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ABSTRACT

PRECISION MEDICINE: GENE AND CLINICAL DATA ANALYSIS OF RENAL

CANCER

Sumeyye Su, Ph.D.

The University of Texas at Arlington, 2020

Supervising Professor: Leili Shahriyari

Recent advances in biotechnology led to generation of large complex biological

and clinical data sets that can be used to infer the underlying mechanism of many

diseases and arrive at personalized treatments. One of these data sets are the

whole genome profiles, including a good collection of publicly available human gene

expression data sets. In the first part of this study, we analyzed gene expression

profiles of patients with renal cell carcinoma (RCC). We found that the regulator of

G-protein signaling 5 (RGS5) might play a crucial role in initiation and progression of

RCC, and it might be prognostic. We observed that a high expression level of RGS5

is associated with better survival months. Importantly, when the grade of tumor

increases, the RGS5 expression level significantly decreases. Although there is no

difference between expression level of RGS5 in male and female patients with primary

tumors in the right kidney, among patients with primary tumors in the left kidney,

females have a significantly higher RGS5 expression than male patients. Interestingly,

we also observed a significant association between the high expression level of RGS5

and low serum calcium level and elevated white blood cells level.
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Moreover, the outcome of cancer treatments especially immunotherapeutic

interventions depends on tumor immune environments. In recent years, the devel-

opment of various immunotherapies has improved overall survival months of some

cancer patients, including renal cancer patients. However, for all immunotherapeutic

interventions, only a small groups of patients respond to the treatments. Therefore,

it is crucial to investigate and classify immune variations of tumors to identify the

groups of patients who might benefit from each treatment option. In the second part

of this study, we estimate the percentage of each immune cell type in 526 TCGA

renal tumors using “digital mass cytometry”. K-mean clustering of tumors based on

their immune variations indicates the existence of four distinct classes of renal cell

carcinoma: Cluster 1 (CD4 < CD8 ≈MΦ), in which the numbers of macrophages

and CD8+ T-cells are approximately the same, and the number of CD4+ T-cells is

slightly less than the number of CD8+ T-cells; Cluster 2 (CD8 < CD4 < MΦ), in

which the number of macrophages is significantly higher than the number of CD4+

and CD8+ T-cells; Cluster 3 (CD4 < MΦ < CD8), in which the number of CD8+

T-cells is significantly higher than the number of macrophages and CD4+ T-cells; and

Cluster 4 (CD8 < CD4 ≈ MΦ) in which the numbers of macrophages and CD4+

T-cells are approximately the same, and the number of CD8+ T-cells is significantly

less than CD4+ T-cells. Moreover, we observe a high positive correlation between the

number of CD8+ T-cells and the expression levels of IFNG and PDCD1. Importantly,

higher stage and grade of tumors have a significantly higher percentage of CD8+

T-cells in tumors. In addition, the primary tumors of patients, who were tumor free

at the last time of follow up, have a higher percentage of NK cells and mast cells

compared to the patients with tumors at the last time of follow up.
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CHAPTER 1

INTRODUCTION

1.1 Renal Cell Carcinoma

Renal cell carcinoma (RCC) is the most commonly seen malignant tumor

type in adult kidneys [1], and it is considered a morphologically and genetically

heterogeneous tumor [2]. The incidence rate of RCC is around twice as common in

males as in females [3, 4], and the most common risk factors are obesity, diabetes,

and hypertension [5]. According to the US National Cancer Institute, there were

approximately 533,204 people with kidney and renal pelvis cancer in 2016, and 73,820

people are estimated as a new cases in 2019 which is 4.2% of all new cancer cases.

Although 74.8% of the patients survived five years or more in 2009-2015, 14,770

people are estimated to die in 2019 because of this disease [6].

To understand the process of initiation and progression of RCC and discover

effective treatments, several data sets including, clinical and pathological information,

genomic alterations, DNA methylation profiles, and RNA and proteomic profiles of

RCC primary tumors have been collected and analyzed. For example, by analyzing

these data sets, The Cancer Genome Atlas (TCGA) research network found a corre-

lation between worsened prognosis in patients with the most common type of RCC,

clear cell renal cell carcinoma (ccRCC), and a metabolic shift involving increased

dependence on the pentose phosphate shunt, decreased AMPK, decreased Krebs cycle

activity, increased glutamine transport and fatty acid production [7]. Additionally, a

study of 103 RCC patients showed a significantly high FABP7 mRNA expression in
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men and a high expression of BRN2 protein in women. They have also observed a

poor prognosis in females with low FABP7 and high BRN2 expression [8].

1.2 Data Information

1.2.1 Gene Expression Data.

RNA-seq (RNA-sequencing) is a technique that uses next generation sequencing

(NGS) to analyze the transcriptome of gene expression patterns encoded within a

sample RNA [9]. In this study, we analyzed the RNA-seq data of the primary tumors

of 534 patients with RCC to see if there is any signature of clinical or demographic

information of the patients in the gene expression data of their primary tumors. We

collected TCGA (The Cancer Genome Atlas) project data from cBioPortal. TCGA

is a landmark cancer genomics program that describes over 20,000 primary cancer

and matched normal samples spanning 33 cancer types. TCGA data sets are used for

ability to diagnose, treat, and prevent cancer [10].

1.2.2 Clinical Data.

There is also clinical and demographic information of patients, namely clinical

data, available in cBioportal. The available clinical data differ from study to study.

Features we used in our study are:

Gender: Female, Male

Tumor grade: The grades of tumors, which is determined by the appearance

of the cancer cells under the microscope, provide us with some insight about how the

cancer might behave. Lower grades represent the cancer cells that look more like

normal cells; G1 and G2 tumors tend to grow slowly and spread less. Higher grades

represent the cancer cells that look more different from the normal cells. Cancer cells

in G3 and G4 tend to grow quickly and spread fast [11].
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Laterality: It designates the side on which the renal cancer originates, left or

right kidney.

Tumor stage: The stage of tumors indicates the spread of tumors using the

most common staging system, TNM, for kidney cancer (Table 1.1) [12].

TNM Disease Status Size
T1 Tumor limited to kidney ≤ 7 cm
T1a Tumor limited to kidney < 4 cm
T1b Tumor limited to kidney > 4 cm
T2 Tumor limited to kidney > 7 cm
T2a Tumor limited to kidney < 10 cm
T2b Tumor limited to kidney ≥ 10 cm
T3 Growing into the fat around the kidney
T3a Tumor invades to renal vein or fat but not beyond Gerota’s fascia
T3b Tumor extends to vena cava below the diaphragm
T4 Tumor invades beyond Gerota’s fascia

Table 1.1. TNM Staging for Kidney Cancer

Tumor status: It provides us with the state or condition of individuals’

neoplasm at the time of last follow up, tumor free, with tumor.

Serum calcium level: Level of serum calcium in the blood, low or normal.

WBC: White Blood Cell Level in the blood, low or elevated.

Age: Age of patients at which the cancer was first diagnosed.

OS status: Overall patient survival status, living or deceased.

OS Months: Overall patients survival in months since initial diagonosis.

DFS Status: Disease free status since initial treatment, disease free, re-

curred/progressed.
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CHAPTER 2

GENE EXPRESSION ANALYSIS OF PATIENTS WITH RENAL CELL

CARCINOMA

To be able to analyze RCC patients’ data sets, we combine clinical data of

534 RCC patients and RNA-Seq gene expression profiles of their primary tumors,

which include 20,531 gene expression values for each patient. Tables in Figures 2-8

show an overview of demographic and clinical features of the patients. These tables

provide the number of patients in each subcategory, including gender, type of tumor,

survival status, etc. Differences in the numbers are due to missing information for

some patients.

2.1 Method

2.1.1 Data Preparation.

2.1.1.1 Normalization.

The first crucial step in analyzing data sets is the normalization, which has a

significant effect on the results. One of the most common normalization methods for

gene expression data is the standardization of the values of each gene. However, it

has been shown that this routine approach might not be a good one [13] for gene

expression profiles of tumors. By analyzing the gene expression profiles of colon

primary tumors, Shahriyari showed that the distribution of expression levels of genes

across patients are very different from one gene to another one, while the distribution

of gene expression levels of one patient is very similar to each other. We have also

observed the same thing in RCC. The left subplot of Figure 2.1 shows the average
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value of each gene and their standard deviations; as one can see the average and

standard deviation of expression levels might be hugely different from one gene to

another gene. However, the average and standard deviation of gene expression levels

of patients are very similar (the right sub plot of the Figure 2.1). In other words,

the distribution of expression levels of genes in one patient is very similar to another

patient. Therefore, to avoid loosing statistical information of the data, we normalized

the gene expression data sets from the primary tumor by scaling gene expression of

each patient, separately [14].

Specifically, we have a data set [p1, · · · , pn], where n is the number of patients.

Each pi is a list of gene expression values, i.e. pi = [gi1, · · · , gim], where each gj is

the expression value of gene j, and m is the total number of genes (m = 20531).

That means the data set is an n × m-dimensional matrix D = [gij], where gij is

the expression of gene j in patient i. To use simple feature scaling normalization

method, we found maximum gene expression value of each patient, and then we

divided the values of each gene by the maximum gene expression values for the patient;

i.e qi = max([gi1, · · · , gim]) , p̂i = [gi1/qi, · · · , gim/qi], where p̂i is the normalized gene

expression vector for the patient. After that, we calculated the standard deviation of

each gene across samples, and RGS5 was one of the top 10 most variant genes across

patients.
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Figure 2.1. Sub-figure A shows the average expression levels of each gene across
patients by blue dots and the corresponding average plus standard deviation by
orange dots. Sub-figure B shows the average of gene expression profile of a primary
tumor by blue dots, and the corresponding average plus standard deviation by orange
dots..

2.1.1.2 Dimensionality Reduction.

Another challenging step in analyzing gene expression data sets is dimensionality

reduction mainly because the number of genes (i.e. features) is much higher than the

number of samples. The situation is worse for human data sets compared to animals

or plants because of the lack of number of samples and existence of large number of

genes. There are dimensionaltiy reduction methods that transform high-dimensional

data into a significant representation of reduced dimensionality. Data with reduced

dimensionality has the minimum number of parameters to observe properties of the

data [15]. We apply two most common dimensionality reduction methods of Variance

Threshold and Principal Component Analysis (PCA).

2.1.1.3 Variance Threshold.

Variance Threshold (Low Variance Filter) is a basic approach to select important

features of a data set. First of all, normalization should be applied to make variance

6



values independent from the features domain range. Then, variance of each feature is

calculated, and features with a variance value below a given threshold are removed

from the data [16].

Here, we used variance threshold method to get top variant genes in the RNA-

seq data. After normalization, we calculated the standard deviation of each gene

across samples, plotted the sorted variance values and chose 0.04659080245779143

as threshold value Figure2.2. We found that the top 10 most variant genes across

patients are B2M, CD74, EEF1A1L14, GAPDH, GPX3, IGFBP3, RGS5, SPARC,

TGFB1, VIM. Among these genes, RGS5 looks very interesting (see the results).

0 5000 10000 15000 20000
Gene

0.00

0.02

0.04

0.06

0.08

Va
ria

nc
e

Figure 2.2. Sorted Variance of Genes.

2.1.1.4 Principal Component Analysis (PCA).

PCA is an orthogonal linear transformation that maps the data to a new sub-

space with low-dimensional representation of the data while retaining most of the

variation of the data. In PCA, after standardize a d-dimensional data, eigenvectors

and eigenvalues are obtained from the covariance or correlation matrix of the data,
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or Singular Value Decomposition (SVD) is performed. Result of those three imple-

mentation of PCA are indeed the same but many of PCA implementations use SVD

because of computational efficiency [17].

Eigenvectors (principal components) are chosen from covariance or correlation

matrix, and eigenvectors with the lowest eigenvalues are dropped (choosing the top k

eigenvectors where k is the number of dimensions of the new feature subspace, k < d),

because the lowest eigenvalues do not give meaningful information about the data. In

other words, principal components are the linear combinations of the original features.

They indicate the directions of the new subspace, and the eigenvalues determine their

magnitude. The first component in Figure 2.4 can be expressed in terms of the two

genes, SPARC and EEF1A1L14 as PC1 = −0.50SPARC − 0.86EEF1A1L14.

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
SPARC

0.0

0.2

0.4

0.6

0.8

1.0

EE
F1

A1
L1

4

Correlated Genes

−4 −2 0 2 4
PC1

−3

−2

−1

0

1

2

3

4

PC
2

Principal Components

Figure 2.3. Two principal component for two dimensional gene expression profile.

Explained variance is an effective measure to decide the number of principal

components, and it shows how much of the data can be explained by each of the

principal components [18]. In the gene expression data set of RCC tumors, approxi-

mately 100 principal components contain almost all of the information so that 100

principal components can be used instead of 20,531 genes (Figure 2.4).
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Figure 2.4. Cumulative Summation of the Explained Variance.

2.1.1.5 Comparison of PCA and Variance Threshold Method.

We separately applied PCA and Variance Threshold Method on RNA-Seq data

of RCC tumors. When we compared PC1 and top ten gene expression values, we

found that two genes from the top ten most variant genes are significantly correlated

with PC1, those genes are ‘EEF1A1L14‘ and ‘SPARC‘ with Pearson correlation

coefficient of 0.73 and 0.7, respectively. Moreover, RGS5 is also slightly positively

correlated with PC1 with the correlation coefficient of 0.61.

−2 −1 0 1 2
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Figure 2.5. Comparison of PCA and Variance Threshold Methods.
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2.1.2 Statistical Method.

We used several different graphical techniques to visualize quantitative data in

our study. We used scatter plots to show the relationship between two continuous

features (see Figure 2.5 as an example). In the first chapter, box-plots are mainly

used to show relationship between categorical features and RGS5 gene expression

level, where box plot is generated by calculating five relevant values: minimum,

maximum, median, first quantile and third quantile of the data [19]. Furthermore,

we used cluster heat map to simultaneously show row and column hierarchical cluster

structure in data [20] (see Figure2.13).

For statistical analyses, we employed Mann-Whitney-Wilcoxon (MWW), also

known as Mann-Whitney U-test. MWW is a non-parametric test of the null hypothesis

that it is equally likely that a randomly selected value from one sample be less than

or greater than a randomly selected value from a second sample [21]. We chose

MWW test since it works with non-normal distribution and ordered data as we

have. For similar reason, we did not use t-test, because we have different number of

patients for each subgroups and t-test works well for normally distributed data. We

used star symbols to show the statistical significance between two categories in the

box-plots, where ns: 0.05 < p ≤ 1, *: 0.01 < p ≤ 0.05, **: 0.001 < p ≤ 0.01, ***:

0.0001 < p ≤ 0.001, ****:p ≤ 0.0001.

2.2 Results

2.2.1 RGS5 gene.

We found that RGS5 gene expression might be prognostic and might have

a significant role in initiation and progression of RCC. The regulator of G-protein

signaling (RGS) family regulates cellular signaling events downstream of G-protein
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coupled receptors (GPCRs), which have been found to be associated with the initiation

and progression of multiple cancers [22]. A high expression level of RGS5, a member

of RGS family, has been detected in various human tissues such as heart, skeletal

muscle, bladder, uterus, alimentary tract, and human umbilical vein endothelial cells

(HUVECs) [23, 24, 25]. RGS5 is also involved in ion transport mechanisms in the

kidney and has been associated with the regulation of blood pressure or hypertension

[26].

In a study using Reverse Trascription-Polymerase Chain Reaction (RT-PCR),

which is a strongly sensitive method for the detection and amplification of mRNA,

a very weak or undetectable expression level of RGS5 has been observed in normal

kidneys, while a high level of RGS5 expression has been detected in all RCCs [27].

Importantly, the same study indicates that the tumour endothelial cells are the

main location of RGS5 in RCC [27]. Moreover, a study on DNA microarray data

of 27 RCCs using Multivariate Cox analysis suggested RGS5, vascular cell adhesion

molecule 1 (VCAM1), and endothelin receptor type B (EDNRB) as predictors of

survival months [28].

On the other hand, a strong association has been observed between high RGS5

expression level and better survival in 51 non-small cell lung cancer (NSCLC) patients

[29]. They detected a high RGS5 expression level in 47% of NSCLC patients and a

link between low expression level of RGS5 and cancer vasculature invasion and lymph

node metastasis [29]. In another study of 127 human paraffin-embedded epithelia

ovarian cancer (EOC) tissue samples, RGS5 gene expression in EOC tissues was

higher compared with normal ovaries, and EOC patients with high RGS5 expression

had a better survival with progression-free [30]. In contrast to these two study, it

has been found that over-expression of RGS5 gene in the human lung cancer cells is
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associated with reductions in the survival rates and increases in the cytotoxic result

of radiation [31].

2.2.2 Expression level of RGS5 significantly decreases when the grade of tumor

increases.

We found that the grade of RCC tumors is a decreasing function of the normal-

ized value of RGS5 (Figure 2.6). The grades of tumors, which is determined by the

appearance of the cancer cells under the microscope, provide us with some insight

about how the cancer might behave. Lower grades represent the cancer cells that

look more like normal cells; G1 and G2 tumors tend to grow slowly and spread less.

Higher grades represent the cancer cells that look more different from the normal

cells. Cancer cells in G3 and G4 tend to grow quickly and spread fast [11]. We found

that there is a significant reduction in the RGS5 expression from the G2 to the G4

grade. Note, we cannot make a confirm conclusion for grade one tumors, because

there are not many G1 patients.
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Figure 2.6. Expression level of RGS5 as a function of grade and TNM staging of RCC.
The sub-figure A shows that the expression level of RGS5 in the patients’ primary
tumor decreases when the grade of tumor increases. The sub-figure B represents
the expression level of RGS5 in primary tumors categorized based on TNM stage
of RCC. For some patients with the stage Ti (green), i = 1, 2, 3, 4 cancer, we know
if the patient had the stage Tia (light green) or Tib (dark green) cancer, for more
information see Table 1.1. Tables in this figure indicate the number of patients in
each category.

2.2.3 Stage1 tumors have the highest expression level of RGS5 compared to the

other stages.

In Figure 2.6 , we grouped patients based on their tumor’s stage using the most

common staging system, TNM, for kidney cancer (Table 1.1) [12]. Since there are

not many patients with stage 2 and 4 cancer, one may ignore the T2-T3 and T3-T4

differences and conclude a significant decrease in the RGS5 expression level from T1

to T3 (Figure 2.6).

2.2.4 Tumors originated in the left kidney have a significantly higher RGS5 expression

in females than male patients.

We observed a significant high RGS5 expression in female patients versus male

patients. However, further investigation revealed no differences in the expression

level of RGS5 in males and females for tumors that originated in the right kidney.

Inevitably, there is a significant difference in RGS5 expression between female and
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male patients with tumors in the left kidney. Importantly, we found that male patients

with a primary tumor in the right kidney have a higher level of the RGS5 expression

compared to the left kidney. However, there is no significant difference between RGS5

expression of the female patients with a primary tumor in the left kidney compared

to the right kidney (Figure 2.7).
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Figure 2.7. Expression level of RGS5 as a function of gender and the location of the
primary tumor. Sub-figure A shows that female patients have higher expression level
of RGS5 than male patients. Grouping patients based on the location of their primary
tumors (sub-figure B) shows that the difference between the expression level of RGS5
in female and male patients is due to the fact that male patients with primary tumors
in the left kidney have lower expression level of RGS5 than other patients. Tables in
this figure indicate the number of patients in each category.

2.2.5 Tumor free patients have a significantly higher level of RGS5 expression versus

patients with tumors at the last time of follow up.

We further investigated the relationship between RGS5 expression in primary

tumors and the patients’ tumor status, which provide us with the state or condition

of individuals’ neoplasm at the last time of follow up. If patients did not have any

tumor at the last time of follow up, they were categorized as “tumor free”, and if they

had any tumor then they were marked as “with tumor”. We observed a higher level

of RGS5 expression in tumor free patients compared to patients with tumor. When

we divided kidney cancer patients into sub-groups based on their gender, location of
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the primary tumor, and tumor status, the gene expression level reacts similarly to

general results; aggressive tumors have a significantly lower expression level of RGS5

(Figure 2.8).
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Figure 2.8. Expression level of RGS5 gene in primary tumors as a function of tumor
status at the time of last follow up. This figure indicates that the primary tumors
of RCC patients with no tumors at the time of last follow up had a higher RGS5
expression level than patients with tumors at the time of last follow up regardless of
patients’ gender (sub-figure A) and the location of primary tumors (sub-figure B).
Tables indicate the number of patients in each category.

2.2.6 RGS5 expression in primary tumors of living patients is higher than deceased

patients.

When we considered overall patients’ survival status, we see from Figure 2.9

that RGS5 expression level in primary tumors of patients who are live at the last time

of follow up is higher than deceased patients. Also, when we divided the patients into

subcategories based on gender, results are not affected; so living patients, regardless of

their gender and even white blood cell levels, have a higher level of RGS5 expression

compared to deceased patients. In addition, when we compared only living patients

by their gender, we found that female living patients have a higher level of RGS5

expression compared to male living patients. Furthermore, the laterality does not

affect the RGS5 expression level as much as the survival status (Figure 2.9). Moreover,
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we see that there is a similar tendency in the RGS5 expression with disease-free status

and overall survival status, as expected. However, there is no correlation between age

at diagnosis and RGS5 expression level.
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Figure 2.9. Expression level of RGS5 in primary tumors as a function of survival
status of patients at the time of last follow up. The left subplots (A and C) show that
primary tumors of alive patients have a higher expression level of RGS5 compared to
the deceased patients regardless of gender (sub-figure A) and the location of primary
tumor (sub-figure C). Sub-figure B indicates that there is no linear correlation between
age at diagnosis and RGS5 expression. Sub-figure D shows that primary tumors of
patients, who were diseased free at the last time of follow up, have a higher expression
level of RGS5 compared to the patients with reoccurred cancer. Tables indicate the
number of patients in each category. In all sub-figures, female patients are represented
by red color and males by blue.

2.2.7 Patients with higher level of RGS5 have higher survival months.

We observed no correlation between the level of RGS5 and overall survival

months and also age at diagnosis (Figure 2.10). However, when we divided RGS5

expression level into two categories of low (patients with normalized RGS5≤ 0.1) and
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high (patients with normalized RGS5 > 0.1), we observed that the patients with a

high RGS5 expression have better survival compared the patients with low RGS5

expression. This result aligns with our other observations regarding the grade of

tumors (Figure 2.6), tumor status (Figure 2.8), and survival status (Figure 2.9), as

we expected.
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Figure 2.10. Overall survival months as a function of RGS5 expression level. Sub-
figure A represents the values and distributions of RGS5 expression level, age at
diagnosis, and survivals months for female and male patients. Sub-figures B and C
show the difference between survival months of patients with low (normalized RGS5
expression value ≤ 0.1) and high ( > 0.1) RGS5 expression levels. In sub-figure C,
patients are grouped based on the grade of their tumors.
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2.2.8 Expression level of RGS5 in patients with low serum calcium levels is signifi-

cantly higher than those with normal calcium levels.

It has been observed that kidney disorders are highly correlated with low calcium

levels in the blood (hypocalcemia) [32]. We found that patients with low calcium

levels have a higher RGS5 expression level compared to patients with normal calcium

levels. In addition, considering laterality, we observed that primary tumors in both

right and left kidneys follow the same trend, although the difference is not significant

in the left kidney. Similarly, when we grouped patients based on their gender, RGS5

expression of male patients who have low calcium levels is significantly higher than

those with normal calcium levels, but it is not significant for female patients. Lastly,

when we divided patients into subcategories based on overall survival status, we still

observed a higher level of RGS5 in living patients compared to the diseased ones

regardless of their calcium level. Importantly, deceased patients with normal calcium

levels have the least level of RGS5 expression. Note, the percentage of living patients

with low serum calcium levels (138/(138 + 66) ≈ 0.68) is higher than those with

normal levels (89/(89 + 61) ≈ 0.59).
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Figure 2.11. Expression level of RGS5 gene as a function of serum calcium level and
living status (sub-figure A), laterality (sub-figure B), tumor status (sub-figure C),
and gender (sub-figure D). This figure shows that primary tumor of patients with low
calcium level have a higher expression level of RGS5 compared to the patients with
normal calcium level. Tables indicate the number of patients in each category. In all
sub-figures, female patients are represented by red and male patients by blue.

2.2.9 Patients with elevated white blood cells (WBC) have a high level of RGS5

expression.

Elevated white blood cells (WBC) is known as a common predictor of chronic

kidney disease [33]. We observed that RGS5 expression in patients who have elevated

WBC was greater than those in patients who have normal WBC. In addition, when

we considered the tumor status of patients, again tumor-free patients have a higher

RGS5 expression level than with tumor patients regardless of their WBC counts.

Furthermore, the percentage of living patients with elevated WBC (118/(118 + 46) ≈

0.72) is higher than those with normal levels (164/(164 + 103) ≈ 0.61). Lastly, when

we divided the patients into sub-categories based on serum calcium level and WBC
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level, we observed that calcium level is more important than WBC for predicting the

expression level of RGS5.
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Figure 2.12. Expression level of the RGS5 gene as a function of WBC (sub-figure
A), WBC and tumor status (sub-figure B), WBC and living status (sub-figure C),
and WBC and calcium level (sub-figure D). Tables indicate the number of patients in
each category. In all sub-figures, female patients are represented by red color and
male patients by blue.

2.2.10 Expression level of RGS5 might be prognostic.

To sum up, Figure 2.13 shows a hierarchically-clustered heat-map of the above-

mentioned clinical and demographic features with the correlation metric. For the

heat-map, we convert the categorical features to numerical values, and scale all them

between 0 and 1. Stage and grade of tumor are valued from 1 to 4. Gender: Female:

0, Male: 1. Tumor Status: Tumor Free: 0, With Tumor:1. Laterality: Left: 0,

Right: 1. Serum Calcium Level: Low: 0, Normal: 1. Disease Status: DiseaseFree:

0, Reoccurred: 1. Os Status: Living: 1, Deceased: 0. WBC: Normal: 0, Elevated:
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1. We then use correlation metric to cluster. As a result, RGS5, survival months,

survival status ended up in the same cluster, and then they grouped with WBC level

and laterality. As one could expect grade and stage of the tumor are clustered with

the tumor status and the disease status, and interestingly they all clustered with the

serum calcium level.
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Figure 2.13. Hierarchically-clustered heat-map of features that have been investigated
in this chapter and RGS5 gene.

2.3 Discussion

Recent advances in biotechnology have led to the development of new im-

munotherapeutic methods for treating various cancer types. One of the crucial

requirements of these methods is explaining structure of tumor specific antigens

(TSA) or tumor associated antigenes (TAA) that help to fight with malignant cells.

Krüger et al. identified RGS5 as one of the RCC-associated antigens [34]. Boss et

al. also found a significant up-regulation of RGS5 in a broad variety of malignant
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cells, and by identifying two HLA-A2- and HLA-A3-binding peptides derived from

the RGS5 protein, they suggested RGS5 peptides as candidates for designing cancer

vaccines to target malignant cells and tumor vessels [35].

RGS family are known as signal transaction molecules that are associated

with the arrangement of heterotrimetric G proteins by acting as GTPase activators.

Moreover, RGS5 is a hypoxia-inducible factor-1 dependent involved in the induction of

endothelial apoptosis [36]. Furthermore, it has been shown that the variants in RGS5,

ATP1B1 and SELE genes were accounted for 2-5 mm Hg differences in mean systolic

blood pressure levels, and the cumulative effect reaches 8-10 mm Hg [37]. Hence,

RGS5 is an important contributor to high blood pressure [38], and hypertension is

one of the most common risk factors of renal disease [39]. There is also an evidence

that RGS5 can act as a physiological regulator of calcium sensing in the parathyroid

gland as a inhibitor of calcium-sensing receptor (CaSR) signaling [40], and a study of

patients with the stage 3-4 chronic kidney disease (CKD) determined that the lower

serum calcium is associated with the higher risk of renal replacement therapy and

rapid renal function progression [41]. Furthermore, it has been observed a higher

incidence rate of early mortality in CKD patients with low blood calcium levels [42].

Here, we noticed a significantly higher expression level of RGS5 in primary tumors of

patients with low serum calcium levels than those with normal calcium levels.

Additional to the various biological roles of RGS5, there are some contradictory

observations about the prognostic behavior of RGS5. For instance, an association

between high expression levels of RGS5 and poor outcomes have been observed in

a study of human lung cancer [31], while studies on non-small cell lung cancer [29]

and epithelia ovarian cancer [30] reported a link between a high expression levels of

RGS5 and better survival months. Here, by analyzing the RNA seq data of primary

tumors of 533 patients with RCC, we independently observed a strong association
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between high expression levels of RGS5 and better outcomes. We found that the

RGS5 expression level significantly decreases when the grade of tumor increases.

Moreover, when we considered TNM staging system which gives us information about

the size and location of the tumor (Table 1.1), we observed a significant decrease in

the RGS5 expression level when the stage increases from T1 to T3.

Several studies show that men with RCC have higher stage and grade and

ultimately worse overall survival than women with RCC [3, 43]. We also observed

that the survived female patients have a significantly higher expression level of RGS5

compared to other categories (Figure 2.9). Moreover, some studies reported better

clinical results such as low grade tumors and better survival in patients with right-

sided RCC compared to the left-sided RCC [44, 45], but our result shows no significant

difference between the expression level of RGS5 in female versus male patients with

primary tumors located in the right kidney. However, among patients with primary

tumors in the left kidney, female patients have a significantly higher RGS5 expression

level (Figure 2.8).

There is a correlation between elevated WBC and kidney function deterioration

[46], and a study of 362 advanced renal cell cancer patients showed that elevated WBC

is associated with poor survival [47]. In our study, when we examined the relationship

between RGS5 expression and WBC, we found that patients with elevated WBC

have significantly higher RGS5 expression compared to those with normal WBC.

Furthermore, we observed that the percentage of survived patients are higher in

elevated WBC category than normal WBC group.

Although this study emphasizes that RGS5 plays a significant role in RCC, the

different biological roles of RGS5 [48] and contradictory observations cause uncertainty

about how RGS5 expression affects the outcome of treatments and how it could be

used to develop better treatments. Therefore, future investigation is necessary to
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explore the role of RGS5 in initiation, progression, and suppression of RCC to arrive

at effective treatments.
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CHAPTER 3

TUMOR DECONVOLUTION

The immune system consists of a complex network of cells, tissues, organs, and

substances that they produce which helps the body fight infections and other diseases.

Although the immune system is against cancer growth, cancer cells can block the

immune system in several ways such as being invisible or having proteins that turn

off immune cells. Activating or suppressing the immune system for the diseases, so

called ’immunotherapy’, is one of the popular type of cancer treatments. There are

several type of immunotherapies such as immune checkpoint inhibitors and T-cell

transfer therapy.

Several immunotherapeutic approaches have been recently used for treating

patients with RCC [49, 50], which is considered a morphologically and genetically

immunogenic tumor [2]. However, many patients do not respond to these treatments

and develop adaptive or intrinsic resistance. We can increase the response rate to

these treatments by identifying the characteristics of patients who will benefit from

each of these therapies.

Several studies show that cancer cells and tumor-infiltrating immune cells

(TIICs), which have important roles in both regulation of cancer progression and

promotion of tumor development [51, 52], play an important role in the determination

of malignant tumor types [53, 54]. Tumor-infiltrating lymphocytes (TILs), which

include T-cells and B cells, are an important category of TICCs. CD4+ helper T-cells

and cytotoxic CD8+ T-cells play a significant role in preventing tumor by targeting

antigenic tumor cells [55], and CD8+ T-cells are linked with better clinical outcomes
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and reaction to immunotherapy in many cancers [56, 57]. Furthermore, it has been

recently observed that tumor associated B cells, which have significant roles in the

immune system by producing antibodies and presenting antigens, could be predictors

of survival and response to immune checkpoint blockade therapy [58]. Importantly,

controversial roles of B cells have been observed in the tumor micro-environment

such as causing tumor growth [59] and enhancing tumoricidal T-cell responses [60].

Additionally, a relationship between TIICs gene signatures and lower survival rates

has been observed in RCC patients, and tumor-associated macrophages (TAM) and

22 T cell phenotypes are found to be correlated with clinical outcomes [61, 62].

These observations emphasize on importance of analyzing the cellular heterogeneity

of tumors, including immune cells variations, to understand variations in immune

responses, identify target tumors for each specific treatment, and design new effective

cancer treatments [63].

3.1 Deconvolution Methods

There are some experimental approaches such as single cell analysis tools,

including immunohistochemistry and flow cytometry to observe tumor immune

infiltrates, however these methods are expensive and time consuming, and they are

limited to analyzing a few immune cell types simultaneously [64]. For this reason,

several computational methods have been recently developed to provide us with

much less expensive and fast alternative ways to estimate the relative amount of

each cell type from gene expression profiles of bulk tumors. We used most popular

deconvolution methods and compared their results. The methods we studied are

DeconRNASeq, CIBERSORT, ssGSEA, singscore and CIBERSORTx. Details of the

methods are given in the subsections.
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3.1.1 Deconvolution of mRNA-Seq (DeconRNASeq).

Deconvolution of mRNA-Seq (DECONRNASeq) is a method to estimate pro-

portion of cell types from mRNA-seq data that is based on the following linear

model:

y = WX, (3.1)

where y is gene expression data of a sample (mixture data), w is the percentage of

each cell in sample y, and X is the single cell gene expression of cells in w (signature

matrix).

Assume yjk is the expression level of gene j in a sample k, and the xij is the

expression level of gene j in cell i, and wki is estimated proportion of cell i in the

sample k, we can re-write the equation (3.1) in the following form:

yjk =
∑
i

wkixij (3.2)

For each sample k, if the number of genes is less than the number of cell types,

then the linear system (3.1) is undetermined. We need to have more genes than cell

types to solve the system.

y1k = wk1x11 + wk2x21 + · · ·+ wknxn1

y2k = wk1x12 + wk2x22 + · · ·+ wknxn2

...

yjk = wk1x12 + wk2x22 + · · ·+ wknxnj

Adding physical constraints, which are wki ≥ 0 and
∑

iwki = 1, the above

system of linear equation is over determined. In 2013, Gong et al introduced DECON-
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RNASeq method [65] that use quadratic programming to solve the problem as linear

least square sense and find optimal wki that minimizes the residuals for WX − y = 0:

min
A

(||WX − y||2), s.t.


∑N

i=1wki = 1, wki ≥ 0,

yjk =
∑N

i=1wkixij.

(3.3)

3.1.2 CIBERSORT Method.

Although DECONRNASeq works well for samples with well defined composition

(e.g. blood), it performs weakly on samples with unknown content and noises (e.g.

solid tumors) and cannot differentiate closely related cell types effectively [66]. In 2015,

Newman et al. presented Cell-type Identification By Estimating Relative Subesets Of

RNA Transcripts (CIBERSORT) that utilize a machine learning technique which is

Nu-Support Vector Regression (ν-SVR) to estimate the cell frequency. CIBERSORT

formulate problem(3.3) as an optimization problem such that:

Linearfunction f(x,w) =< w, x > +b =
M∑
j=1

wjxj + b that

minimize :
1

2
||w||2 + C(νε+

1

N

N∑
i=1

(ξi + ξ∗i ))

subject to :


yi − f(xi) ≤ ε+ ξi

f(xi)− yi ≤ ε+ ξ∗i

ξi, ξ
∗
i ≥ 0
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Figure 3.1. One dimensional linear SVR.

Matrix X in the equation (3.1) is determined by a hyperplane capturing the data

points inside an ε-tube that is determined by support vectors (genes in the signature

matrix). SVR penalizes the data points outside the ε-tube, and a small value is used

for ν that determines the lower bound of support vectors and the upper bound of

training errors (Figure 3.1). Regression coefficients of ν-SVR method gives the values

(wki), however, the proportion of the cells require values that are non-negative and

sum to one. Therefore, negative coefficients are set to 0, and they normalize the

remaining coefficients so that their sum is 1 to estimate the percentage of each cell in

the samples [66].
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3.1.3 ssGSEA Method.

DECONRNASeq and CIBERSORT methods assume that the mixture data

y consists of cells in the signature matrix W . While DeconRNA and CIBERSORT

methods require a reference expression vectors for each cell types, ssGSEA is a

rank-based method that estimate a score for a gene signature of interest relative to all

other genes of samples [67]. In a study with multiple cancer types in 2013, immune

and stromal infiltration levels of samples have been analyzed by implementation of

single sample Gene Set Enrichment Analysis (ssGSEA) [68].

ssGSEA requires mixture data and cell signatures that each one contains a list

of gene names that are highly expressed in interested cell type and provides us levels

of cell populations rather than actual fraction of the cells. Algorithm of ssGSEA

starts with ordering mixture data by absolute gene expression from highest to lowest

and replaces gene expression values in mixture data by their ranks L =
{
r1, r2, ..., rN

}
.

Then, enrichment score is calculated for a given signature G with size NG and single

sample S, of the data of N genes and an enrichment score ES(G,S) is obtained by an

integration of the difference between a weighted Empirical Cumulative Distribution

Functions (ECDF) of the genes in the signature P ω
G and the remaining genes PNG

[67]:

ES
(
G,S

)
=

N∑
i

[
P ω
G

(
G,S, i

)
− PNG

(
G,S, i

)]
where

P ω
G

(
G,S, i

)
=

∑
rj∈G,j≤i

|rj|α∑
rj∈G |rj|α

and PNG
(
G,S, i

)
=

∑
rj /∈G,j≤i

1

N −NG

.

3.1.4 SingScore Method.

The scores that are obtained by ssGSEA method do not exactly represent ’single-

sample’ and they are affected from differences between overall sample composition

[69]. To avoid these weakness, a single-sample gene-set scoring method (SingScore)
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has been developed by Foroutan et.all in 2018 that use a rank-based metric to evaluate

the relative enrichment of a gene set within a sample gene expression, and normalized

relative to the maximum and minimum theoretical scores for a gene set of a given

size [70].

SingScore [70] produces a score for each cell type that represents a normalized

mean percentile rank. The inputs of SingScore are the mixture data and bidirectional

cell signatures including both Up-Regulated and Down-Regulated: highly expressed

genes for the up set and lowly expressed genes for the down set. In the algorithm

of SingScore, mixture data is ordered by gene expression levels from the highest to

the lowest and top half of it is used as regulated genes of samples and bottom half

of it is used as as down-regulated genes of samples. Then, these genes are ranked

in ascending order for the up-set and in descending for the down-set. By using

up-regulated gene set Gup and down regulated gene set Gdown for a given cell type,

the score (S) and normalized score (S̄) are defined as:

Sdir,i =

(∑
g∈Gdir

Rg
dir,i

Ndir,i

)
, where

dir: is the gene set direction (up or down regulated);

Sdir,i: is the score for sample i against the directed gene set;

Rg
dir,i: is the rank of gene g in the directed gene set;

Ndir,i is the number of genes in Gdir that are observed within the data;

By using these, S̄:

S̄dir,i =
Sdir,i − Smin,i
Smax,i − Smin,i

where

Smin,i =
Ndir,i + 1

2
and Smax,i =

2Ntotal,i −Ndir,i + 1

2
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S̄dir,i: is the normalized score for sample i against genes in the signature;

Smin,i and Smax,i : are the theoretical minimum and maximum mean ranks;

Ntotal,i: is the total number of genes in sample i

Calculated score for sample i is S = S̄up,i + S̄down,i

3.1.5 CIBERSORTx Method.

Newman et. all [71] have recently improved their method CIBERSORT by

adding selection of batch correction modes so that the cross-platform variation between

signature matrix and mixture data can be eliminated. They offer two mode: 1-)

B-mode, which they first obtain deconvolution of cell fraction (Ŵ ) from the main

method and they obtain reconstituted mixture data (ŷ) from ŷ = Ŵ TX. Then, they

use ComBat, which is a batch correction method, to eliminate technical variation

between ŷ and y to build adjusted mixture data yadj. Finally, they use yadj in the

main algorithm to estimate cell fraction W . 2-) S-mode, which signature matrix

is directly adjusted X̂ rather than mixture matrix using non-negative least square

method with yadj and Ŵ . Thus X̂ and original y are used to predict cell fraction of

W [71].

3.1.6 TumorDecon Software.

TumorDecon Software is presented by a team of ShahriyariLab that includes

four deconvolution methods of DeconRNASeq, CIBERSORT, ssGSEA, and Singscore

and several signature matrices of various cell types, including LM22 which is generated

by Newman et all [66]. It provides estimated cell proportion from chosen method and

given gene expression profile of the tumors (mixture data). An example of mixture

data and signature matrix is given in Figure 3.3.
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Figure 3.2. The sub-figure A is an example of mixture data, where columns are
patients id, rows are gene names. The sub-figure B is an example of signature matrix,
where columns are cell types and rows are genes.

In this study, we used TumorDecon Software to determine which method

has better accuracy among the deconvolution methods mentioned above, except

CIBERSORTx. For the mixture and signature data, we used gene expression profiles

of blood obtained from 12 healthy adults and LM22 signature matrix that are provided

with CIBERSORTx software [71].

3.1.6.1 Visualization.

We added visualization function to TumorDecon software that provides 4

different plots: 1-) A bar chart plot that shows the cell frequencies of all samples, 2-)

A box plot that shows cell frequencies in descending order. 3-) A hierarchical clustered

heat map from cell frequencies in tumors. 4-) A pair plot that shows correlation

between estimated cell frequencies in tumors.

Using visualization package, we compared results of deconvolution methods

with ground truth cell proportion of the mixture data that is obtained by direct

cytometry and fluorescence immunophenotyping [71]. We found that results obtained
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by CIBERSORTx has the highest correlation with the ground truth data compared

to the other deconvolution methods 3.3.

Figure 3.3. Fractions of each sample from each methods.
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CHAPTER 4

IMMUNE CHARACTERISATION OF RENAL CELL CARCINOMA

In this chapter, we applied a powerful “digital mass cytometry” method called

CIBERSORTx to estimate the fraction of each immune cell in RCC tumors to

determine immune patterns of tumors (Figure 4.1) and investigate the association of

these patterns with clinical features.

a
Primary Tumor

For each tumor obtaining gene 
expression profile

Signature Matrix
Single Cell Data

Obtaining signature of each cell 
using single cell expression data

Estimating the 
relative number of 

each cell in the 
primary tumor

Cluster tumors

C1

C3

C2

C4

Figure 4.1. For each RCC tumor in TCGA data, we first estimate the percentage of
each immune cell in the tumor using the gene expression profile of the tumor and the
signature matrix of immune cells. We then cluster tumors based on the percentage of
each immune cell in tumors.

4.1 Materials and Methods

Tumor infiltrating immune cells were estimated by using CIBERSORTx decon-

volution method that has the most accurate results compared to other deconvolution

methods we studied. To investigate the immune variations in renal cancer, we down-
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loaded the TCGA data set of gene expression profiles of 607 RCC primary tumors

from UCSC Xena to use as a mixture data y and used LM22 signature matrix, which

is an immune cell signature matrix that include 547 genes differentiating 22 cell types

that are B cells naive, B cells memory, Plasma cells, T cells CD8, T cells CD4 naive,

T cells CD4 memory resting, T cells CD4 memory activated, T cells follicular helper,

T cells regulatory (Tregs), T cells gamma delta, NK cells resting, NK cells activated,

Monocytes, Macrophages M0, Macrophages M1, Macrophages M2, Dendritic cells

resting, Dendritic cells activated, Mast cells resting, Mast cells activated, Eosinophils,

Neutrophils. We then estimated cell fraction of RCC patients by using CIBERSORTx-

B mode to remove technical differences between LM22 signature matrix (derived from

microarray data) and RNA-seq mixture data.

4.1.1 K-Mean Clustering.

After we obtain estimated cell proportions, we included only cases with CIBER-

SORTx p-value < 0.05. We then applied unsupervised k-mean clustering algorithm

to cluster patients based on their percentage of immune cells. The k-mean algorithm

separates samples in k-group of equal variance by minimizing the inertia (distance

between samples in the clusters and center of the clusters).

In the K-mean algorithm for a given integer k and a set of n data points in X,

goal is determine k centers C so that:

n∑
i

min
c∈C
||x− c||2 where ci =

1

Ci

∑
x∈Ci

x

The k-means algorithm divides a set of samples into disjoint clusters, each

described by the mean of the samples in the cluster. The means are commonly called

the cluster “centroids”; note that they are not, in general, points from the data,

although they live in the same space. To determine the optimal number of cluster
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(k-value), we used elbow method that is plotting the number of clusters on the X-axis

and the inertia on the Y-axis and then select the value of k for which we see a bend.

We decide k=4 from Figure 4.2 [72].
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Figure 4.2. The Elbow Method using inertias.

We also use clinical information of patients from cBioPortal but dropped some

patients in the gene expression data due to missing clinical information and continued

our analysis with 526 patients. The patients’ characteristics are given in Table 4.1.
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Female Male
184 342

G1 G2 G3 G4
14 226 204 75

T1 T2 T3 T4
268 69 178 11

Gender Grade of Tumor Stage of Tumor

Tumor Status Survival Status Laterality

Tumor Free With Tumor
356 137

Alive Deceased
355 171

Left Right
247 278

Table 4.1. Patients’ characteristics. Sub-tables indicate the number of patients in
each category. Differences in the numbers are due to missing information for some
patients

4.2 Results

To estimate the percentage of each cell type in RCC tumors, we apply “digital

mass cytometry”, CIBERSORTx, on TCGA gene expression profiles of RCC primary

tumors. We compare the results of our “digital mass cytometry” analysis with the

results of an experimental study of a large-scale mass cytometry-based immune cells

analysis of 73 RCC patients [61]. Immune cells, which have been characterized in

this experimental study done by Chevrier et al. [61] are macrophages, CD8+ T-cells,

CD4+ T-cells, NK cells, B cells, plasma cells, dendritic cells (DC), CD45+ T-cells,

double positive T-cells (DP T-cells), double negative T-cells (DN T-cells). To be able

to compare our results, which includes 22 immune cell types given in LM22 signature

matrix of CIBERSORTx, we combine cells that belong to the same family. For

instance, since CD4+ naive T-cells, CD4+ memory resting T-cells, CD4+ memory

activated T-cells, follicular helper T-cells, and regulatory T-cells are sub-types of

CD4+ T-cells, we sum their numbers to estimate the total number of CD4+ T-cells.

We do similar calculation for B cells, NK cells, DC cells, macrophages, and mast cells.
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4.2.1 The most frequent immune cells in RCC tumors are macrophages, CD4+

T-cells, and CD8+ T-cells.

Results of experimental study done by Chevrier et al [61] show that macrophages

are the most frequent immune cells in most RCC tumors with a mean of 31% followed

by CD8+ T-cells and CD4+ T-cells, respectively (Figure 4.3D,B), which are in

agreement with the results of CIBERSORTx applied on TCGA data set (Figure

4.3A,C).

B

A

C

D

E

F

Figure 4.3. Sub-figures A and B respectively show the estimated percentage of each
immune cell in RCC tumors obtained by applying CIBERSORTx on TCGA data
(A) and mas cytometry analysis of 73 RCC patients done by Chevrier et al [61] (B).
Sub-figures C and D respectively show the immune cell percentage in renal tumors in a
box plot format for TCGA data (C) and mas cytometry analysis [61] (D). Sub-figures
E and F indicate the correlation map of estimated immune cell frequencies in TCGA
tumors (E) and the results of mas cytometry analysis [61] (F), respectively.
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4.2.2 There is a negative correlation between the number of macrophages and CD8+

T-cells.

The results of mas cytometry analysis indicate a negative correlation between

CD8+ T-cells and macrophages with Pearson correlation coefficients of −0.67. Impor-

tantly, the digital mass cytometry applied on TCGA data set confirms this negative

correlation between the number of CD8+ T-cells and macrophages in RCC with a

correlation coefficient of −0.46 (Figure 4.3E,F).

4.2.3 Variations of RCC tumors are mainly in the percentage of macrophages, CD8+

T-cells, and CD4+ T-cells compared to the other immune cell types.

Figure 4.4 shows a significant variations among the percentage of CD8+ and

CD4+ T-cells and macrophages across RCC tumors, while there is a slight variation

in the percentage of other immune cell types. Unsupervised hierarchical clustering of

cell frequencies show that CD8+ T-cells and CD4+ T-cells are clustered together in

the experimental results, and then they group with macrophages and other cells. The

result of digital mass cytometry on TCGA data shows a kind of similar trend: CD4+

T-cells first clustered with macrophages, then they clustered with CD8+ T-cells and

other cells (Figure 4.4B).
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A B

CD4<CD8≈ "# CD8<CD4<"# CD4<"#<CD8 CD8<CD4≈ "#
Number of Patients 129 120 68 209

C

Figure 4.4. Immune cell frequency patterns of RCC tumors. Sub-figure A shows
hierarchically-clustering of cell frequencies obtained by digital mass cytometry of
TCGA data. Sub-figure B presents hierarchically-clustering of cell frequencies obtained
by mas cytometry analysis [61]. In Sub-figure C, RCC tumors in TCGA data set are
clustered using K-mean clustering method based on their immune cell frequencies.
Table indicates the number of patients in each category.

4.2.4 There are four immune patterns of RCCs.

K-mean clustering of RCC tumors based on their immune cells’ frequencies

shows that there are four different immune classes: Cluster 1 (CD4 < CD8 ≈MΦ), in

which the numbers of macrophages and CD8+ T-cells are approximately the same, and

the number of CD4+ T-cells is slightly less than the number of CD8+ T-cells; Cluster

2 called (CD8 < CD4 < MΦ), in which the number of macrophages is significantly

higher than the number of CD4+ and CD8+ T-cells; Cluster 3 (CD4 < MΦ < CD8),

in which the number of CD8+ T-cells is significantly higher than the number of

macrophages and CD4+ T-cells; and Cluster 4 called (CD8 < CD4 ≈MΦ) in which

the numbers of macrophages and CD4+ T-cells are approximately the same, and
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the number of CD8+ T-cells is significantly less than the number of CD4+ T-cells

(Figure 4.4C).

4.2.5 Cluster (CD8 < CD4 ≈MΦ) has the highest percentage of grade and stage 1

and 2 tumors.

Comparing clinical features of clusters show that Cluster (CD8 < CD4 ≈MΦ)

includes the highest percentage of grade 1 and grade 2 tumors and the lowest percent-

age of grade 4 tumors, and there is a similar trend for the stage of tumors (Figure

4.5A,B). Importantly, Cluster (CD8 < CD4 ≈ MΦ) has the highest proportion of

patients who were tumor free and smallest percentage of the diseased patients at the

last time of follow up compared to the other clusters (Figure 4.5D). Furthermore,

this cluster has the highest frequency of mast cells, monocytes and B cells compared

to the other clusters (Figure 4.4C). These results might imply that non-aggressive

tumors include an approximately equal number of each immune cell type.

4.2.6 Cluster (CD4 < MΦ < CD8) has the highest percentage of grade and stage 4

tumors compared to the other clusters.

The percentages of grade and stage 3 and 4 tumors are higher in Cluster

(CD4 < MΦ < CD8) compared to the other clusters (Figure 4.5A,B). Furthermore,

this cluster includes the highest number of deceased patients and patients who had a

tumor at the last time of follow up compared to the other clusters (Figure 4.5C,D).

There is a significant difference among overall survival months of female and male

patients in this cluster, female patients in the cluster (CD4 < MΦ < CD8) have the

highest overall survival months compared to the other clusters (Figure 4.5H). These

results indicate that male patients’ RCC tumors consisting of a significantly higher

number of CD8+ T-cells than any other immune cell types might be aggressive.
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4.2.7 There is no significant differences in overall survival months or age at diagnosis

of patients in each cluster.

Figure 4.5 indicates no significant differences in the overall survival of patients

in each cluster and some other interesting observations. For example, patients in

Cluster CD4 < CD8 ≈ MΦ with and without tumors at the last time of follow

up have a similar overall survival months while in all other clusters patients with

tumor have a significantly lower survival months than patients without tumors at

the last time of follow up. Moreover, patients with tumor in this cluster have a

significantly higher age at diagnosis compared to the patients with no tumors in this

cluster. Furthermore female patients in this cluster have a significantly higher age at

diagnosis but the same survival as male patients in this cluster. Additionally, female

patients in Cluster (CD4 < MΦ < CD8) have a significantly higher overall survival

months than male patients in this cluster, while females have a slightly higher age at

diagnosis than males in this cluster. Importantly, there is no significant differences

in the age at diagnosis and survival months of patients in each cluster based on the

location of their primary tumors, left and right kidneys.
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Figure 4.5. Sub-figures A-F show the clinical information of each group of RCC
tumors. Sub-figures G, H and I show the overall survival months and sub-figures J,
K and L represent the age of diagnosis of the patients in each cluster as a function of
tumor status, gender and the location of the primary tumor, respectively; the size of
markers indicates the grade of tumors.

4.2.8 Higher grade and stage of RCC tumors have higher percentage of CD8+

T-cells and lower percentages of mast cells and monocytes.

A study of 87 RCC patients indicates that the percentage of tumor infiltrating

CD8+ T-cells co-expressing PD-1 and Tim-3 correlated with an aggressive phenotype

and a larger tumor size at diagnosis [73]. Figure 4.6 also shows that the grade and

stage 3 and 4 RCC tumors have a significantly higher percentage of CD8+ T-cells

44



compared to the stage and grade 1 and 2 tumors, which is consistent with the

observations of Figure 4.5.

Figure 4.6 also indicates that the percentages of mast cells and monocytes

in RCC tumors significantly decrease when the grade and stage of tumors increase.

Note, Clusters (CD8 < CD4 < MΦ) and (CD8 < CD4 ≈ MΦ) that have higher

frequency of mast cells and monocytes and lower frequency of CD8+ T-cells have the

least percentage of grade three and four tumors (Figures 4.4C and 4.5).

A B C

D E F

Figure 4.6. Percentage of mast cells, monocytes and CD8+ T-cells in RCC tumors as
a function of grade and TNM staging. Sub-figures A, B, D , and E show that the
percentages of mast cells and monocytes decrease when the grade and stage of tumor
increase. Sub-figures C and F represent the percentage of CD8+ T-cells in primary
tumors as functions of grade and stage of tumors. For some patients with the stage
Ti (green), i = 1, 2, 3, 4 cancer, we have extra information about their stage: Tia
(light green) or Tib (dark green), for more information see Table 1.1 [12] .
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4.2.9 Tumor free patients have a significantly higher percentages of NK cells and

mast cells.

Figure 4.7 shows that the percentage of NK cells and mast cells are significantly

higher in primary tumors of tumor free patients versus patients with tumor at the last

time of follow up in all clusters. Importantly, Cluster (CD8 < CD4 ≈MΦ) has the

highest percentage of mast cells and NK cells compared to the other clusters (Figures

4.4 C and 4.7). Note, this cluster has the highest percentage of grade and stage 1

and 2 tumors. Additionally, RCC tumors in Cluster (CD4 < MΦ < CD8), which

has the highest percentage of grade and stage 4 tumors, have the lowest amount of

mast cells.

A B C

Figure 4.7. Sub-figure A shows that primary tumors of patients who were tumor
free at the last time of follow up have higher percentage of NK cells than patients
with tumor at the last time. Sub-figure B indicates the percentage of NK cell in each
cluster. Sub-figure C shows that in all clusters of RCC tumors, the percentage of
mast cells is significantly higher in tumor free patients than patients with tumor at
the last time of follow up.

4.2.10 Genes expression levels of PDCD1 and INFG are significantly positively

correlated with the percentage of CD8+ T-cells in RCC tumors.

Programmed cell death protein 1 (PD-1) is a type of protein that found on

T-cells and it prevents T-cells from killing cancer cells when it binds to PD-1 ligand
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(PD-L1) and PD-2 ligand (PD-L2) on cancer cells [74]. PDCD1 is a gene that encodes

PD-1 proteins [75]. PDCD1 gene and CD8+ T-cells are highly positively correlated,

with correlation coefficient of 0.85. Also, expression level of PDCD1 is the highest in

the cluster (CD4 < MΦ < CD8) and the lowest in the cluster (CD8 < CD4 ≈MΦ)

as a result of positive correlation with CD8+ T-cells (Figure 4.8C and F).

Interferon γ (INFγ), encoded by INFG gene [76], is a cytokine that is essential

for innate and adaptive immunity. It works as an activator of macrophages and

stimulator of NK cells and neutrophils [77] and they are mostly produced by T-cells and

NK cells as a reaction of a variety of inflammatory or immune stimuli [78]. Saliently,

expression level of INFG is significantly positively correlated with the percentage of

CD8+ T-cells and the expression level of PDCD1 in RCC tumors, with correlation

coefficients of 0.79 and 0.87, respectively. In addition, cluster (CD4 < MΦ < CD8)

has the highest INFG expression level and cluster (CD8 < CD4 ≈ MΦ) has the

lowest expression level of INFG as expected (Figure 4.8).

In contrast, there is a slightly positive correlation between the expression levels

of CD274 and PDCD1LG2 genes, that encodes PD-L1 and PD-L2 respectively, with

the expression levels of PDCD1 and INFG, and the percentage of CD8+ T-cells in

RCC tumors (Figure 4.8F). In addition, cluster (CD8 < CD4 ≈MΦ) has the lowest

levels of CD274 and PDCD1LG2 compared to the other clusters (Figure 4.8B and D).
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Figure 4.8. Sub-figures A, B, C and D respectively show INFG, PDCD1LG2, PDCD1
and CD274 genes expression values for the clusters based on tumor status. Sub-figure
F represents the values and distribution of INFG, PDCD1LG2, PDCD1, CD274 genes
expression and CD8+ T-cells in RCC primary tumors color coded by clusters that
belong to.

4.2.11 Aggressive tumors are mostly in the clusters (CD8 < CD4 < MΦ) and

(CD4 < MΦ < CD8).

When we use a sunburst chart to visualize hierarchical structures of clusters,

where clusters are inner center, tumor status and grade of tumor are the outer rings

in Figure 4.9A, survival status and stage of tumor are the outer rings in Figure 4.9B,

we see that patients with stage 4 tumor and grade 4 tumor are mostly in the clusters

(CD8 < CD4 < MΦ) and (CD4 < MΦ < CD8) with colors red and green in the

figures respectively. Interestingly, these cluster have very distinct INGF and PDCD1

genes expression levels (Figure 4.8A,B).

48



A B

Figure 4.9. Hierarchical structure of clusters. This figure indicates percentage of
patients with different clinical features in each cluster: tumor status and stage of
tumor in Sub-figure A and overall survival status and stage of tumor in Sub-figure B.

4.2.12 Cluster (CD8 < CD4 ≈MΦ) has the highest RGS5 gene expression level.

RGS5 is a member of the regulators of G protein signaling (RGS) family,

and they are known as signal transaction molecules that are associated with the

arrangement of heterotrimetric G proteins by acting as GTPase activators. Moreover,

RGS5 is a hypoxia-inducible factor-1 dependent involved in the induction of endothelial

apoptosis [36]. In Chapter 2, we found that a high RGS5 gene expression level is

associated with better survival months for RCC patients and when the grade of RCC

tumors increases, the RGS5 expression level significantly decreases [?]. Interestingly,

cluster (CD8 < CD4 ≈MΦ) has the highest RGS5 gene expression level and tumor

free patients have higher level of RGS5 expression than patients with tumor (Figure

4.10A,B). Moreover, RCC tumors with a high expression level of RGS5 have higher

percentage of mast cells and monocytes (Figure 4.10C and D).
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A B

C D

Figure 4.10. Sub-figure A shows expression level of RGS5 in RCC tumors as a function
of tumor status at the time of the last follow up. Sub-figure B shows the relationship
between RGS5 gene expression level and tumor status in each cluster. Sub-figures C
and D indicate the relation between the level of RGS5 and the percentage of mast
cells and monocytes in RCC tumors.

4.3 Discussion

Immune checkpoints are essential parts of immune system, and they are crucial

to prevent autoimmune diseases. However, some tumors benefit from these checkpoints,

because these checkpoints can prevent the immune system from killing cancer cells.

One such immune checkpoint is programmed cell death 1 protein (PD-1), which binds

to its ligand PD-L1 and inhibits immune cell activities, including T cell activities.

One strategy for cancer immunotherapy is to block these checkpoints to promote

anti-cancer T-cell activities [79, 80, 81, 82]. Immunotherapy such as targeting PD-1

pathway has improved overall survival months of several patients with metastatic

cancers, including melanoma, head and neck cancer, renal cell carcinoma, non-small

cell lung cancer (NSCLC), and colon cancer. However, there are many patients
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who do not respond to these treatments, and some patients who initially respond to

the treatments, they might develop resistance or experience severe adverse events

[83, 84, 85]. For this reasons, further biomarkers of tumor cells such as PD-1 and

PD-L1 and of tumor infiltrating immune cells such as T-cells and macrophages need

to be established to identify the patients that can be treated by immunotherapy drugs

[86].

In kidney cancer, common immunotherapy drugs such as nivolumab and

avelumab target PD-1, PD-L1, and PD-L2 pathways [87]. Anti PD-1 drugs tar-

gets T-cells directly, while anti-PD-L1 drugs target tumor cells directly, and they

may also target tumor associated macrophages that express PD-L1. Several studies

indicate an increase of INFγ production in the PD-1 inhibitors and other immune

checkpoint blockade therapies that resulted in destruction of cancer cells [88, 89, 90],

and a link between cancer immunotherapy improvement and an increase of INFγ

expression has been observed [78]. An increase in INFγ gene expression has also

been associated with better progression-free survival in NSCLC and urothelial cancer

patients treated with a PD-L1 inhibitor [91].

Note, tumors in cluster (CD4 < MΦ < CD8) have a high expression levels of

INFG, the gene encoding INFγ, and PDCD1, the gene encoding PD-1, compared to

the other clusters, and the expression levels of these genes are significantly correlated

with the percentage of CD8+ T-cells in tumors. Importantly, it has been shown

that INFγ boosts the CD8+ T-cells expansion [92]. Thus, patients in the cluster

(CD4 < MΦ < CD8) might respond to the PD-1 inhibitors. In addition, since there

is not a strong correlation between PDCD1LG2 and CD274 expression levels and

levels of INFG and PDCD1 genes, PD-L1 and PD-L2 inhibitors might not be as

effective treatments as the PD-1 inhibitors for the patients in this clusters. Although

cluster (CD8 < CD4 ≈ MΦ) includes a high number of patients with lower grade
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and patients who were tumor free in the last follow up time, tumors in this cluster

have lower levels of INFG and PDCD1, therefore patients in this cluster may not be

a good candidate for anti PD-1 therapies.

Anti-angiogenic agent (AA) is one of the main treatments in the aggressive

RCC [93], because nutrients and oxygen are the main ingredients of the tumor growth

which come from blood and angiogenes is the formation of blood vessels that carries

blood to the tumor. Anti-angiogenics, also known angiogenesis inhibitors, are drugs

that stop the growth of blood vessels (angiogenesis) that tumors need to grow [94].

A study of in vitro cell lines and in vivo mouse model of RCC shows that the

recruitment of mast cells is related with increased RCC angiogenesis by modulating

PI3K → AKT → GSK3→ AM signaling [95]. Since cluster (CD8 < CD4 ≈MΦ)

has the highest amount of mast cells compared to other clusters, angiogenesis inhibitors

might be a good treatment option for the patients in this cluster. Moreover, mast cells

are suggested as an independent prognostic factor in some studies of RCC patients

[96, 97], and the amount of mast cells negatively correlated with 5-year survival [97].

However, our finding shows that the number of mast cells inversely correlated with

the grade of tumors (Figure 4.6A,D), and the primary tumors of patients without

tumors at the last time of follow up have higher percentage of mast cells than primary

tumors of patients with tumor at the last time of follow up.

In addition to our first study results, we found that patients with higher RGS5

level have a higher percentage of mast cells and monocytes. Moreover, patients in

cluster (CD8 < CD4 ≈ MΦ) have the highest amount of RGS5 expression. With

the help of further investigation, RGS5 gene might also be a good target for patients

in this cluster. For all above mentioned suggestions, further clinical and biological

studies are required to test and validate them.
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CHAPTER 5

CONCLUSION

Renal cell carcinoma (RCC) is the most frequently diagnosed malignant tumor

type in the adult kidneys consisting of approximately 85% of kidney cancer cases [93].

Analysis of large complex biological and clinical data sets is one of the most popular

research area to infer the underlying mechanism of many diseases, including renal

cancer and arrive at personalized treatments.

In this study, we first analyzed gene expression profiles of 534 Renal Cell

Carcinoma patients to find prognostic markers that can be used in treatments of

RCC patients. We normalized gene expression of each patient separately and then

used variance threshold method to reduce the dimensionality of the data. Among the

top 10 most variant genes, RGS5 gene expression shows a strong association with

some clinical features. For example, the grade of tumor is a decreasing function of

RGS5 level and high RGS5 level is associated with better survival months. However,

considering the different biological roles of RGS5 [48] and contradictory observations,

this gene should be investigated more to be able to use it as targeted treatments.

Another popular research area about cancer treatments is investigating the

tumor microenvironment that is essential for the immunotherapeutic interventions.

Immunotherapies are costly treatments for certain cancer types, and they are not

effective treatments for the considerable amount of patients and they have some

important side effects [86]. For this reason, we analyzed immune cell proportion of

RCC patients by using the same gene expression data we used in the first part. We

first compared available tumor deconvolution methods to determine the best for our
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analysis, and we found that CIBERSORTx has the highest correlation with ground

truth data compared to other tumor deconvolution methods such as ssGSEA and

SingScore. Using CIBERSORTx, we estimated the percentage of each immune cell

type of 526 RCC patients. K-mean clustering of tumors based on their immune

proportions showed the existence of four distinct classes of RCC tumors. Moreover, we

observed a significant correlation between the number of CD8+ T cells and expression

levels of IFNG and PDCD1. Importantly, higher stage and grade of tumors have a

significantly higher percentage of CD8+ T cells in tumors. These results may be used

to determine the group of patients who might benefit from anti PD-1 therapies or

angiogenesis inhibitors.
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Cells Contribute to the IFN-γ-Dependent Regulation of Antigen-Specific CD8 +

T Cell Homeostasis. The Journal of Immunology. jan;(2):735–739.

[93] Choueiri TK, Motzer RJ. Systemic Therapy for Metastatic Renal-Cell Carcinoma.

New England Journal of Medicine. jan;(4):354–366.

[94] Al-Husein B, Abdalla M, Trepte M, DeRemer DL, Somanath PR. Antiangiogenic

Therapy for Cancer: An Update. Pharmacotherapy: The Journal of Human

Pharmacology and Drug Therapy. dec;(12):1095–1111.

[95] Chen Y, Li C, Xie H, Fan Y, Yang Z, Ma J, et al. Infiltrating mast cells promote

renal cell carcinoma angiogenesis by modulating PI3K→AKT→GSK3β→AM

signaling. Oncogene. may;(20):2879–2888.

[96] Fu H, Zhu Y, Wang Y, Liu Z, Zhang J, Wang Z, et al. Tumor Infiltrating Mast

Cells (TIMs) Confers a Marked Survival Advantage in Nonmetastatic Clear-Cell

Renal Cell Carcinoma. Annals of Surgical Oncology. may;(5):1435–1442.

[97] Cherdantseva TM, Bobrov IP, Avdalyan AM, Klimachev VV, Kazartsev AV,

Kryuchkova NG, et al. Mast Cells in Renal Cancer: Clinical Morphological

65



Correlations and Prognosis. Bulletin of Experimental Biology and Medicine.

oct;(6):801–804.

66



BIOGRAPHICAL STATEMENT

Sumeyye Su was born in Schaffhausen, Switzerland, in 1989. She received her

Bachelor of Science degrees in Mathematics and Economics from Yildiz Technical

University in Istanbul Turkey in 2012 and 2014, respectively. She joined the Ph.D.

program in Mathematics at the University of Texas at Arlington in the Fall of 2017.

67


