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ABSTRACT 

WEARABLE BIOMEDICAL SENSORS 

 

WENYUAN SHI, Ph.D. 

The University of Texas at Arlington, 2019 

 

Supervising Professor(s): Jung-Chih Chiao 

 

Focusing on current major research interests about the wearable biomedical sensors, 

numerous achievements contributed by researchers and engineers are reviewed in chapter 1. 

Development and research trends, as well as challenges of the wearable technologies are 

discussed. In chapter 2, a new double-resonance sensor was presented for monitoring body 

dehydration with two resonant frequencies. Using the waveguide method and the finite-element 

simulations, the sensor was designed with optimal parameters. Electromagnetic field 

distributions, Q factors, and sensitivities of the sensor are analyzed. The sensor’s equivalent 

circuit was deduced. The finite-element model and the equivalent circuit model were simulated for 

identifying various materials by the resonant frequencies. The sensor was experimentally 

validated by identifying pork humidity. With a wireless body network, this new wearable 

biomedical sensor can monitor body dehydration, and potentially used for identification of 

abnormal or cancerous tissues. In chapter 3, implantable biomedical sensors with wireless body 

area network (WBAN) are presented for Intraoperative Neuromonitoring (IONM). The wireless 

system was implemented with advantages of small size, low cost, high sample rate, maximum 

communication range over 10 m, battery life over 10 hours, and isolated electromagnetic 

interference from power lines and surrounding electrical equipment. Because the new WBAN 

system has a different frequency response from the IONM system used in hospital, a system 

identification method was used to find the transfer function between the two systems and was 

used to convert the wireless recordings to the equivalent IONM waveforms. In order to verify the 

WBAN performance, the muscular action signals from 20 patients were recorded by the WBAN 



 

xiv 
 

during scoliosis correction surgeries at the Texas Scottish Rite Hospital for Children. The signals 

were converted and evaluated by the goodness of fit, Pearson's correlation, and root mean 

square errors methods. It has been demonstrated that the converted wireless recordings should 

be fully acceptable by the doctors. 
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CHAPTER 1 

A REVIEW OF WEARABLE BIOMEDICAL SENSORS 

 

1.1 Introduction 

 

Wearable technologies have wide application ranges in medical, sport, and fitness fields 

[1]. Our lifestyle has been revolutionized by the rapid emerging of wearable technologies. Modern 

wearable devices have been embedded with sensors, electronics, computer software, and 

networking capabilities. They can be used to monitor and record human physiological activities as 

well as health status in real time [2, 3]. Sensors play a critical role in acquiring signals of physical 

activities while the electronics enable mobility. Utilizing MEMS and Nanotechnologies, miniature 

sensors can be implemented using advanced low-power electronics to be worn on a person’s 

body or clothes. Modern microcontrollers can implement high accuracy, up to 24-bit resolution, 

and high speed, up to 2 million samples per second, analog to digital signal conversion, which 

enable various digital communication protocols with multi-channel interfaces. Sensor signals then 

can be efficiently managed in real-time operation. With the emerging IOT (Internet of Things) 

applications and ubiquitous wireless networks, wearable technologies are more easily integrated 

into daily life. The software also has become more important with digital signal processing 

technologies to extract vital information for remote monitoring and analysis of one’s health status. 

Cloud computing and big data analysis can further provide the distribution of data about diseases 

in a large population for analysis. 

Modern wearable technologies include wireless communication, energy harvesting, body 

area networking, and various sensor techniques. In this chapter, current developments are 

introduced. Then the status of wearable devices, their costs, power consumptions, components, 

functions, and signal usages are summarized. Various application conditions requiring specific 

radio-frequency (RF) techniques and standards such as Bluetooth, Wifi, ZigBee and WBAN 

(Wireless Body Area Networks) are compared. As an alternative to battery power sources, 

various energy harvesting methods for the wearables are reviewed. Based on published literature, 
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wearable sensors are classified according to their locations placed on the body, purposes, and 

developing stages, in section 1.3. The trends and challenges of wearable technology 

development are discussed in section 1.4. It is quite clear that in the near future more and more 

biomedical wearable devices will be developed and supported by fast-progressing advances in 

integrated MEMS, Nano-scale sensors, flexible electronics, miniaturized low-power transducers, 

energy harvesting integrated circuits (ICs), efficient data processing, and intelligent control with 

decision-making functions. 

1.2 Wearable Devices 

 

A.  Developments of Wearable Devices 

Compared to the existing self-monitoring systems used in clinical practice, wearable 

devices can provide more advantages as they do not restrict a person’s mobility and daily 

activities. They are also inconspicuous which provides accessibility, reliability, and accuracy of 

diagnosis data. Wearable devices can be broadly classified based on their intended applications 

as (1) wearable consumer electronic devices, which are oriented to entertainment, security, and 

personal information exchanges; (2) wearable wellness devices, which encompass fitness and 

wellness tracking; and (3) wearable healthcare devices, which are used for monitoring of specific 

symptoms and collecting personal physiological signals. The commercially available devices for 

fitness and wellness tracking include Basis, Nike FuelBand, Withings Pulse, LG LifeBand, 

Samsung Gear Fit, Garmin VivoFit, Misfit Flash, FitBit, HTC Grip and many others. Almost all of 

these devices offer functions like step counting, pulse rate, and sleep position monitoring. Some 

provide calculated blood pressure information. Together with a companion application in a smart-

phone, these devices offer flexible, easy and convenient options for the users to track wellness 

and fitness. These devices adhere to the IEEE 11073 Personal Health Device (PHD) Family of 

Standards [4]. While the devices targeting wellness provided daily activity tracking, the wearables 

for health monitoring have more rigorous challenges in acquiring the physiologically relevant 

signals which are important for the diagnosis of a disease. 
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Summarized the sensor development history and trends, we proposed five usage levels 

of wearable devices based on their intended applications and costs from low to high. On level 1, 

the wearables have the lowest costs, which consist of sensors and electronic devices for only 

sensing and alarming. An example is the wristwatch type that senses pulse signals and alarms in 

real time with LED light and sound. On level 2, the wearables have medium costs, which add 

recording and display functions. The wearables with more functionalities utilize a microprocessor 

and software controller to process and record signals. On level 3, the wearables have higher 

costs but communicate with mobile terminals, such as a cell phone, computing tablet or personal 

computer. Wired and/or wireless communication methods may be implemented for the acquired 

signals and among other wearable devices. Hence, the sensor signals may be calculated, edited, 

plotted, recorded, and retransmitted to different nodes for analysis or collection. On level 4, 

wearable devices have higher costs, which come from more complex functionalities such as 

wireless communication to a data cloud servers with IOT technologies. In recent years, with 

advances by battery-free ultra-low power sensors, on level 5, the wearables encompass the 

characteristics of MEMS sensors, Nano-scale sensing principles, and Nano-watt-class power 

consumption. These sensing techniques enable battery-free operations with potential power 

sources by harvesting electromagnetic energy, solar energy, temperature-gradient thermal 

Table 1.1 Comparison with the developing levels, cost, power supplies, components, functions, and 
signal usages. 

Level Cost Power Components Functions Signal usages 

1 Low Battery Sensors, Electronics Alarm and Monitor Sound and light 

2 Mediu
m 
 

Battery Sensors, 
Microcontroller, 
Software 

Alarm, Monitor, and record Sound, light, screen 
display, record, and 
analysis 

3 High 
 

Battery Sensors, 
Microcontroller, 
Mobile terminals, 
Software 

Alarm, Monitor, record, 
calculation, edit, and wired 
communication 

Sound, light, display, 
record, real time share 
and analysis 

4 Higher 
 

Battery Sensors, 
Microcontroller, 
Wireless, Internet 
network,   
Cloud Server, Software 

Alarm, Monitor, record, 
digital signal processing, 
edit, and wireless 
connectivity 

Sound, light, cloud 
servers, big data, IOT, and 
cloud computing 

5 Highest Battery-
free 

MEMS sensors, Nano 
sensors, ASIC, Energy-
harvesting 

Intelligent monitor and 
wireless connectivity 

Cloud servers, big data, 
IOT, and cloud computing 

MEMS: Micro-Electro-Mechanic System; ASIC: application-specific integrated circuit; IOT: Internet of things. 
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energy, vibration energy, and acoustic energy. The big data and cloud computing techniques can 

be applied to process the signals collected from large population groups. The classes are 

summarized in Table 1.1. 

 

B.  Wireless Protocols  

There are a few wireless protocols in practical applications. Most of the devices 

implement Bluetooth, WiFi, ZigBee, and WBAN (wireless body area network). They are mainly 

considered according to the operating frequency, bandwidth and data rates, as shown in Table 

1.2. For example, the Bluetooth 4.0 operating at 2.4 – 2.485 GHz has a maximum bit rate of 24 

Mbps while WiFi Direct provides up to 250 Mbps [5].  

The multitude of sensors embedded in the compact, low power, and wireless devices 

have led the international WBAN standard as IEEE 802.15.6 [5], which refers to the 

interconnecting devices used in close proximity around the body [6]. Some also refer to WBAN as 

body area networks (BAN) or body sensor networks (BSN) [7]. The development is driven by 

wearable sensing technologies and personal area networking technologies so it is expected to 

evolve quickly with time. With increasing applications, vast amounts of health data will require 

WBAN to support real-time reporting, decision making, and potentially therapeutic treatment. It 

will be also possible that specialized WBAN nodes are ingested or implanted inside the human 

Table 1.2 Summary of Bluetooth, WiFi, ZigBee, and WBAN. 

Technology Standards Type Frequency Data rate Range 
Transmitter 
power 

Power 
Consumption 

Cost 

WiFi IEEE 802.11 
b/g/n 

LAN 
 

2.4 GHz 
5 GHz 

11 Mbps - 
250 Mbps 

120m - 250m High High High 

Bluetooth IEEE 802.15.1 PAN 
 

2.4 GHz 3 Mbps - 
24Mbps 

class 1: 100m 
class 2: 10m  
class 3: 1m 

Low Low Low 

ZigBee IEEE 802.15.4  PAN 868 MHz 
915 MHz 
2.4 GHz 

40kbps - 
250 kbps 

75m Low Low Low 

WBAN IEEE 802.15.6 BAN 
 

402MHz - 
4GHz 

57.5kbps - 
85.7kbps 

10m Lowest Lowest Low 

LAN: Local area network; PAN: Personal area network; BAN: Body area network; WBAN: Wireless body area network [5] 
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body [7]. Thus the integration and relevant standards of wearable and implantable devices 

around and across body tissues will be important for advanced applications.   

Commercially WBAN devices have found success owing to the increasing interest and 

functionality needs. Currently available devices can sense, monitor, and report blood pressures, 

heart rates, blood oxygenation levels, exercise intensity, calories burnt, step counts, cadences 

and more. They offer ubiquitous and, more importantly, unmindful monitoring. For example, it has 

been shown that blood pressure can be elevated in patients in the presence of medical personnel 

or in a clinical environment [8]. Continuous and unhindered monitoring through wireless 

communication becomes attractive for those patients and for who want to maintain a regular 

lifestyle without restriction.  The same advantages can be readily applied in senior care facilities, 

rehabilitation, diagnosis and therapy [2, 9, 10].  

Advantages and disadvantages of these popular wireless technologies are listed in Table 

1.2. Working ranges of wireless devices are dependent on transmitter power levels, receiver 

sensitivity, antenna size, local environment characteristics, and so on. Five examples of the 

commercial device from Texas Instruments, Inc. for each different wireless technology are 

summarized in Table 1.3 to illustrate such comparison in transmission speed and power, receiver 

sensitivity, power consumption, and chip costs.  

Table 1.3 Examples: specifications of five wireless devices. 

Device Name Technology Standards 
Transmission 
speed 

Transmitter 
power 

Receiver 
Sensitivity 

Power 
Consumption 

Chip 
Cost 

CC3200 [11]  
Wireless MCU 

WiFi 
 

IEEE 802.11 
b/g/n 

54Mbps +14.5 dBm –74dBm 229 mA  $8 

CC2640 [12] 
Wireless MCU 

Bluetooth 
 

IEEE 802.15.1 1 Mbps +5 dBm –97 dBm 9.1 mA $2.5 

CC2630 [13]  
Wireless MCU 

ZigBee IEEE 802.15.4 250 kbps +5 dBm –100 dBm 9.1 mA $2.5 

CC2500 [14]   
RF Transceiver 

Low-power 
wireless 

2.4 GHz 
ISM/SRD 

500 kbps +1 dBm -104 dBm 21.5 mA $1.5 

CC1101 [15] 
RF Transceiver 

Low-power 
wireless 

433/868/915 
MHz 
ISM/SRD 
bands 

500 kbps +11 dBm -116 dBm 33.4 mA $1.9 

MCU: Microcontroller unit; ISM: Industrial, Scientific and Medical; SRD: Short Range Device. 
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C. Energy Harvesting 

Table 1.4 Methods of wearable energy harvesting. 

Source Device Author 
 (First) 

Years Harvester 
parameters 

Description Generated 
power 

Kinetic energy from 
human hand motion 

Electromagnetic 
induction 
converter for 
kinetic energy to 
electrical energy 

Samad, 
F.A. [19] 

2016 Coil: 1000 turns 
Long: 210 mm 
Diameter: 15mm 
Weight 140g 

A curved wearable 
electromagnetic 
harvester on the human 
hand while walking or 
running 

5.185 mW 

Kinetic energy from 
bending the finger 
Joints 

piezoelectric 
transducers 
PIC252 

Pasquale, 
G.De. [20] 

2016 61mm× 35 mm 
×0.4mm 

A glove harvest the 
power generated by 
bending the finger joints 

31.9 μW 

Kinetic energy from 
foot strikes on the 
ground 

Gear driving 
generator 

Xie, L. [21] 2015 80 mm× 47 mm 
×22 mm, 137 g 

An in-shoe energy 
harvester 

1 W 

Kinetic energy from 
body motion 

Generator of 
triboelectric effect 
and electrostatic 
effect  

Cui, N. [22] 2015 2.1 cm×28 
cm×0.045 mm 

A wearable triboelectric 
generator made of nylon 
and Dacron fabric 

0.1W 

Thermoelectric 
energy from body 
heat 
 

Thermal 
semiconductor  
and piezoelectric 
film 

Misra, V. 
[23] 

2015 1 cm ×1 cm Wearable 
nanostructured energy 
harvesters 
for body heat and body 
motion harvesting 

500 μW 

Thermoelectric 
energy from body 
heat 

256 
thermocouples 
from Thermix 

Leonov, V. 
[24] 

2013 3×3×3 cm 
 

Thermoelectric energy 
harvester in a shirt 

5mW 

Acoustic Energy Triboelectric 
nanogenerator 

Fan, X. [25] 2015 Custom design 
size 
 

A nanogenerator of 
harvesting sound wave 
energy 

121 
mW/m

2
 

Electromagnetic 
energy from radio 
frequency 

E-fielddipole 
antenna, 
H-field helical 
coilantenna 

Bito, J. [26] 2015 E-fieldantenna: 
dipole  
150mm×5mm 
H-field antenna: 
four loops 
77.6×40mm 

Wearable radio-
frequency energy 
harvesters for two-way 
talk radios 

E-field 
43.2mW 
H-field 
146.9mW 

Electromagnetic 
energy from 2.4GHz 
Wi-Fi 

Inverted F 
antenna 

Talla, V. 
[27] 

2015 25.7 mm x 7.5 
mm 

A wearable temperature 
sensor, which harvests 
energy from Wi-Fi 
transmissions and 
transmits data back to 
an access point. 

2.5 μW 

Electromagnetic 
energy from NFC 

Coil on finger ring Gummeson
J. [28] 

2014 Coil 10 turns  
Diameter 1.5 cm 

A wearable ring to 
harvest energy from a 
NFC-enabled phone 

18 mW 

Electromagnetic 
energy from mobile 
phone 
 

Printed dipole 
antenna 

Visser, H. 
J. [29] 

2008 50×50 mm A single GSM telephone 
delivers energy for 
wirelessly applications 

1.9mW 

Electromagnetic 
energy from RFID 

Rectifying 
antenna 

Monti, G.  
[30] 

2012 Layout of the 
antenna is 
101.8×99.6 mm 

Uses a receiving 
antenna and a voltage 
multiplier rectifier 

43 µW/cm2 

Light and 
Thermoelectric 
energy from body 
heat 

16 photovoltaic 
(PV) cells, 
12 thermoelectric 
Generators (TEG) 

Brogan Q. 
[31] 

2014 Each PV cell is 
31×31×3.0 mm 

A wearable energy 
harvesting jacket, which 
harvests energy from 
solar and body heat 

PV: 500 
mW 
 
TEG: 
1.25μW 

 



 

7 
 

Low-power sensors and application-specific integrated circuit (ASIC) chips have reduced 

the battery capacity requirement and enable energy harvesting from additional power sources to 

operate the devices [16]. The energy harvesting techniques can provide a perpetual operation for 

wearable devices [17]. Without batteries, the cost, size, and weight of the devices may be 

reduced. When the devices are implanted inside the body, the troubles of depleted battery 

replacement will be exempted with the right energy harvesting methods. Some electrical wastes 

such as dead batteries can be avoided [18]. A common drawback is that the current energy 

harvesting can only produce a limited amount of energy [18]. It is possible that the energy 

harvesting techniques will be applied to the next-generation wearable devices for medical 

monitoring with safety operations. 

Up-to-date information about recent energy harvesting methods for kinetic energy, 

acoustic energy, electromagnetic energy, and light energy is summarized in Table 1.4.  

1.3 Wearable Biomedical Sensors 

Many wearable sensors for medical diagnosis have been reported and some of them are 

used in clinical applications. From the application points of view, the devices can be classified 

based on their developing stages, purposes, sensing modalities, and uses on the body. For a 

technical point of view, they can be categorized by their communication methods, frequency 

bands, network types, and power sources. 

Table 1.5 summaries the development of such biomedical sensors according to the 

placement location on the body, which often is determined by the clinical needs. Because of the 

practical concerns in long-term wearability, the locations are typically on chest, wrist, finger, hand, 

arm, waist, head, ear, eye, neck, leg, foot, and skin. Implants are also included in the table. The 

implant location often is directly related to a specific organ or tissues. The purposes are classified 

as number 1 for fitness, 2 for physiological parameter monitoring, 3 for monitoring senior care, 4 

for monitoring children, 5 for applications of a specific disease. The stage of development is 

classified as number 1 for the research stage, 2 for the prototype stage, and 3 for commercial 

product stage. With respect to the device networking capability, they are classified as numbers:  1 
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for wireless point-to-point communication between specific devices, such as ZigBee; 2 for 

wireless point-to-point communication to a common device that can act as a gateway, such as a 

smartphone; 3 for wireless WiFi or Bluetooth connection to any device including gateway routers; 

4 for wired communication only; and 5 for without communication capability.  

 

1). Sensors placed on chest 

Wireless and wired communication devices have been placed on the chest to measure 

and transmit ECG (or EKG, electrocardiogram) signals by wet electrodes [34-36, 38-51, 59-60, 

63-66], dry electrodes [33], and capacitive sensors [41, 57]. Advantages of the dry sensors are 

inexpensive, comfort, and less skin irritation. The weakness of the dry sensor is the ECG signal 

with higher noise while moving [33]. The wireless communication has also be used to record 

heart sounds by microphones [52, 54], to measure surface temperatures by thermometers [45, 49, 

50, 56, 59, 61], and to measure dielectric permittivities by the bio-impedance sensors [43]. 

Respiration is monitored by Doppler radar [54], accelerometer [43, 47, 50], and inductive sensor 

[37]. It can also be monitored with strain signals by piezoelectric sensors [55, 59] and knitted 

conductive yarns [32]. These sensors can be readily integrated with wireless communication. 

When the devices are placed on the chest, the physiological signals, such as ECG, heart sound, 

respiration, cardiovascular, body surface temperatures, and dielectric permittivities, can be 

directly detected with a higher signal to noise ratio (SNR). However, the devices attached on the 

chest may limit the body motion and cause inconvenience and discomfort for the patient during 

long-term monitoring. 
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Table 1.5. Description of various sensors 
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Chest 2 2 Patron D. 
[32] 

2016 RFID 870–915 
MHz 

Knitted strain 
sensor 

Baby breathing 
monitoring 

RFID 1 

Chest 2 2 Yokus M. 
A. [33] 

2016 Wired Sample 
rate 
1000 Hz 

ECG dry 
electrodes 

Body surface 
biopotential 
Recording 

Wired 
power 

4 

Chest 2 2 Pani D. [34] 2016 Wired 
USB 

Sample 
rate 
512 Hz 

ECG sensor Textile electrodes 
for wearable ECG 
monitoring 

Wired 
power 

4 

Chest 
ear 

2 2 Da He D. 
[35] 

2015 Wireless  ECG sensor 58 nW ECG ASIC 
wearable 
cardiovascular 
monitoring 

0.7 mAh 
Battery 

1 

Chest 2 2 Izumi S. 
[36] 

2015 NFC tag 
IC 

 ECG and 
acceleration 
sensor 

Low-power ECG 
processor for 
wearable 
healthcare system 

Battery 1 

Chest 2 2 Ojarand J. 
[37] 

2015 Wi-Fi 2.4GHz LDC1000 
sensor 

Respiration 
monitoring 

Battery 1 

Chest 2 3 Zhang X. 
[38] 

2014 WBSN 
wireless 

 ECG sensor Real-Time QRS 
detection of 
wearable ECG 
sensors 

Battery 1 

Chest 2 2 Thotahewa 
K.M. [39] 

2014 ISM  
wireless 

433MHz ECG sensor Low-Power Dual-
Band Wireless 
WBAN applications 

Battery 1 

Chest 2 2 Ieong C. 
[40] 

2012 TI 
CC2500 
wireless 

4kbps ECG sensor Wavelet transform 
for wireless ECG 

Battery 1 

Chest 2 2 Nemati E. 
[41] 

2012 ANT 
AP2 RF 
trans- 
ceiver 

307kbps 
at 
2.4GHz 

Capacitive 
ECG sensor 

Long-term wireless 
wearable ECG 
sensor on T-shirt 

Battery 1 

Chest 2 3 Dilmaghani 
R. S.  [42] 

2011 eZ430-
RF2500 

250kbps 
at 
2.4GHz 

ECG sensor WSN monitoring 
multiple patients 
using cc2500 chip 

Battery 1 

Chest 2 2 Vuorela T. 
[43] 

2010 USB Sample 
rate at 
512 Hz 

ECG, 
bioimpedance, 
acceleration 
sensor 

Portable 
physiological signal 
recorder 

Battery 1 

Chest 2 2 Jin Z. [44] 2009 Blue-
tooth 

2.4GHz ECG sensor Cardiovascular 
disease prevention 

Battery 3 

Chest 2 3 Chen S. 
[45] 

2009 WBAN 
wireless 

1Mbps 
at 2.4 
GHz 

ECG and 
temperature 
sensor 

Low-Power WBSN 
for biometrics and 
healthcare 

Battery 1 

Chest 
head 
wrist 
finger 

2 2 Monton E. 
[46] 

2008 CC2420 
ZigBee 

250kbps 
at 
2.4GHz 

ECG, EEG, 
EOG, and 
EMG sensor 

BAN patient 
monitoring 

Battery 1 
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Table 1.5. (continues) Description of various sensors 
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Chest 2 2 Di 
Rienzo 
M. [47] 

2007 Bluetooth 2.4GHz Textile ECG 
electrodes, 
accelerometer 

‘MagIC’ vest for 
measuring ECG, 
respiratory, and 
movement  

Battery 3 

Chest 2 2 Pawar T. 
[48] 

2007 Wired N/A ECG sensor Body activity 
recognition 

Wired 
power 

4 

Chest, 
arm, 
leg 

2 2 Chien J. 
C. [49] 

2005 Bluetooth 115.2 
kbps at 
2.4GHz 

ECG, PCG, and 
temperature 
sensor 

ECG, PCG, and 
body temperature 
measurements 

Battery 3 

Chest, 
wrist 

2 2 Knight F. 
[50] 

2005 Wired N/A ECG sensor, 
accelerometer, 
and temperature 
sensor 

‘SensVest’ Battery 4 

Chest, 
head, 
wrist, 
shoe 

2 2 Jovanov 
E. [51] 

2003 Wireless 33.6 
kbps at 
900MH
z 

EEG, ECG, 
breathing, GSR, 
and movement 
sensor 

Wireless 
intelligent sensors 
for distributed 
stress monitoring 

Battery 3 

Chest 2 2 Sa-
ngasoon
gsong A. 
[52] 

2010 CC2420 
Zigbee 

250 
kbps at 
2.4GHZ 

Microphone Wireless 
stethoscope and 
phonocardiology 

Battery 1 

Chest 
 

2 3 Mandal 
S. [53] 

2010 Wireless  N/A Microphones Battery-free tag 
for heart 
monitoring based 
on body sensor 
networks 

Wireles
s power 

1 

Chest 2 3 Lu G. 
[54] 

2010 Wired N/A Doppler radar Heart rate 
monitoring 

Wired 
power 

4 

Chest 2 2 Lanatà 
A. [55] 

2010 Wireless 1Mbps Multimodal 
piezoelectric 
sensor 

Wearable system 
for monitor 
breathing signal 
and heart-rate 

Battery 1 

Chest 2 3 Popovic 
Z. [56] 

2014 Wireless  Microwave 
thermometer 

Wireless 
thermometers 

Battery 1 

Chest 2 3 Zheng Y. 
L. [57] 

2014 Wireless  PPG and 
capacitive 
wearable sensors 

Unobtrusive 
wearable sensors 

 

 3 

Chest 2 2 Salman 
S. [58] 

2014 Bluetooth
ZigBee 

2.4 
GHz 

Electrode sensor Monitor lung’s 
dielectric 
permittivity in non-
invasive 

Battery 3 

Chest, 
arm, 
wrist, 
neck,  
waist, 
shoe 

2 2 Curone 
D. [59] 

2010 ZigBee 
WiFi 

2.4GHz ECG, 
temperature, 
heat flux, 
CO2,acceleromet
er, piezoelectric, 
and SPO2 ensor 

‘ProeTEX’ smart 
garment 

Battery 3 
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Table 1.5. (continues) Description of various sensors 
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Chest, 
arm 

2 3 Xiao S. 
[60] 

2009 CC2420 
ZigBee 

250 
kbps at 
2.4GHz 

ECG, 
Heartbeat, pH, 
glucose, 
mobility, and 
walking sensor 

‘MicaZ’ mote based 
system 

Battery 1 

Chest 1 2 Gaura E. 
I. [61] 

2009 Blue-
tooth 

2.4GHz Accelerometer 
and 
temperature 
sensor 

BSN based skin 
temperature 
monitor for bomb 
disposal 

Battery 3 

Chest 2 2 Luprano J. 
[62] 

2006 Wireless  Accelerometer, 
temperature, 
and strain 
sensor 

Mermoth clothes Battery 1 

Chest 2 3 Labati R. 
D. [63] 

2014 Wired N/A ECG sensor ECG Biometric 
recognition 

Wired 
power 

4 

Chest 2 3 Safie S. 
[64] 

2013 Wired N/A ECG sensor biometric 
authentication 

Wired 
power 

4 

Chest 2 3 Kaul A. 
[65] 

2012 Wired N/A ECG sensor ECG authentication Wired 
power 

4 

Chest 2 3 Coutinho 
D. P. [66] 

2011 Wired N/A ECG sensor ECG 
Authentication 

Wired 
power 

4 

Wrist, 
head 

1 2 Abbasi-
Kesbi R. 
[67] 

2017 Wireless 2.45 
GHz 

MEMS 
gyroscope 

Estimate human 
reaction time 

Battery 1 

Wrist 2 2 Shi W.Y. 
[68] 

2016 Blue-
tooth 

2.4 GHz Microphone Heart Sound 
Monitor 

Battery 3 

Wrist 2 2 Motoyama 
H.  [69] 

2016 Wired 20–500 
Hz 

EMG sensor Wearable EMG 
sensors to estimate 
joint angles of wrist 

Battery 1 

Wrist, 
finger 

2 1 Mukhopad
hyay S. [2] 

2015 ZigBee, 
Blue-
tooth 
WiFi, 
WiMax 

500kbps
- 
75Mbps, 
at 2.3-
5GHz 

Temperature, 
heart-rate, 
accelerometer, 
ECG sensors 

Human Activity 
Monitor 

Battery 3 

Wrist, 
finger 

1 2 Friedman 
N. [70] 

2014 Micro-
USB 

 magnetometers measuring wrist & 
finger rotary 

Battery 1 

Wrist 2 2 An Y. J. 
[71] 

2014 Wireless 2.4 GHz Radio 
Frequency 
sensor 

Wrist Pulse 
Detection 

Battery 1 

Wrist 2 2 Pang G. 
[72] 

2014 Wireless  Pulse oximeter Wrist LEDs Pulse 
Oximeter 

Battery 3 

Wrist 1 2 Texas 
Instrument
s [73] 

2009 Wireless 433/868
/915 
MHz 

Accelerometer, 
pressure, and 
temperature 
sensor 

A integrated 
wearable wireless 
sport watch 

Battery 1 
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Table 1.5. (continues) Description of various sensors 
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Wrist, 
finger 

2 2 Guo D. G. 
[74] 

2009 ZigBee 250kbps 
at 
2.4GHz 

ECG and SpO2 
sensor 

BSN based system Battery 1 

Wrist 
chest 

2 2 Volmer A. 
[75] 

2008 Zigbee 250kbps 
at 
2.4GHz 

ECG, PCG, and 
PPG sensor 

WBSN for vital sign Battery 1 

Wrist 
chest 

2 2 Chung W. 
Y. [76] 

2008 ZigBee 250kbps 
at 
2.4GHz 

ECG and blood 
pressure sensor 

A u-healthcare 
system 

Battery 1 

Wrist 
finger 

2 2 Buford, R. 
J. [77] 

2008 Wired Wired Microwave 
sensor 

Noninvasive 
measurement of 
blood glucose 
levels 

Wired 
power 

4 

Wrist 2 3 Tapia E. 
M. [78] 

2006 ISM 
wireless 

250kbps 
at 
2.4GHz 

Acceleration, 
heart rate, ultra-
violet exposure, 
RFID, and 
location beacon 
sensor 

Portable kit of 
wireless sensors for 
pervasive 
computing 

Battery 1 

Wrist 2 1 Anliker U. 
[79] 

2004 GSM/ 
UMTS 
wireless 

 ECG, SpO2, 
blood pressure, 
acceleration, 
and 
temperature 

‘Amon’ portable 
tele-monitor 

Battery 2 

Finger 2 2 Cohen Z. 
[80] 

2017 Wired Wired PPG sensor Monitoring of the 
Blood Pressure 

Wired 
power 

4 

Finger 2 2 Joshi A. 
[81] 

2011 eZ430- 
RF2500 

250kbps  
at 
2.4GHz 

ECG sensor Heart-Rate Monitor 
using MSP430 
Launch Pad 

Battery 1 

Finger 2 2 Wu Y. C. 
[82] 

2009 Bluetooth 921.6 
kbps 

RFID ring-type 
pulse sensor 

Heart rate monitor Battery 3 

Finger 2 2 Jang I. 
 -H. [83] 

2008 Zigbee sample  
rate    
40 Hz 

ring-type heart 
rate and pulse 
oximeter 
sensors 

Heart rate and 
pulse oxygen 
monitor 

Battery 3 

Finger 2 2 Oliver N. 
[84] 

2006 Bluetooth 2.4 GHz Pulse oximetry 
sensor 

Medical monitoring 
system 

Battery 3 

Finger 
wrist, 
chest 

2 2 Shnayder 
V. [85] 

2005 ZigBee 250kbps 
at 
2.4GHz 

ECG, pulse 
oximeter, EMG, 
and motion-
activity sensor 

CodeBlue’ mote 
based system 

Battery 1 

Finger 
chest 
arm 

2 2 Mundt C. 
W. [86] 

2005 Bluetooth 9600bps 
at 
2.4GHz 

ECG, 
accelerometers, 
pulse oximetry, 
temperature, 
respiration, 
heart rate, and 
BP 

‘Lifeguard’ 
multiparameter 
wearable 
physiologic 
monitoring 

Battery 3 
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Table 1.5. (continues) Description of various sensors 
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Finger 
hand  
glove 

1 2 Borghetti 
M. [87] 

2013 MAX1472 
wireless 

10kbps 
at 
433MHz 

Strain sensors Measuring finger 
flexion for 
Rehabilitation 
Purposes 

Battery 1 

Hand, 
glove 

5 3 Niazman
d K. [88] 

2011 ISM 
wireless 

2Mbps 
at 
2.4GHz 

3D-
accelerometer 
and force 
sensor 

Smart glove for 
assessment of 
Parkinson’s 
Disease 

Battery 1 

Hand, 
chest 

2 2 Lam S. 
C. K. 
[89] 

2009 Bluetooth 2.4GHz PPG, Pulse 
rate, Breathing 
rate, 
SpO2, and 
OSA prediction 

wearable biosensor 
and mobile phone 
monitoring 

Battery 3 

Hand, 
glove 

2 2 Simone 
L. K. [90] 

2007 ZigBee 250kbp
s at 
2.4GHz 

Bend sensor Glove Battery 1 

Hand, 
glove 

2 2 Lorussi 
F. [91] 

2005 N/A N/A Strain fabric 
sensor 

Sensorized glove Battery 4 

Hand, 
glove 

5 2 Prochaz
ka A. 
[92] 

1997 N/A N/A Stimulated 
electrodes and 
position sensor 

Stimulator garment 
(glove) 

Battery 4 

Arm 2 2 Jauregi 
I. [93] 

2017 RFID 860-960 
MHz 

Temperature 
sensor 

Measures the skin 
temperature 

RFID 1 

Arm, 
eye, 
tooth 

2 2 Matzeu 
G. [94] 

2015 WBAN 
wireless 

 Optical pH, 
conductivity,  
sodium, 
temperature, 
Tattoo, and 
graphene  

Wearable chemical 
sensor for 
monitoring 
biological fluids 

Battery 1 

Arm 2 2 Giorgino 
T. [95] 

2009 Blue-
tooth 

2.4GHz Strain sensors Sensorized shirt Battery 3 

Arm 2 2 Miwa H. 
[96] 

2007 N/A N/A Accelerometer 
and 
temperature 
sensor 

Sleep Roll-over 
Detection and 
Sleep Quality 
Measurement 

 4 

Waist, 
chest 

2 2 Yi W. J. 
[97] 

2013 CC2560 
Bluetooth 

2.4GHz ECG, PCG, 
accelerometer, 
and 
temperature 
sensor 

FPGA real-time 
acquiring fetal 
ECG/PCG signals 

Battery 3 

Waist, 
wrist 

1 2 Mo L. 
[98] 

2012 ZigBee 38.4kbp
s 
at 
2.4GHz 

Accelerometers 
and 
displacement 
sensors 

Multisensor 
monitoring human 
physical activity 

Battery 1 

Waist 4 2 Borges 
L. M. 
[99] 

2008 WSAN, 
Wi-Fi, 
GSM 

2.4GHz ECG and flex 
piezoelectric 
pressure 
sensor 

Monitor fetal 
movement and 
ECG signals 

Battery 3 
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Table 1.5. (continues) Description of various sensors 
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Waist 3 2 Akay M. 
[100] 

2003 Wired N/A Accelerometer Monitor hemiplegic 
Patients 

Battery 4 

Head 2 2 Matiko J. 
W. [101] 

2015 Atmel 
ZigBee 

2.4 GHz EEG sensor A self-powered 
wearable 
headband for EEG 
detection 

Solar 
energy 

1 

Head 1 2 Gruebler 
A. [102] 

2014 Wireless  EMG sensor Recognize facial 
expressions 

Battery 1 

Head 5 2 Lin C. T. 
[103] 

2014 Bluetooth 921kbps 
at 
2.4GHz 

EEG sensor Dry EEG sensor to 
monitor driver’s 
vigilance status 

Battery 3 

Head 5 1 Duvinage 
M. [104] 

2013 Bluetooth 2.4GHz EEG sensor Emotiv Epoc 
headset 

Battery 3 

Head 3 2 Kim J. 
[105] 

2012 CC2510 
wireless 

4kbps at 
2.4GHz 

Magnetic 
sensors 

Wearable headset 
with tongue drive 
wheelchair 
navigation 

Battery 1 

Head, 
chest, 
leg, 
wrist 

2 2 Chávez-
Santiago 
R. [106] 

2012 WBAN 
wireless 

528MHz EEG, SpO2, 
and EMG 
sensor 

Medical ultra 
wideband BAN 

Battery 2 

Head, 
wrist 

2 3 Riera A. 
[107] 

2008 ENOBIO 
ZigBee 

 EEG and ECG  
sensor 

ENOBIO device Battery 1 

Head, 
chest, 
glove 

2 3 Katsis C. 
D. [108] 

2006 Bluetooth 721kbps 
at 
2.4GHz 

ECG , EMG, 
and EDA 
sensor 

Assessment of 
affective 
physiological states 

Battery 3 

Ear 2 2 Nakamura 
T. [109] 

2017 Wired 1200 Hz EEG sensors Automatic sleep 
monitoring 

Wired 4 

Ear 2 2 Da He D. 
[110] 

2015 CC2500 
wireless 

2.4 GHz ECG, PPG, 
and 
accelerometer 

Wearable vital 
signs monitor 
at the ear 

Battery 1 

Ear 2 2 Kollmann 
D. [111] 

2013 CC2540 
Bluetooth 

2.4GHz Pulse oximeter Pulse oximeter 
using Vertical 
Cavity Surface 
Emitting Laser 

Battery 3 

Ear, 
hand, 
finger, 
wrist 

2 2 Li K. [112] 2012 ZigBee 2.4GHz Reflectance 
pulse oximeter 

Wireless 
reflectance pulse 
oximeter 

Battery 1 
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Table 1.5. (continues) Description of various sensors 
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Ear 2 2 Patterson 
J. A. C. 
[113] 

2009 N/A N/A PPG sensor Ear-worn reflective 
PPG sensor 
for Heart Rate 
Monitoring 

Wired 4 

Ear 2 3 Aziz O. 
[114] 

2007 CC2420 
ZigBee 

250kbps 
at 
2.4GHz 

Pulse oximeter 
and 
accelerometer 
sensor 

BSN monitoring 
postoperative 
recovery at home 

Battery 1 

Eye 5 3 Qusba A. 
[115] 

2014 Wireless 100 
kbps at 
4MHz 

Artificial Retina Microfluidic implant 
flexible coil 

Wireless 
power 

1 

Eye 5 2 Huang Y. 
C. [116] 

2013 Wireless  Contact lens 
micro-capacitor 
sensor 

Wireless intraocular 
pressure 
monitoring 

Wireless 
power 

1 

Eye 5 2 Cheng H. 
W. [117] 

2013 Wireless  Contact Lens 
Sensor 
Artificial Retina 

Wireless intraocular 
pressure 
monitoring 

Wireless 
power 

1 

Eye 5 2 Liao Y. T. 
[118] 

2012 wireless 1.8 GHZ Contact Lens 
Sensor 

Wireless glucose 
monitoring 

Wireless 
power 

1 

Eye 5 3 Miura Y. 
[119] 

2011 N/A N/A Artificial Retina Wireless power 
artificial retina 

Wireless 
power 

4 

Neck 2 3 Fontana J. 
M. [120] 

2014 RN-42 
Bluetooth 

125kbps 
at 
2.4GHz 

Jaw motion 
sensor, 
gesture, and 
accelerometer 

Wearable monitor 
of ingestive 
behavior 

Battery 3 

Leg, 
arm 

2 2 To G. 
[121] 

2013 A2500R2
4 wireless 

4kbps 
at 
2.4GHz 

Accelerometers 
and 
gyroscopes 
sensor 

Robotic and 
Human Motion 
Tracking 

Battery 1 

Leg 1 2 Stupar D. 
Z. [122] 

2012 XBee-
PRO 
ZigBee 

250kbps  
at 2.4 
GHz 

Fiber-optic 
curvature 
sensor 

Human joint 
moving monitor 

Battery 1 

Leg, 
arm, 
chest  

2 2 Milenković 
A. [123] 

2006 CC2420 
ZigBee 

250kbps  
at 2.4 
GHz 

Accelerometer 
and ECG 
sensor 

BAN based 
accelerometer and 
ECG monitoring 

Battery 1 

Foot 2 2 Bamberg 
S. J. M. 
[124] 

2008 DR3000-1 
wireless 

115.2 
kbps 
at 916 
MHz 

Accelerometers
, gyroscopes, 
force, bend, 
and pressure 

Shoe Battery 1 

Foot 4 2 Rimet Y. 
[125] 

2007 Wireless  SpO2 and 
actimeter 

Infants 
multiparameter 
monitor 

Battery 1 
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Table 1.5. (continues) Description of various sensors 
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Foot 2 2 Benbasat 
A. Y. 
[126] 

2003 TDMA 
wireless 

922kbps  
at 916 
MHz 

Accelerometer, 
gyroscopes, 
and pressure 
sensor 

Wireless on-shoe 
gait analysis 

Battery 1 

Skin 2 2 Chen Y. 
[127] 

2016 N/A N/A Biocompatible 
strain sensor 

Long-term health 
monitoring 

Battery 4 

Skin 1 3 Castillejo 
P. [128] 

2013 Bluetooth 115kbps 
at 
2.4GHz 

Temperature 
sensor 

Physiological 
monitor of 
sportsman, fireman, 
woman. 

Battery 3 

Skin 2 3 Lee S. 
[129] 

2013 WBAN 20 Mbps Electrodes Continuous bio-
signal monitor 

Battery 1 

Skin 2 2 Kim D. H. 
[130] 

2011 N/A N/A Strain, 
Photodetector, 
and 
temperature 
sensor 

Electronic second 
skin 

Battery 4 

Skin 1 2 Coyle S. 
[131] 

2009 wireless  Textile and pH 
sensor 

Textile-based 
sensor (‘Biotex’) 

Battery 1 

Skin 2 2 Haahr R. 
G. [132] 

2008 PAN 
wireless 

4kpbs 
at 
2.4GHz 

EMG and SpO2 
sensor  

Electronic patch Battery 2 

Skin 2 3 Dolgov A. 
B. [133] 

2006 nRF2401 
wireless 

1Mbps   
at 
2.4GHz 

Temperature, 
acceleration, 
and GSR 
sensor 

Wireless medical 
and sport 
monitoring 

Battery 1 

Implant 5 1 Farra R. 
[134] 

2012 MICS  
wireless 

 Release drug Wirelessly 
controlled drug 
delivery 

Battery 1 

Implant 2 2 Ahmadi 
M. M. 
[135] 

2009 wireless 13.56 
MHz 

Glucose sensor Continuous blood 
glucose monitoring 

Wireless 
power 

1 

Implant 5 3 Wang J. 
[136] 

2008 N/A N/A Cochlear MEMS Cochlear 
Prosthesis 

Wireless 
power 

4 

Implant 5 3 Gómez E. 
J. [137] 

2008 GPRS, 
WAN 
wireless 

 Glucose 
sensor, 
insulin pump 

Intelligent control 
assistant for 
diabetes 

Battery 3 

Implant 2 3 DeHennis 
A. D. 
[138] 

2006 AM 30 kHz 
bandwid
th 

Multisite 
pressure 
sensor 

A fully integrated 
sensing system for 
the detection of 
arterial stenosis 

Wireless 
power 

1 
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Table 1.5. (continues) Description of various sensors 
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Implant 2 3 Valdastri 
P. [139] 

2004 wireless 40kbps 
at 
433.92M
Hz 

Pressure 
sensor 

Implant telemetry 
system 

Battery 1 

Implant 2 1 Adler D. 
G. [140] 

2003 M2A 
Given 
imaging 

 Capsule 
Endoscopy 

Wireless capsule 
for small bowel 
image 

Battery 1 

Implant 2 2 Poscia A. 
[141] 

2003 RS232 1200 
baud 

Glucose sensor In vivo micro-pump 
to record glucose 
level 

Battery 1 

Implant 2 2 Beach R. 
D. [142] 

2001 EIA 
/NTSC  
TV 
format 

 CCD camera Video telemetry 
system in vivo 

Battery 1 

Implant 1 2 Santini J. 
T. [143] 

1999 N/A N/A Release drug A controlled-
release microchip 

Micro 
battery 

4 

               

Indication by numbers in the table 

Purpose: 1. Fitness. 2. Physiological parameter monitoring. 3. Senior monitoring. 4. Children monitoring. 5. 

Application for a specific disease. 

Developing stage: 1. Research stage. 2. Prototype stage. 3. Commercial product stage.  

Network types: 1. Wireless point to point communication between specific devices, include ZigBee. 2. Wireless 

point to point communication to a common device such as smartphone. 3. Wireless Wi-Fi or Bluetooth connects to 

a gateway device. 4. Wired communication. 5. No communication. 

 

Abbreviation 

ANT: A network protocol; WSN: wireless sensor network; EMG: Electromyography sensor; PCG:  

Phonocardiogram; ECG: Electrocardiogram; EEG: Electroencephalographic; EDA: Electrodermal activity; PPG: 

Photoplethysmogram; QRS: QRS complex of ECG wave; BP: Blood pressure; SpO2: Oxygen saturation; OSA: 

Obstructive sleep apnea; GSR: Galvanic skin response; MICS: Medical Implant communications service; NFC: 

Near field communication; EIA: Electronics industry association; NTSC: National television system committee; RF: 

Radio frequency; RFID: Radio frequency identification; ISM: Industrial, Scientific, and Medical. 
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2). Sensors Worn on Wrist 

With wireless and wired communications, electrical devices worn on the wrist can be 

used to monitor and record the wrist joint rotary angles by EMG (electromyography) sensors [69]; 

the electrical signals generated by muscles; the wrist movements by accelerometer [2, 59, 73, 78, 

79]; pulses from the ulnar artery at the wrist by radio frequency sensor [71] or piezoelectric 

sensor [71]; the slight strain variation under the skin; the heart/pulse rates by using ECG 

electrodes [2, 74, 75, 76, 79]; the blood pressure status by a WSN based mobile blood pressure 

device [76] or a portable telemedical monitor (AMON) device [79]; the temperature by 

thermometers [2, 73, 79]; and the blood glucose levels by microwave sensors [77]. The sensing 

modalities can also be other than electrical ones such as to detect PPG (photoplethysmogram) 

signals by infrared LED and detectors; blood oxygen saturation levels (SpO2) by pulse oximeters 

[72, 74, 79]; ultra-violet light exposure by optical sensors [78], human reaction time estimation by 

MEMS gyroscope sensors [67], and heart sounds by acoustic sensors at the wrist [68].  

The wrist is a perfect location for the wearables as people are used to wearing wrist 

watches so that the acceptance for such devices encounters fewer obstacles for both consumers 

and markets. However, the devices at wrists also suffer from arm motions during daily activities 

and so the signals inherently contain a high level of noises. Thus signal processing techniques 

and multiple sensors including accelerometers are needed to detect the motions and eliminate 

the noises. The attachment or contact of sensors on skins is also a concern in practical uses. The 

small gaps between the sensor surface and skin can create higher impedance to attenuate RF 

signal magnitudes or a complex scattering issue for reflectance or transmittance measurements.   

 

3). Sensors Placed on Finger 

Sensors placed on fingers can monitor blood pressures by PPG sensor [80], ECG signals 

by electrodes [81, 85, 86], ring-type pulse rates by optical sensors [82, 83], and SpO2 by pulse 

oximetry [84, 85, 86]. Finger position and flexion of a patient can be detected by strain sensors 

[87] for rehabilitation purposes. 
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Fingers are another location to get acceptance from patients or markets for wireless sensors, 

however, allow fewer physiological parameters to be measured than on the wrist. The size of the 

wearable device becomes a major challenge for comfort and appearance.  

 

4). Sensor Gloves Worn on Hand 

A pair of gloves worn on hands can be used to monitor and record finger postures, 

movements, flexion to assess Parkinson’s disease symptoms by position sensors [92], strain 

fabric sensors [91], bent sensors [87, 90], force sensors [88], and accelerometers [88], while 

optical sensors [89] are used to monitor PPG and pulse rates. The glove solutions are suitable for 

clinical uses as the environments are well controlled. Wireless communication, reduces burdens 

from patients who suffer from tremors as compared to a wired system, from the gloves to a 

computer can be a line-of-sight link and will not encounter variables in the daily activities, thus 

networking issue rarely exist.   

 

5). Sensors Placed on Arm 

Sensors have been placed on arms to measure the skin temperature by an RFID 

temperature sensor [93], body sweat conditions by an optical pH sensor [94], and upper limb 

postures by strain sensors [95]. Sleep quality can be assessed by recording the turn frequency 

and occurrences at night by accelerometers and body temperatures by thermometers [96]. 

Wearables on arms require fewer constraints in device designs as there are sufficient spaces for 

comfortable wearability. The motions of arms and skin contact also contain signal and noise 

issues.  

 

6). Sensors Placed on Waist 

Sensors can be placed on the waist of a pregnant woman to acquire fetal ECG and 

phonocardiogram (PCG) signals by electrodes and microphones [97, 99]. The fetal movements 

can be detected by flexible piezoelectric pressure sensors [99].  Routine human physical activities 
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can be recorded by accelerometer and displacement sensors for motions and postures [98]. They 

have also been used specifically to monitor post-stroke hemiplegic patients by accelerometers 

[100]. This type of monitoring functions usually requires a long period of time for recording and it 

is better to be conducted at home or therapy clinics. Thus wireless communication provides 

advantages over a wired system. As a smartphone or data transceiver can also be placed on the 

waist, the communication link requires a very short distance.  

 

7). Sensors Placed on Head 

Many studies have placed electroencephalogram (EEG) electrodes [101, 104, 106, 107, 

108] on the head to measure brain waves. High counts of EEG electrodes can reveal brain 

activities. However, they are mostly wired systems due to system complexity. Wireless EEG 

systems provide mobility so brain waves can be recorded while one conducts daily activities. 

However, EEG signals are prone to contain interference signals generated by motions and 

activities that are not related to the target behaviors. It is also not practical to wear a high-count 

EEG cap while the patient resumes normal daily activities. Therefore, wireless EEG systems face 

tremendous technical challenges in signal integrity, noise filtering, spatial specificity, and power 

sources. Some examples are an EEG system with solar energy harvesters [101]; one with EMG 

sensors to recognize facial expressions [102]; one to monitor driver’s vigilance status with dry 

EEG electrodes [103]. Some combine with other sensors such as the one allows to drive 

wheelchair navigation by magnetic sensors on the tongue [105]; the one to monitor effective 

physiological states by electrodes and magnetic sensors [108]. 

 

8). Sensors Placed on Ear 

As placing electrodes on the head may not be comfortable, ears may be a good 

candidate location as the sensors can be shaped like an earplug. Signal acquisitions are 

demonstrated with electrocardiogram signals by ECG electrodes locally near the ear [110]; 

ballistocardiogram (BCG) signals with accelerometers to detect body motions [110]; pulse rates 
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by PPG sensors [110, 113] and SpO2 signals by pulse oximeters [110, 111, 112, 114]. As 

compared to the excessive motion in hands and fingers, ears provide more reliable signals. Sleep 

patterns of brain waves have been acquired by EEG sensors for sleep apnea diagnosis [109]. A 

wireless system provides less constraint in wire management during the studies.   

 

9). Sensors Placed on Eye 

Monitoring eyes are critical for glaucoma patients. Currently, patients receive examination 

only during clinical visits which the intraocular pressures are not continuously monitored. There 

are many technical challenges to design wearables, such as contact lens and glasses, or 

implants, such as intraocular lenses. The main issue is due to the limited space thus the 

electronics for sensing and communications, as well as the battery or power source, have to be 

miniaturized. Thus designs often include considerations in both wireless communication and 

wireless power harvesting. Coils acting as antennas are used for power and signal transmission 

in eyes [116, 117, 118, 119]. Another example is a microfluidic implant that incorporates a flexible 

coil for the contour of the eyes [115]. The intraocular pressure can be detected by the microscale 

capacitive sensors which consume low powers [116]. New techniques are also emerging. An 

electrochemical sensor is proposed to detect glucose levels in tears for diabetic patients [118]. As 

implants, artificial retina, consisting of a thin-film transistor matrix on a flexible substrate to 

stimulate retinal neurons with inductive coupling to transfer power and data, are being clinically 

tested [119]. The system requires visual image data to be transferred from a wearable, such as a 

pair of glasses, to the implant. The technical challenges to maintain signal integrity and reliable 

power transfer become complex as the component size constraints are tight.  

 

10). Sensors Placed on Neck 

A wearable device for monitoring of ingestive behaviors has been demonstrated with a 

jaw motion sensor on the neck to monitor chewing [120]. A hand gesture sensor to monitor hand-

to-mouth gestures and an accelerometer to monitor body motion are also included. All sensors 
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are wirelessly interfaced to a smartphone with Bluetooth communication in order to enhance 

accuracy. 

 

11). Sensors Placed on Leg 

Accelerometers [121, 123] and gyroscope sensors [121] are used on legs to monitor 

motions and gestures. While wire communication among sensors to processors is an option, 

wireless communication provides pervasive means without mobility limitation. Other sensor 

modalities can also be incorporated such as monitoring joint motions by fiber-optic curvature 

sensors [122] and recording EMG signals by electrodes [123]. 

 

12). Sensors Placed on Foot 

Sensors have been placed directly on foot for quantitative gait analysis including 

accelerometers, gyroscopes, force sensors, strain sensors, pressure sensors, piezoelectric 

sensors, and capacitive sensors [124, 126]. With the multi-modalities, sensors are integrated 

within a wireless network. SpO2 and pulses by oximetry, locomotor activities by an infrared 

actimeter to record the activities, and the prone position of infants by actimeter are wirelessly 

monitored on foot [125] without the constraint of wires that impose risks for infants. 

 

13). Sensors Placed on Skin 

Although almost all sensors are in contact with skin, this type of sensors is classified for 

skin health detection or vital sign monitoring in which sensors adhere to the skin for a long period 

of time. As skins can be easily agitated, long-term monitoring requires rigorous biocompatibility 

such as flexible strain sensors [127, 130] to conform onto skins and medical/sport applications for 

temperature, galvanic skin response (GSR) sensor and electrodes [128, 129, 130, 133]. Such 

sensors often are based on flexible substrates thus the electronics and packaging, particularly 

antenna designs, under possible mechanical deformation require special considerations. The skin 

and tissue conditions also affect wireless signal propagation and antenna radiation patterns. An 
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example of such integration is the electronic second skins [131, 132] which consist of strain 

sensors, photodetectors, temperature sensors, textile sensors, pH sensors, SpO2 sensors, and 

EMG electrodes to obtain signals in multiple modalities that mimic human skins. 

 

14). Implantable Sensors 

Implantable sensors are implemented in the body for applications such as drug delivery 

[134, 143], continuous blood glucose monitoring [135, 137, 141], artery blood pressure monitoring 

[138] and cochlear prosthesis [136]. Some of them are discussed as in vivo telemetry in [142]. 

Temporary implants such as in vivo imaging capsules for GI tracts including colon, small bowel, 

stomach, and esophagus also utilize high data rate communication to transmit images from the 

capsule to a wearable receiver [139, 140]. In such temporary in-vivo devices, the battery is 

designed to be consumed by the end of diagnosis. To keep the capsule small for passing small 

GI tracts, battery size and capacity is limited.  

For long-term implants, the power source to operate the device in which wireless 

communication consumes a high percentage of energy becomes critically challenging. Many 

systems for wireless data acquisition require a wearable module to communicate with the 

implants and control functions. The power consumption constraint is more stringent for deep body 

implants than for transcutaneous signal transduction due to RF energy absorption and scattering 

in tissues for both wireless communication and power transfer.   

 

1.4  Trends and Challenges of Wearable Technology Developments 

 

With rapid developments and market needs for wearable technologies, more advanced 

wearable devices are expected. Miniature sensors and new sensing modalities enhanced by 

MEMS and Nanotechnologies will empower the low-power wireless and smart electronics that 

have more computing capability to achieve better accuracy, reliability, and efficiency. High-

density sensor array or matrix, providing multiple parameters in vivo and in situ continuously, will 
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enable new research tools for medical applications. Eventually, they will be utilized in clinical 

settings for the advantages in diagnosis.  

With developments of new substrate material and fabrication techniques, the next 

generation of wearables will have the features of flexibility, biocompatibility, low power 

consumption, long-term usages, and reliable connectivity. The device will integrate energy 

harvesting mechanisms for batteryless or infrequent-charging operations. To avoid any 

discomfort, flexible, soft and stretchable substrates are preferred when in touch with skin; or even 

the sensing modality can be implemented with contactless means. The wearable device should 

be able to be personalized for an individual’s conditions given flexibility in signal processing and 

data communication capacities that can be expanded to adapt classification, pattern recognition, 

and artificial intelligence algorithms. With current wireless communication protocols, the device 

can already be connected to cloud servers and analyzed by big data and cloud computing 

techniques. Further enhancement in data rates, power consumption, and communication 

distances for different types of physiological parameters will be needed to realize efficient radio 

spectrum uses. Future trends in protocols and standardization efforts should also focus on data 

security, signal encryption, and protection of devices against power surge, strong field 

interferences in environments and induced thermal effects by wireless energy, as well as long-

term effects on tissues by RF signals.   
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CHAPTER 2 

WEARABLE DOUBLE-RESONANCE SENSORS FOR MONITORING DEHYDRATION 

 

Nomenclature 

 

In following symbols, subscript “a” notes the outer ring (circular loop) parameters and 

subscript “b” notes inner ring (split ring) parameters. 

la, lb the ring perimeters,  

ra, rb the ring radiuses,  

ga, gb the ring-port gaps, 

a, b  the wavelengths, 

n  the number of the waveguide-mode resonance in harmonic order 

  the relative permittivity 

c0 the light speed in free space 

fa0, fb0  the resonance frequencies when the ring is in free space 

fa, fb the S11 resonant frequencies of the outer ring and inner ring 

a, b the resonant angular frequency 

a_eff, b_eff  the effective relative permittivity on the outer ring and inner ring 

C1, C2, equivalent capacitances of the outer ring 

R1, R2, equivalent resistances of the outer ring 

L1, and L2 equivalent inductances of the outer ring 

La  total equivalent inductance of the outer ring 

Cb  equivalent capacitance of the inner-ring 

Rb  equivalent resistance of the inner-ring 

L3, L4 equivalent inductances of the inner-ring 

Lb total equivalent inductance of the inner-ring 

Lm1, Lm2  the mutual inductances between the two rings 

Lm  the total mutual inductance between the two rings 

k  the coupling coefficient 

S11 is the return loss, a scattering parameter 

Z is the impendence of the equivalent circuit 
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2.1 Introduction 

 

Athletes should intake minimum 250 mL of fluid every 20 minutes during exercises for 

maintaining a euhydrated state [144]. Significant loss of body water will result in dehydration that 

harms normal body functions. Hence, using a wearable biomedical sensor to quickly identify 

dehydration levels of the human body is important for athletes, workers, and soldiers.  

An impedance sensor has been reported for measuring skin hydration [145]. However, 

the impedance sensor can only monitor the epidermal hydration. Using radio-frequency sensors 

to analyze the dielectric properties of biological tissues has the advantages of being non-invasive, 

potentially contactless and fast [146 - 148]. The electronics can also be cost-effective owing to 

the recent advances of high speed integrated circuits. Additionally, microwave sensing 

mechanism based on tissue dielectric properties can significantly identify the large difference of 

hydration levels in tissues [149 - 150]. Measuring the scattering parameters and monitoring the 

resonant frequency change can identify and calculate the permittivity of targets [151, 152]. 

Monitoring resonant frequency is more reliable and has higher accuracy than monitoring the 

amplitude variations, such as measuring the resonant frequency of split-ring sensors to monitor 

the blood glucose levels [153, 154]. Recently, a split-ring sensor has been proposed to identify 

water and other liquids using the resonant frequency [155]. A split-ring resonator was used to 

measure the concentration of heparin in water by the resonant frequency [156]. A simulation 

study was presented to detect the spurious material by the multi-resonant split rings [157].  

Due to the complex tissue composition, the dielectric properties of biological tissues, 

however, vary at different frequencies [158, 159] making identification of tissues to be difficult. 

Hence, a double-resonance sensor is proposed to identify dehydration of tissue with two 

distinguishable resonant frequencies to enhance the data signatures. In order to obtain a larger 

frequency span between the two resonances, two different types of resonators were employed. 

One is the circular-loop resonator and another is the split-ring resonator. Dehydration in biological 

tissues will change the dielectric properties of the tissues and the capacitance of the sensor 

circuit, which will result in changing the sensor-resonance frequencies. 
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2.2 Electromagnetic Analysis of the Double-ring Resonator 

 

The double-ring resonator has a circular loop (used as the outer ring) and a split ring 

(used as the inner ring). Because the circular loop and the split ring have different resonant 

wavelengths, the resonator has two distinguishable resonant frequencies. Firstly, the double-ring 

resonator is analyzed and designed by waveguide method and the electromagnetic finite-element 

simulation. Secondly, resonant frequencies and wavelengths of the outer ring and inner ring are 

deduced. Then, the effective relative permittivity, Q factor, frequency sensitivity, power radiation 

patterns, E-field distributions, surface current distributions and H-field distributions of the double-

ring resonator are presented, respectively. 

 

A.  Circular-Loop Resonator  

A circular-loop resonator consists of a copper-foil ring with a feed port and the port 

excitation is set as the lumped type with 50  port impedance. 3-D finite-element simulation 

model of the circular-loop resonator is shown in Figure 2.1. To find the design parameters, the 

simulation results were carried out by the electromagnetic finite-element method and 

demonstrated an infinite periodic resonant waveform of S11 (input port reflection coefficient) with 

an attenuation amplitude as shown in Figure 2.2. 

 

 

 

 

 

 

 

 

 

Figure 2.1. 3-D finite-element simulation model of the circular-loop resonator.    

Lumped port to measure S11 with Gap = 0.0018 m 

0.02 m 0.001 m 
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Figure 2.2. Simulation results by the electromagnetic finite-element method.    

 

Employing the waveguide analysis method [160], the infinite resonant frequencies and 

the perimeter of the ring may be expressed as an integer multiple of wavelength adding 1/4 

wavelength, that is,  

                   (2.1) 

 

where                        

 

In Eq.(2.1), la is the perimeter of the ring, ra is the ring radius, ga is the gap of split port, a 

is the resonant wavelength, and n is the number of waveguide-mode resonance in harmonic 

order. The length of the circular ring la equals the perimeter of the ring minus the port gap. The 

wavelength equation has an infinite periodic expression and the wavelength can be expressed as 

follows [160]. 

 

The S11 resonant frequency fn is 

5.8 GHz, 10.5 GHz, and 15.2 GHz, 

respectively. 10.5 GHz 15.2 GHz 

5.8 GHz 

2 MHz  
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        (2.2) 

where c0 is the light speed in free space,  is the relative permittivity, fn is the resonant 

frequency, and a is the resonant wavelength. 

 

Substituted Eq.(2.2) into Eq.(2.1), the waveguide-mode resonant frequencies of S11 may 

be expressed as,  

   
         

           
       (2.3) 

 

Eq.(2.3) shows that the resonant frequencies depend on the ring size, the light speed, 

and the relative permittivity. When the average radius of the ring ra = 0.0105 m as shown in 

Figure 2.1 and the relative permittivity  = 1 (in free space), the resonant frequency fn equals 5.8 

GHz, 10.5 GHz, and 15.2 GHz, according to Eq.(2.3), which was verified by the simulation results 

in Figure 2.2. As the harmonic order n of the resonant frequency increases, the amplitude of the 

S11 attenuates as shown in Figure 2.2. Therefore the frequency range for this sensor is limited 

within the first harmonic order of the resonant frequency within 6GHz. The resonant frequency of 

1+1/4 wavelength is 5.8GHz and is chosen for the double-ring resonator. 

When n = 1, the S11 resonant frequency in Eq.(2.3) of the circular ring is, 

   
     

 

 
 

           
       (2.4) 

 

where fa is S11 resonant frequency when n = 1. 

 

B. Double-rings Resonator and sensitivity 

In order to obtain two distinguishable resonant frequencies, a split ring is placed into the 

circular loop as shown in Figure 2.3, where the split ring is named as the inner ring and the 
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circular loop is named as the outer ring. The resonant frequency of the inner ring follows the half 

wavelength expression [161, 162] and the perimeter of the split ring equals 1/2 guided 

wavelength at the resonant frequency, that is, 

                  (2.5)  

 
where               

 

where lb is the perimeter of the split ring,  rb is the split radius, gb is the gap of the split ring, and b 

is the wavelength. 

 

S11 resonant frequency of the inner ring may be expressed as, 

    
  

            
        (2.6) 

where fb is the resonant frequency of the inner ring. 

 

 

 

 

 

 

 

 

 

 

Figure 2.3. 3-D finite-element simulation model of the resonator with an outer ring and an inner 

ring.    

 

Using Eq.(2.4) and Eq.(2.6) as well as the ring’s dimension, ra = 0.0105 m, ga = 0.0018 m,  

rb = 0.0085 m, and gb = 0.0018 m, two resonant frequencies can be calculated as 5.8 GHz and fb 

Gap = 0.0018 m 

0.0155 m 
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2.9 GHz, respectively. The electromagnetic finite-element simulation results confirmed that the 

resonant frequency fa of the outer ring is 5.8 GHz and fb of the inner ring is 2.9 GHz, as shown in 

Figure 2.4. When there is only the outer ring, the S11 coefficient is plotted by the blue line. When 

there are the outer ring and the inner ring, the S11 coefficient is plotted by the red line. 

 

 

 

 

 

 

 

 

 

Figure 2.4. The electromagnetic finite-element simulation results.  

A frequency sensitivity function of the outer ring by the relative permittivity can be defined 

by the derivative of the function fa of the variable  from Eq.(2.4) as follow. 

   

  
  

  

              
           (2.7) 

 

Substituted ra = 0.0105 m and ga = 0.0018 m into Eq.(2.7), the frequency sensitivity 

function of the outer ring is, 

   

  
        

           (2.8) 

The frequency sensitivity function of the inner ring by the relative permittivity is a 

derivative of the function fb of the variable  from Eq.(2.6) as follow. 

   

  
  

  

          
            (2.9) 

 

Resonant frequency of the outer ring fa is 

5.8 GHz and resonant frequency of the 

inner fb is 2.9 GHz. 

2.9 GHz 

5.8 GHz 
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Substituted rb = 0.0085 m and gb = 0.0018 m into Eq.(2.9), the frequency sensitivity 

function of the inner ring is, 

   

  
        

             (2.10) 

 

The frequency sensitivity functions by the relative-permittivity at the resonant frequencies, 

fa and fb, show that the circular loop (outer ring) is more sensitive than the split ring (inner ring) 

after compared Eq.(2.8) and Eq(2.10).    

 

C. Double-ring Resonator Mounted on PCB  

 

To build a practical sensor as shown in Figure 2.5, the double-ring resonator was 

mounted on a printed circuit board (PCB) and a copper film pad was added in the resonator 

center to construct the completed double-ring resonator, where the copper pad with radius 6.5 

mm is placed in the resonator center to boost the circuit Q values by matching the load 

impedance to the 50  port impedance. Geometric sizes of the double-ring resonator are listed in 

Table 2.1. 

 

 

 

 

 

 

 

 

 

Figure 2.5. 3-D finite-element simulation model of the double-ring resonator mounted on a printed 

circuit board (PCB) with a copper film pad. 

Pad 

PCB 
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Table 2.1. Geometric sizes of the double-ring resonator. 

Outer-ring dimension (m) Inner-ring dimension (m) Pad (m) 

ra ga wa ha rb gb wb hb rp hp 

0.0105 0.0018 0.001 0.000025 0.0085 0.0018 0.0015 0.000025 0.0065 0.000025 

 

Notes: Outer-ring size: ra is the average radius, ga is the gap, wa is the strip width, and ha is the 

strip thickness. Inner-ring size: rb is the average radius, gb is the gap, wb is the strip width, and hb 

is the strip thickness. Pad size: rp is the radius and hp is the pad thickness. 

 

The PCB dielectric layer and the copper pad will change the space relative permittivity of 

the resonator. The non-uniform dielectrics can be accounted by the effective relative permittivity, 

eff , [146, 162, 163]. Due to the difference in distance between the copper pad and the rings, the 

copper pad has different effects for the outer and inner rings. Thus, the effective relative 

permittivities of the outer and inner rings will also be different. The effective relative permittivity 

a_eff is used for the outer ring and b_eff is used for the inner ring. Replaced  in Eq.(2.4) by a_eff, 

the outer-ring resonant frequency becomes, 

   
         

                
       (2.11) 

 

Replaced  in Eq.(2.6) by b_eff , the inner-ring resonant frequency becomes, 

   
  

                 
       (2.12) 

 

Eq.(2.11) and Eq.(2.12) show that the resonant frequencies of the two rings, fa and fb, 

depend only on the two ring’s dimensions and the effective relative permittivities, a_eff and b_eff, 

which are affected by the PCB dielectric layer, the copper pad, and medium above the resonator. 
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The effective relative permittivity of the outer ring can be obtained from Eq.(2.11) as 

follows. 

        
         

           
 
 

           (2.13) 

 

Eq.(2.13) expresses the relationship between the effective relative permittivity a_eff and 

the resonant frequency fa. 

The effective relative permittivity of the inner ring can be obtained from Eq.(2.12) as 

follows. 

        
  

            
 
 

           (2.14) 

 

Eq.(2.14) expresses the relationship between the effective relative permittivity b_eff and 

the resonant frequency fb. 

Combining Eq.(2.4) with Eq.(2.11), when free space  = 1, the effective relative 

permittivity of the outer ring can be obtained as follow. 

        
   

  
 
 

        (2.15) 

where fa0 is the resonant frequency when the outer ring is in free space, fa is the resonant 

frequency when the ring is in non-uniform dielectrics, 

Combining Eq.(2.5) with Eq.(2.12), when free space  = 1, the effective relative 

permittivity of the inner ring can be obtained as follow. 

        
   

  
 
 

       (2.16) 

where fb0 is the resonance frequency when the inner ring is in free space, fb is the resonance 

frequency when the ring is in non-uniform dielectrics.  
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Replaced the relative permittivity  in Eq.(2.8) by a_eff , the frequency sensitivity function 

of the outer ring is, 

   

       
             

          (2.17) 

Replaced the relative permittivity  in Eq.(2.10) by b_eff , the frequency sensitivity function 

of the outer ring is, 

   

       
             

          (2.18) 

 

Using the electromagnetic finite-element model of the double-ring resonator with and 

without a center pad, the simulation results of S11 parameter are shown in Figure 2.6. The pad 

radius in the finite-element model is 6.5 mm and thickness is 0.025 mm.  

 

 

 

 

 

 

 

 

 

Figure 2.6. Electromagnetic finite-element simulation results of the double-ring resonator with the 

pad (blue solid line) and without the pad (red dot line).  

 

As shown in Figure 2.6, when pad radius of the resonator is 6.5 mm and thickness is 

0.025 mm, the resonant frequency of the inner-ring (split-ring type) is 2.19 GHz and the resonant 

frequency of the outer-ring (circular-loop type) is 4.20 GHz. Without the pad, the inner-ring 

4.20 GHz 

4.77 GHz 

2.19 GHz 

2.13 GHz 
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resonant frequency is 2.13 GHz and the outer-ring resonant frequency is 4.77 GHz. With the pad, 

the two resonant frequencies of the outer ring and inner ring become sharper than without the 

pad. The circuit’s Q factors at the two resonant frequencies are boosted. The two different rings 

can contribute a larger resonant-frequency span over 2 GHz to the resonator. 

 

D. Matching the Port Impedance by the Center Pad 

The copper pad placed inside the inner ring as shown in Figure 2.5 was used to boost the 

circuit Q factors by matching the load impedance to the 50  port impedance. With various pad 

radiuses, the double-ring resonator was simulated by the electromagnetic finite-element method, 

while the load impedances at the resonant frequencies are listed in Table 2.2. By increasing the 

pad radius, the load impedance at the resonant frequency fa decreases and the load impedance 

at resonant frequency fb increases.  

Table 2.2. Various pad radiuses, resonant frequencies, and load impedances. 

Pad radius 
(mm) 

Resonant frequency 
fa  (GHz) 

Load impedance at  

fa () 

Resonant frequency 
fb (GHz) 

Load impedance at  

fb () 

0 or no Pad 4.77  102 2.13   37 

1 4.75    101 2.13    38 

2 4.71     98 2.14    38 

3 4.65     96 2.14    39 

4 4.52     93 2.16    41 

5 4.50     87 2.16    42 

6 4.32     74 2.16    46 

6.5 4.20    57 2.19    50 

 

In order to analyze the load impedance changes when the resonator with a 6.5 mm pad 

and without a pad, the S11 Smith chart is plotted in Figure 2.7 by the electromagnetic finite-

element simulation, where the prime center of the Smith chart is assigned as 50 .  
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Figure 2.7. S11 Smith chart of the double-ring resonator is plotted by the electromagnetic finite-

element simulation, where the blue line is S11 parameter plot with the pad and red line is S11 

parameter plot without the pad.  

 

The resonator without the pad compared with the resonator with the 6.5 mm pad, as 

shown in Figure  2.7, the outer-ring resonant frequency fa shifts from 4.77 GHz to 4.20 GHz and 

the load impedance at the frequencies changes from 102   to 57 , while the outer-ring 

resonant frequency fb shifts from 2.13 GHz to 2.19 GHz and the load impedance at the 

frequencies changes from 37   to 50  . The S11 Smith chart demonstrates that the load 

impedance of the resonator can match near 50  port impedance using the center pad and the 

resonator circuit’s Q factor is boosted. 

   

Without pad  

fa = 4.77 GHz  

Impedance = 102 

 Without pad 

fb = 2.13 GHz 

Impedance = 37 

With 6.5 mm pad  

fb = 2.19 GHz 

Impedance = 50 

 

With 6.5 mm pad 

fa = 4.20 GHz 

Impedance = 57 

 

 

S11 Smith Chart 
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E. Electromagnetic field distribution patterns of the resonator 

To verify the design of the double-ring resonator, the power radiation distribution, the 

electrical field distribution, the surface-current distribution, and the magnetic field strength 

distribution of the resonator are presented, respectively.   

The power radiation pattern of the double-ring resonator is shown in Figure 2.8, when the 

resonant frequency is 2.19 GHz.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8. Power radiation pattern at the resonant frequency, fb = 2.19 GHz. 

 

As shown in Figure 2.8, when the resonance is at 2.19 GHz, the power radiation is 

directly overhead the resonator, and there is very little power transmitted along the x-axis. 

The Power radiation pattern of the double-ring resonator is shown in Figure 2.9, when the 

resonant frequency is 4.20 GHz.  
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Figure 2.9. Power radiation pattern at the resonant frequency, fb = 4.20 GHz. 

 

As shown in Figure 2.9, when the resonance is at 4.20 GHz, the power radiation is 

directly overhead the resonator, and there is very little power transmitted along the y-axis.  

At different resonant frequencies, the two power radiations spread normally to ensure the 

sample above the resonator can be sensed as shown in Figure 2.8 and Figure 2.9. 

Electrical field (E-filed) distribution patterns on the resonator are shown in Figure 2.10, 

where the resonance frequency fb = 2.19 GHz.  

 

 

 

 

 

 

 

Figure 2.10. Electrical field (E-field) distribution on the resonator when the resonant frequency fb = 

2.19 GHz and the electrical field concentrated on the inner ring. 
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As shown in Figure 2.10, the electrical field distribution concentrated mainly on the inner-

ring (split ring) at the resonant frequency, fb = 2.19 GHz.  

Electrical field (E-filed) distribution patterns on the resonator are shown in Figure 2.11, 

where the resonance frequency fa = 4.20 GHz.  

 

 

 

 

 

 

 

 

 

Figure 2.11. Electrical field (E-field) distribution on the resonator when the resonant at frequency 

fa = 4.20 GHz and the electrical field concentrated on the outer ring. 

 

As shown in Figure 2.11, the primary E-field distribution concentrated mainly on outer-

ring (circular loop) at the resonant frequency, fa = 4.20 GHz.  

Surface-current (J-surf) distribution patterns of the double-ring resonator are shown in 

Figure 2.12, where the resonance frequency equals 2.19 GHz.   
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Figure 2.12. Surface-current (J-surf) distribution pattern when the resonant at frequency fb = 2.19 

GHz and the surface current concentrated on the inner ring. 

 

As shown in Figure 2.12, the surface-current distribution concentrated mainly on the 

inner-ring (split ring) at fb = 2.19 GHz.  

The surface-current (J-surf) distribution patterns of the double-ring resonator are shown 

in Figure 2.13, where the resonance frequency equals 4.20 GHz.   

 

 

 

 

 

 

 

 

 

 

Figure 2.13. Surface-current (J-surf) distribution pattern when the resonant at frequency fb = 4.20 

GHz and the surface current concentrated on the outer ring. 
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As shown in Figure 2.13 the primary E-field distribution concentrated mainly on outer-ring 

(circular loop) at fa = 4.20 GHz.  

Magnetic field strength (H-field) distribution patterns of the double-ring resonator are 

shown in Figure 2.14, where the resonance frequency equals 2.19 GHz.  

 

 

 

 

 

 

 

 

 

 

Figure 2.14. Magnetic field strength (H-field) distribution pattern when the resonant at frequency 

fb = 2.19 GHz and the magnetic field concentrated on the inner ring. 

 

As shown in Figure 2.14, the magnetic field distribution concentrated mainly on the inner-

ring (split ring) at fb = 2.19 GHz.  

The magnetic field strength (H-field) distribution patterns of the resonator are shown in 

Figure 2.15, where the resonance frequency equals 4.20 GHz.  
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Figure 2.15. Magnetic field strength (H-field) distribution pattern when the resonant at frequency 

fb = 4.20 GHz and the magnetic field concentrated on the outer ring. 

 

As shown in Figure 2.15, the magnetic field distribution concentrated mainly on outer-ring 

(circular loop) at fa = 4.20 GHz.  

The electrical field, the surface-current, and the magnetic field strength have complicated 

distribution patterns. However, all electromagnetic field distributions concentrated mainly on the 

inner ring at the resonant frequency at 2.19 GHz and concentrated mainly on the outer ring at the 

resonant frequency at 4.20 GHz. Electromagnetic field distribution patterns demonstrate that the 

resonator can be used as a sensitive sensor with two resonant frequencies for measurements 

when samples are placed on top of the sensor. 

 

F. Frequency Characteristics of the Double-ring Resonator 

Substituted the resonant frequency (fa=4.2 GHz) of the outer ring in the non-uniform 

dielectrics and the resonant frequency (fa0=5.8 GHz) in free space into Eq.(2.15), the effective 

relative permittivity is calculated to be a_eff  = 1.91. Substituted the resonant frequency (fb=2.19 

GHz) of the inner ring in the non-uniform dielectrics and the resonant frequency (fb0=2.9 GHz) in 

free space into Eq.(2.16),  the effective relative permittivity is calculated to be b_eff  = 1.75.   

The circuit Q factor of the resonator is defined [162] as follows. 
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        (2.19) 

where Q is the quality factor of the sensor circuit, f is resonant frequency, BW is 3dB bandwidth. 

The simulation results by the electromagnetic finite-element method have shown the 

resonant frequency of the outer ring is 4.20 GHz and the resonant frequency of the inner ring is 

2.19 GHz. At the two resonant frequencies, the return loss S11, and 3dB bandwidth are obtained 

from the simulation results, and Q factor of the double-ring resonator are compared and listed in 

Table 2.3. 

 

Table 2.3. Effective relative permittivity, frequency sensitivity, 3dB bandwidth, and Q factor of the 

double-ring resonator. 

 

 

As listed in Table 2.3 and shown in Figure 2.6, the circuit’s Q factor at the inner ring 

resonance is higher than at the outer ring. However, the frequency sensitivity of the outer ring 

resonance is more sensitive to the effective relative permittivity than the inner ring. Because 

relative permittivity of the human body will change with hydration loss, the double-ring resonator 

can be used as a double-resonance sensor for monitoring human-body dehydration. Following 

will analyze the double-resonance sensor by the equivalent circuit method. 

 

2.3  S11 Equivalent Circuit of the Double-Resonance Sensor 

 

Using the equivalent circuit method [164 - 166], the double-resonance sensor can be 

described as an electrical circuit.  In this section, the equivalent circuit of the sensor is modeled. 

Double-ring 
resonator 

Resonant 
frequency 
(GHz) 

Effective relative 
permittivity 

Frequency 
sensitivity 

d(f)/d(eff )   (GHz) 

S11  
(dB) 

3dB bandwidth  
( GHz) 

Q 
factor 

Outer ring fa =4.2 a_eff  = 1.91 -9.7c0a_eff 
(-3/2)

  -22.7 1.44 2.9 

Inner ring fb =2.19 b_eff  = 1.75 -4.8c0b_eff 
(-3/2)

 -31.1 0.51 4.3 



 

45 
 

The circuit parameters and the resonant frequencies of the sensor are deduced. Simulation result 

of the equivalent circuit by the Matlab/Simulink software is compared with the electromagnetic 

finite-element simulation and experiment result. 

 

A. S11 Equivalent circuit model  

The Resonant frequency of the double-resonance sensor in the lumped-element 

electromagnetic model has an infinite periodic expression. The Matlab/Simulink software can be 

used to construct an equivalent circuit model of the double-resonance sensor when the frequency 

range is set within 6 GHz. It should be emphasized that the equivalent circuit is only valid in the 

frequency range of 6 GHz to simulate the double-resonance sensor. A Simulink equivalent circuit 

model of the sensor is shown in Figure 2.16. 

 

 

 

 

 

 

 

 

 

Figure 2.16. Equivalent circuit model of the double-resonance sensor in Matlab/Simulink window. 

 

In the equivalent circuit model, L1, L2, C1, C2, R1, and R2, are the outer ring parameters. 

L3, L4, and Cb, Rb are the inner-ring parameters. Induced voltages in the two rings of the sensor 
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R1 R2 

L1 L2 
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are magnetically coupled by mutual inductances. Hence, the magnetic couplings between the 

rings are modeled by the mutual inductances, Lm1 and Lm2. In the model, Z0 is reference 

impedance. The block “z” in the model is a measurement unit in the Matlab/Simulink software 

which is used to measure the impendence of the circuit. Due to only simulating the resonant 

frequencies within the measurement range of 6 GHz and the outer ring’s dimension is +/4 as 

described in Eq.(2.1), the space dimension of the outer ring is reasonably divided into two 

sections by the wavelength ratio, i.e.,  : /4 = 0.8 : 0.2. According to the divided ratio of ring 

dimension, the inductances and mutual inductances in the equivalent circuit model are listed in 

Table 2.4.  

 

Table 2.4. Inductances and mutual inductances of the equivalent circuit model. 

L1:L2 =  :  /4 Lm1:Lm2 =  :  /4 L3:L4 =  :  /4 

L1=0.8 La Lm1=0.8 Lm L3=0.8Lb 

L2=0.2 La Lm2=0.2 Lm L4=0.2Lb 

 

where La is the inductance of the outer ring, Lb is the inductance of the inner ring, Lm1 and Lm2 are 

the mutual inductances between the outer ring and the inner ring. 

 

B.  Resonant frequencies of the equivalent circuit 

To find the S11 resonant frequencies of the equivalent circuit, set R1 = R2 = Rb = , 

because various resistors in the equivalent circuit do not affect the resonant frequencies. 

Substituted L1 = 0.8La, L2 = 0.2La, Lm1 = 0.8Lm, Lm2 = 0.2Lm, L3 = 0.8Lb, L4 = 0.2Lb, and Lm = k 

sqrt(LaLb) into the equivalent circuit, where k is the coupling coefficient and  is angular frequency. 

Using the Symbolic Math Toolbox of Matlab, impendence Z of the equivalent circuit as shown in 

Figure 2.16 is expressed as follows. 

     
                                          

 
    (2.20) 

where  
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Transfer the impendence Z into the return loss S11 by the following equation. 

    
    

    
          (2.21) 

 

Substituted the measurement reference impedance Z0 = 50 into Eq.(2.20) and let S11 = 0 

in Eq.(2.21), the angular frequency   has two symbolic solutions as follows.  

   
 

           
        (2.22)  

    
 

           
        (2.23) 

where a is the resonant angular frequency of the outer ring and b is the resonant angular 

frequency of the inner ring.    

   

Let equivalent capacitor Ca = C1 + C2 and a = 2fa and b = 2fb in Eq.(2.22) and 

Eq.(2.23), the resonant frequency fa and fb are as follows. 

   
 

       
         (2.24) 

   
 

             
        (2.25) 

where k is set as 0.8 in this circuit, the capacitor Ca is an outer-ring equivalent capacitor in the 

equivalent circuit, and Cb is an inner-ring equivalent capacitor.  

 

C. Calculating the inductances and the equivalent capacitances of the equivalent circuit 

Inductances of the two rings can be calculated [167] as follows. 

         
  

   
            (2.26) 
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where L is the ring inductance, r is the radius of the ring, w is the strip width, h is the strip 

thickness, 0 is the free-space permeability.  

Substituted the average radius of outer ring r = 0.0105 m, the strip width w = 0.001 m, the 

strip thickness h = 0.000025 m, and the free-space permeability 0=41e-7 H/m into Eq.(2.26), 

the inductance of outer ring equals La = 5.15e-08 H. Substituted the average radius of inner ring r 

= 0.0085 m, the strip width w = 0.0015 m and the strip thickness h = 0.000025 m into Eq(2.26), 

the inductance of inner ring equals Lb = 3.52e-08 H. 

Employing the frequency expressions of the lumped-element electromagnetic model in 

section II and the frequency expressions of the equivalent circuit model, capacitances of the two 

rings can be inferred as follows.  

Let Eq.(2.11) equals Eq.(2.22) and, the following equation is obtained.  

         

                
 

 

       
        (2.27) 

The capacitance, Ca in Eq.(2.27) has the following solution. 

   
       

       
   

 
 

  
        (2.28) 

The capacitance Ca of the outer ring can be calculated by the ring dimension and relative 

permittivity, where La is the function of the ring dimension as expressed in Eq.(2.26). Substituted 

the effective relative permittivity a_eff  = 1.91 as listed in Table 2.3 and the outer-ring dimension 

as listed in Table 2.1 into Eq.(2.28), the outer-ring capacitance in the equivalent circuit Ca = 

1.72e-13 F. 

Let Eq.(2.12) equals Eq.(2.23), the following equation is obtained.  

  

                 
 

 

             
       (2.29) 

The capacitance, Cb in Eq.(2.29) has the following solution. 
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        (2.30) 

The capacitance Cb of the inner ring can be calculated only by the ring dimension and 

relative permittivity. 

Substituted the effective relative permittivity b_eff  = 1.75 as listed in Table 2.3 and the 

inner-ring dimensions as listed in Table 2.1 into Eq.(2.30), the inner-ring capacitance in the 

equivalent circuit Cb = 4.15e-13 F.  

 

D. Simulations and experiment results of the double-resonance sensor 

Following parameters in the equivalent circuit model are used for the simulation studies. 

La = 5.15e-08 H  

Lb = 3.52e-08 H  

L1 = 0.8La  

L2 = 0.2La  

L3 = 0.8Lb  

L4 = 0.2Lb  

Ca = 1.72e-13 F  

Cb = 4.15e-13 F  

C1 = 0.9Ca  

C2 = 0.1Ca  

Ra = 1e5   

Rb = 5e4   

R1 = 0.2Ra  

R2 = 0.8Ra  

Z0 = 50   
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The mutual inductances used in the equivalent circuit model are,  

Lm1 = k sqrt(L1L3) = 3.4086e-08 H 

Lm2 = k sqrt(L2L4) = 8.5214e-09 H 

k = 0.8 

 

The prototype of the double-resonance sensor is connected to an SMA straight mounting 

subminiature coaxial microwave connector as shown in Figure 2.17, where SMA is the 

abbreviation of SubMiniature version A.  

 

 

 

 

 

 

 

 

 

 

Figure 2.17. The prototype of the double-resonance sensor. (a) Topside of the sensor and (b) the 

backside of the sensor. 

 

Return loss S11 of the double-resonance sensor was measured by a vector network 

analyzer (FieldFox N9923A). The measurement results are shown in Figure 2.18, where the 

sensor has an inner-ring resonance at 2.25 GHz and an outer-ring resonance at 4.17 GHz. The 

equivalent circuit model was simulated by Matlab software and the sensor has an inner-ring 

resonance at 2.19 GHz and an outer-ring resonance at 4.20 GHz. The lumped-element 

electromagnetic model was simulated by the finite-element method, which is shown in Figure 

(a) (b) 

SMA straight mounting subminiature 

coaxial microwave connector 
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2.18 and the sensor has an inner-ring resonance at 2.19 GHz and an outer-ring resonance at 

4.20 GHz. 

 

 

 

 

 

 

 

Figure 2.18. The Matlab simulation result of the equivalent circuit (green line), the simulation 

result of the finite-element simulation (FES) (red line), and the experiment result (black line). 

 

The simulation result of the equivalent circuit model by Matlab software is almost the 

same as the lumped-element electromagnetic model by the finite-element method. The two 

simulation results are close to the experiment result as shown in Figure 2.18. Hence, the 

electromagnetic finite-element model and the equivalent circuit model can be used for further 

simulation studies. 

 

2.4 Simulation Studies of Identifying Various Materials 

 

To show that the double-frequency sensor can measure and identify the materials with 

various relative permittivities, a 3-D finite-element sample component was placed on the sensor 

as shown in Figure 2.19. Assigned the sample component with various relative permittivities, the 

measurement and identification were simulated by the electromagnetic finite-element model as 

described in section 2.2 and was simulated by the equivalent circuit model as described in 

section 2.3. The sample diameter is 60 mm, high is 15 mm, and the gap between the sample and 

Matlab simulation result  

fb = 2.19 GHz  

fa = 4.20 GHz 

 

Finite-element simulation result 

fb = 2.19 GHz  

fa = 4.20 GHz 

 

Expriment results 

fb = 2.25 GHz 

fa = 4.17 GHz 
fb  

fa  
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the sensor is 0.5 mm. Four materials were selected for the simulation studies. They are Teflon 

with relative permittivity as 2.1, silicon dioxide with relative permittivity as 4, the human muscle 

with relative permittivity as 57.7 [168], and water with relative permittivity as 81. 

 

 

 

 

 

 

 

 

Figure 2.19. A 3-D finite-element simulation model for measuring and identifying various materials. 

The sample component was placed on the sensor with 60 mm diameter, 15 mm height, and 

0.5mm gap between the sample and the sensor. 

 

The simulation results of various materials on the sensor by the electromagnetic finite-

element method are shown in Figure 2.20.  

 

 

 

 

 

 

 

 

Figure 2.20. The sensor simulation results by the electromagnetic finite-element method.  

Material Resonant frequency (GHz) 

fa fb 

Unload 4.20 2.19 

Teflon 3.90 2.16 

Silicon dioxide 3.54 2.10 

Muscle 3.16 1.98 

Water 3.06 1.95 

Sample 

component 

Double-resonance 

sensor 

z 

y 
x 
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Using the resonant frequencies obtained from the simulation results, the effective relative 

permittivities of various material samples can be obtained by Eq.(2.15) and Eq.(2.16). Using the 

effective relative permittivities, the equivalent capacitances, Ca and Cb, can be obtained by 

Eq.(2.28) and (2.30), respectively. Substituted the capacitances into the equivalent circuit model, 

the simulation results of various materials on the sensor by Matlab/Simulink software are shown 

in Figure 2.21. The resonant frequencies obtained by the equivalent circuit model are the same 

as the electromagnetic finite-element model. 

 

 

 

 

 

 

 

 

Figure 2.21. The sensor simulation results by the Matlab/Simulink equivalent circuit. 

 

The material name, relative permittivity, and the resonant frequencies from the simulation 

studies are listed in Table 2.5. 

 

Table 2.5. Various material samples, relative permittivity, and resonant frequencies. 

Material samples Relative permittivity  Resonant frequency (GHz) 

fa fb 

Unload 1.0 4.20 2.19 

Teflon 2.1 3.90 2.16 

Silicon dioxide 4.0 3.54 2.10 

Muscle 57.7 3.16 1.98 

Water 81.0 3.06 1.95 

 

As relative permittivity of the sample increases, the two resonant frequencies decrease 

as listed in Table 2.5. 

Material Resonant frequency (GHz) 

fa fb 

Unload 4.20 2.19 

Teflon 3.90 2.16 

Silicon dioxide 3.54 2.10 

Muscle 3.16 1.98 

Water 3.06 1.95 
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For data classification and material identification, the two resonant frequencies for each 

measurement are projected in a 2-D space with a clear expression as shown in Figure 2.22.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.22. Resonant frequencies of inner and outer rings are projected in a 2-D space. 

 

 

Employing the simulation results as listed in Table 2.5, the relative permittivities of 

various samples can be plotted by the two resonant frequencies. As shown in Figure 2.23, the 

outer-ring resonant frequency is more sensitive to the relative permittivity of the material than the 

inner ring. However, the resonant curves of the inner ring are shaper than the outer ring as shown 

in Figure 2.21. 

 
 

 

 

 

 

 
 
Figure 2.23. The relative permittivities of various samples are plotted by the resonant frequencies 

of the inner (red line) and the outer rings (blue line).  
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In practical applications of material identification, if a similar relationship as shown in 

Figure 2.23 can be found by experiments, the relative permittivities of various samples can be 

identified by the resonant frequencies of the double-resonance sensor.  

 

2.5 Temperature Dependences of the Sensor  

 

Temperature dependences of the relative permittivity have been reported in the literature 

[169 - 171]. For different materials, some experiments showed the complexity that the relative 

permittivity may increase or may decrease with increasing temperature [169 - 171]. When 

temperature changed, the relative permittivity of the printed circuit board (PCB) material will 

change and the effective relative permittivity of the double-resonance sensor will change. Due to 

the resonant frequencies depending on the effective relative permittivity as shown in Eq.(2.11) 

and Eq.(2.12), the double-resonance sensor is sensitive to the temperature changes. The 

temperature dependence of the sensor was investigated.  

The sensor was fixed on a support and in unloading condition. A hot air blower was used 

to heat the sensor and an infrared thermometer was used to monitor the surface temperature of 

the sensor. When the sensor was heated from 25 C to 50 C, the two resonant frequencies fa 

and fb of the double-resonance sensor were measured by a vector network analyzer (FieldFox 

N9923A). The measurement results are summarized in Table 2.6. 

 

Table 2.6. Temperature dependence of the sensor. 

 

Temperature (C) fb  (GHz) fa  (GHz) 

25 4.18 2.26 

30 4.15 2.24 

35 4.13 2.22 

40 4.12 2.21 

45 4.11 2.20 

50 4.10 2.19 
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In 25 C - 50 C range, the resonant frequencies depend on the temperature of the 

sensor has been investigated. For precise measurement, the relationship of the temperature and 

resonant frequencies may be used to compensate the measurement results when the ambient 

temperature changed. However, the relative permittivity of the measured object such as meat 

may change with temperature varies [172], which will reduce the measurement accuracy. Hence, 

the temperature is a complex factor for the sensor and measured object in a more accurate 

measurement.  

When the double-resonance sensor is placed on the human body as a wearable 

biomedical sensor, the temperature of the sensor changes only in a limited range, because 

humans can maintain a relatively constant temperature. In this case, the measurement accuracy 

is less dependent on the temperature. In order to verify the validity and practicality of sensor, 

meat humidity levels were identified by the sensor prototype. For simplifying the test conditions, 

the temperature was a constant in the following experiments.  

 

2.6 Double-resonance Sensor Experiments for Identifying Meat Humidity 

 

 

To demonstrate the dehydration-related applications of the double-resonance sensor, 

meat humidity was to be identified. The pork meat was wrapped in plastic film and was placed 

under the sensor. The meat dimension is about 180 mm  100 mm  40 mm. As shown in Figure 

2.24, a transparent film with 0.2 mm thickness was placed between the sensor and the meat for 

electrical isolation. Deionized (DI) water was injected in a region of the meat. Approximate radius 

and height of the region are 15 mm and 10 mm, respectively, and volume of the region is about 

7069 mm
3
. DI water was injected into the region to simulate various humidity levels of the meat. 

Measurements are taken after injecting 0.1 ml of DI water each time. The amount of DI water with 

respect to the meat’s total volume within that region will increase about 1.4% after each injection. 

Because the relative permittivity of meat is 57.7 [168] and the relative permittivity of water is 81, 

with the injected water, the relative permittivity in the sensing region will increase. Consequently, 

the effective capacitances of the sensor will increase and the two resonant frequencies of the 
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sensor will decrease. Monitoring the resonant frequencies of the sensor, the meat humidity levels 

can be identified.  

 

 

 

 

 

 

 

 

 

 

Figure 2.24. A strip of pork meat was wrapped in plastic film and isolated by a transparent film 

then placed under the sensor. 

 

With the ambient temperature as 28 C, the experiment results of measuring various 

humidity levels of the pork meat are shown in Figure 2.25 and the detail data is listed in Table 2.7.  

 

 

 

 

 

 

 

 

 

 

Figure 2.25. Various humidity levels of the pork meat and the S11 resonant frequencies. 

Transparent film 

2 MHz 

Sensor with straight 

mounting connector 
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With injecting water into the meat, the meat humidity increases and the two resonant 

frequencies clearly shifted from high to low. 

 

Table 2.7. Experiment results with injected DI water in the meat region. 

Injecting DI water DI water content in meat fb  (GHz) fa  (GHz) 

0 ml DI in meat 0.000 (0%) 1.95 3.45 

0.1 ml DI in meat 0.014 (1.4%) 1.92 3.45 

0.2 ml DI in meat 0.028 (2.8%) 1.89 3.36 

0.3 ml DI in meat 0.042 (4.2%) 1.83 3.27 

0.4 ml DI in meat 0.057 (5.7%) 1.83 3.21 

0.5 ml DI in meat 0.071 (7.1%) 1.77 3.12 

0.6 ml DI in meat 0.085 (8.5%) 1.68 3.03 

0.7 ml DI in meat 0.099 (10%) 1.59 2.82 

 

 

 

For clearly expressing the humidity levels of the meat, the two resonant frequencies for 

each measurement are projected in 2-D space as shown in Figure 2.26. 

 

 

 

 

 

 

 

 

 

 

Figure 2.26. Humidity levels in the meat are expressed in 2-D space by the two resonant 

frequencies. 
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At inner-ring resonance, the maximum shift of the resonant frequency was 0.36 GHz 

when DI water was injected in the meat from 0 ml to 0.7 ml. At outer-ring resonance, the 

maximum shift of the resonant frequency was 0.63 GHz when DI water was injected in the meat 

from 0 ml to 0.7 ml. The experiment results demonstrate that the new double-resonance sensor is 

available for identifying humidity in meat and may be developed for a wearable sensor to monitor 

human body dehydration.  

 

2.7 Experiments with Extended Connection Lines for Identifying Meat Humidity 

 

More experiment results are investigated for identifying meat humidity using extended 

connection lines to the double-resonance sensor. For connecting to an SMA edge mounting 

subminiature coaxial microwave connector, the double-resonance sensor was extended by 15 

mm connection lines to the edge mounting connector as shown in Figure 2.27(a). The extended 

connection lines contribute the additional inductance and capacitance to the double-resonance 

sensor, which will reduce the resonant frequencies of the double-resonance sensor. Simulation 

result of the electromagnetic finite-element simulation (FES) and the experiment result as shown 

in Figure 2.27(b).  

 

 

 

 

 

 

 

 

 

 

 

15 mm 

(a) (b) 

Edge mounting 

subminiature coaxial 

microwave connector 

Simulation result 

fb = 2.01 GHz  

fa = 3.28 GHz 

 

Expriment results 

fb = 2.02 GHz 

fa = 3.24 GHz 

fb  

fa  
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Figure 2.27 (a) Double-resonance sensor was extended by 15 mm connection lines for 

connecting to an edge mounting subminiature coaxial microwave edge mounting connector. (b) 

Results of the finite-element simulation (FES) (red line) and the experiment results (black line).  

 

In Figure 2.27 (b), the experiment result shows the inner-ring resonance at 2.02 GHz and 

the outer-ring resonance at 3.24 GHz, while the finite-element simulation result shows the inner-

ring resonance at 2.01 GHz and the outer-ring resonance at 3.28 GHz. Hence, the experiment 

result is close to the simulation result. 

In order to analyze the load impedances when the sensor resonances at the two 

resonant frequencies, the S11 Smith chart was plotted in Figure 2.28 by the electromagnetic finite-

element simulation and the prime center of the Smith chart is assigned with a value of 50 .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.28. S11 Smith chart plots by the electromagnetic finite-element simulation, where fa is the 

outer-ring resonant frequency; fb is the inner-ring resonant frequency.  

S11 Smith Chart 

Inner-ring resonance 

fb = 2.01 GHz 

Impedance  = 30.5    

Outer-ring resonance 

fa  = 3.28 GHz 

Impedance  = 60    
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As shown in Figure  2.28, the outer-ring resonant frequency fa is 3.28 GHz and the load 

impedance at the frequency is 60 , while the inner-ring resonant frequency fb is 2.01 GHz and 

the load impedance at the frequency is 30.5  .  

The pork meat was wrapped in plastic film and was placed on the sensor. The meat size 

is about 200 mm  100 mm  40 mm. As shown in Figure 2.29, a transparent film with 0.2 mm 

thickness was placed between the sensor and the meat. Deionized (DI) water was injected into a 

region of the meat. Approximate radius and height of the region are 15 mm and 10 mm, 

respectively, and the region volume is about 7069 mm
3
. The region simulates various humidity 

levels of the meat. Measurements are taken after injecting 0.1 ml of DI water each time. The 

amount of DI water with respect to the meat’s total volume within that region will increase about 

about 1.4% after each injection.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.29. A strip of pork meat was wrapped in plastic film and was isolated by a transparent 

film then placed on the sensor with extended connection lines. 

 

Using the double-resonant sensor with extended connection lines, the experiment results 

of measuring various humidity levels of the pork meat are shown in Figure 2.30 and the ambient 

temperature as 28 C.  

Transparent film 

Sensor with extended 

connection lines under 

the meat 
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Figure 2.30. The humidity of the pork meat and the S11 resonant frequencies by the double-

resonant sensor with extended connection lines. 

 

With injecting water into the meat, the meat humidity increases and the two resonant 

frequencies shifted from high to low as shown in Figure 2.30. The detailed data is listed in Table 

2.8. 

Table 2.8. Using the sensor with extended connection lines, the experiment results with injected 

DI water in the meat region. 

Injecting DI water DI water content in meat fb  (GHz) fa  (GHz) 

0 ml DI in meat 0.000 (0%) 1.50  2.31  

0.1 ml DI in meat 0.014 (1.4%) 1.44  2.31  

0.2 ml DI in meat 0.028 (2.8%) 1.41  2.22  

0.3 ml DI in meat 0.042 (4.2%) 1.35  2.13  

0.4 ml DI in meat 0.057 (5.7%) 1.32  2.13  

0.5 ml DI in meat  0.071 (7.1%) 1.29  1.98  

0.6 ml DI in meat 0.085 (8.5%) 1.26  1.95  

0.7 ml DI in meat 0.099 (10%) 1.26  1.83  

 

2 MHz 
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For clearly expressing the humidity levels of the meat, the two resonant frequencies for 

each measurement are projected in a 2-D space as shown in Figure 2.31. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.31. Humidity levels in the meat are expressed in 2-D space by the two resonant 

frequencies. 

 

Comparing the two experimental results as listed in Table 2.7 and listed in Table 2.8, the 

original double-resonance sensor has a larger frequency shift than the sensor with the extended 

connection lines.  

At inner-ring resonance of the original double-resonance sensor, the maximum shift of 

the resonant frequency is 0.36 GHz when DI water was injected in the meat from 0ml to 0.7 ml, 

while it is 0.24 GHz by the sensor with the extended connection lines. At outer-ring resonance of 

the original double-resonance sensor, the maximum shift of the resonant frequency is 0.63 GHz 

when DI water was injected in the meat from 0 ml to 0.7 ml, while it is 0.36 GHz by the sensor 

with the extended connection lines. The comparisons demonstrate that the original double-

resonance sensor is more sensitive to the meat humidity changing than the sensor with the 

extended connection lines. 
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2.8 Conclusions 

 

A new double-resonance sensor was designed and fabricated. The sensor has two type 

rings and a center pad. The outer ring was designed as the circular-loop type and the inner ring 

was designed as the split-ring type. The two different rings contribute to a larger resonant-

frequency span over 2 GHz for the sensor. A center pad is added with suitable dimension, the 

port impedance can approach to 50 , hence boosting the Q factor of the circuit. The waveguide 

method and the electromagnetic finite-element simulation were used to design the sensor. The 

equivalent circuit was deduced and was simulated by Matlab/Simulink software to reveal the 

electrical parameters of the sensor. Various electromagnetic field distribution patterns show that 

the resonator is available for use as a sensor. Experiments of identifying pork-meat humidity 

verified that the sensor has a promising approach for monitoring human body dehydration. 

Furthermore, multiple resonant frequencies can be designed to provide a more accurate 

identification parameters in a multi-dimensional vector data space. The double-resonance sensor 

can be used as a wearable biomedical sensor for monitoring human-body hydration loss, and 

potentially used for identification of abnormal or cancerous tissues based on their dielectric 

properties. 
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 CHAPTER 3 

WEARABLE MEDICAL SENSOR WITH WIRELESS BODY AREA NETWORK FOR 

INTRAOPERATIVE NEUROMONITORING 

  

3.1 Introduction 

 

Intraoperative neuromonitoring (IONM) system is commonly used to monitor the neural 

responses of a patient body during general spine and cranial procedures [173, 174]. Transcranial 

motor evoked potential (TcMEP) is an electrical signal of muscular action caused by transcranial 

brain stimulation [175, 176]. The TcMEP has become the most popular method to monitor the 

functional integrity of the motor system during surgery [175] and was applied to perform 

intraoperative monitoring over 25 years [177]. During the scoliosis correction surgeries at the 

Texas Scottish Rite Hospital for Children, an IONM system (Cadwell Industries, Inc.) is used to 

monitor the TcMEP signals during the surgical procedure to prevent injuries of the spinal column. 

To acquire a TcMEP signal [178], the stimulus pulse trains were applied to the patient’s scalp 

through the pairs of Electroencephalography (EEG) electrode. The Cadwell TCS-1 stimulator 

(Cadwell Industries, Inc.) was used to generate the stimulus pulse trains. Each pulse width was 

200 microseconds, the frequency was 350 Hz, and intensity was 400 V. Typically, 20 pairs of 

needle electrodes inserted into the limbs of a patient were used to record the TcMEP signals by 

the IONM system. When TcMEP signals from the limbs weaken or disappeared, the spinal 

column may be injured and the surgery has to be suspended until the signals restore. The 

practical TcMEP signal amplitude is smaller [175]. Depending on the positions of the needle 

electrode in the limbs, the practical TcMEP amplitude of peak to peak is from 100 uV up to 6 mV 

within large environment noises. Hence, the amplifier and filter hardware have to be integrated 

into the IONM system to amplify the signals and eliminate the noises. In the operating room, 

typically, 40 expensive lengthy wires are connected from the limbs of a patient to the IONM 

system. The wires crowd in the surgical area and are susceptible to electromagnetic interference 

(EMI) from power lines and high-power electronics such as thermal units and life support 
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equipment [179, 180]. Hence, complex digital signal processing is used in the IONM system to 

reduce the EMI noise and enhance signal readability for doctors. In order to improve the IONM 

system, a wireless communication system (Sichuan NeoSource BioTektronics inc.) was used to 

acquire the TcMEP signals with isolating the critical TcMEP signals from high-level EMI in the 

operating room.  

Most of the wireless communications are implemented by Bluetooth, WiFi, ZigBee and 

wireless body area network (WBAN) following with the IEEE standards and protocols [5], 

according to the operating frequency, bandwidth and data rates. Comparing to other wireless 

devices, WBAN has the advantages of lower transmitter power, lower power consumption, and 

lower hardware cost [5]. The international WBAN standard is IEEE 802.15.6, which refers to the 

interconnecting devices used in close proximity around the body [6]. Commercially WBAN 

devices have found success owing to the increasing interest and functionality needs [7, 10]. 

Continuous and unhindered monitoring through WBAN communication becomes attractive for 

biomedical applications [10, 2, 9, 46].  

In the chapter, a new WBAN is presented to acquire the TcMEP signals with compact 

size, low cost, high sample rate, and isolating critical TcMEP signals from high-level EMI in the 

operating room. The WBAN has four wireless modules which were placed at the limbs of a 

patient. In order to obtain enough TcMEP amplitudes for a normal measurement, usually, the 

stimulation pulse has to be larger than 200 V and less than 750 V for protecting the patient’s 

nervous system. The effectiveness and reliability of four wireless modules have been evaluated 

by recording the TcMEP signals in the presence of high-level EMI found in the operating room 

[179, 180]. However, the hardware and software of the new WBAN system are different from the 

IONM system. Hence, the TcMEP waveforms recorded by the compact wireless modules are 

different from the complex IONM system. Because the TcMEP waveforms recorded by the IONM 

system has been considered to be the current gold standard by the medical community, the 

wireless recording must be converted to an equivalent IONM waveform for doctors. Although 

various signal conditioning methods are used, the IONM and the wireless module may be 

approximated as linear systems. Consequently, the linear system identification technique can be 
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employed to find a transfer function between the two systems. Using the found transfer function, 

the signals acquired by the WBAN can be converted to be fully acceptable waveforms by the 

doctors in the hospital.  

 

 
3.2 Design of Wireless Module 

 

Cooperated with Sichuan NeoSource BioTektronics inc., the wireless module 

(NEOSCBIO) was designed and improved as a wearable device for Intraoperative 

Neuromonitoring. The dimension of the module is 55 mm  35 mm  15 mm and weight is only 30 

g as shown in Figure 3.1(a). The system block diagram of wireless communication is shown in 

Figure 3.2. The wireless module includes a two-stage amplifier, an ultra-low-power Arm 32-bit 

microcontroller (STM32L433CC, STMicroelectronics) with a 12-bit as well as 12-kHz sampling 

rate analog-to-digital conversion, and a 3.7 V rechargeable lithium-ion battery. The battery life of 

10 hours after it is fully recharged, which can meet the time of a complete scoliosis correction 

surgery. Wireless communication of the module was implemented by a 2.4-GHz transceiver 

(nRF24L01, Nordic Semi.), a built-in antenna, and a receiver of wireless USB dongle as shown in 

Figure 3.1(b). The USB dongle was connected to a host computer for recording data, while the 

real-time waveforms can display on the host computer with a graphical user interface. Wireless 

communication distance of the wearable module is over 10 m, which was measured in the 

operating room at the Texas Scottish Rite Hospital for Children. The wireless communication 

distance can meet the Intraoperative Neuromonitoring. The input ports of the wireless module 

were connected to two needle electrodes (Medtronic 945DSN1299) to acquire TcMEP signals in 

the muscles. 
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Figure 3.1. (a) Wireless module with 30 g weight and 55 mm  35 mm  15 mm dimension. (b) 

Wireless USB dongle.  

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.2. System block diagram of the wireless devices. 
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Due to the TcMEP signal is weak, a two-stage amplifier was designed to match the 3.3 V 

analog-to-digital converter of the microcontroller. The first stage uses an INA333 instrumentation 

amplifier with high common mode rejection ratio (CMRR of 100 dB) for reducing the common 

noises presented at both the recording and the reference electrodes. The amplifier has a high 

input impedance of approximately 100 G and low input bias current of 200 pA. The second 

stage uses an OPA4330 amplifier with low offset voltage 50 μV and 35 μA of quiescent current. 

Because the TcMEP amplitudes at hand, leg, and foot are different, the gains of the 

amplifiers were set as different values for accurately measuring at the various locations. In 

practice, the maximum TcMEP signal was about 6 mV at the abductor pollicis brevis muscle (at 

hand). Because the maximum output voltage of the amplifier must be less than 3.3 V, the total 

gain of the two-stage amplifier was designed as 500 with 10% gain margin for measuring the 

TcMEP at the hand muscle. The maximum TcMEP signal was about 1.5 mV at the tibialis anterior 

(at leg), the soleus (at leg), and the abductor hallucis (at foot). Because the maximum output 

voltage of the amplifier must be less than 3.3 V, the total gain was designed as 2000 with 10% 

gain margin for measuring the TcMEP at the leg and foot muscles. 

When the input noise and device noise are considered, the gains and the noises of the 

two-stage amplifier can be described [188] in Figure 3.3.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.3. Noises in the two-stage amplifier. Nin is input noise, Nout is output noise, N1 is device 

noise of the first-stage amplifier, N2 is device noise of the second-stage amplifier, G1 is gain of the 

first-stage amplifier, and G2 is gain of the second-stage amplifier. 
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As shown in Figure 3.3, the output noise can be expressed by the input noise, the device 

noises, and the amplifier gains as follows. 

 

                           (3.1) 

 

where Nin is input noise, Nout is output noise, N1 is device noise of the first-stage amplifier, N2 is 

device noise of the second-stage amplifier, G1 is gain of the first-stage amplifier, and G2 is gain of 

the second-stage amplifier. 

 

When total gain G1G2 is a constant K, Eq.(3.1) becomes, 

 

                                  (3.2) 

 

Eq.(3.2) explains that the first-stage amplifier should have a higher gain G1 [188] in order 

to reduce the second noise item N1K/G1 in Eq.(3.2).  

In order to reduce the device noise, the gain G1 is designed as 100, the gain G2 is 

designed as 5, and the total gain G1G2 equals 500 for measuring the TcMEP signals of hand 

muscle. The gain G1 is designed as 100, the gain G2 is designed as 20, and the total gain G1G2 

equals 2000 for measuring the TcMEP signals of hand muscle of leg and foot muscles.   

 

3.3 IONM System and Wireless System 

 

In order to obtain the frequency response of IONM system, a linear-swept-frequency 

signal of 0−1000 Hz and 1 mV was inputted into the IONM system and the IONM output 

waveform was recorded. Using the IONM recordings, the frequency response of the IONM 

system was determined by the linear continuous-time frequency-response estimation method 
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[189, 190]. The magnitude and the phase of the frequency-response waveforms are shown in 

Figure 3.4 and the frequency-response function FRIONM is given in Eq.(3.3).  

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.4. Magnitude and phase of the frequency response of the IONM system.  

 

 

 

       
                                               

                                                     (3.3) 

 

 

 
In order to obtain the frequency response of the wireless system, the linear-swept-

frequency signal was inputted into the wireless system and the output waveform of the wireless 

system was recorded. The magnitude and the phase of the frequency-response waveforms by 

the wireless system with the gain as 500 (54 dB) are shown in Figure 3.5 and the frequency-

response function FRWireless is given in Eq.(3.4). 
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Figure 3.5.  Magnitude and phase of the frequency response of the wireless system. 

 

           
                                              

                                                (3.4) 

 

Due to the difference between the hardware and software configurations, the IONM 

system and the new wireless system have different frequency responses as shown in Figure 3.4 

and Figure 3.5, respectively. The different frequency-response functions are also expressed in 

Eq.(3.3) and (3.4), respectively. However, only the IONM recording is acceptable by the doctors. 

Hence, the wireless recording has to be converted to the acceptable waveform using a new 

transfer function between the IONM system and the wireless measuring system. 

 

3.4. Measuring, Converting, and Evaluating the Wireless Recordings 

 

The IONM system and the wireless system for recording the TcMEP signals are shown in 

Figure 3.6. To compare the performances of the wireless system with the IONM system under the 
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same measurement conditions, the two systems were connected to the same needle electrodes 

(Medtronic 945DSN1299) to acquire the TcMEP signals through an analog signal splitter. The 

analog signal splitter outputs the same signals into the IONM system and the wireless system. H1 

is the transfer function of IONM system, H2 is the transfer function of the wireless system, y1 is 

the IONM recording, and y2 is the wireless recording. 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 3.6. IONM system and wireless system for recording the TcMEP signals from the 
electrodes. 

 

To convert the acquired wireless signal to an equivalent IONM waveform, a conversion 

system H3 was constructed as shown in Figure 3.6. In order to find the transfer function of the 

system H3, the wireless recording y2 was used as the input of the system H3 and the IONM 

recording y1 was used as the output of the system H3. The linear continuous-time transfer-

function estimation method was employed and using time-domain data. The state-variable filters 

(SVF) and the generalized Poisson moment functions (GPMF) were used for the transfer-function 

estimation [189, 190]. The IONM recordings and the wireless recordings were obtained by 

inputting the same linear-swept-frequency signal as described in section 3.3. The wireless 

recording was used as the system input. The IONM recording was used as the system output. 

Due to the IONM and the wireless systems can be approximated to linear systems, a transfer 

function of the system can be found by the linear transfer-function estimation method. Using the 

found transfer function, the wireless recording y2 can be converted to an equivalent IONM output 

yc1 and be acceptable by the doctors. The estimated transfer function H3 is as follows. 
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                                                       (3.5) 

 

Magnitude and phase of the transfer-function H3 are shown in Figure 3.7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7. Magnitude and phase of the transfer-function H3, where the wireless recording was 

used as input of the system H3 and the IONM recording was used as the output of the system H3. 

 

The Wireless recording is converted by the transfer function and the converted result is 

evaluated as shown in Figure 3.8, where H3 is the transfer function, y2 is the wireless recordings, 

yc1 is the converted result, and y1 the IONM recording which is the reference for evaluating the 

converted result. 
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Figure 3.8. The wireless recording is converted and is evaluated. 

 

In order to evaluate the conversion results, three statistical methods were employed to 

evaluate the converted results. They are the goodness of fit, Pearson's correlation, and root 

mean square errors, respectively. 

 

A. Goodness of Fit 

The first evaluation method is the goodness of fit [191]. The goodness of fit is a statistical 

method which is employed to measure the discrepancy between the converted results and the 

IONM recordings. 

 

      
                 

 

   

                   
 

   

        (3.6) 

where  

         
 

 
      

 

   
  

 

n is sample number, yc1 is the converted result of the wireless recording, y1 is the IONM 

recording, and fit is evaluation value. 
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B. Pearson's correlation 

Pearson's correlation coefficient [192] is the most commonly used to measure the linear 

correlation between two variables. Pearson's correlation coefficient is defined as the covariance 

of the two variables divided by the product of their standard deviations as follows. 

 

  
           

       
        (3.7) 

 

where  is Pearson correlation coefficient, cov is the covariance, yc1 is the converted result of the 

wireless recording, y1 is the IONM recording, yc1 is the standard deviation of yc1, and y1 is the 

standard deviation of y1,. 

 

The formula for  can be expressed in term of sample as follows. 

 

  
                                             

 

   

                      
 

   
                    

 

   

   (3.8) 

 

where  

         
 

 
      

 

   
  

 is Pearson correlation coefficient, n is sample number, yc1 is the converted result of the wireless 

recording, and y1 is the IONM recording. 

 

C. Root Mean Squared Error 

The root mean square error (RMSE) is frequently used to measure the difference 

between two signals [193]. In the chapter, RMSE is used to evaluate the converted result of the 

wireless results with the following definitions. 
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        (3.9) 

where 

         
      

         
  

        
     

        
  

 

RMSE is the root mean squared error, u_yc1 is unitized data of the converted result of the 

wireless recording, u_y1 is unitized IONM recording, and n is sample number.  

 

A completed flow chart of the system identification, the data conversion, and the result 

evaluations is shown in Figure 3.9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9. Flow chart of the system identification, the data conversion, and the result evaluations. 
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In the flow chart, the transfer function H3 was obtained by the system identification 

method. Using the found transfer functions H3, the wireless recordings can be converted to be 

fully acceptable waveforms by the doctors in the hospital. The goodness of fit, Pearson's 

correlation, and the root mean square errors were employed to evaluate the converted results. 

 

3.5. Wireless Body Area Network for Intraoperative Neuromonitoring 

 

The new wireless body area network (WBAN) was used to record the TcMEP signals 

from the patients who accepted the surgeries of the scoliosis correction at the Texas Scottish Rite 

Hospital for Children in the past two years. 

The WBAN has four wireless modules which were placed at limbs of a patient. Four pairs 

of needle electrodes were inserted into the patient’s abductor pollicis brevis muscle (at hand), 

tibialis anterior muscle (at leg), soleus muscle (at leg), and abductor hallucis muscle (at foot), 

respectively, as shown in Figure 3.10.  

 
 

 
Figure 3.10. Abductor pollicis brevis muscle (at hand), tibialis anterior muscle (at leg), soleus 

muscle (at leg), and abductor hallucis muscle (at foot). 

 

Four pairs of needle electrodes in the patient’s abductor pollicis brevis muscle, tibialis 

anterior muscle, soleus muscle, and abductor hallucis muscle were connected to the input ports 
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of the four wireless modules in the WBAN. Acquired signals were wirelessly transmitted to the 

USB dongle of the host computer. 9 continuous stimulus pulses with 400V intensity were applied 

to the patient’s scalp through the Electroencephalography (EEG) electrodes. Subsequently, the 

TcMEP signals were detected by the needle electrodes and were wirelessly recorded by the host 

computer. The wireless body area networks are shown in Figure 3.11. 

 

 

 

 

Figure 3.11. Four wireless modules in the WBAN were placed on the four measurement points 

which are 1. Abductor pollicis brevis muscle, 2. Tibialis anterior muscle, 3. Soleus muscle, and 4. 

Abductor hallucis muscle.  The WBAN USB dongle received the WBAN signals. 

 

The WBAN can isolate the critical TcMEP signals from high-level EMI in the operating 

room. The maximum communication range of the WBAN is over 10 m and battery life is over 10 

hours. For further applications, more wireless measurement modules can be added into the 

WBAN. 

In the next section, the WBAN recordings were converted to the equivalent IONM 

waveforms and were evaluated by the three statistical methods. The converted WBAN recording 

was also compared with the WBAN raw data. 
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3.6. Converting WBAN Recording and Evaluations 

 

In order to evaluate the converted WBAN recording by the obtained transfer-function H3 

in Eq.(3.5), the clinical TcMEP signals from 20 patients were simultaneously recorded by the 

IONM system and the WBAN system. All 20 patients accepted the surgeries of the scoliosis 

correction at the Texas Scottish Rite Hospital for Children. 

 

A. Converting and Evaluating WBAN Recording from the abductor pollicis brevis muscle 

An IONM recording from the abductor pollicis brevis muscle is shown in Figure 3.12(a) 

and the recording time was 0.1 second with 6400 sample/second. Raw data of the WBAN 

recording from abductor pollicis brevis muscle is shown in Figure 3.12(b) and the recording time 

is 0.1 second with 12000 sample/second. As shown in Figure 3.12(a), after the 9 continuous 

stimulus pulses, the TcMEP signals occur with 4000uV amplitude in the IONM recording. 

 

 

  

  

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Figure 3.12. Data were from the abductor pollicis brevis muscle. (a) IONM recording and (b) Raw 

data of WBAN recording. 
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The stimulus pulse trains and the dc component of the WBAN recording were removed 

as well as the IONM recoding was resampled to 12000 sample/second as the same as the 

WBAN recording. The processing results are shown in Figure 3.13(a). Then, the WBAN recording 

was converted by the transfer-function H3 in Eq.(3.5). The converted result and the IONM 

recording are plotted in Figure 3.13(b).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.13. Data were from the abductor pollicis brevis muscle. (a) The dc component and the 9 

continuous stimulus pulses of the WBAN recording were removed and plotted with the IONM 

recoding. (b) The converted WBAN recording and the IONM recording. 

 

Using the goodness of fit method, the converted WBAN recording is evaluated as 0.8542, 

while the raw data of WBAN recording is evaluated as -0.0535. The fit value increases about 0.91. 

Using the Pearson correlation method, the converted WBAN recording is evaluated as 0.9901, 

while the raw data of WBAN recording is evaluated as 0.1880. The correlation coefficient 

increases about 0.80. Using the by RMSE method, the converted WBAN recording is evaluated 

as 0.0332, while the raw data of WBAN recording is evaluated as 0.2837. The root mean square 

error decreases about 0.25. Above three evaluation results show the converted WBAN recording 

has a much higher similarity with the IONM recording from the abductor pollicis brevis muscle. 
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B. Converting and Evaluating WBAN Recording from the tibialis anterior muscle 

An IONM recording from the tibialis anterior muscle is shown in Figure 3.14(a) and the 

recording time was 0.1 second with 6400 sample/second. Raw data of the WBAN recording from 

tibialis anterior muscle is shown in Figure 3.14(b) and the recording time was 0.1 second with 

12000 sample/second. As shown in Figure 3.14(a), after the 9 continuous stimulus pulses, the 

TcMEP signals occur with 1100uV amplitude in the IONM recording. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14. Data were from the tibialis anterior muscle. (a) IONM recording and (b) Raw data of 

WBAN recording. 

 

The stimulus pulse trains and the dc component of the WBAN recording were removed 

as well as the IONM recording was resampled to 12000 sample/second as the same as the 

WBAN recording. The processing results are shown in Figure 3.15(a). Then, the WBAN recording 

was converted by the transfer-function H3 in Eq.(3.5). The converted result and the IONM 

recording are plotted in Figure 3.15(b). 
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Figure 3.15. Data were from the tibialis anterior muscle. (a) The dc component and the 9 

continuous stimulus pulses of the WBAN recording were removed and plotted with the IONM 

recoding. (b) The converted WBAN recording and the IONM recording. 

 

Using the goodness of fit method, the converted WBAN recording is evaluated as 0.8636, 

while the raw data of WBAN recording is evaluated as -0.6772. The fit value increases about 1.54. 

Using the Pearson correlation method, the converted WBAN recording is evaluated as 0.9906, 

while the raw data of WBAN recording is evaluated as 0.2171. The correlation coefficient 

increases about 0.77. Using the by RMSE method, the converted WBAN recording is evaluated 

as 0.0413, while the raw data of WBAN recording is evaluated as 0.5077. The root mean square 

error decreases about 0.47. Above three evaluation results show the converted WBAN recording 

has a much higher similarity with the IONM recording from the tibialis anterior muscle. 

 

 
C. Converting and Evaluating WBAN Recording from the soleus muscle 

An IONM recording from the soleus muscle is shown in Figure 3.16(a) and the recording 

time was 0.1 second with 6400 sample/second. Raw data of the WBAN recording from tibialis 

anterior muscle is shown in Figure 3.16(b) and the recording time was 0.1 second with 12000 

sample/second. As shown in Figure 3.16(a), after the 9 continuous stimulus pulses, the TcMEP 

signals occur with 880uV amplitude in the IONM recording. 
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Figure 3.16. Data were from the soleus muscle. (a) IONM recording and (b) Raw data of WBAN 

recording. 

 
The stimulus pulse trains and the dc component of the WBAN recording were removed 

as well as the IONM recoding was resampled to 12000 sample/second as the same as the 

WBAN recording. The processing results are shown in Figure 3.17(a). Then, the WBAN recording 

was converted by the transfer-function H3 in Eq.(3.5). The converted result and the IONM 

recording are plotted in Figure 3.17(b).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
Figure 3.17. Data were from the soleus muscle. (a) The dc component and the 9 continuous 

stimulus pulses of the WBAN recording were removed and plotted with the IONM recoding. (b) 

The converted WBAN recording and the IONM recording. 
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Using the goodness of fit method, the converted WBAN recording is evaluated as 0.7510, 

while the raw data of WBAN recording is evaluated as -0.1721. The fit value increases about 0.92. 

Using the Pearson correlation method, the converted WBAN recording is evaluated as 0.9661, 

while the raw data of WBAN recording is evaluated as 0.2971. The correlation coefficient 

increases about 0.67. Using the by RMSE method, the converted WBAN recording is evaluated 

as 0.0683, while the raw data of WBAN recording is evaluated as 0.3102. The root mean square 

error decreases about 0.24. Above three evaluation results show the converted WBAN recording 

has a much higher similarity with the IONM recording from the soleus muscle. 

 

D. Converting and Evaluating WBAN Recording from the abductor hallucis muscle 

An IONM recording from the abductor hallucis muscle is shown in Figure 3.18(a) and the 

recording time was 0.1 second with 6400 sample/second. Raw data of the WBAN recording from 

tibialis anterior muscle is shown in Figure 3.18(b) and the recording time was 0.1 second with 

12000 sample/second. As shown in Figure 3.18(a), after the 9 continuous stimulus pulses, the 

TcMEP signals occur with 600uV amplitude in the IONM recording. 

 

 

 

 

 

 

 

 

 

Figure 3.18. Data were from the abductor hallucis muscle. (a) IONM recording and (b) Raw data 

of WBAN recording. 

 
The stimulus pulse trains and the dc component of the WBAN recording were removed 

as well as the IONM recoding was resampled to 12000 sample/second as the same as the 
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WBAN recording. The processing results are shown in Figure 3.19(a). Then, the WBAN recording 

was converted by the transfer-function H3 in Eq.(3.5). The converted result and the IONM 

recording are plotted in Figure 3.19(b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.19. Data were from the abductor hallucis muscle. (a) The dc component and the 9 

continuous stimulus pulses of the WBAN recording were removed and plotted with the IONM 

recoding. (b) The converted WBAN recording and the IONM recording. 

 

Using the goodness of fit method, the converted WBAN recording is evaluated as 0.7806, 

while the raw data of WBAN recording is evaluated as -0.0985. The fit value increases about 0.88. 

Using the Pearson correlation method, the converted WBAN recording is evaluated as 0.9756, 

while the raw data of WBAN recording is evaluated as 0.1513. The correlation coefficient 

increases about 0.82. Using the by RMSE method, the converted WBAN recording is evaluated 

as 0.0456, while the raw data of WBAN recording is evaluated as 0.2284. The root mean square 

error decreases about 0.18. Above three evaluation results show the converted WBAN recording 

has a much higher similarity with the IONM recording the abductor hallucis muscle. 

 

E. Converting and Evaluating the 19 WBAN Recordings 

Figure 3.20(a) and (b) show a complete TcMEP set which consists of the 19 IONM 

clinical recordings and the 19 WBAN clinical recordings from the abductor pollicis brevis muscle 
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of one patient in an idiopathic scoliosis correction surgery during 2.5-hour period at the Texas 

Scottish Rite Hospital for Children. The 19 WBAN clinical recordings were converted to the 

equivalent IONM waveforms as shown in Figure 3.20(c), where the solid lines express the IONM 

recordings and the dotted lines express the converted WBAN recordings.  

 

 

 

 

   

 

   

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.20. Data were from the abductor pollicis brevis muscle during 2.5-hour surgery period.  

(a) The IONM recordings. (b) The WBAN recordings. (c) The converted WBAN recordings (dotted 

line) and the IONM recordings (solid line). 
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In order to demonstrate the data conversion details, the first five IONM recordings and 

original WBAN recordings from the abductor pollicis brevis muscle are shown in Figure 3.21(a) 

while the converted WBAN recordings and the IONM recordings are shown in Figure 3.21(b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.21. Data were from the abductor pollicis brevis muscle. (a) The first five WBAN 

recordings (dotted line) and IONM recordings (solid line). (b) The first five converted WBAN 

recordings (dotted line) and the IONM recordings (solid line). 
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Figure 3.22(a) and (b) show a complete TcMEP set which consists of the 19 IONM 

clinical recordings and the 19 WBAN clinical recordings from the abductor hallucis muscle of one 

patient in an idiopathic scoliosis correction surgery during 2.5-hour period at the Scottish Rite 

Hospital for Children. The 19 WBAN clinical recordings were converted to the equivalent IONM 

waveforms as shown in Figure 3.22(c), where the solid lines express the IONM recordings and 

the dotted lines express the converted WBAN recordings.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.22. Data were from the abductor hallucis muscle during 2.5-hour surgery period. (a) The 

IONM recordings. (b) The WBAN recordings. (c) The converted WBAN recordings (dotted line) 

and the IONM recordings (solid line).  
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In order to demonstrate the data conversion details, the first five IONM recordings and 

original WBAN recordings from the abductor hallucis muscle are shown in Figure 3.23(a) and the 

converted WBAN recordings and the IONM recordings are shown in Figure 3.23(b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.23. Data were from the abductor hallucis muscle. (a) The first five WBAN recordings 

(dotted line) and IONM recordings (solid line). (b) The first five converted WBAN recordings 

(dotted line) and the IONM recordings (solid line). 
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The converted results of the 19 WBAN recordings as shown in Figure 3.20.(c) and Figure 

3.22.(c) were evaluated by the goodness of fit, Pearson correlation, and RMSE methods, 

respectively. The evaluation results are listed in Table 3.1. The maximum value, minimum value, 

average value, and standard deviation are also calculated. 

 

Table 3.1. The evaluation results, maximum value, minimum value, average value, and standard 

deviation. 

Converted 
recording 

Record Time 
(Hour : Minute) 

Abductor pollicis brevis (at hand) Abductor hallucis (at foot) 

Fit  RMSE Fit  RMSE 

Sample 1 10:37 0.8542 0.9901 0.0332 0.7806 0.9756 0.0456 

Sample 2 11:17 0.8385 0.9881 0.0283 0.8431 0.9876 0.0366 

Sample 3 11:21 0.7958 0.9808 0.0332 0.9011 0.9951 0.0204 

Sample 4 11:24 0.8406 0.9894 0.0520 0.8750 0.9922 0.0242 

Sample 5 11:28 0.8681 0.9921 0.0332 0.8672 0.9911 0.0228 

Sample 6 11:30 0.8671 0.9691 0.0469 0.9066 0.9957 0.0234 

Sample 7 11:33 0.8469 0.9893 0.0332 0.9074 0.9957 0.0173 

Sample 8 11:39 0.6274 0.9750 0.0762 0.9145 0.9964 0.0164 

Sample 9 11:43 0.7197 0.9818 0.0600 0.8672 0.9916 0.0206 

Sample 10 11:52 0.8752 0.9925 0.0283 0.8968 0.9947 0.0238 

Sample 11 11:57 0.8553 0.9900 0.0245 0.8748 0.9924 0.0308 

Sample 12 12:06 0.8116 0.9847 0.0346 0.8780 0.9926 0.0286 

Sample 13 12:14 0.7858 0.9788 0.0520 0.9050 0.9957 0.0242 

Sample 14 12:21 0.7209 0.9649 0.0557 0.9256 0.9973 0.0134 

Sample 15 12:25 0.7322 0.9650 0.0574 0.9092 0.9959 0.0253 

Sample 16 12:31 0.7762 0.9829 0.0480 0.8905 0.9940 0.0254 

Sample 17 12:43 0.7352 0.9812 0.0583 0.9103 0.9961 0.0198 

Sample 18 12:50 0.8640 0.9927 0.0316 0.9131 0.9962 0.0132 

Sample 19 13:02 0.7767 0.9777 0.0361 0.9233 0.9971 0.0168 

Maximum value 0.8752 0.9927 0.0762 0.9256 0.9973 0.0456 

Minimum value 0.6274 0.9649 0.0245 0.7806 0.9756 0.0132 

Average value 0.7995 0.9824 0.0433 0.8889 0.9933 0.0236 

Standard deviation 0.0679 0.0089 0.0141 0.0342 0.0050 0.0079 

Note: Fit is Goodness of fit;  is Pearson correlation; and RMSE is root mean square error. 
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Employing the goodness of fit method, the average evaluation value of the 19 converted 

WBAN recordings from abductor pollicis brevis muscle is 0.7995, while the average evaluation 

value from abductor hallucis muscle is 0.8889. Employing the Pearson correlation method, the 

average evaluation value of the 19 converted WBAN recordings from abductor pollicis brevis 

muscle is 0.9824, while the average evaluation value from abductor hallucis muscle is 0.9933. 

Employing the RMSE method, the average evaluation value of the 19 converted WBAN 

recordings from abductor pollicis brevis muscle is 0.0433, while the average evaluation value 

from abductor hallucis muscle is 0.0236.  

As listed in Table 3.1, the evaluation results show that the converted WBAN recordings 

can be equivalent to the IONM recordings. Comparing the three evaluation methods, when the 

recordings were from the abductor pollicis brevis muscle, the Pearson correlation method can 

give the minimum standard deviation (0.0089) to compare with the goodness of fit (0.0679) and 

RMSE methods (0.0141). When the recordings were from the abductor hallucis muscle, the 

Pearson correlation method can give the minimum standard deviation (0.0050) to compare with 

the goodness of fit (0.0342) and RMSE methods (0.0079). The comparisons show that the 

Pearson correlation method has the stabilizing performance for evaluating the converted 

recordings.  

In next section, the converted results of WBAN recordings are compared with the raw 

data, which can show that the discrepancies between the converted WBAN recordings and the 

IONM recordings are greatly decreased after used the transfer function conversion. 

 

F. Comparing the Converted Data with the Raw Data by the goodness of fit method 

The 19 raw data of WBAN recordings are evaluated by the three statistical methods and 

are compared with the 19 converted WBAN recordings. Using the goodness of fit method, the 

evaluation value of the converted WBAN data from the abductor pollicis brevis muscle and the 

evaluation value of the raw data of WBAN recording are plotted in Figure 3.24. The evaluation 

value of the raw data is the red bar and the evaluation value of the converted data is the blue bar 

in the figure. 



 

93 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.24. Data were from the abductor pollicis brevis muscle. The goodness of fit method was 

used to evaluate the converted data and the raw data of WBAN recording. The evaluation value 

of the converted data is the blue bar and the evaluation value of the raw data of WBAN recording 

is the red bar. 

 

In Figure 3.24, using the goodness of fit method, the average evaluation value of the 19 

raw data of the WBAN recording from the abductor pollicis brevis muscle is 0.0069 and the 

average evaluation value of the converted data increases to 0.7995. The maximum evaluation 

value of the 19 raw data of the WBAN recording is 0.1152 and the maximum evaluation value of 

the converted data increases to 0.8752. 

Using the goodness of fit method, the evaluation values of the converted data from the 

abductor hallucis muscle and the evaluation values of the raw data of WBAN recording are 

plotted in Figure 3.25. The evaluation value of the converted data is the blue bar and the 

evaluation value of the raw data of WBAN recording is the red bar in the figures. 

 

 

 

Data was from the abductor pollicis brevis muscle at hand. 

Raw data:  

Average value of fit = 0.0069. 

Maximum value of fit = 0.1152. 

 

Converted data:  

Average value of fit = 0.7995. 

Maximum value of fit = 0.8752. 

 



 

94 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.25. Data were from the abductor hallucis muscle. The goodness of fit method was used 

to evaluate the converted results and the raw data of WBAN recording. The evaluation value of 

the converted data is the blue bar and the evaluation value of the raw data of WBAN recording is 

the red bar. 

 
In Figure 3.25, using the goodness of fit method, the average evaluation value of the 19 

raw data of the WBAN recording from the abductor hallucis muscle is -0.0084 and the average 

evaluation value of the converted data increases to 0.8889. The maximum evaluation value of the 

19 raw data of the WBAN recording is 0.1170 and the maximum evaluation value of the 

converted data increases to 0.9256. 

 

G. Comparing the Converted Data with the Raw Data by the Pearson correlation method 

Using the Pearson correlation method, the evaluation values of the converted data from 

the abductor pollicis brevis muscle and the evaluation values of the raw data of WBAN recording 

are plotted in Figure 3.26. The evaluation value of the converted data is the blue bar and the 

evaluation value of the raw data of WBAN recording is the red bar in the figure. 

 

Data was from the abductor hallucis muscle at foot. 

Raw data:  

Average value of fit = -0.0084. 

Maximum value of fit = 0.1170. 

 

Converted data:  

Average value of fit = 0.8889. 

Maximum value of fit = 0.9256. 
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Figure 3.26. Data were from the abductor pollicis brevis muscle. The Pearson correlation method 

was used to evaluate the converted results and the raw data of WBAN recording. The evaluation 

value of the converted data is the blue bar and the evaluation value of the raw data of WBAN 

recording is the red bar. 

 

In Figure 3.26, using the Pearson correlation method, the average correlation coefficient 

of the 19 raw data of the WBAN recording from the abductor pollicis brevis muscle is 0.2828 and 

the average correlation coefficient of the converted data increases to 0.9824. The maximum 

Pearson correlation coefficient of the 19 raw data of the WBAN recording is 0.4700 and the 

maximum Pearson correlation coefficient of the converted data increases to 0.9927. 

Using the Pearson correlation method, the evaluation values of the converted data from 

the abductor hallucis muscle and the evaluation values of the raw data of WBAN recording are 

plotted in Figure 3.27. The evaluation value of the converted data is the blue bar and the 

evaluation value of the raw data of WBAN recording is the red bar in the figure. 

 

 

Data was from the abductor pollicis brevis muscle at hand. 

Raw data:  

Average value of  = 0.2828. 

Maximum value of  = 0.4700. 

 

Converted data:  

Average value of  = 0.9824. 

Maximum value of  = 0.9927. 
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Figure 3.27. Data were from the abductor hallucis muscle. The Pearson correlation method was 

used to evaluate the converted results and the raw data of WBAN recording. The evaluation 

value of the converted data is the blue bar and the evaluation value of the raw data of WBAN 

recording is the red bar. 

 

In Figure 3.27, using the Pearson correlation method, the average correlation coefficient 

of the 19 raw data of WBAN recording from the abductor hallucis muscle is 0.2565 and the 

average correlation coefficient of the converted data increases to 0.9933. The maximum Pearson 

correlation coefficient of the 19 raw data of WBAN recording is 0.4768 and the maximum Pearson 

correlation coefficient of the converted data increases to 0.9973. 

 

H. Comparing the Converted Data with the Raw Data by the RMSE method 

Using the RMSE method, the evaluation values of the converted data from the abductor 

pollicis brevis muscle and the evaluation values of the raw data of WBAN recording are plotted in 

Figure 3.28. The evaluation value of the converted data is the blue bar and the evaluation value 

of the raw data of WBAN recording is the red bar in the figure. 

 

Data was from the abductor hallucis muscle at foot. 

Raw data:  

Average value of  = 0.2565. 

Maximum value of  = 0.4768. 

 

Converted data:  

Average value of  = 0.9933. 

Maximum value of  = 0.9973. 
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Figure 3.28. Data were from the abductor pollicis brevis muscle. The RMSE method was used to 

evaluate the converted data and the raw data of WBAN recording. The evaluation value of the 

converted data is the blue bar and the evaluation value of the raw data of WBAN recording is the 

red bar. 

 

In Figure 3.28, using RMSE method, the average RMSE of the 19 raw data of WBAN 

recording from the abductor pollicis brevis muscle is 0.2096 and the average RMSE of the 

converted data reduces to 0.0433. The maximum RMSE of the 19 raw data of WBAN recording is 

0.3034 and the average RMSE of the converted data reduces to 0.0764. 

Using the RMSE method, the evaluation values of the converted data from the abductor 

hallucis muscle and the evaluation values of the raw data of WBAN recording are plotted in 

Figure 3.29. The evaluation value of the converted data is the blue bar and the evaluation value 

of the raw data of WBAN recording is the red bar in the figure. 

 

 

 

Data was from the abductor pollicis brevis muscle at hand. 

Raw data:  

Average value of RMSE = 0.2096. 

Maximum value of RMSE = 0.3034. 

 

Converted data:  

Average value of RMSE = 0.0433. 

Maximum value of RMSE = 0.0764. 
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Figure 3.29. Data were from the abductor hallucis muscle. The RMSE method was used to 

evaluate the converted results and the raw data of WBAN recording. The evaluation value of the 

converted data is the blue bar and the evaluation value of the raw data of WBAN recording is the 

red bar. 

 

In Figure 3.29, using RMSE method, the average RMSE of the 19 raw data of WBAN 

recording from the abductor hallucis muscle is 0.2148 and the average RMSE of the converted 

data reduces to 0.0456. The maximum RMSE of the 19 raw data of WBAN recording is 0.3002 

and the average RMSE of the converted data reduces to 0.0236. 

After used the transfer function to convert the raw WBAN recordings, the discrepancies 

between the converted WBAN recordings and the IONM recordings are greatly decreased, which 

has been verified by a lot of samples with the three evaluation methods, as shown from Figure 

3.24 to Figure 3.29.  

 

 

 

Data was from the abductor hallucis muscle at foot. 

Raw data:  

Average value of RMSE = 0.2148. 

Maximum value of RMSE = 0.3002. 

 

Converted data:  

Average value of RMSE = 0.0456. 

Maximum value of RMSE = 0.0236. 
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3.7 Conclusions 

 

Using four wireless modules, a new wireless body area network (WBAN) was developed 

for Intraoperative Neuromonitoring (IONM) and has the advantages of small size, 30 g weight, 

low cost, high sample rate, maximum communication range over 10 m, battery life over 10 hours, 

and isolating the weak TcMEP signals from the high-level electromagnetic interference in the 

operating room. Due to the differences in the IONM system and the WBAN system, the WBAN 

recordings are different from the IONM recordings. In order to convert the WBAN recordings to 

the acceptable signals by the doctors, the transfer function was identified and was used to 

convert the WBAN recordings into the equivalent IONM waveforms. The converted results were 

evaluated by three statistical methods, respectively. The comparisons of evaluation values show 

that the Pearson correlation method has a smaller standard deviation than the goodness of fit and 

RMSE methods. Therefore, Pearson correlation method has stabilizing performance and more 

suitable for evaluating the converted WBAN recording. The evaluation results demonstrate that 

the new WBAN may be used for the Intraoperative Neuromonitoring. 
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