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Abstract 

 
BLOCKCHAIN: RESOURCE UTILISATION ANALYSIS WITH A  

GAME THEORY PERSPECTIVE  

 

Vaibhav Soni, Master of Science 

 

The University of Texas at Arlington, 2019 

 

Supervising Professor: Ming Li  

 

 Major blockchain networks are using proof-of-work based consensus protocols 

to establish trust and decentralize resource management with different incentive 

mechanisms for the participants or nodes in the network. We formulate the computation 

resource management in the blockchain consensus process as a three stage Stackelberg 

game, where the profits of the miners, users and distributed app initiators are jointly 

optimized. Optimal decisions and strategies are devised in order to achieve the 

optimization through the Stackelberg equilibrium. Further, we study the interactions 

among these entities through a real experiment and the results are employed to justify 

our proposed model. 
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Chapter 1: Introduction 

In this chapter, we provide an introduction of Blockchain, its various related terminologies, 

and the Stackelberg Game.      

1.1 Introduction of Blockchain 

Blockchain is a distributed ledger technology that acts as a shared database 

where all its copies are synced and verified. The blockchain innovation is still in its early 

stages, but it has the potential to eliminate the need for third parties which act as a level 

of trust in exchange of transactions/data. This is an indicator that this technology could 

impact business models across industries substantially over the coming years [1].  

Blockchain is a continuously growing chain of blocks, each of which contains a 

cryptographic hash of the previous block, a time-stamp, and its conveyed data. The data 

stored in a blockchain are inherently resistant to modification due to the existence of the 

cryptographic hash. If even one block of data is modified, all blocks afterward should be 

regenerated with new hash values. This feature of immutability is fundamental to 

blockchain applications.[3] 

The blockchain was first proposed as a decentralized tamperproof ledger which 

records a set of transactions which are verified through a decentralized consensus 

process among the trustless agents before attaching to the chain. Here, the key 

advantages that blockchain networks can offer are as follows. 

Decentralized network: Due to the distributed network which allows every 

computing unit to utilize its computational power to take part in the blockchain, and that 

each transaction in the blockchain must achieve the agreement among all the nodes 

through the consensus protocol, the monopoly in centralized network can be removed in 

the blockchain. 



 

7 

Tamperproof ledger: The cryptographic techniques used in blockchain ensure 

that any change on the transaction data in blockchain can be observed by all the nodes 

in the network. This means that the transaction recorded in the blockchain cannot be 

altered and tampered, unless most nodes are compromised. 

Transparent transaction: All the transactions in the blockchain can be traced 

back for verification, and these transactions are transparent to all the nodes in the 

blockchain network.  

 
1.1.1 Workflow of Blockchain 

 
In the following, we introduce some basic terms of blockchain and its workflow. 

Transaction: Transaction is the most basic component of blockchain. A 

transaction is proposed by the blockchain user and is composed of the transaction data 

which specifies the value in concern, e.g., the digital tokens in a crypto-currency, the 

addresses of the sender and the receiver, as well as the corresponding transaction fee 

[5]. 

Block: A block is composed of a block header and a certain amount of 

transactions. The block header specifies the hash pointer and merkle tree data structure. 

Hash pointer [5]: The hash pointer of the current block contains the hash value 

associated with the previous block, which also contains the hash pointer to the block 

before that one. Thereby, the hash pointers can be used to build a link of records, i.e., 

blockchain. 

Merkle Tree [5]: A merkle tree or hash tree is a tree in which each leaf node is 

marked by the hash value of the transaction data of a block, and those non-leaf nodes 

are marked by the hash value of the concatenation of its child nodes as shown in Fig 1-1. 

This structure makes it impossible to tamper the data in blockchain privately.  
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All or part of the nodes in the blockchain network participate in the block 

validation by executing some certain functions defined by the consensus protocol. The 

verified block is attached to the blockchain, and every node updates its local replica, i.e., 

the local views of whole ledger-data, of the blockchain. 

 

 

Fig 1-1 : An illustrative example of blockchain data structure where the transactions are included in 
the block and the block is represented by a merkle root. 

 

1.2 Introduction of Game Theory and the Stackelberg Game 

Game theory is the study of mathematical models of strategic interaction 

between rational decision-makers. It has applications in all fields of social science, as 

well as in logic and computer science. Game theory provides a set of mathematical tools 

for analyzing the interaction among rational decision-makers. In a game, each decision-

maker as a player chooses its strategy to maximize its utility, given the other players’ 

strategies. The following briefly presents the game theoretic approaches which have 
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been widely applied to analyze the interactions within the blockchain network. To 

interpret the definition of the game, some important terminologies are given below: [5] 

• Player: A player is a decision-maker in the game. In the blockchain, players can 

be miners, mining pools, or the blockchain users. 

• Utility: A utility or a payoff, an interest, or a revenue reflects the player’s 

expected outcome. 

• Strategy: A player’s strategy is a set of actions, choices or decisions that the 

player can perform to achieve its expected outcome. In general, the player’s 

utility is determined based on not only the player’s own strategy, but also the 

other players’ strategies. 

• Rationality: A player is rational, i.e., self-interested, the player always maximizes 

its own payoff. [5] 

• Nash Equilibrium: In a Nash Equilibrium, each player is doing the best it can, 

given what its competitors are doing. Nash equilibria are usually non-cooperative 

outcomes. Each player chooses the strategy to maximize its profits given its 

opponent’s actions.  At the equilibrium, there is no incentive to change strategies, 

since you cannot improve payoffs.    

 
This paper utilizes 3 stage Stackelberg competition which is discussed in brief. 

The Stackelberg leadership model is a strategic game in economics in which the leader 

firm moves first and then the follower firms moves sequentially. It is named after the 

German economist Heinrich Freiherr von Stackelberg who published Market Structure 

and Equilibrium (Marktform und Gleichgewicht) in 1934 which described the model. [7] 

In game theory terms, the players of this game are a leader and a follower who 

compete on quantity. The Stackelberg leader is sometimes referred to as the Market 
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Leader.[6]. The Stackelberg model can be solved to find the subgame perfect Nash 

equilibrium or equilibria (SPNE), i.e. the strategy profile that serves best each player, 

given the strategies of the other player and that entails every player playing in a Nash 

equilibrium in every subgame. 

In a Stackelberg model, equilibrium is reached when Firm 1 pre-emptively 

expands output and secures larger profits.  Hence the term “first mover advantage”.  In 

fact, Firm 2 is forced to curtail output given that the leader (firm 1) has already produced 

a large output (“As I produce more, you react by producing less”). 

Like an extensive dynamic game, i.e. the game in which players' strategies are 

made following certain predefined order. In the Stackelberg game, the players include 

leaders and followers. The followers decide their strategies after observing the strategies 

of the leaders. Both leaders and followers are typically rational that aim to maximize their 

own utilities/payoffs. [7]  
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Chapter 2: System Model  

In this chapter, the strategies of three types of entities in Blockchain 

decentralized application systems are defined. Their interaction is formulated as a three 

stage Stackelberg game. 

 

Fig 2-1. System Model 

 

2.1 Blockchain dApp ecosystem  

dApps are decentralized applications that consist of a back-end running on a 

P2P network of nodes/computers rather than a single server, and a user interface 

created by front-end code that calls the back-end.[8]-[10]. 

dApps are usually not owned by a single entity and cannot be shut down and 

thus have no downtime. Traditional Distributed applications like BitTorrent [11], Popcorn 

Time [12], Bit Message [13] run on P2P networks. They store and stream decentralized 
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data with Distributed Hash Tables (DHTs) and force the nodes to trust each other on 

validity of data [10].  

With the emergence of Blockchain 3.0, many dApps are built using a specific 

P2P Blockchain Network [8]-[10]. Blockchain dApps provides data validity through 

distributed consensus thus solving a major security issue. Some popular dApp platforms 

are Ethereum and EOS with 1909 active dApps, with Endless Dice (popular dApp) 

maintaining around 25884 active users every day.[14] 

There are mainly 4 steps in Blockchain dApp development process [8]. Firstly, 

the Blockchain dApp initiator publishes a whitepaper describing the dApp and its 

features. This whitepaper can outline the idea for dApp development but also entail a 

working prototype. The second step is token sale, which means initial tokens offering 

(ICO) is set up. The third step is to spread the ownership stake of the dApp and finally 

funds are invested into building the dApp and deploying it 

dApp initiator makes money through two sources: initial tokens sale and service 

fees from each transaction. To attract more users, majority of Blockchain dApp initiators 

only make money from service fees. They charge a small percentage (3.75%) of each 

transaction i.e., CryptoKitties, a dApp popular in Dec 2017 which congested the 

Ethereum network in that year. [15] 

The second key role of the Blockchain dApp ecosystem is users. User adoption 

decides which Blockchain dApps succeed and which fail. Blockchain dApps with the top 

five largest size of active daily users have one thing in common: all facilitate trades of 

crypto assets in one way or another, though they have a range of business models [16]. 

This means users value the most Blockchain dApps that allow direct transactions. When 

the block containing the transaction is generated, this transaction is confirmed, and thus 

the ownership of crypto-assets is transferred. 
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To understand the role of miners in the Blockchain dApp ecosystem, consensus 

protocols are discussed in brief. Recall that Blockchain is famous for its decentralized 

consensus protocol and Blockchain dApps take advantages of it and solve the major 

security problem of traditional dApps.  

One of the most common consensus mechanisms is proof-of-work (PoW) which 

is commonly used by Bitcoin. In PoW, consensus is based on choosing the block with the 

highest total difficulty. Miners generate blocks which are checked for validity by the 

others[4]. PoW leads to a trustworthy consensus, since mining a block is costly and 

anyone on the chain can verify it. However, the biggest cons of PoW is its high demand 

of energy and computation resource, since miners need to solve a difficult mathematical 

problem based on a cryptographic hash algorithm.  

To solve this, a less popular consensus protocol proof-of-stake (PoS) is 

proposed and a special case delegate proof-of-stake (DPoS) is used in EOS No matter 

which consensus protocol is adopted by the blockchain network, miners play a vital role 

of generating new blocks and tokens, and also validating the newly published block. 

Monetary incentives are provided to miners to encourage their participation 

because their role in the system is important. There are two sources for miners’ income in 

the PoW based Blockchain dApp: the block reward and transaction fees, while miners in 

the PoS based Blockchain dApp can only make money from transaction fees [18].  

Once the miner generates a block, specifically, a new block is mined by him, and 

other miners all accept and add this block to the Blockchain, this miner will get the 

revenue. 
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Chapter 3: Participants’ Decisions and Strategies 

In this section, the decisions of the participants in a blockchain ecosystem are discussed 

from a game theory perspective. 

3.1 Participants’ Decisions 
 
3.1.1 Blockchain dApp initiator’s pricing decision  

The Blockchain dApp initiator is the developer, who offers the application for 

users to make transactions. To compensate his development cost, the Blockchain dApp 

initiator in our paper is assumed to charge service fees analogous to real life Blockchain 

dApp initiators.  

Service fee ratio  𝛿 : Once a transaction is confirmed, the Blockchain dApp 

initiator charges 𝛿 of the transaction fee from the transaction initiator, where 0 < 𝛿 ≤ 1. 

This rule follows CryptoKitties [15] and in CryptoKitties, 𝛿 = 3.75%, which is fixed. In this 

paper, 𝛿 is the dynamic strategy of the Blockchain dApp initiator, which is same for all 

users and unchanged for a fixed period of time, i.e., the block interval time. 

 

3.1.2 User’s decision 

There are multiple users who seek to confirm their initialized transaction. A 

transaction is a message that transfers ownerships of crypto assets. In our paper, Each 

user initializes and broadcasts one transaction1 by the user interface of Blockchain 

dApps. The transaction set is denoted as  𝑢 = {𝑢1, … , 𝑢𝑖 , … , 𝑢𝑀}. When building up a 

transaction, users have to set the transaction fee, which is used to reward miners for 

maintaining the Blockchain network.  
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Transaction fee density 𝑓𝑖 : The transaction fee is the product of two 

parameters: transaction size 𝑙𝑖  and transaction fee density 𝑓𝑖 :  [19],[20]. The transaction 

size 𝑙𝑖  is the number of bytes required to encode a transaction whose value can be 

evaluated by tools or APIs [19],[20] The transaction fee density 𝑓𝑖  is the transaction fee of 

per unit virtual size. In the real world, user specifies whatever transaction fee density 𝑓𝑖  

he desires, which can be zero, to control the transaction fee. Assume that the user who 

initializes the transaction 𝑢𝑖  waits an expected duration of time denoted as 𝑡𝑖 before his 

initialized transaction is confirmed and his value per unit of time is 𝑣𝑖 . Therefore, his 

payoff is defined as: 

 

∏  

𝑢

𝑖

= 𝑝𝑖
𝑢(𝑅𝑖

𝑢 − 𝑓𝑖𝑙𝑖 − δ𝑓𝑖𝑙𝑖 − 𝑡𝑖𝑣𝑖),                           (1) 

 

where 𝑅𝑖
𝑢 is the revenue of this confirmed transaction and pi

u
 is the probability 

that 𝑢𝑖 ’s transaction is confirmed. 

 

 

 

 

 

 

 

 

1 The results of this thesis can be easily extended to the case of multiple transactions initialized by one user. 
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3.1.3 Miners’ decision 

Following Bitcoin network [4] and Ethereum [17], we consider PoW, the most 

common consensus protocol in this paper. There are multiple miners given as: 

 𝑇 = {𝑡1, … , 𝑡𝑗 , … , 𝑡𝑁}. Each miner has a local transaction pool [21] which is the name 

given to the set of valid transactions that the miner is aware of, but they have not yet 

been included in a block. The transaction pools are updated after a new block is 

generated [21]. For simplicity, we assume that there is no propagation delay for newly 

initialized transactions and all miners receive new transactions at the same time. 

Therefore, transaction pools for miners are same in every update. We sort the transaction 

pool from greatest transaction fee density 𝑓𝑖 to least and denote this sorted transaction 

set as 𝑈𝑗. We have 𝑈𝑗 = 𝑈((∀𝑗 ∈ 𝑇)). 

By attempting to generate a block, the miner 𝑡𝑗  expects to get revenue 𝑅𝑗
𝑡  at 

hashing cost 𝐶𝑗 . The miner 𝑡𝑗
′
s expected hashing cost is equal to the product of his 

hardware’s amortized price per hash η𝑗 , his hash rate  ℎ𝑗  and the length of time he 

expects to work on the block (typically the block time 𝑇). This can be expressed as the 

following equation: 𝐶𝑗 = η𝑗ℎ𝑗𝑇. 

The miner’s expected revenue is equal to the amount he would earn if he wins 

the block multiplied by his probability of generating a block. The amount he would earn is 

the sum of the block reward 𝑅, and the transaction fees 𝐹 = ∑ 𝑓𝑖
|𝑄𝑗|
𝑖=1 𝑙𝑖 given on a block 

that has transaction set 𝑄 . 
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The probability that miner 𝑡𝑗 receives the block reward and transaction fees for 

generating a block to the blockchain network is denoted as 𝑝𝑗
𝑡. We note that 𝑝𝑗

𝑡 rests 

with successful mining and instant propagation. Miner 𝑡𝑗 ’s probability of successful 

mining is equal to ratio of his hash rate (ℎ𝑗 ) to the total hash rate of the Blockchain 

network (∑ ℎ𝑗𝑗∈𝒯 )  [21]. 

Moreover, 𝑝𝑗
𝑡
 is diminished if miner 𝑡𝑗  chooses not to instantly propagate, i.e., 

publish a block that propagates slowly to other miners. Even though miner 𝑡𝑗 may find the 

first valid block, if his solution is received after most miners are working on another, then 

his block will likely be discarded. This effect is called orphaning. It makes including low-

fee transactions unappealing if the added fee revenue is not enough to offset the 

increased risk. Considering this effect, we have 𝑝𝑗
𝑡 = (1 − 𝑝𝑜𝑟𝑝ℎ𝑎𝑛)ℎ𝑗  

/(∑ ℎ𝑗𝑗∈𝒯 ). It 

is intuitive that the chance of orphaning should be low if the propagation time is less and 

should be high if the propagation time is more. Using the fact that the block generation 

follows a Poisson distribution, [21] we can approximate the orphaning probability as 

𝑝𝑜𝑟𝑝ℎ𝑎𝑛 = 1 − 𝑒−
τ

𝑇  where 𝜏  is the block propagation time. Following [22] – [25], the 

propagation time a miner chooses to risk is also affected by the block size. If a block 

contains a transaction set 𝑄 , its propagation time is denoted as τ𝑗 =
∑ 𝑙𝑖

|𝑄𝑗|

𝑖=1

γ𝑐
 where 𝛾 

is network scaled parameter, and 𝑐 is the average effective channel capacity. Therefore, 

the miner 𝑡𝑗s payoff is defined as: 
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Πj
t = Rj

t − Cj = (ℛ + Fj) pj
t − Cj 

= (ℛ + 𝐹𝑗)
ℎ𝑗

∑ ℎ𝑗𝑗∈𝒯
𝑒−

τ 
𝑇 − η𝑗ℎ𝑗𝑇 

= (ℛ + ∑ 𝑓𝑖𝑙𝑖
|𝑄𝑗|

𝑖=1
)

ℎ𝑗

∑ ℎ𝑗𝑗∈𝒯
𝑒

−
∑ 𝑙𝑖

|𝑄𝑗|

𝑖=1
𝑇γ𝑐 − η𝑗ℎ𝑗𝑇                                 (2) 

Hash rate ℎ𝑗 : Miner 𝑡𝑗 sets hash rate ℎ𝑗  to influence its probability of generating 

a block  𝑝𝑗
, and thus effects its payoff  ∏  𝑡

𝑗  according to (2). 

Three Stage Stackelberg Game 
             

We formulate the interactions among the Block dApp initiator, users and miners 

by a three-stage Stackelberg game, as illustrated in Fig 3-1. We analyze the three-stage 

game by backward induction.  

 

Figure 3-1 Three Stage Stackelberg Game 



 

19 

 

Definition 1 : Stackelberg Equilibrium 

A strategy profile  is a Stackelberg equilibrium iff 

, 

where  denotes total payoff of the Blockchain dApp initiator, users and 

miners.   and   are the strategy of the Blockchain dApp initiator;   and  are the 

strategy sets of all users;  and  are the strategy sets of all miners. 

 

3.2 Participants’ Three Stage Stackelberg Game Strategies 
 
 

3.2.1 Stage III : Miner’s Strategies 
 

In this section, each miner’s hash rate ℎ𝑗 in stage III is studied and transaction 

set 𝑄𝑗  given the Blockchain dApp initiator’s service fee ratio 𝛿  in stage I, and user’s 

pricing decision {𝑓𝑖|𝑢𝑖 ∈ 𝒰}  in stage II. Miners compete to maximize its utility by setting 

its hash rate, which form a noncooperative game.  

 

Definition 2. A noncooperative game 𝒢 is defined as a triple 𝒢 = {𝒯, {𝐻𝑗}
𝑗∈𝒯

, {𝛱𝑗
𝑡}

𝑗∈𝒯
}, 

with ∏  𝑡
𝑗 given by (2) and 𝐻𝑗 = {ℎ𝑗|0 ≤ ℎ𝑗 ≤ ℎ𝑗}.  

In the non-cooperative game 𝒢  , the best response function 𝑟𝑗(ℎ−𝑗)  of the 

miner 𝑡𝑗 is the best strategy of the miner 𝑡𝑗 given the other miners’ strategies 𝒉−𝒋. By 
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definition, the best response function 𝑟𝑗(𝒉−𝒋)  is the unique optimal solution for the 

following optimization problem (P1)  : 

P1  :  max
ℎ𝑗

Π𝑗
𝑡 (ℎ𝑗 , 𝒉−𝒋 ) 

   s.t.     0 ≤ ℎ𝑗 ≤ ℎ𝑗 

The constraint means that the decided hash rate of a miner cannot exceed its maximum 

hash rate. 

 

Definition 3. A Nash equilibrium of the noncooperative game 𝒢   among miners is a 

profile of strategies ℎ∗ = (ℎ1
∗ , ⋯ , ℎ𝑁

∗ ) with the property that 

ℎ𝑗
∗ = 𝑟𝑗(ℎ−𝑗

∗ ), ∀𝑗 ∈ 𝒯 

where ℎ−𝑗
∗ = ℎ∗\ℎ𝑗

∗. 

Next, we will probe the existence and uniqueness of NE, and then calculate the unique 

NE point of the game  𝒢. 

 

A. Existence of Nash Equilibrium 

Theorem 1. The game 𝒢 = {𝒯, {𝐻𝑗}
𝑗∈𝒯

, {Π𝑗
𝑡}

𝑗∈𝒯
} has at least one NE.  

Proof: The following result is obtained from [25].  

Proposition 1: A Nash equilibrium exists in game 𝒢 = {𝒯, {𝐻𝑗}
𝑗∈𝒯

, {Π𝑗
𝑡}

𝑗∈𝒯
},  if ∀𝑗 ∈ 𝒯: 

1) 𝐻𝑗 is a nonempty, convex, and compact subset of some Euclidean space  𝑅𝑁;  

2) Π𝑗
𝑡(ℎ) is continuous in ℎ and concave in  ℎ𝑗. 
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Recall that strategy space is defined to be 𝐻𝑗 = {ℎ𝑗|0 ≤ ℎ𝑗 ≤ ℎ𝑗} so it is a nonempty, 

convex and compact subset of the Euclidean space 𝑅𝑁. 

From (2) ∏  𝑡
𝑗  is obviously continuous in ℎ. We take the second order derivative with 

respect to ℎ𝑗  to prove its concavity. 

∂Π𝑗
𝑡

∂ℎ𝑗
=

(ℛ+𝐹)𝑒
−

τ
𝑇 ∑ ℎ

𝑗′𝑗′≠𝑗,𝑗′∈𝒯

(∑ ℎ𝑗𝑗∈𝒯 )
2 − η𝑗𝑇 ,   (3) 

∂2Π𝑗
𝑡

∂2ℎ𝑗
=

−2(ℛ+𝐹)𝑒
−

τ
𝑇 ∑ ℎ

𝑗′𝑗,𝑗′∈𝒯

(∑ ℎ𝑗𝑗∈𝒯 )
3 < 0   ,   (4) 

 

The second order derivative of  ∏  𝑡
𝑗  with respect to ℎ𝑗  is always negative, therefore ∏  𝑡

𝑗  is 

concave in ℎ𝑗 . From above discussion, the game 𝒢  has at least a NE. 

 

B. Uniqueness of Nash Equilibrium 

Theorem 2. The game 𝒢 has a unique Nash equilibrium. 

 Proof: By Theorem 1, we know that there exists at least a NE in 𝒢. Since 𝑟𝑗(ℎ−𝑗
∗ ) =

𝑟𝑗(ℎ∗)and letting 𝑟(ℎ∗) = (𝑟1(ℎ∗), ⋯ , 𝑟𝑁(ℎ∗)), by definition 3, the NE must be a fixed point 

ℎ∗ that satisfies ℎ∗ = 𝑟(ℎ∗)The key aspect of the uniqueness proof is to realize that the 

best response correspondence 𝑟(ℎ) is a standard function [26]. A function 𝑟(ℎ) is said to 

be standard if it satisfies the following:  

1) Positivity 𝑟(ℎ) ≫ 0, where ≫ denotes element-wise larger;  

2) Monotonicity: if ℎ ⪰ ℎ′then 𝑟(ℎ) ⪰ 𝑟(ℎ′)where ⪰ is element-wise no smaller;  

3) Scalability: ∀μ > 1, μ𝑟(ℎ) ⪰ 𝑟(μℎ) 
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It is shown in [26] that the fixed point ℎ∗satisfying ℎ∗ = 𝑟(ℎ∗) is unique for a standard 

function. Therefore, the Nash equilibrium of 𝒢 is unique.  

Next, we will prove the best response correspondence 𝒓(𝒉) is a standard function. Notice 

that Π𝑗
𝑡(ℎ𝑗 , ℎ−𝑗) is concave with ℎ𝑗  from (4). Solving problem P1 , we have different 

solution under various cases as shown below 

 

   

where conditions for above three cases are respectively as 

Case 1:   η𝑗𝑇 ∑ ℎ𝑗′𝑗′≠𝑗 ≥ (ℛ + 𝐹 )𝑒−
τ

𝑇 ; 

Case 2:    η𝑗𝑇 ∑ ℎ𝑗′𝑗′≠𝑗 < (ℛ + 𝐹 )𝑒−
τ

𝑇    and  

 √
(ℛ+𝐹 )𝑒

−
τ
𝑇

 
    ∑ ℎ𝑗′𝑗′≠𝑗

η𝑗𝑇
 − ∑ ℎ𝑗′𝑗′≠𝑗 < ℎ𝑗; 

Case 3: √
(ℛ+F )e

−
τ
T

 
    ∑ hj′j′≠j

ηjT
  − ∑ ℎ𝑗′𝑗′≠𝑗 ≥ ℎ𝑗. 

 

Miners’ optimal hash rate in Case 1 is 0, which means those miners do not participate the 

game 𝒢 . Therefore, Case 1 does not exist. Since miners in the real world Blockchain 
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dApp are generally mining pools whose value of   ℎ𝑗  is extremely large [21], i.e. 

√(ℛ + 𝐹)𝑒−
τ

𝑇 ∑ ℎ𝑗′/𝑗′≠𝑗 η𝑗𝑇 − ∑ ℎ𝑗′𝑗′≠𝑗 ≪ ℎ𝑗 The condition of Case 3 won’t be satisfied. 

 Conditions for Case 2 are always satisfied, then the best response 

correspondence is calculated as, 

 

We first prove the positivity of 𝑟𝑗(ℎ) . Given the constraint η𝑗𝑇 ∑ ℎ𝑗′𝑗′≠𝑗 <

(ℛ + 𝐹)𝑒−
τ

𝑇 The best response function is always positive, 

 

As for monotonicity,   𝑟𝑗(ℎ)  is a quadratic function of the term √∑ ℎ𝑗′𝑗′≠𝑗  

Therefore when ∑ ℎ𝑗′𝑗′≠𝑗 ≤
1

4

(ℛ+𝐹)𝑒
−

τ
𝑇

η𝑗𝑇
   𝑟(ℎ)   is monotonically increasing function. As 

for scalability, we have the following: 
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The last inequality holds since ∀μ > 1, μ − √μ > 0.  

In conclusion, the best response correspondence 𝑟(ℎ)  which is positive, 

monotonic and scalable, is a standard function. Therefore, there exist a unique NE point 

for the game 𝒢 = {𝒯, {ℎ𝑗}
𝑗∈𝒯

, {Π𝑗
𝑡}

𝑗∈𝒯
}. 

 

C. The Nash Equilibrium point of the game 𝒢. 

Theorem 3: The unique equilibrium for the noncooperative game 𝒢  is given by, ∀𝑗 ∈ 𝒯 

 

Proof: Firstly, get the equations set (5) for all players in the miner set 𝑇. Notice that the 

number of variables{ℎ𝑗
∗}𝑗 ∈ 𝒯 and equations are same, i.e., 𝑁. Therefore, we can get a 

unique solution for {ℎ𝑗
∗}𝑗 ∈ 𝒯. The result is derived by mathematical induction [21] and is 

given as (6).  
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Substituting (6) into constraints of Case 2 and the constraint for monotonicity 

∑ ℎ𝑗′𝑗′≠𝑗 ≤
1

4

(ℛ+𝐹)𝑒
−

τ
𝑇

η𝑗𝑇
 We can rewrite and combine as (7) and (8). 

 

 

3.2.2 Stage II : User’s Strategies 

In this section, we study users’ pricing decision {𝑓𝑖|𝑢𝑖 ∈ 𝒰} in Stage II, given the 

Blockchain dApp initiator’s miner set 𝑇 service fee ratio δ in Stage I, and considering the 

prediction of miners’ hash rate ℎ𝑗  in Stage III. 

 

A. Probability 𝑝𝑖
𝑢

  that the transaction 𝑢𝑖  is confirmed 

The probability that the transaction 𝑢𝑖  is confirmed when  𝑝𝑖
𝑢

 affects the payoff 

∏  𝑢
𝑖 of the user who initializes the transaction 𝑢𝑖 . When the event of the transaction 𝑢𝑖  is 

confirmed it can be separated into two independent events: 𝑢𝑖  is included into a block to 

be mined; this block is generated (the nonce of this block is found and this block is not 

orphan in propagation) and the probability of above two independent events are denoted 

as 𝑝𝑗
′
 and 𝑝𝑗

𝑡
 respectively.  
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Fig 3-2 Scenarios that the transaction 𝑢𝑖 is confirmed 

 

Fig 3-2 depicts the process that how the transaction 𝑢𝑖  is confirmed. The 

transaction 𝑢𝑖  is assumed in all miners’ transaction pools. Assume the transaction 𝑢𝑖 is 

in miner 𝑡1
′ 𝑠 block for the first time. If 𝑡1

′ 𝑠 block is generated, 𝑢𝑖  is confirmed (the left 

branch of the first node); otherwise, another miner denoted as 𝑡𝑗′(𝑗′ ≠ 1)  mines 

successfully and propagates this block to most miners at the earliest, and thus 𝑡1
′ 𝑠 block 

is not generated successfully (the right branch of the first node).  

At this time, since a new block is generated (𝑡𝑗′
′ 𝑠 block), all miners’ transaction 

pools update. Here comes to two scenarios: 𝑢𝑖  in 𝑡𝑗′
′ 𝑠 block and 𝑢𝑖  is not in 𝑡𝑗′

′ 𝑠 block. In 

the first scenario, 𝑢𝑖 is successfully confirmed; in the second scenario, ui will appear in all 

miners’ transaction pools again. In this case, after some time, 𝑢𝑖  will eventually be 

included in a miner’s block for the second time, assume 𝑡2’s block. Remaining steps are 

same as above. Only when 𝑢𝑖  is confirmed, it won’t appear in miners’ transaction pool 
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any more, and thus the repeated process terminates. From above discussion, we 

conclude that ∀𝑖 ∈ 𝒰. 

𝑝𝑖
𝑢 = 1 

denoting that 𝑢𝑖 will be confirmed eventually, but it must wait a long time. 

 

B.  Expected Waiting time 

The expected waiting time 𝑡𝑖  is determined by the transaction fee density 

{𝑓𝑖|∀𝑢𝑖 ∈ 𝒰} and the number of transactions in a block |𝑄|.   According to strategies of 

miners, the transaction with higher 𝑓𝑖  would be placed in the queue ahead of those with 

small amounts. 

To model the expected waiting time, we assume that transactions arrive in the 

transaction pool according to a Poisson process at a constant mean rate of 𝑚 users per 

unit of time and the generation of new blocks follows a Poisson process with a constant 

mean rate 1/𝑇 per unit of time, where 𝑇 is also known as the average block time. Let 𝐵 

denote an equilibrium cumulative distribution function of transaction fee densities for uses 

and 𝐵(𝑥) is the proportion of transactions whose transaction fee density is no larger than 

x. 𝐵 is continuous and strictly increasing in its domain. And 𝐵(∞) = 1. 

 

Proposition 2. (Variant of [27]) The expected waiting time 𝑡(𝑥) of a transaction with the 

transaction fee density 𝑥 is given by 

𝑡(𝑥) =
𝑇

[1−𝑚𝑇′+𝑚𝑇′𝐵(𝑥)]2                                               (9)                       
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where 𝑇′ =
𝑇

|𝑄|
 . 

Proof: A transaction paying the transaction fee density 𝑥  must wait for three 

things before leaving the system: 

i) Expected time for generating the block containing this transaction is 𝑇 

because of the assumption of the Poisson process of the block generation. 

ii) The transaction must wait until miners confirm all those transactions that 

arrive before it and are of the transaction fee density at least as big as its. Owing to 

Little’s [28] result, which states that the expected number of units in a system is equal to 

the product of arrival rate and the expected time they spend in the system, the expected 

number of transactions whose transaction fee density lies in the region (𝑦, 𝑦 + 𝑑𝑦)  is 

𝑚[𝑑𝐵(𝑦)/𝑑𝑦]𝑡(𝑦)𝑑𝑦 . The total number of those transactions whose transaction fee 

density is at least as big as 𝑥 is therefore ∫ 𝑚[𝑑𝐵(𝑦)/𝑑𝑦]𝑡(𝑦)𝑑𝑦
∞

𝑥
 . Since each block 

(|𝑄𝑗| transactions) costs 𝑇 units of time on average, each transaction costs the average 

𝑇′ =
𝑇

|𝑄|
 . Therefore , his expected waiting time for them is  

∫ 𝑚
∞

𝑥

𝑇′ [
𝑑𝐵(𝑦)

𝑑𝑦
] 𝑡(𝑦)𝑑𝑦 

iii) The transaction must wait until miners confirm those transaction that 

come after it while are of the transaction fee density larger than its. The expected 

number of such transactions coming per unit of time is 𝑚 ∫ 𝑑
∞

𝑥
𝐵(𝑦). Hence during the 

time 𝑡(𝑥) it expects to spend in the system, the expected number of arrivals of these 

transactions is 𝑡(𝑥)𝑚 ∫ 𝑑
𝑓

𝑥
𝐵(𝑦)  Again, on the average, each of these transactions 

causes it to wait 𝑇′units of time. It follows that its expected waiting time for them is 
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𝑡(𝑥) ∫ 𝑚
∞

𝑥

𝑇′𝑑𝐵(𝑦) 

Adding up above three types of waiting time, we get  

𝑡(𝑥) = 𝑇 + ∫ 𝑚
∞

𝑥

𝑇′𝑡(𝑦)𝑑𝐵(𝑦) + 𝑡(𝑥) ∫ 𝑚
∞

𝑥

𝑇′𝑑𝐵(𝑦) 

 

After mathematical transformation, above equation is  

      𝑡(𝑥) =
𝑇+∫ 𝑚

∞
𝑥

𝑇′𝑡(𝑦)𝑑𝐵(𝑦)

1−∫ 𝑚
∞

𝑥
𝑇′𝑑𝐵(𝑦)

                 (10)                               

 

Replacing 𝑡(𝑥) and 𝑡(𝑦) in equation (10) with the expression given in equation 

(9) and 𝐵(∞) = 1, we see that above equality holds. Thus, equation (9) is indeed the 

solution to equation (10). This completes the proof. 

 

Proposition 3. The Blockchain dApp is considered stable only if 𝑚 ≤ 1/𝑇′ . 

Proof: :We prove the stability by induction that the number of transactions in the 

Blockchain dApp ecosystem at any time has a upper bound if 𝑚 ≤ 1/𝑇′.  

Transactions arrive according to a Poisson process at a constant mean rate of 𝑚 

transactions per unit of time. And each transaction costs the average time 𝑇′. Therefore, 

the number of transactions in the Blockchain dApp system at the time 𝑡 is denoted as 

|𝒰(𝑡)| = |𝒰(0)| + 𝑡𝑚 − 𝑡/𝑇′, where |𝒰(0)| is the transaction size when 𝑡 = 0 In order to 

keep this system stable, i.e., |𝒰(𝑡)| ≤ |𝒰(0)|, 𝑚 ≤ 1/𝑇′  If, on average, transaction 
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confirmation happen no slower than arrivals; otherwise, the transaction pool will grow 

indefinitely larger, which is not practical in real-world Blockchain dApps. 

 

C. The transaction fee density function and the Nash Equilibrium 

In this section, we aim to examine how the transaction fee density 𝑓𝑖  should be 

related to the value per unit of time 𝑣 (𝑣  is a variable) so that the Blockchain dApp 

system has optimal properties. In other words, we want to know the necessary 

restrictions on the transaction fee density function 𝑓𝑖(𝑣) such that the user initializing the 

transaction 𝑢𝑖  with the value per unit of time 𝜐𝑖 can achieve the optimal payoff by setting 

the transaction fee density as 𝑓𝑖(𝑣𝑖). 

In this paper, we assume the number of users is given. Nothing has been said 

about the optimal number of transactions to join the Blockchain dApp system. For 

example, if no transaction the system, the cost for time and transaction fees is zero. 

Since  𝑝𝑖
𝑢 = 1 and (9), each user with a given value per unit time 𝑣𝑖 solves the 

following problem P2 to maximize the payoff ∏ .𝑢
𝑖  

P2: max
𝑓𝑖

     𝑅𝑖
𝑢 − 𝑓𝑖(𝑙𝑖 + δ𝑙𝑖) −

𝑇𝑣𝑖

[1 − 𝑚𝑇′ + 𝑚𝑇′𝐵(𝑓𝑖)]2
 

The first order necessary condition is  

 

−(𝑙𝑖 + δ𝑙𝑖) +
2𝑚𝑇′𝑇𝑣𝐵′(𝑓𝑖)

[1−𝑚𝑇′+𝑚𝑇′𝐵(𝑓𝑖)]3 = 0                         (11) 
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by replacing the parameter 𝑣𝑖  with the variable 𝑣 , indicating that once 𝑃2  is 

solved, the transaction fee density 𝑓𝑖  is dependent on the variable 𝑣. 

Above equation defines a relation between 𝑓𝑖  and 𝑣 . Recall that 𝐵  is the 

equilibrium cumulative distribution function of transaction fee densities, which is unknown 

before all transaction fees reach the Nash Equilibrium. Moreover, users have self- 

assigned values {𝑣𝑖, ∀𝑖 ∈ 𝒰} before participating dApps, and that the population of users 

as a whole produces a probability distribution 𝐴. 𝐴(𝑥) is the proportion of users whose 

value of time is no larger than 𝑥 and the derivative of 𝐴 is continuous. We replace 𝐵′(𝑓𝑖) 

and 𝐵(𝑓𝑖) with equations of 𝐴′(𝑣)
 and 𝐴(𝑣), by guaranteeing the order 

of 𝑓𝑖  is same as the order of 𝑣, i.e., 

                                𝐵(𝑓𝑖(𝑣)) = 𝐴(𝑣).                                (12)              

It follows immediately that  

                                𝐵′(𝑓𝑖)𝑓𝑖
′(𝑣) = 𝐴′(𝑣)                            (13)      

Then, we substitute equations (12) and (13) into (11). We have  

𝑓𝑖
′(𝑣) =

2𝑚𝑇′𝑇𝑣𝐴′(𝑣)

(𝑙𝑖+δ𝑙𝑖)[1−𝑚𝑇′+𝑚𝑇′𝐴(𝑣)]3          (14)  

Therefore, the transaction fee density function is  

𝑓𝑖(𝑣) = ∫
2𝑚𝑇′𝑇𝑣𝐴′(𝑣)𝑑𝑣

(𝑙𝑖+δ𝑙𝑖)[1−𝑚𝑇′+𝑚𝑇′𝐴(𝑣)]3

𝑣

0
                                    (15)   

The remaining part is to get the maximum value per unit of time 𝑣𝑖 With 𝑣𝑖we 

have  Π𝑖
𝑢 = 0, therefore, 
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    (16) 

We can get 𝑓𝑖(𝑣𝑖) from (15) by substituting 𝑣 with 𝑣𝑖. Combining this function and 

(16), we can get the expression of 𝑣𝑖 

Here is an example of how to get 𝑣𝑖 . Assume that 𝐴(𝑥) = 𝑘𝑥, ∀𝑥 ∈ [0, max{𝑣𝑖}𝑖] 

where 𝐴(max{𝑣𝑖}𝑖) = 1, i.e.,𝑘 = 1/ max{𝑣𝑖}𝑖. Replacing 𝐴(𝑥) into (15) and solving it, we 

can have  

 

where K is the constant. It follows immediately that 

 

Combined the above equation with (16), we have 

 

which decreases as δ increases. 
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Theorem 4. Given on the revenue 𝑅𝑖
𝑢

, the transaction size 𝑙𝑖 and the value per unit of 

time 𝑣𝑖 , the maximal payoff is 𝑚𝑎𝑥{0, 𝛱𝑖
𝑢(𝑓𝑖(𝑣𝑖))}. If 𝑣𝑖 ≤ 𝑣𝑖, the best strategy for 

this user is to follow(15) specifically, 𝑓𝑖
∗ = 𝑓𝑖(𝑣𝑖) where 𝑓𝑖(⋅) is from(15); otherwise, he quit 

the transaction 𝑢𝑖  since its payoff is negative.. If all users follow the above rule, then 

these strategies form a Nash equilibrium. 

Proof: First, it is necessary to show that (15) is the solution of the maximization problem 

𝑃4. The second order derivative of the objective function is  

∂2Π𝑖
𝑢

∂2𝑓𝑖
= 2𝑚𝑇′𝑇𝑣

Γ(𝑓𝑖)𝐵′′(𝑓𝑖) − 3𝑚𝑇′[𝐵′(𝑓𝑖)]2

[Γ(𝑓𝑖)]4
                                         (18) 

where Γ(𝑓𝑖) = 1 − 𝑚𝑇′ + 𝑚𝑇′𝐵(𝑓𝑖). Using (11) to get expressions for 𝐵′(𝑓𝑖) 

as following. 

𝐵′(𝑓𝑖) =
(𝑙𝑖 + δ𝑙𝑖)[Γ(𝑓𝑖)]3

2𝑚𝑇′𝑇𝑣
 

 

And we take the derivative with respect to 𝑣  of the above equation. 

After mathematical transformations, we have 

𝐵′′(𝑓𝑖) = (
𝑙𝑖 + δ𝑙𝑖

2𝑚𝑇′𝑇
)

3𝑚𝑇′𝑣[Γ(𝑓𝑖)]2𝐵′(𝑓𝑖)𝑓𝑖
′(𝑣) − [Γ(𝑓𝑖)]3

𝑓𝑖
′(𝑣)𝑣2

 

Substituting above two equations into (18), we can get the second order 

derivative with respect to 𝑓𝑖 where its corresponding first order derivative is 0: 

 
∂2Π𝑖

𝑢

∂2𝑓𝑖
= −

2𝑚𝑇′𝑇𝑣𝐵′(𝑓𝑖)

𝑓𝑖
′(𝑣)[Γ(𝑓𝑖)]3 ≤ 0                         (19) 
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Since 𝐵 is the cumulative distribution function, 𝐵′(𝑓𝑖) ≥ 0. Moreover, due to the 

proposition 3 that 𝑚𝑇′ ≤ 1, we have 𝑓𝑖(𝑣 ) ≥ 0 and Γ(𝑓𝑖) ≥ 0. Therefore, (19) holds. 

From above discussions, with the transaction fee density 𝑓𝑖(𝑣𝑖) derived from (15), the 

user achieves the maximal value of his payoff. 

For those users that he can achieve non-negative payoff from transactions, i.e., 

𝑣𝑖 ≤ 𝑣𝑖 if they follow (15), the payoff must be optimal because it has already been shown 

in the first paragraph. Therefore, they will not shift from (15). For users whose optimal 

payoff is negative i.e., 𝑣𝑖 > 𝑣𝑖, their best strategy is to quit, and they will not shift from 

this strategy. Therefore, a Nash equilibrium is reached. 

 

3.2.3 Stage I : Blockchain dApp Initiator’s Strategy 

 
In this section, we study the Blockchain dApp initiator’s pricing policy δ in Stage I, 

considering the prediction of users’ pricing in Stage II, and miners’ strategies in Stage III.  

The Blockchain dApp initiator obtain δ   times of the total transaction fee from 

users and its payoff during the block time  𝑇 is 

ΠI = δ ∑ (pj
t ∑(fili − Cli)

|Q|

i=0

)

N

j=0

 

where 𝐶  is the platform’s cost of per transaction. The best strategy of the 

Blockchain dApp δ∗ can be obtained by solving the following problem 𝑃3 

 

P3:  max
δ

ΠI 
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According to users’ optimal pricing rule (15) and miner’s optimal strategy of hash 

rate (6), 𝛿  can affect 𝑓𝑖, then influence 𝑝𝑗
𝑡, and thus determine ∏ .𝐼   

The following part discusses the effect of 𝛿  on ∏ .𝐼  in detail. We have 

 
∂𝑝𝑗

𝑡

∂δ
=

∂𝑝𝑗
𝑡

∂𝑓𝑖

∂𝑓𝑖

∂δ
= 0  since 𝑝𝑗

𝑡 =
ℎ𝑗

∑ ℎ𝑗𝑗∈𝒯
𝑒

−
∑ 𝑙𝑖

|𝑄|
𝑖=1
𝑇γ𝑐 = (1 −

(𝑁−1)η𝑗𝑇

∑ η𝑗𝑇𝑗∈𝒯
) 𝑒

−
∑ 𝑙𝑖

|𝑄|
𝑖=1
𝑇γ𝑐  by 

substituting (6) into 𝑝𝑗
𝑡 Therefore, when there are at least |𝑄| transactions, we have  

∂Π𝐼

∂δ
= ∑

𝑙𝑖

(𝑙𝑖 + δ𝑙𝑖)2

|𝑄|

𝑖=1

≥ 0 

denoting ∏  𝐼  increase as 𝛿  rises, when there are enough transactions.  

Recall that 𝑣𝑖  decreases as 𝛿  rises. The larger 𝛿  leads to the smaller 𝑣𝑖  then 

parts of users choose to quit once 𝑣𝑖 < 𝑣𝑖 and thus affect ∏ .𝐼 .  

Algorithm 1 calculates δ∗  with which ∏  𝐼  is maximized. Lines 2-3 compute the 

maximum value δ𝑖 with which the user initializes the transaction 𝑢𝑖 and follows (6). Line 5 

sorts 𝛿𝑖  with the decreasing order. With δ𝑖

′
 exactly 𝑖  transactions are initialized in the 

system. In line 6, δ∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖∈[1,|𝑄|]Π𝐼 (δ𝑖

′
). This is due to when 𝑖 ∈ [|𝑄|, |𝒰|], Π𝐼 (δ|𝑄|

′
)  

is maximal. 

 

3.2.4 Stackelberg Equilibrium 
 
Theorem 5: If the Blockchain dApp initiator follows the optimal service fee ratio 𝛿∗ in 

section 4.3, users set their transaction fee densities as {𝑓𝑖
∗}𝑖 ∈ 𝒰 in section 3.2.2 and 

miners set their hash rates as {ℎ𝑗
∗}

𝑗∈𝒯
 in section 3.2.1, the Blockchain dApp ecosystem 

reaches a Stackelberg equilibrium. 
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Algorithm 1 The Algorithm of getting  𝛿∗ 

Input:  {𝑙𝑖}, 𝐴, 𝑇, 𝑇′, 𝑚, {𝑣𝑖}, {η𝑗}, ℛ, |𝑄| 

Output:  𝛿∗ 

1: for  𝑖 ∈ 𝒰 do  

2:  Solving 𝑣𝑖(δ) according to (15) and (16) ;  

3:  δ𝑖 equals to the value of δ such that 𝑣𝑖(δ) = 𝑣𝑖 ; 

 4: end for  

5: Sort {δ𝑖}𝑖∈𝒰
 as the decreasing order and denote them as δ

′
 ; 

6: δ∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖∈[1,|𝑄|]Π𝐼 (δ𝑖

′
)  
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Chapter 4 : Experimental Setup and Implementation 

 
In this chapter, we first describe the developed experimental environment that 

will be used to test the performances of the proposed system model. 

4.1 Environmental Setup 

Ethereum is an open blockchain platform that lets anyone build and use 

decentralized applications that run on blockchain technology. Like Bitcoin, no one 

controls or owns Ethereum – it is an open-source project built by many people around the 

world. But unlike the Bitcoin protocol, Ethereum was designed to be adaptable and 

flexible. It is easy to create new applications on the Ethereum platform, and with the 

Homestead release [29]. We use Geth client to run our experiments. The go-ethereum 

client is commonly referred to as geth, which is the command line interface for running a 

full ethereum node implemented in Go [30].  

We first set up the real blockchain mining experiment based on Ethereum and 

consider a scenario with four miners as illustrated in the Figure below. We simulate the 

established Stackelberg Equilibrium conditions in a blockchain environment through 

Ethereum Client with 4 miners and 15 users who post the transactions. 

The experiment is performed on a workstation with Intel Core i7-7820X CPU @ 

3.60GHz X16. 
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Fig 4-1. Workflow Setup 

 

Official Geth client is modified to control the block size/number of transactions in 

a block.  

Docker is a computer program that performs operating-system-level 

virtualization. Docker is used to run software packages called containers. Containers are 

isolated from each other and bundle their own application, tools, libraries and 

configuration files; they can communicate with each other through well-defined channels. 

All containers are run by a single operating-system kernel and are thus more lightweight 
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than virtual machines. The following function is added to the Geth code in order to 

override the gas limit, transactions per block, etc. [31] 

 

Figure 4-2. This modified Geth client is wrapped in a docker image to run four containers as nodes connected in 

a blockchain. 

 

 Figure 4-3. Displays the 4 running containers in the docker. 
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Geth comes bundled with a Geth-console which runs JSRE (JavaScript runtime 

environment) and provides cli-tools and various functionalities with it. It offers multiple 

interfaces: the command line subcommands and options, a JSON-RPC server and an 

interactive console[32]. All four nodes are connected through RPC web socket 

connections using “admin.addPeer(enode)” command to form the P2P network. [33] 

 

 

Figure 4-4. Displays the Geth JavaScript Console 

 

To control the CPU resources of the containers, we use a Go-script which 

updates whenever a round of mining a block gets over. This is the core function of the 

go- script [34]. 

 

 

Figure 4-5. runDockerUpdate function is used before each round of mining 
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Figure 4-6. The CPU resources are updated in sync with the block generation like in the below figure. 

 

The Stackelberg optimization runs as a process which takes certain parameters 

from this blockchain environment and generates transactions for the 15 users with 

optimal transaction fee density, hash rates and block size. These are then posted to the 

Ethereum client through a Go program and required analytics are gathered. After each 

block gets mined, the Stackelberg process reads the parameters from the blockchain 

environment and send next set of transactions with miners’ hash rates/CPU ratios. This 

process is continued for the complete duration of the experiment. 
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Figure 4-7. Displays the 15 users and the mining for different rounds 

 

4.2  JavaScript functions in the Geth Console 

The Geth console allows us to write JavaScript functions and sideload them all at 

once using “loadScript”. For example -  

loadScript('/some/script/here.js') 
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Few of the convenient scripts are: 

1. newAccounts (number of users): 

This script allows creating new account. It is used to create the 15 user accounts 

in one function call. 

 

function newAccounts(n) { 

 for (var i = 1; i <= n; i++) { 

  personal. newAccounts ("1234") 

 } 

}; 

 

2. unlockAll (number of users): 

Unlocks all accounts. This is used to unlock all the accounts before any 

transactions can be made. 

 

function unlockAll(n) { 

 for (var i = 1; i <= n; i++) { 

  personal. unlockAccount (eth. accounts[i-1], 

"1234") 

 } 

}; 

 

3. allBalances (): 

Checks the balances of all accounts. All accounts and their ether balance is 

displayed. 



 

44 

 

function allBalances () { 

    var totalBal = 0; 

    for (var acctNum in eth. accounts) { 

        var acct = eth. accounts[acctNum]; 

        var acctBal = web3.fromWei(eth. getBalance(acct), 

"ether"); 

        totalBal += parseFloat(acctBal); 

        console.log (“eth. accounts [" + acctNum + "]: \t" 

+ acct + " \tbalance: " + acctBal + " ether"); 

    } 

    console.log (“Total balance: " + totalBal + " ether"); 

}; 

 

4. getFreq(lowerlimit, upperlimit): 

This is used to get the number of blocks mined by each user. During the mining 

process, many empty blocks do get generated, so the above function is used to 

filter only the blocks with transactions for each miner. 

 

function getFreq(input1, input2){  

    var m1 = 0; 

    var m2 =0 ; 

    var m3 =0; 

    var m4 =0; 

    miner_freq = new Array(); 
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    for (var i=input1; input1<=input2; input1++){ 

        var transLen = 

eth.getBalance(input1).transactions.length 

        if (transLen>0){ 

            var ff = eth.getBlock(input1).miner; 

            miner_freq.push(ff); 

        } 

 var len = miner_freq.length; 

    for(var j=0;j < len; j++){ 

        if(miner_freq[j] == 

"0x7a34bc752c01209e71cf6b7b8264c27f9e70e84d") 

        m1 = m1 + 1; 

        if(miner_freq[j] == 

"0xe55d2f474e3254aa6f93fc8ef93d240e19e5cd40") 

        m2 = m2 + 1; 

        if(miner_freq[j] == 

"0xf91b66e17e7ef2df0fcb53fbee850e0ace4222aa") 

        m3 = m3 + 1; 

        if(miner_freq[j] == 

"0x8283176e72d7878466ca7b57a61044b8cc586374") 

        m4 = m4 + 1; 

} 

console.log("miner1 "+m1); 

console.log("miner2 "+m2); 

console.log("miner3 "+m3); 
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console.log("miner4 "+m4); 

}; 

 

4.2.1 Auxiliary functions in the Geth Console 

Additional details for a few auxiliary functions used with geth console are: 

I. Eth.blocknumber - gets the latest block on the node 

II. Txpool.status – gets the status of the transaction pool on the node 

III. Miner.getHashRate() – gets the current hash rate of the miner 

IV. Eth.getBlock(blockNumber) – gets the content of the block 

V. Net.peerCount – number of peers node is connected to. 

VI. Admin.nodeInfo.enode – gets the enode string of the node 

 

 
Table 4-1 System Parameters used in the experiment 
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Chapter 5 : Analysis and Evaluation 

 
This chapter provides various evaluation results and their discussion. 
 

5.1 Hash Rate Ratio of miners vs probability of successful mining  

               We use 11 different experimental settings, with miner 1’s hash rate ratio 

increasing from 0.01 to 0.91, while other miners’ hash rate ratios are decreasing from 

0.33 to 0.03. 100 nonempty blocks are mined for one experiment settings and we repeat 

10 times. 

 

Figure 5-1. Hash Rate Ratio of Miner 1 (a), Miner 2 (b), Miner 3 (c) and Miner 4 (d) vs the probability of 

successful mining 𝑝𝑗
𝑡 

                 The comparison of the real experimental results and our proposed analytical 

model is show in Figure 5-1. As expected, there is not much difference between the real 

results and our analytical model. For example, in Figure 2(a), when hash rate ratio of 

miner 1 is 0.01, its experimental probability of mining successfully 𝑝𝑗
𝑡 is about 0.05. As the 
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hash rate ratio of miner 1 increases to 0.91,  𝑝𝑗
𝑡 rises to 0.75. The line of the model 𝑝𝑗

𝑡 

shows a similar trend. It increases from 0.1 to 0.7 with the hash rate ratio increasing from 

0.01 to 0.91. Figure 5-1(b), 5-1(c) and 5-1(d) also show an increasing trend of 𝑝𝑗
𝑡 as the 

hash rate ratio increases, both in experimental results and the model. This is because the 

probability that the miner successfully mines the block is directly proportional to its relative 

computing power when the block sizes are identical. Similarly, the trend of miner 2, miner 

3 and miner 4 are identical, since their hash rate ratios are same. 

 

5.2 Transaction fee density (ether) for Transaction 1 and Transaction 14 vs 

the waiting time  

 To validate our proposed model of waiting time (9), we set 21 different 

experiment settings, with transaction 1’s transaction fee density 𝑓1 increasing from 0 to 5 

ethers with the interval 0.25, while other 14 transactions’ transaction fee density are 

uniformly distributed among [0, 5]. The number of transactions in each block is 4. We 

conduct 6 times for each experiment setting. 
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                  Figure 5-2 Transaction fee density (ether) for Transaction 1 and 14 vs the waiting time 𝑡𝑖 in seconds 

 

                   The comparison of experimental results of the waiting time among 

transaction 1 and another randomly selected one: transaction 14 is depicted in Fig 5-2. 

                     We notice that the waiting time of transaction 1 is about 30s, even though its 

transaction fee density is 0. This is because we set the mining difficulty as 0x00 when 

setting up the ethernet chain. Also, we can see a decreasing trend of 𝑓1 in Figure 5-2(a) 

as expected, from 30s to 15s which is because transaction 1’s transaction fee density 

rises, and thus the portion that is larger than 𝑓1 decreases. There is an increasing trend of 

𝑓14  in Figure 5-2(b), from 7.5s to 10s. This is because transaction 1’s fee density is 

increasing, and thus the portion that is larger than 𝑓14 rises.  
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5.3 Comparison between real experiment and model for transaction fee 

density vs waiting time 

 

Figure 5-3. Transaction fee density of Transaction 1 and 14 vs waiting time 𝑡𝑖 for the model and real 

experiment. 

                    

  We compare experimental results of the average waiting time with the 

model of (9) in Figure 5-3. We can see there is not much difference between the real 

results and our analytical model, even though the average waiting time fluctuates a lot. 

For example, the average waiting of transaction 1 is decreasing from 18.2s to 7s, as 

transaction 1’s  fee density increases from 0 to 5, while other transactions’ fee densities 

is kept same. This is due to waiting time of a transaction is directly related to the portion 

that is larger than its transaction fee density. 
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5.4 Numerical Results 

 To illustrate the impacts of different parameters from the proposed model 

on the performance. System parameters are set as Table 1. Notice that some of these 

parameters are varied according to the evaluation scenarios. 

 

1) The impact of the number of transactions in each block |𝑸|:  

 

          Figure 5-4. Three parties’ strategies vs no. of transactions in each block 

 

                     From Figure 5-4, we find that the service fee ratio δ decreases with the 

increase of the number of transactions in each block. For example, when |𝑄| equals 

to 1, its service fee ratio δ is 3.59. As  |𝑄| increases to 15, 𝛿 decreased to 0.95. This 

is because the dApp initiator’s optimal revenue from one block is fixed (other system 

parameter is fixed). When the number in a block rises, the initiator can still achieve 

this optimal revenue through lowering its service fee ratio.  

 Next, we see that for transaction fee density there is a decreasing trend. 

This is because when the number of transactions in a block is larger, the competition 



 

52 

among transactions is reduced. In this way, users do not need to set high 

transaction fee density to rise its competitive power.  

 Next, we see that the hash rate ratio is not affected by the number of 

transactions. For example, miner 1’s hash rate ratio is 0.52, miner 2’s hash rate ratio 

is 0.31, the hash rate ratio of miner 3 and miner 4 are same, i.e., 0.08. This is 

because the block size for all miners is identical, i.e., |𝑄|  , η1 = 2 × 10−4, η2 =

3 × 10−4, η3 = η4 = 4 × 10−4  .In this scenario, miners’ hash rate ratio is directly 

related with η𝑗. 

 

2) The impact of the transactions’ arriving speed 𝒎:  

 

Figure 5-5. Three parties’ strategies vs transaction’s arriving speed 𝑚 

 

                    We evaluate the impacts brought by the number of arriving transactions 

in a unit of time to three parties’ strategies, and the results are shown in Figure 5-5.   

    We find that the service fee ratio 𝛿 decreases with the increase of the 

number of arriving transactions in unit of time. For example, when 𝑚 equals to 10, its 

service fee ratio 𝛿  is 0.96. As 𝑚  increases to 120, 𝛿  decreased to 0.35. This is 

because more transactions arrive in the dApp system, the dApp initiator can get the 



 

53 

optimal revenue through setting lower service fee, given that the dApp initiator’s 

optimal revenue from one block is fixed (other system parameter is fixed).  

 Next, we see that there is an increasing trend of transaction fee density. 

This is because when the number of transactions in a block is larger, the competition 

among transactions is increased. In this way, users need to set high transaction fee 

density to raise their competitive power.  

 Next, we see that the hash rate ratio is not affected by the number of 

transactions. For example, miner 1’s hash rate ratio is 0.52, miner 2’s hash rate ratio 

is 0.31, the hash rate ratio of miner 3 and miner 4 are same, i.e., 0.08. The reason 

for this is same as mentioned above. 

 

3) The impact of the block time 𝑻:  

 

Figure 5-6. Three parties’ strategies vs block time 

                 We evaluate the impacts brought by the block time 𝑇 to three parties’ 

strategies, and the results are shown in Figure 5-6.  

                 We find that the service fee ratio 𝛿 decreases with the increase of the 

number of arriving transactions in unit of time. For example, when 𝑇 equals to 1, its 

service fee ratio 𝛿 is 0.98. As 𝑇 increases to 10, 𝛿 decreased to 0.21. This is due to 

the fact the block time is longer, the revenue of users for a confirmed block is less 
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(the waiting cost is larger because the cost is positive which is related with 𝑇). To 

attract more users (transactions), service fee ratio should be smaller.  

 Next, we see that there is an increasing trend of transaction fee density. 

This is because the competition among transactions is increased since more 

transactions arrives during a block time. In this way, users need to set high 

transaction fee density to raise their competitive power.  

 The hash rate ratio is not affected by the number of transactions. For 

example, miner 1’s hash rate ratio is 0.52, miner 2’s hash rate ratio is 0.31, the hash 

rate ratio of miner 3 and miner 4 are same, i.e., 0.08. The reason for this is same as 

mentioned above. 

 

4) The impact of the block reward 𝑻:  

 

Figure 5-7. Three parties’ strategies vs block reward 

                  We evaluate the impacts brought by the block reward 𝑇 to three parties’ 

strategies, and the results are shown in Figure 5-7.  

                   We find that three parties’ strategies are not related to the block reward. 

For example, service fee ratio 𝛿 keeps 0.82 with the block reward varying from 1 to 

10. The transaction fee density is 0.9995, 1.0013, 1.001, 1.0016, 1.0021 respectively 

for transaction 1, transaction 4, transaction 7, transaction 10 and transaction 13. 
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miner 1’s hash rate ratio is 0.52, miner 2’s hash rate ratio is 0.31, the hash rate ratio 

of miner 3 and miner 4 are same, i.e., 0.08. This is because users’ and the dApp 

initiator’s utility function has no relationship with the block reward and miners’ hash 

rate ratio is only related with their cost per hash rate η𝑗 in our mechanism. 
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Chapter 6 : Conclusion 
 
 In this thesis, we have investigated the utility-based strategy choice 

instruction, for supporting dApp to work efficiently in proof-of-work based public 

blockchain networks. We have adopted the three-stage Stackelberg game model to 

jointly study the utility maximization of the dApp initiator, users and the miners. Through 

backward induction, we have derived the unique Nash equilibrium point of the game. The 

existence and uniqueness of the Stackelberg equilibrium has been proved analytically. 

We have performed extensive experiments to validate the proposed analytical model. 

Moreover, we have conducted numerical simulations to evaluate the network 

performance, which provide insights for the dApp initiator to choose suitable system 

parameters. 
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