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ABSTRACT  
   

  

PREDICT BEHAVIOURAL SCORES IN SLEEP APNEA PATIENTS FROM RESTING- 

 

STATE NEAR-INFRARED SPECTROSCOPY (fNIRS) 

  

Amnah Abdelrahman, M.S  

The University of Texas at Arlington, 2021  

    

  

Supervising Professor: Yingying Zhu 

 

Sleep disorders are common among adults and children; They has serious consequences on their 

heath, cognitive development, and quality of life. However, some sleep disorders are challenging 

to diagnose and more challenging to treat. Practitioners often rely on apnea-hypopnea index 

(AIH) for obstructive sleep apnea  (OSA) patients’ classification task, where considering one 

measurement could raise the risk of oversimplification. Studies show the correlation between sleep 

disorders, specifically OSA, and mental health. On the other side, there are an increasing number 

of studies suggesting evidence of a relationship between the dynamic properties of functional brain 

structure and the behaviors and cognition attributes.  

This novel work objective is to assist medical professionals in screening and treating sleep 

disorders and any related cognitive disorders as a consequence. In this work, we consider the novel 

problem of detecting behavioral measurements based on the resting-state functional near‐infrared 

spectroscopy (fNIRS) time series data. Taking the full advantages of the fNIRS neuroimaging 

technique, which is described as an emerging and promising technology for a wide range of 

applications and as a diagnosing tool. In addition, it is a useful neuroimaging technology for 
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research on children's cognitive development without the limitation of functional magnetic 

resonance imaging (fMRI). 

The foundation of the study is capturing the spatiotemporal dynamic features of the resting state 

FC and fully uses the captured dynamic information for the prediction problem. To do so,  we 

applied a 4D tensor method to build the dynamic functional connectivity matrices. Then the tensor 

statistical model trained on dynamic functional connectivity (dFC) matrices for the classification 

task. The high classification accuracy achieved was 74%. 

 

Key words: Resting-state functional near‐infrared spectroscopy (fNIRS), Sleep Apnea, Apnea-

hypopnea index (AHI), Dynamic functional connectivity (dFC), Tensor Analysis. 
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                          CHAPTER 1 
 

INTRODUCTION 

 

 

 

1.1 Introduction and Background  
  

Children's and adolescent's behavior problems are very common, peculiarly the problems 

associated with sleeping disorders (Kotagal & Pianosi, 2006; Mindell & Meltzer, 2008). Many 

studies suggest a direct relationship between sleep problems and neurobehavioral functioning 

development because of its protracted course of maturation. Sleep problems and short sleep 

duration contribute to tiredness, lower energy, and obstruct children from developing executive 

functioning (EF) abilities and cognitive development in general. A study conducted by (Turnbull 

et al., 2013) shows that 15% to 30% of children between 2 and 5 years old have some sort of 

sleeping difficulties. Furthermore, among school-aged children 6- to 12-years-old, 11 to 15 % 

experience behavioral sleep problems. Children experiencing sleep disorders are often diagnosed 

with attention deficit hyperactivity disorder (ADHD) and autistic spectrum disorder (ASD) 

(Turnbull et al., 2013).     

 

This issue brings attention to the importance of extensive examination of the impact of sleep 

problems on children's neurobehavioral functioning. However, there is more research done for 

adults than for children (Turnbull et al., 2013). The research examines the correlation between the 

sleep problems and the involved fields of cognitive developmental psychology, neuroscience, and 

pediatric sleep (Pavlova & Latreille, 2019). This would help to better understand the effects of 

sleep on the brain. Therefore, develop better practices to deal with various conditions.  

  

Cognitive development is associated with the changes in the prefrontal cortex region (PFC) of the 

brain. Damages in this region might lead to executive dysfunctions including behavioral inhibition, 

regulation of affect and arousal, ability to analyze and synthesize, and memory” (Cataletto & 
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Serebrisky, 2019).  Thus, it interferes with cognitive abilities and learning. A potential cause of 

damage in the PFC is sleeping disorder effects.  

  

  

Sleep disorders classify into over 80 classes. The major classes are "insomnia, circadian rhythm 

disorders, sleep-disordered breathing or called sleep Apnea, hypersomnia/narcolepsy, 

parasomnias, and restless legs syndrome/periodic limb movement disorder" (Abad & 

Guilleminault, 2003). 

     

First, sleep apnea is a potential serious sleep disorder. The event of apneas occurs when breathing 

repeatedly stops while the patient is asleep.  The main types of sleep apnea are obstructive sleep 

apnea (OSA), central sleep apnea (CSA), and a combination of OSA and CSA known as mixed 

sleep apnea.  The cause of OSA is when the upper airway gets partially or completely blocked 

during sleep, usually when the throat muscles relax. CSA happens when there is a failure of the 

respiratory drive when the brain fails to send the signals required for breathing (Mayo Clinic, n.d.). 

Studies found that OSA is associated with brain impairment because of profound changes in 

cerebral blood flow (CBF), in short, because of hypoxia. 

      

Untreated sleep apnea may include serious brain damage, deterioration of or threat to life, diabetes, 

heart failure, and stroke (Biswal et al., 2018). For severe cases of sleep apnea, the treatment options 

could be using airway pressure devices, such as continuous positive airway pressure (CPAP) and 

adaptive servo-ventilation (ASV) machines. Other options include surgery, like removing tonsils 

and adenoids, jaw repositioning, and creating a new air passageway (tracheostomy) (Epstein et al., 

2012). 

  

The apnea-hypopnea index (AHI) is an indicator used to assess executive function in patients with 

OSA. To calculate the AHI, the experts follow the guidelines to count the number of apnea and 

hypopnea events occurring every 15 to 120 seconds, then divide the total by actual sleep time over 

6 to 8 hours (Biswal et al., 2018). According to the American Academy of Sleep Medicine 

(AASM) (Borsini et al., 2018), the threshold of AHI is 5. If patients’ AHI is less than 5, then this 
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is normal, otherwise, it is considered to be an abnormal case. Besides, it might have severed OSA 

(Biswal et al., 2018; Pinti et al., 2020). 

  

  

Depending on AHI as the only measurement to diagnose OSA cultivates a risk of over-

simplification, and it does not provide enough information for physicians to decide the treatment 

plan for their patients (Biswal et al., 2018). Since AHI is entailing many limitations and 

assumptions; thus, there is a crucial need for multiple parameters and further tools to assess the 

OSA. 

 

Nonetheless, the massive amount of data collected from patients, plus the presence of advanced 

neuroimaging and computational technology, can be a powerful tool for diagnosing the OSA and 

any related cognitive impairments.  

 

 In terms of data, frequently, sleeping studies collects a variety of demographic information, 

clinical data, and clinical scales. One of the clinical scales is known as a Behavior Rating Inventory 

of Executive Function (BRIEF). BRIEF is a self-administered rating scale of executive function 

(EF) for children and adolescents, aged 5 to 18, completed by parents and teachers. It was first 

published in 2000. It is an evaluation tool for a daily behavior related to the functional connectivity 

(FC) in home or during school; it is used in clinical, psychoeducational, and research sets (Gioia 

et al., 2018). It reflects the neuropsychological construct of executive functionality. Therefore, it 

has been  widely used in studies associated with neurocognitive impairment (Viola et al., 2017). 

BRIEF composed of 86 indices with 8 theoretically and empirically derived clinical scales. 

 

On the other hand, a brain imaging technology known as functional near-infrared spectroscopy 

(fNIRS) offers researchers the flexibility to expand their human brain exploration, an exploration 

that can be translated into valuable applications (Ferrari & Quaresima, 2012; Irani et al., 2007).  

 

This study presents novel research aiming to propose a prediction model that can be utilized as a 

diagnosing tool or an auxiliary tool coupled with additional resources. The goal is to predict 

children’s behavior scores using their fNIRS data along with their demographic and clinical data. 
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Furthermore, this study can be classified as an exploratory analysis in the field of brain structures, 

activity, and cognitive functions.  The potential model might be uses to identify patients with OSA 

using their fNIRS- behavior data as an additional measurement. 

 

 

1.2 Thesis Motivation 
 

Identifying a treatment plan for children with OSA is necessary; to avoid consequences on the 

brain tissue leads to behavior disorders or cognitive dysfunction. Often the judgement on the 

treatment plan is a subjective decision; usually it is taken based on one measurement, called the 

AHI. Using resting-state fNIRS time series data for a prediction method may support one’s 

decision about whether to undergo a specific procedure such as Adenotonsillectomy (AT) surgery 

or not; the prediction method can avoid unnecessary risk and cost. 

 

The main objective of this initial study is to build a model to predict the clinical behavioral BRIEF 

scores based on the resting-state fNIRS time series data, and further classify patients into normal 

or abnormal in terms of their behavior, taking into consideration their demographic information 

such as age and gender. Then we compare the outcome with the AHI results based on the given 

apnea events marked by an expert.  

 

 

1.3 Problem Statement 
 

Our goal in this work is to find a potential model that can address the question of how we can 

predict the behavioral scores for a subject using their fNIRS time series data. To explore this 

problem, we address possible open questions:  

• How can we predict the behavior scores using resting-state fNIRS time series data? 

• Is there a correlation between resting-state fNIRS time series data and a patient’s behavior scores? 

• Are the patients’ resting-state fNIRS time series data different or similar according to the behavior 

scores? And the opposite? 
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• Can we rely on the resting-state fNIRS data as an indicator for patient classification? And how is 

the result accuracy compared to AHI? 

• Does the demographic data have an impact on the behavior scores and the possible model 

performance? 

• Which one of the three fNIRS parameters (HbO2, HHb, and tHb) has more information power? 

 

To address the questions, we will review group of related studies uses fNIRS and fMRI time series 

data to predict a specific condition correlated with cognitive impairment. 

 

 
1.4 Thesis Organization 

 

This thesis is divided into four chapters as follows: Chapter 1 offers the introduction, background, 

thesis hypotheses, motivation, and goals; Chapter 2 reviews some related methods for analysis and 

prediction; Chapter 3, describes and analyzes the dataset, the experimental setup, and the thesis 

methodology; and in Chapter 4, summarizes our results, presents discussion and future work. 
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                           CHAPTER 2 
 

LITERATURE REVIEW 

 

 

2.1 Functional Near-Infrared Spectroscopy (fNIRS)  
  

The fNIRS is a neuroimaging technology coupled with microelectronics and software 

advancement. It increases the range of applications and a research institution’s ability to monitor 

the human brain for better understanding and more investigations for daily actions (Di Domenico 

et al., 2019). 

  

Fields of neurodevelopment, cognitive neuroscience, social neuroscience, and ecological science 

engaged the fNIRS technology for their analyses. Within these fields, Researchers completed 

studies of typical brain development such as language processing, functional within the visual, 

auditory, and sensorimotor systems. Furthermore, they studied atypical development, 

neurodevelopmental disorders such as autism (ASD), attention‐deficit/hyperactivity disorder 

(ADHD), schizophrenia, depression, and Alzheimer’s disease (Di Domenico et al., 2019; Fan et 

al., 2020; Hu et al., 2020; Hutchison et al., 2013; Sui et al., 2020; von Lühmann et al., 2021).   

  

Some of the advantages of the fNIRS over other biomedical imaging methods such as functional 

magnetic resonance imaging (fMRI), computerized tomography (CT) scan, X-ray, ultrasound, and 

electroencephalography (EEG) are as follows: it is highly portable, lightweight, easy to wear, 

resistant to motion artifact, quiet, safe, and inexpensive. These attributes of fNIRS have made it 

particularly a great tool for studies with children and infants when they are awake or asleep. In 

general, the fNIRS provides an opportunity to study almost normal everyday life (Di Domenico et 

al., 2019; Emberson et al., 2017; Naseer & Hong, 2015; Pinti et al., 2020). For example, Figure 

2.1. shows a type of fNIRS device used to measure infant’s brain activity, it proves how convenient 

the device is.  
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Figure 2.1. A type of fNIRS machine, shows the appropriateness for infant study (Artinis 

medical SYSTEMS: Fnirs and NIRS devices-portalite mini, n.d.). 

 

Furthermore, the portability of fNIRS makes it suitable for monitoring cortical hemodynamics 

response during motor tasks or resting. This is in contrast to MRI technology restriction where the 

subjects have to be in a lab where magnetic fields are needed.  However, since the fNIRS is quite 

recent technology, it lacks the analogy to the MRI sophisticated methods for conducting 

multivariate pattern analyses (MVPA).  

 

In details, fNIRS is based on the neurovascular coupling, it provides images of blood concentration 

and oxygen saturation in tissue (Naseer & Hong, 2015).  It can reveal the hemodynamic response 

signal, analogous to the blood oxygen level dependent (BOLD) response perceived by fMRI. The 

fNIRS signal can measure the changes of the oxy-hemoglobin (HbO2) and deoxyhemoglobin 

(HHb) concentrations in the brain tissue by accurately measuring the amount of light that is 

transmitted through the brain tissue. The fNIRS machine has multiple near-infrared light sensors 

that are sources and detectors inserted into a cap to capture the bulk of photon movement, in order 

to identify the cortical activation. The source sends light in a banana-like shape through the skin 

and the skull until it reaches the outlier of the brain for about 3 cm in depth; often the depth depends 

on the types of fNIRS instrumentation. Then the unabsorbed light travels back to the surface of 
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the head where the detector measures it (Naseer & Hong, 2015).  Therefore, large datasets are 

created from these targeted regions. Figure 2.2. shows the path of the light between the source (the 

emitter) and the detector through the surface of the brain.  

 

 

 

Figure 2.2. fNIRS-based brain-computer interfaces, shows the banana shape photon path  

(Naseer & Hong, 2015). 

 

The brain neurons communicated with each other and transmitted massages to and from body 

tissues.  The neurons produce a neuroanatomist’s chemical to relay their signals, therefore the 

production process needs the energy that comes from glucose obtained from food and the oxygen 

carried by the Hemoglobin in the blood. Hence, the active areas in the brain need more energy, so 

the blood flow with oxygenation hemoglobin (HbO2), as well as the action known as regional 

CBF, increases in these regions; this process is called functional hyperemia. Figure 2.3. outlines 

the sequence of the brain hemodynamic. Therefore, there is  much light absorbed in these regions. 
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Based on the difference between the amount of light sent by the source and received by the 

detector, the machine can calculate the amount of oxygen being consumed (Ayaz et al., 2019; Pinti 

et al., 2020).   

 

 

Figure 2.3.  shows a simplified sequence of the mechanism of the brain activity (FNIRS & nirx: 

Fnirs systems: NIRS DEVICES: NIRX, n.d.). 

 

Figure 2.4. from Pinti et al., (2020) illustrates the interface between the sensors and a computer 

base, showing the hemodynamic responses during a designed memory task.  Part (A) is a recording 

of concentration changes between HbO2 and HbR (they also noted as O2Hb and HHb, 

respectively) from one channel over the PFC during the stimulation period shown by the gray 

areas. Part (B) presents the hemodynamic response, computed by averaging the HbO2 and HHb 

signals within a gray block. Part (C) shows the 16 channels over the PFC, where circled in magenta 

is the source of the signal interchanges presented in part (A) and part (B).  

fNIRS Hemodynamic 
 

Neural activation 
 
 

Metabolic demand 
 
 

Increase blood flow 
 
 

Increase in oxy-hemoglobin & Wash-out deoxy-
hemoglobin 

 



 
 

10 

 

Figure 2.4. “Example of HbO2 (red) and HHb (blue) signals from one channel (circled in 

magenta in panel C) of a single subject over the PFC using the fNIRS, during memory task. 

The gray areas refer to the stimulation period. The panels show the block‐averaged 

hemodynamic response, computed by averaging the HbO2 and HHb signals” (Pinti et al., 

2020). 

 

 

2.2 Assessing Dynamic Brain Connectivity 
 

The statistical relationship between particular physiological or brain signals in space and time is 

known as functional connectivity (FC).  For years, the fMRI, electroencephalography (EEG), 

positron emission tomography (PET), diffusion tensor imaging (DTI), and electroencephalography 
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(MEG) machines have been used to assess this relationship between brain regions. The FC shows 

a significant impact of detecting a variety of neurological diseases, cognitive distortions, and 

effective in the social and behavior research (Hutchison et al., 2013; Hu et al., 2020; Shen et al., 

2017; Zhang et al., 2010) 

 

Moreover, FC  in the brain is analyzed by multiple demonstrated methods. The methods are 

derived from computational and statistical backgrounds; examples are (Rogers et al., 2007):  

§ Seed region correlation maps analysis. 

§ Inverse covariance methods. 

§ Multivariate decomposition methods: 

- Principal component analysis (PCA). 

- independent component analysis (ICA).  

- Partial Least Squares.    

§ Graph theory. 

 

Researchers mostly track the brain activity during specific tasks and collect evidence points to 

non-stationarity FC (Leonardi et al., 2013). However, recent studies have found that tracking the 

brain activity during sleep or resting-state offers new perspectives and great opportunities to learn 

more about the brain's functional structure, since during resting-state brain signals are more robust, 

particularly in the PFC region. Resting-state dynamic functional connectivity (dFC) was 

discovered by B. Biswal el., 1995 (Chen et al., 2020). 

  

In  summary, the importance of understanding  the nature of the data created by fNIRS and the FC 

is to be able to correctly analyze the data with the right tool to take advantages of modeling the 

brain signals.  In Chapter 3, we provide more details of multivariate decomposition methods used 

for FC analysis. 
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                           CHAPTER 3 
 

CONCEPTS AND DESIGN 

 
 

This chapter highlights some related studies on resting-state fNIRS and resting-state fMRI time 

series data for various applications and analysis.  We briefly explain the statistical and 

computational methods that have appeared frequently in those studies. 

 

3.1 Multivariate Pattern Analysis 
 

Multiple methods applied to analysis and study the brain signals recorded by neuroimaging 

technology, and link between the signals and behaviors or cognitive measurements. In this section 

we present some of the common methods from statistical and computational backgrounds. 

Reviewing the methods help to evaluate the appropriate approaches for our problem. 

 

The approaches to study behaviors are the behavior‐first approach and the brain‐first approach. 

The behavior‐first monitors participants as they complete a prospective memory task or behavior 

then link it to the occurrence of brain activity. The second approach, the brain‐first, does the 

opposite. Both cases require some sort of FC analysis (Pinti et al., 2020).   

  

The objective of calculating the function connectivity is finding a deep value of the normally 

distributed time series data from two or more separate brain regions for either a subject or group 

of subjects. It can be attained in many ways. The most obvious statistical method used to analyze 

the fNIRS or fMRI data is averaging. The averaging approach is a static metric; it does not take 

advantage of the temporal dynamics in brain signals (Pinti et al., 2019). 

  

A more powerful methodology has been developed by researchers and includes transforming time 

series data into a correlation coefficient matrix first, then performing the matrices group analysis, 

or what is known as multivariate pattern analysis or multivoxel pattern analysis (MVPA).  MVPA 

is a statistical method. It is a collection of tools used to study the joint behavior of multiple random 

variables, understand the complex spatial disease affecting the brain, and most importantly, extract 
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information from the pattern of brain activity. Examples of multivariate techniques are correlation 

analysis, principal components analysis, factor analysis, and cluster analysis (Linn et al., 2016; 

Emberson et al., 2017). 

 

 

3.1.1 Time-Series and Structures Data 
 

Our work requires combining the fNIRS data and the expert labeled Apnea events, along with the 

targeted labels and the demographic information for the prediction task. One approach of 

combining time-series and structure data for classification is by either merging or aggregating the 

structured data into the time-series data (Du, 2019; Chablani, 2020). 

 

Specifically, in the case of aggregating the time series data into the structured data, three methods 

can be used: (1) Window-based summary: for each window prediction generate new features for 

the next time points.   (2) Time-series encoding: treat the data as multimodal deep learning using 

methods such as recurrent neural network (RNN), convolution neural network (CNN) or seq2seq. 

(3) Time-series heuristics: the most known methods for this case are ARIMA, TimeNet, and CNN- 

Long-term short-term memory (LSTM), and the most naïve model is the moving average. 

Moreover, in the case of merging, the structured data can be added to the time series data as new 

features.   

 

 

3.1.2 Representational Similarity Analysis (RSA) 
 

Representational Similarity Analysis (RSA) is a multivariate technique; it is derived from the same 

method as classification-based MVPA. The similarity-based decoding attempts to classify new 

observations based on the similarity with other known observations for conditions such as 

ADHD/autism. It combines data from different sources by using a common representational space, 

hereby denoted as the geometric representation of information. Then it measures the similarity 

between the brain activity in the regions of interest (ROIs) and measurements such as behavioral 

data in a higher order representation. A modest version of an RSA approach is simply using the 

Pearson correlation (Emberson et al., 2017; Kriegeskorte, 2008).  
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3.1.3 Pearson Correlation 
 
The common term used to describe the relationship between two variables is either covariance or 

correlation. The Pearson Correlation is a statistical method; it measures the strength and the 

direction of linear correlation between two variables.  Usually, the notation r is used for the Pearson 

Correlation result; the value of r is between -1 and 1. The coefficient r -value represents the strength 

of the correlation, while the sign is for the direction of the correlation, either positive or negative, 

where zero value means no correlation is found. In a scientific context, describing the strength of 

the correlation depends, and it has to be a specific term between weak, moderate, strong, and so 

on, accompanied by a confidence interval (Mukaka, 2012; Akoglu, 2018). 

The Pearson Correlation formula is as follows: 

 

 

Where r is the correlation coefficients, 𝑥! is the values of the x-variable ,  𝑦! is the values of the y-

variable, �̅� and 𝑦' is the mean values of the x-variable and y-variable respectively.   

 

Other common values of the Pearson Correlation are R-squared and P-value. The R-squared shows 

the amount of variation between the variables shared, and the P-value with a confidence level is 

used to test the Null hypothesis; the lower the P-value is, the greater the statistical significance and 

the Null hypothesis rejected in favor of the alterative hypothesis. The P-value shows the probability 

that this strength may occur by chance.  

  

In order to use the Pearson Correlation, there are some underlying assumptions taken. The 

assumptions are that the variables are independent, continuous, normally distributed, no outliers 
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exist, and linear association exist. The correlation between two variables is called bivariant, and 

multivariant for more than two variables. 

  

The Pearson Correlation is used to construct the brain connectivity matrix for both dynamic and 

static brain FC (Mukaka, 2012). 

 

 

3.1.4 Linear and Polynomial Regression 
 
Linear regression is a simple and powerful method for modelling and estimating the relationship 

between the input variable X and output variable Y. The output variable is also called the 

dependent variable, while the input variable X is also called the independent variable or the 

predictor variable. When there is only one input variable, the model is simply a linear regression, 

whereas if there are many input variables, the model is a multiple linear regression. The regressor 

is, in this case, a first order polynomial.  

The simplest linear regression model consists of the mean function coupled with the variance 

function Var as follows: 

																				𝐸(𝑌|𝑋 = 𝑥) = 𝜃" 	+ 	𝜃#𝑥	, 

𝑉𝑎𝑟	(𝑌|𝑋 = 𝑥) = 	𝜎$ 

where, 𝑋	 = 	𝑋	 is the predictor, ℎ𝜃(𝑥) = 𝜃" + 𝜃#	𝑥 is the regression function, 𝜃" and 𝜃# are an 

unknown parameter named the intercept (bias) and the slope respectively. 𝑌	 = 		 𝜃" 	+ 	𝜃#𝑥	 + 	𝜀	 

is the general linear regression model or general multivariate regression, for short the GLM, where 

𝑌	 = 		 𝜃" 	+ 	𝜃#𝑥	is	the	model	and	𝜀 is the error term.  

Usually, we need to estimate the model parameters in order to come up with an optimal model or 

fitted line ℎ%(𝑥) = 𝜃" + 𝜃#𝑥. In the case of several independent variables 𝑥1, 𝑥2, … , 𝑥𝑛	 the model 

is defined as follows: 

𝑌	 = 𝜃" + 𝜃#𝑥# 	+ 𝜃$𝑥$ +··· +𝜃&𝑥& 	+ 𝜀.	 
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Hence the regression function is given by:   ℎ𝜃(𝑥) = 𝜃" + 𝜃#𝑥# + 𝜃$𝑥$ +··· +𝜃&𝑥& = 𝜃'𝑥. 

A more advanced version of regression methods is the partial least squares regression (PLS). It is 

an effective covariance-based regression technique. It finds a linear regression model by projecting 

the predicted and the observable variables to a new space. It is recommended when there are a 

high number of explanatory variables, that  are likely to be correlated (Meidenbauer et al. , 2021).  

 

3.1.5 Support Vector Machine (SVM) 
 
The support vector machine (SVM) gained popularity among the machine learning and 

neuroimaging community (Linn et al., 2016); Due to an easy accessibility of implementation tools, 

SVM has been widely employed for behavior predictions (Sui et al., 2020; Emberson et al., 2017). 

SVM can produce significant accuracy for a wide range of problems with less computational 

power.  It is used for classification and regression tasks; the regression method is SVR.  The SVM 

models learn from a subset of data points called support vectors; these points are hard to classify. 

They are places on the opposite sides of a linear or non-linear decision boundary. In addition, the 

algorithm can control the complexity of the model, mapping the higher order dimension to a lower 

one using the kernel function (Sui et al., 2020). Moreover, SVM does not suffer the overfitting 

problem when the model fits the training data but not the testing data, which ensures a good 

generalization performance. 

The decision boundary is known as the margin of separating hyperplane. The universal equation 

of the hyperplane is:  

 

𝑤' 	𝑥		 + 	𝑏	 = 0,	 

 

where x is the data point and (𝑤, 𝑏) represents the parameter of the hyperplane.  Figure 3.1. 

illustrates an example of a simple explanation of the linear SVM classification, using soft margins 

where the red and blue circles are based on two predictors.  
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Figure 3.1. shows the separating (classification) hyperplane, margin, support vectors, and 

slack for a two-dimensional feature space (Caputo et al., 2015).  

 

 

3.1.6 Principal component analysis (PCA) 
 

The principal component analysis (PCA) algorithm is an exploratory tool for data analysis. It is 

used for dimensionality reduction purpose, mapping the data from high dimensions to low 

dimensions. As a result, it increases the interpretability of the dataset while minimizing 

information loss and keeping as much variation as possible. The algorithm creates new 

uncorrelated variables that maximize the variance (Jolliffe & Cadima, 2016; Leonardi et al., 2013).   

 

The pseudocode of the principal component’s algorithm shows the steps for data set X and number 

of components required denote k,  

 

Procedure for Principal Component Analysis (PCA): (X, k) 

1: Standardize the dataset. 

2: Calculate the covariance matrix for the features in the dataset. 

3: Calculate the eigenvalues and eigenvectors for the covariance matrix. 
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4: Sort eigenvalues and their corresponding eigenvectors. 

5: Select k eigenvectors, called principal components, that have the k largest eigenvalues. 

6: Pick k eigenvalues and form a matrix of eigenvectors (these are the top k PC) (the 

function return). 

7: Transform the original matrix (Only in case we interested on the new projection). 

8: End procedure 

 

Algorithm 1: Principal Component Analysis (PCA) 

 

 

3.1.7 Independent Component Analysis (ICA) 
 

Independent Component Analysis (ICA) is a computational method. It is a generalization of PCA; 

it considers the high-order dependencies among variables. Again, it decomposes a complex dataset 

or multivariate signal into simpler components.  For instance, it takes the spatial-temporal time 

series data forms multiple voxel/cortices and breaks it down into spatial and temporal 

components (McKeown, 2003). Moreover, ICA is capable of separate noise and artifacts from 

resting-state fNIRS data (Zhang et al., 2010). 

 

 

3.2 Sliding Window Analysis 
 

The sliding window technique is considered one of the main tools to explore time series data. It is 

a commonly used method to examine dFC dealing with the high dimensional time series data 

(Hutchison et al., 2013). 

  

Based on the defined time window length, the window the data points to calculates a specific 

statistical measure, such as the correlation coefficient. It gives a perception on the changing 

patterns within the data points through time.  

  



 
 

19 

The limitations of the sliding window technique are that the length of the window affects the result 

analysis, and it lacks sensitivity to transient changes in network connectivity (Hutchison et al., 

2013). To overcome these issues, the sliding window can be implemented with time–frequency 

analysis (Mokhtari et al., 2019). 

 

 

3.3 Cross Validation 
 

Cross validation is a model validation technique. It is also a re-sampling technique used for model 

selection, and most importantly, evaluates model generalizability (Shen et al., 2017). Prediction 

methods may use cross validation to select the most appropriate model after evaluating the latter 

on the validation set in order to limit overfitting issues, for instance. In our use of the method, to 

find a balance between the bias and variance, we need to test the hypothesis on the validation set 

separately from the training set. It would obviously be a mistake to evaluate the model on the same 

dataset used to train the model as the model would have a perfect score (but would then fail to 

generalize with unseen data). It is therefore important to test the model on unseen samples called 

validation or evaluation sets and then measure the errors for train and test sets.  The earliest form 

of estimation and inference in linear regression was the method of least squares. The purpose is to 

minimize a quantity called Residuals Sum of Square (RSS) or cost function. The cost function is 

the square root of the difference between the actual (𝑦!) and predicted values (ℎ%(𝑥!)). It can also 

be used as one of the model selection measurements. The mathematical form of RSS for a sample 

of size n is given by: 

𝐽()*!&(𝜃) 	= 	
1
2𝑛M

(ℎ%(𝑥!) − 𝑦!)$
&

!+#

	 , 

𝐽,-(𝜃) 	= 	
1
2𝑛MOℎ%O𝑥!!"P − 𝑦!!"P

$
&

!+#

	 , 

	𝐽(./((𝜃) 	= 		
1
2𝑛MOℎ%O𝑥!#$%#P − 𝑦!#$%#P

$
&

!+#
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The model complexity increases with the number of samples or the number of parameters to 

estimate. Adding more training samples reduces the estimation error though increasing the bias. 

In contrast, increasing the number of unseen samples for the prediction function on the validation 

set increases the estimation error. In an underfitting case we have 𝐽()*!& ≈ 𝐽,-, meaning that the 

model has high bias (low variance). On the other hand, in the case of overfitting, 𝐽()*!& ≪ 𝐽,- 
meaning that the model has high variance (low bias).  

The validation set is meant to tune the model parameters and the testing set is for evaluating the 

model accuracy. Another important point of cross validation is to make sure that the sampling is 

fair and crosses over (Refaeilzadeh et al., 2018). The cross validation means that every sample 

from the original dataset has the same chance of appearing in the training and validation set.  

Different cross validation methods can be used to split datasets. One of the themes is random 

selection, in which a fixed number of samples from the train set are randomly selected without 

replacement. The final estimation true error is the average for k estimators:  

𝐸	 = 	
1
𝑘M𝐸!

0

!+#

	 

The K-fold method is a popular cross validation method. With this approach, the samples (xi, yi) 

are divided into K groups called folds. The K-1 fold is then used for learning while the other folds 

are meant for testing. The 10-fold cross validation is the most commonly used in machine learning 

by the data mining community.  

A special case of the K-fold method is the shuffle split, where K=N, N being the dataset size. It 

generates N group of samples; N-1 are used for training and one for testing. It is known as the 

leave-one-out cross-validation. If the data ordering is not arbitrary, shuffling may be essential to 

get a meaningful cross-validation result. 

 

 



 
 

21 

 
3.4 Cognitive Impairment prediction using fNIRS/fMRI 
  

This section summarizes a selected group of compound methods in processing fNIRS data and 

using it for either a classification of a cognitive impairment or a regression  of measurements.  

  

3.4.1 Detection of Cognitive Impairment Using Recurrent Neural Network (RNN) 
 

Zhu et al.'s (2019) work used the resting-state fNIRS to detect cannabis-associated cognitive 

impairment. They examined two machine learning algorithms: the SVM and the RNN model. Both 

of the models trained on the dynamic FC matrices. Zhu et al. coupled their model with data 

augmentation strategy apposite for the data to boost the predicative model performance.  In their 

work, 20 channels over the PFC were recorded during resting-state. 

 

 

Figure 3.2.  illustration of classification model using (a) Fully connected neural network on a static 

connectivity matrix. (b) RNN on a dynamic connectivity matrices or input fNIRS timeseries (Zhu 

et al., 2019).  



 
 

22 

 

The architecture of the RNN prediction model (Zhu et al., 2019) applied is shown in Figure 3.2. 

Here, part (b) shows a fully connected network with four hidden layers, containing 128, 64, 32, 

and 16 nodes, respectively. They implemented a cross-entropy loss function and 

a tanh nonlinearities activation function to compute the probability of cognitive impairment status 

as output. They feed the model two types of inputs for a comparative analysis, one with raw signals 

for the 20 channels and the second with the FC matrix. 

 

 3.4.2 Detection of Cognitive Impairment Using convolutional neural network (CNN) 
  

fan et al. (2020), employed a model using deep learning algorithms.  They combined the CNN and 

LSTM network. The model is proposed to capture the spatial temporal structures of the dynamic 

FC based on resting-state fMRI data. The application focused on predicting individual’s cognition 

performance and gender classification. They took advantage of the LSTM model architecture 

rather than the RNN, where LSTM has a long-term and short-term memory, which improves the 

learning progression. Moreover, RNN has sufficient ability to solve long-term dependencies.  Fan 

et al. (2020), used LSTM to detect temporal dynamics and the CNN designed for spatial feature 

extraction. 

  

Additional research takes the advantage of the deep learning algorithms computational power for 

classification of ASD using resting-state fNIRS and resting-state fMRI time-series data done by 

Dvornek et al., 2017; and Thomas et al., 2020.  

 

 

3.4.3 Connectome-Based Predictive Modeling (CPM) 
 

Connectome-Based Predictive Modeling (CPM) is a simple linear regression model. CPM 

combines simple linear regression and feature selection together to predict individual differences 

in traits and behavior from connectivity data. It was proposed by Hutchison et al. (2013) for 

evaluating the brain-behavior relationship. CPM is trained on fMRI connectivity data using cross-
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validation and generates predictions of behavioral measures. The main characteristic of CPM is 

that it is a regression model that can predict continuous variables, while the other methods we 

reviewed are classification models.  It is worth noting that working with a regression-based 

problem can be more challenging. However, CPM is relatively easy to implement and understand 

for the neuroimaging community, where it considered as more straight forward and simple 

method (Sui et al., 2020). 

 

 

Figure 3.3. shows the schematic of CPM (Shen et al., 2017). 
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Figure 3.3.  presents the schematic of the CPM model. It starts in part (a) by forming the 

connectivity matrix and behavioral measures for each subject and dividing the data into a training 

set and a testing set.  Second, part (b) forms a connectivity matrix for all subjects where each edge 

in the connectivity matrices is associated to the behavioral measures using a form of linear 

regression. Third, in part (c), the most principal selected edges are selected based on a pre-defined 

threshold.    Part (d) summarizes the selected edges into a single subject value. Part (e) builds a 

predictive model, assuming a linear relationship between the single-subject summary value of 

connectivity and the behavioral variables. Lastly, part (f) calculates the summary values for each 

subject in the testing set and uses it as an input for the model to predict the behavioral measures.   

 

Sui et al. (2020), summarized regression-based approaches for single-task and multi-task 

problems. The single-task predicts a single behavioral measurement or cognitive score, while the 

multi-task is designed to predict multiple behavioral measures assuming the correlation between 

these variables. They mentioned the success of the CPM model for the prediction of multiple 

human behaviors. Their work is conducted on a new large data set known as Adolescent Brain 

Cognitive Development (ABCD).  Figure 3.4. lists these regression approaches.  
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                Figure 3.4.  summarize the regression approaches by (Sui et al., 2020). 
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                          CHAPTER 4 
 

 

METHODOLOGY 

 

 

4.1 Methodology 
 

The general sequence to build a prediction model starts by understanding the problem and 

describing the dataset by using visualization tools as an example. Then, the researcher selects the 

features and prepares the dataset to fit the proposed predictive models. After that, the researcher 

applies the model evaluation and select the most promising model. Finally, the researcher 

optimizes and measures the final model performance before presenting the last result.  

 

For the rest of this chapter, we will follow part of the general framework above since this is a novel 

problem and it has two main challenges. The first is combining the multimodal data for the 

analysis, and the second tis he original problem, being a multivariate regression problem, that 

requires a large quantity of data. However, our dataset is limited at this stage.  

 
 
4.2 Data Description 
 

The data comes from the University of Maryland School of Medicine. The data is for 50 patients, 

of whom 33 were included for analysis. The patients' ages are between 4 to 12 years old, and their 

data was recorded in a sleeping lab. The data was separated into two files. The first file consists of 

274,370 records for all patients. It contains the fNIRS time series data for three channels, 

measuring the prefrontal cortex (PFC) blood flow, and recording neuronal activation during 

resting-state for between 5 to 7 hours. The fNIRS captures the concentration changes of 

oxygenated hemoglobin (HbO2) and deoxygenated hemoglobin (HHb) in the of brain tissue. The 

measurements were recorded every five seconds. The fNIRS data merged with other discrete 

events called apnea, which is identified by a certified sleep technician.  The second file contains 

13 clinical behavioral scores, some statistical (demographics) data, apnea hypopnea index (AHI), 
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and other measurements. The mean age of the 33 children was 7.24 years, and the gender 

distribution among them was 18 to 15 males to females. 

 

That biometrics for sleep apnea are: OBS apnea, central apnea, mixed apnea, hypopnea, 

desaturation, arousal, spontaneous arousal, apnea arousal, arousal hypopnea, and arousal 

desaturation. Each of these events recorded as a discrete value, either 0 or 1, when it occurred 

during the sleep time.  

 

 From BRIEF, nine clinical scales as well as four composite scales are included for the prediction 

task: Inhibit, Emotional Control, Behavioral Regulation Index (BRI), Shift, Emotional Control, 

Emotion Regulation Index (ERI), Initiate, Working Memory, Plan/Organize, Task Monitoring, 

Organization of Materials, Cognitive Regulation Index (CRI), and Global Executive Composite 

(GEC) (Jacobson et al, 2016).  

 

 

4.3 Data Preparation 
 

The fNIRS data for some records needed cleaning from spike artifacts; most of the records of 

HbO2 and HHb fell into range between -25 and 25. To correct the fNIRS recorded signals, we 

used a median filter, with a sliding window size of 100.  The records for patients 1, 2, 44, and 50 

were missing some values, therefore, we replaced the missing values by the average for the 

continuous variables and the mode for the discrete variables.   

  

Then to prepare the data for the classification algorithm, we classified patients into normal and 

abnormal groups. First, we utilized the Inhibit clinical score (inhibit_pct), the control impulsive, 

to distinguish the cases with threshold equal to 65. Patients with inhibit_pct score above 65 are 

considered abnormal. In this case, the number of patients with a score above or equal to 65 were 

20 out of 33. Then we fed the data to the tensor connectome model to be shaped into 4D Tensor. 

  

Next, we calculated the average score based on the 13 behavior scores of BRIEF to classify the 

patients. The number of abnormal patients was 21 and normal patients was 12. To compare the 
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model results we also classified the patients using AHI. As a result, the number of abnormal 

patients was 19 and normal patients was 14. 

   

In our effort to study the impact of the fNIRS data based on the location of the three sensors [Tx1, 

Tx2, Tx3] for each of the HbO2, HHb or tHb, we created separate data files for each measurement 

to check how the model behaved using different time series, along with the classified patients 

based on the inhibit_pct and the average score and compared the results with the AHI.  

  

The preprocessed data file was fed to the tensor statistical model to learn the statistics of 

connectome patterns. The training data was shaped onto a 4D tensor, where the four dimensions 

were the stacked FC matrix within each sliding window, the time dimension, and all the training 

subjects. The 4D tensor present the independent variable and the class target is our dependent 

variable we want to predict (Zhu et al., 2017). 

 

  

4.4 Model Implementation  
 

The model we deployed in this work is called Tensor Connectome, developed by Zhu et al. (2017). 

The tensor statistical model is implemented for quantifying dFC in the brain. It has been applied 

to classify patients diagnosed with Autism Spectrum Disorder (ASD) based on the learned dFC 

patterns. For the rest of this section, we summarize the model for the implantation intent. 

 

The high dimensionality of the dFC makes it challenging to quantify. Common work used the PCA 

or clustering coefficients to reduce the dimensions, but the approaches mechanism dose not 

preserve the temporal dynamics and changes along time. However, the learning-based tensor 

model is originally designed to drive connectome biomarkers from resting-state fMRI images for 

each individual. Nonetheless, this model works well for data from multiple regions of the brain, 

easing the issues of high dimensionality data.  

 

In general, the dFC for each individual subject is a matrix calculated by the Pearson’s Correlation 

between the ROIs to measure the strength of FC. Then, this learning-based approach is integrated 
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with the sliding-window technique to expose the dynamics of FC. The dFC matrix for an individual 

is stacked within each sliding window to form the 3D tensor. Next, the 4D tensor is formed based 

on the 3D, along with all subjects. It is important to emphasize that this model combines the 

practices of evaluating FC for individuals and extracting connectome features for the population. 

 

 

 

     Figure 4.1. is illustration of the learning-based 4D tensor model. 

 

In Figure 4.1. presents the tensor model where the tensor connectome model is trained on a four 

dimensions tensor constructed from each individual’s connectivity matrix. 

 

fNIRS time series  

Fixed size sliding window 

Subject 1 

Subject 2 

Subject M 

Time 

N ROISs 

N ROISs 

Subjects 

Learned Functional 
Connectivity Values 
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The tensor connectome model is a module-wise network structure; it is enhanced modeling the FC 

by reflecting on the region-to-region signal correlations and the similarity between high level 

module-to-module connection patterns, contrasting to the convectional models. It suggested a 

dynamic sliding windows technique. Furthermore, based on the learned pattern and the intrinsic 

feature, the model optimizes the dFC level on individuals and the population. 

  

The main steps for running the tensor statistical model are: (1) Construct the 3D tensor of Pearson’s 

correlation for each individual subject, (2) Implement the proposed regularization model to 

develop the dFC, (3) Construct the 4D tensor based on the learned model features, (4) Implement 

the regularization model including all subjects, and (5) Decompose the 4D tensor into the 3D tensor 

to conduct the temporal dFC nature and obtain the compact connectome feature representation. 

Following that, we will go through each phase in depth, reflecting our own resting-state fNIRS 

time series data. 

 

Let 𝑥1, 𝑥2, and 𝑥3 be our three channels from fNIRS, for each of the HbO2, HHb, and tHb 

channels. Each of 𝑥𝑖 ∈ ℝ1×# where 𝑊 is the length of time points within the sliding window; in 

our solution the initial sliding window size is 40, later overlapped multiple length of sliding 

windows is adopted for the whole-time course for each subject.  Doing that would make uniform 

the length of fNIRS data for all subjects. Based on the values of 𝑥1, 𝑥2 and 𝑥3 the Pearson’s 

Correlation matrix size is 𝑁𝑥𝑁𝑥40 where 𝑁	 = 3 in our case, and 3𝑥3. The result is what is called 

the connectivity matrix denoted by tensor 𝒮	 ∈ 	ℝ3434'. Since the data channels we have are within 

the same region, they are strongly correlated and there is no need for a threshold to remove the 

weak connections or the spurious connection, therefore, our matrix would not be sparse.  

 

The tensor statistical model applies the FC optimization method to avoid quantifying the dFC 

based on signal correlation only. The optimization equation for the 3D tensor model is as follows: 

 

            (1) 
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Where,	𝒮	 ∈ 	ℝ3434'  is the stacked FC matrix within the sliding window length t, for a single 

subject.   𝒞	 ∈ 	ℝ54546  presents all the arranged Pearson’s correlation values, and the information 

from the module-to-module connection to guide the measurement of low-level region-to-region 

connectivity strength and represent sparsity. The scaler 𝛼 and 𝛾 defined to balance the strength of 

the low rank constraint with the 𝐿1 norm, since the 𝐿1 norm is effective to remove the redundant 

connections in the FC matrix. Moreover, low rank constraint ∥	∥* was applied on 𝒮 to control the 

changes in the temporal domain. The equation outcome is denoted as 𝒮∗. 

 

As extension for the above framework into the 4D tensor for the whole populations, the equation 

becomes:  

                   (2) 

 

Where 𝕊	 ∈ 	ℝ8×8×6×9  and ℂ	 ∈ 	ℝ8×8×6×9 , 𝑀 is the number of samples, 𝑇 is the number of 

sliding windows.   

 

               (3) 

 

Then 𝒮# ∈ 	ℝ8$×6×9		is the transformed matrix form the 4D tensor to the 3D tensor in order to 

learn the principal connectome space. The result of the decomposing of the tensor 𝒮# is:   

 

U(<) ∈ 	ℝ>×8&    is the brain low dimensional connectome space, U(t) ∈ ℝR×T is the low dimensional 

temporal dynamic space, ℱ# ∈ ℝR×R×M is a coefficients tensor, × 1 and × 2 represents the tensor 

mode multiplication. Finally, the classifier equation developed as:   

 

𝐅∗ 	= 	𝐔(𝐜)
𝐓 		𝐒∗#		𝐔(𝐭)                                     (4) 
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Where F* ∈ ℝR×R is a compact connectome feature representation as a result of the projection of 

the learned connectivity spaces U(c) and U(t) on the training dataset. S*# ∈ ℝN2×T is a reshaped matrix 

from the matrix 𝒮* from equation (1).  The classifier F* is trained on the learned dynamic FC 

feature representation to predict the class label for each testing subject. 

 

The model training was conducted using the 10-fold validation technique. One subject holds for 

testing and the remaining subjects are used for training.  Note that the learned dynamic brain 

connectivity features can be used to train the classic SVM or other classifiers.   
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                            CHAPTER 5 
 
 

RESULTS AND DISCUSSION 

 
  

 5.1 Results 
 

We applied the tensor statistical model we presented in Chapter 4 mixed with the cross-validation 

technique and SVM from Chapter 3. The tensor statistical model employed the sliding window, 

the Pearson correlation, and the optimization technique.  We separate the 33 patients’ fNIRS time 

series data into different files, classified as normal and abnormal. The files were set up into two 

levels; level one is based on the three variants O2Hb/HbO2, and HHb and tHb exhibits 

oxygenation-dependent light absorbing characteristics of hemoglobin. The second level includes 

the measures used to classify the patients’ records, either Inhibit_pct, average score of all the given 

clinical scores, or AHI with threshold equals to 65.   Nonetheless, the AHI factor is used for a 

comparison purpose. 

  

The quantitative measurement we are including are the accuracy, precision, and recall evaluating 

the classification performance. The final results are the average accuracy score of 10-folds. The 

following tables show the final accuracy and the standard deviation (std) for each subgroup of the 

three channels classified. 

 

In Table 5.1. we set up the sliding window size to 40 data points, and the tensor model 

optimization parameters 𝛼 and 𝛾 in Equation 3. to be equal to one.  

 

Sliding window size = 40 , 	𝛼 = 1, 	𝛾 = 1 

fNIRS channel Behavior 

score  

Patient 

Classes  

Mean 

Accuracy 
(based on 

10-Folds) 

Std  
 (based 

on 10-

Folds) 

Recall 
(based 

on 10-

Folds) 

Precision 
(based on 

10-Folds) 
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Table 5.1. lists the prediction accuracy of the tensor statistical model trained on 

fNIRS data Sliding window size = 40 , 	𝛼 = 1, 	𝛾 = 1. 

 

 

oxyhemoglobin 

(HbO2) 

Inhibit_pct 

(control 

impulsive) 

Abnormal 

= 20 

Normal = 

13 

0.64 0.143 0.529 0.470 

Average 

score 

Abnormal 

= 21 

Normal = 

12 

0.74 0.150 0.629 0.524 

AHI Abnormal 

= 19 

Normal = 

14 

0.53 0.156 0.470 0.525 

deoxyhemoglobin 

(HHb) 

Inhibit_pct 

(control 

impulsive) 

 

0.56 0.222 0.417 0.368 

Average 

score 

 
0.67 0.149 0.629 0.423 

AHI  0.53 0.105 0.376 0.423 

total hemoglobin 

(tHb) 

Inhibit_pct 

(control 

impulsive) 

 

0.64   0.096 0.62 0.42 

Average 

score 

 
0.67 

     

0.125 
0.62 0.57 

AHI 

 

 
0.56 

          

0.149 
0.525 0.425 
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We evaluate the effects of the 𝛼 and 𝛾 model parameters by the accuracy for lower values. 

In Table 5.2. we set 𝛼 = 0.1, 	𝛾 = 0.1, and  𝛼 = 0.01, 	𝛾 = 0.01 with window size =40. 

 

 

fNIRS channel 
Behavior 

score  

Patient 

Classes  

𝜶 = 1, 	𝜸 = 1 𝜶 = 0.1, 	𝜸 = 0.1 𝜶 = 0.01, 	𝜸 = 0.01 

Mean 

Accuracy  

(based on 

10-Folds) 

Std  

(based 

on 10-

Folds) 

Mean 

Accuracy  

(based on 

10-Folds) 

Std  

(based 

on 10-

Folds) 

Mean 

Accuracy  

(based on 

10-Folds)  

Std  

(based 

on 10-

Folds) 

oxyhemoglobin 

(O2Hb) 

Inhibit_pct 

(control 

impulsive) 

Abnormal = 

20 

Normal = 13 

0.62 0.162 0.54 0.0966 0.56 0.1265 

Average 

score 

Abnormal = 

21 

Normal = 12 

0.74 0.151 0.62 0.1229 0.66 0.1350 

AHI 

Abnormal = 

19 

Normal = 14 

0.62 0.079 0.44 0.2119 0.57 0.1160 

deoxyhemoglobin 

(HHb) 

Inhibit_pct 

(control 

impulsive) 

  0.61 0.144 0.53 0.1889 0.61 0.0738 

Average 

score 
  0.71 0.137 0.67 0.0823 0.62 0.1135 

AHI   0.59 0.119 0.51 0.1370 0.48 0.1398 

total hemoglobin 

(tHb) 

Inhibit_pct 

(control 

impulsive) 

  0.64 0.096 0.53 0.1947 0.55 0.1269 

Average 

score 
  0.67 0.125 0.63 0.0949 0.62 0.1549 
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AHI 
 

  0.56 0.149 0.58 0.1687 0.44 0.2459 

 

Table 5.2. lists the prediction accuracy of the tensor statistical model trained on 

fNIRS data Sliding window size = 40 , 	𝛼 = 0.1, 	𝛾 = 0.1, and 𝛼 = 0.01, 	𝛾 = 0.01. 

 

 

Moreover, we investigate the effects of the sliding windows size on the model performance. 

The results are presented in Table 5.3.  

 

fNIRS channel Behavior 
score  

Patient 
Classes  

Sliding window 
size =15 

Sliding window 
size =100 

Sliding window 
size =200 

Mean 
Accuracy  
(based 
on 10-
Folds) 

Std  
(based 
on 10-
Folds) 

Mean 
Accuracy  
(based 
on 10-
Folds) 

Std  
(based 
on 10-
Folds) 

Mean 
Accuracy  
(based 
on 10-
Folds) 

Std  
(based 
on 10-
Folds) 

oxyhemoglobin 
(O2Hb) 

Inhibit_pct 
(control 
impulsive) 

Abnormal 
= 20 
Normal = 
13 

0.48 0.147 0.59 0.152 0.60 0.133 

Average 
score 

Abnormal 
= 21 
Normal = 
12 

0.65 0.097 0.71 0.099 0.71 0.152 

AHI 

Abnormal 
= 19 
Normal = 
14 

0.56 0.222 0.57 0.149 0.58 0.091 

deoxyhemoglobin 
(HHb) 

Inhibit_pct 
(control 
impulsive) 

  0.52 0.168 0.61 0.087 0.51 0.144 

Average 
score   0.63 0.094 0.65 0.108 0.67 0.067 

AHI   0.52 0.139 0.50 0.163 0.55 0.085 

total hemoglobin 
(tHb) 

Inhibit_pct 
(control 
impulsive) 

  0.57 0.176 0.56 0.189 0.55 0.165 
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Average 
score   0.59 0.137 0.65 0.135 0.58 0.113 

AHI 
    0.47 0.170 0.57 0.105 0.57 0.105 

 

Table 5.3. lists the prediction accuracy of the tensor statistical model trained on 

fNIRS data Sliding window size = [15, 100, 200] , 	𝛼 = 1, 	𝛾 = 1. 

 

Further supportive results of the sliding window effect can be found in the appendix 

Table.1 considering a step size of 35,  for each window in a range of [15, 190].   

 

 

5.2 Discussion 
 

From our experiments, we intended to evaluate the current model performance based on four 

factors:  the oxygen-dependent absorption variant, the classification factor, the size of the sliding 

window, and the value of the optimization parameters 𝛼 and	𝛾. 

 

First, there is no evidence of variant results under HbO2 or HHb. However, the performance based 

on HbO2 and HHb is slightly better than tHb.  Second, all the results accompanying the average 

score as a classification factor produce a steadily better performance than Inhibit_pct and AHI.  

AHI gives the lowest score in all cases. Nonetheless, it is worth noting that currently AHI is the 

primary factor used by clinical experts. Third, we claim that the choice of the sliding window size 

directly inferences the model learning performance. From Table 5.4, we can see that the accuracy 

was much lower with a sliding window of size 15, where the window size of 100 and 200 presents 

close results. Therefore, based on our experiments, the best results occurred, it seems, when the 

sliding window size is 40. Lastly,  when 𝛼=1 and	𝛾 = 1 the accuracy is much higher than when 

(𝛼=0.1,	𝛾 = 0.1) and (𝛼=0.01,	𝛾 = 0.01). Additional factor affects the overall model performance 

is the size of the training data. In general, the model could improve if we feed more data for training 

stage. 
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5.3 Conclusion 
 
The domains of neuroscience, the  fNIRS technology, the FC, and children's sleeping disorders are 

recognized as important fields,  but a great deal still remains unknown. The fact that fNIRS is a 

child-friendly method to examine cognitive development moderates the limitation of 

understanding the neural changes. However, there is a lack of computation and statistical 

techniques recommended that can extract the full advantages of it, compared to the fMRI.  

  

The presented work offers a cognitive impairment classification problem. The targeted 

measurements  for prediction are a set of clinical behavioral measurements derived from BREIF 

scores. The data sample represents children aged between 4 to 12, with a possible OSA condition. 

This data is a unique data set; the data associated with their resting-state fNIRS time series, AHI 

scores, and  BREIF scores, and additional apnea events, along with demographic information.  The 

overall goal of this work is to build a regression model that can learn the dFC in order to predict 

the set of continuous values from BREIF scores. The outcome of this model can be used as a tool 

for screening children with OSA in order to treat them accordingly.   

 

Up to this point, we overviewed the potential of the fNIRS for quantifying the FC. Also, we 

highlighted selected  related works and models  using fNIRS or fMRI to detect a cognitive 

impairment. 

  

To conclude, we applied one technique in this work, because it appeared promising for tackling 

the problem. It did answer part of our research questions.  However, further study is required since 

this is a novel problem.  

 

 

5.4 Future work 
 

The current work is based on a limited data set with 33 patients and fNIRS time series data from 

three channels on PFC. Yet, by July we expect more data from patients with additional fNIRS 

channels for the analysis, which would improve the current tensor statistical model robustness and 

allow us to approach our goal of building a regression model. More analysis on the clinical and 



 
 

39 

demographic information is required on how we can integrate the given information into the 

learning model. Another possibility is to focus on regression methods combined with the neural 

network approaches.  

 

The research on the behavioral problems using fNIRS technology is a developing field. Where 

many efforts were presented to understand the FC and build useful models based on fMRI than 

fNIRS were exists. Thus, additional work and research in fNIRS is still required. Moreover, since 

fNIRS has many advantages, it is also can combined with other neuroimaging technologies such 

as fMRI and EGG  for more gains. Moreover, the researchers might need to explain more of their 

methodologies and their implementation details. Hence, many papers lack the details and focus on 

the final results. The efforts in this field can help the researcher community to distribute the 

benefits of previous works and improve their techniques. The implication of this area of study, is 

beneficial for the clinical professionals, physicians, neuroscientists, and social and sociological 

workers. It will help to enhance the practices and our understanding of the human brain. 
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APPENDIX 
 
 

  
Experiment on raw fNIRS time series data 

 
The figures in this section illustrate the dynamic of the recorded channels based on the HbO2 

(O2Hb), HHb and tHB. It reflects the hemodynamics changes for one patient as an example. It 

exposes the interchanges and the similarities between the activities in the three channels. 

 

Figure 1. The hemodynamics based on O2Hb of three channels. 
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Figure 2. The hemodynamics based on HHb of three channels. 
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Figure 3. The hemodynamics based on tHb = 02Hb +HHb of three channels. 

 
 
Next, Figure 4. shows the difference in the dynamic of the O2Hb and HHB for measurements.     
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 Figure 4. presents the three channels based O2Hb and HHb activity recorded by fNIRS.  
 
 

Median Filter 

The	following	figures	shows	one	case	with	signal	artifacts.		We	denoised	the	time	series	data	

using	median	filter.	The	median	filter	calculates	the	medina	for	data	points	within	the	sliding	

window	we	defined.		The	example	shows	the	filter	effects	on	the	first	channel	based	on	O2Hb	

and	HHb.			
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             Figure 5. Raw fNIRS data based on O2Hb of three channels with artifacts.	

	

(a)	

	

(b)	
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(c)	 (d)	

(e)	 (f)	

Figure	6.	Shows	the	effect	on	medina	filter	on	all	the	three	channels	disjointedly	based	on	
O2Hb	and	HHb.	
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Experiments on sliding window size for model performance 

 
As we mentioned on Section 5.1, Table 5.3 the effects of the size if the sliding window to calculate 

the Pearson correlation on the final model accuracy. Table.1 is an extension of Table5.1.   
 

fNIRS 
channel 

Behavior 
score  

Patient 
Classes  

Sliding 
window 
size =15 

 
Mean 

Accuracy 
  

Sliding 
window 
size =50 

 
Mean 

Accuracy  

Sliding 
window 
size =85 

 
Mean 

Accuracy 
 

Sliding 
window 

size =120 
 

Mean 
Accuracy 

 

Sliding 
window 

size =155 
 

Mean 
Accuracy 

 

Sliding 
window 

size =190 
 

Mean 
Accuracy  

oxyhemoglo
bin (O2Hb) 

Inhibit_pc
t 
(control 
impulsive) 

Abnormal 
= 20 
Normal = 
13 

0.48 0.60 0.61 0.55 0.63 0.67 

Average 
score 

Abnormal 
= 21 
Normal = 
12 

0.65 0.60 0.68 0.64 0.62 0.63 

AHI 

Abnormal 
= 19 
Normal = 
14 

0.56 0.50    0.49 0.49 0.56 0.58 

deoxyhemog
lobin (HHb) 

Inhibit_pc
t 
(control 
impulsive) 

  0.52 0.56 0.64 0.49 0.66 0.52 

Average 
score   0.63 0.72 0.71 0.67 0.67 0.71 

AHI   0.52 0.48 0.53 0.51 0.51 0.50 

total 
hemoglobin 
(tHb) 

Inhibit_pc
t 
(control 
impulsive) 

  0.57 0.53 0.66 0.59 0.64 0.59 

Average 
score   0.59 0.62 0.63 0.67 0.63 0.63 

AHI 
    0.47     0.53 0.51 0.58 0.51 0.57 
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Table 1. List the prediction accuracy of the tensor statistical model trained on 

fNIRS data Sliding window size = [15, 50, 85, 120, 155, 190] , 	𝛼 = 1, 	𝛾 = 1. 

 

 

Experiments on predicting OSA events from fNIRS time series data  

 
We used the time series model and the linear regression (LR), support vector classifier (SVC), 

RNN, and LSTM machine learning models to predict the apnea events from the resting state fNIRS 

time series data points for a single subject. However, we focused on the OSA events as show case. 

Table 2. show high accuracy but lower precision and recall for all models, where the reason is 

model overfitting problem. Since the training data set is limited and the OSA events are 

unbalanced, meaning is rarely detecting during the 4-7 hours for multiple subjects, the model can 

suffer from the overfitting problem and not being able to generalize on new data.    

 
 

 
(a) Precision-Recall curves for Logistic Regression and SVC models. 
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(b) Learning curves for RNN and LSTM models. 

 

Figure 7. shows  performance evaluation LR, SVC, RNN and LSTM models used to predict 

OSA. 


