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ABSTRACT

The Natural Middle of a Complete Resolution

Rebekah J. Aduddell, Ph.D.

The University of Texas at Arlington, 2021

Supervising Professor: David A. Jorgensen

It is widely known that minimal free resolutions of a module over a complete

intersection ring have nice patterns that arise in their Betti sequences. In the late

1990’s Avramov, Gasharov and Peeva defined a new class of modules over more

general types rings that would exhibit similar patterns in their free resolutions. In

doing so, they additionally defined the notion of critical degree for a module, which

serves as a “flag” for when such patterns arise in the Betti sequence. The main

purpose of this thesis is to present an extension of critical degree to the category

of totally acyclic complexes, Ktac(R), where (R,m, k) is a commutative noetherian,

local ring. Furthermore, we will provide an appropriate dual analogue and then look

towards realizing the cohomological characterization for these notions, utilizing the

original such characterization given by the aforementioned authors. With regard to

this topic, our attention will predominantly turn towards when R is further assumed

to be a complete intersection ring of the form R = Q/(f1, . . . , fc) where (Q,m, k) is

a regular local ring and f1, . . . , fc a Q-regular sequence in m.

We then investigate how the critical and cocritical degrees of an R-complex

may change under certain operations of complexes; such as translations, direct sums,
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and tensoring with a bounded complex. Lastly, we introduce a new invariant of

R-complexes and R-modules called the critical width, or diameter, which we define to

be the “distance” between the critical and cocritical degrees of an R-complex.
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CHAPTER 0

INTRODUCTION

0.1 Prelude: Historical Connections

0.1.1 Commutative Algebra: An Origin Story

The three pillars of commutative algebra1, on which the subject was built, are

none other than the Queen of Mathematics herself (Number Theory), the classical

study of algebraic geometry (now modernized by many techniques rooted in com-

mutative algebra), and the never-dying Ghost of Invariant Theory2. Mathematical

intrigue which motivated the earliest seeds of commutative algebra is said to have

likely began with number-theoretic problems. After questions about characteristics

of the earliest algebraic structures (Z, Q, R, and C) had been exhausted, interest

developed with the ring of Gaussian integers Z[i], introduced by Gauss in his 1828

paper in which he proved that its elements satisfied a unique prime factorization

characteristic, much like Z itself.

Many number theorists (Euler, Dirichlet, Kummer) then looked towards utilizing

this idea of “adjoining” solutions for polynomial equations to Z as a method for

solving Fermat’s Last Theorem, or at least proving special cases of it. In fact, it was

such endeavors which led to Dedekind’s introduction of ideals of a ring, with respect

1Much of the historical background discussed throughout this introduction has been motivated

by the much more thorough (and superior) treatment in Chapter 1 of Eisenbud’s Commutative

Algebra text ([Ei2]); nevertheless, we provide a brief synopsis of the origins of commutative algebra,

with special attention to the objects of significance to this thesis.
2Although Hilbert was said to have “killed” the theory by solving its fundamental problem, it

has since seen a resurgence in activity in the form of geometric invariant theory.
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to the search for some kind of generalization of unique factorization. Consequently, it

was Kronecker (Kummer’s student) who established the idea of adjoining the root of a

polynomial equation to a field k. Henceforth, interest in rings of the form k[x]/(f(x))

emerged and, moreover, in 1905, Lasker finally succeeded in giving a generalization

of unique factorization, known as primary decomposition. It was, in fact, Emmy

Noether who later reformulated and axiomatized these theories in the 1920s.

Around the same time as some of these number-theoretic discoveries, mathemati-

cians also working in algebraic geometry (Kronecker, Weierstrass, Dedekind, Weber)

realized that many of these techniques could actually be applied to geometrically

defined fields. In modern times, the interaction between geometry and commutative

algebra is well known but interestingly enough, these connections did not begin to

take form until the work of Dedekind and Weber in the late 19th century. And, of

course, it was the end of this century in which Hilbert published two phenomenal

papers advancing early commutative algebra ideas, motivated himself by Invariant

Theory. At its core, the study invariants began also with a geometric perspective,

posing the question about which geometric properties of plane curves were “invariant”

under certain classes of transformations. It was later realized that this question could

be reformulated with respect to (usually polynomial) ring elements invariant under

the action of a group (typically SLn(k) or GLn(k)).

The general problem of Invariant Theory was focused on finding finite systems

of generators of rings of invariants, and it was Hilbert who solved this fundamental

problem. Of course, in doing so, he proved many significant results for commutative

algebra, two of which we choose to direct our attention towards. First, Hilbert’s idea

was that, given a polynomial ring in finitely many variables over a field, every ideal

of the ring can in fact be generated by finitely many elements. Although the theorem

which encapsulates this phenomenon is called Hilbert’s Basis Theorem, it is actually
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Emmy Noether who received credit for rings with such a property; for it was she who

demonstrated (in 1921) how to use this property as a basic axiom in commutative

algebra and how Dedekind’s Primary Decomposition could be derived quite simply

under this axiom. As such rings and the theorem in question serve as particular focal

point throughout this thesis (as they do throughout much of commutative algebra),

we include them here.

Definition. A commutative ring R is called noetherian if every ideal in R is finitely

generated. Equivalently, if R satisfies the ascending chain condition on ideals (e.g.

every strictly ascending chain of ideals in R must terminate).

Theorem (Hilbert’s Basis Theorem). If R is noetherian, then R[x1, . . . , xn] is noethe-

rian.

We may also at times refer to noetherian R-modules (for which the analogous

definition uses submodules in lieu of ideals), since our focus is on such algebraic

structures; in which case, the following statement also holds.

Fact. If R is noetherian and M is a finitely generated module, then M is noetherian.

The second significant result from Hilbert’s 1888-93 papers which we will discuss

is his Syzygy Theorem. As mentioned, at some point algebraists turned towards

studying modules over a given ring R, which are structures fairly similar to vector

spaces. An object which is, in some sense, at the center-point of the thematic elements

for this thesis is what is called a free resolution. These objects can intuitively be

thought as a manner of “linking together” systems of generators. Throughout Chapter

1 of this thesis we provide definitions of many of these constructions, which play

a significant role in the the topics discussed in later chapters. For now, we simply

include Hilbert’s syzygy theorem:

Theorem. If R = k[x1, . . . , xn] then every finitely generated module over R has a

finite free resolution of length at most n.
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Our interest in this thesis actually deals with infinite free resolutions, as

described in §1.3 of this thesis. In Chapter 2, we will make mention of the progress

made in better understanding patterns which may occur in these infinite sequences.

For now, we move on to briefly discuss the other dominant broad algebraic area from

which we pull many techniques and methods.

0.1.2 When Two Algebraic Theories Collide

Just as its sister, Homological Algebra has its origins beginning in the 19th

century.3 The subject itself is derived from Algebraic Topology, which is why much

of the language descends from topological intuition. It was actually the work of

Riemann in the 1850s and Betti in the 1870s on ”homology numbers” which planted

the seeds for homological interest by later mathematicians, including Poincaré who

provided a more rigorous treatment in 1895. Nonetheless, it was once again Emmy

Noether who stepped in and shifted the focus to homology groups of a space, opening

the gates for algebraic techniques to be developed in the 1930s.

However, topology remained the main motivation for this development until

the mid-20th century when Cartan and Eilenberg’s Homological Algebra text ( [CaEi])

broadened the use for such methods to commutative algebra. Their systematic

approach to derived functors, via resolutions of R-modules, served as a pathway to

the questions explored throughout commutative algebra, which had only surfaced as a

field of study shortly beforehand. Henceforth, many algebraists dealing with questions

in commutative algebra were then able to utilize the strength of homological methods,

which had predominately only been utilized within problems of a topological nature.

3Much of the history discussed on Homological Algebra here is pulled from Weibel’s (again, far,

far superior rendition of) History of Homological Algebra, for which the reader may refer to [We2].
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Of course, after much of such homological methods were developed for algebraists,

an attempt to generalize the methods to a broader setting was made. MacLane made

the first attempt (in 1948), defining what he called an “abelian category” (see [Ma2]),

though his definition is now known as only an additive category. The next attempt

was made by Eilenberg’s student Buchsbaum, whose 1955 thesis (see [Bu]) introduced

exact categories, with the additional axiom of existence of direct sums imposed. It was

actually Grothendieck and Heller who developed work involving abelian categories

as we know them today (see [Gr]). And so, just as algebraic topology spawned

homological algebra, the latter in turn motivated the development of category theory

via the attempt to generalize such methods.

As is typical in modern-day commutative algebra, we make much use of homo-

logical methods throughout this thesis, with particular application of the Ext functor.

Furthermore, we continually acknowledge the categorical structure related to our

objects of interest in order to both provide insight and build motivation for our work.

With this in mind, we now relay the ordering of topics enclosed within this thesis.

0.2 A Tale of Two Degrees

The main goal of this thesis is to transfer a notion previously developed in the

category of modules to the category of totally acyclic complexes. We additionally aim

to develop the appropriate dual notion, as is natural to both categories. Throughout

the majority of thesis, it should be assumed that R is a commutative, local noetherian

ring as is indicated in §1.1. At times, we will impose additional assumptions upon

R and will make clear when this is the case. Chapter 1 builds background on not

only the categorical setting of R-modules, but also on many of the constructions of

R-modules we routinely use throughout this manuscript. Of special significance are

the functors on R-mod described in §1.1.3, along with the derived functors of Hom

xvii



presented in §1.2.3. We also include definitions of free resolutions and Betti Sequences

in §1.3, along with definitions of R-complexes and R-complex chain maps in §1.2.2.2.

In Chapter 2, we provide the pertinent background for our main definitions. We

present Eisenbud’s special class of chain endomorphisms on minimal free resolutions

in §2.1.1 and give proof of his main result from [Ei] (eventual surjectivity of a

chain endomorphism), with respect to Ext rather than Tor. Then, we provide the

original definition of critical degree for R-modules in §2.2.1 with inclusion of results

from [AvGaPe] most relevant to this thesis. Towards the end of chapter 2, in §2.3.1

we provide the authors’ cohomological characterization of critical degree and then,

in §2.3.2.1 give reasoning for why a linear form of CI operators realizes the critical

degree of a module over a complete intersection ring.

Chapter 3 turns towards the categorical setting of totally acyclic complexes, for

which we point the well-informed reader towards §3.5 on a depiction of the connection

between R-mod and Ktac(R). Part II of this thesis begins with Chapter 4, in which

we present our main definitions (see §4.1, Definitions 25 and 26). We also give two

equivalent characterizations of these definitions in Sections 4.3 and 4.4, with §4.4.1

focusing attention on development of the dual cohomological notion to critical degree.

It is then in Chapter 5 where we investigate boundedness problems, with respect

to how the critical and cocritical degrees might change under different operations of

complexes. After first presenting our initial general approach to these questions, we

explore “basic” operations on complexes guaranteed by the categorical structure of

Ktac(R) in §5.1. Then, afterwards in §5.2 we look towards operations defined by two

endofunctors on Ktac(R): Hom(-,B) (or Hom(B, -)) and (−⊗ B) (or (B ⊗−)).

Finally, in Chapter 6 of this thesis we explore some additional boundedness

questions related to critical degree of a given module. One of our primary goals with

our extension is to address the lack in ability of bounding the critical degree over all
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modules of a given complexity d > 1. While our main definitions do not solve this

particular problem, we present a new invariant of R-modules (and R-complexes) in

§6.2 with hope that it might be possible to bound this value over modules of a given

complexity.
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CHAPTER 1

The Category of R-Modules

We begin with laying the groundwork for understanding the initial categorical

setting from which the main definitions of this thesis are derived. Undoubtedly, there

is a fascinating relationship between R-modules and R-complexes of a particular

form; yet, to fully comprehend such a connection between these objects, we must

first explore the categorical structure of finitely-generated R-modules, along with the

main constructions and invariants used to better understand such objects. Of course,

we work towards this understanding with a nod towards the structural similarities we

will uncover in Chapter 3 of this thesis.

1.1 Categorical Structure of R-Mod

Let R be a ring and denote M as an R-module. In some sense, such algebraic

structures represent a generalization of vector spaces, though certainly not as well-

behaved. For this reason, we can describe the study of R-modules as an exploration of

what could go wrong when the underlying abelian group in a vector space is instead

imposed with an action via scalars that are in a ring which does not hold such rigid

structure as a field. This is a significant topic; for instance, we may be interested in

an action by polynomials over a given abelian group, and the ring R = k[x1, . . . , xn]

is certainly not a field (any indeterminant xi lacks a multiplicative inverse). Such a

ring will arise commonly throughout this thesis, as commutative algebra has close

ties to geometric questions and such questions precipitated the study of commutative
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algebra, serving as the main motivation for many early topics explored within the

subject.

Rather than studying these early topics, we instead turn our attention to

viewing the underlying categorical structure of R-modules, which will in turn highlight

powerful characteristics that can arise in other settings as well. Take as objects all left

R-modules and take the left R-module homomorphisms as arrows. Clearly, associative

function composition is guaranteed by the nature of R-module homomorphisms and

the identity map Id : M → M for any R-module M is well defined. Denote this

category R-Mod. Note that we may also consider all right R-modules with right

R-module homomorphisms, which also constitutes a category, which we shall denote

Mod-R . For any RM , RN ∈ R-Mod define HomR(RM, RN) as the set of all left

R-module homomorphisms φ : M → N and we may define HomR(MR, NR) similarly

for right R-modules. In either case, HomR(M,N) has an abelian group structure,

but will only have an additional module structure if either RMS is a left R- and

right S- bimodule for another ring S, (in which case, HomR( RMS, RN) will be a left

S-module) or RNT is a left R- and right T -module for another ring T (in which case,

HomR( RM, RNT ) will be a right T -module).

Fact. If R is a commutative ring then R-Modand Mod-R represent the same category.

The above fact is easy to see since for a commutative ring, there is no distinction

between left and right modules, as they coincide.

From this point on, let R be a commutative noetherian ring

and denote R-Mod as the category of R-modules and R-module

homomorphisms.
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It is worth also noting that in this case HomR(M,N) has an R-module structure as

well since both M and N are R-bimodules.

We now consider the full subcategory of R-Mod comprised of finitely-generated

R-modules and the R-module homomorphisms between them; denote this category

R-mod. The focus of Chapter 1 is distinctly on finitely-generated R-modules, and so

we will phrase many of the subsequent structural properties in terms of R-mod but

note that such properties are also true for R-Mod. Moreover, from here on out an

R-module is always assumed to be finitely-generated unless otherwise stated. Many

of the results in this chapter can be found in numerous sources (for instance, see [Wa]

or [Ma]), and are only given for completeness of the discussion.

Proposition 1.1 (cf. [HoJoRo]). R-mod is an additive category.

Proof. As it has already been discussed, we shall take as fact that HomR(M,N) is an

abelian group, and so only need to justify that composition of morphisms is bilinear.

For any f ,g,h ∈ HomR(M,N) note that

f ◦ (g + h)(x) = f ◦ (g(x) + h(x)) = f(g(x)) + f(h(x)) = (f ◦ g)(x) + (f ◦ h)(x)

and

((f + g) ◦ h)(x) = (f + g)(h(x)) = f(h(x)) + g(h(x)) = (f ◦ h)(x) + (g ◦ h)(x)

for any x ∈ M . Additionally, it should be clear that 0 ∈ R-mod is the Zero object

such that HomR(M, 0) and HomR(0,M) each contain a single element: the zero map.

Thus, R-mod is preadditive and it remains to show only that for every pair M , N ∈

R-modthere exists a coproduct M⊕N in R-mod . Let X be any R-module, along with

any R-module homomorphisms fM : M → X and fN : N → X as given in the diagram

3



X

M
ιM //

fM

::

M ⊕N
∃!f

OO

N
ιNoo

fN

dd

where ιM and ιN are the natural inclusions. Define f : M ⊕N → X as (fM ◦ πM)⊕

(fN ◦ πN). First note that for any m ∈ M we have that [((fM ◦ πM)⊕ (fN ◦ πN)) ◦

ιM ](m) = ((fM ◦ πM)⊕ (fN ◦ πN))(m, 0) = fM(m) and for any n ∈ N we have that

[((fM ◦ πM) ⊕ (fN ◦ πN)) ◦ ιN ](n) = ((fM ◦ πM) ⊕ (fN ◦ πN))(0, n) = fN(n). Thus,

the diagram is commutative and we only need to show uniqueness of f . Suppose

there exists a map g : M ⊕N → X such that the above diagram commutes. Then, by

definition fM = g ◦ ιM and fN = g ◦ ιN so that for any (m,n) ∈M ⊕N we have that

f(m,n) = [(fM ◦ πM)⊕ (fN ◦ πN)](m,n)

= [((g ◦ ιM) ◦ πM)⊕ ((g ◦ ιN) ◦ πN)](m,n)

= g(ιMπM)(m,n)⊕ g(ιNπN)(m,n)

= g(m, 0)⊕ g(0, n) = g(m,n).

Thus, we have shown the equality f = g, which in turn demonstrates the uniqueness

of f , as desired.

1.1.1 R-mod is an Abelian Category

Informally, an additive category can be thought of as one in which objects and

the morphisms between them can be added. Moreover, such a category is the first

step towards recognizing the categorical structure inspired by abelian groups. As in

the case of this prototypical example, abelian categories are those that are not only

additive, but that which also have the additional existence of kernels and cokernels.

Such objects within the category yield a rich theory of various constructions, such
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as short exact sequences, and we now look towards recognizing these constructions

within R-mod.

For any morphism f : M → N ∈ R-mod, the kernel of f is an object K together

with a morphism k : K →M such that (i) f ◦ k = 0 and (ii) the following universal

property is satisfied.

Universal Property (cf. [HoJoRo]). For every k′ : K ′ → M such that f ◦ k′ = 0

there is a unique morphism g : K ′ → K making the following diagram commute:

N

M

f
>>

K

0

OO

koo

K ′
g

``

k′

]]
0

cc

Roughly, we are saying that any other such k′ satisfying the first condition must

factor through k. If such a K exists, denote it as ker(f), and, moreover, it is unique

up to isomorphism. The dual notion is the cokernel of f , defined as an object C

together with a morphism c : C → M such that (i) c ◦ f = 0 and (ii) the following

universal property is satisfied.

Universal Property (cf. [HoJoRo]). For every c′ : N → C ′ such that c′ ◦ f = 0

there is a unique morphism g : C → C ′ making the following diagram commute:

N

c
�� 0

��

M
0
//

f
>>

k′ //

C
g

  
C ′

If such a C exists, denote it coker(f), and, moreover, it is unique up to isomor-

phism. We define the image of a morphism f to be ker(c) where c : N → coker(f)

and denote it im(f). Similarly, we define the coimage of f to be the cokernel of
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k : ker(f)→M and denote it coim(f). With respect to these categorical definitions

in R-mod, the usual definitions of kernel and cokernel do in fact satisfy the above

universal properties. That is, ker(f) = {x ∈ M | f(x) = 0} and we may view

coker(f) ∼= N
im(f)

where im(f) = {f(x) ∈ N | x ∈M}.

While it is true that for a category to be Abelian, kernels and cokernels must

exist for each morphism, one more condition must also be satisfied: the kernels and

cokernels must have “desirable” properties. One way of describing such properties is to

say that every monomorphism is the kernel of some morphism and every epimorphism

is the cokernel of some morphism. We will explore these special types of morphisms

shortly, but for now we will simply use the equivalent requirement (given in [HoJoRo])

that for every f : M → N the natural morphism φ : coim(f)→ im(f), guaranteed by

the existence of ker(f) and coker(f), is an isomorphism.

That φ is an isomorphism follows directly from the First Isomorphism Theorem

for R-modules: im(f) ∼= M/ ker(f). Now, it is worth noting that while R-Mod

is an abelian category, R-mod is not always necessarily so; kernels of R-module

homomorphisms between finitely generated modules may not be finitely generated

themselves. However, whenever R is noetherian this does not occur, in which case

R-mod is an abelian category. As we generally assume R is noetherian throughout

this thesis, our focus on R-mod as an abelian category is not deterred.

1.1.2 Morphisms in R-mod

Special types of morphisms are interwoven throughout the thematic elements of

this thesis, and thus we present the common definitions of such morphisms in R-mod

as well as their categorical counterparts. The following definitions are the typical

ones given in any elementary algebra text (e.g. [Hu] or [DuFo]) discussing R-module

homomorphisms. A morphism f : M → N is called surjective (or is a surjection)
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if for each n ∈ N there exists an m ∈ M such that f(m) = n. Alternatively, f is

called injective (or is an injection) if f(m) = f(m′) in N implies m = m′ in M . It is

an elementary proof to show that this definition is equivalent to saying ker(f) = 0.

If f is both injective and surjective, then we call f a bijection and say it is both

one-to-one (injective) and onto (surjective).

We now introduce the notions of monomorphism and epimorphism, which are

the categorical analogues of injective and surjective functions. A morphism f : X → Y

in a category is a monomorphism if it is left-cancellative:

f ◦ g1 = f ◦ g2 =⇒ g1 = g2

for any other morphisms g1 : Z → X and g2 : Z → Y . In the same vein, f is an

epimorphism if it is right-cancellative:

g1 ◦ f = g2 ◦ f =⇒ g1 = g2.

A morphism that is both a monomorphism and epimorphism is an isomorphism.

In R-modmonomorphisms coincide with injections and epimorphisms coincide with

surjections; therefore, an R-module homomorphism that is bijective is an isomorphism.

This is because R-mod is both an abelian and a concrete category, which is described

in the remark below. Note further that we make no use of left- or right- inverses in

our definitions above. It does hold that a morphism which has a left inverse will imply

it is left cancellative and thus a monomorphism. Likewise, a morphism which has a

right inverse will imply it is right cancellative and thus an epimorphism. However,

the existence of a left or right inverse is actually a bit stronger than the notions of

mono- and epimorphisms; hence, we consider morphisms as split monomorphisms or

epimorphisms if they have either a left or right inverse, respectively.
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Remark. One distinction between R-mod and the category we will explore in Chapter

3 is that R-mod is an abelian category. This particular characteristic, or lack thereof,

will have an intriguing role to play in the main topics of this thesis. Another aspect

about R-mod to point out is that it is a concrete category, meaning that there exists a

faithful functor F : R-mod→ Set (where Set denotes the category of sets).

1.1.3 Functors on R-mod

The remark above indicates that we should explore the primary functors which

take objects in R-mod to other objects in R-mod, or objects from another category,

such as Ab (the category of abelian groups). A discussion of these functors can be

found in any text on homological algebra (e.g. see [Ro] or [CaEi]), and we merely

present such well-known data with respect to commutative rings. As mentioned

previously, a functor is a structure-preserving map from one category to another; or,

we might consider an endofunctor, which is a functor from a category to itself. In

particular, functors not only take objects to objects and morphisms to morphisms,

but they also preserve the identity morphism and compositions of morphisms.

There exist notions of covariant and contravariant functors, where the latter

type “flips” arrows and reverses compositions. We may define a wide variety of

functors; for example, we may define a basic type called a forgetful functor in which

we map objects from a category to their underlying sets and the morphisms to the

underlying functions on those sets. Essentially, the idea is that we “forget” some

structure in a particular category as the functor takes objects and morphisms to a

category with less structure. As it turns out, there exists such a functor U : R-mod

→ Set which turns out to be faithful, meaning that R-mod is a concrete category (as

previously mentioned).
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Of particular importance are the two quintessential types of functors studied in

homological algebra, especially with respect to R-mod: Hom and ⊗ . We have already

discussed the fact that for any two R-modules M and N , HomR(M,N) will be an

R-module under the given assumptions. For this reason, we can actually define a

covariant functor HomR(M,−) : R-mod→ R-mod for each R-module M and it should

be clear that this functor takes R-modules to the Hom-sets representing all morphisms

between M and the R-modules. To see how the functor acts on morphisms, note

that for an R-module homomorphism f : N → N ′ and any R-module homomorphism

g : M → N the following diagram commutes

N
f // N ′

M

g

OO

f◦g := HomR(M,f)(g)

==

That is, the functor HomR(M,−) takes morphisms to their respective composite

morphisms. Likewise, we may define a contravariant functor HomR(−,M) : R-mod

→ R-mod for each R-module M and it should be clear that this functor takes R-

modules to the Hom-sets representing all morphisms between the R-modules and

M . And, for any R-module homomorphism f : N → N ′ there exists an R-module

homomorphism HomR(f,M) : HomR(N ′,M) → HomR(N,M) such that for any

R-module homomorphism g : N ′ →M the following diagram commutes

N ′

g

��

N
foo

M
~~ g◦f := HomR(f,M)(g)

It should be an easy check that both the given covariant and contravariant functors

preserve the identity morphism and composition, noting that the latter reverses the
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composition of morphisms. Moreover, it is worth noting that we may combine the

actions of these two functors since the diagram

HomR(M,N)
HomR(f,N) //

HomR(M,g)
��

HomR(M ′, N)

HomR(M ′,g)
��

HomR(M,N ′)
HomR(f,N ′) // HomR(M ′, N ′)

commutes for any pair of R-module homomorphisms f : M ′ → M and g : N → N ′.

This implies that HomR(−,−) : R-mod×R-mod→ R-mod is actually a bifunctor. On

this note, we now give more abstract definitions of monomorphisms and epimorphisms

with respect to the Hom functor and which will be commonly utilized within this

thesis.

Definition 1.2 (cf. [KaSc]). A morphism f : M → N in R-mod is a monomorphism

if for every R-module L the functor HomR(L,−) takes f to an injective function

between Hom-sets

HomR(L,M)
Hom(L,f)
↪−−−−−→ HomR(L,N).

It is quite easy to understand why the above definition is equivalent to the usual

one. For any R-module L and any g1, g2 ∈ HomR(L,M), note that the statement

fg1 = fg2 implies g1 = g2 is true if and only if HomR(L, f)(g1) = HomR(L, f)(g2)

implies g1 = g2 via the action of Hom(L,−) on R-module homomorphisms. Similarly,

we can consider, for g1, g2 ∈ HomR(L,M), the statement g1f = g2f implies g1 = g2,

noting that this is true if and only if the contravariant Hom yields an injective map

HomR(f, L) : HomR(N,L)→ HomR(M,L).

Definition 1.3 (cf. [KaSc]). A morphism f : M → N in R-mod is a epimorphism

if for every R-module L the functor HomR(−, L) takes f to an injective function

between Hom-sets

HomR(N,L)
Hom(f,L)
↪−−−−−→ HomR(M,L).
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Tensor Product of R-Modules and the Tensor Functor

In addition to Hom, we may also consider the tensor product of R-modules,

which will again be an R-module (see [Ro], [Hu], or any other algebra text, for the

following definition and properties discussed). Recall that for R-modules M and

N we define M ⊗R N = F(M×N)
X

where F(M ×N) is the free R-module with basis

M ×N and X is the submodule generated by the usual relations:

1. (m1 +m2, n)− (m1, n)− (m2, n)

2. (m,n1 + n2)− (m,n1)− (m,n2)

3. (rm, n)− r(m,n)

4. (m, rn)− r(m,n)

with m1,m2,m ∈M , n1, n2, n ∈ N , and r ∈ R. Categorically, we say that M ⊗R N

together with the bilinear map ⊗ solves the following universal mapping problem:

Universal Property. For any R-module L with a bilinear map φ : M × N → L

there exists a unique homomorphism f : M ⊗R N → L making the diagram

M ×N φ //

⊗ &&

L

M ⊗R N

f

OO

commute; that is, f⊗ = φ.

Properties. Let M , N be R-modules, {Bi | i ∈ Γ} be a family of R-modules, and

F , G be free R-modules. Then recall the following properties for tensor products of

R-modules:

1. M ⊗R N ∼= N ⊗RM

2. M ⊗R (
⊕

iBi) ∼=
⊕

i(M ⊗R Bi)

3. rk(F ⊗R G) = rk(F ) · rk(G)
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At this point, we now transition into viewing ⊗ as a functor. Similarly to Hom,

we may fix any R-module M to see that M ⊗R − and − ⊗R M are endofunctors

which take any R-module N to the tensor product R-modules M ⊗R N or N ⊗RM .

From the first property given above, we see that there is no distinction between these

two products. Moreover, we have a similar naturality as demonstrated with Hom

so that we may also consider the bifunctor −⊗R − : R-mod×R-mod→ R-mod. We

only need to ascertain how ⊗ acts on morphisms: for any R-module homomorphisms

f : M → M ′ and g : N → N ′ we define f ⊗ g : M ⊗R N → M ′ ⊗R N ′ so that

(f ⊗ g)(m⊗ n) = f(m)⊗ g(n) for any m ∈M , n ∈ N , and extend by linearity. It is

easy to check that −⊗− preserves the identity and compositions, as a special case

demonstrates in Chapter 4 of this thesis.

1.2 Special Constructions of R-Modules

Now that we have developed the blueprint for the categorical structure of R-mod

it is paramount to discuss particular constructions of the objects and morphisms in

the category, which turn out to be vital towards better understanding the structure

of the objects themselves. Once again, many of these constructions can be found in

any homological text; for instance, the reader may refer to [Ro], [CaEi], or [Ve3].

1.2.1 Short Exact Sequences

First recall that R-mod is an abelian category, resulting in the existence of

kernels and cokernels of morphisms with the category. What arises due to this is the

notion of a short exact sequence.

Example 1.4. Given an R-module homomorphism f : M → N note that ker(f) is

a submodule of M , im(f) is a submodule of N , and coker(f) is a quotient module
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of N . Thus consider the following two sequences of R-modules and R-module

homomorphisms,

0→ ker(f)
k−→M

f̂−→ im(f)→ 0 and 0→ im(f)
kc−→ N

c−→ N/im(f)→ 0,

where k is the natural embedding of ker(f) into M , f̂ is the restriction of f to im(f),

c is the natural surjection from N onto coker(f), and kc is the natural embedding of

im(f) = ker(c) into N . First note that any element in ker f ⊇ ker(f̂) is trivially in

the image of k since ker(f) just gets mapped to itself in M . Moreover, since f ◦ k = 0

by definition of the kernel, we will have that f̂ ◦ k = 0 and thus im(k) ⊆ ker(f) as

well. In other words, the image of k is exactly the kernel of f . When this occurs,

we say that the sequence is exact at that spot. We see the the same occurs for the

latter sequence since c ◦ kc = 0 as im(f) is just the kernel of c. Note further that in

both cases we have exactness at the tails too– k is injective, thus having only 0 in

its kernel; f is surjective, thus im(f) = N which is then subsequently mapped to 0;

likewise for kc and c. Consequently, both sequences above are examples of what we

call short exact sequences.

Definition 1.5 (cf. [Hu]). A short exact sequence of R-modules and R-module

homomorphisms is an exact sequence of the form

0→ A
f−→ B

g−→ C → 0.

That is, im(f) = ker(g), f is a monomorphism, and g is an epimorphism. We may

think of A
f
↪−→ B as embedding A into B and C as isomorphic to the quotient module

B/im(f).

Example 1.6. Given a surjective R-module homomorphism f : M → N , the following

sequence of R-modules and R-module homomorphisms is a short exact sequence:

0→ ker(f)
k
↪−→M

f−→→ N → 0.
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Here, k is the natural embedding of ker(f) into M meaning that any element in the

kernel of f is trivially in the image of k since ker(f) just gets mapped to itself in M .

Moreover, since f ◦ k = 0 by definition of the kernel, we will have that im(k) ⊆ ker(f)

as well. In other words, the image of k is exactly the kernel of f . Similarly, if

f : M → N is an injective R-module homomorphism then note that we may form the

short exact sequence

0→M
f
↪−→ N

c−→→ coker(f)→ 0

where c is the surjection of N onto coker(f) ∼= N/im(f).

Definition 1.7 (cf. [Hu]). We say that the short exact sequence 0 → A
f−→ B

g−→

C → 0 splits if f is a split monomorphism or g is a split epimorphism.

Recall from the end of Section 1.1.2 that if f is a split monomorphism, there

exists a left inverse; likewise, if g is a split epimorphism it has a right inverse. Hence,

by definition, a split short exact sequence is one in which there exists a map h : C → B

such that g ◦ h = IdC , or there exists a map k : B → A such that k ◦ f = IdA. As

R-mod is an abelian category, the splitting lemma holds so that these two conditions

are in fact equivalent. Furthermore, these conditions are equivalent to the statement

that B ∼= A⊕ C, where A ∼= im(f) and C ∼= ker(k).

Note that equivalently, we may characterize the split conditions as saying that

every map l1 : A → im(f) must factor through f and every map l2 : ker(g) → C

must factor through g. As indicated above, the quintessential example of a split short

exact sequence is one of the form

0→ A
f−→ A⊕ C g−→ C → 0

with A and C as previously given. However, not every short exact sequence splits as

demonstrated in the following example.
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Example 1.8. Let R = k[x]/(x2) and I = (x) ⊆ R. Now consider the sequence

0→ I ↪−→ R −→→ k→ 0.

Note that I ∼= k since multiplication by x annihilates any x multiple in R. But clearly,

R 6∼= k⊕ k ∼= I ⊕ k. Hence the short exact sequence does not split.

Regardless of whether they are split or not, short exact sequences are prevalent

in R-mod and are guaranteed by the existence of kernels and cokernels; furthermore,

they are necessary building blocks for long exact sequences, which are our next

construction of interest.

1.2.2 Resolutions and Long Exact Sequences

A long exact sequence is a sequence of R-modules and R-module homomorphisms

that is exact at each degree. That is, the sequence

· · · → An+2
fn+2−−→ An+1

fn+1−−→ An
fn−→ An−1

fn−1−−→ An−2 → · · ·

is a long exact sequence if ker(fn) = im(fn+1) for each n ∈ Z. Here, it could be that

An 6= 0 for each n ∈ Z, An = 0 for n � 0, An = 0 for n � 0, or An = 0 for n � 0

and n� 0. We denote the latter three cases by calling the sequence bounded above,

bounded below, or bounded, respectively. Roughly speaking, we can view a long exact

sequence as finite (bounded), infinite in one direction (bounded above or below), or

doubly infinite (neither bounded above nor below). It is important to note that each

long exact sequence of R-modules can actually be broken down into a sequence of

short exact sequences. There is also a significant connection between short exact

sequences and a special type of long exact sequence, which will be presented shortly.

One interesting question is whether or not a particular functor preserves exactness
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of a sequence. For instance, if we apply the covariant Hom functor to a short exact

sequence, is the sequence

0→ HomR(M,A)
HomR(M,f)−−−−−−−→ HomR(M,B)

HomR(M,g)−−−−−−−→ HomR(M,C)→ 0,

where M is any R-module, also exact? As it turns out HomR(M,−) is only left-exact,

meaning that only the sequence

0→ HomR(M,A)
HomR(M,f)−−−−−−−→ HomR(M,B)

HomR(M,g)−−−−−−−→ HomR(M,C)

is exact. Nonetheless, in the next section we will explore a particular class of

modules for which the first sequence is exact too. Likewise, the contravariant functor

HomR(−,M) is also left-exact in general, but there exist special cases for which it

is exact as well. Alternatively, the tensor functor is right-exact so given the exact

sequence A
f−→ B

g−→ C → 0, the sequence

M ⊗R A
M⊗f−−−→M ⊗R B

M⊗g−−−→M ⊗R C → 0,

for any R-module M is also exact. A significant point to note here is that if we

merely consider the exact sequence A→ B → C, applying M ⊗R − will not yield an

exact sequence, meaning that the surjectivity of g is a necessary assumption for the

right-exactness of ⊗. However, we will later explore certain assumptions which lead

to the exactness of ⊗ as well. For now, we will begin a brief discussion of resolutions

of R-modules.

1.2.2.1 Projective Modules and Resolutions

Definition 1.9 (cf. [Ro], [Hu]). An R-module P is called projective if (and only if)

for every surjection f : N →M and every homomorphism g : P →M there exists an

R-module homomorphism h : P → N such that fh = g, meaning that the diagram
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N

f
����

P
g //

∃h
>>

M

commutes. We may characterize this “lifting” property by stating that any morphism

from P to M factors through an epimorphism on M .

As it turns out, HomR(P,−) is exact if and only if P is projective. Similarly,

we obtain exactness of P ⊗R − for any projective R-module P , since all finitely

generated projective modules (over a commutative ring) are flat (see §2.5 of [Wa]).

However, projective modules do not yield exactness with the contravariant functor

Hom, but rather the dual notion of injective module is needed here. The topics of this

thesis do not involve such modules, so we will omit a discussion, but their definition

and properties are commonly discussed in any algebra text involving R-modules

(e.g. [Hu], [Ro], [DuFo]).

Instead, we turn towards long exact sequences of projective modules. A projective

resolution of an R-module M is an exact sequence of the form

· · · → P3 → P2 → P1 → P0 →M → 0

where Pi is a projective R-module for each i ∈ Z. We refer to the deleted projective

resolution as the above sequence written without M , noting that this sequence will

be exact for each i > 0 but not at i = 0. If there exists such a sequence (deleted

or not) which is finite, then the projective dimension of M , denoted pdR(M), is the

minimal length of all such finite sequences.

Example 1.10. Let M be an R-module such that pdR(M) = 0 so that there exists

a projective resolution of the form 0→ P0 →M → 0. Since this sequence is exact,

note then that P ∼= M and thus M must be projective itself.
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As for the existence of projective resolutions, this depends on whether or not

there are enough projectives in the category. Seemingly a vague statement, this is

actually a rigorous characteristic. Projective modules in R-mod satisfy the categorical

notion of projective objects, which are in fact a generalization of such modules for

any other category (just use the term epimorphism in place of surjection). We say

that an abelian category A has enough projectives if for every object A ∈A there

exists a projective object P ∈A and an epimorphism P → A; that is, if there exists

a short exact sequence of the form 0→ K → P → A→ 0 (See [KaSc, 8.4.1]). It does

in fact hold that R-mod has enough projectives, and we will discuss this further in

Section 1.3 of this chapter.

1.2.2.2 R-Complexes

We now consider one more construction involving the objects and arrows in

R-mod that is a bit more general than a resolution. This type of construction will

of course reappear in Chapter 3 of this thesis as a quintessential building block for

the category introduced then. For now, we simply make precise the definition and a

significant relationship between morphisms of such constructions.

Definition 1.11 (cf. [Ro]). An R-complex is a sequence of R-modules and R-module

homomorphisms such that each homomorphism maps the preceding module into the

kernel of the directly subsequent map. That is, a sequence of the form

C : · · · → Cn+2

∂C
n+2−−−→ Cn+1

∂C
n+1−−−→ Cn

∂C
n−→ Cn−1

∂C
n−1−−−→ Cn−2 → · · ·

where each Cn ∈ R-mod, each ∂C
n is a morphism in R-mod, and Im(∂C

n+1) ⊆ Ker(∂C
n )

for each n ∈ Z.

Note that a deleted projective resolution of an R-module M (where M ∼=

coker ∂1) is a type of R-complex where Cn = 0 for all n < 0, as is any long exact
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sequence of R-modules. However, R-complexes are not exact sequences themselves,

as we would have to impose the additional condition that Ker(∂C
n ) ⊆ Im(∂C

n+1) for

each n ∈ Z in order for an R-complex to be exact. It is common to refer to an

R-complex as (C, ∂C) since the R-module homomorphisms in the sequence, called the

differentials, are an important piece of the complex. As mentioned, we will explore

more characteristics of R-complexes in Chapter 3, but for now we merely define a

few notions necessary for the discussions included in the remainder of this Chapter.

Definition 1.12 (cf. [Ro]). An R-complex morphism (also called a chain map)

f : C→ D is a family of R-module homomorphisms {fn}n∈Z such that ∂Dn fn = fn−1∂
C
n

for each n ∈ Z. Equivalently, we say that all squares in the following diagram

commute:

· · · // Cn+1

fn+1

��

∂Cn+1 // Cn

fn
��

∂Cn // Cn−1

fn−1

��

// · · ·

· · · // Dn+1

∂Dn+1 // Dn
∂Dn // Dn−1

// · · ·

Since R-complexes are not exact, it makes sense to explore to what degree the

complex is not exact; meaning, how much of the kernel of the subsequent map is

not contained in the image of the preceding map? The notion of homology helps us

explore this question.

Definition 1.13 (cf. [Ro]). Let (C, ∂C) be an R-complex and define the homology of

C, denoted H(C), as the graded R-module where

H(C) =
⊕
n

H(C)n

and

Hn(C) :=
Ker(∂C

n )

Im(∂C
n+1)

for all n ∈ Z. Call Hn(C) the nth homology of (C, ∂C).
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First note that given a morphism of complexes f : C → D, we may define a

graded R-module homomorphism H(f) : H(C)→ H(D) where Hn(f)(z + Im∂C
n+1) =

fn(z) + Im∂D
n+1 for any z ∈ Ker(∂C

n ). Moreover, it is clear that the nth homology

represents the equivalence classes of the kernel elements in the nth degree. Of course,

when C is exact, H(C) = 0 at every degree.

By nature of R-complexes, it is rather uninteresting when two R-complexes

are completely the same, in the sense of an R-complex chain map being comprised

of R-module isomorphisms at each degree. Instead, we present two alternative

“equivalencies” of R-complexes, which yield a richer theory. First, we might consider

when the homologies of two complexes are the same; that is to say, H(C) ∼= H(D) at

each degree. In this case, we define a morphism of R-complexes f : C→ D to be a

quasi-isomorphism (or, shorthand, a “quism”) if Hn(f) is an isomorphism for each

n ∈ Z. While this might provide some powerful insight into similarities of complexes

that are not exact, it turns out to be quite useless in examining structural similarities

whenever two R-complexes are both exact, since the homologies are all zero in this

case. Of course, this thesis will deal predominantly with long exact sequences, and so

we focus on the latter type of “equivalency” for R-complexes, known as homotopy

equivalence.

Definition 1.14 (cf. [Ro]). A morphism of R-complexes f : C → D is called null-

homotopic if there exist a family of R-module homomorphisms hn : Cn → Dn+1 such

that fn = hn−1∂
C
n + ∂Dn+1hn for each n ∈ Z. When f is null-homotopic, we write f ∼ 0

and visually it means that each appropriate parallelogram in the diagram below is

equal to the appropriate vertical arrows.

· · · // Cn+1

||
fn+1

��

∂Cn+1 // Cn

fn
��

hn

||

∂Cn // Cn−1

fn−1

��

hn−1

||

// · · ·

· · · // Dn+1

∂Dn+1 // Dn
∂Dn // Dn−1

||
// · · ·
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If f : C → D and g : C → D such that f − g ∼ 0, then we say that f and g are

homotopic, writing f ∼ g.

Remark. Note that homotopy implies a quasi-isomorphism; that is, if f ∼ g, then

H(f) = H(g). Of course, this is trivially true for exact complexes.

Lastly, we say that two R-complexes C and D are homotopically equivalent if

there exist chain maps f : C→ D and g : D→ C such that fg ∼ IdD and gf ∼ IdC. In

this case, we write C ' D.

1.2.3 Derived Functors on R-mod

With regard to the previously discussed constructions of R-modules, we might

ask the question: is there a deeper connection between short and long exact sequences?

In particular, consider the fact that HomR(−,M) is left exact for any M in R-mod.

Hence, given a short exact sequence 0 → A → B → C → 0, we have that the

sequence 0 → HomR(C,M) → HomR(B,M) → HomR(C,M) is exact. One might

ponder whether or not we may extend this sequence to a long exact sequence. While

in general, short exact sequences of objects may lead to long exact sequences in

any number of ways, some categories that are particularly “nice” actually yield a

canonical way to extend such a short left exact sequence to a long exact sequence.

Unsurprisingly, R-mod is such a category and this topic carries us to the discussion

of the derived functors of Hom.

In essence, derived functors are just those derived from other functors; the

predominant derived functors are called Ext and Tor, which are derived from the

functors Hom and ⊗ , respectively. The topics of this thesis do not rely upon Tor to

any great extent, and so we will predominantly discuss Ext with only the comment

that Tor is computed similarly, except for using ⊗ in place of Hom. Additionally,

the description given for Ext will make use of the contravariant Hom and projective
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resolutions, but note that there is a dual description using the covariant Hom and

injective resolutions.

Construction (Ext ofR-Modules, [Ro]). Given a fixedR-moduleN , define ExtiR(−, N)

as the right derived functor of HomR(−, N) for each i ∈ N. That is, for any R-module

M , define

ExtiR(M,N) = Ri HomR(M,N)

where we compute the ith right derived functor as follows1. Let P be any projective

resolution of M (recall since R-mod has enough projectives, such a resolution exists):

P : · · · → Pn → · · · → P1 → P0 →M → 0

Then apply the functor HomR(−,M) to the deleted projective resolution to obtain

0→ HomR(P0,M)→ HomR(P1,M)→ · · · → HomR(Pn,M)→ · · · (†)

and note that this will not be an exact sequence for i > 0. Meaning that we can

compute its cohomology at the ith spot and it will almost never be 0. Given a

sequence S, its cohomology is just the quotient submodule (or, subgroup in a more

general scenario) defined by Hi(S) = ker(si)/im(si−1). Define ExtiR(M,N) as the ith

cohomology of the Hom sequence given above in (†) so that, in this case,

ExtiR(M,N) = Hi(HomR(P,M)) = ker(p∗i )/im(p∗i−1)

where p∗i = HomR(pi+1,M) and p∗i−1 = HomR(pi,M).

Based upon this construction, it should be clear that in a way, Ext measures

Hom’s failure to be exact. Interestingly enough, Ext functors yield a rich theory

significant for understanding differences in R-module structure and are an integral

1Here, R is an operator representing the right derived functor and not to be confused with the

ring R.
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part of Homological Algebra. More on Ext will be discussed in subsequent sections,

but for now we conclude this discussion with the following statement for short exact

sequences in R-mod.

Proposition 1.15 (cf. [Ro]). For any R-module A, every short exact sequence

0→ K → L→M → 0 of R-modules induces a long exact sequence of the form

0→ HomR(A,K)→ HomR(A,L)→ HomR(A,M)→ Ext1
R(A,K)→ Ext1

R(A,L)→ · · ·

and for any R-module B, every short exact sequence 0 → K → L → M → 0 of

R-modules induces a long exact sequence of the form

0→ HomR(M,B)→ HomR(L,B)→ HomR(K,B)→ Ext1
R(M,B)→ Ext1

R(L,B)→ · · ·

1.2.3.1 Extensions

Before moving on to discuss the constructions which are a focal point for the

theory presented in Chapter 2, we provide a definition related to the Ext functors

and, in fact, served as original motivation for these functors. Given R-modules M

and N , we can form an extension of M by N as the short exact sequence of the form

0→ N → E →M → 0

and we say two extensions are equivalent if there exists a commutative diagram

0 // N // E //

��

M // 0

0 // N // E ′ //M // 0

implying that the middle arrow is an isomorphism. Any extension equivalent to the

split short exact sequence

0→ N →M ⊕N →M → 0
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is defined to be the trivial extension. As it turns out, the equivalence classes of

extensions are in one-to-one correspondence with elements in Ext1
R(M,N) and we

can generalize this notion to equivalence classes of i-extensions, which are exact

sequences of the form ξ : 0 → N → Xi → · · · → X1 → M → 0. Unsurprisingly, we

can view elements in each ExtiR(M,N) group as such [ξ]. Of course, there is also

a way of “adjoining” extensions, called Yoneda multiplication, defined by a bilinear

map ExtiR(M,N)× ExtjR(N,L)→ Exti+jR (M,L) where we simply concatenate the i-

and j-extensions

0 // N // Xi
// · · · // X1

// M // 0

0 // L // Yj // · · · // Y1
// N // 0

to obtain the (i+ j)-extension

0 // L // Yj // · · · // Y1
//

  

Xi
// · · · // X1

// M // 0.

N

OO

The language of extensions will be used briefly in Chapter 2 of this thesis, but

the topics will not involve a deeper understanding of extensions past what is explained

above. For a more fulfilling coverage of extensions, the reader should refer to Chapter

14 of [CaEi], §3.4 of [We], or §4 of [Ma4].

1.3 Free Resolutions and Betti Sequences

By definition, all objects in R-mod have a finite generating set; however, the

majority of the time this set is not linearly independent, a characteristic lost by the

looser structure of R-modules as compared to vector spaces. As we previously saw

though, a special type of R-module yields more rigid structure regarding functors

and those derived from them. Moreover, such modules are intimately connected with
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computing the Ext functors, which are in turn utilized to better understand the

structure of R-modules. We now consider another special type of R-module that will

turn out to be of special significance for this thesis: one that is most like a vector

space.

Definition 1.16 (cf. [Ro]). A free R-module F is an R-module with generating set

X such that X is a linearly independent subset of F . We call X the basis of F .

Such a module can be viewed as F =
⊕n

i=1Ri, often denoted Rn, for some

n ∈ N, where each Ri = R and n is the rank of X (F has n linearly independent

elements in its generating set). This is because we can map the generating set of the

module to each ei ∈ Rn (where ei is just the column vector with the multiplicative

identity of R in the ith row).

For a module that is not free, we can make a comparison between itself and

a sequence of free modules, along with the maps between them. The idea is that

this sequence represents the relations on the generating set of M , the relations on

those relations, ad infinitum– thus, as a whole the sequence describes M ’s failure to

be free. This sequence is what we call a free resolution of the R-module M and its

construction is described below.

Construction (cf. [Ro]). Given a finitely-generated R-module, M , let X0 represent

its generating set, which is not linearly independent. Consider the map ε : R|X0| � X0

where each ei 7→ xi for each xi ∈ X0.

0. Compute K1 = ker(ε) ⊆ R|X0| and identify the set of generators for this

submodule, denoting the set X1. Note that by computing K1, we are computing

the relations on the generators of M , and since K1 is likely to not be a free

module itself, we may repeat this process.
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1. Map the basis elements of R|X1| to the generators of K1, and extend this to

obtain a map φ : R|K| → R|X0|. We call φ the free presentation of M and note

that the following diagram represents the given process:

R|X2| d2 // R|X1| φ // R|X0| ε // //M

K2

����
ε2
, �

;;

K1

����
ε1
, �

;;

K0

����
ε0
- 


<<

2. As indicated above, we may continue the outlined process where we denote

K2 = ker(φ) and, letting X2 be the set of generators for K2, define ε2 : R|X2| �

K2. Extending this map, we obtain a free module map d2 : R|X2| → R|X1|.

3. Now, for any i > 2 denote Ki = ker(di−1) ⊆ R|Xi−1| and Xi as the generating

set. Then define εi : R
|Xi| → Ki and extend to get di : R

|Xi| → R|Xi−1|.

At this point, we should make a few observations, the first being that at each

degree i > 0 this sequence of R-modules and R-module homomorphisms is exact by

design since im(di) = Ki = ker(di−1). Therefore, we obtain a long exact sequence of

the following form

F : · · · → Fn
dn−→ Fn−1 → · · · → F2

d2−→ F1
d1−→ F0

where each Fi = R|Xi| is a free R-module. Secondly, it should be clear that every

finitely generated module has a free resolution since we can always map the basis of

a free module to the generating set of a finitely-generated module that is not free, as

described above. Lastly, we can construct a free resolution minimally by choosing a

minimal generating set at each step in the construction described above. Whenever

R is a local or graded ring, this minimal construction is unique. Recall that a local

ring (R,m,k) is a ring with a unique maximal ideal m and residue field k ∼= R/m.

When R is local, we can define the resolution F to be minimal precisely when the

differentials map into the maximal ideal: d(F) ⊆ mF.
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For the remainder of this thesis, (R,m,k) is assumed to be

a local ring unless it is specifically stated otherwise. Note

that this is in addition to our prior assumptions that R is a

commutative noetherian ring.

Hence, every object in R-mod has a minimal free resolution associated to it, and we

will commonly denote this resolution as F. If at any point Ki = 0, then note that

this implies that we obtain an injective map between free modules at the ith step

and, moreover, F is finite in this case. However, it should be noted that F is only

sometimes finite; for instance, Hilbert’s Syzygy Theorem states that the minimal free

resolution of a module over a polynomial ring R = k[x1, . . . , xn] in n indeterminants

will be at most n. But if we instead consider F when M is a module over a different

type of ring (such as a quotient R/I for some ideal I ⊆ R) we will often obtain an

infinite free resolution, as the following examples demonstrate.

Example 1.17. Let R = k[x, y, z]/(x2, y2, y − z), then the free resolution associated

to the quotient module R/(x, y, z) is given by:

· · · → R6


z −x 0 0 0 0
0 z x 0 0 0
0 0 z x 0 0
0 0 0 z −x 0
0 0 0 0 z x


−−−−−−−−−−−−→ R5

 z x 0 0 0
0 z −x 0 0
0 0 z −x 0
0 0 0 z x


−−−−−−−−−−−→ R4

 0 0 0 0
z −x 0 0
0 z x 0
0 0 z x


−−−−−−−−−→ R4

( 0 0 −z x
−1 z x 0
1 0 0 0

)
−−−−−−−−−→ R3 ( x z z )−−−−−→ R

Example 1.18. Let R = k[x, y, z]/(xy, xz, yz), then the free resolution associated

to the quotient module R/(x, y, z) is given by:

· · · → R24 −→ R12


y 0 0 0 x 0 0 0 0 0 0 0
0 z 0 0 0 0 0 0 x 0 0 0
0 0 y 0 0 x 0 0 0 0 0 0
0 0 0 0 0 0 z 0 0 y 0 0
0 0 0 z 0 0 0 0 0 0 x 0
0 0 0 0 0 0 0 z 0 0 0 y


−−−−−−−−−−−−−−−−→ R6

(
0 0 z 0 y 0
z 0 0 0 0 x
0 y 0 x 0 0

)
−−−−−−−−−→ R3 (x y z )−−−−→ R

As exhibited in the examples above, the power of free resolutions is that we

can represent the maps in the sequence as matrices with entries in R, and thus

understanding any module M ∈ R-mod reduces to a linear algebra problem (more or
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less). Now, we recall the notion of projective R-modules and consider their connection

to free modules.

Proposition 1.19 (cf. [Hu]). If F is a free R-module, then it is a projective R-module.

Proof. Let F be a free R-module. Additionally, let M , N be any R-modules such that

there exists a surjection f : N →M and a homomorphism g : F →M as indicated in

the diagram below:

F

g
��

∃h

~~
N

f // //M

Note first that for each ei ∈ E, where E is the basis of F , there exists an xi ∈ M

such that g(ei) = xi. Next, since f is surjective, we know there exists a yi ∈ N for

each i such that f(yi) = xi. So define h : F → N as h(ei) = yi for each ei ∈ E and

clearly the diagram above commutes since fh(ei) = f(yi) = xi = g(ei). Therefore, by

definition F is a projective R-module.

The significance of this statement is that we know every R-module has a free

module associated to it by its free presentation φ and since free modules are projec-

tive, this guarantees that R-mod has enough projectives, as previously mentioned.

Therefore, every M ∈ R-mod has a projective resolution since we can just take a

free resolution of M as a projective resolution. In particular, we can just use a free

resolution when we compute the Ext functors of a given module. Now, in the above

proposition and these statements, we make no use of the fact that R is local, meaning

that these observations apply even if we relax that condition. However, in the local

(or graded) case, we can actually make the stronger statement that the free R-modules

are precisely the projective R-modules. Meaning that any projective resolution of an

R-module is going to be free and this is why our focus rests upon free modules.
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This is especially nice because in R-mod under the local case, understanding

objects in part relies upon understanding sequences of matrices and their sizes.

Note also that as pdR(M) is equivalent to the length of the minimal free resolution

of M , understanding the structure of a module’s minimal free resolution gives us

information about how complicated the homological nature of the module is. As

previously mentioned, though, not all modules have finite free resolutions and, in fact,

there are many interesting R-modules that yield infinite minimal free resolutions as

in the example given above. When this occurs, the tactic for studying these infinite

sequences is to inquire about the patterns that may arise in the sizes of the matrices,

which are equivalent to the ranks of the free modules, in the sequence. We include

the following definitions to help make precise the study of patterns in infinite free

resolutions.

Definition 1.20 (cf. [Ei2]). Let M be an R-module with minimal free resolution

F. The ith syzygy module of M , denoted ΩiM , is defined to be the image of the ith

differential or, equivalently, the kernel of the (i− 1)st differential; that is,

ΩiM = imdi = ker di−1
∼= coker di.

Definition 1.21 (cf. [Ei2]). The ith Betti number of an R-module M is the rank of the

ith free module in the minimal free resolution of M , and we denote it βRi (M) = rk(Fi).

We call the Betti sequence the sequence of Betti numbers of M and denote it

{βRi (M)}i∈N.

While the structure of finite free resolutions is (to some degree) well understood,

that of infinite free resolutions can be quite daunting. Utilizing the Betti sequence

of an R-module and studying possible patterns that can occur in the infinite case

can help, though. Given an R-module and its minimal free resolution, note that we

may write Fi ∼= Rβi . Then, if we consider ExtiR(M,k) = Hi(HomR(F,k)) it should
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be clear that ker(HomR(di),k)/im(HomR(di−1),k) yields exactly kβi and hence we

may alternatively write {bRn (M)} = dimk(ExtiR(M, k)).

Depending on the class of modules, typically defined by the type of ring (or at

least by some aspect of the ring), different patterns can occur in the Betti sequence.

Many algebraists have made great strides in understanding these patterns; for example,

if R is a type of ring called a complete intersection, it has been shown that the free

resolution of the residue field k ∼= R/m has a Betti sequence that is eventually given

by a polynomial (see [Ta, 6], cf. [AvGaPe]). We will explore this type of ring and

the known patterns for Betti sequences of modules over this type of ring in the next

section.

1.4 An Important Invariant and a Special Type of Ring

To understand the additional structure a complete intersection ring provides,

we must first understand the notion of a regular sequence. Roughly speaking, such a

sequence can be thought of as a sequence in a commutative ring that is as independent

as possible. Recall that an element r ∈ R is a non zero-divisor if for s ∈ R, rs = 0

implies s = 0. We also have this notion for an R-module M : r ∈ R is called M -

regular if rx = 0 for x ∈M implies x = 0. Therefore, we may compose a sequence of

successively M -regular elements, as described in the following definition.

Definition 1.22 (cf. [BrHe]). A sequence f = f1, . . . , fc ∈ R is called an M -regular

sequence if the following conditions hold:

1. fi is a regular element on M/(f1, . . . , fi−1)M for each i = 1, . . . , c; and2

2. M/fM 6= 0.

2By convention, when i = 1 it is assumed that f1 is a regular element (non zero-divisor) on M .
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It is important to note just a few things; first and foremost, we may consider a

regular sequence on a ring rather than a module, in which case we would just replace

M in the definition above with R. Moreover, an R-regular element is just a non

zero-divisor in the ring and, rather than referring to an R-regular sequence, we would

call f a regular sequence. Secondly, in the case where R is local, as we have assumed,

if we take the regular sequence to be in the maximal ideal, f ∈ m, then the latter

condition in the definition is guaranteed by Nakayama’s Lemma.

The notion of regular sequences gives rise to two significant concepts: an

invariant in R-mod and the primary step towards defining the type of ring known

as a complete intersection. We will begin by exploring the former topic, along with

related facts and results which will be employed in later sections of this thesis; then,

we shall unravel the structure of a complete intersection ring. The diligent reader

should refer to [BrHe] or [Ei2] for a more thorough coverage of these topics.

1.4.1 Depth of an R-Module

By definition, if f is an M -regular sequence, it should be clear that there exists a

strictly ascending chain of ideals in R: (f1) ( (f1, f2) ( · · · ( (f1, f2, . . . , fc). For an

ideal I ⊆ R such that IM 6= M , call an M -sequence f ∈ I maximal in I if f1, . . . , fc+1

is not an M -sequence for any fc+1 ∈ I. It actually holds (for noetherian rings) that

all maximal M -sequences have the same length, given by

c = min{i | ExtiR(R/I,M) 6= 0}

and this is called the grade of I on M, denoted grade(I,M). If IM = M , then we set

grade(I,M) =∞ which is true if and only if ExtiR(R/I,M) = 0 for all i. When R

is a local ring, as we have assumed, then we can consider the grade of the maximal

ideal m on M ∈ R-mod :
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Definition 1.23 (cf. [BrHe]). Let (R,m,k) be a noetherian local ring and M a

(nonzero) finitely-generated R-module. Then the depth of M is defined to be:

depthRM = min{i | ExtiR(k,M) 6= 0}.

We might also consider the depth of a ring, where we just consider maximal

regular sequences on the ring itself. Depth serves as an important invariant of rings

and modules, since in some sense it gives us a measure of size of the ring or module.

Moreover, it plays a significant role in better understanding these algebraic structures;

for example, it is used to define an interesting class of modules (Cohen-Macaulay)

and is connected with the projective dimension of an R-module, as given in the

Auslander-Buchbaum formula. Our interest in depth will arise in Chapter 2, as we

will discover how it can be connected with the main topic of this thesis.

1.4.2 Modules over Complete Intersection Rings

A regular local ring is a Notherian local ring in which the minimum number of

generators of its maximal ideal is equivalent to its Krull dimension3. That is, if R is a

noetherian local ring then it is additionally regular if and only if dimkm/m
2 = dimR.

For example, any field k is a regular local ring and, more generally, the ring of formal

power series k[[x1, . . . , xd]] is a regular local ring. This type of ring, together with

regular sequences, will render the type of ring known as a complete intersection.

Definition 1.24 (cf. [BrHe]). A ring R is a complete intersection if it is the completion

of a regular local ring Q modulo an ideal generated by a Q-regular sequence: R ∼=

Q̂/(f).

3The Krull dimension of a ring R is the supremum of the lengths of all chains of prime ideals in

R (cf. [Ei2]).
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Viewing complete intersections as the completion of a factor of the given form

is more of a technical detail than an imperative necessity to understanding what

complete intersection rings are. In an informal manner, we can think of these rings

as the subset of local rings that are defined with the minimum possible number of

relations due to the fact that the process of “factoring out” an ideal generated by

a regular sequence “cuts down” on the possible relations which can be constructed

from the regular sequence.

As it turns out, modules over these types of rings yield a tractable study of the

associated minimal free resolutions. In 1954, Tate showed that bRn (k) is eventually

given by a polynomial (see [Ta]). Subsequently, in 1974, Gulliksen proved that each

bRn (M) is a quasi-polynomial of period 2 and degree smaller than the codimension

(see [Gu]). Later, Avramov demonstrated that bRn (k) has exponential growth unless

R is a complete intersection (see [Av, 1.8]). Finally, in 1997, Avramov, Gasharov, and

Peeva published a paper (see [AvGaPe]) highlighting that although the beginning of

a free resolution (over a complete intersection) is often unstable, patterns do emerge

at infinity. In particular, they proved that {βRn (M)} is eventually either strictly

increasing or constant. Of essential significance is their generalization of modules over

a complete intersection to the notion of modules of finite CI-dimension, for which

the same statement holds.

In the next chapter, we will discuss these topics in further detail, with the

goal of introducing the notion, originally defined in R-mod, which inspired the main

definitions of this thesis.
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CHAPTER 2

Endomorphisms on Free Resolutions and Critical Degree

We now turn towards the main topic of this thesis: the critical degree of an

R-module. As a reminder, (R,m,k) is a commutative noetherian local ring and we

will denote M for a finitely generated R-module. The notion of critical degree was

originally introduced in Section 7 of the paper Complete Intersection Dimension

([AvGaPe]), in which the authors introduced a new type of dimension for finitely

generated modules. This dimension, in some sense, gives a generalization for modules

over complete intersection rings and is motivated by the nice structure of such modules.

As discussed in Chapter 1, patterns in the Betti sequence of a module over a complete

intersection eventually arise; this, of course, results in the study of such infinite free

resolutions becoming slightly less daunting.

One of the original papers which gave way to observation of these patterns

is Eisenbud’s Homological Algebra on a Complete Intersection, with an Application

to Group Representations (see [Ei]). In this paper, he gives a different approach

to Gulliksen’s work in [Gu], focusing on a special case which we include in this

Chapter. After presenting the origins for the theory further established in [AvGaPe],

we introduce the definition which pinpoints the location of where patterns in free

resolutions over complete intersections are guaranteed to arise. This definition, in

turn, aids in the proof of eventual nondecreasing growth of the Betti sequence. All

results presented in this chapter can be found with the same or more generality in

the aforementioned papers.
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2.1 Endomorphisms on Resolutions

In Chapter 1, we presented the essential tools for understanding R-mod and

the theory of free resolutions (which are intimately connected with the topics of

this thesis). To carry these topics forward, we will begin with a discussion of

endomorphisms on (necessarily minimal) free resolutions. Let R be as previously

indicated (a commutative local noetherian ring), M a finitely generated R-module,

and F its minimal free resolution. Then a (degree −q < 0) chain endomorphism on F

is defined to be a family of R-module homomorphisms {µn}∞n=q, with µn : Fn → Fn−q,

and such that dn−qµn = µn−1dn for each n ∈ Z. For the remainder of this section,

assume R is additionally a complete intersection ring; we will explore a special class

of degree −2 endomorphisms on F called the CI operators.1

2.1.1 CI Operators

In 1980, Eisenbud published the aforesaid paper ([Ei]), which served as moti-

vation for the main topics relayed in this chapter, and thus, the primary thematic

elements of this thesis. The idea of his paper is to study how homological algebra over

a hypersurface ring R = Q/(f) differs from that over Q, where Q itself is a quotient

of a regular local ring by an ideal generated by a nonunit. In particular, when we

consider a free resolution over the hypersurface ring there is a natural manner in

which we can identify a well-defined morphism on the resolution.

Let Q be a regular local ring and f = f1, . . . , fc a Q-regular sequence. Further-

more, let R = Q/(f) and suppose M is a finitely generated R-module with (F, d) as

its minimal free resolution. Since there exists the ring surjection Q� R, we can lift

(F, d) to Q so that we obtain a sequence of Q-modules and Q-module homomorphisms.

Denote d̃ as the lifting of the differentials to Q and note it holds that d = R ⊗R d̃.

1also sometimes called “Eisenbud operators”.
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Moreover, keep in mind that while d2 = 0, after the lifting d̃2 6= 0; meaning, (F, d, R)

is an R-complex but it should be clear that (F, d̃, Q) is not a Q-complex. It turns

out, though, that we can identify maps t̃j : (F, d̃, Q)→ (F[2], d̃, Q) for each 1 ≤ j ≤ c

such that

d̃2 =
c∑
j=1

fj t̃j.

Essentially, each t̃j is the component preventing F̃ from being a Q-complex. Define

the CI operators on F associated to the sequence f1, . . . , fc as tj := R⊗R t̃j . We may

denote each operator as tj(Q, {fi},F) in order to specify the dependency on the ring,

regular sequence, and free resolution but whenever these choices are unambiguous we

simply write tj. Additionally, note that in the case where R is a hypersurface (when

c = 1), we have just one operator where d̃2 = f t̃.

Proposition 2.1 (Properties of CI Operators, [Ei]). Suppose f = f1, . . . , fc is a Q-

regular sequence, α : (F, dF )→ (G, dG) is a chain map of resolutions over R = Q/(f),

and d̃F ,d̃G are the appropriate liftings to Q. Then each of the following hold:

1. Each tj(Q, {fi},F) is a degree −2 chain endomorphism F→ F[2].

2. Each tj(Q, {fi},F) is uniquely determined up to homotopy by choice of Q,

(F, d̃F ), and f .

3. Each tj(Q, {fi},F) is independent of the choice of the lifting d̃F , up to homotopy.

4. The CI operators commute up to homotopy with α. That is, let sj = sj(Q, {fi},G);

then αtj ∼ sjα for each j = 1, . . . , c.

For proof of the above properties, see Propositions 1.1, 1.2, and 1.3, along with

Corollary 1.4, in [Ei]. As these proofs are rather straightforward, so they will be

omitted here. Note that we may apply the last part of the above proposition with

α = 1: F→ F to see that the following statement holds.

Corollary 2.2 ([Ei], 1.5). The CI operators commute with each other, up to homotopy.
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2.1.2 The Cohomology Operators on the Graded S-Module, Ext∗R(M, k)

Now that it has been established {tj}cj=1 is a well-defined class of degree −2

endomorphisms on (F, d, R), we consider a related class of operators called the

cohomology operators. First and foremost, note that Ext∗R(M, k) is a graded R-

module, with the grading defined by the homological degree of F so that we may

write

Ext∗R(M, k) =
⊕
i

ExtiR(M, k).

Recall that each ExtiR(M,k) = Hi(HomR(F,k)), which is a factor submodule

of the R-module HomR(Fi+1,k). Thus, each ExtiR(M,k) is an R-module itself and so

if we set deg(ξ) = i for any ξ ∈ ExtiR(M,k) then it should be clear why Ext∗R(M, k)

is a graded R-module. However, it turns out that we may impose additional module

structure on Ext∗R(M,k). Given tj = (Q, {fi},F) such that F is a free resolution of M

over R = Q/f and Q is a regular local ring, define χj := HomR(tj,k). By definition,

each χj will actually be a degree 2 endomorphism on the R-complex HomR(F, k)

and so for each i ∈ N we obtain an induced map χji : ExtiR(M, k)→ Exti+2
R (M,k) of

R-modules.2

To make explicit the action of each χj on Ext∗R(M, k), note that for any ξ ∈

ExtiR(M, k) we may consider an appropriate representative ξ̄ ∈ ker(HomR(di+1,k)) \

im(HomR(di,k)) ⊆ HomR(Fi,k). That is, we may view ξ̄ as an R-module map

ξ̄ : Fi → k and thus χji(ξ̄) = ξ̄ ◦ tj,i+2 as depicted in the following diagram.

Fi
ξ̄ // k

Fi+2

tj,i+2

OO

ξ̄◦tj,i+2

>>

2Note that since F is minimal, we have that ExtiR(M,k) = HomR(Fi,k) for each integer i > 0.
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Therefore, we can view the action of each χj as composition of R-module morphisms,

taking the perspective that elements in ExtiR(M, k) are maps from Fi to k which are

in the kernel of HomR(di+1,k) but not in the image of HomR(di,k). Another manner

in which we may view elements in ExtiR(M,k) is as equivalence classes of i-extensions

of M by k. From this perspective, it is easier to see the action of the graded algebras

Ext∗R(M,M) or Ext∗R(k,k) on Ext∗R(M,k), given by Yoneda multiplication, with

reduction to action by the χj ’s explained subsequently in Section 2.3.1 of this chapter.

Regardless of how elements in ExtiR(M,k) are viewed, Ext∗R(M,k) has a clear module

structure over R[χ1, . . . , χc] and we call this polynomial ring the ring of cohomology

operators, denoting it S = R[χ1, . . . , χc] = R[χ] throughout this thesis.

Remark. Coupled with the fact that each ExtiR(M, k) is additionally a k-vector

space, we even have that Ext∗R(M, k) is a graded module over the polynomial ring

k[χ1, . . . , χc] which we will also commonly denote as the ring of cohomology operators,

S. In many cases the reader may assume either definition of S, but in some scenarios

taking Ext∗R(M,k) as a module over the latter polynomial ring is necessary; it should

be clear via context when this is the case. Note, for example, if we refer to the maximal

ideal (χ1, . . . , χc) ⊆ S it should be clear that we mean the latter definition since this

ideal is not maximal in R[χ]. We may at times also denote the ideal X = (χ1, . . . , χc).

In [Ei], Eisenbud proves Tor∗R(M, k) is unambiguously an R[t1, . . . , tc]-module

and uses this module in the proof of his main theorem. While we will present proof

of the same result at the end of this section, we will instead use the graded Ext-

module. A few years after the CI operators were first introduced in Eisenbud’s paper,

Avramov gave an analogue for injective complexes in [Av2] and was able to show that

Ext∗R(M, k) is unambiguously an S-module. Specifically, the cohomology operators

will coincide for any free (projective) resolution of M used or any injective resolution

of k used in the computation of ExtiR(M,k), thus yielding the same S-modules.
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Remark. Both Eisenbud and Avramov prove Tor∗R(M,N) and Ext∗R(M,N) are un-

ambiguously R[t1, . . . , tc]- and S-modules, where N is any R-module. For reasons that

will become apparent throughout this thesis, our focus is on when N = k, but we will

keep N general for the following clarification of what is meant by “unambiguously”.

Proposition 2.3 ([Av2], 1.4). Let F be a free resolution of the R-module M and I any

injective resolution of the R-module N . Then the following diagram is commutative:

H∗(HomR(F, N))

H∗(HomR(tj(Q,{fi},F),N))

��

η∗ // H∗(HomR(F, I))

H∗(uj(Q,{fi},HomR(F,I))

��

H∗(HomR(M, I))
ε∗oo

H∗(HomR(M,uj(Q,{fi},I)))

��
H∗(HomR(F, N))

η∗ // H∗(HomR(F, I)) H∗(HomR(M, I))
ε∗oo

After choosing the appropriate operators t̃j and ũj , with the process for choosing

the latter outlined in [Av2], the proof of the above proposition boils down to checking

that Hom(t̃j, Ĩ) + Hom(F̃, ũj) works as the operators ũj(Q, {fi},HomR(F̃, Ĩ)) on the

complex HomR(F̃, Ĩ). The point of all this is that by Proposition 2.1 along with

analogous statements discussed in [Av2], the χj are first independent of the choice of

F as they are independent of the choice of I. The proposition given above states that

if we were instead to identify Ext∗R(M,N) with H∗(HomR(M, I)) for some injective

resolution I of N , then we obtain the H∗(Hom(M,uj)) which agree with the χj

constructed from starting with a free resolution F of M .

Furthermore, similarly to the CI operators, the cohomology operators commute

with each other; that is, χjχi = χiχj for each 1 ≤ i, j ≤ c. Additionally, note that

S = R[χ1, . . . , χc] is a graded polynomial ring with deg(χj) = 2 for each j = 1, . . . , c

and deg(r) = 0 for all r ∈ R. Therefore, Ext∗R(M,N) has a well-defined module

structure over the graded ring S and this module is functorial, meaning that for any

M ′ →M and N → N ′ the following square commutes:
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Ext∗R(M,N) //

��

Ext∗R(M,N ′)

��
Ext∗R(M ′, N) // Ext∗R(M ′, N ′)

The functoriality of Ext∗R(M,N), like Tor∗R(M,N), is guaranteed by the natu-

rality of the χj for each j. An important note is that, in [Av2] Avramov gives the

finiteness theorem analogue to Gullisken’s main result in [Gu] with respect to the

cohomology operators. That is, he shows Ext∗R(M,N) is finitely generated as a graded

S-module if ExtiQ(M,N) = 0 for i � 0.3 In the next section, we present a proof

analogous to the main theorem of [Ei], but with respect to Ext and the cohomology

operators.

2.1.3 Surjectivity of a CI Operator on the Minimal Free Resolution

Let R be a complete intersection of the form Q/(f) and consider any finitely

generated R-module M . As discussed previously, Ext∗R(M, k) is a graded module over

the graded polynomial ring S = R[χ1, . . . , χc]. It should be clear that nonzero-divisors

of a particular degree in Ext∗R(M, k) correlate to surjective R-module homomorphisms

at a particular homological degree from F to F[2] (refer to Definition 2 in Chapter 1).

In [Ei], Theorem 3.1 is the result showcasing this, but Eisenbud proves the statement

utilizing the graded module Tor∗R(M, k) over the graded ring R[t1, . . . , tc]. We include

the proof with respect to the graded Ext module, since the same argument echoes

throughout later results in this thesis.

Theorem 2.4 (Main Theorem from [Ei], §3). Let Q be a regular local ring with

infinite residue class and let (f) ⊆ Q represent an ideal generated by a regular Q-

3In [Av2], Avramov shows the statement with the condition that either the projective dimension

of M as a Q-module is finite or the injective dimension of N as a Q-module is finite. However, it is

also true under the more general assumption given.
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sequence. Given R = Q/(f) and a minimal R-free resolution F of a finitely generated

R-module M , there exists a Q-sequence f1, . . . , fc generating (f) such that

t1(Q, {fj},F) : Fn+2 → Fn

is an epimorphism for all sufficiently large n.

Before giving the proof of this result, we make a few notes of importance, which

will distinguish the differences in our argument from that given in [Ei]. Eisenbud

provides two lemmas which aid his goal in proving his main theorem; first, he justifies

that Tor∗R(M, k) is an artinian module over R[t1, . . . , tc] (and even k[t1, . . . , tc]). The

purpose of this is to demonstrate that the dual of this module will be noetherian, so

that he can attain his goal by making use of the ACC being satisfied in the dual.

Then, dualizing again, the result is preserved. However, now that it is well known

Ext∗R(M,k) is a module over S, it behooves us to use this module instead as it is

noetherian (see [Av2], [AvBu]), thus allowing us to disregard the purpose of Lemma

3.2 in [Ei]. This, of course, enables us to present a more straightforward proof (albeit

less general), following a similar argument to Lemma 3.3 in [Ei].

Proof of Theorem 1. Let g1, . . . , gc be any Q-sequence generating (f) and denote

tj = tj(Q, {gi},F). Our goal is to show that there exist elements aj ∈ Q for

j = 1, . . . , c such that the degree −2 map

t = t1 + Σn
j=2ajtj

from {Fn+2} to {Fn} is an epimorphism for all sufficiently large n. Then, if we set

f1 = g1; fj = gj − ajg1, 2 ≤ j ≤ c

it should be clear that f1, . . . , fc generate f and we may apply the change of rings

proposition to see that t1(Q, {fi},F) = t1 + Σaiti. To prove existence of such aj,
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first denote E as the largest artinian submodule of Ext∗R(M,k) and note that since

it is also noetherian, it will have finite length and thus must be finitely generated.

Moreover, since E is the largest artinian submodule, it must contain all socle elements

of Ext∗R(M, k). Meaning, E is generated by only finitely many degrees in Ext∗R(M, k)

and so there must exist a positive integer N0 <∞ such that

E≥N0 = Ext≥N0

R (M, k)

contains no nonzero element annihilated by the maximal ideal (χ1, . . . , χc) ⊆ S. Now,

denote P1, . . . , Pr as the associated primes of the zero module in E≥N0 so that
⋃r
k=1 Pk

represents the set of zero-divisors on E≥N0 . Consider the set

χ1 +
c∑
i=2

kχi

and note that this set generates the maximal ideal X. But since there is no zero-

divisor of E≥N0 contained in (χ1, . . . , χc), this set cannot be contained in any Pk.

Furthermore, since k is infinite there exists a subspace of k[χ1, . . . , χc] for which

χ1 +
∑c

i=2 kχi is a translation; and so, because there are only finitely many Pk, it

must hold that

χ1 +
c∑
i=2

kχi 6⊆
r⋃

k=1

Pk

meaning there exists a linear form

χ = χ1 +
c∑
i=2

αjχj, αj ∈ k

such that χ is a non zero-divisor on E≥N0 . Now, for each j = 1, . . . , c set aj equal to

a pre-image of αj in R so that χ̂ = χ1 +
∑c

i=2 ajχj ∈ S and note that Nakayama’s

Lemma tells us that χ̂ is also a non zero-divisor on E≥N0 . Lastly, χ̂ is a non zero-

divisor on E≥N if and only if χ̂n : ExtnR(M, k) → Extn+2
R (M, k) is injective for all

n > N ; equivalently,

t̂ = t1 +
c∑
i=2

ajtj
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is surjective on Fn for all n > N , where χ̂ = HomR(t̂,k).

2.2 Critical Degree and Finiteness

Given Eisenbud’s main theorem and proof, we see that under certain conditions,

such as when R is a complete intersection, we are guaranteed an endomorphism

for which the R-module homomorphisms eventually become surjective for all higher

homological degrees. This of course motivates the question, first, of whether there

exist more general conditions for which similar behavior occurs; secondly, given the

proof of the statement over a complete intersection, it seems that we can in fact

identify where these surjections begin in a free resolution.

Moreover, it should not be too much of a jump to understand the significance

of these surjections; guaranteed surjections of the form identified by Eisenbud lead to

guaranteed growth of every other Betti number. In fact, as we shall see shortly, it is

possible to ascertain that the Betti sequence eventually becomes nondecreasing in

the case of a complete intersection. Thus, complexity of an R-module is very deeply

connected with these topics, as it captures the growth of a module’s Betti numbers.

Recall that the complexity of an R-module is defined to be

cxRM = inf{d | lim
n→∞

bRn (M)

nd
= 0}

and hence, in some sense, complexity of M measures the “size” of its minimal free

resolution F. For example, when pdRM <∞, it should be clear that cxRM = 0 by

definition. On the other hand if F is a resolution with constant Betti numbers, then

cxRM = 1. Linear growth is depicted by cxRM = 2, quadratic growth by cxRM = 3,

and so on. As it turns out, whenever R is not a complete intersection, cxR k =∞,

since {bRn (k)} eventually has exponential growth [Av]. However, when R is a complete

intersection, cxR k <∞ since {bRn (k)} is eventually given by a polynomial, first shown
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in [Ta]. In fact, it will be demonstrated shortly that for any R-module M over a

complete intersection it holds that cxRM <∞, as it was originally proven in [Gu]

and noted by [AvGaPe]. We now move on to understanding the answers to both of

the questions posed at the beginning of this section.

2.2.1 Critical Degree of an R-module

Although we do not make explicit use of complete intersection dimension

throughout this thesis, we begin with presenting the definition so that we may

reference it throughout. We also discuss some significant characteristics, making it a

meaningful measure of R-modules.

Definition 2.5 ([AvGaPe], 1.2). Given a nonzero finitely generated module M over

R, the CI-dimension (shorthand for complete intersection dimension) of M is

CI-dimRM = inf{pdQM
′ − pdQR

′ |R→ R′ ←− Q is a quasi-deformation}

and set CI-dimR 0 = 0.

This dimension can help generalize the class of modules over complete intersec-

tion rings, as seen in the following theorem.

Theorem 2.6 ([AvGaPe], 1.3). If R is a complete intersection ring then each R-

module M has finite CI-dimension. Conversely, if CI-dimR k < ∞, then R is a

complete intersection ring.

We also include the connection between CI-dimension of an R-module and that

of its syzygy modules.

Lemma 2.7 ([AvGaPe], 1.9). If M 6= 0 is a finitely generated module over R, then

CI-dimR Ωn(M) = max{CI-dimRM − n, 0}

for n ≥ 0. If furthermore, CI-dimRM <∞ then it holds that

depthR ΩnM = min{depthRM + n, depthR}
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for 0 ≤ n ≤ pdRM .

Thus, the depth lemma (cf. [BrHe, 1.2.9]) generalizes to modules of finite

CI-dimension, and we have an analogous reduction of CI-dimension for the syzygy

sequence as well. Lastly, we may also characterize the CI-dimension of a module as

intermediary between Gorenstein dimension4 and projective dimension.

Theorem 2.8 ([AvGaPe], 1.4). For each finitely generated R-module M , it holds

that

G-dimRM ≤ CI-dimRM ≤ pdRM

and if one of these dimensions is finite then it equals the dimension(s) to the left.

Corollary 2.9 ([AvGaPe], 1.4). If CI-dimRM <∞ then CI-dimRM = depthR −

depthRM .

The above assertion states that, when finite, CI-dimension satisfies the Auslander-

Buchsbaum formula (cf. [BrHe, 1.3.3]), just as Gorenstein dimension does. We will

commonly refer to g = depthR− depthRM since, at minimum, we tend to assume

that G-dimension is finite (e.g. when R is Gorenstein). However, the topics we discuss

are predominantly devoted to modules for which pdRM = ∞, since the goal is to

better understand infinite free resolutions, and thus their modules. In particular, we

further focus on R-modules with finite CI-dimension, since we will see in subsequent

sections that realizable patterns in {bRn (M)} are then guaranteed to occur. The

notion of critical degree for a finitely generated R-module was originally introduced

in [AvGaPe], along with these results, and gives a name to the homological degree at

which patterns may arise in a module’s Betti sequence. The definition below makes

this notion more precise.

4For the definition of Gorenstein dimension, the reader may refer to [AvMa].
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Definition 2.10 ([AvGaPe], 7.15). An R-module M has critical degree of at most

s, denoted by crdegRM ≤ s, if its minimal resolution F has a chain endomorphism

µ of degree −q < 0 such that µn+q : Fn+q → Fn is surjective for all n > s. If no

such s exists, then set crdegRM =∞. Note that crdegR0 = −∞ and for any M 6= 0,

−1 ≤ crdegRM ≤ ∞.

It should be obvious that the critical degree is mainly useful when it is finite. For

example, when M 6= 0 and pdRM is finite, crdegRM is equivalent to the projective

dimension (which is in turn equivalent to CI-dimRM = G-dimRM , by the previous

theorem). Of course, if we only have finiteness of CI-dimRM , then is the critical

degree of M finite too? As it turns out, crdegRM < ∞ whenever CI-dimRM < ∞

and, more significantly, the Betti sequence {βRn (M)} is non-decreasing after crdegRM

steps. This result will be discussed in Section 2.3.3 of this chapter; first, we explore

the patterns that may occur in the Betti sequence if we only assume finiteness of the

critical degree itself (but not necessarily the CI-dimension).

2.2.2 Finiteness of Critical Degree

Since the critical degree of an R-module communicates the existence of an

endomorphism on F for which it becomes certain that rk(Fn+q) ≥ rk(Fn) for all n

sufficiently large, there is a very clear connection between patterns in {bRn (M)}, as

outlined by the complexity, and crdegRM.

Theorem 2.11 ([AvGaPe], 7.8). Suppose M is a finitely generated R-module such

that crdegRM = s < ∞ and µ : F → F is an endomorphism, of degree q, which

5In the original paper, the authors specified that q < 0; yet, given how they defined µ degree-wise,

it must hold that q > 0 for the definition to make sense. We have altered only this typo in the

definition presented in this thesis.
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realizes s. Additionally, denote g = depthR− depthRM . Then, one of the following

cases occurs:

(i) The cxRM ≤ 1 and M has period q after g steps.

(ii) The cxRM > 1 and bRnM < bRn+qM for n > s.

If furthermore q ≤ 2, then bRnM < bRn+1M for n > s, with equality when cxRM ≤ 1.

Before presentation of the proof, we re-emphasize that we may take g to be

the Gorenstein dimension of M if G-dimRM <∞. However, there is no assumption

of this, nor any assumption of finite CI-dimension. Theorem 7.3, listed in Section

2.3.3, focuses on what can be said with the additional assumption that M has finite

CI-dimension. We now present the proof of Theorem 7.8, as given in [AvGaPe], with

full detail below.

Proof. Let µ be an endomorphism on F that realizes crdegRM. Furthermore, denote

Mn the nth syzygy module ∂(Fn) ⊆ Fn−1 for all n ∈ Z, and let µ̃ : Fq → M be the

composition of µq : Fq → F0 with the augmentation map F0 → M . Now, we can

form the pushout of ∂q and µ̃ in the following manner. Consider the diagram

Fq

µ̃

��

∂q //
h

��

f
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Fq−1
p�

��

��
M � p

//

//M(µ)

C

where M(µ) is the coequalizer of ∂q and µ̃, which is just a quotient of the coproduct

of M and Fq−1. Recall that in R-mod the coproduct is equivalent to the direct sum,

so M(µ) = M⊕Fq−1

im(f−h)
. (See [Ma] for further details regarding the pushout.) Thus, we

obtain the pushout diagram:
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Fq+1

∂q+1 // Fq

µ̃

��

∂q // Fq−1

��

∂q−1 // Fq−2

∂q−2 // · · · ∂1 // F0
//M // 0

0 //M //M(µ) // Fq−2

∂q−2 // · · · ∂1 // F0
//M // 0

Since M(µ) is a quotient of M ⊕ Fq−1, we can consider the following exact sequences

0→M →M(µ)→Mq−1 → 0 (2.1)

and

0→Mq−1 → Fq−2
∂q−2−−→ · · · ∂1−→M → 0 (2.2)

where (2.1) can be viewed as the extension of Mq−1 by M and (2.2) is the (q − 1)-

extension defining an equivalence class in Extq−1
R (M,Mq−1). Thus, we can consider

the Yoneda product Extq−1
R (M,Mq−1)× Ext1

R(Mq−1,M)→ ExtqR(M,M) and notice

that the bottom row in the pushout diagram above is just the Yoneda splice of (2.1)

and (2.2). Now note that (2.1) induces a long exact sequence in cohomology of the

form

0→ HomR(Mq−1, k)→ HomR(M(µ), k)→ HomR(M, k)
α0

−→ Ext1
R(Mq−1,k)→ · · ·

· · · → ExtnR(Mq−1, k)→ ExtnR(M(µ), k)→ ExtnR(M, k)
αn−−→ Extn+1

R (Mq−1, k)→ · · ·

with connecting homomorphism αn for each n ∈ Z. Moreover, note that (2.2)

and the bottom row in the pushout diagram each induce long exact sequences

with iterated connecting homomorphisms µn : ExtnR(M,k) → Extn+q
R (M, k) and

βn+1 : Extn+1
R (Mq−1,k)→ Ext

(n+1)+(q−1)
R (M,k) for each n ∈ Z. And since the bottom

row is just the splice of (2.1) and (2.2), it holds that µn = ±βn+1αn. Now it should

be clear that ExtnR(Mq−1,k) ∼= Extn+q
R (M,k) since Mq−1 = Ωq−1M and so we can use

Σq−1F when computing the former nth Ext module to see that it coincides with the

latter.6 Thus, βn+1 is bijective for all n ∈ Z and so we may rewrite the long exact

sequence in the form

· · · → Extn+q−1
R (M, k)→ ExtnR(M(µ), k)→ ExtnR(M, k) µn−−→ Extn+q

R (M, k)→ Extn+1
R (M(µ), k)→ · · ·

6Refer to Chapter 3 for definition of Σ.
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Consider now that we may write µn = HomR(µn+q, k) and by definition of an

epimorphism in R-mod, it should be clear that µn is injective for all n > s since

µn+q : Fn+q → Fn is an epimorphism for all n > s by assumption. Moreover, since

each Ext module in the sequence above is additionally a k-vector space, µn splits.

Therefore, the long exact sequence above can be broken up into split short exact

sequences of the form

0→ ExtnR(M,k)
µn

↪−→ Extn+q
R (M,k)→→ Extn+1

R (M(µ), k)→ 0

for all n > s. Hence, Extn+q
R (M,k) ∼= ExtnR(M, k)

⊕
Extn+1

R (M(µ),k) for all n > s

and so

bRn+q(M) = bRn (M) + bRn+1(M(µ))

for all such n. It should be clear from this statement that cxRM ≤ 1 precisely when

pdRM(µ) < ∞ since then bRn+1(M(µ)) = 0 for all n � s. If however, cxRM > 1

then note that bRn+1(M(µ)) 6= 0 since otherwise there would be equality of bRn (M)

and bRn+q(M) for all n � 0. Thus, part (2.11) of the theorem has been shown. To

justify the remainder of part (2.11), suppose cxRM ≤ 1 and denote r = pdRM(µ) =

depthR−depthRM(µ) ≥ 0. First note that in this case, µn must be an isomorphism

for all n > r since Extn+1
R (M(µ),k) will then be 0. Meaning that for n > r, µn is

a surjective homomorphism of free R-modules with the same rank and thus, as a

consequence of Nakayama’s lemma, µn must be an isomorphism.

Now that we have shown M has period q after r steps, it remains to show that

g ≥ r; that is, depthRM ≤ depthRM(µ). For the sake of contradiction, first assume

depthRM 
 depthR and so, since Mq−1 is a syzygy of M , we see that depthRMq−1 ≥

depthR by the depth formula depthR ΩnM ≥ min{depthRM + n, depthR}. Then

note that (2.1) implies depthRM(µ) ≥ min{depthRM, depthRMq−1} so it must hold

that depthRM(µ) ≥ depthR. But depthRM(µ) cannot be strictly greater than
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depthR since r ≥ 0, so it must be that depthRM(µ) = depthR implying M(µ) is a

free R-module. And so this means that we may indefinitely repeat the bottom row of

the original pushout diagram to construct a free resolution of M ; namely, M is periodic

and thus an infinite syzygy. Of course, this implies that depthRM = depthR, which

contradicts the original assumption. So now that we see depthRM ≤ depthR, note

also that depthRM ≤ depthRM(q − 1), implying that depthRMq−1 ≥ depthRM

again by the depth formula. This together with (2.1) gives the implication that

depthRM(µ) ≥ depthRM , as desired.

Hence, it only remains to show the last assertion of the theorem. Assume q = 2

so that µn2 is surjective for n > s, inducing a surjection from Mn+2 onto Mn for

all such n. Now choose a minimal prime ideal p of R so that localizing at p yields

an artinian ring guaranteeing that all modules over Rp have finite length. Since

localization is an exact functor, note that

0→ (Mn+1)p → (Rbn)p → (Mn)p → 0

and

0→ (Mn+2)p → (Rbn+1)p → (Mn+1)p → 0

will also be short exact sequences. Thus, we have that length(Mn)p+length(Mn+1)p =

bn length(Rp) and length(Mn+1)p + length(Mn+2)p = bn+1 length(Rp). Combining

these statements we obtain

(bn+1 − bn) length(Rp) = length(Mn+1)p − length(Mn)p

and note that since there exists a surjection Mn+2 →→Mn, the right-hand side of the

above statement must be non-negative. Therefore, bn+1 ≥ bn for n > s. And, by the

previous argument given for the first statement of Theorem 2.11, if cxRM ≤ 1 we

have that Mn+2
∼= Mn for n > r so that bn+1 = bn for all such n.
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The proof of Theorem 7.8 gives great insight into the relationship between

the critical degree and the emergence of patterns in the Betti sequence of a module.

Furthermore, the seeds for the connection between critical degree and the S-module

Ext∗R(M,k) are sown in this proof; in fact, we return to many of these ideas in

Chapter 4 of this thesis. For now, we move to further explore this connection which

yields a cohomological characterization of critical degree in R-mod. In some sense,

this will provide more precision, and even tangibility, to the notion of critical degree.

2.3 Critical Degree and Modules of Finite CI-Dimension

In this section we focus first on finitely generated R-modules with finite CI-

dimension and then later reduce to the case where R is a complete intersection of the

form Q/(f), with f = f1, . . . , fc a regular Q-sequence. Before we present Proposition

7.2 in [AvGaPe], however, we must first aim to understand Ext∗R(M,k) as a module

over two special subalgebras in the more general setting.

2.3.1 Cohomological Characterization of Critical Degree

Recall that for an R-module M , the graded R-module Ext∗R(M, k) can be

viewed both as a left Ext∗R(k,k)- and a right Ext∗R(M,M)-bimodule via the action

induced by Yoneda multiplication. Moreover, there exist natural homomorphisms

Ext∗R(k,k)←− S −→ Ext∗R(M,M) with images lying within the centers of the graded

algebras. In particular, the authors of [AvGaPe] first prove that if M is a finitely

generated module with CI-dimRM <∞, then Ext∗R(M, k) is finitely generated over

Z∗, where we denote Z∗ as the R-subalgebra of Ext∗R(M,M) generated by the central

elements in Ext2
R(M,M). Then, noting that Ext∗R(k,k) is actually the universal

enveloping algebra7 of the homotopy Lie algebra π∗(R), it also holds that Ext∗R(M, k)

7since we have assumed R to be a noetherian local ring.
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is finitely generated over the k-subalgebra P∗ ⊆ Ext∗R(k,k) generated by the central

elements in π∗(R).8 Equipped with the definitions of Z∗ and P∗, we are now ready to

present the cohomological characterization of critical degree, as originally described.

Proposition 2.12 ([AvGaPe], 7.2). Let M 6= 0 be a finitely generated R-module with

CI-dimRM <∞. Then the critical degree of M is finite, say crdegRM = s, and the

following statements hold

(i) There exist equalities

s = sup{r ∈ N ∪ {0} | depthZ∗ Ext≥rR (M, k) = 0}

= sup{r ∈ N ∪ {0} | depthP∗ Ext≥rR (M,k) = 0}

(ii) There is a codimension 1 quasi-deformation R→ R′ ←− Q such that crdegR′M
′ =

s and the CI operator on the minimal resolution of M ′ is surjective in degrees

n > s.

We will only discuss and use Part (i) of this proposition throughout this thesis;

we simply include the Part (ii) for completeness of the statement (see [AvGaPe] for

more details). To give an idea of why the former statement is true, we will now

present a brief sketch of the proof.

Sketch of Proof. First, the authors note that finiteness of critical degree follows from

the given equalities and the finiteness of Ext∗R(M,k) over Z∗ (and P∗). Next, note

that µ̃ from the proof of Theorem 7.8 can be viewed as a q-extension of M by M ,

and thus [µ̃] ∈ ExtqR(M,M). Specifically, [µ̃] represents the equivalence class of

q-extensions represented by

µ̃ : 0→M →M(µ)→ Fq−2 → · · · → F0 →M → 0

8See Theorems (4.9) and (4.10) in [AvGaPe].
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and µn can be given (up to sign) by Yoneda multiplication of ExtnR(M,k) with [µ̃].

That is, µn(ξ) = ξµ̃ for any n-extension in ξ ∈ ExtnR(M, k). Moreover, the splitting

of the long exact sequence in cohomology for all n > s demonstrates that ξµ̃ = 0

only if ξ = 0; thus, µ̃ is a non zero-divisor on the truncation Ext>sR (M, k). And since

depthZ∗ Ext>sR (M, k) = depthZ∗[µ̃] Ext>sR (M,k) > 0, then s must be greater than or

equal to the maximum r such that depthZ∗ Ext≥rR (M, k) = 0.

Conversely, it should be clear that any [ξ] ∈ Z∗ ⊆ Ext∗R(M,M) originates from

a chain endomorphism on F (in the same way [µ] did, depicted in the proof of Theorem

7.8). Therefore, s ≤ sup{r ∈ N ∪ {0} | depthZ∗ Ext≥rR (M,k) = 0}, proving the first

equality. Lastly, the authors give reasoning for the second equality via the fact that

the depth of Ext≥rR (M,k) over Z∗ coincides with that over P∗ (see construction in

(6.2)).

As it turns out, when R is a complete intersection ring, π2(R) = Homk(Lf , k)

where Lf is the c-dimensional k-vector space (f)/m(f). That is to say, the k-subalgebra

P∗ ⊆ Ext∗R(k, k) reduces to S in this case (see (3.8) and (6.1.3) in [Av2] for more

details). In the next section, we focus on the case of a complete intersection ring and

give an intuitive explanation for what insight Proposition 7.2 provides.

2.3.2 Critical Degree of Modules over Complete Intersection Rings

For this section we assume R is a complete intersection of the form Q/(f), with

f = f1, . . . , fc a regular Q-sequence, and M 6= 0 a finitely generated R-module. First,

note that by Proposition 7.2 modules over a complete intersection ring always have

finite critical degree, since such modules have finite CI-dimension. However, we can

also gain this fact from just the definition of critical degree; recall that the proof of

Theorem 3.1 in [Ei] guaranteed an endomorphism t̂ which is eventually surjective for
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all homological degrees large enough. Therefore, by definition, crdegRM ≤ N <∞

for the sufficiently large N identified in the proof. Of course, the same argument

holds for any module over a complete intersection; and so, we have finiteness of the

critical degree for all such modules.

Specifically, the additional insight gained from Proposition 7.2 is not necessarily

the finiteness of the critical degree in this case, but rather the cohomological charac-

terization of it. We now provide this within the context of a module over a complete

intersection, with a slight correction to the original statement.

Proposition 2.13 (cf. [AvGaPe], 7.2 and Proposition 2.12). Let R be a complete

intersection of the form Q/(f), with f = f1, . . . , fc a regular Q-sequence. If M 6= 0 is

a finitely generated R-module then the critical degree of M is finite, say crdegRM = s,

and if we set

r∗ = sup{r ∈ N ∪ {0} | depthS Ext≥rR (M,k) = 0}

the following equality holds

s = max{r∗,−1}.

Discussion of Statement. First note that the correction in the above proposition

should also be applied to the general version listed in the previous section. Essentially,

we have to allow for the case when crdegRM = −1 and, since it is assumed that

M 6= 0, then crdegRM 6= −∞ = sup{∅}. Next, if we know that the critical degree is

realized by some endomorphism t̂ ∈ R[t], and hence a non zero-divisor χ̂ ∈ S, then

the equality above is quite easy to see.

Denote E≥n = Ext≥nR (M,k) for any integer n ∈ N, and note that on one hand

the existence of such a χ̂ implies depthS E
≥s+1 6= 0. Thus, since depthS E

≥r∗ = 0 by

definition (and, in fact, is the greatest such degree) then we know r∗ ≤ s. However,

on the other hand, the definition of critical degree implies s+ 1 is the least degree
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such that there exists a non zero-divisor on E≥s+1 implying that depthS E
≥s = 0.

Therefore, we must have that s ≥ r∗, proving equality of the two.

The difficulty in proving this equality (and, accordingly, the more general one

given in the previous section) is in knowing that there exists an endomorphism from

the ring of cohomology operators which realizes the critical degree. Note that the

construction of µ̃ depended solely on the assumption that µ was an endomorphism

which realized the critical degree; then, we were able to view it as an extension

[µ̃] ∈ ExtqR(M,M). In fact, this technique can be done for any endomorphism

µ : F → ΣqµF where we can define µ̃ in the same way as in the proof of Theorem

7.8 so that [µ̃] ∈ Ext
qµ
R (M,M). Whether or not this element is a non zero-divisor on

some Ext≥nR (M,M) depends on whether µ is surjective for all i ≥ n.

The point of this discussion is to emphasize that the key to the argument for

Proposition 7.2, and thus the special case given above, is that the depth of Ext∗R(M, k)

coincides over the sub-algebras Z∗ and P∗(= S when R is a complete intersection).

Given this fact, we only need to demonstrate the construction of χ̂ since the least

degree for which there exists a non zero-divisor in S on Ext≥nR will coincide with the

least degree for which there exists a non zero-divisor in Z∗.

2.3.2.1 Construction of χ̂ à la Eisenbud

With the guarantee that there exists some χ̂ ∈ S which realizes the critical

degree of an R-module, we now demonstrate the construction of this element. In

essence, this element is derived from the proof of Eisenbud’s surjectivity theorem,

but with a slight modification.

Recall from Eisenbud’s proof that E denotes the largest artinian submodule

of Ext∗R(M, k), so E must both contain Soc(Ext∗R(M, k)) and have finite length.

However, it actually holds that S = Soc(Ext∗R(M,k)) has finite-length since it is
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both Artinian and semisimple. Hence, denote E≥n = Ext≥nR (M, k) for any integer

n ∈ N ∪ {0} and set

N∗0 = inf
{
n ∈ N ∪ {0} | E≥n ∩ S = 0

}
.

Note that since S has finite length, there must exist some truncation such that there

are no nonzero elements annihilated by X, meaning N∗0 < ∞. And so, if we apply

Eisenbud’s argument to E≥N
∗
0 , then there must exist an element χ̂∗ ∈ X such that

it is a non zero-divisor on E>N∗0 . Moreover, this must be the largest truncation for

which such a non zero-divisor exists, since by construction E≥N
∗
0−1 ∩ S 6= 0 implying

there exists some nonzero element of degree (N∗0 − 1) which is annihilated by each χj .

Therefore, by definition N∗0 − 1 = s and consequently, we see that the critical degree

is precisely where the highest degree socle element lives in Ext∗R(M,k).

2.3.3 Patterns in the Betti Sequence and an Illuminating Example

Recall from Theorem 7.8 in [AvGaPe] that if crdegRM <∞, then either M has

period q after s = g steps or bRn (M) � bRn+q(M) where q is the (magnitude of) the

degree of the endomorphism which realizes the critical degree. Given our previous

discussion, note that deg(χ̂) = 2 and so, by Theorem 7.8, we see that when R is

a complete intersection the Betti numbers of M are eventually either constant or

strictly increasing after the critical degree. In fact, the authors demonstrated that

the same holds even if we relax our conditions to the class of R-modules with finite

CI-dimension, as indicated by the following theorem.

Theorem (7.3 from [AvGaPe]). Suppose first that CI-dimRM <∞ and thus equiva-

lent to g = depthR− depthRM . Then, one of the following three cases occurs:

1. The cxRM = 0 (meaning pdRM < ∞), so crdegRM = g = pdRM and

bRnM = 0 for n > g.
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2. The cxRM = 1 implies crdegRM ≤ g; in which case, bRnM = b for b ∈ N and

M has period 2 after crdegRM + 1 steps.

3. When cxRM ≥ 2, the crdegRM < ∞ and bRnM < bRn+1M after crdegRM + 1

steps.

Since we have discussed why this pattern holds in the case of modules over a

complete intersection, we omit the authors’ more general proof. Rather, we move

on to discuss an illuminating example. It is clear from the results discussed in this

section that when cxRM ≤ 1, the critical degree of M is bounded above by depthR.

However, in the more interesting cases of cxRM ≥ 2 no bound for all R-modules of a

given complexity d > 1 exists.

Example 2.14 (7.5 in [AvGaPe]). Suppose crdegRM = s < ∞ and denote M ′ =

Ωs+1M . Then note that cxRM = cxRM
′ but crdegRM′ = 0.

While the critical degree is a significant concept, serving as the “marker” or

“flag” for when growth is guaranteed to occur in the Betti sequence of an R-module,

it is quite disappointing that we cannot hope to bound this marker for all modules

over a given complexity (greater than one) and, even more so, for all modules in a

given syzygy sequence. One goal of this thesis is to make an attempt at rectifying

this misfortune.
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CHAPTER 3

The Category of Totally Acyclic Complexes

While the notion of critical degree in R-mod is an interesting and useful in-

variant, it does have the disadvantage described at the end of the previous chapter.

Furthermore, although it is possible to give bounds on this degree for a specific

module of complexity strictly less than 3, and possibly of a higher complexity, our

hope to give bounds over all modules of a given complexity, or even particular types

of modules, becomes all the more futile with this disadvantage in mind. To alleviate

these concerns, we turn towards viewing the notion over a different category– one

that is, in some sense, analogous to R-mod. In this chapter we build the necessary

components for understanding the motivation for this chosen category and highlight

its connection to R-mod in order to provide intuition for the reasoning behind Chapter

4 of this thesis. It should be noted that many of the definitions and results in this

chapter can be found in [Ch] or [HoJoRo].1

3.1 Basics of R-Complexes

We now return to the topic of R-complexes, introduced in Chapter 1, and relay

a few common characteristics of them. Recall that an R-complex is a sequence of

R-modules and R-module homomorphisms such that the image of each preceding

morphism maps into the kernel of each subsequent morphism. Commonly, we call

such sequences chain (or cochain) complexes and, we may call the morphisms between

1A good reference has not been identified for the lemmas and proposition discussed in Section

3.1.2; hence, the name and provided proofs of statements.
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them chain (respectively, cochain) maps. One may view chain complexes as finite

sequences (bounded), infinite in one direction (e.g. projective resolutions), or as

doubly-infinite sequences (such as the following example).

Example 3.1. Let R = k[[x, y]]/(x5 − y5, xy) then the following sequence represents

an R-complex:

· · · → R
(x−y)−−−→ R

(x4−y4)−−−−→ R
(x−y)−−−→ R

(x4−y4)−−−−→ R
(x−y)−−−→ R→ · · ·

It should be clear that im(x − y) ⊆ ker(x4 − y4) and im(x4 − y4) ⊆ ker(x − y). In

fact, for this example, we have that im∂C
n = ker ∂C

n−1 for all n ∈ Z.

3.1.1 Equivalency of R-Complexes

In Chapter 1, we mentioned that rather than studying equivalency in the sense

of isomorphisms between two chain complexes at every degree, we study a looser form

called homotopy equivalency. Recall that two chain maps f and g are homotopic if there

exist degree 1 maps {hn}, called homotopy maps, such that fn−gn = hn−1∂
C
n +∂D

n+1hn

for all n ∈ Z. Essentially, the chain maps f and g are similar enough that we can

view their difference at each degree as being “equivalent” to zero. Unsurprisingly,

we find a rich theory if we consider homotopy the “isomorphism” for R-complexes,

as there is interesting structure we gain from this type of equivalence. However,

before discussing such structure further, we review a few important characteristics of

R-complexes.

3.1.2 Common Folklore of R-Complexes

Just as we predominantly focus on minimal resolutions, we have an appropriate

analogue for R-complexes. A complex (C, ∂) is called minimal if every homotopy

equivalence e : C → C is an isomorphism; here, we mean R-module isomorphisms
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at each degree. With the assumption that R is local, we actually have that this is

true if and only if ∂(C) ⊆ mC. Hence, we will use this characterization for minimal

complexes throughout the remainder of this thesis. Alternatively, an R-complex is

called contractible, or (homotopically) trivial, if the identity morphism 1C is null-

homotopic. A homotopy between 1C and 0 is called a contraction, and note that,

by definition, if C is contractible, then it is homotopically equivalent to the zero

complex. It should be clear that a contractible complex cannot be minimal. If C was

both contractible and minimal, there would exist homotopy maps hn : Cn → Cn+1

such that 1C = hn−1∂
C
n + ∂C

n+1hn ⊆ mCn. Thus, if C is contractible, then note that

∂(C) 6⊆ mC.

Moreover, there exists a decomposition of all R-complexes such that C = C⊕T

where C is a unique minimal subcomplex of C, and T is contractible. It also holds

that if C ' D then C ∼= D where C is the minimal subcomplex of C and D is that

of D. Lastly, since contractible complexes are homotopically equivalent to the zero

complex, it is quite natural that each R-complex would, in some sense, be “equivalent”

to its minimal subcomplex. We demonstrate this result in the next lemma.

Lemma 3.2. Let (C, ∂) be an R-complex with the decomposition C⊕ T such that C

is minimal and T is contractible. Then, C ' C.

Proof. Our goal is to show that the natural projection π : C → C is in fact a

homotopy equivalence; that is, we wish to show πι− IdC ∼ 0 and ιπ− IdC ∼ 0, where

ι : C→ C is the natural inclusion. First note that πι = IdC since for any a ∈ Cn the

composition πnιn sends a 7→ (a, 0) 7→ a and this is the case for each n ∈ Z, so that

πι is trivially homotopic to IdC. And so, it only remains to show that there exists

a homotopy map {hn}n∈Z such that ιnπn − IdCn = hn−1∂
C
n + ∂Cn+1hn for each n ∈ Z.
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Since C = C⊕ T with T contractible, there exist homotopy maps {kn}n∈Z such that

0− IdT
n = kn−1∂

T
n +∂T

n+1kn for each n ∈ Z. Hence, we may define the homotopy maps

hn =

0 0

0 kn


noting that for any (a, b) ∈ Cn we have

(hn−1∂
C
n +∂C

n+1hn)

a
b

 =

0 0

0 kn−1


∂C

n 0

0 ∂T
n


a
b

+

∂C
n+1 0

0 ∂T
n+1


0 0

0 kn


a
b



=

0 0

0 kn−1


∂C

n (a)

∂T
n (b)

+

∂C
n+1 0

0 ∂T
n+1


 0

kn(b)

 =

 0

kn−1∂
T
n (b)

+

 0

∂T
n+1kn(b)



=

 0

(kn−1∂
T
n + ∂T

n+1kn)(b)

 =

 0

−IdT
n (b)

 =

a
0

−
a
b

 = (inπn − IdC
n )

a
b

 .

Thus, by definition, we see that ιπ ∼ IdC, implying C ' C.

We now consider the connection between homotopically equivalent complexes

and chain maps. Whenever we have some sort of equivalency between objects, the

natural consideration is to ask what maps may be induced by this equivalency. Already

a well-known phenomenon, the subsequent lemma plays an important role within the

definitions presented in Chapter 4 of this thesis, as well as the methodology discussed

in Chapter 5; hence, we include proof for the statement as well.

Lemma 3.3. Let C, D, C′ and D′ be R-complexes for which there exist chain maps

f : C→ D and γ : D→ D′. Moreover, suppose C ' C′. Then there exists an induced

chain map f ′ : C′ → D′ such that the square

C

f
��

ϕ // C′

f′

��
D

γ // D′
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commutes (up to homotopy); that is, γf ∼ f ′ϕ. Furthermore, this map is unique up to

homotopy.

Proof. Our goal is to first show existence of a map f ′ such that γf− f ′ϕ ∼ 0. Note that

since ϕ : C→ C′ is a homotopy equivalence, there exists a map ϕ−1 : C′ → C such

that ϕϕ−1 ∼ IdC′ and ϕ−1ϕ ∼ IdC. Define f ′ = γfϕ−1 and note that ϕ−1ϕ− IdC ∼ 0

implies existence of some kn: Cn → Cn+1 such that ϕ−1
n ϕn − IdC

n = kn−1∂
C
n + ∂C

n+1kn

for each n ∈ Z. Hence, it holds that

f ′nϕn − γnfn = (γnfnϕ
−1
n )ϕn − γnfn

= (γnfn)ϕ−1
n ϕn − (γnfn)

= γnfn(ϕ−1
n ϕn − IdCn )

= γnfn(kn−1∂
C
n + ∂Cn+1kn)

= γnfnkn−1∂
C
n + γn(fn∂

C
n+1)kn

= γnfnkn−1∂
C
n + γn(∂Dn+1fn+1)kn

= γnfnkn−1∂
C
n + (γn∂

D
n+1)fn+1kn

= γnfnkn−1∂
C
n + (∂D

′

n+1γn+1)fn+1kn

= (γnfnkn−1)∂Cn + ∂D
′

n+1(γn+1fn+1kn)

and defining hn : Cn → D′n+1 as hn = γn+1fn+1kn, the above equation yields a

homotopy equivalence proving γf ∼ f ′ϕ. Now note that since ϕϕ−1 − IdC ∼ 0 there

exist homotopy maps k′n : C ′n → C ′n+1 such that ϕnϕ
−1
n − IdC′

n = k′n−1∂
C′
n + ∂C′

n+1k
′
n

for each n ∈ Z. To show uniqueness, suppose g : C′ → D′ such that gϕ ∼ γf and

so there exist maps ln : Cn → D′n+1 where γnfn − gnϕn = ln−1∂
C
n + ∂D′

n+1ln for each

n ∈ Z. This in turn implies that

(γnfn − gnϕn)ϕ−1
n = (ln−1∂

C
n + ∂D′

n+1ln)ϕ−1
n
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γnfnϕ
−1
n − gn(ϕnϕ

−1
n ) = ln−1∂

C
nϕ
−1
n + ∂D′

n+1lnϕ
−1
n

f ′n − gn(k′n−1∂
C′

n + ∂C′

n+1k
′
n + IdC

n ) = ln−1(∂C
nϕ
−1
n ) + ∂D′

n+1lnϕ
−1
n

(f ′n − gn IdC
n )− (gnk

′
n−1∂

C′

n + (gn∂
C′

n+1)k′n) = ln−1(ϕ−1
n−1∂

C′

n ) + ∂D′

n+1lnϕ
−1
n

f ′n − gn = (ln−1ϕ
−1
n−1)∂C′

n + ∂D′

n+1lnϕ
−1
n + (gnk

′
n−1)∂C′

n + (∂D′

n+1gn+1)k′n

f ′n − gn = (ln−1ϕ
−1
n−1)∂C′

n + (gnk
′
n−1)∂C′

n + ∂D′

n+1(lnϕ
−1
n ) + ∂D′

n+1(gn+1k
′
n)

f ′n − gn = (ln−1ϕ
−1
n−1 + gnk

′
n−1)∂C′

n + ∂D′

n+1(lnϕ
−1
n + gn+1k

′
n)

for each n ∈ Z. Hence, we see the existence of a map h′n : C ′n → D′n+1, defined

as h′n = lnϕ
−1
n + gn+1k

′
n, such that f ′n − gn = h′n−1∂

C′
n + ∂D′

n+1h
′
n, which of course

demonstrates that f ′ ∼ g, as needed.

Therefore, for any chain map between R-complexes, we obtain an induced

chain map between any two complexes that are homotopically equivalent to them,

whilst respecting homotopy equivalences. Combining the two lemmas, we realize the

following statement, for which the significance will become apparent in Chapter 4.

Proposition 3.4. Let C and D be R-complexes with chain map f : C→ D. If C and

D are the respective minimal subcomplexes, then there exists an induced chain map

f̄ : C→ D, which is unique (up to homotopy).

3.1.3 Category of R-Complexes

Similar to R-modules, we can take as objects R-complexes and then take the

set of chain maps to be the morphisms. Because R-mod is additive, this forms

a category called the category of complexes over R-mod , or the category of R-

complexes, and we may denote it C(R). Unsurprisingly, C(R) is again additive where

the coproduct is described with degree-wise direct sums: C⊕D = (Cn ⊕Dn, ∂n)n∈Z

where ∂n(c, d) = (∂C
n (c), ∂D

n (d)) for c ∈ Cn and d ∈ Dn. And so, for any R-complex E
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such that there exist chain maps f : C → E and g : D → E, we have the following

commutative diagram

En

Cn

fn
::

ιCn

// Cn ⊕Dn

hn

OO

Dn

gn
dd

ιDn

oo

where hn(c, d) = fn(c) + gn(d) for c ∈ Cn and d ∈ Dn. Furthermore, C(R) is an

abelian category; we will present the existence of short exact sequences in Section 3.2,

but leave the reader to refer to Proposition 2.5 in [HoJoRo] for proof that C(R) is

abelian (existence of kernels, cokernels, etc.). So the advantage of C(R) is that it has

clear structural similarities to R-mod. However, there is one downside– equivalence

in C(R) is determined by degree-wise isomorphism, which turns out to be too rigid of

a structure to study. Hence, we use C(R) as the foundation for a category with a less

rigid type of equivalency, discussed in Section 3.3.

3.2 Special Constructions of R-Complexes

3.2.1 The Suspension Endofunctor

Let C be an R-complex and note that we may consider “shifting” the degrees

of C such that the module and differential at degree i may be redefined as degree

i− 1, or even degree i− q for some q ∈ Z. This process is made precise via functors

on C(R), as well as other R-complex categories discussed shortly, and is described in

the definition below.

Definition 3.5 (cf. [HoJoRo]). The Suspension Endofunctor, often denoted Σ, is a

functor on the category of complexes such that for any R-complex (C, ∂), we obtain

an R-complex (ΣC, ∂ΣC) with

(ΣC)n = Cn−1 and ∂ΣC
n = −σn−2∂

C
n−1σ

−1
n−1
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for each n ∈ Z where σn : Cn → (ΣC)n+1 is the natural isomorphism (described

below). Moreover, Σ acts on chain morphisms as follows: if f : C→ D, then Σf is a

chain map from ΣC to ΣD with (Σf)n = fn−1σ
−1
n−1 for each n ∈ Z.

For simplicity’s sake, and because the added rigor of including σ notationally

does not contribute any necessity to the general theory itself, we will commonly just

write ∂ΣC
n = −∂Cn−1 to denote the nth differential of ΣC and will only utilize σ when it

is necessary to ascertain technical details. Moreover, we may apply this functor any

number of times and denote this action on C as the complex ΣqC with (ΣqC)n = Cn−q

and ∂ΣqC
n = (−1)q∂C

n−q where q ∈ Z+. Note that this functor essentially “shifts” a

complex 1 (or q) degrees to the left, which is equivalent to reassigning the homological

degrees of the R-modules and the differentials. Therefore, it should be clear that ΣqC

is again a complex since

∂ΣqC
n ◦ ∂ΣqC

n+1 = (−1)q∂C
n−q ◦ (−1)q∂C

n+1−q = (−1)2q∂C
n−q∂

C
n+1−q = 0.

Given a chain map between R-complexes f : C→ D, applying the suspension

endofunctor q times to f yields the morphism Σqf : ΣqC→ ΣqD where (Σqf)n(x) =

fn−q(x) for any x ∈ Cn−q and each n ∈ Z. As it turns out Σ is both additive and an

automorphism. That is, Σ respects direct sums:

Σq(C⊕D) = ΣqC⊕ ΣqD.

Moreover, there exists a functor Σ−1 so that Σ−1 ◦ Σ and Σ ◦ Σ−1 are the identity

functors on C(R). Here, we may view Σ−1 as “shifting” degrees to the right, as

opposed to the left, or as the normal suspension functor on the opposite category

of R-complexes, C(R)op. The natural isomorphism listed in the definition above is

a natural transformation for which there exists a two-sided inverse; in particular

σ−1 : Σ→ Σ−1 is a natural transformation such that the diagram
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ΣC
σ−1

C

//

Σf
��

Σ−1C

σC

��

Σ−1f
��

ΣD
σ−1

D // Σ−1D

σD

]]

commutes; that is, Σ−1f ◦ σ−1
C = σ−1

D Σf. Essentially, σ and σ−1 give a formal manner

in which to map elements of a particular degree in C (e.g. n) to another degree in

ΣC (e.g. n+ 1).

3.2.2 Mapping Cones

We now consider another special type of construction of R-complexes which

plays a pivotal role in the main topic of Section 3.3.3. This construction, called the

mapping cone, is in some manner similar to direct sums of R-complexes; however, the

significance of this type of complex will not become apparent until we view it in a

different type of category. For now, we merely present its definition so that we may

discuss the existence of short exact sequences in C(R).

Definition 3.6 (cf. [HoJoRo]). If f : C→ D is a morphism of R-complexes in C(R),

then the mapping cone of f, denoted either Cone (f) or M (f), is the R-complex with

nth module M (f)n = (ΣC)n ⊕Dn and nth differential

∂M (f)
n =

∂ΣC
n 0

Σfn ∂Dn

 .

Note that we may informally write

∂M (f)
n =

−∂Cn−1 0

fn−1 ∂Dn


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and (M (f))n = Cn−1 ⊕Dn, which we will commonly do so that we may write

· · · → Cn ⊕Dn+1


−∂Cn 0

fn ∂Dn+1


−−−−−−−−−−→ Cn−1 ⊕Dn


−∂Cn−1 0

fn−1 ∂Dn


−−−−−−−−−−→ Cn−2 ⊕Dn−1 → · · ·

as the R-complex, M (f).

3.2.3 Short Exact Sequences in C(R)

Given any morphism f : C → D of R-complexes, note that we may identify

the natural inclusion ιn : Dn → M (f)n and natural projection πn−1 : M (f)n → Cn−1

for each degree n ∈ Z. Define the chain maps ι : D → M (f) as the family of R-

module homomorphisms {ιn}n∈Z and π : M (f) → ΣC as the family of R-module

homomorphisms {πn}n∈Z. Note that the latter is indeed a morphism of complexes

since ∂ΣC carries the sign. Furthermore, we may view ιn =

(
0 idD

n

)
and πn =(

idΣC
n 0

)
=

(
idC
n−1 0

)
for each n ∈ Z. It should be clear that πn ◦ ιn = 0 at each

degree. Hence, we may construct the following short exact sequence in C(R)

0→ D
ι−→ Cone(f)

π−→ ΣC→ 0

since π ◦ ι = 0. It holds that this short exact sequence splits if and only if f ∼ 0. In

this case, there exist homotopy maps sn : Cn → Dn+1 such that fn = sn−1∂
C
n + ∂D

n+1sn

for each n ∈ Z and so we may construct the map σ : ΣC → M (f) where σn(x) =(
x −sn(x)

)
for any x ∈ Cn−1.

For any R-complexes C and D, the mapping cone of the zero map 0C : C→ 0 is

just M (0C) = ΣC and the mapping cone of 0D : 0 → D is M (0D) = D. Lastly, the
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mapping cone of the identity morphism IdC is the R-complex M (IdC) with R-modules

(M (IdC))n = Cn−1 ⊕ Cn and differentials∂C
n−1 0

idC
n−1 ∂C

n


such that ∂

M (IdC)
n : Cn−1 ⊕ Cn → Cn−2 ⊕ Cn−1. And the identity morphism IdM (IdC) :

M (IdC)→ M (IdC) is actually homotopic to 0 with the homotopy maps0 idC
n

0 0


meaning that M (IdC) ' 0.

3.2.4 Hom and Tensor of R-Complexes

Just as we can apply the Hom and ⊗ functors to R-modules, we can do so

with R-complexes. Interestingly enough, we obtain an R-complex in both cases. As

we make use of the Hom of R-complexes at the end of this chapter, as well as in

Chapters 4 and 5 of this thesis, along with the ⊗ of R-complexes in Chapter 5, we

present the general definitions to which the reader may refer.

Definition 3.7 (cf. [Ro], pg. 321). If C and D are R-complexes, then the tensor

product of the complexes C and D is the complex with R-modules

(C⊗R D)n =
∐
i+j=n

(Ci ⊗R Dj)

and differentials ∂n which map pure tensors as follows

∂n(c⊗ d) = ∂Ci (c)⊗ d+ (−1)ia⊗ ∂Dj (d)

where c ∈ Ci and d ∈ Dj.
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Note that the complex C⊗D is the total complex of the bicomplex of C and D.

Similarly, we may consider the R-complex Hom(C,D), defined as follows.

Definition 3.8 (cf. [Ro], pg. 323). If C and D are R-complexes, then the Hom of

the complexes C and D is the complex with R-modules of the form

Hom(C,D)n =
∏
i+j=n

HomR(C−i, Dj)

for which any element f ∈ Hom(C,D)n is a family of maps {fi,j} where fi,j : C−i → Dj

with i+ j = n. Here, the differentials are given by ∂n(f) = {gi,j} where

gi,j = (−1)i+jfi+1,j∂
C
−i + ∂Dj+1fi,j+1

with i+ j = n− 1.

Note that for the nth R-module we may also write

Hom(C,D)n =
∏
j−i=n

HomR(Ci, Dj) =
∏
i

HomR(Ci, Di+n) =
∏
j

HomR(Cj−n, Dj)

where the third form clearly represents precisely the degree n chain maps C→ D, as

one would expect. With respect to the second form of Hom(C,D)n given above, for

any fi : Ci → Di+n the differential is given by ∂n(f) = (−1)nfi−1∂
C
i + ∂D

i+nfi.

3.3 Building the Homotopy Category of R-Modules

As previously mentioned, while C(R) has an abelian structure, the equivalency

in this category is too rigid to produce meaningful theory; therefore, we return to the

notion of homotopy in order to build a more interesting category of R-complexes. First

and foremost, we see that it makes sense to view homotopy as a type of equivalence

on the objects in C(R).

Proposition 3.9 (cf. [Ha]). Homotopy is an equivalence relation.

Proof. It should be clear that for any chain map f : C→ D, f ∼ f since f − f = 0 ∼ 0.

Secondly, it should also be clear that f ∼ g implies g ∼ f. If {hn}n∈Z are the homotopy
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maps such that fn − gn = ∂Dn+1hn + hn−1∂
C
n then gn − fn = ∂Dn+1(−hn) + (−hn−1)∂Cn

for each n ∈ Z. Lastly, if f ∼ g and g ∼ e for chain maps f, g, e : C→ D then there

exist homotopy maps {hn}n∈Z and {h′n}n∈Z such that fn− gn = ∂Dn+1hn + hn−1∂
C
n and

gn − en = ∂Dn+1h
′
n + h

′
n−1∂

C
n for each n ∈ Z. Thus, we have that

fn − en = (fn − gn)− (en − gn) = ∂Dn+1hn + hn−1∂
C
n − (∂Dn+1(−h′n) + (−h′n−1)∂Cn )

= ∂Dn+1(hn + h
′

n) + (hn−1 + h
′

n−1)∂Cn

for each n ∈ Z and so, by definition, f ∼ e.

Moreover, we actually can see that homotopy respects chain map composition;

that is, if f,g : C → D are homotopic and e : D → E, then ef ∼ eg. Specifically, if

hn : Cn → Dn+1 are the homotopy maps with respect to f, g then hnen : Cn → En+1

are the homotopy maps with respect to the compositions. Likewise, if e : E → C

instead, then fe ∼ ge. Hence, if we take morphisms equal to each other whenever

they are homotopic, then composition of morphisms is well defined. Meaning, we

can define a category similar to C(R), but with equivalence based upon homotopies

rather than isomorphisms at each degree.

Definition 3.10 (cf. [HoJoRo]). The homotopy category of R-complexes, denoted

K(R), is a category whose objects are the same as C(R) but whose morphisms are

the equivalence classes of morphisms in C(R) modulo homotopy ; that is:

HomK(R) (C,D) = HomC(R) (C,D)/ ∼

As it turns out, K(R) inherits the additive structure from C(R), thus yielding a

category with similar structure to R-mod, albeit a more intriguing type of equivalence;

this, in turn, leads to development of a deeper theory.2 Lamentably, K(R) does not

2Surprisingly, or perhaps unsurprisingly, some algebraic structures are “too boring” to say

anything meaningful!
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inherit the abelian structure from C(R) and so we lose some structural similarities to

R-modwhen we move to study objects and morphisms in K(R). We will look at a

remedy for this shortly, but first we present a subcategory of K(R)which will become

our main category of interest for the remainder of this thesis.

3.3.1 A Subcategory of the Homotopy Category

We begin this section by defining a special type of R-complex:

Definition 3.11 (cf. [BeJoMo]). A totally acyclic complex over a ring R is an

R-complex (C, ∂) of projective R-modules such that

H(C) = 0 = H(C∗)

where C∗ is the algebraic dual of C, defined as HomR(C, R). In other words, if C is

totally acyclic then both C and C∗ are exact at each homological degree.

Note that in the definition above, the term acyclic is a synonym for “exact”.

Much of homological algebra originated from algebraic topology which used the

language of boundaries and cycles. The elements at each degree of an R-complex are

called chains, which is why we also call objects in C(R) chain or cochain complexes.

Furthermore, we may refer to the differentials as boundary operators, the elements of

each kernel as cycles (sometimes also called closed elements), and elements contained

in each image as a boundary (or exact) element. When a chain (or cochain) complex is

exact, any cycle (closed element) is additionally an exact element (boundary). Hence,

the term acyclic alludes to the fact that there are “no cycles” in this case, since we

consider the cycles modulo the boundaries when we take homology at each degree.

Now, since totally acyclic complexes are just a specific type of R-complex, we

can consider the sub-collection of objects from C(R)– and, thus K(R)– made up of all

such complexes. Therefore, maps which are homotopic in K(R)are also homotopic on
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this restricted class of objects. Denote Ktac(R) as the collection of objects which are

totally acyclic R-complexes together with the same morphisms from K(R). We call

Ktac(R) a full subcategory of K(R), which means that it consists of a subcollection of

objects from K(R) such that HomKtac(R)(C,D) = HomK(R) (C,D) for any two totally

acyclic complexes C and D.

Now that we have recognized Ktac(R) as a meaningful subcategory of K(R),

we turn towards better understanding its categorical structure. Topics discussed in

the remainder of Section 3.3.1 can also be applied to K(R) but, for the purposes of

this thesis, we solely focus on structural properties of Ktac(R).

3.3.2 Constructions of R-Complexes Viewed in Ktac(R)

We now return to the constructions defined in Sections 3.2.1 and 3.2.2. As

it turns out, the functor Σ preserves homotopies; that is, if f ∼ g then Σqf ∼ Σqg.

In particular, if h = {hn}n∈Z is the homotopy map associated to f − g ∼ 0, then

Σqh is the homotopy map associated to Σqf − Σqg ∼ 0. We further demonstrate the

following fact for homotopically equivalent R-complexes. It should be noted that

we include proofs for the following three propositions, due to the lack of a better

reference.

Proposition 3.12. Given two R-complexes C and D in Ktac(R), if C ' D then

ΣqC ' ΣqD for any q ∈ Z+.

Proof. This statement follows directly from the definition of homotopy equivalence.

Since C ' D, there exist morphisms α : C→ D and β : D→ C such that αβ ∼ IdD

and βα ∼ IdC. Then note that we have induced morphisms Σqα : ΣqC→ ΣqD and

Σqβ : ΣqD→ ΣqC. If h = {hn}n∈Z are the homotopy maps induced from αβ−IdD ∼ 0

and k = {kn}n∈Z are the homotopy maps induced from βα − IdC ∼ 0, then the
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appropriate homotopy maps showing ΣqβΣqα− IdΣqC ∼ 0 and ΣqαΣqβ − IdΣqD ∼ 0

will be Σqk and Σqh, respectively.

Therefore, the action of this functor on morphisms in Ktac(R) is well defined;

specifically, mapping cones of morphisms in Ktac(R) exist. However, it remains to

verify that mapping cones are again objects in Ktac(R) and that they are a well-defined

notion within the category.

Proposition 3.13. Given two chain maps of R-complexes f : C→ D and g : C→ D,

if f ∼ g, then Cone (f) ' Cone (g).

Proof. Our goal is to show that there exist morphisms α : M (f) → M (g) and

β : M (g) → M (f) such that αβ ∼ IdM (g) and βα ∼ IdM (f). First, since f ∼ g there

exist homotopy maps hn : Cn → Dn+1 such that fn − gn = ∂D
n+1hn + hn−1∂

C
n for all

n ∈ Z. Now consider the diagram

· · · → Cn−1 ⊕Dn

(
−∂C

n−1 0

fn−1 ∂D
n

)
//

αn
��

Cn−2 ⊕Dn−1 → · · ·
αn−1

��
· · · → Cn−1 ⊕Dn

βn

OO

(
−∂C

n−1 0

gn−1 ∂D
n

)// Cn−2 ⊕Dn−1 → · · ·

βn−1

OO

where α and β are defined degree-wise as

αn =

 1 0

hn−1 1

 , βn =

 1 0

−hn−1 1

 .

Note that α is indeed a chain map from M (f) to M (g) since

αn−1 ◦ ∂M (f)
n =

 1 0

hn−2 1


−∂C

n−1 0

fn−1 ∂D
n

 =

 −∂C
n−1 0

−hn−2∂
C
n−1 + fn−1 ∂D

n


=

 −∂Cn−1 0

gn−1 + ∂Dn hn−1 ∂Dn

 =

−∂Cn−1 0

gn−1 ∂Dn


 1 0

hn−1 1

 = ∂M (g)
n ◦ αn
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by the homotopy relation between fn−1 and gn−1. An identical argument can be given

to demonstrate that β is a chain map as well. Finally, observe that

αn ◦ βn =

 1 0

hn−1 1


 1 0

−hn−1 1

 =

1 0

0 1


and

βn ◦ αn =

 1 0

−hn−1 1


 1 0

hn−1 1

 =

1 0

0 1


proving M (f) ' M (g), as needed.

Lastly, we note that if both C and D are totally acyclic, then for any f ∈

HomKtac(R)(C,D) the R-complex M (f) is totally acyclic as well.

Proposition 3.14. Given a chain map of totally acyclic complexes f : C→ D, the

R-complex M (f) is acyclic.

Proof. As M (f) is an R-complex by definition, we only need show that ker(∂
M (f)
n ) ⊆

im(∂
M (f)
n+1 ). Suppose (x, y) ∈ ker(∂

M (f)
n ) so that−∂C

n−1 0

fn−1 ∂D
n


x
y

 =

 −∂C
n−1(x)

fn−1(x) + ∂D
n (y)

 =

0

0

 .

And since x ∈ ker(−∂C
n−1) = im(−∂D

n ), there exists some α ∈ Cn such that −∂C
n (α) =

x. Moreover, fn−1(x) = −∂D
n (y) and so we have that

0 = (fn−1∂
C
n − ∂D

n fn)(α) = fn−1∂
C
n (α)− ∂D

n fn(α) =

−fn−1(x)− ∂D
n fn(α) = ∂D

n (y)− ∂D
n fn(α) = ∂D

n (y − fn(α)).

Thus y − fn(α) ∈ ker(∂D
n ) = im(∂D

n+1) implying existence of a β ∈ Dn+1 such that

∂D
n+1(β) = y − fn(α).
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Hence, we have shown that there exists (α, β) ∈ Cn ⊕Dn+1 such that

∂
M (f)
n+1

α
β

 =

 −∂C
n (α)

fn(α) + ∂D
n+1(β)

 =

 x

fn(α) + (y − fn(α))

 =

x
y


proving that im(∂

M (f)
n+1 ) = ker(∂

M (f)
n ) and thus M (f) is acyclic.

It also follows that M (f)∗ = HomR(M (f), R) is acyclic since M (f∗) ∼= M (f),

where f ∗ is the induced chain map from HomR(D, R) to HomR(C, R). Both C and D

are acyclic by definition, meaning that we may apply a similar argument as given

above to see that M (f∗), and thus M (f)∗, is acyclic as well. Therefore, mapping

cones are well-defined objects in Ktac(R). Recall that K(R), and thus Ktac(R), is

not abelian; to rectify this misfortune, we begin with consideration of another special

construction in Ktac(R) called a candidate (or standard) triangle. The manner in

which this construction aids the structural disadvantage of Ktac(R) not being abelian

will be explained in the subsequent section.

3.3.3 The Triangulated Structure of Ktac(R)

We now have established the constructions in Ktac(R) necessary for understand-

ing an appropriate categorical analogue to abelian categories. The reader should note

that typically this analogue is presented generally and then it is shown that K(R)

has this structure (see [HoJoRo]); it does not require too much work thereafter to

demonstrate that Ktac(R) inherits the triangulated structure from K(R). However,

in this thesis we choose instead to present Ktac(R) as the prototype for a triangulated

category, since our focus is solely on this subcategory of K(R). We leave any proof

that Ktac(R) is a triangulated subcategory of K(R) to the reader, though it is sure

to be found elsewhere (e.g. [St]).
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In Section 3.2.3, short exact sequences in C(R) were discussed; recall that they

were constructed from the mapping cone of a chain map. Since we established in the

last section that mapping cones are well-defined objects in Ktac(R), we can consider

a construction of a similar nature to short exact sequences. First, let ι : D→ M (f)

and π : M (f) → ΣC represent the natural inclusion and projection morphisms

(respectively) for a given R-complex morphism f : C→ D. These morphisms respect

homotopies, meaning that if g : C → D such that f ∼ g, then ιf ∼ ιg and πf ∼ πg,

so that both ι and π are well defined in Ktac(R). Moreover, we see in the following

propositions that the given compositions are null-homotopic.

Proposition 3.15 (cf. [HoJoRo]). If ι and π are as defined above, then πι ∼ 0 and

ιf ∼ 0.

Proof. It is trivial that πι = 0 ∼ 0. Our work lies in demonstrating that ιf is null-

homotopic. First define σ = {
(
σn 0

)
}n∈Z : Cn → M (f)n+1 where σn : Cn → (ΣC)n+1

is the natural isomorphism at each degree. Then for any x ∈ Cn we have thatσn−1

0

 ∂C
n (x) + ∂

M (f)
n+1

σn
0

 (x) =

σn−1∂
C
n (x)

0

+

 ∂ΣC
n+1 0

fnσ
−1
n ∂D

n+1


σn(x)

0


=

σn−1∂
C
n (x)

0

+

(−σn−1∂
C
n σ
−1
n )σn(x)

fnσ
−1
n σn(x)

 =

σn−1∂
C
n (x) + (−σn−1∂

C
n (x))

fn(x)


=

 0

fn(x)

 =

(
0 idD

n

)
fn(x) = ιnfn(x)

proving ι ◦ f ∼ 0, as needed.

Hence, there exists an “exact” (in Ktac(R)) sequence of morphisms

C
f−→ D

ι−→ M (f)
π−→ ΣC
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which yields a categorical analogue to the short exact sequences in C(R) (and any

abelian category). In this vein, mapping cones play the roles of kernels and cokernels

in Ktac(R). Our goal now is to better understand the additional structure provided

by sequences of the form above. Formally, we call such a sequence a standard triangle.

Definition 3.16 (cf. [HoJoRo]). A candidate triangle (sometimes just called a

triangle) is a sequence of objects and morphisms in Ktac(R) of the form X
x−→ Y

y−→

Z
z−→ ΣX. A distinguished triangle is a candidate triangle which is isomorphic in

Ktac(R) to a standard triangle.

Note that a morphism of triangles is defined to be a triple (f, g, h) of morphisms

in Ktac(R) such that the diagram

X x //

f
��

Y
y //

g
��

Z z //

h
��

ΣX

Σf
��

X
′ x′ // Y

′ y′ // Z
′ z′ // ΣX

′

is commutative in Ktac(R). Thus, an isomorphism of triangles is a triangle morphism

in which f , g, and h are homotopy equivalencies. The class of distinguished triangles,

along with triangle isomorphisms, help us define the initial axiom identifying the

triangulated structure of Ktac(R).

(TR0) Any triangle isomorphic to a distinguished triangle is again a distinguished

triangle.

Recall that for any C ∈ Ktac(R), M (IdC) ' 0. Thus, there exists a clear isomorphism

of triangles

C IdC
// C //M (IdC) //

'
��

ΣC

C IdC
// C // 0 // ΣC

demonstrating that the bottom triangle must also be distinguished by (TR0).
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(TR1) For each C ∈ Ktac(R), the triangle C
IdC

−−→ C → 0 → ΣC is a distinguished

triangle.

And we have already justified the following statement, taking E = M (f).

(TR2) For every morphism f : C→ D in Ktac(R), there is a distinguished triangle of

the form

C
f−→ D→ E→ ΣC.

Next, consider any standard triangle C
f−→ D

ι(f)−−→ M (f)
π(f)−−→ ΣC in Ktac(R) and the

candidate triangle

D
ι(f)−−→ M (f)

π(f)−−→ ΣC
−Σf−−→ ΣD

which represents a rotation of the former triangle. As it turns out, this candidate

triangle is actually distinguished, since it is isomorphic to the standard triangle

D
ι(f)−−→ M (f)

ι(ι(f))−−−→ M (ι(f))
π(ι(f))−−−−→ ΣD

and, although the proof will be omitted here, the reader may refer to Theorem 6.7

in [HoJoRo] for a proof with respect to K(R). The significance, however, is the

following rotational property of distinguished triangles:

(TR3) If X
x−→ Y

y−→ Z
z−→ ΣX is a distinguished triangle, then Y

y−→ Z
z−→ ΣX

−Σx−−→ ΣY

is too, and vice versa.

Now consider a diagram of standard triangles of the form

C
f //

u

��

D
ι(f) //

v

��

M (f)
π(f) // ΣC

Σu

��
E

g // F
ι(g) //M (g)

π(g) // ΣE
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with the left square commuting (up to homotopy). That is, there exist homotopy

maps sn : Cn → Fn+1 such that vnfn − gnun = ∂F
n+1sn + sn−1∂

C
n for each n ∈ Z. We

can then define h: M (f)→ M (g) by setting

hn =

un−1 0

sn−1 vn


for each n ∈ Z so that hn : Cn−1 ⊕Dn → En−1 ⊕ Fn and h := {hn}n∈Z. By definition

of h, it should be clear that h◦ι(f) = ι(g)◦v and π(g)◦h = Σu◦π(f); in fact, we even

have proper equalities here. Moreover, the homotopy property of {sn} guarantees

that h is a morphism in Ktac(R), and so we obtain a map such that the diagram

C
f //

u

��

D
ι(f) //

v

��

M (f)
π(f) //

h
��

ΣC

Σu

��
E

g // F
ι(g) //M (g)

π(g) // ΣE

commutes up to homotopy. This characteristic can be extended to all distinguished

triangles so that we have the following property on the class of distinguished triangles

in Ktac(R).

(TR4) Given distinguished triangles X
x−→ Y

y−→ Z
z−→ ΣX and X

′ x′−→ Y
′ y′−→ Z

′ z′−→ ΣX
′
,

then each commutative diagram

X x //

f
��

Y
y //

g
��

Z z // ΣX

Σf
��

X
′ x′ // Y

′ y′ // Z
′ z′ // ΣX

′

can be completed to a morphism of triangles (but not necessarily uniquely).

Although it will not be described here with respect to standard triangles, we

also have the following property of distinguished triangles, which can be given in two

variations other than what is given below. See [HoJoRo] for these variations.
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(TR5) (Octahedral axiom) Given distinguished triangles X
x−→ Y → Z

′ → ΣX,

Y
y−→ Z → X

′ → ΣY and X
yx−→ Z → Y

′ → ΣX, there exists a distinguished

triangle Z
′ → Y

′ → X
′ → ΣZ

′
making the following diagram commute:

X x //

idX

��

Y //

y

��

Z
′ //

��

ΣX

idΣX
��

X
yx //

x

��

Z //

idC

��

Y
′ //

��

ΣX
′

Σx
��

Y
y //

��

Z //

��

X
′ //

id
X
′

��

ΣY

��
Z
′ // Y

′ // X
′ // ΣZ

′

Any category with a translation functor and a class of distinguished triangles

which satisfy the above properties is called triangulated and (T0)-(T5) are the axioms

of a triangulated category. The homotopy category K(R) is triangulated, and Ktac(R)

is a triangulated subcategory of K(R). Another common type of triangulated category,

and in fact one of the archetypal examples, is called the Derived category of R-modules,

often denoted D(R). Triangulated categories were introduced independently by Dieter

Puppe in 1962 ([Pu]), with motivation given by the stable homotopy category, and by

John-Louis Verdier in his 1963 thesis ([Ve2]). It was Verdier’s thesis which outlined

the five axioms, using his definition of the derived category of an abelian category,

extending the work of his advisor Alexander Grothendieck, as his primary motivation.

3.3.3.1 Triangles Induce Long Exact Sequences in Ext

Now that we have discussed the main properties which contribute to the trian-

gulated structure of a category, we will discuss two important consequences of such

structure. It should be clear that the distinguished triangles in Ktac(R), in some

sense, generalize the notion of short exact sequences in abelian categories. While a
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category can be both abelian and triangulated, this only occurs if the category is

semisimple (every short exact sequence splits). And so, there is only a slight overlap

between these two types of categories. Hence, the class of distinguished triangles in a

(non-abelian) triangulated category truly is the appropriate analogue to the class of

short exact sequences in an abelian (non-triangulated) category.

For this reason, we might expect some similarities between distinguished triangles

and short exact sequences. We will now discuss two consequences of distinguished

triangles, in particular, which will highlight some of these similarities.

Proposition 3.17 (Composition of morphisms, cf. [HoJoRo]). If X
u−→ Y

v−→ Z
w−→ ΣX

is a distinguished triangle in Ktac(R), then v ◦ u ∼ 0 and w ◦ v ∼ 0.

Proof. We have already seen that this holds for the standard triangles in Ktac(R).

Moreover, by the rotational axiom (TR3) it only needs to be shown that v ◦ u ∼ 0

and proof of this is given by [HoJoRo, 4.1].

Thus, we have seen that all distinguished triangles are indeed the “short exact

sequences” in Ktac(R). Now, we might hope that, similarly to R-mod or any other

abelian category, such sequences can induce long exact sequences.

Proposition 3.18 (Long Exact Sequences, cf. [HoJoRo]). Let X
u−→ Y

v−→ Z
w−→ ΣX

be a distinguished triangle in Ktac(R). For any object C ∈ Ktac(R), there exists two

long exact sequences of abelian groups:

· · · → HomK(C,ΣiX)→ HomK(C,ΣiY)→ HomK(C,ΣiZ)→ HomK(C,Σi+1X)→ HomK(C,Σi+1Y)→ · · ·

and

· · · → HomK(Z,ΣiC)→ HomK(Y,ΣiC)→ HomK(X,ΣiC)→ HomK(Z,Σi+1C)→ HomK(Y,Σi+1C)→ · · ·

where HomK(−,−) is shorthand notation for HomK(R) (−,−) = HomKtac(R)(−,−).

Equivalently, Proposition 3.18 states that the functors Hom(C, -) : Ktac(R)→

Z-mod and Hom(-,C): Ktac(R)op → Z-mod are both cohomological, as with R-mod.

Furthermore, for any abelian category Ab, one has ExtiAb (A,B) = HomD(Ab )(A,Σ
iB).
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Since the objects of Ktac(R) coincide with a subset of those from the derived category

of R-mod, we can actually rewrite the sequences given in Proposition 3.18 as

· · · → ExtiR(C,X)→ ExtiR(C,Y)→ ExtiR(C,Z)→ Exti+1
R (C,X)→ Exti+1

R (C,Y)→ · · ·

and

· · · → ExtiR(Z,C)→ ExtiR(Y,C)→ ExtiR(X,C)→ Exti+1
R (Z,C)→ Exti+1

R (Y,C)→ · · ·

so that any distinguished triangle induces long exact sequences in Ext, just as short

exact sequences do in R-mod. We will utilize this fact in a significant manner in

Chapter 4 of this thesis; for now, though, we move onto a discussion of the CI and

Cohomological Operators on an object in Ktac(R).

3.4 Endomorphisms of R-Complexes

We now turn to the study of endomorphisms on R-complexes in hopes that

they shed some light upon the structural patterns within such objects. We find

that Eisenbud’s approach to identifying even-degree endomorphisms given in [Ei]

generalizes nicely to R-complexes of free modules, and thus objects in Ktac(R). To

start, let µ be a negative-degree chain endomorphism on an R-complex C ∈ C(R) so

that µn+q : Cn+q → Cn for some integer q > 0 and µn−1∂
C
n = ∂C

n−qµn for each n ∈ Z.

In a similar vein, we may consider an “endomorphism” on a totally acyclic complex

from Ktac(R) in the following manner. Let µ : C→ ΣqC be a morphism in Ktac(R)

so that for each n ∈ Z, there exist R-module homomorphisms µn+q : Cn+q → Cn for

some integer q > 0 and µn−1∂
C
n ∼ ∂ΣqC

n µn. Note that although C and ΣqC are distinct

objects in Ktac(R), we will still informally refer to µ as a −q degree endomorphism on

C, as we can always view a representative of µ’s equivalence class on the R-complex

C in C(R).
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3.4.1 Generalization of CI/Cohomology Operators to R-complexes

Now that we have established what is meant by an “endomorphism” on a complex

in Ktac(R), we can specify the generalization of the CI, or Eisenbud, operators to

an R-complex. Since a description of these operators has already been given for free

resolutions and the process generalizes quite naturally, we exploit an example to give

demonstration of finding the operators for an R-complex.

Example 3.19. Let R =
k[[x, y]]

(x2, y2)
and Q =

k[[x, y]]

(y2)
. Consider the R-complex C ∈

Ktac(R) given in the diagram below and note that since there exists a natural

ring surjection Q � R, we can view all Ci as Q-modules. Additionally, since the

differentials are represented by matrices, we can view the entries of each differential

matrix as if they are elements in Q, not R. Meaning, we can naively “lift” the R-

complex C to a sequence of free Q-modules and Q-module homomorphisms, denoting

this sequence C̃ as written in the diagram below.

C̃ : · · · → Q2
[x y0 x ]
−−−→ Q2

[x −y0 x ]
−−−−→ Q2

[x y0 x ]
−−−→ Q2

[x −y0 x ]
−−−−→ Q2 → · · ·

⇑ ⇑ ⇑

C : · · · → R2
[x y0 x ]
−−−→ R2

[x −y0 x ]
−−−−→ R2

[x y0 x ]
−−−→ R2

[x −y0 x ]
−−−−→ R2 → · · ·

Now, C itself is a periodic complex, so it is easy to observe that ∂̃n ◦ ∂̃n+1 6= 0 for any

n since

( x y0 x )( x −y0 x ) =
(
x2 0
0 x2

)
6= 0 ∈ Q2 and ( x −y0 x )( x y0 x ) =

(
x2 0
0 x2

)
6= 0 ∈ Q2

Hence, C̃ is not a Q-complex. We can actually see by “how much” C̃ is not so by

observing that for each composition ∂̃n ◦ ∂̃n+1 = x2( 1 0
0 1 ). And since x2 6= 0 ∈ Q, the

failure of the composition to be 0 relies solely on the matrix1 0

0 1


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which turns out to be I2 in this example. Moreover, once we factor x2 out, this

remaining piece preventing ∂̃2 from being 0 is actually a map from C̃n → C̃n−2. This

produces a family of maps {t̃n}n∈Z and tensoring “back down” to R (by applying

R ⊗Q −), we obtain a −2 degree endomorphism t = {tn}n∈Z: C→ Σ−2C. For this

example,

tn =

1 0

0 1


for each n ∈ Z, which turns out to be fairly unsurprising since C is periodic.

Notice that in the above example, codim(R,Q) = 1 (where the codimension is

defined to be dimQ− dimR, which follows from the definition given in [BrHe, Pg.

413]) and so we obtain a single −2 degree endomorphism on C. Suppose now that

codim(R,Q) = c, so that R is a complete intersection ring of the form Q/f where

f = f1, . . . , fc is a Q-regular sequence.“Lifting” an R-complex C to a sequence C̃, it

turns out that ∂̃2 ∈ (f1, . . . , fn) since ∂2 = 0 in R. Therefore, the lifted composition

actually takes on the form

∂̃2 =
c∑
j=1

fj t̃j

where t̃j:C̃ → Σ−2C̃ for each j = 1, . . . , c. Similarly to the example above, we may

define tj = R ⊗Q t̃j to obtain a −2 degree endomorphism C → Σ2C for each j.

That is, t = {tj} is a family of c degree −2 chain endomorphisms on C where each

tj = {tn}n∈Z. As indicated in the example above, t is a measure of how much C̃ is

not a Q-complex. Formally, we denote each tj = (Q, {fi},C) as it was denoted in

Chapter 1 for free resolutions of R-modules. Of course, we have the same statements

discussed in Chapter 1 for the CI operators on R-complexes.
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Most importantly, we have the naturality of each tj; that is, if g : C→ D, tj is

defined for C as it is above and sj = (Q, {fi},D), then gtj ∼ sjg. Equivalently, the

square

C

tj

��

f // D

sj

��
ΣC

Σf // ΣD

commutes up to homotopy. Furthermore, the operators commute up to homotopy

themselves: titj ∼ tjti for each 1 ≤ i 6= j ≤ c. The culmination of these characteristics

is that the Eisenbud operators are well-defined morphisms C → Σ2C for any C ∈

Ktac(R).

Recall from Chapter 1 that a linear form of the CI operators eventually becomes

surjective on any minimal free resolution of M . In fact, the same occurs for any

complex C ∈ Ktac(R) since we can associate it to a complete resolution, a construction

that will be introduced shortly in Section 3.5. However, a similar phenomenon occurs

on the right-hand, or “negative-degree”, side of C as well. If we set M = Im ∂C
0 ,

then note that a linear form l of CI operators (Q, {fi},F∗) will eventually become

surjective where F∗ is the (minimal) free resolution of M∗. Dualizing, we see that

HomR(F∗, R) is equivalent to C≤0 and, more importantly, that l∗ = HomR(l, R)

will eventually become injective for n� 0. One interesting question is whether or

not there exists a linear form which realizes eventual surjection and injection on an

R-complex C. This question will be addressed in the conclusion of Chapter 4 in this

thesis.

3.5 Complete Resolutions

So far we have discovered structural similarities between the categories R-mod

and Ktac(R); they are both additive, and while Ktac(R) is not abelian, its triangulated
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structure in some sense mimics many of the properties and constructions we gain

from an abelian category. We have also just discussed how we can realize the CI

and Cohomology Operators on an (acyclic) R-complex, just as we introduced the

concept for (minimal) free resolutions of R-modules in Chapter 1. We conclude

this chapter with one remaining construction, which will help fuse the theories of

the two categories, motivating the work presented in Chapter 4 of this thesis. This

construction is called a complete resolution.

First, for the following definition we specify one of two conditions: either (1)

R is a Gorenstein ring, or (2) M is an R-module with finite G-dimension.3 Note

that all examples in this thesis and much of the theory (e.g. CI operators) centers

upon when R is a complete intersection ring; and, of course, in this case the former

condition listed is satisfied. If however, the only assumption given is that R is a

local, noetherian ring then the following definition exists only if the latter condition

is assumed. Although the main definitions in Chapter 4 will make sense as long as

R is a local noetherian ring, it behooves us conceptually to assume additionally one

of the aforementioned conditions on either R or M so that the connection between

R-mod and Ktac(R) is not severed.

3.5.1 Connection between Free R-resolutions and Totally Acyclic R-complexes

Definition 3.20 (cf. [AvMa]). Let M be a finitely-generated R-module such that

either (1) R is a Gorenstein ring, or (2) G-dimRM <∞. A complete resolution of

M is a diagram

U
ρ−→ P π−→M

where U ∈ Ktac(R), P is a projective resolution of M , and ρ is a morphism of

complexes such that ρn is bijective for all n� 0.

3Recall Gorenstein dimension from Theorem 2.8 of this thesis.
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One of the first papers discussing this construction was [AvMa], in which the

authors employed the notion to give an adequate treatment of functoriality in the

contravariant argument and naturality of comparison maps with respect to Tate

cohomology. Shortly, we will introduce Tate cohomology, as it plays a significant role

in making our theory precise, but for now we continue our discussion of complete

resolutions.

Whenever it does not affect accuracy of the theory, we may abuse notation and

refer to U as the complete resolution, rather than the formal diagram. We now make

the connection between R-mod and Ktac(R) explicit.

Proposition 3.21 (cf. [AvMa]). There is a one-to-one correspondence between objects

in R-mod and objects in Ktac(R).

Proof. For any C ∈ Ktac(R), denote C≥n as the truncated complex of C, meaning

that

(C≥n)i =


Ci i ≥ n

0 i < n

and consider the diagram

C
ρ−→ C≥n

π−→ Im∂Cn

where it should be clear that ρ is a morphism of complexes with ρn bijective for all

n� 0. Moreover, it holds that C≥n is a projective resolution of Im∂Cn , since it is an

acyclic complex of free modules. Therefore, any object in Ktac(R) can be realized as

a complete resolution of an R-module.

Next, there exists a (unique) minimal free resolution F for every finitely-

generated R-module and we may take this resolution as a projective resolution

of M for the first part of the diagram. Furthermore, there is a manner in which

we may construct a minimal totally acyclic complex U such that the bijectivity
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condition between U and F holds. This manner is described below; and so, we have

a one-to-one correspondence between objects in Ktac(R) and objects in R-mod.

The use of an R-module’s minimal free resolution in the construction of a

complete resolution provides reason as to why we might call U a complete resolution

of M . Additionally, over a local ring R, we can informally think of complete resolutions

as “doubly infinite” free resolutions, since a projective module over a local ring is

always free. We now provide the construction of a complete resolution for any finitely-

generated R-module; the reader may also refer to [AvMa] for a reasonable coverage

as well.

3.5.2 Construction of a Complete Resolution

For now, let M be a finitely-generated, maximal Cohen-Macaulay R-module (so

that depthRM = dimR). Then we can find the complete resolution of M as follows:

1. Compute the minimal free resolution of M :

· · · → Rβn ∂n−→ Rβn−1
∂n−1−−−→ · · · → Rβ1

∂1−→ Rβ0
ε−→M → 0

2. Take the dual of M , denoted M∗ = HomR(M,R), and compute the minimal

free resolution of M∗:

· · · → Rbn δn−→ Rbn−1
δn−1−−→ · · · → Rb1 δ1−→ Rb0 ε−→M∗ → 0

3. (Dualizing) Apply the HomR(−, R) to the resolution from Step (2) in order to

obtain a cochain complex bounded below and note that M∗∗ = HomR(M∗, R) ∼=

M (since M is maximal Cohen-Macaulay, and thus reflexive; meaning, the

biduality map is an isomorphism):

0→M
εT−→ Rb0

δT1−→ Rb1 → · · ·
δTn−1−−→ Rbn−1

δTn−→ Rbn → · · ·

4. Concatenate the two resolutions from Steps (1) and (3):

· · · → Rβn ∂n−→ · · · → Rβ1
∂1−→ Rβ0

εT ◦ε−−→ Rb0
δT1−→ Rb1 → · · · δ

T
n−→ Rbn → · · ·
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5. Setting ∂0 = εT ◦ ε and re-indexing δTi = ∂−i, we can rewrite the complex from

Step (4) as:

U : · · · → Rβn
∂n−→ · · · → Rβ1 ∂1−→ Rβ0 ∂0−→ Rβ−1

∂−1−−→ Rβ−2 → · · · ∂−n−−→ Rβ−(n+1) → · · ·

Note that each δTi represents the transpose of the matrix representing δi. Now,

it should be clear that, via the process outlined above, we obtain a diagram

U
ρ−→ F→→M

such that ρn is bijective for all n > 0 and so the diagram is, in fact, a complete reso-

lution. Now, suppose M is not maximal Cohen-Macaulay, so that the “concatenation”

step is not possible at homological degree 0. In this case, we must “cut out” the

portion of F in which ΩiM are not maximal Cohen-Macaulay modules. Note that for

some n <∞, the nth syzygy module will have depth equal to the Krull dimension of

the ring (by the depth lemma). Therefore, after (1) we will include an intermediary

step:

(1.5) Let n ∈ Z be the homological degree such that depthR(Im(∂n)) = dimR and

set M
′

= ΩnM . Then note that F≥n will be the minimal free resolution of M
′

and that (M
′
)∗ will also be maximal Cohen-Macaulay. Now complete (2)-(5)

with M
′

in place of M .

We now present an example of constructing a complete resolution of a finitely-

generated R-module:

Example 3.22. Let R =
k[[x, y]]

(x2, y2)
and M = k ∼=

R

(x, y)
.

1. Compute the (minimal) free resolution of M :

Fk : · · ·R5

 y x 0 0 0
0 y −x 0 0
0 0 y −x 0
0 0 0 y x


−−−−−−−−−→ R4

[
y −x 0 0
0 y x 0
0 0 y x

]
−−−−−−−→ R3

[
0 −y x
y x 0

]
−−−−−→ R2 [x y ]−−−→ R→ k→ 0
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2. Noting that the dual of M is M∗ = HomR(k, R) = R(xy) ∼= k, compute the free

resolution of M∗:

Fk : · · ·R5

 y x 0 0 0
0 y −x 0 0
0 0 y −x 0
0 0 0 y x


−−−−−−−−−→ R4

[
y −x 0 0
0 y x 0
0 0 y x

]
−−−−−−−→ R3

[
0 −y x
y x 0

]
−−−−−→ R2 [x y ]−−−→ R→ k→ 0

3. And dualizing:

HomR(Fk, R) : 0→ k→ R
[ xy ]
−−→ R2

[
0 y
−y x
x 0

]
−−−−−→ R3

 y 0 0
−x y 0
0 x y
0 0 x


−−−−−−−→ R4


y 0 0 0
x y 0 0
0 −x y 0
0 0 −x y
0 0 0 x


−−−−−−−−−→ R5 → · · ·

4. Finally, we concatenate:

Note that in the above example, since we computed our complete resolution

from the module k, C0 = R and ∂0 = [xy].

3.5.3 A Brief Encounter with Tate Ext

At this time, it becomes necessary to introduce Tate cohomology in order

to present analogous constructs discussed in Chapter 1 with respect to complete

resolutions. Tate cohomology was studied initially by Buchweitz in [Bu2], additionally

in [AvMa], with respect to complexes in [Ve], and used in [ChJo] with respect to the

authors’ definitions of pinched complexes. We simply recall the definition of “Tate

Ext” with respect to R-complexes, as given in both [Ve] and [ChJo].

Definition 3.23 (cf. [Ve], [ChJo]). Let M be an R-complex with complete projective

resolution U
ρ−→ P → M. For any R-complex N the Tate cohomology of M with

coefficients in N is

Êxt
i

R(M,N) := H−i(HomR(U,N)) = Hi(HomR(U, N))
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Note that we may apply the above definition whenever M and N are R-modules,

in which case we view them as R-complexes concentrated in degree 0. Further note

that in this case, we have that

Êxt
i

R(M,N) ∼= ExtiR(M,N)

for i > g = G-dimRM . With respect to R-modules, we can view the computation of

Êxt as analogous to the computation of Ext, with the exception of using a complete

resolution U of M in lieu of a projective resolution. We now relate some of the

topics discussed in Chapter 1, with respect to totally acyclic complexes and Tate

cohomology.

Definition 3.24. Let M be a finitely-generated R-module with complete resolution

C → F→M where F is the minimal free resolution of M . Then define the complete

Betti sequence of M to be {b̂Rn (M)} where each b̂Rn (M) := rk(Cn) or, equivalently,

b̂Rn (M) = dimk Êxt
n

R(M, k)

for each n ∈ Z.

One may also refer to the complete syzygy sequence {Ω̂nM}n∈Z to mean all

syzygy and cosyzygy modules, in which case it becomes clear that our goal in this

thesis is to additionally understand the dual picture of a module’s free resolution.

The next definition clarifies the direction we intend to take moving forward.

Definition 3.25. Let M , F and C be as in Definition 3.24. Furthermore, let R be a

complete intersection ring cut out by the regular Q-sequence f = f1, . . . , fc. Then,

define the complete cohomology operators to be χ̂j := HomR(t̂j,k) where t̂j are the

complete CI operators on C.

As one might expect, ÊxtR(M, k) is unambiguously a module over the “complete”

ring of cohomology operators Ŝ = R[χ̂1, . . . , χ̂c]. We will often not use notation marks
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to distinguish between S and Ŝ, or the like; rather, we will rely on context with

the note that for the remainder of this thesis, our primary focus is on complete

resolutions, and thus we consider when patterns arise in the tails of their complete

Betti sequences.

To conclude this chapter, we simply note that our goal in the next chapter

will be to shift perspective from patterns in {bRn (M)} to patterns in {b̂Rn (M)}, with

emphasis on filling in the dual half of the picture. We will work towards extending

the work done in [AvGaPe], presented in Chapter 2 of this thesis, so that the notion

of critical degree and what it communicates augments our understanding of these

patterns. Without further ado, we persist onward.
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Part II

The Elements
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CHAPTER 4

The Critical and Cocritical Degrees of a Totally Acyclic Complex

We now find ourselves in the nucleus of this thesis, having built up the necessary

components to understand the motivation behind the definitions presented in Section

4.1 of this chapter. As alluded to in previous chapters, our intention is to transplant the

notion of critical degree into Ktac(R). Our hope is that, with this shifted perspective,

we may gain additional insight and, at minimum, relate the entire syzygy sequence

via the critical degree. In fact, one major theme indicated in [AvGaPe] is to study

the sequence of syzygy modules as a whole, as opposed to just one module at a

time (called asymptotic homological algebra). Hence, our approach to using critical

degree with respect to complete resolutions will certainly aid us in this endeavor. Of

special importance is the ability to capture the “unstable phenomena” which may

occur at the beginning of a free resolution within a portion of the associated complete

resolution. This particular motivation will be discussed in further detail in Chapter 6

of this thesis. For now, we introduce the main definitions and work to uncover both

their connection to the original definition in R-mod as well as the graded Ŝ-module

ÊxtR(M,k).

4.1 The Main Definitions

Let C be any R-complex in Ktac(R), and further denote C as the minimal

subcomplex of C so that we may write C = C ⊕ Z where Z is some contractible

R-complex. If µ : C → ΣqC is a morphism in Ktac(R), we will (loosely) refer to µ

as a −q < 0 degree chain endomorphism on C. Then denote µ̄ : C → ΣqC as the
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induced endomorphism on C. We will make use of this notation for the remainder of

the thesis. Now, we present the definition of critical degree, from the perspective of

totally acyclic complexes.

Definition 4.1. An R-complex C ∈ Ktac(R) has critical degree relative to µ (or

µ-critical degree) equal to s, denoted crdegµRC = s, if µ is a degree −q < 0 chain

endomorphism of C and s is the least integer such that µ̄n+q : Cn+q → Cn is surjective

for all n > s; that is,

crdegµRC = inf{n | µ̄i+q : Ci+q � Ci ∀ i > n}

where µ̄ is the induced endomorphism on the minimal subcomplex C. Note that if no

such integer s exists and s 6= −∞, then crdegµRC =∞ by definition.

The critical degree of C ∈ Ktac(R) is defined to be the infimum over all µ-critical

degrees:

crdegRC = inf{crdegµRC | µ : C→ ΣqµC}

where, once again, if all such relative critical degrees are infinite, then crdegRC =∞

by definition.

Remark. Note that if we take M = Im ∂C
0 for some C ∈ Ktac(R), then the above

definition of critical degree for C will indeed agree with the definition for M in R-mod

as long as crdegRM ≥ 0. We will later discuss a special case in which crdegRM ≥ −1

but −∞ ≤ crdegRC � −1.

It is also significant to note the distinction of using the intermediary definition

of relative critical degree. The reasons for doing so mainly involve ease of discussion–

for example, we can more definitively refer to an endomorphism which realizes the

critical degree whenever crdegRC < ∞. In particular, the methodology presented

with regard to the topics covered in Chapter 5 of this thesis makes explicit use of

this intermediary definition.
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Now recall that the construction of a complete resolution for an R-module

involves its dual; hence, this is indication that it is only natural to develop a dual

notion to critical degree.

Definition 4.2. An R-complex C ∈ Ktac(R) has cocritical degree relative to µ (or

µ-cocritical degree) equal to t, denoted cocrdegµRC = t, if µ is a degree −q < 0 chain

endomorphism of C and t is the greatest integer such that µ̄n : Cn → Cn−q is split

injective for all n < t; that is,

cocrdegµQC = sup{n | µ̄i : Ci ↪→ Ci−q splits ∀ i < n}

where µ̂ is the induced endomorphism on the minimal subcomplex C. Note that if no

such integer t exists and t 6=∞, then crdegµRC = −∞ by definition.

The cocritical degree of C ∈ Ktac(R) is defined to be the supremum over all

µ-cocritical degrees

cocrdegRC = sup{cocrdegµRC | µ : C→ ΣqµC}

where, once again, if all such relative cocritical degrees are negatively infinite, then

crdegRC = −∞ by definition.

Remark. Note that if we take M = Im ∂C
0 for some C ∈ Ktac(R), then the above

definition of cocritical degree for C actually agrees negatively (up to a one degree

shift to the right) with the definition for M∗ = HomR(M,R) in R-mod as long as

crdegRM∗ ≥ 0. That is, if crdegRM∗ = s for some 0 ≤ s < ∞, then cocrdegRC =

−s − 1. The negative one-degree shift is due to the relabeling of the degrees of

HomR(F∗, R) within the concatenation step of constructing a complete resolution.

Therefore, we have reasonable consistency with the definition of critical degree of

M and M∗ in R-modwith the definitions of critical and cocritical degrees of a complex

C in Ktac(R). Additionally, it should be clear that, by definition, crdegµRC ≥ crdegRC
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and cocrdegµRC ≤ cocrdegRC, for any chain endomorphism µ : C→ ΣqC. This fact

will be used in Chapter 5 of this thesis.

We must now check that these definitions make sense in Ktac(R), since the

equivalency in this category is up to homotopy. The next lemma and proposition

assure that this is the case.

Lemma 4.3. Let C and D be isomorphic as R-complexes in C(R). Then there is

a one-to-one correspondence between chain endomorphisms on C and those on D.

Moreover, an endomorphism on C is degree-wise surjective (split injective) if the

corresponding endomorphism on D is surjective (split injective) at the same degrees,

and vice versa.

Proof. Take f : C → D to be an R-complex chain map such that fn : Cn → Dn is

isomorphic for each n ∈ Z and consider the following diagram

C

µ
��

f // D

∃! ν
��

ΣqC Σqf // ΣqD

where µ : C → ΣqC is a chain endomorphism. Now define ν = (Σqf)µf−1 as a

−q degree chain endomorphism D → ΣqD making the square commute; that is,

νf = ((Σqf)µf−1)f = (Σqf)µ. Uniqueness of ν follows from the fact that f is an

isomorphism, since any other ν
′
: D→ ΣqD such that ν

′
f = (Σqf)µ can be rewritten

as ν
′
= (Σqf)µf−1 = ν.

To show the latter part of the lemma, first note that since Σqf is an isomorphism

at each degree, we have that for any d ∈ Dn−q there exists some c ∈ Cn−q such that

(Σqf)n(c) = d. Now suppose µn : Cn → Cn−q is surjective for some n ∈ Z. Then

for any d ∈ (ΣqD)n = Dn−q, there exists some c′ ∈ Cn such that (Σqf)nµn(c′) = d.

Lastly, setting d′ = f(c′) ∈ Dn we see that for any d ∈ (ΣqD)n there exists a d′ ∈ Dn

where νn(d′) = (Σqf)nµnf
−1
n (d′) = (Σqf)nµn(c′) = fn−q(c) = d as desired. Hence,
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νn : Dn → Dn−q must also be surjective. Conversely, we may apply the exact same

argument as above, reversing the roles of C and µ with D and ν, to see that if νn is

surjective then µn must be as well.

Similarly, suppose now that µn is split injective so that there exists a left inverse

µ−1
n : Cn−q → Cn so that µ−1

n µn = IdCn . Then define ν−1
n = fnµ

−1
n f−1

n−q : Dn−q → Dn

and note that

ν−1
n νn = (fnµ

−1
n f−1

n−q)(fn−qµnf
−1
n ) = fnµ

−1
n µnf

−1
n = fnf

−1
n = IdDn

showing νn has a left inverse. Hence, νn must also be split injective and we can apply

the same argument switching the roles of ν and µ to see the other direction holds as

well.

Proposition 4.4. Let C and D be homotopically equivalent R-complexes. Then the

(co)critical degree of C equals the (co)critical degree of D; that is, if C ' D then

crdegRC = crdegRD and cocrdegRC = cocrdegRD.

Proof. Suppose C ' D, implying that C ∼= D. Now take f : C → D to be an

R-complex chain map such that fn : Cn → Dn is isomorphic for each n ∈ Z and

consider the following diagram

C

µ

��

' //
'
zz

D
'
zz

ν

��

C

µ̄

��

∼= // D

ν̄

��
ΣqC
'zz

'
// ΣqD

'zz
ΣqC ∼=

// ΣqD

where ν̄ : D→ ΣqD is the endomorphism induced by µ̄ from Lemma 4.3. Note that

front face of the diagram commutes, whereas all other faces commute up to homotopy.

Moreover, we may apply Lemma 2 from Chapter 3 upon the right-most face of the
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diagram to see that we can extend ν̄ to an endomorphism ν : D→ ΣqD where D is not

necessarily minimal. Now, by the argument given in Lemma 4.3, it should be clear

that crdegµ̄RC = crdegν̄RD and thus crdegµRC = crdegνRD also. Therefore, supposing

that crdegRC = s = crdegµRC where s <∞ and µ : C→ ΣqµC, further assume for the

sake of contradiction that crdegRD = t � s. This would imply that there exists some

ν̄ ′ : D→ Σq′νD which is surjective for all n > t. But then by the previous Lemma, we

must obtain an induced endomorphism µ̄′ : C → Σq′µC surjective for all n > t � s,

contradicting the assumption that s is the critical degree of C. Thus, t ≥ s and so

now suppose t 6= s. Then note that µ̄ induces an endomorphism ν̄ ′′ : D → Σq′′νD

which is surjective for all n > s � t, contradicting the assumption that t is the critical

degree of D. Hence, t = s whenever both crdegRC and crdegRD are assumed to be

(positively) finite.

If we assume at least one is not, say crdegRC =∞ then note that there does

not exist any endomorphism on C satisfying the definition. This would then imply

that there cannot be any endomorphism on D that is eventually surjective (on D),

since otherwise, we would obtain an induced endomorphism on C which is eventually

surjective, thus contradicting the assumption that crdegRC is (positively) infinite.

Therefore, the equality holds even in the case of infinite critical degrees. Lastly, we

can apply an analogous argument to that above for the case of cocritical degree in

order to see that cocrdegRC = cocrdegRD as well.

Given the above proposition, we see that the critical and cocritical degrees are

stable under homotopy, making these concepts well defined in Ktac(R). One topic

we have not specifically addressed yet is the critical and cocritical degrees of 0 in

Ktac(R). The next corollary gives the answer to this question.

Corollary 4.5. If C ' 0, then crdegRC = −∞ and cocrdegRC =∞.
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With the above corollary in mind, it should be clear that for any C ∈ Ktac(R),

we have −∞ ≤ crdegµRC ≤ ∞ and −∞ ≤ cocrdegµRC ≤ ∞. In the next section, we

discuss precisely when, other than the zero complex, crdegµRC = −∞ and cocrdegµRC =

∞.

4.2 Some Patterns and Properties

Given a finitely-generated R-module, we can associate to it a totally acyclic

complex via the construction of its complete resolution. We have already addressed

the connection between critical degree in R-mod and Ktac(R) in one direction; recall

that given a complex in the latter category, the critical degree agrees with that of

the image of its differential at degree zero as long as crdegRC ≥ 0. However, we

have yet to discuss the connection between these notions if we instead start from the

module and build its complete resolution. We will first look to understand this case;

afterwards, we will move to answering a natural question about the critical degree

and its dual notion cocritical degree.

4.2.1 Critical Degree in R-mod versus Ktac(R)

Let C → F →→ M be a complete resolution and note that if we begin with a

maximal Cohen-Macaulay (MCM) module M , then it should be clear that crdegRC =

crdegRM and cocrdegRC = −crdegRM∗ − 1, whenever the critical degrees of M and

its dual are non-negative. On the other hand, if M is not MCM, then
crdegRC = s− g if s ≥ 0

cocrdegRC = s∗ − g∗ if s∗ ≥ 0

where crdegRM = s and g = dimR− depthRM (with s∗ and g∗ denoted analogously

for M∗). Again, of special significance is that these statements hold only in the
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cases that s ≥ 0 or s∗ ≥ 0. Observe that, in these cases, crdegRC > 0 if g < s

and cocrdegRC < 0 if g∗ > s∗. If we did not consider the alternative to these cases,

one might mistakenly think that the critical degree of an R-complex always occurs

on the positive side and the cocritical degree always occurs on the negative side;

however, this is not necessarily true. Whenever we consider an R-module M such

that crdegRM = −1 it could be the case that crdegRC � −1, as demonstrated in the

following example.

Example 4.6. Let M be the R-module with complete resolution given at the

beginning of this subsection and further suppose that 0 ≤ crdegRM = s < ∞. For

simplicity, assume also that M is MCM. Now set N = Ωs+kM for some fixed integer

k > 1, so that crdegRN = −1. This is because µ(Fn+q) = Fn for some µ : F→ ΣqF

and for all n > s by assumption, but G := F>s+k is the minimal free resolution of

N . Thus, Gn = Fn+s+k so it should be clear that µ(Gn+q) = Gn for all n > 0 since

n+ s+ k > s. However, note that N∗ = HomR(Ωs+kM,R) ∼= Ωs+k HomR(M,R) and,

furthermore, we can complete the chain endomorphism on F realizing the critical

degree of M to a chain map on C (see (1.5) in [BeJoMo]). Of course, there also

exists a complete resolution of N of the form C→ G→→ N , which is equivalent to

C → F>s+k →→ Ωs+kM (up to isomorphism in the first two components and up to

homotopy in the last). Therefore, we see that crdegRC ≤ −k where −k � −1 by

assumption.

Note that in the example above, we should technically distinguish between the

complete resolution of M and N in the following manner: if C → G →→ N is the

complete resolution of N , then Σs+kC → F →→ M is the complete resolution of M .

Regardless of this technicality, the point remains, allowing us to see that critical

degree in R-mod is not always in accordance with critical degree in Ktac(R). This is

due to the distinction between F being a bounded below R-complex and C not being
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so. Nevertheless, both are useful and can be used to complement each other; one

topic in particular about what we gain from the notion in Ktac(R) will be discussed

in Chapter 6 of this thesis.

4.2.2 Can Cocritical Degree be Greater than Critical Degree?

In relation to the previous section, we might wonder whether or not the cocritical

degree of a given complex can be greater than its critical degree and, if this is possible,

what types of complexes might exhibit this behavior? The next proposition explores

these ideas.

Proposition 4.7. Let µ : C → ΣqC be a given endomorphism of an R-complex in

Ktac(R). Then crdegµRC ≤ cocrdegµRC− (2 + q) if and only if the minimal subcomplex

C is periodic. In which case, it is then necessarily true that crdegRC = −∞ and

cocrdegRC =∞.

Proof. For the sake of simplicity, assume C ∈ Ktac(R) is minimal. First note that if

C is periodic, then we may define an obvious endomorphism of degree −q, where the

period C is equal to q. Denote ρn = idCn : Cn → Cn−q ∼= Cn for all n ∈ Z and note that

{ρn}n∈Z will be a well-defined chain endomorphism on C. Therefore, crdegρRC = −∞

and cocrdegρRC =∞, forcing the critical and cocritical degrees of C to be −∞ and

∞, respectively.

Now our goal is to show that an endomorphism with an isomorphic map in at

least one degree will force the complex to be periodic. Let µ : C→ ΣqC be a chain

endomorphism and suppose that crdegµRC = s = cocrdegµRC− (2 + q) so that µn+q

is split injective for all n < s+ 2 and µn+q is surjective for all n > s. In particular,

µ(s+1)+q : C(s+1)+q → C(s+1) is bijective, as depicted in the following diagram.
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· · · // C(s+3)+q

u(s+3)+q

����

∂(s+3)+q// C(s+2)+q

µ(s+2)+q

����

∂(s+2)+q// C(s+1)+q� _

µ(s+1)+q ∼=
����

∂(s+1)+q // Cs+q� _
µs+q

��

∂s+q // C(s−1)+q� _

us−1+q

��

// · · ·

· · · // Cs+3
∂s+3 // Cs+2

∂s+2 // Cs+1
∂s+1 // Cs

∂s // Cs−1
// · · ·

Note that since C(s+1)+q
∼= Cs+1 and µ(s+2)+q is surjective, Ker ∂(s+1)+q

∼= Ker ∂s+1.

First, by commutativity of the diagram, we have µ(s+1)+q(Im ∂(s+2)+q) = ∂s+2µ(s+2)+q ⊆

Im ∂s+2. Then we obtain Im ∂s+2 ⊆ µ(s+1)+q(Im ∂(s+2)+q) since for any x ∈ Im ∂s+2

there exists a y ∈ C(s+2)+q such that ∂s+2µ(s+2)+q(y) = x = µ(s+1)+q∂(s+2)+q. There-

fore, Im ∂(s+2)+q
∼= Im ∂s+2, as stated.

Consider now the (necessarily minimal) complete resolution C→ F→M where

M = Im ∂s+1 and note that, by definition, the truncated complex C>s is degree-wise

bijective with F. Furthermore note that Ω1(M) = Im(∂(s+2)) ∼= Im(∂(s+2)+q) =

Ω1+q(M); and thus, by uniqueness of F, it must hold that Ω1+q+n(M) ∼= Ω1+n(M)

for any n ∈ N.1 Now apply the same argument to the minimal free resolution of

M∗ = HomR(M,R) to get a periodic resolution and, dualizing back, C≤s is still

periodic. Then note that concatenation of the two truncated complexes at degree s

yields C. Therefore, C is a periodic complex of period q; moreover, it should be clear

that crdegµRC = −∞ = crdegRC and cocrdegµRC =∞ = cocrdegRC. It is easy to see

how the same argument applies to any number of sequential degrees with isomorphic

maps in a chain endomorphism.

1Roughly speaking, we mean to say that one can “replace” Ω1+qM with Ω1M in the reconstruction

of F, and can do so ad infimum; it is of course the unique construction of minimal resolutions which

allows us to say that this reconstruction must be the same as the original F, and thus the truncated

complex C>s.
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Corollary 4.8. If crdegRC and cocrdegRC are realized by the same degree −q endo-

morphism, then crdegRC ≤ cocrdegRC− (2 + q) if and only if crdegRC = −∞ and

cocrdegRC =∞.

Note that the above corollary is just a restatement of the proposition, where we

replace the relative critical and critical degrees with the requirement that the critical

and cocritical degrees are realized by the same endomorphism. Essentially, what the

preceding discussion tells us is that, under this requirement, a non-periodic complex

has a cocritical degree that can be larger than the critical degree, but only by a

limited amount. In particular, if −q < 0 is the degree of the endomorphism realizing

both the critical and cocritical degrees of a given complex, then its cocritical degree

can only be at most 1 + q larger than its critical degree. If the critical and cocritical

degrees of a given complex are not realized by the same endomorphism, it is currently

unknown whether there is any such restriction for a non-periodic complex.

4.3 A Shift in Perspective: Triangulated Definitions

We now introduce an alternative manner of viewing the critical and cocritical

degrees for a complex in Ktac(R). This perspective will mimic many of the ideas

from the proof of Theorem 7.8 in [AvGaPe], presented in Chapter 2 of this thesis.

Rather than include it as a proof of an analogous theorem, though, we choose to

provide what we will call the triangulated definition of the critical and cocritical

degrees. Then, after demonstrating equivalence of the definitions, we give proof for

the cohomological characterization in Section 4.4 of this chapter.

Recall that for any triangulated category T , distinguished triangles induce long

exact sequences of Ext groups, which are in fact also R-modules under our given

assumptions. The following definition involves this process to give an equivalent, yet

alternative perspective of the critical and cocritical degrees. More importantly, this

104



definition will be an intermediary step for developing the cohomological characteriza-

tion of these degrees in Ktac(R).

Definition 4.9. Denote K → Fk →→ k as the minimal complete resolution of the

residue field k = R
m

. For any endomorphism µ : C→ ΣqC, the distinguished triangle

C
µ−→ ΣqC

ι−→ M (u)
π−→ ΣC yields the long exact sequence of abelian groups

· · · → ExtnK(M (µ),K)→ ExtnK(ΣqC,K)
µn−−→ ExtnK(C,K)→ Extn+1

K
(M (µ),K)→ Extn+1

K
(ΣqC,K)→ · · ·

where µn = HomK(µn,K). The µ-critical degree of C is the least homological degree

sµ for which µn+q is (split) injective for all n > sµ; that is,

crdegµRC := inf{i µn+q : Extn+q
K (ΣqC,K) ↪→ Extn+q

K (C,K) for all n > i}.

Likewise, the u-cocritical degree of C is the greatest homological degree tµ for

which µn is (split) surjective for all n < tµ; that is,

cocrdeguRC := sup{i µn : ExtnK(ΣqC,K) � ExtnK(C,K) for all n < i}.

Note that if there exists no such infimum sµ, then, by definition, crdegµRC =∞

and, similarly, if there exists no such supremum tµ then crdegµRC = −∞. Further note

that we may define the critical degree of C in the same way as Definition 4.1 and we

may also define the cocritical degree of C as such. Therefore, the only distinction here

is how we are defining relative critical and cocritical degrees for a given R-complex

and chain endomorphism in Ktac(R).

4.3.1 Equivalency of the Definitions

Understanding the equivalency of Definitions 4.1 and 4.2 with Definition 4.9 is

not too much of a jump, reflecting the simplicity in R-mod. The bulk of the work is

actually involved in describing the connection between ExtnK(C,K) and Êxt
n

R(M, k)

for any complete resolution C → M →→ k. Afterward, it is quite simple to see the

equivalency of the different formats for the definitions of critical and cocritical degree.
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Thus, we begin with a lemma to show the necessary connection between Ext of

complexes and Êxt of modules.

Lemma 4.10. Given the complete resolutions K → Fk → k and C → FM → M ,

where M is maximal Cohen-Macaulay, there exists an isomorphism

ExtnK(C,K) ∼= Êxt
n

R(M, k)

for all n ∈ Z.

Proof. We begin with noting that for any twoR-complexes A and B, HomK(A,ΣnB) ∼=

ExtnK(A,B) (see Chapter 3 for a description of this). Then recognize that for any C ∈

Ktac(R) with minimal subcomplex C, we have that HomK(C,ΣnK) ∼= HomK(C,ΣnK)

since C and C are equivalent objects in K (and thus Ktac(R)). So, without loss of

generality, suppose C is a minimal R-complex in Ktac(R). We now aim to demonstrate

the isomorphism

HomK(C,ΣnK) ∼= Êxt
n

R(M,k)

(for any n ∈ Z) in order to attain the appropriate reduction of ExtnK(C,K) to

Êxt
n

R(M,k), where M = Im ∂C
0 . Then, we are able to use either form above to show

the statement in the subsequent proposition.

Define a map Φn : HomK(C,ΣnK)→ Êxt
n

R(M, k) where Φ([f ]) = ερ0fn for any

R-complex chain map f : C → ΣnK. First, we check that this map is well defined;

suppose f ∼ g so that there exist homotopy maps hj : Cj → Kj+1−n for each j ∈ Z,

as indicated in the following diagram.
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· · · // Cn+1

∂C
n+1 //

fn+1−gn+1

��

Cn
hn

||

∂C
n //

fn−gn

��

Cn−1

hn−1

zz

//

fn−1−gn−1

��

· · ·

· · · // K1

ρ1

��

∂K
1

// K0

ρ0

��

∂K
0

// K−1
// · · ·

· · · // F1
∂F

1

// F0

k ∼= R/m
$$ $$

ε

Note that

ερ0 ◦ (fn − gn) = ερ0 ◦ (∂ΣnK
n+1 hn + hn−1∂

C
n )

= ε(ρ0∂
K
1 )hn + ερ0hn−1∂

C
n

= ε(∂F
1 ρ0)hn + ερ0hn−1∂

C
n = 0

since ε∂F
1 = 0 by minimality of F and, similarly, ρ0hn−1∂

C
n (Cn) ⊆ mCn so that

the latter composition must be 0 as well. Now, for any cycle f : Cn → k, define

Θn : Êxt
n

R(M,k)→ HomK(C,ΣnK) in the following manner. Set fn = ε−1 ◦ f where

ε−1 is a preimage map guaranteed by the surjectivity of ε. And so, we have an

R-module map fn : Cn → K0. Now let Φ(f) = [f] where f : C → ΣnK represents

the completion of fn : Cn → K0 guaranteed by (1.5) in [BeJoMo], indicated in the

following diagram.

C //

f
��

(FM)≥n

f̄
��

//Mn

f |
coker(∂C

n+1)=Mn

��
K // Fk // k

Moreover, f is unique up to homotopy, ensuring that Θ is well defined. Finally, it

should be clear that ΦnΘn = IdÊxt
n

R(M,k) and ΘnΦn = IdHomK(C,ΣnK) for each n ∈ Z

by construction.

Proposition 4.11. The two definitions of relative µ-(co)critical degree are equivalent.
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Proof. Without loss of generality, suppose C is a minimal R-complex and, furthermore,

let µ : C→ ΣqC be a chain endomorphism in Ktac(R). To show the equivalency of

definitions, we only need prove that µ̂n+q (as described above) is (split) injective if

and only if µn+q is surjective. Likewise, given ν : C→ ΣrC, we must prove that ν̂n is

surjective if and only if νn is (split) injective. To see the former statement, note that

µn+q surjective yields the (split) short exact sequence

0→ ker(µn+q)→ Cn+q
µn+q−−−→ Cn → 0

and since HomR(−,k) is an additive functor on R-mod, we have preservation of the

split short exact sequence. This gives

0→ HomR(Cn,k)
Hom(µn+q ,k)−−−−−−−→ HomR(Cn+q,k)→ HomR(ker(µn+q),k)→ 0

where we observe that Hom(µn+q,k) is in fact split injective. And since, Êxt
n

R(M, k) ⊆

HomR(Cn,k) for any n ∈ Z the same holds for µ̂n+q : Êxt
n+q

R (M q,k)→ Êxt
n+q

R (M,k)

where M q := Im ∂ΣqC
0 = M−q, according to the notation used in Chapter 2. To

show the other direction, first note that for any cycle α ∈ HomR((ΣqC)n+q,k) =

HomR(Cn, k), the action is given by µ̂n+q(α) = αµn+q ∈ HomR(Cn+q,k). If µ̂n+q

is assumed to be split injective, then there exists a left inverse, say (µ̂n+q)−1 :

Êxt
n+q

R (M,k)→ Êxt
n+q

R (M q,k), so that

µ̂n+q(α) = µ̂n+q(β)

(µ̂n+q)−1µ̂n+q(α) = (µ̂n+q)−1µ̂n+q(β)

α = β

for any two cycles α, β ∈ HomR(Cn k). Of course this means for any such

morphisms α, β : Cn → k we have that αµn+q = βµn+q implies α = β; equivalently,

µn+q is right-cancellative, and thus surjective.
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Now, to show equivalency of the definitions for cocritical degree, we start with

the split short exact sequence

0→ Cn
µn
↪−→ Cn−q → A→ 0

where A is the summand such that Cn−q = A ⊕ im(µn). Once again, applying

HomR(−,k) to this sequence yields the desired result since

0→ HomR(A, k)→ HomR(Cn−q, k)
µ̂n−→ HomR(Cn,k)→ 0

is split exact, implying that µ̂n is surjective. Now suppose µ̂n is surjective so that

for any cycle α ∈ Hom(Cn,k) there exists a cycle β ∈ Hom(Cn−q,k) with α = βµn.

Since Cn is free, we can denote {ei} as a basis of Cn. Define maps πj : Cn → k where

πj(ei) = δij and note that each πj is a cycle in HomR(Cn,k) because ∂(C) ⊆ mC.

Hence, by surjectivity of µ̂n, there must exist associated maps ρj : Cn−q → k such that

πj = ρjµn, implying that µn(ei) forms a linearly independent subset of a basis E for

Cn−q. (If we take µn(ei) as the appropriate image in the k-vector space Cn−q/mCn−q

and assume 0 =
∑

i aiµn(ei) for some ai ∈ k, then note for any j we must have

that 0 = ρj(0) =
∑

i aiρjµn(ei) =
∑

i aiπj(ei). And so we see that aj = 0 for each

j, entailing that µn(ei) is a linearly independent set on Cn−q/mCn−q. Thus, we can

complete this set to a k-basis Ē and, by Nakayama’s Lemma, the preimage E will be

a basis for Cn−q as well.)

Since a linearly independent sub-basis of Cn−q defined by imµn is in one-to-one

correspondence with a basis for Cn, it must hold that µn is injective. Moreover,

E = (E \ {µn(ei)}) ∪ {µn(ei)} and if we denote A as the subspace generated by

E \ {µn(ei)}, then we may write Cn−q = A ⊕ imµn and µn is split injective, as

needed.
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4.3.2 Consequences of the Long Exact Sequence

We now discuss a few consequences of Definition 4.9, which will have a similar

flavor to what was uncovered in the proof of Theorem 7.8 in [AvGaPe]. Note that since

the sequence of abelian groups is exact, an injective map ExtnR(ΣqC,K) ↪→ ExtnR(C,K)

implies that the previous map ExtnR(M (u),K)→ ExtnR(ΣqC,K) is the zero map. And,

consequently, the map ExtnR(C,K)→ ExtnR(M (u),K) is surjective. Thus, for all n > s

the long exact sequence becomes

and, moreover, we can rewrite the sequence as

where M = Im ∂C
0 and M(µ) = Im ∂

M (µ)
0 . Note the distinction that here, M(µ) is

not the same as the pushout presented in Chapter 2. However, we find that there

exists an analogous relationship between the Betti numbers after the critical degree.

If crdegRC = s <∞ is realized by µ : C→ ΣqC, then the long exact sequence above

breaks up into split short exact sequences of the form

0→ Êxt
n

R(M, k)
µ̂n

↪−→ Êxt
n+q

R (M, k)→→ Êxt
n+q+1

R (M(µ),k)→ 0

for all n > s. Therefore, since each Êxt is in fact a k-vector space, we obtain the

following relationship

b̂Rn+q(M) = b̂Rn (M) + b̂Rn+q+1(M(µ))

mirroring the results in the proof of Theorem 7.8 in [AvGaPe]. One observation here

is that C is periodic (of period q) precisely when M (µ) ' 0, since b̂Rn+q+1(M(µ)) = 0

for any n implies this is the case.
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In the same vein, suppose cocrdegRC = t > −∞ is realized by ν : C→ ΣrC so

that the long exact sequence breaks up into split short exact sequences of the form

0→ Êxt
n

R(M(ν),k) ↪→ Êxt
n−q
R (M,k)

ν̂n−→→ Êxt
n

R(M,k)→ 0

for all n < t. This yields a similar relationship of the complete Betti numbers

b̂Rn−q(M) = b̂Rn (M(µ)) + b̂Rn (M)

in which case we find the same observation for when C is periodic (of period q).

4.4 Cohomological Characterization in Ktac(R)

Given Definition 4.9, we are now ready to present the cohomological characteri-

zations of the critical and cocritical degrees in Ktac(R). The former turns out to be

as expected: a natural extension from the cohomological characterization of critical

degree in R-mod. The latter involves dual notions to some of the ideas involved with

critical degree in R-mod; once we equip ourselves with such notions, the characteri-

zation for cocritical degree aligns nicely with what we understand about critical degree.

For the sake of simplicity, assume that R is a complete

intersection ring for the remainder of this chapter.

Proposition 4.12. If C 6' 0 is a totally acyclic R-complex, then crdegRC = s <∞

and the following equalities hold:

crdegRC = sup{r ∈ Z | depthŜ Ext≥rK (C,K) = 0}

= sup{r ∈ Z | depthŜ Êxt
≥r
R (im∂C

0 ,k) = 0}.

Remark. In the above proposition, note that we can take Ext∗K(C,K) to be an Ŝ-

module; refer to [St] for a general description of the action of Ŝ on HomK(C,D) for

two R-complexes in Ktac(R).
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The proof of Proposition 4.12 is somewhat simplified by the connection to the

critical degree’s cohomological characterization with respect to R-mod. In particular,

we must handle the cases for crdegRC ≥ 0 and crdegRC < 0 separately, with the

simplification occurring in the former case.

Proof. Finiteness of s is guaranteed by proof of Theorem 3.1 in [Ei], since R is a

complete intersection and thus there exists a linear form ` ∈ S which is eventually a

non zero-divisor on the truncation Ext≥NR (M, k) for some N � 0. To proceed, denote

M = im∂C
0 , crdegRC = s, and r∗ = sup{r ∈ Z | depthŜ Êxt

≥r
R (im∂C

0 ,k) = 0}. First

note that for each r ≥ 0, Êxt
≥r
R (M, k) = Ext≥rR (M,k); therefore, if r∗ ≥ 0, the above

characterization reduces to that for crdegRM in R-mod. Additionally, note that if

s ≥ 0 then s = sup{r ∈ N ∪ 0 | depthS Ext≥rR (M,k) = 0} and so r∗ = s since any

negative value of r∗ would contradict that we took the supremum of all truncations

of Ext with depth 0.

Now assume that r∗ � 0 and s � 0. Noting that we cannot use crdegRM under

these assumptions, our approach is to instead use crdegRMn for some smart choice of

n ∈ N where Mn = Im ∂C
n . Suppose first that r∗ ≤ s < 0 and consider the R-complex

Σ|r
∗|C which has non-negative critical degree since crdegRΣ|r

∗|C = s+ | r∗ | (see

Proposition 5.5). Note that Im ∂Σ|r
∗|C

0 = Im ∂C
r∗ and so

s+ | r∗ |= {r ∈ N ∪ {0} | depthS Ext≥rR (Mr∗ ,k) = 0}.

Hence there exists some χ ∈ X that is a non zero-divisor on Ext
>s+|r∗|
R (Mr∗ , k)

but there exist no non zero-divisors on Ext
≥s+|r∗|
R (Mr∗ ,k). Since there exists an

isomorphism Êxt
s+|r∗|+i
R (Mr∗ ,k) ∼= Êxt

s+i

R (Ω|r
∗|Mr∗ ,k) (see Lemma 4.3 in [Ta]), we

obtain the isomorphism Ext
s+|r∗|+i
R (Mr∗ ,k) ∼= Êxt

s+i

R (M, k) for all i ∈ Z. Note that χ

is a non zero-divisor on Ext
≥s+|r∗|+i
R (Mr∗ ,k) for all i > 0, so it must also be a non zero-

divisor on Êxt
≥s+i
R (M,k) for all i > 0 as well. Therefore, depthS Êxt

≥s+i
R (M, k) 6= 0
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for all i > 0 but it must hold that depthS Êxt
≥s
R (M,k) = 0 because otherwise

depthS Ext
≥s+|r∗|
R (Mr∗ ,k) would not be 0; and so, r∗ = s.

If we instead suppose s ≤ r∗ < 0 and consider the R-complex Σ|s|C, we can apply

the same argument as above since crdegRΣ|s|C = 0 and there exists an isomorphism

Êxt
s+|s|+i
R (Ms,k) ∼= Êxt

s+i

R (Ω|s|Ms,k) so that Êxt
i

R(Ms,k) ∼= Êxt
s+i

R (M, k) for all

i > 0.

4.4.1 Time to Dual

We now move to introducing dual notions to regular elements (non zero-divisors),

regular sequences, and the socle of an R-module. These notions are not as well known

or discussed as their counterparts, but provide the necessary machinery in order to

give a notion of cohomological characterization for cocritical degree.

It is commonly known that the socle of an R-module M is the largest semisimple

submodule of M (cf. [BrHe, 1.2.18], [Ei2, Pg. 526], [AnFu, §9]). We now give an

equivalent definition for semisimple in terms of the socle.

Definition 4.13 (cf. [AnFu]). Let M be an R-module. Then M is semisimple if and

only if Soc(M) = M .

The radical of M is often referred to as the “dual” notion to socle. However,

there is a more natural dual notion, given by the following definition which can be

found in [AnFu] named capital of a module, among other sources referred to as below.

Definition 4.14 (cf. [AnFu]). Let M be an R-module. The cosocle of M , denoted

Cosoc(M), is defined to be the largest (or, maximal) semisimple quotient module of

M .

Recall R is a local ring with maximal ideal m and that, in this case, Soc(M) =

{x ∈ M |xm = 0}. That is, a socle element in M is an element annihilated by

113



m; equivalently, an element for which each generator of m is a zero-divisor. Now,

note that if Cosoc(M) = M/N such that M/N is the largest semisimple quotient

of M , then N must be the smallest submodule such that M/N is semisimple. And,

combining this with Definition 4.13 above, we see that in the case of R local, N = mM .

Thus, a cosocle element has the form x̄ = x+ mM implying that its preimage x ∈M

must not be of the form mx′ where m ∈ m and x′ ∈M . That is, we can denote the

preimage of Cosoc(M) as

preim(Cosoc(M)) = {x ∈M | x 6∈ mM} .

One manner of viewing the preimage of a cosocle element is as a minimal generator

of the module, M . We now relay a fact which will maintain a certain significance for

the next section.

Proposition 4.15 (Theorem 2 in [Ma3]). Let E be an S-module satisfying the

descending chain condition (i.e. artinian) and let a be an ideal of S (with S a

commutative, noetherian ring). Then aE = E if and only if there exists some a ∈ a

such that aE = E.

Returning to our local ring R, this fact implies that if Cosoc(M) = 0, then there

exists some a ∈ m such that the submodule generated by a returns the module M .

Unsurprisingly, this notion is connected to the dual analogues to regular sequences

and depth; these analogues were first defined in [Ma3].

Definition 4.16 (See [Ma3], cf. [HaPo]). Let a ⊆ R be an ideal and let M be a

nonzero R-module. Then a coregular sequence in M , or a M -cosequence, is a sequence

ã = a1, . . . , ad such that

(1) a1M = M , and

(2) ai(0 :M (a1, . . . , ai−1)) = (0 :M (a1, . . . , ai−1)) for each i = 2, . . . , d.
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As the authors of [HaPo] note, a coregular sequence (ã) is a sequence such that

multiplication by a1 is surjective on M , multiplication by a2 is surjective on the kernel

of multiplication by a1, and so on. Accordingly, we call a ∈ R a coregular element

if aM = M (multiplication by a is surjective). Lastly, we call a1, . . . , ad a maximal

M -cosequence in a if a1, . . . , ad, ad+1 is not an M -cosequence for any other element

ad+1 ∈ a. And now, we are ready to give a dual notion to depth of an R-module.

Definition 4.17 (See [Ma3], cf. [HaPo] and [Oo]). The a-codepth of M , denoted

codepthaM , is defined to be the maximal length of a M -cosequence in a. If (R,m, k)

is local, then set codepthRM = codepthmM .

From the above definitions, and our earlier discussion, it should be clear that

codepthRM = 0 implies Cosoc(M) 6= 0, so that existence of some nonzero element

x 6∈ mM is guaranteed. In the next section, we utilize these definitions in order to

accomplish our goal of providing a dual analogue for the cohomological characterization

of critical degree.

4.4.2 The Cohomological Characterization of Cocritical Degree

Let C→ F→→M denote the minimal complete resolution of M = im∂C
0 so that

Σ−1C∗ → (Σ−1C∗)≥1 →→ M∗ is the (minimal) complete resolution of M∗ ∼= im∂∗1 .

Before proving the cohomological characterization for cocritical degree, we first

establish a significant relationship between the depth of Êxt
≥r
R (M∗, k) and the codepth

of Êxt
≤−r
R (M,k) for any non-negative integer r.

Lemma 4.18. Let 0 6' C ∈ Ktac(R) with M and M∗ be defined as above. Then

depthS Êxt
≥r
R (M∗,k) = 0 if and only if codepthS Êxt

≤−r
R (M,k) = 0.

Proof. For ease of notation, denote Êxt
>r

R (M∗, k) = Er(M∗) and Êxt
<−r
R (M, k) =

E−r(M). First note that if depthS E
r(M∗) 6= 0 then there exists some χ ∈ X which is
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a non zero-divisor on Er(M∗); by definition, this corresponds directly with a degree

2 endomorphism χ on Ext∗R(M∗,k) that is injective for all n ≥ r. This in turn

corresponds with a −2 degree endomorphism µ on C∗ which is surjective for all n ≥ r.

By Corollary 2 in Chapter 5, we obtain an endomorphism µT on (C∗)∗ = C that is

split injective for all degrees n ≤ −r and, again by definition (refer to Proposition

4.11), this corresponds directly with a degree 2 map χ on Êxt
∗
R(M, k) that is surjective

for all n ≤ r thus implying χ is surjective on E−r(M). Hence, there exists some

χ ∈ X such that χE−r(M) = E−r(M) and so XE−r(M) = E−r(M) by Proposition

4.15. Therefore, depthS E
r(M∗) 6= 0 if and only if codepthS E

−r(M) 6= 0, proving

the lemma.

We provide the following diagram of correspondences to demonstrate a visual

interpretation of the proof above.

Surjective for all n > r

zz

dualizing

$$
ks Lemma 5.1 +3 Split Injective for all n < −r

Prop. 4.9

��
Injective on L.E.S.

Prop. 4.9

KS

Surjective on L.E.S.

(Triangulated Definition)

��

Regular element on Ext>rR (M∗,k)

(Triangulated Definition)

KS

oo Equivalency

of notions
// Coregular element on Êxt

<−r
R (M,k)

Highest Degree Socle Element

��

KS

Lowest Degree Cosocle Element

��

KS
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Note that if we take s + 1 to be the lowest degree such that there exists a non

zero-divisor on Êxt
>r

R (M∗,k), then s is the highest degree of a nonzero element in

Soc(Êxt
∗
R(M∗,k)). And since this correlates to the highest degree for which there

exists a generating, or (formally) coregular element, apply Proposition 4.15 to see

that −s should be the lowest degree for which there exists a nonzero element in

Cosoc(Êxt
∗
R(M,k)). Further note that since depthZ∗ ExtR(M∗,k) coincides with

depthS ExtR(M∗,k) by Proposition 7.2 in [AvGaPe], there must exist a nonzero

coregular element from X on the greatest truncation of Êxt
<−r
R (M,k) for which there

exists such a generating element. That is to say, there exists some χ ∈ X such that

χ Êxt
≤t
R (M,k) = Êxt

≤t
R (M,k) where t = cocrdegRC. Thus, the cocritical degree of a

complex over a complete intersection is (negatively) finite2; moreover, the following

proposition holds.

Proposition 4.19. If C is a totally acyclic R-complex (not homotopically equivalent

to the zero complex), then cocrdegRC = t > −∞ and the following equalities hold:

cocrdegRC = inf{r ∈ Z | codepthŜ Ext≤rK (C,K) = 0}

= inf{r ∈ Z | codepthŜ Êxt
≤r
R (im∂C

0 ,k) = 0}.

In the next section, we explore the connection between an endomorphism on an

R-complex C which is eventually surjective and one that is eventually (split) injective.

4.4.3 Realizability of Cocritical Degree, Given Critical Degree

Our goal in this section is to demonstrate that there exists some χ ∈ X such

that χ is both a non zero-divisor on Êxt
>s

R (M,k) for some s ∈ Z and such that

χ Êxt
<t

R (M,k) = Êxt
<t

R (M,k) for some t ∈ Z.

2This holds even for a complex with CI-dim(im∂C
0 ) <∞.
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First note that Êxt
∗
R(M, k) and Êxt

∗
R(M∗,k) are both graded modules over

S; specifically, the distinct cohomology operators are dependent upon the complete

resolutions, but the action of this ring remains the same on each of the modules.

Denote E1 = Êxt
≥0

R (M,k) = Ext≥0
R (M,k) and E2 = Êxt

≥0

R (M∗, k) = Ext≥0
R (M∗,k)

so that E1 and E2 are both noetherian modules over S. Thus, let Ai represent the

largest artinian submodule of Ei and note that Ai ⊇ Soc(Ei) for each i = 1, 2, since

each submodule Soc(Ei) must itself be artinian.

Since each Ai is both artinian and noetherian, it is of finite length; this, of

course, implies that there exists some Ni = sup{n ∈ N∪{0} | deg(x) = n for x ∈ Ai}

for each i = 1, 2. Take E>N0
1 = Ext>N0

R (M,k) and E>N0
2 = Ext>N0

R (M∗,k) where

N0 = max{N1, N2} so that neither truncation contains a nonzero element annihilated

by X. Then denote P1, . . . , Pq the associated primes of 0 ∈ E>N0
1 and Q1, . . . , Qr

the associated primes of 0 ∈ E>N0
2 so that P1 ∪ · · · ∪ Pq ∪Q1 ∪ · · · ∪Qr is the set of

zero-divisors on both E>N0
1 and E>N0

2 . Note that the set

χ1 +
c∑
i=2

kχi,

generates X, so it cannot be contained in any Pk or Qk since there is no element of X

which is a zero-divisor on E≥N0
i .

And since k is infinite, there exists a translation of the set χ1 +
∑c

i=2 kχi which is

a subspace of k[χ1, . . . , χc], implying that χ1 +
∑c

i=2 kχi 6⊆ P1∪· · ·∪Pq∪Q1∪· · ·∪Qr.

Hence, there exists a linear form

χ̂ = χ1 +
c∑
i=2

αjχj

with αj ∈ k such that χ is a non zero-divisor on both E≥N0
1 and E≥N0

2 . Now, for each

j = 1, . . . , c set aj equal to a pre-image of αj in R so that χ = χ1 +
∑c

i=2 ajχj ∈ S.
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Lastly, note that χ is a non zero-divisor on E≥N0
1 if and only if χn : ExtnR(M, k) →

Extn+2
R (M, k) is injective for all n > N0 if and only if

t = t1 +
c∑
i=2

ajtj

is surjective for all n > N0, where χ = HomR(t, k). Similarly, we see that χ is

additionally a non zero-divisor on E≥N0
2 .

Hence, à la Eisenbud, we have shown that there exists some linear form χ ∈ S

such that χ is a non zero-divisor on some truncation of Ext≥N0

R (M,k) as well as

Ext≥N0

R (M∗,k) for N0 � 0. Now note, as we have demonstrated in Lemma 4.18,

there is a one-to-one correspondence between regular elements on Ext≥N0

R (M∗,k) and

coregular elements on Êxt
≤−N0

R (M, k). Consequently, there exists some linear form of

CI operators which is both eventually surjective on the left and eventually injective on

the right of an R-complex C ∈ Ktac(R). The question remains on whether N1 = N2

in the proof above, implying that the critical and cocritical degrees are realized by

the same endomorphism.
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CHAPTER 5

Operations on Totally Acyclic Complexes

Now that we have introduced the notion of critical degree (along with its dual)

in Ktac(R), we move on to discuss “boundedness” problems. Our primary goal

in this chapter will be to understand how the critical and cocritical degrees are

altered through operations of totally acyclic R-complexes. We will begin with special

attention towards basic operations which ensue from the categorical structure of

Ktac(R). Afterwards, we will turn our focus to operations which involve applying

the Hom and ⊗ functors with a specific type of R-complex called a perfect complex.

With each operation discussed, we will first describe how such manipulations result in

well-defined objects in Ktac(R); then, we will explore how the critical and cocritical

degrees of an R-complex might change under these actions.

Preceding our discussion, we make clear the methodology used in consideration

of each operation studied throughout this chapter. Our hope is to obtain sufficient

bounds for the critical and cocritical degrees after some manipulation is made to an

R-complex. Hence, given a chain endomorphism realizing the critical and cocritical

degrees on the original complex, our main technique is to then take note of the

endomorphism induced by the operation on this complex. If we are able to say what

the critical and cocritical degrees relative to this induced endomorphism are, then

we will have attained a sufficient upper and lower bound, respectively. That is, if

u and v are the endomorphisms which realize the critical and cocritical degrees on

the original complex, then we will examine what the critical and cocritical degrees

degrees of the induced endomorphisms û and v̂ on the new complex are. This will
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then provide an upper-bound for the critical degree and lower-bound for the cocritical

degree of the new complex, as depicted in the diagram below.

Methodology crdegRC

realized by

$$
u : C→ ΣqC

operation of complex

��

Upper Bound on Critical Degree crdegûRĈks
dd

relative to

induced map

û : Ĉ→ ΣqĈ

v : C→ ΣrC

operation of complex

��

cocrdegRC

realized by

{{

v̂ : Ĉ→ ΣrĈ

relative to

induced map

::
cocrdegv̂RĈ +3 Lower Bound on Cocritical Degree

The shortcoming of this method is the reliance upon understanding the induced

endomorphism on the minimal subcomplex after the operation. While some of

the operations explored throughout this chapter preserve minimality, not all do;

in particular, the mapping cone of a chain map is almost never minimal and it is

impossible to give any generalized form for the minimal subcomplex of a mapping cone.

Under these circumstances, such methodology as outlined above is not conducive and,

for this reason, we will look towards using the cohomological characterization of critical

and cocritical degrees. Here, the drawback is that we only have this characterization

of critical degree when R is a complete intersection ring, or at minimum when

CI-dimR Im ∂C
0 <∞. However, this still covers a wide class of R-complexes and so

such a drawback is rather minimal.
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5.1 Basic Operations of Complexes

Throughout this section, we build operations of R-complexes in Ktac(R) via

its categorical structure, starting with the condition that the dual of an R-complex

is again in the category. Then, we will explore the operations guaranteed by the

additive and triangulated structure.

5.1.1 Dualizing

Given a complex C ∈ Ktac(R), its dual C∗ = HomR(C, R) is also an object

in Ktac(R) as indicated by the definition of a totally acyclic complex, and thus the

process of applying HomR(−, R) to any object in Ktac(R) can be viewed as a basic

operation within the category. We can informally refer to this operation as “dualizing”

and, in this case, we will see that the critical and cocritical degrees of an R-complex

C completely determine the critical and cocritical degrees of its dual, as described

below.

We begin with making explicit the form C∗ takes on, given a totally acyclic

complex C. If (Cn, ∂
C
n ) is a family of projective R-modules and R-module maps, then

(C∗n, ∂
C∗
n ) is an R-complex with

C∗n = HomR(C−n, R)

∂C
∗

n = HomR(∂C1−n, R).

If, furthermore H(Cn) = 0 for all n ∈ Z, then H(C∗n) = 0 for all n as well, in

the case that R is Gorenstein. If R is not Gorenstein, then we only consider R-

complexes for which H(C∗) = 0 by definition of Ktac(R). Moreover, any degree q

chain endomorphism on C will induce a degree q chain endomorphism on C∗ with
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u∗n = HomR(u−n−q, R). Furthermore, note that when Cn is free, we have the following

relationships:

C∗n
∼= C−n

∂C
∗

n = (∂C1−n)T

u∗n = (u−n+q)
T

where the R-module maps are given by matrices and (−)T represents the transpose.

Therefore, it should be clear that if ∂Cn−qun = un−1∂
C
n then

(∂Cn−qun)T = (un−1∂
C
n )T =⇒ (un)T (∂Cn−q)

T = (∂Cn )T (un−1)T

which yields the equality u∗−n+q∂
C∗
−n+1+q = ∂C

∗
−n+1u

∗
−n+1+q for all n ∈ Z. Now we

present the following lemma, which will be needed to prove the appropriate bounds

for the critical and cocritical degrees of C∗.

Lemma 5.1. Let f : Rn → Rm be a map between free R-modules. Then f is (split)

surjective if and only if fT is split injective.

Proof. Consider the split short exact sequence 0 → ker(f) ↪→ Rn f−→→ Rm → 0 and

note that applying the additive functor HomR(−, R) yields the split exact sequence

0→ Hom(Rm, R)
HomR(f,R)=fT−−−−−−−−−→ Hom(Rn, R)→ Hom(ker(f), R)→ 0

thus proving that fT : Rm → Rn is a split injection. Likewise, if we first assume

fT : Rm → Rn is split injective, then the split exact sequence 0 → Rm fT

↪−→ Rn →

coker(fT )→ 0 induces the split exact sequence

0→ Hom(coker(fT ), R)→ Hom(Rn, R)
(fT )T−−−→→ Hom(Rm, R)→ 0

and since (fT )T = f , it holds that f : Rn → Rm is (split) surjective if and only if

fT : Rm → Rn is split injective.
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Corollary 5.2. Let g : Rn → Rm be a map between free R-modules. Then g is split

injective if and only if gT is (split) surjective.

Proof. Apply the previous lemma with g = (fT ) and gT = (fT )T = f .

Remark. Note that the contrapositives of both statements given above also hold:

fT is not (split) injective ⇐⇒ f is not surjective

fT is not surjective ⇐⇒ f is not (split) injective

Now suppose for C ∈ Ktac(R), u : C→ ΣqC is the chain endomorphism which

realizes crdegRC = s and v : C → ΣrC is the chain endomorphism which realizes

cocrdegRC = t.

Proposition 5.3. Suppose C ∈ Ktac(R), as described above, and denote C∗ =

HomR(C,R). Then crdegRC∗ ≤ t and cocrdegRC∗ ≥ q − s.

Proof. First, apply the previous corollary above to see that v∗n+r = (v−n)T is surjective

whenever v−n is split injective, which occurs for all −n < t or all n > t. Furthermore,

note that since cocrdegvRC = t, v−t cannot be split injective and so v∗t+r cannot

be surjective. Hence, crdegv
∗

R C∗ = t ≥ crdegRC∗. Now apply the previous lemma

to see that u∗n = (u−n+q)
T is split injective whenever u−n+q is surjective, which

occurs for all −n + q > s or all n < q − s. Moreover, since crdeguRC = s, it

must hold that us+q is not surjective, meaning u∗t cannot be split injective and thus

cocrdegu
∗

R C∗ = q − s ≤ cocrdegRC∗.

Corollary 5.4. The critical and cocritical degrees of C∗ are completely determined by

that of C. That is, crdegRC∗ = −cocrdegRC and cocrdegRC∗ = q − crdegRC (where

q is as above).

Proof. There is a one-to-one correspondence between endomorphisms on C and

endomorphisms on C∗, leading to such a correspondence between surjections on Cn
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and (split) injections on C∗n as well as (split) injections on Cn and surjections on C∗n,

given by the prior lemma.

In the above case, we see that due to the relationship between a complex C and

its dual C∗, we can say explicitly what the critical and cocritical degrees of one will

be in terms of the other. However, as we consider other operations, this is not always

the case; under these circumstances, we only gain sufficient bounds on the critical

and cocritical degrees.

5.1.2 Translations

We now consider the operation imposed on totally acyclic complexes via the

translation endofunctor, which is guaranteed by the triangulated nature of Ktac(R).

As discussed previously in Chapter 3, the translation functor, or shift, is an additive

automorphism on a category, usually denoted as Σ or [−]. Recall that for any

object C ∈ Ktac(R), ΣnC denotes the R-complex with R-modules (ΣnC)n = C0 and

differentials ∂ΣnC
n = (−1)n∂C

0 . It is quite easy to understand how the critical and

cocritical degrees change under the suspension endofunctor, as described in the next

proposition.

Proposition 5.5. If crdegRC = s and cocrdegRC = t, then crdegRΣnC = s+ n and

cocrdegRΣnC = t+ n.

Proof. We begin with assuming C is minimal, since it is clear that the minimal

subcomplex of any complex would coincide with a shift of itself under the translation

functor. Furthermore note that there is a one-to-one correspondence between endomor-

phisms on C and those on ΣnC. Therefore, if u : C→ ΣqC is the endomorphism which

realizes the critical degree on C, then Σnu: ΣnC→ Σn+qC will be the endomorphism

that realizes the critical degree on ΣnC. And since (Σnu)i = ui−n : Ci−n → Ci−n−q
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note that ui+q : Ci+q → Ci surjective for all i > s implies (Σnu)i+q : Ci+q−n → Ci−n

will be surjective for all i > n + s. Moreover, since s is the least degree such that

ui+q is surjective for all i > s, s + n will be the least degree such that (Σnui+q) is

surjective for all i > s+n. Hence, crdegRΣnC = s+n. Likewise, if v : C→ ΣrC is the

endomorphism which realizes the cocritical degree on C, then Σnv : ΣnC→ Σn+rC

will be such that it realizes the cocritical degree on ΣnC. Therefore, (Σnv)i will be

split injective for all i < t+ n and cocrdegRΣnC = t+ n.

5.1.3 Direct Sums

Given that Ktac(R) is a triangulated category, the underlying category is additive;

therefore, given two complexes C, D ∈ Ktac(R) the direct sum C⊕D is also a totally

acyclic complex. Conversely, if a sum of complexes C ⊕ D ∈ Ktac(R) then each

summand C and D is a totally acyclic complex as well, since Ktac(R) is a thick

subcategory of the homotopy category, K(R).

When we consider the sum of two complexes, it is quite easy to see how the

critical and cocritical degrees are affected. However, it is necessary to make particular

assumptions in consideration of this operation. Let C, D ∈ Ktac(R) where C⊕D is

the R-complex with R-modules

(C⊕D)n = Cn ⊕Dn

and R-module homomorphisms

∂C⊕D
n =

∂C
n 0

0 ∂D
n

 .
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It should be clear that this is in fact a totally acyclic R-complex since

Hn(C⊕D) =

ker

∂C
n 0

0 ∂D
n


im

∂C
n−1 0

0 ∂D
n−1


=


ker(∂C

n )

im(∂C
n−1)

0

0
ker(∂D

n )

im(∂D
n−1)

 = 0 = Hn((C⊕D)∗).

Furthermore, suppose that C = C⊕T′ and D = D⊕T′′ where C, D are the respective

minimal subcomplexes of C, D (with T′ ' 0 ' T′′). Then we have that

C⊕D = (C⊕ T′)⊕ (D⊕ T′′) = (C⊕D)⊕ (T′ ⊕ T′′)

where C⊕D = C⊕D is the minimal subcomplex of C⊕D since

im(∂C⊕D
n ) =

im(∂C
n ) 0

0 im(∂D
n )

 ⊆
m(Cn−1) 0

0 m(Dn−1)

 ⊆ m(C⊕D)n−1

and similarly, im(∂T′⊕T′′
n ) * m(T′ ⊕ T′′)n−1. Meaning that ⊕ preserves minimality

and, therefore, we may assume for simplicity that C, D are minimal complexes for

the remainder of this section.

Now suppose that crdegRC = s1 is realized by a degree qµ endomorphism µ :

C→ ΣqµC and crdegRD = s2 is realized by a degree qυ endomorphism υ : D→ ΣqυD.

Without loss of generality, assume qµ ≥ qυ and set m = qµ − qυ. In this case, we

explore the critical degree of C⊕ΣmD, noting that if qυ > qµ we would have a similar

statement for Σm′C⊕D (with m′ = −m).

Proposition 5.6. Suppose crdegRC, crdegRD, µ, υ and m are given as above. Then

crdegR(C⊕ ΣmD) ≤ max(s1, s2).
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Proof. Define an endomorphism µ ⊕ υ : C ⊕ ΣmD → Σqµ(C⊕ ΣmD) where the nth

degree maps are given as

(µ⊕ υ)n =

µ 0

0 Σmυ


and note that this is an R-complex chain endomorphism since

∂Σqµ (C⊕ΣmD)
n (µ⊕ υ)n =

∂C
n−qµ 0

0 ∂ΣmD
n−qµ

µn 0

0 (Σmυ)n

 =

∂C
n−qµµn 0

0 ∂ΣmD
n−qµ(Σmυ)n



=

µn−1∂
C
n 0

0 (Σmυ)n−1∂
ΣmD
n

 =

µn−1 0

0 (Σmυ)n−1

∂C
n 0

0 ∂ΣmD
n

 = (µ⊕ υ)n−1∂
(C⊕ΣmD)
n .

Moreover, it is well defined since each of µ and Σmυ are well defined in Ktac(R).

Lastly, it should be clear that (µ ⊕ Σmυ)n is surjective if and only if both µn and

(Σmυ)n are surjective. Therefore, (µ⊕ υ)n will be surjective for all n > max(s1, s2)

and crdegµ⊕υR (C⊕ ΣmD) = max(s1, s2) ≥ crdegR(C⊕ ΣmD).

Now assume cocrdegRC = t1 is realized by a degree qν endomorphism ν : C→

ΣqνC and cocrdegRD = t2 is realized by a degree qω endomorphism ω : D → ΣqωD.

Again, suppose qν ≥ qω and set m = qν − qω (not necessarily same as above). In this

case, we explore the cocritical degree of C⊕ ΣmD, noting that if qω > qν we would

have a similar statement for Σm′C⊕D (with m′ = −m).

Proposition 5.7. Suppose cocrdegRC, cocrdegRD, ν, ω and m are given as above.

Then cocrdegR(C⊕ ΣmD) ≥ min(t1, t2).

Proof. We define the endomorphism ν ⊕ ω : C ⊕ ΣmD → Σqν (C⊕ ΣmD) as in the

previous proof, so that the nth degree maps are given as

(ν ⊕ ω)n =

ν 0

0 Σmω


and it has already been justified that this will be a well-defined endomorphism. Once

again, it should be clear that (ν ⊕ Σmω)n is (split) injective if and only if both νn
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and (Σmω)n are (split) injective. Therefore, (ν ⊕ ω)n will be (split) injective for all

n < min(t1, t2) and cocrdegν⊕ωR (C⊕ ΣmD) = min(t1, t2) ≤ cocrdegR(C⊕ ΣmD).

Corollary 5.8. If deg(µ) = deg(υ), then crdegRC⊕D ≤ max(s1, s2). Likewise, if

deg(ν) = deg(ω), then cocrdegRC⊕D ≥ min(s1, s2).

Remark. We can also consider the result with a slightly different assumption: given

s1, if there exists some υ′ : D→ ΣqD such that crdegυ
′

R D <∞ (not necessarily s2),

then we can use max(s1, crdegυ
′

R D) as the bound. Similarly for the cocritical degree.

However, this result will be a bit weaker and there is no guarantee that such an

endomorphism exists.

5.1.4 Retracts

Now, we consider the question centered upon taking summands, otherwise

known as retracts. First suppose that E ∈ Ktac(R) such that it can actually be

written as a direct sum of R-complexes, say E = C ⊕ D. Then, in this case, each

of C and D must be totally acyclic as well. Now suppose that we know the critical

and cocritical degrees of E, say crdegRE = s and cocrdegRE = t, then can we say

anything about crdegRC and crdegRD? To simplify the problem, let us assume that

E is minimal so that ∂(C⊕D) ⊆ m(C⊕D). Thus, the subcomplexes C and D must

be minimal as well since

∂E
n =

∂C
n 0

0 ∂D
n


for each n ∈ Z. However, if we consider an endomorphism µ : E → ΣqE then note

that we get four induced maps where

µ1 : C→ ΣqC

µ2 : D→ ΣqC
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µ3 : C→ ΣqD

µ4 : D→ ΣqD.

If µn+q : Cn+q ⊕ Dn+q → Cn ⊕ Dn is surjective for all n > s, then note that the

surjectivity onto one summand, take Cn for example, could not just be gained from

µ1,(n+q) alone; meaning that the map µ2,(n+q) may contribute in part to the surjectivity.

The same could occur with injectivity for n < t. In either case, it becomes difficult to

use our previous approach under the operation of “taking summands”.

So now, assume R is a complete intersection of the form Q/(f), with f =

f1, . . . , fc a regular Q-sequence and χ1, . . . , χc the cohomological operators associated

to E. Furthermore, denote M ⊕ N = Im ∂E
0 where M = im∂C

0 and N = im∂D
0 . By

the results presented in §4.4 of this thesis, the maximal degree of a nonzero element

(x, z) ∈ Êxt
∗
R(M ⊕N, k) = Ê such that (x, z) ∈ (0 :Ê X) is s, so that x ∈ Êxt

s

R(M,k)

and z ∈ Êxt
s

R(N, k) (with at least one nonzero). For contradiction’s sake, suppose

crdegRC = s′ 
 s so that there exists some nonzero element x′ ∈ Êxt
s′

R(M,k) ⊂

Êxt
>s

R (M,k) such that x′X = 0. But then note that this would imply the element

(x′, 0) ∈ Êxt
s′

R(M⊕N,k) is annihilated by X thus contradicting s as the highest degree

socle element. The same argument can be applied to Êxt
∗
R(N,k), so that we see both

crdegRC and crdegRD must be bounded above by s.

Lastly, it should be easy to see that at least one of crdegRC or crdegRD

must be equal to s. If we suppose that both crdegRC, crdegRD � s so that

the highest degree nonzero element x′ ∈ Soc(Êxt
∗
R(M,k)) has degree s′ and the

highest degree nonzero element z′ ∈ Soc(Êxt
∗
R(N,k)) has degree s′′. Then note

that (x, z) 6∈ Soc(Êxt
∗
R(M ⊕N, k)) since otherwise either x ∈ Soc(Êxt

∗
R(M,k)) or

z ∈ Soc(Êxt
∗
R(N,k)) by our previous argument. But deg(x) = s 
 s′ = deg(x′) and

deg(z) = s 
 s′′ = deg(z′), contradicting the assumption that both s′ and s′′ are
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strictly less than s. We are now able to present the following conclusion to this

argument, along with the appropriate dual notion.

Proposition 5.9. Let R be a complete intersection of the form Q/(f), with f =

f1, . . . , fc a regular Q-sequence, and further suppose C⊕D ∈ Ktac(R). If crdegRC⊕D =

s, then crdegRC ≤ s and crdegRD ≤ s, with at least one being an equality.

Proposition 5.10. Let R be a complete intersection of the form Q/(f), with f =

f1, . . . , fc a regular Q-sequence, and further suppose C⊕D ∈ Ktac(R). If cocrdegRC⊕D =

t, then cocrdegRC ≥ t and cocrdegRD ≥ t, with at least one being an equality.

Proof. For ease of discussion, denote E(M ⊕ N) = Êxt
∗
R(M ⊕N, k), E(M) =

Êxt
∗
R(M,k), and E(N) = Êxt

∗
R(N, k) (noting that E(M⊕N) ∼= E(M)⊕E(N)). The

argument for Proposition 5.10 is completely analogous to that given for Proposition 5.9.

First, there must exist a lowest degree nonzero element (x̄, z̄) ∈ Cosoc(E(M⊕N)) with

x ∈ Et(M) and z ∈ Et(N) (at least one nonzero). That is, there exists some nonzero

element of degree t such that (x, z) 6∈ XE≤t(M ⊕N). Suppose that crdegRC = t′ � t

so that there exists some 0 6= x′ 6∈ XE≤t
′
(M), implying (x′, 0) 6∈ XE≤t

′
(M ⊕N) and

contradicting the assumption that t is the lowest degree of such an element. The

same argument can be applied to crdegRD, so we see that the cocritical degrees of C

and D are bounded below by t. On the other hand, since there exists some nonzero

element of degree t such that (x, z) 6∈ XE≤t(M ⊕ N), either 0 6= x 6∈ XE≤t(M) or

0 6= z 6∈ XE≤t(N), demonstrating that we must have equality of at least one of the

cocritical degrees.

5.1.4.1 A Retract to Sums

In Section 5.1.3, our conclusions using the original methodology were only valid

under certain circumstances; for example, when crdegRC and crdegRD are realized by
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an endomorphism of the same degree. Note first that due to the result presented in

Section 4.4.3, when R is a complete intersection we know there exists a linear form of

CI operators that will have both positively finite and negatively finite relative critical

and cocritical degrees, respectively. For this reason, we know there always exists a

degree −2 endomorphism in this scenario which we can use to give an upper bound

for critical degree and a lower bound for cocritical degree of the individual complexes,

as well as their sum. However, the question still arises if we can use the technique

described in the last section to perfect our statement.

Let R be a complete intersection and note that we use the same notation

as the previous section where M = Im ∂C
0 and N = Im ∂D

0 , so that M ⊕ N =

Im ∂C⊕D
0 . Furthermore, denote s1 = crdegRC, s2 = crdegRD, and s = crdegRC⊕D.

Then if we assume 0 6= x ∈ Soc(Êxt
∗
R(M,k)) such that deg(x) = s1 and 0 6= z ∈

Soc(Êxt
∗
R(N, k)) such that deg(z) = s2 (i.e. x is highest degree nonzero socle element,

etc.), note that (x, 0) ∈ Êxt
s1

R (M ⊕ N, k) and (0, z) ∈ Êxt
s2

R (M ⊕ N, k) must both

be annihilated by X. Hence, s ≥ max{s1, s2}. Now note that there exists some

0 6= (x′, z′) ∈ Soc(Êxt
∗
R(M⊕,k)) with x′ ∈ Êxt

s

R(M, k) and z′ ∈ Êxt
s

R(N, k) such that

(x′, z′) ∈ (0 :Ê X). Thus, either x′ or z′ must be nonzero and annihilated by χ; that is,

s = max{s1, s2}.

Proposition 5.11. Let R be a complete intersection of the form Q/(f), with f =

f1, . . . , fc a regular Q-sequence. Further suppose C ∈ Ktac(R) and D ∈ Ktac(R), so

that C ⊕ D ∈ Ktac(R). If crdegRC = s1 and crdegRD = s2, then crdegR(C⊕D) =

max{s1, s2}.

And, of course, we have the following analogous statement for cocritical degree.
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Proposition 5.12. Let R be a complete intersection of the form Q/(f), with f =

f1, . . . , fc a regular Q-sequence. Further suppose C ∈ Ktac(R) and D ∈ Ktac(R), so

that C⊕D ∈ Ktac(R). If cocrdegRC = t1 and cocrdegRD = t2, then

cocrdegR(C⊕D) = min{t1, t2}.

Proof. Using the same notation from the proof of Proposition 5.10, first note that

if there exist some nonzero x 6∈ XE≤t1(M) and z 6∈ XE≤t2(M), then 0 6= (x, 0) 6∈

XE≤t1(M ⊕N) and 0 6= (0, z) 6∈ XE≤t2(N). Hence, t ≤ t1 and t ≤ t2. However, note

that the existence of a nonzero element (x′, z′) 6∈ χE≤t(M⊕N) implies that either 0 6=

x′ 6∈ χE≤t(M) or 0 6= z′ 6∈ χE≤t(N), thereby proving equality of t = min{t1, t2}.

Remark. Given the arguments for these Propositions, along with Propositions 5.9

and 5.10, notice that we did not deal with the case of infinite critical or cocritical

degrees. Recall that whenever R is a complete intersection the critical degree of any

R-complex (and R-module) will be positively finite and, likewise, the cocritical degree

will always be negatively finite. If at least one of C or D is periodic, then the given

statements (and arguments) still apply.

5.1.5 Cones

The triangulated structure of Ktac(R) guarantees us one more operation: map-

ping cones. As discussed in Chapter 3, these constructs serve a significant role within

the category, helping to define the class of distinguished triangles within Ktac(R) thus

making the category triangulated. Recall that if f : C→ D is a morphism between

complexes, then the mapping cone M (f) is a complex in Ktac(R) with R-modules

and R-module homomorphisms defined (informally) as

M (f)n = Cn−1 ⊕Dn and ∂M (f)
n =

−∂Cn−1 0

fn−1 ∂Dn

 .
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Lamentably, it turns out to be more difficult to say anything about how the critical

and cocritical degrees change under this operation. The reason for this is that taking

the mapping cone of a chain map almost never preserves minimality, thus invalidating

the methodology presented at the beginning of this chapter. However, there is some

hope, in the way of using the cohomological characterizations for the critical and

cocritical degrees. Although, if this approach proves useful it is certainly not as

straightforward as the approach for direct sums and taking summands portrayed in

the previous section. For now, we leave the reader with only a conjecture.

Conjecture 1. Let C ∈ Ktac(R) and let f : C → ΣjC be a chain endomorphism

which does not realize crdegRC = s. Then crdegRM (f) ≤ s+ 1.

5.2 Operations with Perfect Complexes

In this section, we will explore manipulations of complexes in Ktac(R) which

result from the Hom and ⊗ functors. Recall that R is a local ring and, for the

remainder of this chapter, it should additionally be assumed that R is Gorenstein.

Now first, let us recollect the definitions of Hom and ⊗ with regard to complexes,

as we will use them. The tensor product of R-complexes C and D is the R-complex

C⊗D with R-modules

(C⊗R D)n =
⊕
i+j=n

(Ci ⊗R Dj)

and differentials ∂n where ∂n(c ⊗ d) = ∂Ci (c) ⊗ d + (−1)ia ⊗ ∂Dj (d) for c ∈ Ci and

d ∈ Dj . Note that the complex C⊗D is the total complex of the bicomplex of C and

D. Similarly, the Hom of C and D is the R-complex Hom(C,D) with R-modules

Hom(C,D)n =
⊕
i

Hom(Ci, Di+n) =
⊕
j

Hom(Cj−n, Dj)
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and any element in Hom(C,D)n can be viewed as a family of chain maps where

fi : Ci → Di+n = (Σ−nD)i (or fj : Cj−n = (ΣnC)j → Dj). Here, the differentials are

given by ∂n(fi) = (−1)nfi−1∂
C
i + ∂Di+n+1fi+1 on each degree.

The issue that arises with these operations is that, in both cases, the resulting

R-modules are not finitely generated. In particular, if C, D ∈ Ktac(R) then each Ci

and Dj will be nonzero (otherwise they would be 0 in the category) and then there is

no possibility of these complexes having finitely generated modules. Unsurprisingly,

the notions of critical and cocritical degrees are a bit moot in the case of infinitely

generated modules. Henceforth, in order to discuss interesting operations on objects

in Ktac(R) which yield complexes of finitely generated modules, we turn towards

perfect (or bounded) complexes.

5.2.1 Perfect Complexes, A Thick Subcategory of D(R)

Let R be a commutative ring. A perfect complex can, more or less, be thought

of as a bounded complex. If D(R) represents the derived category of R-modules,

then:

Definition. A perfect complex of R-modules is an object in D(R) that is quasi-

isomorphic to a bounded complex of finite projective R-modules. An R-module is a

perfect module if it is perfect when it is viewed as a complex concentrated in degree

zero.

If R is noetherian, then an R-module is perfect if and only if its projective

dimension is finite. Recall that two complexes are quasi-isomorphic if there exists a

chain map f : C→ D that induces an isomorphism of homology groups, Hn(C)
∼=−→

Hn(D). Note that this implies if P is perfect, then for n� 0 and n� 0, Hn(P) = 0.

Of course, in D(R) the quasi-isomorphisms are isomorphisms so perfect complexes
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can just be thought of as bounded complexes, since by definition they are equivalent

in the category D(R).

The purpose of considering perfect complexes is that when we consider applying

Hom(-,P) or − ⊗ P with P perfect, then the resulting complex will have finitely

generated R-modules since P is equivalent to a bounded complex. To make these two

operations rigorous, one must define bifunctors F,G : Ktac(R)×P(R)→ Ktac(R) and

F′,G′ : P(R)×Ktac(R)→ Ktac(R), where P(R) is the thick subcategory of perfect

complexes in D(R). Our goal will be to understand what happens to the critical and

cocritical degrees of C ∈ Ktac(R) under these functors. However, to simplify this

exploration, we will reduce to endofunctors with fixed bounded complexes, and it

should then be clear how the results extend when one instead considers bifunctors.

Definition. An R-complex B is called bounded above if Bn = 0 for n � 0 and is

called bounded below if Bn = 0 for n � 0. If B is bounded above and below, B is

called bounded.

Let P(R) denote the category with objects as perfect complexes and morphisms

the homotopy equivalence classes of chain maps between them. The category of

perfect complexes P(R) is a thick subcategory of the derived category D(R), meaning

that it is closed under shifts, triangles, and retracts. Since P ∈ P(R) is defined such

that P ∼= B for some bounded complex B, for any fixed P we can instead consider

the fixed bounded complex B guaranteed by the isomorphism. In the subsequent

sections, we define two different endofunctors, − ⊗ B : Ktac(R) → Ktac(R) and

Hom(−,B) : Ktac(R)→ Ktac(R), where B ∈ P(R) is a fixed bounded complex.
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5.2.2 Tensor with a Perfect Complex

Let B be a bounded complex of projective modules such that Bi = 0 for all

i < 0 and i > `.1 Then we may define endofunctors −⊗ B : Ktac(R)→ Ktac(R) and

B ⊗− : Ktac(R)→ Ktac(R). In order to justify that these functors make sense, we

first must show that for any C ∈ Ktac(R), C ⊗ B and B ⊗ C will again be totally

acyclic complexes. Note first that the nth R-module will have form either

(C⊗R B)n =
⊕̀
j=0

(Cn−j ⊗R Bj)

with differentials ∂n(c ⊗ b) = ∂Cn−j(c) ⊗ b + (−1)n−jc ⊗ ∂Bj (b) where c ∈ Cn−j and

b ∈ Bj or

(B ⊗R C)n =
⊕̀
i=0

(Bi ⊗R Cn−i)

with differentials ∂n(b⊗ c) = ∂Bi (b)⊗ c+ (−1)ib⊗ ∂Cn−i(c) where c ∈ Cn−i and b ∈ Bi.

It should be clear from the definition of the differentials that a map on the tensor

product of R-modules written f ⊗ g acts as (f ⊗ g)(x ⊗ y) = f(x) ⊗ g(y) on pure

tensors, and then extend by linearity. We will show that −⊗ B : Ktac(R)→ Ktac(R)

is a functor, and note that the arguments for B ⊗− : Ktac(R)→ Ktac(R) will be the

same, except for Proposition 5.14 where an additional argument will be given.

Proposition 5.13. For any C ∈ Ktac(R), the R-complexes C⊗ B and (C⊗ B)∗ =

HomR(C⊗ B, R) are both acyclic.

Proof. We will prove that C⊗B is acyclic by induction on the length of B. First, when

` = 0 each R-module in C⊗B has the form (C⊗B)n = Cn⊗RB0 which is equivalent

to the nth R-module in the complex C⊗R B0 and the differential ∂C⊗B = ∂C ⊗ B0.

Since the funtor −⊗R B0 is an exact functor on R-modules, we have exactness for

each n ∈ Z. Now, we apply the inductive step: assume that the complex B has length

`+ 1 and suppose that the tensor complex C⊗R B′ is exact, where B′ is the complex

1Note that we can write any bounded complex in this form, after an appropriate shift.
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with R-modules B′i = Bi and differentials ∂B
′

i = ∂Bi for i = 0, . . . `− 1. Now consider

the following diagram representing the nonzero portion of the bicomplex formed

from the bigraded module M(n−i),i = Cn−i ⊗R Bi and defining ∂
′

(n−i),i = ∂C
n−i ⊗ 1B

i ,

∂
′′

(n−i),i = (−1)n−i1C
n−i ⊗ ∂Bi as the bidegree maps:

· · · // Cn+2 ⊗R B`

��

∂Cn+2⊗1B` // Cn+1 ⊗B`

1Cn+1⊗∂
B
`

��

∂Cn+1⊗1B` // Cn ⊗B`

��

∂Cn⊗1B` // Cn−1 ⊗B`

1Cn−1⊗∂
B
`

��

// · · ·

· · · // Cn+2 ⊗R B`−1

��

// Cn+1 ⊗B`−1

/

n+` ��

∂Cn+1⊗1B`−1// Cn ⊗B`−1

/

n−1+` ��

∂Cn⊗1B`−1// Cn−1 ⊗B`−1

��

// · · ·

...

��

...

��

...

��

...

��
· · · // Cn+2 ⊗R B1

��

∂Cn+2⊗1B1 // Cn+1 ⊗B1

1Cn+1⊗∂
B
1

��

.
n+2

∂Cn+1⊗1B1 // Cn ⊗B1

��

∂Cn⊗1B1 // Cn−1 ⊗B1

1Cn−1⊗∂
B
1

��

// · · ·

· · · // Cn+2 ⊗R B0
// Cn+1 ⊗B0

n+1

/

∂Cn+1⊗1B0 // Cn ⊗B0

n

/

∂Cn⊗1B0 // Cn−1 ⊗B0
// · · ·

Then, the total complex of M , Tot(M) is formed by taking direct sums along the

diagonals. Note that for each diagonal, there will be exactly `+ 1 summands at each

degree and this direct sum coincides with the nth module of the complex C ⊗R B.

Consider any element z in the kernel of ∂C⊗B
n and note that we may represent z

as
∑`

k=0 zk where each zk has some part in ker(∂Cn−k ⊗ 1B
k ) as well as some part

in ker((−1)n−k1C
n−k ⊗ ∂Bk ). Now observe that, in particular, z` ∈ ker(∂Cn−` ⊗ 1B

` ) =

im(∂Cn+1−` ⊗ 1B
` ) by exactness of the top row. Hence z` = (∂Cn+1−` ⊗ 1B

` )(y) for some

y ∈ Cn+1−`⊗B` and accordingly we may write
∑`−1

k=0 zk =
∑`

k=0 zk− (∂Cn+1−`⊗1B` )(y).

Now apply the inductive hypothesis with the fact that each zk ∈ ker(∂Cn−k⊗1Bk ) to see

that
∑`−1

k=0 zk ∈ ker(∂C⊗B′
n ) = im(∂C⊗B′

n+1 ). Meaning, there exists some
∑`−1

k=0 xk ∈ (C⊗

138



B′)n+1 =
⊕`−1

i=0(Cn+1−i⊗RBi) such that ∂C⊗B′
n+1 (

∑`−1
k=0 xk) =

∑`−1
k=0 zk and consequently,

we may write ∑̀
k=0

zk = (∂Cn+1−` ⊗ 1B` )(y) + (∂C⊗B′
n+1 )(

`−1∑
k=0

xk)

which is clearly in im(∂C⊗B
n+1 ). Therefore, C⊗ B is acyclic. Furthermore, since R is

Gorenstein, Im(∂C⊗B
n ) is totally reflexive for each n ∈ Z and hence Hn(HomR(C ⊗

B, R)) = 0 (by Lemmas 2.4-5 in [AvMa]). And so it follows that C⊗B ∈ Ktac(R).

We now want to understand how − ⊗ B affects morphisms in Ktac(R) and

justify that this action is well-define; meaning, the action preserves equivalencies in

the category. We consider the natural choice: for any f ∈ Ktac(R), define f ⊗ B as

the R-complex chain map where (f ⊗ B)n can be represented by a diagonal matrix

with the nonzero entries as fn−i ⊗ 1B
i for i = 0, . . . , `.

Proposition 5.14. Given a chain map f : C→ D in Ktac(R), f ⊗B is a well-defined

chain map from C⊗ B to D⊗ B.

Proof. Let f and f ⊗ B be defined as given above. We will show that for any

x̂ ∈ (C⊗ B)n the equality (f ⊗ B)n−1∂
C⊗B
n (x̂) = ∂D⊗B

n (f ⊗ B)n(x̂) holds. That is, we

wish to show that the following square commutes:⊕`
j=0(Cn−j ⊗R Bj)

⊕`
j=0(Cn−1−j ⊗R Bj)

cn−j ⊗ bj ∂C⊗B
n (cn−j ⊗ bj)

fn−j(cn−j)⊗ bj ?⊕`
j=0(Dn−j ⊗R Bj)

⊕`
j=0(Dn−1−j ⊗R Bj)

∂C⊗B
n

(f⊗B)n (f⊗B)n−1

∂D⊗B
n

where x̂ =
∑`

j=0(cn−j ⊗ bj) with cin− j ∈ Cn−j and bj ∈ Bj for each j = 0, . . . , `.

Specifically, we only need show commutativity on each summand cn−j ⊗ bj:

∂D⊗RB
n (fn−j(cn−j)⊗ bj) = ∂Dn−jfn−j(cn−j)⊗ bj + (−1)n−jfn−j(cn−j)⊗ ∂Bj (bj)
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= fn−j−1∂
C
n−j(cn−j)⊗ bj + fn−j((−1)n−jcn−j)⊗ ∂Bj (bj)

= (f ⊗ B)n−1[∂Cn−j(cn−j)⊗ bj + (−1)n−jcn−j ⊗ ∂Bj (bj)]

= (f ⊗ B)n−1(∂C⊗RB
n (x⊗ y))

by commutativity of the differentials with f and by definition of f ⊗ B. Thus, the

square commutes for all x̂ ∈ (C⊗ B)n and f ⊗ B is an R-complex chain map. Now,

to show that this map is well defined in Ktac(R), we will show that if f ∼ g then

f ⊗ B ∼ g ⊗ B.

If f ∼ g then there exist homotopy maps kn : Cn → Dn+1 and fn−gn = kn−1∂
C
n +

∂Dn+1kn for each n ∈ Z. Define a family ofR-module maps hn : (C⊗RB)n → (D⊗RB)n+1

where each map can be represented by the diagonal matrix hn = [kn−j ⊗ 1Bj ] where

j = 0, . . . , ` and n ∈ Z. Then note that for any c ⊗ b with c ∈ Cn−j and b ∈ Bj it

holds that

hn−1∂
C⊗B
n (c⊗ b) + ∂D⊗B

n+1 hn(c⊗ b) = [kn−j−1 ⊗ 1Bj ](∂Cn−j(c)⊗ b+ (−1)n−jc⊗ ∂Bj (b))

+∂D⊗B
n+1 ([kn−j ⊗ 1Bj ](c⊗ b))

= (kn−j−1∂
C
n−j(c)⊗ b+ kn−j((−1)n−jc)⊗ ∂Bj (b))

+(∂Dn−j+1kn−j(c)⊗ b+ (−1)n−j+1kn−j(c)⊗ ∂Bj (b))

= kn−j−1∂
C
n−j(c)⊗ b+ (−1)n−jkn−j(c)⊗ ∂Bj (b)

+∂Dn−j+1kn−j(c)⊗ b+ (−1)n−j+1kn−j(c)⊗ ∂Bj (b)

= (kn−j−1∂
C
n−j(c) + ∂Dn−j+1kn−j(c))⊗ b

= ((fn−j − gn−j)(c))⊗ b

= ((f ⊗ B)n − (g ⊗ B)n)(c⊗ b).

Hence, by definition f ⊗ B ∼ g ⊗ B.

Proposition 5.15. Given a chain map f : C→ D in Ktac(R), B⊗ f is a well-defined

chain map from B ⊗ C to B ⊗D.
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Proof. The proof that ∂B⊗D
n (B ⊗ f)n = (B ⊗ f)n−1∂

B⊗C
n is almost identical (except

for a possible difference in sign) to the argument given for f ⊗ B in the previous

proposition. We focus on the justification that f ∼ g implies B ⊗ f ∼ B ⊗ g, so let

kn : Cn → Dn+1 be homotopy maps such that fn − gn = kn−1∂
C
n + ∂Dn+1kn for each

n ∈ Z. Define a family of R-module maps hn : (C⊗R B)n → (D⊗R B)n+1 where each

map can be represented by the diagonal matrix hn = [1B
i ⊗ kn−i] where i = 0, . . . , `

and n ∈ Z. Then note that for any b⊗ c with c ∈ Cn−i and b ∈ Bi it holds that

hn−1∂
B⊗C
n (b⊗ c) + ∂B⊗D

n+1 hn(b⊗ c) = [1Bi ⊗ kn−i−1](∂Bi (b)⊗ c+ (−1)ib⊗ ∂C
n−i(c))

+∂B⊗D
n+1 ([1Bi ⊗ kn−i](b⊗ c))

= (1Bi−1 ⊗ kn−i)(∂Bi (b)⊗ c) + (−1)i(1Bi ⊗ kn−i−1)(b⊗ ∂C
n−i(c))

+∂B⊗D
n+1 ((−1)|kn−i| |b|(b⊗ kn−i(c)))

= ((−1)|kn−i| |∂
B
i (b)|∂Bi (b)⊗ kn−i(c) + (−1)|kn−i−1| |b|+ib⊗ kn−i−1∂

C
n−i(c))

+ (−1)|kn−i| |b|(∂Bi (b)⊗ kn−i(c) + (−1)ib⊗ ∂D
n−i+1kn−i(c))

= (−1)|kn−i| |∂B
i (b)|∂Bi (b)⊗ kn−i(c) + (−1)|kn−i−1| |b|+ib⊗ kn−i−1∂

C
n−i(c)

+ (−1)|kn−i| |b|∂Bi (b)⊗ kn−i(c) + (−1)|kn−i| |b|+ib⊗ ∂D
n−i+1kn−i(c)

= (−1)|b|+ib⊗ kn−i−1∂
C
n−i(c) + (−1)|b|+ib⊗ ∂D

n−i+1kn−i(c)

= (−1)|b|+i(b⊗ (kn−i−1∂
C
n−i(c) + ∂Dn−i+1kn−i(c)))

= (−1)|b|+i(b⊗ ((fn−i − gn−i)(c)))

= ((B ⊗ f)n − (B ⊗ g)n)(b⊗ c).

Hence, by definition B ⊗ f ∼ B ⊗ g.2

Lastly, we will verify that −⊗B does indeed preserve the identity morphism on

an R-complex and compositions of morphisms, making −⊗ B into an endofunctor.

Given the composition C
f−→ D

g−→ E, it is easy to see that

((g ⊗ B)n)((f ⊗ B)n)(c⊗ b) = ((g ⊗ B)n)(fn−j(c)⊗ b)

2Note that if | b |= 2j (for some j ∈ N) then | ∂Bi (b) |= 2j − 1 since ∂B is a −1 degree map.

Furthermore, note that | kn−i−1 |= 1 =| kn−i |. We are applying Koszul’s Law of Duality here; for

the proof of Proposition 5.13, we did not include this step since deg(1B) = 0.
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= gn−jfn−j(c)⊗ b = (gf ⊗ B)n(c⊗ b)

where c ∈ Cn−j and b ∈ Bj for each j = 0, . . . , `. It is even simpler to see that for

each C ∈ Ktac(R), 1C ⊗ B = 1C⊗B since (1C ⊗ B)(c⊗ b) = 1C
n−j(c)⊗ 1B

j (b) = c⊗ b for

any c ∈ Cn−j and b ∈ Bj. Therefore, −⊗ B is a well-defined endofunctor on Ktac(R)

so this is a meaningful operation on totally acyclic complexes. Moreover, we may find

the following additional structure useful:

Proposition 5.16. The endofunctor − ⊗ B : Ktac(R) → Ktac(R) is a triangle

functor.

Proof. To justify this last claim, we need to show that −⊗B is additive (preserves the

zero map and direct sums) as well as triangulated (preserves distinguished triangles).

It should be obvious that 0⊗B = 0 and that for any null-homotopic map f, the map

f ⊗B will be null-homotopic too (by the previous proposition). Next, it is easy to see

that direct sums are preserved by the bilinearity of the tensor product on R-modules:

((C⊕D)⊗ B)n =
⊕
i+j=n

(Ci ⊕Di)⊗R Bj =
⊕
i+j=n

((Ci ⊗R Bj)⊕ (Di ⊗R Bj))

= (
⊕
i+j=n

(Ci ⊗R Bj))⊕ (
⊕
i+j=n

(Di ⊗R Bj)) = (C⊗ B)n ⊕ (D⊗ B)n

for j = 0, . . . , ` and each n ∈ Z. Now, we only need to show the triangulated structure

for −⊗ B.

Consider any distinguished triangle in Ktac(R) and note that it will have the

form:

C
f−→ D

ι−→ M (f)
π−→ ΣC

where (M (f))n = (ΣC⊕ D)n = Cn−1 ⊕Dn is the mapping cone of f . We will show

that the triangle

C⊗ B
f⊗B−−→ D⊗ B

ι⊗B−−→ M (f)⊗ B
π⊗B−−→ ΣC⊗ B
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is distinguished as well. First note that the induced map C⊗ B
f⊗B−−→ D⊗ B yields a

distinguished triangle of the form

C⊗ B
f⊗B−−→ D⊗ B

ι̂−→ M (f ⊗ B)
π̂−→ ΣC⊗ B

and so if we show the former triangle is isomorphic to this one, we are done. Consider

the diagram of triangles

C⊗ B

1C⊗B

��

f⊗B // D⊗ B

1D⊗B

��

ι̂ //M (f ⊗ B)

∼=
��

π̂ // Σ(C⊗ B)

∼=
��

C⊗ B
f⊗B // D⊗ B

ι⊗B //M (f)⊗ B
π⊗B // ΣC⊗ B

where it should be clear that the first square commutes and since the first two

downward maps are the identities, they are isomorphisms. We obtain the final two

necessary isomorphisms via properties of tensor products. First note that Σ(C⊗D) ∼=

ΣC ⊗ D for any R-complexes. Then, M (f ⊗ B)n = (Σ(C⊗ B))n ⊕ ((D ⊗ B))n ∼=

(ΣC ⊗ B)n ⊕ (D ⊗ B)n = (ΣC⊕D)n ⊗ Bn = (M (f))n ⊗ Bn as R-modules for each

n ∈ Z. Additionally, it should be obvious that the differentials ∂M (f⊗B) and ∂M (f)⊗B

act on each nth-degree R-module in the same manner. And, clearly the first square

commutes, so we only need check that the latter two commute as well. Since ῑ is

simply the inclusion of D ⊗R B into M (f ⊗ 1B) it acts the same as ι ⊗ 1B, so the

square commutes. Similarly for π̄ and the last square. Therefore, the second triangle

is isomorphic to a distinguished triangle, and is thus distinguished itself.

Now that it has been justified that −⊗ B is a triangle endofunctor on Ktac(R),

we will examine how the critical and cocritical degrees of a complex might change

under this functor. Suppose crdegRC = s < ∞ and cocrdegRC = t > −∞ such

that µ : C → ΣqC is a chain endomorphism which realizes the critical degree

and ν : C → ΣrC is a chain endomorphism which realizes the cocritical degree.

Furthermore, we will impose the additional condition that B is minimal for the
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remainder of this section. We begin with a simple lemma that is needed to discuss

the injectivity or surjectivity at each homological degree of the R-complex C⊗ B.

Lemma 5.17. Let M , M ′, N be free R-modules and f : M → M ′ an R-module

homomorphism. Then the map f ⊗ idN is surjective (split injective) if and only if f

is surjective (split injective).

Proof. Any map f from M to M ′ yields an exact sequence M
f−→M ′ → coker(f)→ 0

and applying the functor −⊗R N preserves exactness of the sequence

M ⊗R N
f⊗idN−−−−→M ′ ⊗R N → coker(f)⊗R N → 0

since −⊗RN exact whenever N is flat3. But surjectivity of f means that coker(f) = 0,

which implies coker(f) ⊗R N = 0 (recall N is free) and so consequently f ⊗ 1N is

surjective by exactness of the latter sequence given above. We obtain the “only

if” direction from the fact that M ′⊗RN
im(f⊗1N )

∼= M ′⊗RN
im(f)⊗1N

meaning that f ⊗ 1N surjective

implies im(f)⊗ 1N = M ′ ⊗R N .

Now consider the exact sequence 0→ ker(f) ↪→M
f−→M ′ and apply the functor

−⊗R N to obtain the exact sequence:

0→ ker(f)⊗R N →M ⊗R N
f⊗1N−−−→M ′ ⊗R N

If ker(f) = 0, then ker(f)⊗R N = 0 and thus ker(f ⊗ 1N) = 0 by exactness of the

sequence. The “only if” direction follows from the fact that the R-modules are free

and thus ker(f ⊗ 1N ) ∼= ker(f)⊗R N . Furthermore, note that if f additionally splits,

then there exists some ε : N → M such that εf = IdM . If this holds, then consider

ε⊗1N : M⊗RN →M ′⊗RN and note (ε⊗1N )(f⊗1N ) = εf⊗1N = 1M⊗1N = 1M⊗RN

since −⊗ N is a well-defined functor on R-mod. And thus, f ⊗ 1N must be split as

well.
3Recall any free module is flat, and finitely generated flat modules are precisely free modules

over a local ring.
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Proposition 5.18. Given the assumptions above, crdegµ⊗BR (C⊗ B) = s + ` and

cocrdegν⊗BR (C⊗ B) = t, which yields the upper and lower bounds: crdegR(C⊗ B) ≤

s+ ` and cocrdegR(C⊗ B) ≥ t.

Proof. Assuming the former part of the statement holds, it is clear by the definition

of critical and cocritical degrees that s+ ` and t will be the upper and lower bounds,

respectively. First, note from the previous proposition that we obtain the induced

maps µ ⊗ B : C ⊗ B → Σq(C⊗ B) and ν ⊗ B : C ⊗ B → Σr(C⊗ B), which can be

represented as diagonal matrices with nonzero entries µn−j ⊗ 1B
j and νn−j ⊗ 1B

j for

j = 0, . . . , `. Apply the lemma to see that (µ⊗ B)n is surjective for all n such that

n− ` > s and (µ⊗ B)n is precisely not surjective whenever n− ` ≤ s. Similarly, we

can apply the lemma to see that (µ⊗ B)n is split injective for all n such that n < t

(in which case, n − j < t for j = 1, . . . , `) and (µ ⊗ B)n is precisely not injective

whenever n ≥ t.

5.2.3 Hom with a Perfect Complex

Let B be a fixed bounded complex of projective modules such that Bi = 0 for

all i < 0 and all i > `. Now consider the complex Hom(B,C) for any C ∈ Ktac(R)

with nth module

Hom(B, C)n =
⊕̀
i=0

HomR(Bi, Ci+n)

and, additionally, the contravariant functor Hom(-,B) yields a complex with nth

module

Hom(C,B)n =
⊕̀
j=0

HomR(Cj−n, Bj)

First, we want to justify that both Hom(B, -) and Hom(-,B) are endofunctors on

Ktac(R). A similar argument as given in the proof of Proposition 5.13 can be applied

to see that Hom(B,C), Hom(C,B) ∈ Ktac(R) for any C ∈ Ktac(R). However, such an
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argument can only be given after the observation that Hn(Hom(B,C)) ∼= Hn(Tot(M))

and Hn(Hom(C,B)) ∼= Hn(Tot(M ′)) where M , M ′ are the bigraded complexes with

modules Mp,q = Hom(B−p, Cq) and M ′
p,q = Hom(C−p, Bq). The isomorphisms hold

precisely because B is a bounded complex. Rather than presenting such arguments

here, we will instead refer to [Ch] (Propositions A.3 and A.6) when proving the

following proposition.

Proposition 5.19. For any C ∈ Ktac(R), Hom(C,B) and Hom(B,C) are totally

acyclic.

Proof. We will justify the statement for Hom(C,B) and note that the statement

for Hom(B,C) is identical (if not simpler), with application of [Ch, A.6] in lieu

of [Ch, A.3]. The first condition of [Ch, A.3] that must be satisfied is HomR(C, Bn)

is acyclic for each n ∈ Z. This is evident by the fact that Bn is free, Hom(C,R) is

acyclic, and HomR(M,Rn) ∼= Πn
i=1 HomR(M,R) for any R-module M . The latter

condition of [Ch, A.3] holds since B is bounded and thus the boundary submodules

Bn(B) = 0 for all n > `. Hence, Hom(C,Bn(B)) is acyclic trivially for infinitely

many integers n > 0. Lastly, note that (Hom(C,B))∗ and (Hom(B,C))∗ are both

acyclic since R is Gorenstein.

Now, we ask how morphisms are altered under these functors, and look towards

ensuring that the proposed actions are well defined. Afterward, we show the con-

ditions that the identity and compositions are respected,thereby making Hom(B, -)

and Hom(-,B) into endofunctors on Ktac(R). Let f be an R-complex chain map

from C to D. Again, we consider the natural choice for defining Hom(B, f) and

Hom(f,B). Define f∗ = Hom(B, f) to be
⊕`

i=0 Hom(Bi, fi+n) and f∗ = Hom(f,B)

to be ⊕`j=0 Hom(fj−n, Bj). That is, for any α ∈ HomR(Bi, Ci+n), f∗(α) = fi+nα ∈

HomR(Bi, Di+n). Note that by nature of Hom(-,B), f∗ will instead correlate to a
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map from Hom(D,B) to Hom(C,B): for any α ∈ HomR(Dj−n, Bj), f∗(α) = αfj−n ∈

HomR(Dj−n, Bj). Note further that we may also represent f∗ and f∗ as diagonal

matrices, with Hom(fj−n, Bj) and Hom(Bi, fi+n) as the appropriate nonzero entries

for each map, similar to f ⊗ B and B ⊗ f.

Proposition 5.20. Given a chain map f : C → D in Ktac(R), Hom(B, f) and

Hom(f,B) are well-defined chain maps from Hom(B,C) to Hom(B,D) and Hom(D,B)

to Hom(C,B), respectively.

Proof. First we must show that both Hom(B, f) and Hom(f,B), as defined above,

commute with the differentials on Hom(B,C) and Hom(C,B), respectively. For

Hom(B, f), note that this reduces to the task of showing that the following square

commutes:

⊕`
i=0 HomR(Bi, Ci+n)

⊕`
i=0 HomR(Bi, Ci+n−1)

αi ∂
Hom(B,C)
n (αi)

fi+nαi ?⊕`
i=0 HomR(Bi, Di+n)

⊕`
i=0 HomR(Bi, Di+n−1)

∂
Hom(B,C)
n

(Hom(f ,B))n (Hom(f ,B))n−1

∂
Hom(B,D)
n

To start, note that ∂
Hom(B,C)
n (αi) = ∂C

i+n ◦ αi + (−1)2i+nαi ◦ ∂Bi+1 for any αi ∈

HomR(Bi, Ci+n) with each i = 0, . . . , `. Therefore, for any such αi and any n ∈ Z, we

have

(f∗,n−1 ◦ ∂Hom(B,C)
n )(αi) = f∗,n−1(∂C

i+n ◦ αi + (−1)2i+nαi ◦ ∂Bi+1)

= fi+n−1 ◦ (∂C
i+nαi) + (−1)nfi+n ◦ (αi∂

B
i+n) = (fi+n−1∂

C
i+n)αi + (−1)nfi+nαi∂

B
i+n

= (∂D
i+nfi+n)αi + (−1)nfi+nαi∂

B
i+n = ∂Hom(B,D)

n (fi+nαi)

= (∂Hom(B,D)
n ◦ f∗,n)(αi).
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Thus, Hom(B, f) commutes with ∂Hom(B,C) and ∂Hom(B,D), but it still remains to be

shown that Hom(B, f) is well defined in Ktac(R). Suppose f ∼ g, and so there exists

a family of homotopy maps hn : Cn → Dn+1 such that (fn − gn) = hn−1∂
C
n + ∂Dn+1hn

for each n ∈ Z. Consider now the family of R-module maps defined by {h∗,n}n∈Z
where h∗,n = ⊕`i=0 Hom(Bi, hi+n) and observe:

(h∗,n−1∂
Hom(B,C)
n + ∂

Hom(B,D)
n+1 h∗,n)(αi) = h∗,n−1(∂C

i+nαi + (−1)nαi∂
B
i+1) + ∂

Hom(B,D)
n+1 (hi+nαi)

= hi+n−1∂
C
i+nαi + (−1)nhi+nαi∂

B
i+1 + ∂D

i+n+1(hi+nαi) + (−1)n−1hi+nαi∂
B
i+1

= hi+n−1∂
C
i+n(αi) + ∂D

i+n+1hi+n(αi) = (fi+n − gi+n)(αi) = (f∗,n − g∗,n)(αi)

for any αi ∈ HomR(Bi, Ci+n). Therefore, Hom(B, f) ∼ Hom(B, g) by definition. Now,

we give an identical argument for Hom(-,B) and, to begin, we shall establish that

the following square commutes for all n ∈ Z:

⊕`
j=0 HomR(Dj−n, Bj)

⊕`
j=0 HomR(Dj−n+1, Bj)

αj ∂
Hom(D,B)
n (αj)

αjfj−n ?⊕`
j=0 HomR(Cj−n, Bj)

⊕`
j=0 HomR(Cj−n+1, Bj)

∂
Hom(D,B)
n

(Hom(f,B))n (Hom(f,B))n−1

∂
Hom(C,B)
n

By definition of the differential, ∂
Hom(D,B)
n (αj) = ∂Bj ◦ αj + (−1)2j−n αj ◦ ∂D

j−n+1 for

any αj ∈ HomR(Dj−n, Bj) with each j = 0, . . . , `. And so, for any such αj we have

(f∗n−1 ◦∂Hom(D,B)
n )(αj) = f∗n−1(∂Bj αj+(−1)2j−n αj∂

D
j−n+1) = (∂Bj αj)fj−n+(−1)n(αj∂

D
j−n+1)fj−n+1

= ∂Bj αjfj−n + (−1)nαj(fj−n∂
C
j−n+1) = ∂Bj (αjfj−n) + (−1)n(αjfj−n)∂C

j−n+1 = ∂Hom(C,B)
n (αjfj−n)

= (∂Hom(C,B)
n ◦ f∗n)(αj).

Meaning, Hom(f,B) commutes with the differentials on Hom(-,B) and is thus an R-

complex chain map. It remains to show that Hom(f,B) is a well-defined morphism in
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Ktac(R). Suppose f ∼ g and take hn : Cn → Dn+1 to be the associated homotopy maps

such that (fn−gn) = hn−1∂
C
n +∂Dn+1hn for each n ∈ Z. Take {h∗n}n∈Z to be the family of

R-module maps defined as h∗n = ⊕`j=0 Hom(hj−n, Bj) : Hom(D,B)n → Hom(C,B)n+1

and note:

(h∗n−1∂
Hom(D,B)
n + ∂

Hom(C,B)
n+1 h∗n)(αj) = h∗n−1(∂Bj αj+

(−1)2j−n αj∂
D
j−n+1) + ∂

Hom(C,B)
n+1 (−1)|αj |+1(αjhj−n−1)

= (−1)|∂
B
j αj |+1∂B

j αjhj−n−1 + (−1)|αj∂
D
j−n+1|+1(−1)2j−nαj∂

D
j−n+1hj−n

+(−1)|αj |+1∂Bj (αjhj−n−1) + (−1)n−1(−1)|αj |+1(αjhj−n−1)∂C
j−n

= (−1)|∂
B
j αj |+1∂Bj αjhj−n−1 + (−1)|αj∂

D
j−n+1|+1+(2j−n)αj∂

D
j−n+1hj−n

+(−1)|αj |+1∂Bj αjhj−n−1 + (−1)n+|αj |(αjhj−n−1)∂C
j−n

= (−1)|αj∂
D
j−n+1|+1+nαj∂

D
j−n+1hj−n + (−1)n+|αj |(αjhj−n−1)∂C

j−n

= (αj)hj−n−1∂
C
j−n + (αj)∂

D
j−n+1hj−n = (fj−n − gj−n)(αj) = (f ∗n − g∗n)(αj)

for any αj ∈ HomR(Dj−n, Bj). Therefore, Hom(f,B) ∼ Hom(g,B) by definition.4

Proposition 5.21. Let C, D, and E be totally acyclic complexes. Furthermore, let

1C be the identity morphism on C, f : C → D, and g : D → E. Then the following

hold:

1. Hom(B, 1C) and Hom(1C,B) are the identity morphisms on Hom(B,C) and

Hom(C,B), respectively.

2. Hom(fg,B) = Hom(g,B) Hom(f,B) and Hom(B, gf) = Hom(B, g) Hom(B, f).

Proof. It is easy to see that the first part of the proposition holds, since for any

αi ∈ HomR(Bi, Ci+n) we have that Hom(B, 1C)(αi) = 1Ci+n ◦ αi = αi = 1Hom(B,C)(αi).

4Note here that we apply the sign convention Hom(f,B)(α) = (−1)|α|+1α ◦ f as is necessary

when applying a map to a graded structure, such as an R-complex. However, we omit inclusion of

this sign convention for all proofs whenever omission does not alter the result.
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Similarly, for any αj ∈ HomR(Dj+n, Bj) note Hom(1D,B)(αj) = αj ◦ 1Dj+n =

αj = 1Hom(C,B)(αj). For the latter part of the proposition, first note that if αi ∈

HomR(Bi, Ci+n) then Hom(B, g) Hom(B, f)(αi) = Hom(B, g)(fi+nαi) = gi+nfi+nαi =

(gf)i+nαi = Hom(B, gf)(αi). Likewise, if αj ∈ HomR(Ej+n, Bj) then

Hom(f,B) Hom(g,B)(αj) = Hom(f,B)(αjgj+n)

= αjgj+nfj+n = (gf)j+nαj = Hom(fg,B)(αj).

Our goal is to use crdegRC and cocrdegRC to give sufficient bounds for the

critical and cocritical degrees of the R-complexes Hom(B,C) and Hom(C,B). For this

discussion let crdegRC = s, cocrdegRC = t and suppose u :C → ΣqC, v :C → ΣrC are

the endomorphisms which realize the critical and cocritical degrees of C, respectively.

We first consider Hom(B,C) and denote u∗ : Hom(B,C) → ΣqHom(B,C) as the

induced endomorphism on Hom(B,C) and recall from above that this map acts

at each degree, on each summand, as follows: for αi ∈ Hom(Bi, Ci+n+q), u∗(αi) =

ui+n+qαi ∈ Hom(Bi, Ci+n). Likewise, denote v∗ :Hom(B,C)→ ΣrHom(B,C) as the

endomorphism induced by v. The following proposition gives sufficient bounds on

crdegRHom(B,C) and cocrdegRHom(B,C):

Proposition 5.22. If crdegRC = s and cocrdegRC = t, then cocrdegRHom(B,C) ≥

t− ` and crdegRHom(B,C) ≤ s.

Proof. First note that since vn : Cn → Cn−q is injective for all n < t, any such

vn is a monomorphism in R-mod. By definition, the Hom functor takes vi+n

to an injective function v∗,i+n = Hom(Bi, vi+n) between Hom sets and this hap-

pens for each i = 0, . . . , `. Thus, v∗,n = (Hom(B, v))n = ⊕`i=0v∗,i+n is injective

for all n < t − ` and note that if vn splits for any such n, then there exists a
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map γ : Cn−q → Cn such that γvn = Id(Cn). Here we see that v∗,n splits for all

n < t − ` as well since we may define Hom(B, γ)i+n = ⊕`i=0 Hom(Bi, γi+n) where

Hom(Bi, γi+n) Hom(Bi, vi+n) = Hom(Bi, γi+nvi+n) = Hom(Bi, 1
C
i+n) = 1Hom(Bi,Ci+n)

for each i = 0, . . . , ` due to HomR(Bi,−) being a well-defined functor on R-mod .

Thus, each v∗,i+n splits for n < t− ` and so we have that (⊕`i=0γ∗,i+n)(⊕`i=0v∗,i+n) =

(⊕`i=0γ∗,i+nv∗,i+n) = (⊕`i=01
Hom(Bi,Ci+n)) = 1

Hom(B,C)
n . Lastly, it should be clear that

v∗,n will not be injective for n > t since vn is not injective for n > t. Therefore, vn

is split injective for all n < t if and only if v∗,n is split injective for all n < t − `,

meaning cocrdegv∗
R Hom(B,C) = t− ` ≤ cocrdegRHom(B,C).

Now, to show the appropriate bound for critical degree of Hom(B,C), we shall

first justify that each u∗,i+n+q = Hom(Bi, ui+n+q) is surjective on each summand

HomR(Bi, Ci+n) for i = 0, . . . , `. Note that since Bi is free, and thus projective, there

exists an hi : Bi → Ci+n such that un+i+qhi = gi for any gi : Bi → Ci+n+q whenever

un+i+q is surjective. Meaning, for any gi ∈ HomR(Bi, Ci+n+q), there exists such an

hi ∈ HomR(Bi, Ci+n) where u∗,n+i+q(hi) = un+i+qhi = gi for all n > s. Thus, for

any g ∈ (Hom(B,C))n note that u∗,n+q(⊕`i=0hi) = g where ⊕`i=0hi ∈ Hom(Bi,C)n+q

and so, by definition, u∗,n+q is surjective for all n > s. Therefore, we have that

s ≥ crdegu∗R Hom(B,C) ≥ crdegRHom(B,C).

Now, denote u∗ : Hom(C,B) → ΣqHom(C,B) as the induced endomorphism

on Hom(C,B) and note that this map acts at each degree, on each summand, as

follows: for αj ∈ Hom(Cj−(n+q), Bj), u
∗
n(αj) = αjuj−n ∈ Hom(Cj−n, Bj). Likewise,

denote v∗ : Hom(C,B) → ΣrHom(C,B) as the endomorphism induced by v. The

following lemma and proposition give sufficient bounds on crdegRHom(C,B) and

cocrdegRHom(C,B):
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Lemma 5.23. If u : Rn → Rm is split injective then u∗ : HomR(Rm, Rl) →

HomR(Rn, Rl) is (split) surjective.

Proof. First note that since u splits, there exists a left inverse u−1 : Rm → Rn such that

u−1u = IdR
n

. So now consider any α ∈ HomR(Rn, Rl) and define g = αu−1 : Rm → Rl.

Rl Rnαoo

u
��

Rm
∃g

aa

u−1

\\

It should be clear from the fact that u−1 is a left inverse of u that the diagram above

commutes: gu = (αu−1)u = α. Furthermore, since u∗(g) = gu, the surjectivity of u∗

holds, as desired.

Proposition 5.24. If crdegRC = s and cocrdegRC = t, then cocrdegRHom(C,B) ≥

q − s and crdegRHom(C,B) ≤ `− t.

Proof. First consider theR-module map u∗j−n+q : HomR(Cj−n, Bj)→ Hom(Cj−n+q, Bj)

for any j = 0, . . . , ` and note that this map is defined as taking any αj ∈ Hom(Cj−n, Bj)

to the composition αjuj−n+q:

Cj−n
αj // Bj

Cj−n+q

uj−n

OO

αjuj−n+q

;;

If −n+ q > s, then uj−n+q is surjective for each j = 0, . . . , ` and since surjections are

epimorphisms in R-modthis is equivalent to u∗j−n+q being injective for each j = 0 . . . , `.

Thus, whenever n < q − s, u∗n = Hom(u,B) = ⊕`j=0 Hom(uj−n, Bj) is injective and

furthermore splits since

(u∗j−n+q)
−1 u∗j−n+q = Hom(u−1

j−n+q, Bj) Hom(uj−n+q, Bj) = Hom(uj−n+qu
−1
j−n+q, Bj)

= Hom(1Cj−n, Bj) = 1Hom(C,B)
n
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where (u∗j−n+q)
−1 is the right inverse of u∗j−n+q guaranteed by the fact that all free mod-

ule surjections split. And so we see that cocrdegRHom(C,B) ≥ cocrdegu∗

R Hom(C,B) ≥

q − s.

Now, apply the above lemma with Rl = Bj, R
m = Cj−(n+q), and Rn = Cj−n

to see that u∗j−n will be surjective for each j = 0, . . . ,m whenever n > ` − t so

that u∗ = ⊕`j=0(u
∗
j−n) will be (split) surjective for all such n. Hence, ` − t ≥

crdegu∗

R Hom(B,C) ≥ crdegRHom(B,C) as desired.

Now that we have explored how the critical and cocritical degrees might change

under a myriad of operations of R-complexes, we will turn towards boundedness

problems of a different nature. In the next chapter, we present a proposal focused on

addressing the inability to provide a universal bound for critical degree (and thus,

cocritical degree) over all R-complexes (or modules) of a given complexity greater

than one.
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CHAPTER 6

Application: Critical Width of an R-Complex

And now, we are at the crux of this thesis; all that remains is a proper conclusion

to the argument for how viewing the notion of critical degree (along with its dual

notion) in Ktac(R) might benefit us. In this chapter we will examine additional insights,

motivated by previous work by the authors of [AvGaPe], and further in [AvBu], on

boundedness problems with regard to critical degree in R-mod. These insights will

motivate a new definition, which we present in Section 6.2 of this chapter. It is this

definition that will establish our conclusion and we then close with an interesting

question that, for now, remains unanswered.

6.1 Some More Boundedness Problems

For this chapter, we will maintain the base assumption that (R,m, k) is a local,

Gorenstein ring with additional assumptions imposed frequently. Recall that given a

finitely-generated R-module, we can associate to it a totally acyclic complex via the

construction of its complete resolution. In Chapter 4, we addressed the connection

between critical degree in R-mod and Ktac(R) with some detail. For example, if the

module is maximal Cohen-Macaulay then its critical degree agrees with that of any

associated totally acyclic complex, as long as the critical degrees are non-negative.

However, distinctions between the two notions of critical degree arise when they are

negative or the module is not maximal Cohen-Macaulay.

In this section, we aim to understand the comparison between critical degree

in R-mod and the analogous notion (along with its dual) in Ktac(R). We give
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particular attention to the consequences of this comparison and the results in [AvGaPe]

and [AvBu], which provide bounds for the critical degree of an R-module of certain

complexities.

6.1.1 A Continued Comparison: Critical Degree in R-mod versus Ktac(R)

Let C → F →→ M be a complete resolution of a finitely-generated R-module

M such that F is the minimal free resolution of M . Further assume C is minimal,

CI-dimRM < pdRM = ∞, and set crdegRM = s for some integer −1 ≤ s < ∞.

Denote g = CI-dimRM = dimR − depthRM , noting that dimR = depthR (since

R is Gorenstein and thus Cohen-Macaulay) so this value is precisely the same g

mentioned in Chapter 2.

Since CI-dimRM < ∞, if cxRM = 1 then s ≤ g as stated in Theorem 7.2

from [AvGaPe] (restated in Chapter 2 of this thesis). Note that it then must hold that

crdegRC ≤ 0 since construction of the complete resolution requires C0 := Fg. On the

other hand, if cxRM
∗ = 1 then crdegRM∗ ≤ g∗ = dimR−depthRM

∗ = CI-dimRM
∗.

And so cocrdegRC ≥ −1 since C−1 := HomR(F ∗g∗ , R). Of course, in either of these

cases we already know that C is periodic, so that crdegRC = −∞ and cocrdegRC =∞

as described in Proposition 2 of Chapter 4.

In [AvBu], Avramov and Buchweitz additionally give the bound

crdegRM ≤ max{2bRg (M)− 1, 2bRg+1(M)}+ g − 1

for a given R-module M whenever cxRM = 2. So, assuming linear growth of {bRn (M)},

it should hold that

crdegRC ≤ max{2b̂R0 (M)− 1, 2b̂R1 (M)} − 1

and

cocrdegRC ≥ max{2b̂R−1(M)− 1, 2b̂R0 (M)} − 2
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for a given R-module M . This then leads to a bound on the distance between crdegRC

and cocrdegRC, which must be

max{2(b̂R0 (M)− b̂R−1(M)) + 1, 2(b̂R1 (M)− b̂R−1(M) + 1), 2(b̂R1 (M)− b̂R0 (M)) + 1, 0}.

Unfortunately, this bound is given in terms of a specific module, and, moreover, such

bounds are currently unknown for R-modules with cxRM ≥ 3. Nevertheless, this

observation leads to the next natural question– what does this “distance” tell us

about M itself? We explore this question in greater detail with the next section.

6.2 A New Measurement of R-Complexes and R-Modules

One disadvantage of critical degree in R-mod discussed at the end of Chapter

2 is that critical degree is entirely dependent upon the homological degree of a free

resolution, which is determined by the R-module one begins with. While we can

define the relationship between the critical degree of an R-module and that of one

of its syzygy modules (crdegRM = max{crdegRΩnM− n, 0}), starting with another

syzygy module yields a different value. Moreover, the example at the end of Chapter

2 demonstrates that there is no hope for finding a bound for critical degree of modules

of a given complexity, as taking a higher syzygy (or cosyzygy) will always yield a

higher (resp. lower) critical degree.

Part of our motivation for generalizing this notion to Ktac(R) involved addressing

this boundedness issue. The critical degree of an R-complex describes when growth

to the left occurs with respect to the entire syzygy sequence; similarly, the cocritical

degree describes when growth occurs to the right. Moreover, we have established a

more precise theory with respect to the entire syzygy sequence, as we set out to do,

in view of the fact that we are able to distinguish between the R-complexes C and

ΣqC in Ktac(R). We provide the following example to elucidate this idea.
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Example 6.1. Let R be a local complete intersection ring. Denote C ∈ Ktac(R) the

minimal R-complex with Im ∂C
0 = M and D ∈ Ktac(R) the minimal R-complex with

Im ∂D
0 = N , so that there exist complete resolutions C→ F→→M and D→ G→→ N .

But now suppose M and N are syzygies of each other, say N = Ω−nM and M = ΩnN .

Then note that D ' ΣnC (in fact, they are isomorphic!). If crdegRC = s and

cocrdegRC = t, then crdegRD = s + n and cocrdegRD = t + n by Proposition 2 in

Chapter 5. However, suppose we instead start with the assumption that crdegRD = s′

and cocrdegRD = t′, viewing C = Σ−nD. Once again applying Proposition 2, it is not

difficult to see that crdegRC = s′ − n and cocrdegRC = t′ − n. Note that in doing so,

s′ − n = s and t′ − n = t.

However, we have not yet realized our goal. While C and ΣqC are theoretically

distinct complexes in Ktac(R), in practice this is not always useful. In particular, one

might only care to understand patterns in a syzygy sequence, void of translations

on such sequences. This does indeed create a bit of an ambiguity, for any shifted

complex will have shifted critical and cocritical degrees, as is expected, but the Betti

or syzygy sequences are inherently the same, albeit with a translated indexing set

imposed.

Despite this observation, the critical and cocritical degrees of a totally acyclic

complex still provide powerful insight. In the example above, notice that while the

critical and cocritical degrees change under the action of translations, the difference

between these two degrees does not alter: crdegRC− cocrdegRC = s− t = (s+ n)−

(t+ n) = crdegRD− cocrdegRD. This of course sparks motivation for introducing a

new invariant of R-complexes, which will remain unchanged under any translation of

the syzygy sequence.
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6.2.1 Width of a Totally Acyclic Complex

Now that we have discussed motivation for the following definition– both in the

way of boundedness problems and introducing a measure which will remain invariant

under translations– we now present what we shall call the diameter of an R-complex.

Definition 6.2. Let R be a local, Gorenstein ring and C a totally acyclic complex

with minimal subcomplex C. Furthermore assume CI-dimR Im ∂C
0 <∞ and cxR C > 1.

Then the diameter of C is the distance between the critical and cocritical degrees of

C. That is,

diamR(C) = crdegRC− cocrdegRC.

Define diamR(C) = −∞ for any C with cxR C = 1 or if C ' 0. Moreover, note

that under the assumptions given, diamR(C) <∞ but, relaxing these assumptions,

diamR(C) =∞ if and only if crdegRC =∞ or cocrdegRC = −∞.

It should be clear that

diamR(C) ≤ inf{crdegµRC− cocrdegµRC : µ ∈ EndK(C)}

with equality whenever µ realizes both the critical and cocritical degrees. Furthermore,

if crdegµRC = crdegRC and cocrdegµRC = cocrdegRC, then note that whenever cxR C >

1 it must hold that −q < diamR(C) < ∞ by Proposition 2 in Chapter 4. That is,

for a non-periodic R-complex the maximal amount for which the critical degree can

be smaller than the cocritical degree is q − 1. However, if the critical and cocritical

degrees are realized by different endomorphisms, it is currently unknown whether

there exists a lower bound on diamR(C) for non-periodic, nonzero complexes. We

now list the following assertion that this measurement is well defined in Ktac(R).

Proposition 6.3. If C ' D, then diamR(C) = diamR(D).

Proof. It is already known that crdegRC = crdegRD and cocrdegRC = cocrdegRD.

Thus, the statement follows directly from these observations.
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Therefore, the diameter of an R-complex is stable under homotopy. We are

also easily able to see how this measurement changes under some of the operations

discussed in Chapter 5. As already mentioned, diamR(C) = diamR(ΣnC) for any

n ∈ Z. We may also consider the relationship between the diameter of C and C∗,

noting that

diamR(C∗) = crdegRC∗ − cocrdegRC∗

= −cocrdegRC− (q − crdegRC)

= diamR(C)− q

where q = deg(µ) with µ the endomorphism which realizes crdegRC. Now, supposing

R is a complete intersection ring, we may also say what diamR(C⊕D) is, given

diamR(C) and diamR(D). Note that

diamR(C⊕D) = crdegR(C⊕D)− cocrdegR(C⊕D)

= max{crdegRC, crdegRD} −min{cocrdegRC, cocrdegRD}

= max{diamR(C), diamR(D), diamR(C) + (tC − tD), diamR(D) + (tD − tC)}

where tC = cocrdegRC and tD = cocrdegRD. Moreover, when we consider taking

summands, we see that the following inequalities must hold
diamR(C) ≤ diamR(C⊕D)

diamR(D) ≤ diamR(C⊕D)

aligning with what was observed in the previous equation. Lastly, we may also

consider bounds for the diameter on the manipulations of complexes discussed in

the second part of Chapter 5. Note first that for the functors −⊗ B and B ⊗−, if

C ∈ Ktac(R) then diamR(B ⊗ C) = diamR(C⊗ B) ≤ diamR(C) + ` with ` as defined

previously. Moreover, for the functors Hom(-,B) and Hom(B, -), if C ∈ Ktac(R) then
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diamR(Hom(B,C)) ≤ diamR(C) + ` and diamR(Hom(C,B)) ≤ diamR(C) + (` − q),

where q = deg(µ) for crdegRC = crdegµRC. Now that we have discussed some of the

boundedness results for the operations from Chapter 5, we continue by discussing the

notion of diameter with respect to R-mod.

6.2.2 Width of a Finitely-Generated Module

Definition 6.4. Let R be a local, Gorenstein ring and M a finitely-generated R-

module with CI-dimRM <∞ and minimal complete resolution C→ F→→M . Then

the diameter of M is the distance between the critical and cocritical degrees of C.

That is,

diamR(M) = crdegRC− cocrdegRC

and we define diamR(M) = −∞ for any R-module with cxRM = 1. Moreover, define

diamR(0) = 0 and note that diamR(M) <∞ under the specified conditions.

Of course, if we relax the condition that CI-dimRM < ∞, then note that

diamR(M) = ∞ if and only if crdegRC = ∞ or cocrdegRC = −∞. Note that we

specifically use the definition critical degree with respect to the complete resolution.

Therefore, diamR(M) coincides with diamR(C) and the only distinction is whether

our focus is on the complex or the module itself.

6.3 The Natural Middle of a Complete Resolution

Let M be a finitely-generated R-module with CI-dimRM < ∞ and denote

its minimal complete resolution C → F →→ M . In general, we view the “middle”

of the R-complex C ∈ Ktac(R) (informally, complete resolution) to be M = Im ∂C
0 .

However, suppose N = Im ∂ΣnC
0 with minimal complete resolution ΣnC→ F≥n →→ N .

In essence, the doubly-infinite sequences represented by C and ΣnC are the same,
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as they are just translations of one another. Hence, it does not entirely make sense

that what is viewed as the “middle” of each sequence is different, dependent upon an

arbitrary labeling of homological degrees. It is for this reason, we present what we

shall call the canonical complex C? of an R-complex C, with a standardized indexing

of homological degrees.

First, we present a notion of the natural middle of a complete resolution. Given

the assumptions defined above, denote ω = diamR(C), s = crdegRC < ∞, and

t = cocrdegRC > −∞.

Definition 6.5. The natural middle of C ∈ Ktac(R) is defined to be Ωd?M = im∂C
d?

where

d? = s−
⌈ω

2

⌉
= t+

⌈ω
2

⌉
.

We may also refer to the natural middle sequence of C as the portion of C which

lies between the critical and cocritical degrees.1 Specifically, if s > t then the natural

middle sequence of C is

Cs
∂s−→ Cs−1

∂s−1−−→ Cs−2 → · · · → Cd?
∂d?−−→ Cd?−1 → · · · → Ct+2

∂t+2−−→ Ct+1
∂t+1−−→ Ct

or, equivalently

Cd?+dω2 e
∂d?+dω

2
e−1

−−−−−−−→ Cd?+dω2 e−1 → · · · → Cd?
∂d?−−→ Cd?−1 → · · · → C∂d?−dω

2
e+1

∂d?−dω
2
e+1

−−−−−−−→ Cd?−dω2 e.

If instead s < t, then the natural middle is

Ct
∂t−→ Ct−1

∂t−1−−→ Ct−2 → · · · → Cd?
∂d?−−→ Cd?−1 → · · · → Cs+2

∂s+2−−→ Cs+1
∂s+1−−→ Cs

or, equivalently

C
d?+d |ω|

2
e

∂
d?+d |ω|

2
e−1

−−−−−−−−−→ C
d?+d |ω|

2
e−1
→ · · · → Cd?

∂d?−−−→ Cd?−1 → · · · → C∂
d?−d |ω|

2
e+1

∂
d?−d |ω|

2
e+1

−−−−−−−−−→ C
d?−d |ω|

2
e
.

And of course if s = t, then the natural middle is just Cd? . It should be clear that in

the case where we relax our conditions and crdegRC =∞ or cocrdegRC = −∞, then

1We may informally refer to the natural middle of C as the sequence, as well as the degree d?.
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we say that the natural middle of C is infinite. Furthermore, if diamR(C) = −∞,

then we shall say that the natural middle of C is nonexistent.

Note that we can discuss the natural middle relative to an endomorphism, in

which case, it is easy to see that any µ-critical and µ-cocritical degree “bound” the

natural middle sequence as long as s ≥ t. In other words, any relative natural middle

contains the natural middle of an R-complex C, with respect to the first case listed

above. In the latter case, it is unknown whether or not any relative natural middle

will contain the natural middle sequence. We now consider a prior example to help

clarify these definitions.

Example 6.6. Let R =
k[x, y]

(x2, y2)
and Q =

k[[x, y]]

(x2)
. Recall that we may naively “lift”

the complex C ∈ Ktac(R) to the sequence of q-modules and Q-module homomorphisms,

C̃:

C̃ : · · · → Q4

[
y −x 0 0
0 y x 0
0 0 y x

]
−−−−−−−−→ Q3

[
0 −y x
y x 0

]
−−−−−−−→ Q2 [ x y ]−−−−→ Q

[ xy ]−−−→ Q

[
x
y

]
−−−→ Q2

[
0 y
−y x
x 0

]
−−−−−−→ Q3

 y 0 0
−x y 0
0 x y
0 0 x


−−−−−−−→ Q4 → · · ·

⇑ ⇑ ⇑

C : · · · → R4

[
y −x 0 0
0 y x 0
0 0 y x

]
−−−−−−−−→ R3

[
0 −y x
y x 0

]
−−−−−−−→ R2 [ x y ]−−−−→ R

[ xy ]−−−→ R

[
x
y

]
−−−→ R2

[
0 y
−y x
x 0

]
−−−−−−→ R3

 y 0 0
−x y 0
0 x y
0 0 x


−−−−−−−→ R4 → · · ·

Moreover, computation of the Eisenbud operator yields:

� ∂C̃2 ∂
C̃
3 =

[
0 −y x
y x 0

][ y −x 0 0
0 y x 0
0 0 y x

]
= y2[ 0 −1 0 0

1 0 0 0 ]

� ∂C̃1 ∂
C̃
2 = [ x y ]

[
0 −y x
y x 0

]
= y2[ 1 0 0 ]

� ∂C̃0 ∂
C̃
1 = [ xy ][ x y ] = y2[ 0 x ]

� δC̃−1δ
C̃
0 = [ xy ][ xy ] = y2[ 0

x ]

� ∂C̃−2∂
C̃
−1 =

[
0 y
−y x
x 0

]
[ xy ] = y2

[
1
0
0

]
� ∂C̃−3∂

C̃
−2 =

[ y 0 0
−x y 0
0 x y
0 0 x

][
0 y
−y x
x 0

]
= y2

[
0 1
−1 0
0 0
0 0

]
We will sacrifice rigor for demonstrative purposes. As it turns out, for this particular

example, ti is surjective for i ≥ 2 and injective for i ≤ −2, implying crdegRC ≤ 2
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and cocrdegRC ≥ −2. Hence, the the natural middle of C is contained within the

sequence

R2 [x y ]−−−→ R
[xy ]−−→ R

[xy ]
−−→ R2

Therefore, it should be clear that, as depicted in this example, if R is a complete

intersection ring, then the natural middle of a complete resolution contains the free

modules of lowest rank. The above example is, of course, very well behaved as it is

the complete resolution of the residue field k. Note that in some cases, it could be

possible that not all free modules contained within the natural middle are of rank

lower than those on the periphery; rather, we are guaranteed strict growth to the left

of the critical degree and to the right of the cocritical degree (whenever cxRM > 1).

Hence, there exists N1, N2 ∈ Z such that βRn > βRk for all n ≥ N1 and for all n ≤ N2,

where Ck is any module contained in the natural middle sequence. We are now ready

to define the canonical complex of C ∈ Ktac(R).

Definition 6.7. The canonical complex of an R-complex C, denoted C?, is defined

to be Σ−d
?
C. That is, it is the R-complex in Ktac(R) with R-modules

(C?)0 = Cd? ; (C?)n = Cn+d? for any n ∈ Z

and differentials

∂C
?

0 = ∂C
d? ; ∂C

?

n = ∂C
n+d? for any n ∈ Z.

Note that we may also view (C?)n = (Σ−d
?
C)n where d? > 0 correlates to

shifting C to the right and d? < 0 correlates to a leftward shift of C. And, with this

notation, we may write ∂C
?

n = ∂Σ−d
?

C
n as well.
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6.4 A Question Remains

It is still unclear what the diameter of an R-complex (or module) communicates

about the structure itself. To some degree, it seems reasonable that this measurement

captures some characteristic of the structure’s “size” or, for lack of a better word,

“complexity”. In that regard, the actual complexity of an R-module communicates a

measure of growth of the module’s Betti sequence. This notion of diameter, although

tied to complexity, seems to communicate a different characteristic related to growth

of {b̂Rn (M)}. Intrinsically, it seems as if modules with similar structures should not

have wildly different diameters. Should there not be some similarities, not only in

the type of growth the modules’ syzygy sequences maintain, but also with respect to

the amount of “time” it takes them to start growing?

Even if this new measure for R-modules, and complexes, provides no additional

insight to the structural similarities between such objects, perhaps the reader might

find some small comfort in knowing that they are now able to compute the cylindrical

volume of an R-module. All humor laid aside, we do leave the reader with the

following example and question.

Example 6.8. Let R be a complete intersection ring and denote M a finitely-

generated R-module with minimal complete resolution C → F →→ M . Further

suppose that cxRM 
 1 and denote diamR(M) = ωM = diamR(C). Then consider

the R-complex C⊕ ΣnC with associated (minimal) complete resolution C⊕ ΣnC→

F⊕ΣnF→→M ⊕ ΩnM for some fixed integer n ∈ Z. It should be clear that for any

such integer cxR(M ⊕ ΩnM) = cxRM ; however, ωM⊕ΩnM < ωM⊕Ωn+1M for all n ∈ Z.

The example above demonstrates that the diameter is not necessarily bounded

for all modules (or complexes) of a given complexity larger than one. Nevertheless,

the example itself seems rather unfair; hence, one might wonder what happens when
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we impose an additional condition upon C which would render the given example

inapplicable.

Open Problem. Let R be a complete intersection ring and denote M a finitely-

generated R-module with minimal complete resolution C → F →→ M where C is

indecomposable. Further suppose that cxRM 
 1 and denote diamR(M) = ωM =

diamR(C). Then does it hold that there exists some dc ∈ N such that ωM ≤ dc for all

finitely-generated R-modules M with cxRM = c?
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