi-
tion and scale [4]. The input to the generator network is of dimensions 64 x 64 pixels.
When input with an RGB image of resolution 256 x 256, the initial pre-processing
involves 7 x 7 convolutional layer with a stride of 2, followed by a residual module,

and a max pooling layer to drop the resolution to 64 x 64.

We train our model using PyTorch [25]. Our network is trained using Adam
optimizer with the initial learning rate of 1x 10~2 and decay learning rate of 2x 1074,

where the decay iterations is taken as 100k.

The model was trained on the MPII dataset for 200 epochs, where 1 epoch is
of 1000 iterations. I takes about 2 days to train the model on Nvidia GeForce GTX
1080 Ti. Table 5.1 shows the training configuration and hyperparameters used in

the training.

5.4 Evaluation Metrics

For MPII dataset we use PCKh error as a common metric used by the state

of the art methods to measure accuracy of the predictive model.

5.4.1 PCKh (Percentage of Correct Keypoints with respect to head)

To understand PCKh error [13], we need to understand PCK (Percentage of
Correct Keypoints) error [24] first. PCK gives the percentage of correct keypoint
detection that happens to be within certain tolerance range. The tolerance range is

the fraction of torso size. The equation can be expressed as:

lyi=gill2
r
Yihip—Yrshollz ™

, ()
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where y; is the ground-truth location of the iy, keypoint and g; is the predicted

location of the i;;, keypoint. The fraction r is bounded between 0 and 1.

PCKHh is almost the same as PCK except for the tolerance range r, it is a

fraction of the head size.

Model Training Configuration

Config Value Description

N 4 Number of stacks in the hourglass network, or the gen-
erator.

learning rate || 1 x 1073 Initial learning rate.

decay learn- || 2 x 107* Decay Learning rate.

ing rate

decay itera- || 100K Decay iterations; number of iterations after which the

tions initial learning rate changes to decay learning rate.

batch size 8 Number of images trained per iteration.

train itera- || 1000 Training iterations per epoch.

tions

validation 2958 Number of images used for validation.

set

epochs 200 Number of epochs for which the model is trained.

« 2—(1)0 « is the hyperparameter to control the influence of the
discriminator loss.

1) 3x 1073 ¢ is the normalized distance threshold parameter and
d; is the normalized distance between the predicted
and ground-truth location of the i;, body part.

Table 5.1: Training configuration and hyperparameters
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Chapter 6

Experimental Results

Evaluation is done using the standard Percentage of Correct Keypoints w.r.t.
head (PCKh) metric, discussed in the previous chapter, on the MPII dataset. We
experiment on several network configurations. The settings differ in the number
of stacks of the generator. The size of the discriminator is fixed (1-stack). The
discriminator seems to perform well even when the image of the person is not pro-
vided. A possible reason is that the implausible pose could be recognized by merely
the pose information, chen et al. [1] uses two discriminators, one is fed with the
image and the other one is not. The image of the person is an extra information,
but the discriminator does not always need it. Instead of increasing the number
of discriminators, like chen et al., we can just increase the value of « which is the

hyperparameter to control the influence of the discriminator loss.

We compare our result with the original stacked hourglass network by newell
et al. [4] and investigate the benefit of using adversarial learning. The goal of this
research is not to draw comparisons with other state-of-the-art methods but rather

emphasise on a training methodology which can be used to achieve better results.
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The following tables give a quantitative comparison between the original

stacked hourglass network [4] and adversarially trained stacked hourglass networks.

Table 6.1 compares the validation PCKh error of 4 stack and 2 stack hourglass net-

work with their counterparts (proposed model), and similarly Table 6.2 compares

the training accuracy.

Stack HG)

Methods Head | Sho. | Elb. | Wri. | Hip Knee.| Ank. || Total
4 Stack Hour- || 98.2 96.3 91.2 87.1 90.1 87.4 83.6 90.9
glass Network

Our Method (4 || 98.2 | 96.7 | 92.1 | 87.8 |91.1 | 88.6 | 84.3 91.3
Stack HG)

2 Stack Hour- || 95.5 94.6 88.0 83.3 87.0 81.3 7.7 88.3
glass Network

Our Method (2 || 95.2 | 94.5 | 87.4 | 81.8 | 87.0 | 80.9 | 76.1 87.8

Table 6.1: Validation: Stack Hourglass comparisons on the MPII dataset. (PCKh)

Looking at the validation results we realise that the original 2-stack hourglass

performs better than our adversarially trained 2-stack hourglass network. However,

when we look at the validation accuracy of the original 4-stack hourglass network in

comparison to the adversarially trained 4-stack hourglass network, we realise that

our method outperforms the original 4-stack hourglass.

Reason being, 2-stack hourglass due to lack of its depth collects relatively

less features when compared with 4-stack hourglass network. As a result the dis-

criminator does not have enough features to effectively differentiate between the set

of plausible poses. This tends to shift the predicted keypoint location farther from

the ground truth and hence the accuracy is lesser as compared to its counterpart.
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Stack HG)

Methods Head | Sho. | Elb. Wri. | Hip Knee.| Ank. || Total
4 Stack Hour- || 99.0 99.2 91.2 95.2 94.0 87.4 89.8 93.7
glass Network

Our Method (4 || 99.1 |99.4 |91.3 | 956 |93.9 | 87.6 | 89.8 93.8
Stack HG)

2 Stack Hour- || 98.0 98.8 95.4 88.3 93.4 91.8 87.2 94.2
glass Network

Our Method (2 || 97.0 | 98.3 | 82.7 |87.4 | 89.3 | 89.8 |834 92.5

Table 6.2: Training:

000050 4
000045 1
000040 4
000035 1
000030 1
000025 4

000020 A

Stack Hourglass comparisons on the MPIT dataset. (PCKh)

—— 4 Stack Hourglass Metwork
— Proposed Model (4 Stack HG)

200

T
400

&00

800

1000

Figure 6.1: Training loss for original 4-stack HG vs adversarially trained 4-stack HG

(last epoch)
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Figure 6.2: Training loss curve loss curve for pose discriminator

Prediction Samples

Ground Truth Stacked HG Network Proposed Method

Table 6.3: Prediction samples on the MPII dataset. The first row: ground truth.
The second row: results by stacked hourglass network [4]. The third row: results
by our method. Continued...
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Chapter 7

Ablation Studies

Since we have performed our experiments on Stacked Hourglass Networks
which is a well accepted and confirmed work by the computer vision research com-
munity. Therefore, we need not go into the ablation study of the training configu-
rations of the Stacked Hourglass Network. In this chapter we will mainly focus on

the detailed analysis of the effect of only two hyperparameters, a and §.

Where, « is the hyperparameter to control the influence of the discriminator’s loss.

Refer Eq. 4.

As we decrease the « by a significant amount, the influence of the discrim-
inator decreases and hence the discriminator becomes ineffective. The Fig. (7.1)
shows the training loss curve during the last epoch of the training, here o has been

1
reduced to 70

On the other hand, If we increase the value of a by a sufficient amount it
will lead us to a less accurate model (or generator), as shown in the Fig. (7.2)
0 is the normalized distance threshold parameter and d; is the normalized

distance between the predicted and ground-truth location of the i, body part. To
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Figure 7.1: Training loss curve loss curve for pose generator w.r.t. original HG
network (o = 555)

0.00050 4 = 4 Stack Hourglass Network
——— Proposed Model (4 Stack HG)
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0.00035 A

0.00030

0.00025 -

Figure 7.2: Training loss curve loss curve for pose generator w.r.t. original HG

network (o = 1i5)
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understand better, refer Eq. 3 and Eq. 3.1

On increasing the value of 9, discriminator’s loss sharply plummets, which
again diminishes the influence of the discriminator on our pose generator. The Fig.

(7.3) shows the training loss curve of the pose discriminator, here [ equals 0.8.

—— Paose Discriminator

0.8

0.6

0.4 4

0.2

D 325000 50000 75000 100000 125000 150000 175000 200000

Figure 7.3: Training loss curve for pose discriminator (5 = 0.8)

And let’s suppose, if we take the value of 3 significantly low, say 2 x 1076,

it results in gradient explosion.
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Chapter 8

Conclusion

We can conclude from the experimental results that adversarial learning can
help us to achieve structure awareness. However, there are couple of ways this work
can be extended. Firstly, we can start with improving the model’s receptivity by
increasing the resolution of the subnet layers, as achieved by sun et al. in HRNet
[12]. We can also refine it by performing intermediate supervision, as demonstrated
by lipeng et al. [6]. This can help us with locating the local features more accurately

and will give us more information for the discriminator to locate plausible keypoints.

For the discriminator module, we can try to choose a different network archi-
tecture, or we can also assign more than on discriminators in parallel, supervising

the intermediate loss between the subnets of the generator model.
We can also use this same methodology to get better results in image seg-

mentation problems, or 3D human or hand pose estimation problems. Hence the

scope of this methodology is vast as well as exciting.
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