
USING SENTIMENT AND EMOTION
ANALYSIS OF NEWS ARTICLES
TO ANALYZE THE EFFECTS OF

LEADER’S STATEMENTS ON
COVID-19 SPREAD

by

POOJITHA THOTA

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Computer Science and

Engineering at The University of Texas at Arlington
May, 2021

Arlington, Texas

Supervising Committee:

Ramez A Elmasri, Supervising Professor
David Levine
Leonidas Fegaras

I

ABSTRACT

USING SENTIMENT AND EMOTION ANALYSIS

OF NEWS ARTICLES TO ANALYZE THE

EFFECTS OF LEADER’S STATEMENTS

ON COVID-19 SPREAD

Poojitha Thota, Master’s

The University of Texas at Arlington, 2021

Supervising Professor(s): Dr Ramez A Elmasri

Leaders generally include government officials, politicians, etc. Their statements can highly affect

people’s decisions in many ways. Currently, in the pandemic situation, many statements were

being passed every hour and day, which showed an impact on the spread of corona virus cases at

certain location. So, this paper proposes a supervised model to analyze the variations of COVID-

19 data based upon the leader’s statements passed at certain time and location. The proposed

methodology consists of sentiment and emotion analysis for the leader’s statements to determine

the true intentions of the leader. The leader’s statements are a collection of data obtained by

scraping webpages of popular news channels like CNN. And the COVID-19 data has been

extracted from the largest collection, which is accumulated by John Hopkins University, every

day. Then, NLP text processing techniques were used to prepare the dataset and pre-process the

text, through which we obtain a labelled dataset. From this, our methodology includes analyzing

the obtained dataset.

II

Copyright by

Poojitha Thota

2021

III

ACKNOWLEDGEMENTS

I wish to express my gratitude to my thesis advisor, Dr Ramez A Elmasri, for his generous advice,

inspiring guidance, and encouragement throughout my research for this work. I would also like to

thank my peers Mary Elizabeth Koone and Mohammad A.Shaito, members of MAST-DB lab at

UTA, for their guidance and support throughout this project.

IV

TABLE OF CONTENTS

ABSTRACT ... I

ACKNOWLEDGEMENTS... III

LIST OF FIGURES ... V

LIST OF TABLES .. VII

LIST OF ABBREVIATIONS... VIII

CHAPTER 1: INTRODUCTION .. 9

CHAPTER 2: RELATED WORK ... 12

CHAPTER 3: DATA COLLECTION ... 21

CHAPTER 4: DATASET PREPARATION .. 42

CHAPTER 5: SENTIMENT ANALYSIS ... 59

CHAPTER 6: EMOTION ANALYSIS ... 75

CHAPTER 7: RESULTS AND ANALYSIS ... 79

CHAPTER 8: CONCLUSION AND FUTURE WORK .. 83

APPENDIX

1. APPENDIX 1……………………. .. 85

2. APPENDIX 2……………………………………………………………………………………. 87

REFERENCES ... 88

V

 LIST OF FIGURES

Figure Page

1. Figure 2.1 Sentiment Classification Techniques…………………………………………15

2. Figure 2.2 Plutchik’s Wheel of Emotions………………………………………………...20

3. Figure 3.1 Overview of Web Scraping Process…………………………………………..24

4. Figure 4.1 Output when Punkt tokenizer is applied to text at sentence level…………….44

5. Figure 4.2 Output when Punkt tokenizer is applied to text at word level………………...45

6. Figure 4.3 Output showing differences between Stemmer and Lemmatizer……………..46

7. Figure 4.4 Language processing tasks and corresponding NLTK modules

with examples of functionality…………………………………………………………...49

8. Figure 4.5 Summarized process of finding named entities in text……………………….53

9. Figure 4.6 Required libraries imported from NLTK……………………………………...54

10. Figure 4.7: Instance of tokenized output of input text……………………………………55

11. Figure 4.8: Instance of POS Tagging……………………………………………………..56

12. Figure 4.9: Instance of NE Chunker……………………………………………………...57

13. Figure 4.10: Instance of Final output obtained from Named Entity Algorithm………….57

14. Figure 5.1 Sample output after removing stop words from dataset………………………61

15. Figure 5.2 Sample input text before lemmatization………………………………………62

16. Figure 5.3 Sample output after lemmatization……………………………………………62

17. Figure 5.4 Movie Reviews Dataset after Cleaning………………………………………..63

18. Figure 5.5 Movie Reviews Dataset for training Classifiers………………………………63

19. Figure 5.6 Accuracy with Linear SVC……………………………………………………64

20. Figure 5.7 Improved accuracy with Linear SVC with n-gram range (1,2)……………….65

VI

21. Figure 5.8 Improved accuracy with Linear SVC…………………………………………65

22. Figure 5.9 Input Layers of Multi-layer perceptron model………………………………..67

23. Figure 5.10 Accuracy obtained from Multi-layer perceptron model……………………..67

24. Figure 5.11 Pre-training and Fine-Tuning procedures for BERT………………………...68

25. Figure 5.12 Output of Classifier after using BERT………………………………………69

26. Figure 5.13 Model Summary of BERT…………………………………………………...71

27. Figure 5.14 Usage of function InputExample…………………………………………….71

28. Figure 5.15 Fine tuning of BERT Model…………………………………………………72

29. Figure 7.1 Figure showing number of confirmed cases of

COVID-19 in the state of Georgia during the month of July……………………………..80

30. Figure 7.2 Figure showing different Emotions in Positive

Statements given by Governor, State of Georgia…………………………………………81

31. Figure 7.3 Figure showing different Emotions in Negative

Statements given by Governor, State of Georgia…………………………………………82

VII

LIST OF TABLES

Table Page

1. Table 2.1 Different types of Lexicons……………………………………………………17

2. Table 2.2 Basic Emotion classes identified by researchers……………………………….19

3. Table 3.1 Output showing top 5 news stories and

headlines on August 13th, 2020…………………………………………………………..41

4. Table 4.1 Sample of dataset showing statements

provided by leaders in state of Georgia…………………………………………………..58

5. Table 5.1 Summary of Experiments conducted for sentiment classifier…………………69

6. Table 5.2 Sample of dataset showing statements provided by

leaders in state of Georgia with Sentiment of Headline and Story………………………..73

7. Table 6.1 Summary of Experiments conducted for Emotion classifier…………………..77

8. Table 6.2 Sample of dataset showing statements provided by

leaders in state of Georgia with Emotion of Headline and Story…………………………78

9. Table A-1: NLTK Pos tags with their meanings…………………………………………85

VIII

LIST OF ABBREVIATIONS

1. NLP: Natural Language Processing

2. ML: Machine Learning

3. HTML: Hyper Text Markup Language

4. DOM: Document Object Model

5. NER: Named Entity Recognition

6. POS Tagging: Parts Of Speech Tagging

7. NLTK: Natural Language ToolKit

8. BoW: Bag of Words

9. TF-IDF: Term Frequency- Inverse Document Frequency

10. GPE: Geo-Political Entities

11. MaxEnt: Maximum Entropy

12. ACE: Automatic Content Extraction

13. NEC: Named Entity Chunker

14. BERT: Bidirectional Encoder Representation from Transformers

15. ADAM: Derived from Adaptive Moment Estimation

16. ISEAR: International Survey on Emotion Antecedents and Reactions

9

CHAPTER 1

INTRODUCTION

1.1 Introduction and Problem Statement

In the current era, COVID-19 is the biggest pandemic which rapidly affected our day-to-

day life in huge number of ways. Many leaders like state and federal government officials, during

this pandemic, have played a major role in motivating people, issued several safety precautions

and preventive measures to public and showed concern towards their assigned regions. Many

safety measures like mask mandate, six feet social distancing, staying sanitized, etc. have been

introduced to prevent the spread of the virus. But there were many areas where such measures have

not been followed by the public, as there were no strict orders from the government, that lead to

growth in the number of cases. Looking at such scenarios has given us an idea that there might be

some relationship existing between the type of leader statement or order, its implementation, and

the number of cases in that region.

But to find such relationships, the crucial component is a dataset that can consist of

different leader’s statements from news channels, the region they have been assigned for during

the pandemic, the sentiment and emotion involved in their statements, and finally the COVID-19

data for the entire pandemic, focusing mainly on the states of USA. To create such huge dataset,

one of the solutions opted in this project is to scrape the websites of popular news channels like

CNN, which regularly stream live news and store the archives. As we focused on states of USA,

the news obtained is filtered into categories like International, National, and states. Each statement

once categorized, leader stating is also found through NLP text processing techniques. The

international category of statements was not used for final analysis but was used in training dataset.

10

Then to judge how the leader speaks and to know the nature of statements, sentiment

analysis is considered as the best option. Sentiment analysis in brief is a basic process of analyzing

the subjective information involved in the sentence and classify it into three major categories of

positive, negative, and neutral. To analyze the way, the leader speaks and to know how concerned

they are towards their region, such type of classification is insufficient and cannot provide a

complete understanding of their statements. This limitation has led us to have an idea of performing

emotion analysis of the leader’s statements, along with sentiment analysis. This gave us a scope to

classify both sentiment and emotion involved in the statements to have a complete understanding.

To perform such classification, we have opted for supervised method of classification by

building two different machine learning models with two different datasets. One of the machine

learning models performs sentiment classification and the other performs the emotion

classification. The predictions obtained by these two models were integrated, and then transformed

the actual dataset into a labelled dataset. After obtaining the desired dataset, a new machine

learning model is trained with it and used for analyzing the relationship between leader’s

statements and the spread of COVID-19 in the leader’s region. Based on the output, we can

conclude how concerned the leader was towards his/her state and type of emotions they had during

the pandemic. Detailed explanation about each model and the methodology implemented will be

discussed in later sections.

This type of analysis not only limits to COVID-19 pandemic, but it can also be used for

other applications where leader’s statements play a crucial role.

11

1.2 Structure of Thesis

This thesis is structured into 8 chapters. The problem statement and introduction about

analysis is discussed in chapter 1. In chapter 2, literature review concerning Web scraping, Natural

Language Processing methods, Sentiment and Emotion analysis, Deep learning methods for

classification is provided. Chapter 3 illustrates the web scraping process to collect the dataset from

popular news channel like CNN. Chapter 4 discusses about the NLP approaches to prepare and

clean the dataset as per requirements of analysis. Chapters 5 and 6 describes the methodology used

for sentiment and emotion analysis. Chapter 7 discusses about the results obtained through

analyzing the datasets of Leader’s statements and COVID-19. Conclusions are drawn and future

work is stated in chapter 8.

12

CHAPTER 2

RELATED WORK

This thesis mainly covers three major research areas: (1) Web Scraping methods to collect

and create dataset; (2) Natural Language Processing to clean and prepare the dataset for analysis;

(3) Sentiment Analysis to acquire the polarity in leader’s statements and (4) Emotion Analysis to

extend towards predicting the true intentions of leaders by knowing the emotions, using deep

learning methods.

This chapter is divided into three parts and each part provides the scientific background of

the above-mentioned topics relevant to this thesis. The order of these parts follows the workflow

of thesis. The subchapter 2.1 is about Web scraping processes, in which novel methods to web

scrape and collecting the data results in a dataset that contains leader’s statements to use further.

The subchapter 2.2 is about natural language processing techniques, which are used in dataset

preparation and cleaning. The subchapters 2.3 and 2.4 consists of works relevant to sentiment and

Emotion analysis that can be performed on clean dataset to know the intentions of a leader through

his/her statements.

2.1 Web Scraping

Web Scraping is important technique used for extracting unstructured data from the

websites and transforming that data into structured. Web Scraping is also identified as web data

extraction, web data scraping, web harvesting or screen scraping. Web scraping is a form of data

mining [1]. The web scrapers were basically initiated with an aim to transform unstructured data

to structured format, that can further be stored in databases. There are many methods to scrape

information from the Web [2]. The most effective method is traditional copy-paste. But this might

13

not be feasible in real time scenarios where huge amount of data has to be extracted. One of the

other methods is text grepping where regular expressions are used to find information that matches

the pattern provided. More web scraping techniques include HTML Parsing, DOM Parsing, etc.

which will be discussed in later sections providing detailed description. Finally, a Web scraping

method consists of making scraper sites that are automatically generated from other Web pages by

scraping their content [3].

2.2 Natural Language Processing

Natural Language Processing (NLP) is a tract of Artificial Intelligence and Linguistics,

devoted to make computers understand the statements or words written in human languages [4].

Some of the researched tasks of NLP and which are relevant to this thesis are Named Entity

Recognition, Parts Of Speech Tagging, Chunking, Stop-words removal, Lemmatization etc.

Named Entity Recognition (NER) takes certain amount of text as input and determines which items

in the text relates to proper names. Parts Of Speech Tagging (POS Tagging) similarly takes a

sentence as input and determines the part of speech for each word present in it. Another major task

in NLP is Chunking. Chunking allows segmenting sentences into words and each word with its

own label or syntactic correlated keywords like Noun Phrase and Verb Phrase (NP, VP). Stop-

words removal is another task in NLP where keywords provided must be removed before

processing documents. But documents or statements can use different forms for a single word,

which should be detected by the model. This can be done using the task, Lemmatization.

Lemmatization usually refers to doing things properly with the use of a vocabulary and

morphological analysis of words, normally aiming to remove inflectional endings only and to

return the base or dictionary form of a word, which is known as the lemma [5]. Usage of such

techniques have made the algorithms easier than before.

14

2.3 Sentiment Analysis

According to Liu [6], sentiment analysis is the field of study that analyzes people’s

opinions, sentiments, evaluations, appraisal, attitudes, and emotions towards entities such as

products, services, organizations, individuals, issues, events, topics, and their attributes. The term

can be used interchangeably with Opinion Mining. In general, the sentiment for text can be

categorized as positive and negative polarity. Based on its extent to analyze, sentiment analysis is

divided into levels which are document level (Sentiment is calculated for whole document),

Sentence level (Sentiment is calculated for a sentence), and Feature/Entity level (extract features

of target and determines the feature wise polarity).

The sentiment analysis in this project takes into consideration of two levels document and

sentence. When leader statements are collected, the stories under their statements are also

collected, which requires document level prediction of sentiment, and as the leader’s statements

contain a single sentence, it requires sentence level prediction of sentiment. Analyzing sentiment

can be done in two methods: lexicon-based method and machine learning based method. These

approaches are summarized as follows [7],

15

Figure 2.1 Sentiment Classification Techniques

Combining sentiment analysis with NLP techniques can provide us with many advantages.

Such combinations have achieved great success in many fields like recommending, ranking of

products, public opinion monitoring, emotion prediction [8]. Two main methods exist to perform

sentiment analysis, which are given as follows.

Machine Learning Approach

Many methods were developed using supervised and semi-supervised learning to perform

sentiment analysis.

1. Supervised Learning:

In supervised method of learning, classification models are trained using standard

sentiment labelled documents. One of the earliest studies in supervised classification is

performed on movie reviews. The dataset is trained on three machine learning models

16

which are Naïve Bayes, Maximum Entropy Classification and Support Vector Machine

[9]. Based on this research, studies have been extended towards development of deep

learning systems. Dong and Wei proposed adaptive recursive Neural Network (AdaRNN)

for sentiment classification using Twitter data as an example in 2014 [10]. With an increase

in deep learning techniques, a deep learning system named Coooolll has been developed

to do sentiment analysis on Twitter data [11], with an accuracy of 87.61% to classify into

categories of positive and negative.

2. Semi-supervised Learning:

Through semi-supervised learning, supervised methods and lexicon-based methods

can be combined. In this process, a small amount of labelled data is used to train the

classification model and large amount of unlabeled data is taken. Many researchers like

Zhou and Chen have worked on it and proposed a method that uses both old and new

unlabeled data. They have proposed a two-step semi supervised learning method called

Fuzzy deep belief networks for sentiment classification. The model was tested on movie

reviews and DVD reviews dataset and achieved an accuracy of 79.5% [12].

Lexicon-Based Approach

 The lexicon-based approach is based on the concept of text sentiment polarity classification

in word or sentence. Similar to machine learning approach, many have performed research on this

method. As per an assumption, sentiment polarity of text is the sum of sentiment of each word or

phrase [13]. The following table gives a glance about different types of lexicons that can exist

while calculating the sentiment.

17

Table 2.1 Different types of Lexicons

Type of Lexicon Description

Sentiment words Positive or Negative sentiment words have a

sentiment score of +1 or -1 to indicate the

respective polarity.

Negation Words Negation words are the words which reverse

the polarity of sentiment.

Blind Negation Words Blind negation words operate at a sentence

level and points out the absence or presence of

some sense that is not desired in a product

feature.

Split Words Split words are the words used for splitting

sentences into clauses. The split words list

consists of conjunctions and punctuation

marks.

As each word in the sentence comes into different categories of lexicons, the sentiment can

be calculated accordingly. The sentiment score of a sentence constitutes the sum of polarities of

each word of the sentence [13].

With an aim to calculate sentiment labels and in a desire of getting highly accurate model,

this project uses the reference of supervised method of learning among the machine learning

approaches.

18

2.4 Emotion Analysis

Emotion recognition is an area of study that comes deep under sentiment analysis. Top

levels of sentiment analysis can only restrict towards classifying the statement into positive,

negative and neutral labels. But emotion proceeds to deeper level by knowing in which way the

sentences or speeches were positive or negative. Human emotion can be obtained in the form of

facial expressions, writings, speeches, and in actions and gestures. Study in the field of emotions

has always fascinated researchers for long and is widespread into several fields.

The word “affect” is often used instead of “emotion” in the literature. This area of research

is collectively known as Affective Computing, based on the work of Picard [14]. One of the most

relevant works Alm et al. (2005) [15] have explored into the task of classifying the emotions in

text, automatically. They have identified emotions in children’s fairy tales according to basic

emotions identified by Ekman, 1992 [16]. The authors have also classified the sentences into

emotional versus non-emotion, as well as into valences which are positive emotion, negative

emotion, and no emotion. Using the concept of Ekman [16], all emotion classes are taken as happy,

sad, angry, disgusted, fearful, positively surprised, and negatively surprised. Among these happy

and positively surprised were classified into positive emotion class, and sad, angry, disgusted,

fearful, and negatively surprised were classified into negative emotion class.

Later some researchers have come up with techniques for visualizing the acquired emotions

in the text. For instance, the authors have mapped the affective content of a document to a color

bar, such that change of colors in the bars represent the change of affect across the document [17].

They have constructed an affect-to-color correspondence scheme to encode 6 basic emotion

categories provided by Ekman [16]. The table below shows basic emotion classes identified by

different researchers from several years.

19

Table 2.2 Basic Emotion classes identified by researchers

Tomkins (1962) Izard (1977) Plutchik (1980) Ortony (1988) Ekman (1992)

Joy

Anguish

Fear

Anger

Disgust

Surprise

Interest

Shame

Enjoyment

Sadness

Fear

Anger

Disgust

Surprise

Interest

Shame

Shyness

Guilt

Joy

Sorrow

Fear

Anger

Disgust

Surprise

Acceptance

Anticipation

Joy

Sadness

Fear

Anger

Disgust

Surprise

Happiness

Sadness

Fear

Anger

Disgust

Surprise

Not only restricting to these classes of emotions, Plutchik has proposed a pyscho

evolutionary classification approach to classify these primary emotions anger, fear, sadness,

disgust, surprise, anticipation, trust, and joy. He created a wheel of emotions to illustrate different

emotions and their own categories. It shows how emotions were related to each other. This is also

known as his circumplex model. Each emotion is also expressed at different intensities and can be

mixed with one another to form different emotions. The Plutchik’s wheel of emotions is shown as

follows.

20

Figure 2.2 Plutchik’s Wheel of Emotions

This thesis has utilized labels of emotions as per the situation of the pandemic during

COVID-19. Statements which come under category “happy” consists of phrases like reduce in

number of cases, measures taken, etc. Instead of the label “happy”, the label “Safety” has been

replaced while classifying the emotions, as most of the leader’s statements were related to safety

precautions. Detailed explanation about consideration of different emotions taken during thesis

will be provided in chapters further.

21

CHAPTER 3

DATA COLLECTION

3.1 Data Collection

Every application has its own target and requirements to be satisfied. Different strategies

should be applied to have a reliable output at the end. And such need leads to the idea of creating

new datasets that can be used for multiple purposes later. Creating a large dataset is a tedious task

if done manually. But methods like web scraping and web crawling can automate data collection

and make it easier to create datasets for analysis. But initially, leader’s statements must be stored,

which we obtain from websites of several news channels. Being one of the most popular news

channels in USA and Internationally too, we have chosen CNN as one of the major resources for

creating the dataset. This channel not only streams the live news to people, but also stores the

archives of several years. As the pandemic came into light in USA, from March 2020, we have

focused on retrieval of leader’s statements from that date. CNN maintains its own websites for

each day containing different categories of news. As COVID-19 is the most popular update in

recent times, a unique portal is being developed by them to have live updates of Coronavirus across

the world.

For extracting such huge amounts of data, we chose web scraping as the best option.

Through web scraping, we can scrape data across several websites using their HTML attributes.

We have used programming language R to perform the process of scraping. There are several

libraries for web scraping in other languages like Python, but we chose R due to several advantages

which will be discussed in the next section. The whole process of web scraping, a glance about

22

choosing correct libraries and methodology implemented from them will be explained in detail in

next section 3.2.

As we have seen in the previous sections about analyzing the relationship between leader’s

statements and spread of COVID-19, the dataset created using leader’s statements is not sufficient.

The COVID-19 data should be extracted to know the spread of number of cases across the region

where the leaders have stated their orders. There are many sources that provide the spread of

COVID-19 in spatial forms. But most of them extract their data from COVID-19 dataset created

by CSE department of John Hopkins University [44]. They have a daily update of COVID-19 data

involving many fields like County Name, Province_State, Confirmed cases and deaths, etc. They

maintain and update data obtained from whole world, and in addition, they maintain separate

folders for USA, which is being used in this project, for the final analysis.

3.2 Web Scraping

3.2.1 Overview of Web Scraping

 Web scraping is a process that involves extraction of information from various websites. It

is also known as web data extraction, web data scraping, web harvesting or screen scraping [18].

In general, websites contain unstructured data, where web scraping can be used to fetch and extract

the information, transform it into an understandable format like csv and finally store it into an

external database. This technique can be performed manually by applying traditional methods of

copy-paste, but in most of the cases, it is automatically performed to achieve efficiency. The whole

process of web scraping can be split into different phases and explained in brief, as follows.

23

Phase-1: Fetch data

Firstly, in this step, desired websites must be selected where the data is accessed from.

Then fetching can be done using HTTP protocol, an Internet protocol used to send and receive

requests from a web server. In this phase, libraries such as wget, curl and navigate can be used to

send a HTTP GET request to the URL of a website (desired location), from which HTML

document is sent back as a response [19].

Phase-2: Extracting Information

After fetching the desired HTML documents, the next step would be extracting our

required information from the website. This can be performed using several techniques such as

HTML Parsing, DOM Parsing, XPath, and Text pattern matching, which will be discussed in detail

in the next section.

Phase-3: Data Transformation

Once the required information is extracted from the desired locations (URL), the data will

be in unstructured format. It can then be transformed into structured format such as CSV,

spreadsheet, or pdf, either for presentation or storage.

The phases described above in the process of web scraping can be summarized in Figure

3.1, as follows.

24

Figure 3.1 Overview of Web Scraping Process

3.2.2 Techniques for Web Scraping

 To implement a web scraper, there are several approaches among which the best one can

be selected based on a programmer’s requirement. From the above, it can be observed that these

techniques are used during the extraction phase, and they are mainly divided into two categories

Manual web scraping and Automated web scraping. This section discusses about some of the major

techniques in each category and gives a scope for selecting the suitable technique among them.

Extracting Information
(HTML Parsing, DOM
Parsing, XPath, and

Text pattern matching)

Data Transformation
(Conversion of

unstructured data to
structured format)

Data Storage or
Data Presentation

Desired
Websites (URL)

Fetch data
(using libraries such as
wget, curl and navigate)

HTML
Document

Required Data
(Unstructured)

Required Data
(Unstructured)

25

3.2.2.1 Manual Web Scraping

Traditional Copy Pasting

Traditional copy-pasting is a manual approach where data that has to be extracted from a

website is manually copied as a group and pasted into a document. Then the required data would

be collected from the group and arranged into a structured form. Occasionally, for less amount of

data, this can be the best technique. But in the process of creation of large dataset, this technique

could be tiresome and error prone as it involves lot of manual work [18].

3.2.2.2 Automated Web Scraping

HTML Parsing

In general, parsing is the process of analyzing a string of symbols either in natural

language or in computer languages or data structures conforming to the rules of grammar. The

result of parsing a document is usually a tree of nodes that represent the structure of it. In HTML

Parsing, after the HTML document is fetched, a tree of nodes is formed during parsing, from

which the relevant information like headings in the page, title of the page, paragraphs in the page

can be extracted by detecting the html nodes. Some semi-structured data query languages, such

as XQuery and the HTQL, can be used to parse HTML pages and to retrieve and transform page

content [18].

DOM Parsing

The DOM is a common platform for managing document structures. It works on XML

documents by creating an interface that would be helpful in providing access to structure and

contents of these documents. Like HTML parsers, when an XML document is fetched and applied

with a DOM parser, a tree structure containing all elements of the document is formed. With the

26

help of DOM, the contents and structure of the document can be examined and used for extraction

[21].

XPath

XPath stands for XML Path Language [21]. It is a technology that takes path expressions

into account, to access nodes in a document. It can be used on XML documents to access

different elements in their structure and content. XPath can also be used to navigate HTML

documents, as they share similar structure to XML. It allows us to write expressions which can

directly access the HTML elements instead of examining the whole tree. In general, after DOM

parsing, XPath can be used as web scraper to scrape the website’s data. It is not a language but

comes in a form of expressions, that requires its own syntax.

CSS Selectors

Another popular technique in web scraping for extracting data from HTML documents is

the application of CSS selectors, where CSS (Cascading Style Sheets) is a language used for

styling HTML documents. Mainly it describes the rendering of structured documents such as

HTML and XML. Based on different CSS properties, different selectors such as type, attribute,

ID, etc. are used to represent the structure and content of website. These can be used to match and

extract HTML elements [21].

Text Pattern Matching

Text pattern matching is a matching technique where regular expressions are used to match

HTML tags and extract data from HTML documents [22]. Regular expressions, in general, are

sequence of characters that give rise to a search pattern. As HTML is virtually composed of many

strings, regular expressions can come into action here, by matching different strings. But regular

27

expressions might not be the first choice in parsing HTML, as there is a chance of encountering

mistakes such as missing tags.

Among popular techniques discussed above, based on the flexibility, and knowing about

difficulties of their usage, it can be observed that HTML parsing is the most convenient technique.

As there are numerous libraries and inbuilt tools available for performing this technique, it had

been chosen for this project to start with scraping the news stories. The following section gives a

detailed picture about different libraries containing HTML parser in python and R.

3.2.3 Libraries for Web Scraping

There are several libraries for web scraping. But being most popular languages in data

science, python and R have bagged wide variety of built-in libraries that made the process easier

for extracting relevant information from websites.

3.2.3.1 Libraries in Python

Requests

Requests is the most basic python library for web scraping. Through this, HTML requests

can be made to a website server to retrieve data on the web page. This library is used in fetch phase

of web scraping process, as discussed above in section-3.2.1, overview of web scraping. This

python library gives high flexibility to users by providing various types of HTTP requests such as

GET, POST, etc [26]. As this is basic library that can be used only for fetching web pages, it cannot

be individually used to scrape data. It must be combined with other libraries to obtain a reliable

output.

28

LXML

As we have seen above in requests, it had a limitation that it cannot be used as a parser.

LXML, a high performance, fast, HTML and XML parsing python library [27] can be used along

with it to start parsing and extracting data from webpages. This library is python in-built and uses

HTML parsing technique, discussed above in automated web scraping, section 3.2.2.2. It is faster

than most of the parsers and uses python API, making the functionality easier. But it does not work

well with poorly designed HTML documents. This makes LXML less flexible for usage when

compared to other libraries, which will be discussed later in this section.

Beautiful Soup

Beautiful soup is the most widely used python library for web scraping [21,27]. For parsing

HTML and XML documents, it creates a parse tree, and this also uses HTML parsing technique

discussed above in section 3.2.2.2. Beautiful soup has gained its popularity due to its ease of usage,

but it is slower when compared to LXML, discussed above. One of the major advantages is that it

is suitable to any type of website. And this can be used along with requests to perform fetch and

extraction phases successfully. To speed up the process, it can be combined with LXML parser.

Selenium

The libraries mentioned above have a limitation that they cannot work with websites

designed with JavaScript. This makes them difficult to work while scraping dynamic webpages.

Working with dynamic webpages is one of the biggest challenges in area of web scraping which

can be faced with effective usage of libraries. Detailed explanation about dynamic webpages and

overcoming them will be discussed in later section of Challenges. But selenium is one of the

python libraries that can overcome this difficulty.

29

Initially, it was made for automated testing of web applications, but later its ability to run

JavaScript has extended its scope for using it as web scraping library. It consists of a web driver

for rendering web pages, that can be used to perform clicks, highlights, scrolls, etc. automatically

[27]. These features made it flexible for scraping dynamically populated web pages. But one of

the major limitations of this library is that it loads and runs JavaScript for every page, which makes

the processes slower and not suitable for large scale projects.

Scrapy

Scrapy is one of the most popular libraries in python. It is not just a library, instead it can

be considered as an efficient web scraping framework, which is a complete package consisting of

functionalities suitable for fetching and extraction phases, discussed above in section 3.2.1. It can

be used to crawl websites as it provides spider bots and gives users a facility to create their own

spider bot [28]. Scrapy can work in an asynchronous manner indicating that it can make multiple

HTTP requests simultaneously, which speeds up the process and increases the efficiency. One of

the limitations of scrapy is that it cannot handle JavaScript like selenium drivers. To be able to

automate the process with scrapy, it must be combined again with other libraries like Splash, to

extract data from dynamic websites.

As we can observe from the libraries mentioned above, each has its own advantages. But

none of the libraries mentioned above can be used individually for complete process. At least two

or three of them must be combined to obtain the complete functionality of a web scraper. And if

the requirement is not satisfied, a greater number of libraries must be explored and used in python,

to acquire a reliable output of extraction. This limitation gave us a scope for designing a scraper

using the programming language R.

30

3.2.3.2 Libraries in R

There are numerous libraries in R, that were designed using statistical methods. Some of

the major libraries in R have been studied for this project and proved to be sufficient for designing

an efficient web scraper embedding all the functionalities.

Rvest

Rvest is popular package that is used for scraping data from html web pages [23]. It is

inspired by libraries like beautiful soup in python. It is used along with the package magrittr in R,

to have the piping functionality. Working with rvest is easier when compared to other libraries.

This can be shown through an example.

 Scraping data from “The Lego movie” from IMDB is used as an example here. While using rvest,

first step would be downloading and parsing the file with the help of method html().

library(rvest)

lego_movie <- html("http://www.imdb.com/title/tt1490017/")

Then pipelining can be done to extract data from css selectors that exist in the web page.

Methods such as html_node() can be used to find all the nodes that match with the selector and

then contents from the location can be extracted using method html_text(). The code snippet below

shows the extraction of IMDB rating of the movie using these methods.

rating <- lego_movie %>%

html_nodes("strong span") %>%

html_text() %>%

as.numeric()

31

rating

#> [1] 7.7

From the code snippet, it can be observed that the rating is obtained as 7.7 for “The Lego

movie” in IMDB website.

As this library contains fetching and extraction phases of a web scraping process, discussed

above in section 3.2.1, most of the extraction can be completed using this. But the goal to create a

huge dataset requires the process to be automated. And, as rvest does not provide this facility, it

must be combined with a driver that helps in automating web scraping. R does contain such

powerful library named as “RSelenium”, which will be elaborated in the following section.

RSelenium

RSelenium is a combination of R and selenium, where it establishes a connection to

Selenium Server/ Remote Selenium Server from within R [24]. Selenium as discussed above in

section 3.2.3.1, works with JavaScript, and focuses on automating web browsers. Integrating the

Rvest library along with RSelenium gives a facility for the users to access a web driver in a web

scraper. Usage of this library involves few steps that would be discussed in detail in later sections

of methodology implemented.

Stringr

Stringr is another popular package present in R, which contain wide range of set of

functions that can be used for data cleaning or for string manipulations [29]. As there is text

cleaning process in the final stage of web scraping process, that is Data Transformation phase, this

package can be of great use for dealing such operations.

32

From the packages discussed above, we can observe that packages in R have more features

when compared to that present in python. Instead of using several libraries to achieve functionality,

R provides a facility for users to complete the operations with minimal usage of packages and

methods. These are some of the reasons with which we can decide the languages and packages to

be used. Based on all the advantages mentioned above, R had been selected and the packages rvest

and RSelenium were used to achieve web scraper for this project. Their detailed integration and

working will be shown in the methodology in later sections.

3.2.4 Challenges while designing web scrapers

Websites are designed in different ways and the goal of creation would include many

factors such as user interactive, way of presenting large datasets, including latest features for

styling, etc. And as the number of features increase, the complexity of the website increases, and

this in turn challenges the web scrapers in many ways. But our goal is to design a web scraper that

is suitable to any type of website. This section describes about some of the major challenges faced

while designing an efficient web scraper, and brief description of solutions that can be used to

overcome these challenges. Detailed description of solutions using code snippets will be given in

the later section consisting of implementation.

Infinite Scrolling Webpages

Infinite scrolling is a technique used in websites where users scroll without ever reaching

the end of the page. In such scenarios, new content gets loaded as user scrolls down. Several

websites like Facebook, Twitter, etc. have included infinite scrolling as their main feature. The

inclusion of this feature totally depends on the nature of the website and the requirement on which

33

it is designed. For example, websites such as blogs, or others that give information about an

organization are built towards a motive to provide information to people. Such websites would not

require this feature. But the websites that intend to be browsed and explored by users tries to

engage users with their information. This kind of websites embed this feature into the program, so

that user invests time in the page. Our project mainly uses CNN website for scraping data. For

news sites like this, the purpose is to display the latest and most relevant stories first, here infinite

scrolling can ensure users to have a look at latest stories, instead of all headlines and stories at

once. One of the solutions can be to scroll the page multiple times, but that involves re-loading

each time, the page gets scrolled. But this can be resolved using RSelenium driver which will be

clearly shown in later sections of implementation.

Data Repository

In general, data extraction at large scale can give rise to huge amount of information. If

data repositories are not designed properly, filtering, and organizing this kind of data could become

cumbersome and time-consuming task.

Dynamic Webpages

Websites are mainly classified into two different types: static and dynamic. Static

webpages consist of fixed number of pages and they have a specific layout. The content is static

and does not change in response to user actions and are intended to be purely informational. They

can be created using HTML and CSS. Whereas, dynamic web pages are a combination of server-

side and client-side scripting, and they rely mainly on JavaScript or PHP. Here users can access

the website and the browsers change based on their actions. As each user can opt different options,

the webpages will have more possible outputs making difficult for web scraping.

34

Frequent Structural Changes

Another challenge is that websites undergo structural changes quite often, to either add

novel features or improve user experience. As web scrapers are designed based on the code

elements present at the time of setup, any changes that made in between can prevent the web

scraper from extracting information.

Data Quality Assurance

Sometimes, extracted data can have missing information and may not match with a pre-

defined template. In such cases, data accuracy could be reduced. To resolve such difficulties,

quality assurance test should run on the data and each field has to be validated. These tests can be

done automatically using selenium drivers, but in some cases, manual testing could provide

reliable results.

Denial of Service

Denial of Service is a common method where web scraping can be interrupted from

accessing data from the website. It generally happens when a website detects a greater number of

GET requests from the same IP address [20]. If users get a warning, the scraping has to be stopped

completely. Disregarding such warnings can lead to a ban or restriction of IP address to break the

web scraping process.

As we can see, the above-mentioned challenges are regularly faced during the process of

web scraping. And having a target to scrape news sites like CNN, some of the important challenges

like infinite scrolling webpages, data quality assurance, frequent structural changes have been

faced in this project. But they have been resolved again with effective solutions while

35

programming the web scraper. The next section includes the methodology and way of

implementation of the web scraper by overcoming the above- mentioned challenges.

3.2.5 Methodology and Implementation of Web Scraper

Websites are designed in different ways and the goal of creation would include many

factors such as user interactive, way of presenting large datasets, including latest features for

styling, etc. And as the number of features increase, the complexity of the website increases, and

this in turn challenges the web scrapers in many ways. But our goal is to design a web scraper that

is suitable to any type of website. This section describes about some of the major challenges faced

while designing an efficient web scraper, and brief description of solutions that can be used to

overcome these challenges. Detailed description of solutions using code snippets will be given in

the later section consisting of implementation.

Selecting Packages

First step of the web scraping process includes selection of relevant packages. As we have

discussed above in section 3.2.3 about libraries, we have chosen the programming language to be

R and suitable packages to be “rvest”, “RSelenium”. And the package “stringr” can be used to

manipulate and clean data. To use the packages into scraper program, they should be installed and

downloaded before moving forward. This can be done with following commands,

install.packages("rvest")

install.packages("RSelenium")

install.packages("stringr")

To add them into our scraper program, we can use the following commands,

36

library(RSelenium)

library(rvest)

library(stringr)

After adding the packages, they are ready to be used and all the features, methods under

them can be used.

Connecting to Selenium Driver

In R, RSelenium is used to establish a connection between Selenium Server and R. This

allows us to automate the web scraping process. But firstly, to drive a browser on same machine

that RSelenium is running on, we will need to have a Selenium server running on that machine.

To run a selenium driver through R, the function “rsDriver” can be used, which manages the

binaries required for running a Selenium server [24].

rD <- rsDriver(browser=c("firefox"))

The above command indicates that selenium driver and browser “Mozilla Firefox” has

started. The value of the driver would be a list containing server and client. Now the client, which

is indirectly the browser can be stored in a variable and used further.

driver <- rD$client

To connect and disconnect from the server, the methods open and close can be used, as

shown below.

driver$open()

driver$close()

Navigating URL’s

37

Recollecting the phases of web scraping process from section 3.2.1, the first phase involves

finding a URL and fetching data from it. This paper aims to collect news stories and news headlines

during COVID-19, i.e., starting from March 2020. As it focuses mainly on CNN news sites, the

relevant URL’s can be found, which contains international news related to COVID-19. The URL

can be shown as follows,

https://www.cnn.com/world/live-news/coronavirus-pandemic-intl-04-17-20/index.html

 From the above URL, we have observed that the modulating part is the date of the

pandemic. Each day in period of pandemic has its own webpage, which made the process of web

scraping easier. As we know the start date of pandemic, we can set end date and create a sequence

of dates. This can be shown as follows,

dates=format(seq(as.Date("2020-03-25"),as.Date("2020-12-10"),

by="days"),format="%m-%d-%y")

 As we have a set of dates now, we can iterate the process to all webpages. We can navigate

through the webpages using the method “navigate” by taking URL as argument. The commands

can be shown as follows,

url=paste(c("https://www.cnn.com/world/live-news/coronavirus-pandemic-

",dates[d],"-intl/index.html"), collapse="")

driver$navigate(url)

 The navigate function opens the webpages on our selected browser and waits for the next

action input from the user or from the program.

Data Extraction from Webpages

https://www.cnn.com/world/live-news/coronavirus-pandemic-intl-04-17-20/index.html

38

As the relevant URL’s have been collected, data can be extracted from these sources. Here,

the HTML parsers come into play. The method that acts as parser is getPageSource(), which gives

the complete set of html nodes present in the webpage. The command to request from client is

shown as follows,

page_source<-driver$getPageSource()

 Now from the obtained page source, we can acquire the desired content such as dates,

headlines, and stories under a headline. This can be done using the function “read_html”. The

whole command is shown as follows,

headlines<-read_html(page_source[[1]])%>%

html_nodes("h2") %>% html_text()

stories<-read_html(page_source[[1]])%>%

html_nodes("article") %>% html_text()

headlines<-read_html(page_source[[1]])%>%

html_nodes(".date") %>% html_text()

 From the commands above, we can observe that headlines, stories and their corresponding

dates have been obtained using the html nodes, h2, article and .date respectively.

 This extraction can be iterated to all the pages using a for loop.

Handling Infinite Scrolling Webpages

The extraction of data can be done successfully. But the CNN news site that is being used

in this scenario is an infinite scrolling webpage, as discussed above in section 3.2.4. This should

be handled in order to get the complete information existing in the page.

39

 As we know, for infinite scrolling pages, from section 3.2.4, more information is loaded

when page is scrolled down. One way to handle it is by scrolling down with the help of method

“executeScript()”, calculating the scroll height and finally updating it in a variable. Then the newly

updated height can be compared to the initial height and start scrolling operation to that extent.

This process can be stored in a function or it can be iterated using loops, and the complete loop

has been shown as a code snippet,

last_height = 0

 repeat {

driver$executeScript("window.scrollTo(0,document.body.scrollHeight);")

 Sys.sleep(10)

updated_height=driver$executeScript("return

document.body.scrollHeight")

 if(unlist(last_height) == unlist(updated_height)) {

 break

 } else {

 last_height = updated_height

 }

 In the code snippet above, “sleep” function is used, which gives time for a webpage to be

loaded completely in the new scroll area.

 The above-mentioned method can be embedded into any project in common, where the

scenario of infinite scrolling webpages exists.

40

Data Transformation

From the overview of web scraping, discussed above in section 2, the last phase of the

process is “Data Transformation”, where the extracted data will be transformed into desired format

like csv or spreadsheet.

 In this project, a csv is desired. The method “write.csv()” can be used to complete the

operation and store the data into a csv file.

Closing the Client

Finally, after completion of scrapping, we can close the driver using “close()” method,

which closes the connection established between R, selenium, and web browser.

driver$close()

Result of Web Scraper

From the methodology discussed above, we can observe that it includes all phases of web

scraping process. But the result desired in web scraping should be transformed and structured data.

After transforming into csv file, the output of top 5 rows of news stories and headlines collected

on August 13th, 2020, can be shown in Table 3.1, as follows.

41

Table 3.1 Output showing top 5 news stories and headlines on August 13th, 2020

corona_dates Headlines Stories

08-13-20 Through violence, the

pandemic and the fight…

Chicago's West Englewood

neighborhood…

08-13-20 Venezuela reports highest

daily number of new…

Venezuela reported 1,281 new Covid-

19 cases…

08-13-20 Japan reports 1,177 new

coronavirus cases

Japan reported 1,177 new cases of

Covid-19 and…

08-13-20 Trump coronavirus

adviser claims “young…

Dr. Scott Atlas listens as President

Trump speaks…

08-13-20 New Zealand reports 12

new coronavirus cases…

New Zealand reported 12 new

coronavirus cases…

From the above table, we can observe that the news acquired by web scraping contains

both International and National (USA) updates. As the thesis project focuses only on National

headlines and leaders across 50 states of the USA, the headlines and stories obtained here should

be filtered as per the region. And the leader’s stating exists in the headline but not separately. These

concerns require us to add attributes to the dataset such as Region of statement, Leader stated, etc.

As the dataset is quite large, manual filtering and addition of attributes could be tiresome, which

lead us towards using NLTK toolkit to prepare the complete dataset. Brief introduction about NLP

and detailed description on usage of its techniques to prepare dataset is given in the following

chapter.

42

CHAPTER 4

DATASET PREPARATION

Natural language processing (NLP) comes under the broad spectrum of Artificial

Intelligence (AI). This thesis uses concepts of NLP to complete the intermediate procedures

required to create a complete dataset. According to the author Chowdhury [30], “Natural

Language Processing (NLP) is an area of research and application that explores how computers

can be used to understand and manipulate natural language text or speech to do useful things”.

There are several techniques in NLP which were combined into Natural Language ToolKit

(NLTK) that can be applied into programs using Python. The later sections of this chapter consists

of descriptions about several techniques relevant to this thesis, and their usage in the project at

each level.

4.1 NLP Techniques for Text

NLP is a wide topic and contains huge number of techniques for each procedure when

dealing with text. But there are few techniques that has to be followed before processing the text.

These are listed as follows.

1. Tokenization

Tokenization is a process of dividing the set of strings into sub-components. This can be

performed at both sentence and word level. Sentence tokenization when performed on a

sentence divides the set of strings based on punctuation marks. Whereas tokenization at word

level splits the whole sentence into list of words, that can be processed further as per

requirements. Before proceeding to any operation, tokenization is the basic procedure that has

43

to be done for a document or simple sentence in order to get the words or sentences. The

process of tokenization can be shown through an example.

As NLTK already consists of several libraries, it constitutes methods for tokenization too.

Initially to use NLTK into an application, the library has to be imported using python. The

command can be given as follows,

import nltk

Along with this NLTK has inbuilt tokenizer which is known as Punkt. This tokenizer

divides sentences using an inbuilt unsupervised algorithm. Other tokenizers exist but Punkt is

the most popularly used sentence tokenizer and has been used in this thesis. It can be

downloaded once after we import the NLTK package. The command for the download is given

as follows,

 nltk.download('punkt')

After obtaining the required packages, the tokenization can be started using the methods

“sent_tokenize” and “word_tokenize” respectively for tokenizing into sentences and words.

This can be shown through an example as follows.

Let us take a piece of text on few statements given by a leader during the COVID-19

pandemic.

“The state of Texas is strong, our people, resilient. As we have seen in years past, when

tested by fire, flood, or hurricane, Texans respond with resilience and calm resolve. And just

as we overcame those challenges, we will overcome this one. When neighbors help neighbors,

our resilience is redoubled. I have no doubt that Texans will continue to work together in that

spirit over the coming days and weeks. And we are here to help.”

44

The code snippet to perform tokenization at sentence level can be given as follows,

leader_statement = "The state of Texas is strong, our people, resili

ent. As we have seen in years past, when tested by fire, flood, or h

urricane, Texans respond with resilience and calm resolve. And just

as we overcame those challenges, we will overcome this one. When nei

ghbors help neighbors, our resilience is redoubled. I have no doubt

that Texans will continue to work together in that spirit over the c

oming days and weeks. And we are here to help."

tokenized_sentences = nltk.sent_tokenize(leader_statement)

for sentence in tokenized_sentences:

print(sentence)

print()

Figure 4.1 Output when Punkt tokenizer is applied to text at sentence level

The figure above shows the output obtained when the Punkt tokenizer is applied to the leader’s

statements at sentence level.

The tokenization can be performed at the level of words where the method “word_tokenize”

can be applied. It can be applied to same group of statements and is shown below. The code

snippet can be given as follows,

45

leader_statement = "The state of Texas is strong, our people, resili

ent. As we have seen in years past, when tested by fire, flood, or h

urricane, Texans respond with resilience and calm resolve. And just

as we overcame those challenges, we will overcome this one. When nei

ghbors help neighbors, our resilience is redoubled. I have no doubt

that Texans will continue to work together in that spirit over the c

oming days and weeks. And we are here to help."

for sentence in tokenized_sentences:

 words = nltk.word_tokenize(leader_statement)

print(words)

Figure 4.2 Output when Punkt tokenizer is applied to text at word level

The figure above shows the output obtained when the Punkt tokenizer is applied to the leader’s

statements at level of words. Words from each sentence are formed as different lists. In this

thesis, tokenizer at word level is used before trying different operations on text, that we will

discuss in later sections of this chapter.

2. Stemming and Lemmatization

Different forms can exist for a word such as organize, organizes and organizing based on the

tenses. Through stemming and lemmatization, such formations can be identified, and all the

related words can be compressed to a base word. Stemming usually refers to a crude heuristic

process that chops off the ends of words in the hope of achieving this goal correctly most of

46

the time, and often includes the removal of derivational affixes. Lemmatization usually refers

to doing things properly with the use of a vocabulary and morphological analysis of words,

normally aiming to remove inflectional endings only and to return the base or dictionary form

of a word, which is known as the lemma [5]. The difference between stemmer and lemmatizer

can be shown through an instance.

Firstly, the stemmer and lemmatizer can be imported from NLTK Library. Along with these

the wordnet library [30] can also be downloaded, which is a large word database of English

nouns, Adjectives, Adverbs and Verbs. The commands can be given as follows,

nltk.download("wordnet")

from nltk.stem import PorterStemmer, WordNetLemmatizer

from nltk.corpus import wordnet

To analyze the difference, two words “seen” and “drove” have been taken as instances.

Figure 4.3 Output showing differences between Stemmer and Lemmatizer

From the figure above, we can observe that the stemmer gives the same output as the input

text, whereas lemmatizer gives an output of the base words by identifying the parts of speech.

47

To process the text and acquire uniformity among all the words in a sentence, a lemmatizer or

stemmer has to be used after tokenization. This project uses lemmatizer after tokenization as

it has more benefits when compared to stemmer, as discussed above.

3. Stop Word Removal

Stop words can be considered as the most frequently used words in grammar. Words like “a”,

“an”, “the”, etc. are used for forming a sentence. But while pre-processing, these do not provide

any importance or weight to the sentence. Instead, they can bring noise to the analysis.

Therefore, they must be removed before processing the text. The list of stop words can change

based on the requirements of an application. Fortunately, to reduce the manual work of listing

out the stop words, NLTK constitutes a list of stop words that can be downloaded and used to

remove from the sentences.

4. Bag of Words

To process text, machine learning algorithms cannot work with raw text like English words

directly. The text should be pre-processed and converted into vectors of numbers. This is called

feature extraction. Bag of words works as a feature extraction technique where each word will

have a number listed to it, and the count of each word is stored in the vector, which is also

known as Bag-of-Words (BoW) model. From NLTK using python, to create a BoW model,

CountVectorizer class can be used which counts the occurrences of each word.

48

5. N-grams

The words in the text can also be grouped to form n-grams. Unigram is one word, bigram is a

combination of two words, trigram is a sequence of three words, etc. With n-grams, instead of

storing count of each word, frequencies of each word out of all words can be calculated as a

score for each word. With this we can obtain the most frequent words across the text. But

sometimes most frequently used words cannot give much information. To correct this, TF-IDF

(Term Frequency- Inverse Document Frequency) can be used to evaluate how important the

most frequent word is to the text.

TF-IDF increases proportionally to the frequency of a word appeared in a document, but it is

inversely offset by the number of documents in the corpus that contain the word.

The formula for TF can be given as,

TF (Term Frequency for word) = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑜𝑜𝑜𝑜 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

The formula for IDF can be given as,

IDF (Inverse Document Frequency for word) = log(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖

)

To find the final TF-IDF score for a word, it can be calculated as,

TF-IDF score for word = TF (for word) * IDF (for word)

In python, to find TF-IDF score for a word, we can use the TF-IDF vectorizer instead of count

vectorizer.

As the basic NLP techniques for any type of text are being discussed in this section, the later

sections of this chapter focuses on operations on text using libraries and methods present in NLTK

Toolkit. This chapter also shows preparation of leader’s statements dataset obtained in previous

chapter by adding more attributes as per requirements.

49

4.2 NLTK Toolkit

NLTK Toolkit was originally created with aim to provide practical knowledge of NLP

techniques. As python is the most popular language in the current generation, the NLTK Toolkit

involved in python can be used in any type of text processing task present in an algorithm. The

below figure lists out the text processing tasks, corresponding NLTK modules that can be used for

the task, and the functionality of each module in brief [32].

Figure 4.4 Language processing tasks and corresponding NLTK modules with examples of

functionality

Among the above listed Language processing tasks, this thesis uses tasks such as Accessing

Corpora, String Processing, Part-of-speech tagging, Machine learning, Chunking, Parsing, which

will be discussed in detail along with the steps to prepare the dataset for further operations.

50

4.3 Dataset Preparation using NLTK Toolkit

In general, to analyze the leader’s statement, only the statement will not be sufficient. The

other attributes to know are the statement spoken region, statement spoken date or time, the

leader’s name, and their role in federal or state government. There can be more attributes required

if needed, but these are the basic ones among them which are necessary for any type of analysis

dealing with leader’s statements.

As we can observe from the output obtained after web scraping at the end of Chapter-3,

the raw data does consist attributes statement spoken date, but not the other attributes such as

statement spoken region, the leader’s name and their role as discussed above. These attributes can

be created and noted by finding the names and regions in the statements and stories obtained. But

that could be quite tedious, if done manually. As NLTK Toolkit covers most of the NLP Text

processing techniques as its methods, they can be used here to find such attributes.

This section discusses about different NLTK modules that can be used to prepare the

require dataset and finally shows the dataset that can be used further for sentiment and emotion

analysis.

4.3.1 Required modules from NLTK Toolkit

Before starting text processing, some of the libraries from NLTK should be downloaded,

which can be used in the algorithm. The required modules are listed as follows.

1. Punkt

Punkt is a sentence tokenizer which splits the list of sentences into lists of words. It uses

an unsupervised algorithm to tokenize the text. It can be downloaded after importing the

51

NLTK toolkit into the algorithm. The commands can be given as follows,

nltk.download('punkt')

2. Averaged Perceptron Tagger

With the help of Average Perceptron Tagger, the parts of speech tagging can be

implemented. It uses average, structured perceptron algorithm. In general, this algorithm

is split into two components, structured prediction, and perceptron. Structured Prediction

in any algorithm relates to breaking down large structure into sub problems and then start

prediction for each problem. And then the results will be used in later stages. This algorithm

is used for POS tagging, where each word is tokenized and then each token is tagged with

its own parts of speech.

The perceptron algorithm stores a linear vector of components in pairs of features

and their weights. For scoring each observation, dot product is calculated between feature

vectors and its corresponding perceptron. By combing both the algorithms, the final ones

would be structured perceptron, where the score from each term is accumulated to get the

score of output. This applies here in Averaged perceptron tagger and is used to acquire

parts of speech for the words. This tagger can be downloaded in the same manner as that

of ‘punkt’. The command can be given as follows,

nltk.download ('averaged_perceptron_tagger')

3. Maxent NE chunker

The next basic library to be downloaded is Maxent NE chunker. It contains two pre-trained

English named entity chunkers trained on ACE corpus. The NLTK's NEC works by using

a supervised machine learning algorithm known as a MaxEnt classifier [33]. A MaxEnt

52

Classifier gets its name from maximum entropy. In discrete probability distribution,

maximum entropy is obtained when distribution is uniform.

 The machine learning model used here takes data from ACE corpus which has been

manually annotated for NE’s. This annotator marks named entities or NE’s for each

tokenized word in the text. Different Chunk types or chunk labels can be obtained through

this process. The chunk types can be listed as follows [32],

1. LOCATION

2. ORGANIZATION

3. PERSON

4. DURATION

5. DATE

6. CARDINAL

7. PERCENT

8. MONEY

9. MEASURE

These chunk types are decided based upon the words that match with the ACE

Corpus. It can then be used into our algorithms as per the requirements. The process to

download the chunker is same as the above two downloads. The command can be provided

as follows,

nltk.download('maxent_ne_chunker')

The usage of these libraries into algorithm and finding the NE’s to prepare the

dataset, will be discussed in the following section.

53

The whole process discussed above in 3 parts can be summarized in the following

figure.

Figure 4.5 Summarized process of finding named entities in text

4. Words

As our deals with English words, the final download that should be performed is the ‘words’

library. The command to download it can be provided as follows.

nltk.download('words')

Now, as all the downloads can be performed using these commands, the algorithm can be started.

54

4.3.2 Algorithm to find Named Entities

As we have already discussed about the requirements of additional attributes in previous

sections, they can be added into the raw dataset using the algorithm given in this section. The

detailed description about each stage will be given along with instances across this section.

The detailed process in this algorithm is explained in the form of steps, which are provided

as follows,

Step-1: Imports from NLTK

 After downloading the required packages, which we have seen in previous section, the

corresponding methods have to be imported from nltk. This can be provided as follows in the form

of code snippets.

Figure 4.6 Required libraries imported from NLTK

From the above figure, we can observe that the libraries ne_chunk, pos_tag, word_tokenize

have been imported from NLTK package. From the previous sections, we know that the basic

libraries to be downloaded have to be related to tokenizer, tagger, and chunker. Therefore, the

relevant methods can be obtained by importing these libraries into the algorithm. The library

“Tree” is also imported from NLTK because when the text is processed till the step of chunking,

it splits the text in form of category called trees, which can be captured through this library. These

operations will be seen in detailed in the following steps of this section.

55

Step-2: Applying Tokenizer, Tagger and Chunker

Firstly, text input is taken, and a tokenizer is applied. This can be shown in the form of

code snippet as follows.

Figure 4.7: Instance of tokenized output of input text

The figure above shows an instance of how a tokenizer works with an input text. For

instance, one of the leader’s statement which is statement given by Governor Andrew Cuomo is

taken for processing. As we can see, the words have been tokenized after using the method

“word_tokenize”.

The process after tokenizing the text into words is POS Tagging, which is tagging each

word with its own parts of speech. We can use the method “pos_tag” to tag each word, which is

shown in the figure as follows.

56

Figure 4.8: Instance of POS Tagging

There are quite many NLTK POS Tags which will be provided in the Appendix 1. From

the figure, we can observe that the method applied to tokens has given an output of POS tag to

each word in the list. Here NNP is proper noun, which is assigned to all the Names, roles, etc. VBZ

represents verb, present tense, and VBZ represents verb, past tense. The tag IN represents and tags

words like conjunctions or prepositions.

After getting the parts of speech tag for each word in the sentence, the next process is to

start with chunking the words into tree structure. The method “ne_chunk” can be used to start

chunking. It creates a list by assigning each word into a categorized tree. This can be shown in the

figure as follows,

57

Figure 4.9: Instance of NE Chunker

From the figure above, we can observe that the name “Andrew Cuomo” of Governor has

been detected and allocated into a chunk type or label called “PERSON”. And one of the other

important detection by chunker is the words “New York City”. It has been identified into the

category of GPE (Geo-Political Entity). But these are still in the form of trees which is not the

required form. We can extract each chunk, its tree, and each leaf by using for loops. The complete

algorithm is given in Appendix-2. The loop formations and the conditions have been stored in a

function, as it has to work for huge amounts of data. The final output of the function is provided

in the following figure.

Figure 4.10: Instance of Final output obtained from Named Entity Algorithm

From the above figure, we can observe that we have obtained the required outputs. The

Leader’s name in the statement is “Andrew Cuomo”, which is being identified as a “PERSON”,

58

and the statement spoken city in the statement, or the statement is related to the city “New York”,

which is being identified as “GPE”. In this way, we can get the required attributes like Leader’s

name, their statement spoken region into the raw dataset, that is obtained at the end of chapter 3.

4.3.3 Applying Algorithm to the Dataset

Finally, a revised dataset can be obtained when the algorithm is applied to the previous raw dataset.

The output of this operation can be shown, and a sample amount of entire dataset is arranged as

follows in the table below.

Table 4.1 Sample of dataset showing statements provided by leaders in state of Georgia

Statemen

t_Dates

Headlines Stories Headline

Region

Type of

Leader

Leader

Name

07-01-20 Georgia has no

plan to order…

Gov. Brian Kemp

speaks at a press…

Georgia Governor Brian

Kemp

07-08-20 Atlanta mayor

says she is…

Atlanta Mayor

Keisha Lance…

Georgia Mayor-

Atlanta

Keisha

Lance…

07-23-20 Atlanta mayor

says she's…

Atlanta Mayor

Keisha Lance…

Georgia Mayor-

Atlanta

Keisha

Lance…

07-31-20 Georgia governor

extends public…

Gov. Brian Kemp

signed two….

Georgia Governor Brian

Kemp

The above table consists of sample amount of dataset related to state of Georgia, and the statements

given by some of the leaders in that State. Now the dataset is completely prepared with the required

additional attributes. And the usage of this data in analyzing the sentiment and emotion is provided

in the following chapters.

59

CHAPTER 5

SENTIMENT ANALYSIS

5.1 Introduction

As discussed before, currently during this pandemic, there is a huge amount of change in

the lifestyles of people. Many preventive measures have been implemented by leaders and their

words have affected a lot during this situation. To analyze how the words of leaders in a certain

region have affected people can be known through a measure called sentiment. By capturing

sentiment, people’s opinions about the scenarios can be judged. Each statement or any form of text

can be classified into its own polarity based on the words it contains. In general, through sentiment

analysis, each sentence can be classified into polarities positive or negative.

This thesis, as discussed in previous chapters, uses supervised learning methods to train

the model and then labels the statements with the help of highly accurate and trained machine

learning model.

This chapter discusses the work on polarity classification, where the leader’s statements

collected and prepared along with additional attributes from previous chapters will be classified as

either positive or negative according to the situations of the pandemic. This chapter shows

experiments performed to achieve a highly accurate model and gives detailed description about

efficient model that is used for labelling the dataset. Firstly, this chapter discusses about the dataset

that can be taken to train the required model and then enters towards selection of an efficient model

and finally shows a labelled output with high amount of accuracy.

60

5.2 Dataset Description

The dataset used in this work to train the models is the famous Movie Review Dataset [35].

This dataset is used for binary classification which consists of 25000 highly polar movie reviews

for training and 25000 for testing. This dataset is used in such a way that 20000 reviews were used

to train the model and 5000 reviews were used for validation. Each review in the dataset has a

‘LABEL_COLUMN’ where the sentiment labels are present. Sentiment label 1 represents Positive

reviews and sentiment label 0 represents Negative reviews. This dataset also contains 25000

unlabeled reviews. But they were removed as this is a supervised learning task. Finally, the

‘DATA_COLUMN’ and ‘LABEL_COLUMN’ were taken for training and testing. The following

section gives detailed description about machine learning models that were used for experimenting

and working of the final selected model to perform sentiment labeling.

5.3 Selection of Machine Learning Model

Basically, the problem in this thesis is classification. And as we know, a classification

model aims to draw some conclusion from observed inputs. The conclusions are labels that can be

applied to the dataset and used for analysis further.

There are numerous classification models that include decision tree, random forest, logistic

regression, Naïve Bayes, gradient-boosted tree, support vector machine and multilayer perceptron.

To select an efficient model, firstly the dataset is experimented on different models to find accuracy

of labeling for the movie reviews dataset.

In order to start with experimentation, the movies review dataset is cleaned by using the

text pre-processing techniques that have been discussed earlier in Chapter 4. The cleaning process

and output after each step is discussed in brief as follows.

61

5.3.1 Dataset Cleaning

Both the dataset used for training labels and the leader’s statements dataset has to be cleaned before

processing the text in them. The process of cleaning is described in the form of steps given as

follows.

Step-1: Remove Punctuations

Beginning with cleaning, punctuations are removed from dataset. Both the train and test datasets

of movie reviews dataset are modified in the same way. This is repeated to the leader’s statements

dataset that is revised and obtained at the end of Chapter-4.

Step-2: Removal of Stop Words

After removal of punctuations, unwanted words which are also known as stop words have to be

eliminated from all the datasets. The stop word removal procedure is shown in the below figure.

Figure 5.1 Sample output after removing stop words from dataset

62

Step-3: Lemmatization

From the previous section 4.1, we get to know that Lemmatization is better than Stemming, as

Lemmatization considers the parts of speech of words and then transforms the words into root

words, which lacks in stemming. So, we have performed lemmatization here for both the datasets.

And the figures below show the difference between non-lemmatized and lemmatized text.

Figure 5.2 Sample input text before lemmatization

Figure 5.3 Sample output after lemmatization

 After obtaining the lemmatized text, the datasets can be prepared for sentiment analysis,

which is shown as follows.

63

Figure 5.4 Movie Reviews Dataset after Cleaning

From the figure above we can observe that the Category and Reviews after Cleaning attributes are

only useful for training the classifiers. So, they have been separated from the dataset and stored in

new files which can be used for further processing.

Figure 5.5 Movie Reviews Dataset for training Classifiers

64

5.3.2 Experiments with different classifiers

The dataset obtained after cleaning can now be used on to different classifiers for testing

and training. This section focuses on different type of classifiers used for experiments and selecting

the most efficient one among them. The description and working about the selected model will be

discussed in the next section, along with labeling the dataset containing leader’s statements.

Before using the datasets to train, it has to be vectorized. For vectorization, two vectorizers

have been used for experimenting, Count Vectorizer and TF-IDF vectorizer, which in brief, have

been discussed in Chapter-4. After vectorizing the movie reviews dataset, it has been sent to the

classifiers.

EXPERIMENT-1:

Firstly, the data has been tested among classifiers, Logistic Regression, Support Vector Machine

and Support Vector Machine with Linear Kernel. Among three classifiers, better results were

obtained when dataset is trained and tested through Linear SVC with count vectorizer, when

compared to others. The training accuracy is shown as follows,

Figure 5.6 Accuracy with Linear SVC

65

EXPERIMENT-2:

For improving the accuracy, n-gram range is introduced along with the count vectorizer

used. During this experiment, several n-gram ranges were taken such as (1,2), (1,3), (1,4) which

represents taking 2 words at once, 3 words at once, and 4 words at once respectively. Among these,

better results were obtained when (1,2) n-gram range was taken. The accuracy has been improved

to 88%, which is shown as follows.

Figure 5.7 Improved accuracy with Linear SVC with n-gram range (1,2)

EXPERIMENT-3:

 In an attempt to increase accuracy further, a special list of stop words is added to the model,

to remove if there is any noise and to increase the efficiency of count vectorizer. Through this there

was an improvement in accuracy, but not to a level that is satisfiable. The accuracy after

experiment 3 is shown as follows,

Figure 5.8 Improved accuracy with Linear SVC

66

5.3.3 Experiments with deep learning networks

There are techniques like hyper parameter tuning, with which accuracy can be boosted. But

using them for conventional classification models could increase the complexity and run time of

the model when higher amount of data has to be labeled. This limitation has given a scope to

explore the concepts of deep learning models.

After cleaning the dataset, before feeding the data to deep learning networks, the data

should be transformed into floating-point tensors. To perform this conversion, word-embeddings

can be used. To obtain word embeddings, the process can be started with learning random word

vectors. But the package keras provides conversion into word embedding by an Embedding layer.

EXPERIMENT-1:

The first experiment is by developing a simple multi-layer perceptron model with a single hidden

layer. As an input layer, embedding layer can be used by setting word size to 32 and vocabulary

to 5000, and the input length to 500. From this, the output obtained from the first layer will be

32x500 sized matrix. Then this output will be flattened to one dimension. Then a dense hidden

layer of rectifier activation function is used. After this, a dense layer with sigmoid activation

function is used to predict 0 and 1.

 In this experiment, the model uses ADAM optimizer for optimization. This model is plotted

using the keras package, which is shown as follows.

67

Figure 5.9 Input Layers of Multi-layer perceptron model

The accuracy obtained from the above model is 93.30% after 2 Epochs and is shown as follows.

Figure 5.10 Accuracy obtained from Multi-layer perceptron model

68

EXPERIMENT-2:

The second experiment is building a sentiment classifier with pre-trained NLP model that is BERT.

BERT stands for Bidirectional Encoder Representation from Transformers [36]. There are two

pre-trained variations of BERT. The base model is a 12-layer, 768-hidden, 12-heads, 110M

parameter neural network architecture, whereas the large model is a 24-layer, 1024-hidden, 16-

heads, 340M parameter neural network architecture. The architecture can be visualized as follows

[36].

Figure 5.11 Pre-training and Fine-Tuning procedures for BERT

As BERT comes under the category of transformers, it can be imported from the Transformers

library in Python. The dataset is tokenized and fed same as that of Experiment-1. This experiment

uses ADAM as optimizer too. But the difference is dataset is fed in the form of input sequences,

and fine tuning the model with BERT. This improved the accuracy to 96% in two epochs. The

output can be shown as follows,

69

Figure 5.12 Output of Classifier after using BERT

The training accuracies obtained from the experiments is summarized in table as follows.

Table 5.1 Summary of Experiments conducted for sentiment classifier

Models Experimented Accuracy Obtained

Logistic Regression 83.4%

Linear SVC 85.6%

Linear SVC with count vectorizer 88.72%

Multi-layer perceptron model 93.30%

Classifier with BERT pre-trained model 96.4%

As the accuracy obtained from experiment-2 using deep learning networks is the highest

among all, it had been selected as the best classifier to label the sentiments for the leader’s

statements dataset. Detailed explanation about creating input sequences, fine tuning with BERT

and making predictions or labeling is provided in next section for the selected classifier.

70

5.3.4 Working of BERT Tokenizer and BERT Classifier

5.3.4.1 Brief Introduction to BERT

BERT is constructed upon the concepts of pre-training contextual representations. Pre-

trained representations can either be context-free or contextual, and contextual representations can

further be unidirectional or bidirectional [43]. BERT represents bidirectional context-free

functionality by considering its previous and next context to generate a word embedding. This

feature makes it unique from other context-free models. To minimize the problems that occur

during bidirectional predictions, BERT constitutes straightforward technique of masking out some

of the words in the input and then condition each word bidirectionally to predict the masked words

[43].

5.3.4.2 BERT Model

In general, BERT embeddings are trained for performing two major tasks. These are listed

as follows.

1. Sequence Classification Task: In this task, the classifier returns the category of the input

sentence.

2. Next sentence prediction Task: In this task, the model determines whether the next sentence

follows the current sentence or not.

In order to perform these tasks, the sentences have to be tokenized. BERT constitutes a

tokenizer which can be installed from “transformers” package in Python. Using this package, the

model and tokenizer can be extracted. The commands can be shown as follows,

model = TFBertForSequenceClassification.from_pretrained("bert-base-

uncased")

71

tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")

The model summary can be shown as follows.

Figure 5.13 Model Summary of BERT

Creation of Input Sequences:

To feed the input into the BERT model, sequences have to be created from the required

dataset. To perform this operation, the function “InputExample” can be used to create input

sequences from train and test dataset. The usage of this function is shown as follows,

Figure 5.14 Usage of function InputExample

The obtained sequences can then be used for sequence classification. Now, the sequences

can be tokenized using the BERT tokenizer mentioned above, to create an input format with

tokenized objects. Detailed lines of code will be shown in Appendix-2.

72

Fine Tuning the BERT Model:

The model can be compiled using “Adam” as optimizer, “SparseCategoricalAccuracy” as

accuracy metric and “CategoricalCrossentropy” as loss function, for achieving better results. Fine

tuning the model with the help of these will give 96% training accuracy, as shown in the figure

below.

Figure 5.15 Fine tuning of BERT Model

Then the sentiments for tokenized sequences can be predicted and required labels can be

generated which are shown in the next section.

73

5.3.5 Labeling Sentiments using BERT Classifier

After using the BERT Classifier to label the sentiments positive and negative, the dataset can be

transformed as follows,

Table 5.2 Sample of dataset showing statements provided by leaders in state of Georgia

with Sentiment of Headline and Story

Statemen
t Dates

Headlines Stories Headline
Region

Type of
Leader

Leader
Name

Sentiment
Headline

Sentiment
Story

07-01-20 Georgia has
no plan to
order…

Gov. Brian
Kemp

speaks…

Georgia Governor Brian
Kemp

Negative Negative

07-08-20 Atlanta
mayor says
she’s si…

Atlanta
Mayor
Keisha

Lance…

Georgia Mayor-
Atlanta

Keisha
Lance…

Positive Positive

07-23-20 Atlanta
mayor says
she’s wo…

Atlanta
Mayor
Keisha

Lance…

Georgia Mayor-
Atlanta

Keisha
Lance…

Positive Positive

07-31-20 Georgia
governor
exte…

Gov. Brian
Kemp signed

tw…

Georgia Governor Brian
Kemp

Positive Positive

From the above table, we can observe that the sentiments have been labeled for each

statement using the BERT Classifier model. As we can see, the classes obtained from sentiment

labels are positive and negative which does not provide detailed intentions present in leader’s

statements. There can be many factors related to how leader’s think. For instance, some of them

were highly concerned about their states, and have always given statements related to safety

measures. And some of the other leaders were not concerned about their states and have always

given such statements which show that no precautions or measures were not taken during

74

pandemic, which led to increase in number of COVID-19 cases. This incompleteness in the

opinion or intention after calculating the sentiment led to finding emotions in the statements.

 The following chapter provides description about emotion analysis, supervised

classification to label emotions, experiments to select classifier model and finally an upgrade to

the dataset of leader’s statements by adding the emotion labels.

75

CHAPTER 6

EMOTION ANALYSIS

Emotion Recognition from text is related to the field of NLP, and it is closely related to

sentiment analysis. As we have seen in the previous chapter, the sentiments were restricted to

categories Positive and Negative. Emotions can also be split into two kinds which are positive and

negative emotions. The positive emotion can consist of happiness, interest, concerned, joy,

laughter, etc. Whereas negative emotions could be fear, angry, sadness, unconcerned and so on.

Emotions can be classified using supervised learning methods, similar to that to labeling

sentiments, which was discussed in previous chapter. The same procedure can be followed to

classify emotions, by taking an emotion rich dataset, cleaning and pre-processing it, train a

classifier accordingly, and start labeling or predicting emotions for new datasets.

This chapter discusses about the datasets that are available for emotion analysis,

experiments using datasets and finally labeling the leader’s statements dataset that is revised in

previous chapter.

6.1 Dataset Description

There are many datasets which contain the basic set of emotions such as happiness, anger,

sadness, surprise, disgust, and fear. But when situations related to pandemic are considered, the

emotion labels can change. It can be shown through instances.

 Ex: “Leader says, masks are not mandatory. It is okay to not wear masks.”

In the present scenario, wearing a mask should be mandatory as the number of cases were

not controllable at a point of time and it can also prevent the increase in number of cases. Such

76

restrictions have reduced the number of cases in many other states. So, this statement looks fearful

according to the present situation. It can also be considered as an unconcerned statement when we

look from the aspect of leader. Therefore, the emotion in this statement can be classified as

unconcerned. So, to train a machine learning model with such statements and emotions, normal

datasets with the conventional set of emotions will not be sufficient, it has to be increased with the

data that is related to COVID-19, in order to judge how concerned or unconcerned the leaders were

towards their states.

The dataset is prepared by combining the datasets acquired from sources such as

dailydialog [39], ISEAR (International Survey On Emotion Antecedents And Reactions) [40],

emotion stimulus [38] and Emotional responses to COVID-19 [41]. After combining these

datasets, there were several emotion labels, which can be listed as follows,

1. Happiness

2. Sadness

3. Concerned

4. Unconcerned

5. Safety

6. Anger

7. Disgust

8. worry

9. Neutral

As the dataset was intended to be used for such purposes, not much data cleaning and pre-

processing was necessary except for the operations like removal of punctuations, tokenization, and

lemmatization.

77

6.2 Experiments with different Classifiers

The dataset during experiments is split into test and train. The train and test consist of 9834

and 3959 emotional statements with the above listed emotion labels. Several experiments were

performed on this dataset by choosing different classifiers, starting from Naïve Bayes to deep

learning network with BERT pre-trained model. The F1-scores have been noted into the table as

follows.

Table 6.1 Summary of Experiments conducted for Emotion classifier

Models Experimented F1-Score Obtained

Naïve Bayes 56.34%

Logistic Regression 67.02%

Linear SVC 68.345%

LSTM with word2vec embedding layer 71.92%

CNN with word2vec embedding layer 73.8%

Classifier with BERT pre-trained model 81.2 %

As the accuracy obtained from experiment using BERT pre-trained model in deep learning

networks is the highest among all, it had been selected as the best classifier to label the emotions

for the leader’s statements dataset.

6.3 Labeling Emotions using BERT Classifier

The emotion labels can be classified in the same way as sentiments have been classified

earlier using BERT model in section 5.3.4. After using the BERT Classifier to label the emotions,

the dataset is upgraded as follows,

78

Table 6.2 Sample of dataset showing statements provided by leaders in state of Georgia

with Sentiments and Emotions of Headline and Story

Statement
Dates

Headlines Stories Headline
Region

Type of
Leader

Leader
Name

Sentiment
Headline

Emotion
Headline

Sentiment
Story

Emotion
Story

07-01-20 Georgia has no plan
to order…

Gov. Brian Kemp
speaks at a…

Georgia Governor Brian
Kemp

Negative Unconc… Negative Sad,
Unc…

07-08-20 Atlanta mayor says
she’s si…

Atlanta Mayor
Keisha Lance…

Georgia Mayor-
Atlanta

Keisha
Lance…

Positive Sad,
Unconc…

Positive Angry,
Unc…

07-23-20 Atlanta mayor says
she’s wo…

Atlanta Mayor
Keisha Lance…

Georgia Mayor-
Atlanta

Keisha
Lance…

Positive Safety Positive Sad,
Unc…

07-31-20 Georgia governor
exte…

Gov. Brian Kemp
signed two exe…

Georgia Governor Brian
Kemp

Positive Safety Positive Safety,
Unc...

From the above table, we can observe that the required attributes which are emotion labels

for both stories and headlines, and sentiment labels for both stories and headlines have been added.

This dataset can be used to analyze the leader’s statements during the pandemic. The analysis and

results will be shown in the following chapter.

79

CHAPTER 7

RESULTS AND ANALYSIS

7.1 Analysis of Leader’s statements

Once a dataset is ready, we can start analyzing several aspects like most unconcerned statements

given by leaders, types of emotions in their positive and negative statements, graphical analysis of

both news statements and COVID-19 data in time series [42]. As we have seen earlier, each

emotion can be sub categorized from positive and negative sentiments, the analysis is based upon

this. Different types of analysis performed on the statements of leader’s is shown as follows.

Analysis-1:

From the leader’s statements dataset that was ready in previous chapter, we can choose

which leader’s statements we want to analyze. As instances were already shown relating to state

of Georgia, the analysis will be continued with the same state. In analysis 1, the leader chosen

from the state of Georgia is governor, Brian Kemp. When most unconcerned and negative

statements are analyzed, these statements have been printed, which are given as follows.

Most Unconcerned and negative statements of Governor-State of Georgia:

Statement Date: 07-01-2020

Headline: Georgia's governor said they could reopen. More than 50

restaurateurs said in a newspaper ad they're not ready.

Statement Date: 07-16-2020

Headline: Georgia has no plan to order people to wear masks, governor

says

80

From the above statements, we can notice that the governor had taken measures to re-open

the state in peak of pandemic such as month of July. And also, many restaurants were not ready

with his orders to re-open. This can be verified by looking at the number of confirmed cases of

COVID-19 in the state of Georgia, during the month of July. These can be extracted from the

resources provided by CSE department of John Hopkins University [44], which provides several

attributes like number of confirmed cases, number of deaths, locations, etc.

Figure 7.1 Figure showing number of confirmed cases of COVID-19 in the state of Georgia

during the month of July

From the above figure, we can observe that the number of confirmed COVID-19 cases

were nearly high in the mid of July. But at the same time, the governor had passed statements that

include severe terms like re-opening of state. Such statements prove to be instances where leaders

have not concerned about their ruling states.

Analysis-2:

In the second analysis, the leader’s statements were visualized based on emotions that come

under each category of sentiment. When the same leader, governor of state of Georgia is chosen,

there were more statements taken by him which come under category safety among positive

81

statements. This represents that the governor has taken safety and preventive measures but was

also unconcerned at times. The output can be shown as follows.

Figure 7.2 Figure showing different Emotions in Positive Statements given by Governor,

State of Georgia

As we have discussed earlier, there are unconcerned statements provided by

governor at times. This can be shown from the output as follows.

82

Figure 7.3 Figure showing different Emotions in Negative Statements given by Governor,

State of Georgia

The above figures are provided as an example in analysis to see what type of emotions the

leader had during the statements, split into main categories of sentiment as positive and negative.

In this way, the acquired dataset can be used to analyze several aspects in such type of scenarios.

83

CHAPTER 8

CONCLUSION AND FUTURE WORK

8.1 Conclusion

As we have seen from previous chapters that leader’s statements not only provide orders,

but they also affect people’s opinion, which was evident during this pandemic. Not only during

COVID-19, but a deeper analysis can also prove that it is the same case for almost every pandemic

situation. Such research towards statements concludes that leaders should always be aware of the

situation and take actions accordingly, instead of getting influenced by political factors, as it

severely affects people’s decisions, and it indirectly shows an impact on their daily life.

This thesis reports an analysis of different emotions and sentiments in leader’s statements

by considering the high-level objective of the work to be analyzing the effects of leader’s

statements during COVID-19 pandemic. This works shows several intermediate tasks that were

performed with a goal to create a dataset for analysis.

Tasks such as Web Scraping have been discussed in chapter 3, where the process to web

scrape the data from CNN news channel using efficient methodologies was shown. And in a desire

to create more attributes for analysis, NLP techniques used were discussed and shown with several

instances. Functions to create required attributes were built in this process. And as the primary

objective of this work is to analyze the leader’s statements, sentiments and emotions existing were

found using highly accurate deep learning networks with the latest BERT- pre trained model. I

believe the performance of this model could be increased and accuracy can be improved further if

there were more annotated data available for training the emotion classifiers. As the work is

summarized in this section, the next section includes the roadmap to future work.

84

8.2 Future Work

The work presented in this thesis can be pursued further in several directions. One of the

major tasks to be addressed is, here the focus was mainly towards leader’s statements restricting

to the United States of America. This can be extended towards collecting the leader’s statements

based on the international news giving a scope for extending the analysis, worldwide.

Another direction for future work is to build unsupervised models for sentiment and

emotion classification. For sentiment classification, supervised classification was sufficient for

labeling sentiments. But emotion classification basically lacks in the amount of data as per the

scenarios. So, building an unsupervised classifier according to the targets of particular application

can open the doors to future research in this field of analysis.

NLP is another part of this research which has endless strings. Text analysis is always

incomplete and numerous tasks can occur based on the problem present in the applications.

Extending dataset to analyze international views can also give scope to creating more functions

using NLP techniques. This could be yet another possible line of research.

85

APPENDIX 1

NLTK Pos Tags are used before determining Named Entities present in a sentence. There are

numerous tags present in the library, among which some of the identified tags were described

above. The complete list of tags can be shown in the following table.

Table A-1: NLTK Pos tags with their meanings

Pos Tags Meaning

CC Coordinating Conjunction

CD cardinal digit

DT determiner

EX existential there

FW foreign word

IN preposition/subordinating conjunction

JJ adjective (large)

JJR adjective, comparative (larger)

JJS adjective, superlative (largest)

LS list market

MD modal

NN noun, singular

NNS noun plural

NNP proper noun, singular

NNPS proper noun, plural

PDT predeterminer

86

POS possessive ending

PRP personal pronoun

PRP$ possessive pronoun

RB adverb

RBR adverb, comparative

RBS adverb, superlative

RP particle

TO infinite marker (to)

UH interjection

VB Verb

VBG Verb gerund

VBD Verb past tense

VBN Verb past participle

VBZ Verb, present tense

WDT Wh-determiner

WP Wh-pronoun

WRB Wh-adverb

87

APPENDIX 2

This appendix consists of algorithms used during each phase of the thesis.

• Code used for Web Scraping of headlines and stories from CNN News Channel:

o Language used: R

• Algorithm used for extracting named entities from input text:

o Language used: Python

• Classification using BERT Tokenizer and model:

o Language used: Python

88

REFERENCES

[1] Saurkar, Anand V., Kedar G. Pathare, and Shweta A. Gode. "An overview on web scraping

techniques and tools." International Journal on Future Revolution in Computer Science &

Communication Engineering 4, no. 4 (2018): 363-367.

[2] Mehlführer, Andreas. Web scraping: a tool evaluation. na, 2009.

[3] Penman, Richard Baron, Timothy Baldwin, and David Martinez. "Web scraping made simple

with sitescraper." online],[retrieved Nov. 30, 2015]. Retrieved from the internet (2009).

[4] Khurana, Diksha, Aditya Koli, Kiran Khatter, and Sukhdev Singh. "Natural language

processing: State of the art, current trends and challenges." arXiv preprint

arXiv:1708.05148 (2017).

[5] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. “An Introduction to

Information Retrieval” online, Retrieved from the internet (2009).

[6] Liu, Bing. "Sentiment analysis and opinion mining." Synthesis lectures on human language

technologies 5, no. 1 (2012): 1-167.

[7] Medhat, Walaa, Ahmed Hassan, and Hoda Korashy. "Sentiment analysis algorithms and

applications: A survey." Ain Shams engineering journal 5, no. 4 (2014): 1093-1113.

[8] Montoyo, Andrés, Patricio Martínez-Barco, and Alexandra Balahur. "Subjectivity and

sentiment analysis: An overview of the current state of the area and envisaged

developments." Decision Support Systems 53, no. 4 (2012): 675-679.

[9] Pang, Bo, Lillian Lee, and Shivakumar Vaithyanathan. "Thumbs up? Sentiment classification

using machine learning techniques." arXiv preprint cs/0205070 (2002).

89

[10] Dong, Li, Furu Wei, Chuanqi Tan, Duyu Tang, Ming Zhou, and Ke Xu. "Adaptive recursive

neural network for target-dependent twitter sentiment classification." In Proceedings of the 52nd

annual meeting of the association for computational linguistics (volume 2: Short papers), pp. 49-

54. 2014.

[11] Tang, Duyu, Furu Wei, Bing Qin, Ting Liu, and Ming Zhou. "Coooolll: A deep learning

system for twitter sentiment classification." In Proceedings of the 8th international workshop on

semantic evaluation (SemEval 2014), pp. 208-212. 2014.

[12] Zhou, Shusen, Qingcai Chen, and Xiaolong Wang. "Fuzzy deep belief networks for semi-

supervised sentiment classification." Neurocomputing 131 (2014): 312-322.

[13] Palanisamy, Prabu, Vineet Yadav, and Harsha Elchuri. "Serendio: Simple and Practical

lexicon based approach to Sentiment Analysis." In Second Joint Conference on Lexical and

Computational Semantics (* SEM), Volume 2: Proceedings of the Seventh International Workshop

on Semantic Evaluation (SemEval 2013), pp. 543-548. 2013.

[14] Picard, Rosalind W. Affective computing. MIT press, 2000.

[15] Alm, Cecilia Ovesdotter, Dan Roth, and Richard Sproat. "Emotions from text: machine

learning for text-based emotion prediction." In Proceedings of human language technology

conference and conference on empirical methods in natural language processing, pp. 579-586.

2005.

[16] Ekman, Paul. "Basic emotions." Handbook of cognition and emotion 98, no. 45-60 (1999):

16.

90

[17] Liu, Hugo, Henry Lieberman, and Ted Selker. "A model of textual affect sensing using real-

world knowledge." In Proceedings of the 8th international conference on Intelligent user

interfaces, pp. 125-132. 2003.

[18] Sirisuriya, De S. "A comparative study on web scraping." (2015).

[19] Glez-Peña, Daniel, Anália Lourenço, Hugo López-Fernández, Miguel Reboiro-Jato, and

Florentino Fdez-Riverola. "Web scraping technologies in an API world." Briefings in

bioinformatics 15, no. 5 (2014): 788-797.

[20] Anand, V., G. Kedar, and A. Gode Shweta. "An Overview On Web Scraping Techniques and

Tools." International Journal on Future Revolution in Computer Science & Communication

Engineering 4 (2018).

[21] Persson, Emil. "Evaluating tools and techniques for web scraping." (2019).

[22] Salem, Hamza, and Manuel Mazzara. "Pattern Matching-based scraping of news websites."

In Journal of Physics: Conference Series, vol. 1694, no. 1, p. 012011. IOP Publishing, 2020.

[23] Hadley Wickham., RStudio. Easily Harvest (Scrape) Web Pages. (2015)

[24] Harrison, John, and Maintainer John Harrison. "Package ‘RSelenium’." (2020).

[25] Thomas, David Mathew, and Sandeep Mathur. "Data analysis by web scraping using python."

In 2019 3rd International conference on Electronics, Communication and Aerospace Technology

(ICECA), pp. 450-454. IEEE, 2019.

[26] Reitz, Kenneth. "Requests: HTTP for Humans—Requests 2.9. 1 documentation." URL

http://docs. python-requests. org/en/v2 9 (2015).

91

[27] Mitchell, Ryan. Web scraping with Python: Collecting more data from the modern web. "

O'Reilly Media, Inc.", 2018.

[28] Scrapy developers. Scrapy Tutorial. Revised in 2020

[29] Hadley Wickham, RStudio. stringr, Simple, Consistent Wrappers for Common String

Operations. (2019).

[30] Chowdhury, Gobinda G. "Natural language processing." Annual review of information

science and technology 37, no. 1 (2003): 51-89.

[31] Miller, George A. "WordNet: a lexical database for English." Communications of the

ACM 38, no. 11 (1995): 39-41.

[32] Bird, Steven, Ewan Klein, and Edward Loper. Natural language processing with Python:

analyzing text with the natural language toolkit. " O'Reilly Media, Inc.", 2009.

[33] Matt Johnson. Lifting the hood on NLTK’s NE Chunker. (2016)

[34] Mount, John. "The equivalence of logistic regression and maximum entropy models." URL:

http://www. win-vector. com/dfiles/LogisticRegressionMaxEnt. pdf (2011).

[35] Maas, Andrew, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and

Christopher Potts. "Learning word vectors for sentiment analysis." In Proceedings of the 49th

annual meeting of the association for computational linguistics: Human language technologies,

pp. 142-150. 2011.

[36] Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. "Bert: Pre-training of

deep bidirectional transformers for language understanding." arXiv preprint

arXiv:1810.04805 (2018).

92

[37] Calefato, Fabio, Filippo Lanubile, and Nicole Novielli. "Emotxt: a toolkit for emotion

recognition from text." In 2017 seventh international conference on Affective Computing and

Intelligent Interaction Workshops and Demos (ACIIW), pp. 79-80. IEEE, 2017.

[38] Ghazi, Diman, Diana Inkpen, and Stan Szpakowicz. "Detecting emotion stimuli in emotion-

bearing sentences." In International Conference on Intelligent Text Processing and Computational

Linguistics, pp. 152-165. Springer, Cham, 2015.

[39] Li, Yanran, Hui Su, Xiaoyu Shen, Wenjie Li, Ziqiang Cao, and Shuzi Niu. "Dailydialog: A

manually labelled multi-turn dialogue dataset." arXiv preprint arXiv:1710.03957 (2017).

[40] Scherer, Klaus R., and Harald G. Wallbott. "Evidence for universality and cultural variation

of differential emotion response patterning." Journal of personality and social psychology 66, no.

2 (1994): 310.

[41] Kleinberg, Bennett. ”Measuring emotional responses to COVID-19”. World Pandemic

Research Network. WPRN-459652, 11/06/2020

[42] "Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real

time. Lancet Inf Dis. 20(5):533-534. doi: 10.1016/S1473-3099(20)30120-1"

[43] Jacob Devlin, Ming-Wei Chang. Open Sourcing BERT: State-of-the-Art Pre-training for

Natural Language Processing. 2018

[44] Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real

time. Lancet Inf Dis. 20(5):533-534. doi: 10.1016/S1473-3099(20)30120-1"

93

[45] Mikolov, Tomas, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. "Distributed

representations of words and phrases and their compositionality." arXiv preprint arXiv:1310.4546

(2013).

[46] Pennington, Jeffrey, Richard Socher, and Christopher D. Manning. "Glove: Global vectors

for word representation." In Proceedings of the 2014 conference on empirical methods in natural

language processing (EMNLP), pp. 1532-1543. 2014.

	1.1 Introduction and Problem Statement
	1.2 Structure of Thesis
	2
	2.1 Web Scraping
	2.2 Natural Language Processing
	2.3 Sentiment Analysis
	Machine Learning Approach
	Lexicon-Based Approach

	2.4 Emotion Analysis
	3
	3.1 Data Collection
	3.2 Web Scraping
	3.2.1 Overview of Web Scraping
	3.2.2 Techniques for Web Scraping
	3.2.2.1 Manual Web Scraping
	3.2.2.2 Automated Web Scraping
	3.2.3 Libraries for Web Scraping
	3.2.3.1 Libraries in Python
	3.2.3.2 Libraries in R
	3.2.4 Challenges while designing web scrapers
	3.2.5 Methodology and Implementation of Web Scraper
	4
	4.1 NLP Techniques for Text
	4.2 NLTK Toolkit
	4.3 Dataset Preparation using NLTK Toolkit
	4.3.1 Required modules from NLTK Toolkit
	4.3.2 Algorithm to find Named Entities
	4.3.3 Applying Algorithm to the Dataset
	5
	5.1 Introduction
	5.2 Dataset Description
	5.3 Selection of Machine Learning Model
	5.3.1 Dataset Cleaning
	5.3.2 Experiments with different classifiers
	5.3.3 Experiments with deep learning networks
	5.3.4 Working of BERT Tokenizer and BERT Classifier
	5.3.4.1 Brief Introduction to BERT
	5.3.4.2 BERT Model
	5.3.5 Labeling Sentiments using BERT Classifier
	6
	6.1 Dataset Description
	6.2 Experiments with different Classifiers
	6.3 Labeling Emotions using BERT Classifier
	7
	7.1 Analysis of Leader’s statements
	8
	8.1 Conclusion
	8.2 Future Work
	9

