
On the Efficacy of Knowledge Graph Completion Methods, Accuracy

Measures and Evaluation Protocols

by

Farahnaz Akrami

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

August 2021

Copyright © by Farahnaz Akrami 2021

All Rights Reserved

To my parents with love and deepest gratitude

ACKNOWLEDGEMENTS
There are numerous people whose support, ideas, and encouragement contributed to

this dissertation. Words cannot do justice to how grateful I am for all their generous support

and guidance.

I would like to express my sincere gratitude to my supervisor, Dr. Chengkai Li, for

providing a thriving research environment where this work could advance. His invaluable

advice and unwavering support have been instrumental in conducting this research. I have

great respect and admiration for his exceptional mentoring and training that helped me

grow as a researcher.

I am grateful to Dr. Wei Hu for his support throughout our collaboration. I would also

like to extend my sincere thanks to the members of my dissertation committee, Dr. Vassilis

Athitsos, Dr. Gautam Das, Dr. Leonidas Fegaras, for their time and critical feedback.

Thanks to everyone in the IDIR lab. You all made the lab a warm environment ideal

for working. I could not have wished for better colleagues. Special thanks to Fatma, the

most friendly, affectionate person who planned all the fun activities in the IDIR lab and

has always been available for help. Thank you, Dora, for being such a supportive friend.

Thanks to Damian for managing the lab’s servers and being constantly available for my

numerous questions and problems.

Xin and Chunhai were great office mates. They are my terrific friends, and I’m

thankful to them for making our office an excellent place to work.

I also want to thank Niloofar, the first friend I made when I came to Arlington. She

is a genuine friend with an uplifting spirit, always standing by me through tough times and

celebrating my achievements. I will always cherish our memories.

iv

Finally, I cannot express deeply enough my gratitude for my family. They have

always been the strong foundation I could rely on despite the great distance. I am forever

grateful for their unconditional love, support, patience, and encouragement. My mom has

always encouraged me to continue my study and valued the pursuit of higher education.

This achievement would be impossible without her sacrifices. My siblings are my best

friends, and I’m always thankful for their profound belief in me and for supporting me. I

would also like to thank my cousin for her unlimited kindness and helping me tremendously

when I first arrived in the USA.

July 29, 2021

v

ABSTRACT

On the Efficacy of Knowledge Graph Completion Methods, Accuracy Measures and

Evaluation Protocols

Farahnaz Akrami, Ph.D.

The University of Texas at Arlington, 2021

Supervising Professor: Dr. Chengkai Li

In the active research area of employing embedding models for knowledge graph

completion, particularly for the task of link prediction, most prior studies used some spe-

cific benchmark datasets to evaluate such models. Most triples in those datasets belong to

reverse and duplicate relations, which exhibit high data redundancy due to semantic du-

plication, correlation, or data incompleteness. This is a case of excessive data leakage—a

model is trained using features that otherwise would not be available when the model needs

to be applied for real prediction. There are also Cartesian product relations for which every

triple formed by the Cartesian product of applicable subjects and objects is a true fact. Link

prediction on the aforementioned relations is easy and can be achieved with even better ac-

curacy using straightforward rules instead of sophisticated embedding models. A more

fundamental defect of these models is that the link prediction scenario, given such data,

is non-existent in the real world. This dissertation thoroughly examines the impact of the

aforementioned problems on the performance of different embedding models and provides

a systematic evaluation of the true effectiveness of the models when the unrealistic triples

are removed. Our experiment results show that the reverse triples led to a substantial over-

vi

estimation of the accuracy of the embedding models. We argue that the popular benchmark

datasets are entirely misleading and should not be used anymore.

In this dissertation, we also demonstrate the inadequacy of existing evaluation met-

rics. The frequently used metrics are based on the closed-world assumption and thus have

flaws when a model correctly predicts a triple that does not exist in the benchmark dataset.

Models are penalized for generating such correct predictions, which contradicts with the

exact goal of link prediction—finding correct triples that do not already exist in the knowl-

edge graph. Another limitation of the current metrics is that they aggregate the predictions’

accuracy of all triples into a single value. This makes it impossible to discern the specific

strengths and weaknesses of the models for different predictions tasks. We present the

results per relation for various models and the results on relations with varying difficulty

levels (1-1 vs. 1-N vs. N-M), in order to provide more insights into embedding models and

show performance differences that global metrics would not reveal.

Link prediction task, the most generic evaluation protocol, verifies that models pri-

oritize correct answers over wrong ones for a question that is already known to have an

answer. This evaluation setup can be misleading as we cannot verify if a model ranks

false or nonsensical triples lower than correct triples. Hence, we report the results of an

alternative protocol called entity-pair ranking to rank all possible triples for a specific rela-

tion. Also, the current evaluation protocol is based on the assumption that the presence of

a particular property on an entity is already known. The evaluation focuses on whether a

model can derive the correct property values. In reality, though, it remains a challenge to

determine whether a property is valid for a given entity in the first place. Therefore, we pro-

pose the property prediction task as another evaluation protocol. The performances of the

models on these two tasks are unsatisfactory and differ considerably from link prediction

results. Another way of evaluation is to find the models’ performance on triple classifica-

tion. This task is the binary classification of triples regarding whether they are true or false

vii

facts. We compared the classification results using two sets of negative triples, one that

complies with type constraints of Freebase and one that violates them. The results show

that when negative triples are type consistent, classification performance degrades consid-

erably. The results of these different evaluation protocols suggest that better knowledge

graph embedding models or training strategies are needed.

viii

TABLE OF CONTENTS
ACKNOWLEDGEMENTS . iv

ABSTRACT . vi

LIST OF ILLUSTRATIONS . xi

LIST OF TABLES . xii

Chapter Page

1. Introduction . 1

2. Background: Knowledge Graph Completion . 11

2.1 Latent Feature Models . 11

2.1.1 Scoring Function . 12

2.1.2 Loss Function . 16

2.2 Observed Feature Models . 18

2.3 Existing Evaluation Framework . 20

2.3.1 Evaluation Datasets . 20

2.3.2 Evaluation Methods and Measures 20

3. Inadequacy of Benchmarks . 23

3.1 Identifying the Most Probable Freebase Snapshot Used for Producing FB15k 23

3.1.1 Mediator Nodes . 24

3.2 Data Redundancy . 25

3.2.1 Data Leakage Due to Reverse Triples 25

3.2.2 Other Redundant Triples . 27

3.3 Cartesian Product Relations . 31

3.4 Experiments . 36

ix

3.4.1 FB15k-237, WN18RR, YAGO3-10-DR 36

3.4.2 Experiment Setup . 37

3.4.3 Results . 38

4. Inadequacy of Evaluation Metrics . 52

4.1 Colsed-World Assumption . 52

4.2 Global Metrics . 54

4.3 Type Filtering . 56

5. Problems of the Generic Evaluation Protocol (Link Prediction) 60

5.1 Entity-Pair Ranking . 60

5.2 Property Prediction . 63

5.3 Triple Classification . 66

6. Conclusions . 72

REFERENCES . 74

x

LIST OF ILLUSTRATIONS
Figure Page

1.1 Performance of embedding models on FB15k vs. FB15k-237 and WN18

vs. WN18RR using FMRR↑ . 3

3.1 Mediator (CVT) nodes in Freebase . 25

3.2 Duplicate relations . 28

3.3 Redundancy in the test set of FB15k . 30

3.4 Percentage of triples on which each method outperforms others, for each

relation . 44

3.5 Models with best FMRR↑ on FB15k-237 . 46

3.6 Models with best FMRR↑ on WN18RR . 47

3.7 Models with best FMRR↑ on YAGO3-10 . 50

4.1 Density plot of left FMRR↑ per relation vs. the average of left FMRR↑ for all test

triples on FB15k-237 . 55

4.2 Density plot of right FMRR↑ per relation vs. the average of right FMRR↑ for all

test triples on FB15k-237 . 56

4.3 Box Plot of FMRR↑ per relation on FB15k-237 with multiple models 57

4.4 Frequency of relations in FB15k-237 . 58

5.1 APr@100
↑ of each relation of WN18-RR . 66

xi

LIST OF TABLES
Table Page

2.1 Scoring functions of embedding models . 12

2.2 Statistics of evaluation datasets . 21

3.1 The strong FMRR↑results on a few Cartesian product relations in FB15k-237 . 31

3.2 Link prediction using Cartesian product property 32

3.3 Cartesian product relations used in Table 3.2 33

3.4 Link prediction results on FB15k and FB15k-237 39

3.5 Link prediction results on WN18 and WN18RR 40

3.6 Percentages of test triples, among those on which various models outper-

formed TransE, that have reverse and duplicate triples in training set 42

3.7 Number of relations on which each model is the most accurate 43

3.8 FHits@10↑ by category of relations on FB15k-237 48

3.9 FHits@10↑ by category of relations on WN18RR 49

3.10 FHits@10↑ by category of relations on YAGO31-0 49

3.11 Link prediction results on YAGO3-10 . 51

3.12 FHits@1↑ results . 51

4.1 Results after using FB15k-237 vs. Freebase to filter out the correct predic-

tions from the ranked list . 54

4.2 Micro averaging vs. macro averaging . 57

4.3 Type filtering results . 59

5.1 Pair-ranking results on FB15K-237. Results in blue color are taken from [1]. 61

5.2 Pair-ranking results on WN18RR. Results in blue color are taken from [1]. . 62

xii

5.3 RESCAL best results . 64

5.4 TransE best results . 64

5.5 ComplEx best results . 65

5.6 ConvE best results . 66

5.7 RotatE best results . 67

5.8 Entity-pair ranking results for each relation of WN18-RR using APr@100
↑ . . 68

5.9 Relations used in Table 5.8 . 68

5.10 Property prediction results on FB15K-237 69

5.11 Property prediction results on WN18RR . 69

5.12 Triple classification results . 70

xiii

CHAPTER 1

Introduction
Large-scale knowledge graphs such as Freebase [2], DBpedia [3], NELL [4], Wiki-

data [5], and YAGO [6] store real-world facts as triples in the form of (head entity (subject),

relation, tail entity (object)), denoted (h, r, t), e.g., (Ludvig van Beethoven, profession, Com-

poser). In a knowledge graph, nodes represent entities such as places and people, and edges

represent the relation between entities. They are an important resource for many AI appli-

cations, such as question answering [7, 8, 9], search [10], recommender systems [11] and

smart healthcare [12], to name just a few. Despite their large sizes, knowledge graphs are

far from complete in most cases, which hampers their usefulness in these applications.

To address this important challenge, various methods have been proposed to auto-

matically complete knowledge graphs. Existing methods in this active area of research

can be categorized into two groups [13]. One group is based on latent feature models,

also known as embedding models, including TransE [14], RESCAL [15], and many other

methods [16, 17]. The other group is based on observed feature models that exploit ob-

servable properties of a knowledge graph. Examples of such methods include rule mining

systems [18] and path ranking algorithms [19].

Particularly, the latent feature models are extensively studied. They embed each

entity h (or t) into a multi-dimensional vector h (or t). A relation r can have different

representations. For example, in RESACL [15], each relation is a weight matrix whose

entries specify the interaction of latent features. In TransE [14], a relation is a vector r that

1

represents a geometric transformation between the head and tail entities in the embedding

space and embeddings are learned in such a way that, if (h, r, t) holds, then h+ r≈ t.

Embedding models have been extensively evaluated on link prediction, a task that

predicts the missing h in triple (?, r, t) or missing t in (h, r, ?). Two benchmark datasets

FB15k (a subset of Freebase) and WN18 (extracted from WordNet [20]), created by Bordes

et al. [14], are almost always used in such evaluation. Toutanova and Chen [21] noted

that FB15k contains many reverse triples, i.e., it includes many pairs of (h, r, t) and (t,

r−1, h) where r and r−1 are reverse relations. They constructed another dataset, FB15k-

237, by only keeping one relation out of any pair of reverse relations. Similarly, Dettmers

et al. [22] created WN18RR out of WN18 by removing reverse triples. The community

has started to use FB15k-237 and WN18RR in evaluating models and noted significant

performance degeneration of existing models in comparison with their performance on

FB15k and WN18 [22, 21, 23, 24].

Overestimated accuracy of embedding models due to reverse relations

This dissertation thoroughly examines the impact of reverse triples in FB15k and

WN18 (details in Section 3.2.1). The idiosyncrasies of the link prediction task on such

data can be summarized as follows. A1) Link prediction becomes much easier on a triple

if its reverse triple is available. A2) For reverse triples, a straightforward method could

be even more effective than complex machine learning models. We discovered that 70% of

the triples in the training set of FB15k form reverse pairs. Similarly, for 70% of the triples

in its test set, reverse triples exist in the training set. For WN18, these two percentages are

even higher—92.5% and 93%. The abundant reverse triples suggest that embedding models

would have been biased toward learning whether two relations r1 and r2 form a reverse pair.

Instead of complex models, one may achieve this goal by using statistics of the triples to

derive simple rules of the form (h, r1, t) ⇒ (t, r2, h). In fact, we generated such a simple

model which attained 71.6% for FB15k and 96.4% for WN18 using FHits@1↑, a common

2

ComplEx

ConvE

DistMult

RotatE

TransE

TuckER

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

FB15k
FB15k-237

ComplEx

ConvE

DistMult

RotatE

TransE

TuckER

0.2

0.4

0.6

0.8

WN18
WN18RR

Figure 1.1: Performance of embedding models on FB15k vs. FB15k-237 and WN18
vs. WN18RR using FMRR↑

accuracy measure for embedding models (more information on accuracy measures can be

found in Section 2.3.2). 1 These results are on par with those by the best performing

embedding models—73.8% and 94.6% on FB15K and WN18, respectively, as can be seen

from Table 3.12 in Section 3.4.

The above analysis suggests that the reverse triples led to a substantial over-estimation

of the embedding models’ accuracy, which is verified by our experiments on a wide range

of models. While Section 3.4 examines the results in detail, Figure 1.1 illustrates the per-

formance comparison of a few representative models using another popular measure FMRR↑.

The results show that R1) the performance of all existing embedding models degenerates

significantly after reverse triples are removed. R2) Many successors of the original TransE

1An upward/downward arrow beside a measure indicates that methods with greater/smaller values by that

measure possess higher accuracy.

3

model were empirically shown to outperform TransE by far on FB15k, but they only at-

tained similar or even worse performance on FB15k-237. For example, the FHits@10↑

of ComplEX vs. TransE is 42.3% vs. 47.5% on FB15k-237, in stark contrast to 83.2%

vs. 62.4% on FB15k. R3) The absolute accuracy of all models is poor, rendering them

ineffective for real-world link prediction task. For example, TuckER [25] attains the best

FMRR↑ on FB15k-237 (0.355). However, its performance on FB15k (0.79) was considerably

stronger. Similarly, RotatE [26] has 0.95 FMRR↑ on WN18 but only 0.476 on WN18RR.

The existence of excessive reverse triples in FB15k and WN18—the de facto bench-

mark datasets for link prediction—actually presents a more fundamental defect in many of

these models: A3) the link prediction scenario, given such data, is non-existent in the real-

world at all. With regard to FB15k, the redundant reverse relations, coming from Freebase,

were just artificially created. When a new fact was added into Freebase, it would be added

as a pair of reverse triples, denoted explicitly by a special relation reverse property [27, 28].

In WN18, 17 out of the 18 relations are reverse relations. Some are reverse of each other,

e.g., hypernym and hyponym—flower is a hypernym of sunflower and sunflower is a hyponym

of flower. Others are self-reciprocal, i.e., symmetric relations such as verb group—(begin,

verb group, start) and (start, verb group, begin) are both valid triples. For such intrinsically

reverse relations that always come in pair when the triples are curated into the datasets,

there is not a scenario in which one needs to predict a triple while its reverse is already

in the knowledge graph. Training a knowledge graph completion model using FB15k and

WN18 is thus a form of overfitting in that the learned model is optimized for the reverse

triples which cannot be generalized to realistic settings. More precisely, this is a case of

excessive data leakage—the model is trained using features that otherwise would not be

available when the model needs to be applied for real prediction. There could be more

natural reverse triples that are worth prediction—two relations are not semantically reverse

4

but correlate and/or the reverse triples are not available together in the knowledge graph

due to how the data are collected. We discuss such cases of data redundancy below.

Overestimated accuracy of embedding model due to other data redundancy and Carte-

sian product relations

The data leakage due to reverse triples is a form of data redundancy that unrealisti-

cally inflates the models’ accuracy. We identified other types of data redundancy in FB15k

and another evaluation dataset YAGO3-10 (Section 3.2.2). Specifically, some relations are

duplicate as their subject-object pairs substantially overlap, and some are reverse duplicate

when one relation’s subject-object pairs overlap a lot with another relation’s object-subject

pairs.

We also discovered another type of relations, which we call Cartesian product rela-

tions (Section 3.3), that unrealistically inflate a model’s accuracy. Given such a relation,

there are a set of subjects and a set of objects, and the relation is valid from every subject

in the first set to every object in the second set. In a May 2013 snapshot of Freebase, close

to 10% of the relations are Cartesian product relations. In FB15k, 142 out of the 1345 rela-

tions are such relations. One example is position, since every team in a certain professional

sports league has the same set of positions. The link prediction problem for such relations

thus becomes predicting, say, whether an NFL team has the quarterback position, which is

not very meaningful in the real-world. Moreover, when a substantial subset of the afore-

mentioned subject-object Cartesian product is available in the training set, it is relatively

easy for a model to attain a strong prediction accuracy.

The aforementioned analyses A1-A3 on reverse relations are also applicable on du-

plicate and Cartersian product relations, and similarly the observations R1-R3 can be made

from our experiment results. A1) In evaluating prediction models, it is misleading to mix

such straightforward relations with more realistic, challenging relations. In the test set of

FB15k, the numbers of reverse relations, duplicate and reverse duplicate relations, Carte-

5

sian product relations, and the remaining relations are 798, 118, 78, and 106, respectively.

The FMRR↑ of ConvE on such relations is 0.72, 0.948, 0.881, and 0.444, respectively. An-

other example is YAGO3-10 which has two largely duplicate relations isAffiliatedTo and

playsFor that account for more than 63% of its test set. The FMRR↑ of RotatE [26] is 0.612

on these 2 relations but only 0.304 on other relations. A2) Instead of learning complex

embedding models, a simpler approach can be more effective. For duplicate and reverse

duplicate relations, a simple rule based on data statistics can already be quite accurate, as

similarly in the aforementioned case of reverse relations. For Cartesian product relations,

by observing that a large percentage of possible subject-object pairs in a relation exist in

the dataset, one can derive the relation is a Cartesian product relation and thus the same

relation should exist in all such pairs. Our experiments on 9 Cartesian product relations in

FB15k obtained an average FHits@10↑ of 98.3% using this method, which is higher than

the 96.3% FHits@10↑ of TransE on these relations. A3) The existence of Cartesian product

relations in FB15k is quite artificial. In fact, 60% of them are due to special “mediator

nodes” in Freebase that represent multiary relationships [27] (details in Section 3.1.1) and

simplification in FB15k for removing such nodes through concatenating edges. Similarly,

a vast majority of the duplicate and reverse duplicate relations in FB15k were artificially

created. The dataset has 84 pairs of duplicate relations. In 80 out of the 84 pairs, one or

both relations are concatenated. The numbers are 63 out of 67 pairs for reverse duplicate

relations. Just like reverse triples, they render a link prediction scenario largely nonexistent

in the real-world and lead to unrealistically strong prediction accuracy.

Call for reinvestigation of knowledge graph completion methods and evaluation datasets

The much weaker performance of embedding models on FB15k-237 and WN18RR

also drove us to examine observed feature models, specifically using rules discovered by the

rule mining system AMIE [18]. Our experiment results show that it also degenerates signif-

6

icantly on the more realistic FB15k-237 and WN18RR. Its FMRR↑ on FB15k vs. FB15k-237

is 0.797 vs. 0.308 and is 0.94 vs. 0.357 on WN18 vs. WN18RR.

The embedding models generate a ranked list of candidate predictions which can be

as long as the number of entities in a knowledge graph. For this ranked list to effectively

assist human curators in completing the knowledge graph, the correct predictions should be

ranked high. From this perspective, this dissertation depicts a realistic picture of existing

methods being much less accurate than one may perceive. As mentioned in R3, their abso-

lute accuracy is poor, which renders link prediction a task without truly effective automated

solution. Hence, we call for re-investigation of possible effective approaches to completing

knowledge graphs.

This dissertation presents a systematic study with the main objective of assessing the

true effectiveness of link prediction methods in real-world settings. Other studies continue

to evaluate models using both FB15k and FB15k-237 (similarly WN18 and WN18RR),

merely viewing the latter as a more challenging dataset. However, based on our analyses

A1-A3 and experiment results R1-R3, we argue that FB15k and WN18 are completely

misleading and should not be used anymore. Similarly, our results show that YAGO3-10,

which has been recently used in some studies [22], also suffers from the same defect since

the majority of its triples are duplicates.

Inadequacy of existing metrics for evaluating link prediction models

The goal of link prediction is to rank high new correct triples that are missing from an

existing knowledge graph. But evaluation metrics that are commonly found in prior stud-

ies penalize models for exactly that—a model’s evaluation score is lowered if it produces

rather correct predictions that are not found in the labeled dataset, i.e., the knowledge graph

itself. The embedding models generate ranked lists of candidate predictions, of which the

accuracy is measured using ranking-based information retrieval metrics such as Mean Rank

(MR) and Mean Reciprocal Rank (MRR) (details in Section 2.3.2). The knowledge graph

7

is divided into a training set and a test set. The evaluation focuses on whether a model can

correctly predict the triples in the test set by generalizing from the training set. This evalua-

tion approach assumes a closed world—any prediction that is not already in the knowledge

graph is considered wrong. On the contrary, the open-world assumption states that failure

to derive a fact would not imply its opposite [29]. This assumption is more suitable for

modeling incomplete knowledge such as the benchmark datasets FB15k and FB15k-237.

This is verified by our experiments on FB15k-237, a link prediction is identified as correct

if it exists in a May 2013 snapshot of Freebase even if it is missing from the FB15k-237

test set. This way of evaluation led to improved model accuracy measures, proving that the

closed-world assumption underestimates model performance.

Another problem with the commonly used evaluation metrics is that they aggregate a

model’s prediction performance on all relations and all triples into a single accuracy value.

This aggregation makes it impossible to discern the model’s strengths and weaknesses on

different types of prediction tasks separately. In section 3.4.3, we present some detailed

results of models. These results provide more insights into models. For example, we can

see that models have high performance on symmetric relations of WN18RR or that on 1-1

relations of FB15k-237, RotatE has the highest performance while ConvE has the lowest

performance. We also show that FB15k-237 is highly skewed with a few relations of high

frequency and a large number of relations with low frequency. Hence, we suggest using

the macro average of FMRR↑ per relation to treat all the relations equally.

Inadequacy of existing tasks and protocols for evaluating link prediction models

Link prediction, the most generic evaluation protocol used to gauge the performance

of knowledge graph embedding models, verifies that models prioritize correct answers over

wrong ones for a question that is already known to have an answer. Wang et al. [1] dis-

cussed that this evaluation setup could be misleading because it does not verify whether all

false and nonsensical triples are ranked lower than correct triples. They proposed an alter-

8

native protocol called entity-pair ranking to rank all possible triples for a specific relation.

We reported the performance of the models based on this protocol, and our results verify

that some nonsensical triples are ranked higher than correct ones. For example, on relation

continents/countries within which shows the relation between a continent and its countries,

we observe that false (subject, object) entity pairs such as (2000 Summer Olympics ,The

London 2012 Summer Olympics) and (Lycoming County, Williamsport) are ranked higher than

a correct pair such as (Europe, Spain). Further, the current evaluation protocol assumes that

the presence of a particular property on an entity is already known and thus the evaluation

focuses on whether a model can derive the correct property values. In reality, though, it

remains a challenge to determine whether a property is valid for a given entity in the first

place. Therefore, we propose the property prediction task as another evaluation protocol.

The performance of the models on this task is unsatisfactory, and the highest FMRR↑ is 0.182.

Another evaluation protocol is to find the performance of the models on the triple classifica-

tion task, determining if a triple is true or false. To conduct this task, some negative triples

should be included into test and validation sets. Previous studies usually generated nega-

tive triples by randomly replacing a triple’s head or tail entity with another entity. Triple

classification on these randomly created negative samples is trivial, and the models have

strong performance [30, 31]. We created negative samples by replacing head/tail entities

with other type-consistent entities to have more challenging negative triples. We compared

the classification results of these samples with another set of type-violating samples. Given

a test triple (h, r, t), a type-consistent negative sample could be created by replacing h/t

with another entity h’/t’ that has the same type as h/t. To create a type-violating negative

example, type of h’/t’ should be different from h/t. As an example, consider the test triple

is (Carl Foreman, place of birth, Chicago) then the type-consistent sample will be (Carl Fore-

man, place of birth, Los Angeles) and the type-violating one will be (Carl Foreman, place of

birth, 55th Primetime Emmy Awards). The results show that, when negative triples are type

9

consistent, classification performance degrades considerably. All these different evaluation

protocols together provide more robust assessment of models’ true efficacy in reality. The

evaluation results using these protocols suggest that better knowledge graph completion

methods and training strategies are needed.

The structure of this dissertation is as follows:

• Chapter 2 provides a survey of some important embedding models as well as the

observed feature model AMIE. We also present a detailed explanation of evaluation

datasets and measures used to find the performance of the models.

• Chapter 3 provides a thorough investigation of the data redundancy problem in how

existing embedding models for knowledge graph completion were trained, due to

reverse and duplicate triples in the de facto benchmark datasets FB15k and WN18.

We also explain the existence of Cartesian product relations in FB15k. The results

of a comprehensive evaluation of these defects’ impacts on the performance of many

representative embedding models are presented in this chapter. The results of link

prediction using the observed feature model AMIE are also provided in Chapter 3.

• Chapter 4 discusses the inadequacy of evaluation metrics. We provide the experi-

ments’ results to demonstrate how the identified issues impact the models’ perfor-

mance.

• In Chapter 5, we discuss the inadequacy of the commonly used evaluation protocol,

the link prediction task, in gauging models’ performance. We discuss other possi-

ble evaluation protocols, including entity-pair ranking, property prediction and triple

classification, and present the results using these protocols.

• We conclude this dissertation in Chapter 6.

10

CHAPTER 2

Background: Knowledge Graph Completion
This chapter briefly summarizes representative knowledge graph completion meth-

ods. Existing methods can be categorized into two groups [13], including latent feature

models, also known as embedding models, and observed feature models that exploit ob-

servable properties of a knowledge graph. In our description, vectors are represented as

bold lower case letters such as x. [x]i represents the ith element of x. A matrix is denoted

by a bold upper case letter, e.g., M. A knowledge graph G = {(h, r, t)∈ E×R×E} consists

of a set of entities E and a set of relations R. Triples are represented as (h, r, t) where h,

t ∈ E are the head and tail entities, and relationship r ∈ R exists from the head to the tail.

〈x,y,z〉= ∑i[x]i · [y]i · [z]i is the component-wise multi-linear dot product.

2.1 Latent Feature Models

In this section, we introduce a family of state-of-the-art embedding-based models

that were used in our experiments. Embedding-based methods employ two crucial compo-

nents: (1) a scoring function to measure the plausibility of triples (h, r, t), and (2) a process

to learn the representations (i.e., embeddings) of entities and relations by solving an opti-

mization problem of maximizing the scores of correct triples while minimizing the scores

of incorrect ones.

11

Table 2.1: Scoring functions of embedding models

Model Scoring function fr(h, t)

TransE [14] −‖h+ r− t‖2
`1/`2

TransH [31] −‖(h−v>r hvr)+dr− (t−v>r tvr)‖

TransR [32] −‖Mrh+ r−Mrt‖2
`2

TransD [33] −‖(rph>p + I)h+ r+(rpt>p + I)t‖

RotatE [26] −‖h◦ r− t‖2

RESCAL [15] h>Wrt

DistMult [34] 〈h,wr, t〉

ComplEx [35] Re(〈h,wr, t〉)

TuckER [25] W×1 h×2 r×3 t

ConvE [22] g(vec(g([Mh;Mr]∗ω))W)t

2.1.1 Scoring Function

A scoring function f : E ×R×E → R assigns a real value score to the triple (h, r,

t) given the relation and entity embeddings. Table 2.1 summarizes the scoring functions of

the embedding models discussed in this section.

TransE: In TransE [14], the scoring function is as follows.

fr(h, t) =−‖h+ r− t‖2
`1/`2

(2.1)

where `1, `2 represent L1 and L2 norms, respectively, and h, t,r∈Rd . In TransE, a relation

is a vector r that represents a geometric transformation between the head and tail entities

in the embedding space and embeddings are learned in such a way that, if (h, r, t) holds,

12

then h+ r≈ t. TransE is a scalable method with a small number of model parameters, but

it has limitations in modeling 1-to-n, n-to-1, and m-to-n relations [31].

TransH: TransH [31] is similar to TransE but it aims to address TransE’s limitations by

not using the same embedding for an entity in different relations. Consider the following

example. In principle the films produced by Universal Studios should be represented as

similar vectors when we focus on a relation about film production. When the relation in

focus becomes film genre instead, the vectors for films in different genres should be far

from each other. Albeit intuitive, such is not possible in TransE. TransH models each

relation as a vector dr on a relation-specific hyperplane vr (i.e., the normal vector where

‖vr‖= 1), and the entity embeddings h and t are projected to this hyperplane to obtain:

h⊥ = h−v>r hvr (2.2)

t⊥ = t−v>r tvr (2.3)

In this way, the embeddings of entities are learned differently for each relation. Then, the

projected embeddings are used to calculate the score of the triple:

fr(h, t) =−‖h⊥+dr− t⊥‖ (2.4)

TransR: Lin et al. [32] proposed TransR which learns the embeddings in two different

vector spaces Rd and Rk for entities and relations, where the dimensions k and d are not

necessarily identical. They argued that using the same semantic space for entities and

relations, as in TransE and TransH, is insufficient because they are two completely different

types of objects. Instead, TransR defines a projection matrix Mr ∈ Rk×d to map entity

embeddings to the vector space for each relation.

h⊥ = Mrh (2.5)

t⊥ = Mrtvr (2.6)
13

By this approach, similar entities near each other in the entity space may become far apart

after being mapped to the relation space because they are different regarding particular

aspects pertinent to the relation. The scoring function of TransR is defined as

fr(h, t) =−‖h⊥+ r− t⊥‖2
`2

(2.7)

TransD: In TransD [33], which improves over TransR, the entities and the relation in a

triple (h, r, t) are represented by two groups of vectors: one being h, r and t, and the other

being hp, rp and tp. The latter group defines the projection matrices as follows.

Mrh = rph>p + I (2.8)

Mrt = rpt>p + I (2.9)

As in TransR, these projection matrices are used to map entity vectors h and t to the relation

vector space. However, in contrast to TransR, there is a unique projection matrix for each

entity-relation pair. The argument given by [33] is that different types of entities connected

to a relation should have different mapping matrices and one projection matrix per relation,

as in TransR, is insufficient. Furthermore, computationally expensive matrix-vector mul-

tiplication in TransR poses a challenge in scaling it up. TransD tackles this challenge by

using vector operations instead.

RotatE: RotatE [26] defines each relation as a rotation from the source entity to the target

entity in the complex vector space. The scoring function is as follows,

fr(h, t) =−‖h◦ r− t‖2 (2.10)

where h,r,r ∈ Cd , |ri| = 1, and ◦ is the Hadamard (or element-wise) product. In this

way the approach aims to effectively model symmetric or antisymmetric, inversion, and

composition relation patterns [26].

Another group of embedding approaches formulate link prediction as a third-order

binary tensor completion problem in which a knowledge graph is represented as a partially
14

observed tensor Y ∈ {0,1}|E |×|E |×|R|. An entry in Y equals one if the corresponding triple

exists in G. Different models such as RESCAL [15], DistMult [34], ComplEx [35], and

TuckER [25] used various methods of tensor factorization to decompose Y and assign

scores to triples based on the learned factors.

RESCAL: RESCAL [15] is a collective matrix factorization model which represents a re-

lation as a matrix Wr ∈Rd×d that describes the interactions between latent representations

of entities. The score of a triple in this method is defined as:

fr(h, t) = h>Wrt =
d

∑
i=1

d

∑
j=1

w(r)
i j hit j (2.11)

DistMult: DistMult [34] is similar to RESCAL but it restricts relations to be diagonal

matrices wr ∈ Rd in order to reduce the number of relation parameters:

fr(h, t) = 〈h,wr, t〉 (2.12)

Due to this simplification, DistMult can only model symmetric relations.

ComplEx: ComplEx [35] is an extension of DistMult. It uses complex numbers instead

of real numbers to handle symmetric and anti-symmetric relations.

fr(h, t) = Re(〈h,wr, t〉)

= 〈Re(h),Re(wr),Re(t)〉

+ 〈Im(h),Re(wr), Im(t)〉

+ 〈Re(h),Re(wr), Im(t)〉

−〈Im(h), Im(wr), Im(t)〉

(2.13)

where h, t,wr ∈ Cd and Re(x), Im(x) denote the real and imaginary vector components of

vector x.

15

TuckER: TuckER [25] is a model based on the Tucker decomposition [36] of the binary

tensor of triples Y. Tucker decomposition factorizes a given tensor X ∈ RI×J×K into a set

of matrices and a smaller so-called core tensor:

X ≈ T ×1 A×2 B×3 C (2.14)

where T ∈RP×Q×R, A ∈RI×P, B ∈RJ×Q, and C ∈RK×R. ×n indicates the tensor product

and n shows along which mode the product is computed. T is the core tensor and elements

of it express to which extend different tensor elements interact. In TuckER, binary tensor

of triples is factorized with entity embedding matrix E = A = C ∈ R|E |×d and relation

embedding matrix R = B ∈ R|R|×k. The scoring function of this model is defined as:

fr(h, t) =W×1 h×2 r×3 t (2.15)

where h and t ∈Rd are rows of E and r ∈Rk is a row of R.W ∈Rd×k×d is the core tensor.

ConvE: ConvE [22] is a neural network model that uses 2D convolutional layers over

embeddings, and interactions between entities and relations are modeled by convolutional

and fully connected layers. For a triple (h, r, t), the vectors h, r ∈ Rd are reshaped into 2D

matrices Mh, Mr ∈Rdm×dn , where d = dm×dn. Mh and Mr are then concatenated and used

as the input of a 2D convolutional layer with filters ω . The score of the triple is calculated

as:

fr(h, t) = g(vec(g([Mh;Mr]∗ω))W)t (2.16)

where g is a generic activation function, and vec is the vectorization operation reshaping a

tensor into a vector.

2.1.2 Loss Function

To learn entity and relation representations, the embeddings are usually initialized

randomly. Then through the training process a loss function is minimized—embeddings
16

are optimized such that the scores of positive triples are maximized while the scores of

negative ones are minimized. Since a real-world knowledge graph contains only positive

triples, negative triples are generated by corrupting the positive triples in the training set—

a process that replaces the head or tail entity of each positive triple by other entities in the

knowledge graph [14, 31]. There are different ways to generate negative triples such as

uniform negative sampling and Bernoulli negative sampling [17].

In the following, some of the frequently used loss functions in embedding models are

briefly explained. Pointwise approaches capture the difference between triples’ scores and

their true labels, while in pairwise approaches the loss is defined as the difference between

positive and negative triples’ scores [37].

Pointwise square error loss: In this loss function, the objective is to minimize the

squared difference between triples’ scores and their true labels yhrt ∈ {−1,1} (+1/-1 for

positive/negative example):

L=
1
2 ∑

h,t∈E ,r∈R
(fr(h, t)− yhrt)

2 (2.17)

This loss function is used in RESCAL [15].

Pointwise logistic loss: In this loss function, a logistic function is used to maximize the

scores of positive triples while minimizing the scores of negative ones, as follows.

L= ∑
(h,r,t)∈S∪S′

log(1+ exp(−yhrt× fr(h, t))) (2.18)

where S is the set of positive triples (h, r, t) in the training set, and S′ is the set of negative

triples (h’, r, t’). Logistic loss is used to train ComplEx [35].

Pairtwise margin-based loss: TransE [14] and DistMult [34] models are learned by a

margin-based ranking objective.

L= ∑
(h,r,t)∈S

∑
(h’,r,t’)∈S′

max(0, fr(h, t)+ γ− fr(h’, t’)) (2.19)

where γ is the margin that separates positive triples from negative ones.
17

2.2 Observed Feature Models

In contrast to embedding models which employ latent features of knowledge graphs,

observed feature models directly exploit observable features. For example, one can derive

the ancestor-descendant relationship between two persons captured by the rule (a, father of,

b) ∧ (b, father of, c)⇒ (a, ancestor, c) which can be also represented as father of (a,b) ∧ father

of (b,c)⇒ ancestor(a,c). A representative of the observed feature models is the rule mining

system AMIE [18]. Compared with the embedding-based methods, rule-mining systems

have the advantage of being more interpretable.

AMIE mines Horn rules in the aforementioned form. Mining Horn clauses from data

has long been extensively studied in the field of inductive logic programming (ILP) [38].

However, methods proposed in this field are not applicable to knowledge graphs due to two

reasons. First, ILP systems are not efficient enough to cope with large knowledge graphs.

Second, in addition to positive examples, they also rely on negative examples which are

non-trivial to come by as general knowledge graphs explicitly record only known facts. Un-

der the open-world assumption, which is far more realistic than the closed-world assump-

tion [29] in the context of knowledge graphs, facts nonexistent or cannot be proven based

on available knowledge are not necessarily false and can be just interpreted as unknown. In

fact, the Web Ontology Language (OWL) follows the open-world assumption [39]. AMIE

tackles these challenges with an efficient rule mining algorithm and a method to generate

negative examples using partial completeness assumption.

In AMIE, a rule has a body (antecedent) and a head (consequent), represented as

B1∧B2∧ . . .∧Bn⇒H or in simplified form
−→
B ⇒H. The body consists of multiple atoms

B1, . . ., Bn and the head H itself is also an atom. In an atom r(h,t), which is another repre-

sentation of fact triple (h, r, t), the subject and/or the object are variables to be instantiated.

18

The prediction of the head can be carried out when all the body atoms can be instantiated

in the knowledge graph.

One popular measure of the quality of a mined rule is confidence, defined as follows

in which z1, . . ., zm are variables.

con f (
−→
B ⇒ r(h, t)) :=

support(
−→
B ⇒ r(h, t))

#(h, t) : ∃z1, . . . ,zm :
−→
B

(2.20)

The numerator in Equation (2.20) is the support of the rule, i.e., “the number of distinct

pairs of subjects and objects in the head of all instantiations” that appear in the knowledge

graph [18]. The denominator is the support of the body.

This definition is based on the closed-world assumption in which unknown facts

are considered false. As mentioned earlier, this assumption is far from realistic due to

the incompleteness of general real-world knowledge graphs. Hence, Galárraga et al. [18]

proposed PCA confidence which is based on the partial completeness assumption. Under

this assumption, if the knowledge graph contains an object t for a pair of relation r and

subject h, then all the objects for that relation-subject pair are already contained in the

knowledge graph. For instance, if two children c1 and c2 of a person p exist as father of (c1,

p) and father of (c2, p), any new fact father of (c, p) will be false. On the other hand, if no

child of p is known according to the knowledge graph, any fact father of (c, p) is considered

neither true nor false. The measure PCA confidence is thus defined as

con fpca(
−→
B ⇒ r(h, t)) :=

support(
−→
B ⇒ r(h, t))

#(h, t) : ∃z1, . . . ,zm, t’ :
−→
B ∧ r(h, t’)

(2.21)

In Equation (2.21), the denominator is the number of facts that are known to be true plus

the facts r(h,t’) that are considered false under the partial completeness assumption:

∀t ′ : r(h, t’) is false← r(h, t’) /∈ G ∧∃t s.t. r(h, t) ∈ G (2.22)

19

2.3 Existing Evaluation Framework

2.3.1 Evaluation Datasets

FB15k: Most embedding models have been evaluated on FB15k, a subset of Freebase

generated by Bordes et al. [14]. FB15k contains only those Freebase entities that were also

available in Wikipedia based on the wiki-links database 1 and have at least 100 appearances

in Freebase. The relations included into FB15k must also have at least 100 instances.

14,951 entities and 1,345 relations satisfy these criteria, which account for 592,213 triples

included into FB15k. These triples were randomly split into training, validation and test

sets. Table 2.2 shows the statistics of this and other datasets.

WN18: Many embedding models have also been evaluated using WN18 [14], a knowl-

edge graph extracted from the English lexical database WordNet [20] which defines conceptual-

semantic and lexical relations between word forms or between synsets—sets of synonyms.

An example triple is (presentation, derivationally related form, present).

YAGO3-10: Some embedding models were evaluated using YAGO3-10 [22], a subset of

YAGO3 [40]—the multilingual extension of YAGO [6] which is derived from Wikipedia

and WordNet. YAGO3-10 contains entities that are involved in at least 10 relations in

YAGO3.

2.3.2 Evaluation Methods and Measures

Embedding models have been evaluated using several highly-related knowledge graph

completion tasks such as triple classification [31, 30], link prediction [41], relation extrac-

tion [42, 32], and relation prediction [43]. The link prediction task as described in [14] is

particularly widely used for evaluating different embedding methods. Its goal is to predict

the missing h or t in a triple (h, r, t). For each test triple (h, r, t), the head entity h is replaced

with every other entity h’ ∈ E in the dataset, to form corrupted triples. The original test

1https://code.google.com/archive/p/wiki-links/

20

Table 2.2: Statistics of evaluation datasets

Dataset #entities #relations #train #valid #test

FB15k 14,951 1,345 483,142 50,000 59,071

FB15k-237 14,541 237 272,115 17,535 20,046

WN18 40,943 18 141,442 5,000 5,000

WN18RR 40,943 11 86,835 3,034 3,134

YAGO3-10 123,182 37 1,079,040 5,000 5,000

YAGO3-10-DR 122,837 36 732,556 3,390 3,359

triple and its corresponding corrupted triples are ranked by their scores according to the

score functions (Section 2.1) and the rank of the original test triple is denoted rankh. The

same procedure is used to calculate rankt for the tail entity t. A method with the ideal

ranking function should rank the test triple at top.

The accuracy of different embedding models is measured using Hits@1↑, Hits@10↑,

Mean Rank (MR↓), and Mean Reciprocal Rank (MRR↑), as in [14]. Hits@k↑ is the percentage

of top k results that are correct. MR↓ is the mean of the test triples’ ranks, defined as:

MR =
1

2 |T | ∑
(h,r,t)∈T

(rankh + rankt) (2.23)

in which |T | is the size of the test set. MRR↑ is the average inverse of harmonic mean of the

test triples’ ranks, defined as

MRR =
1

2 |T | ∑
(h,r,t)∈T

(
1

rankh
+

1
rankt

) (2.24)

Besides these raw metrics, we also used their corresponding filtered metrics [14],

denoted FHits@1↑, FHits@10↑, FMR↓, and FMRR↑, respectively. In calculating these measures,

corrupted triples that are already in training, test or validation sets do not participate in

ranking. In this way, a model is not penalized for ranking other correct triples higher
21

than a test triple. For example, consider the task of predicting tail entity. Suppose the

test triple is (Tim Burton, film, Edward Scissorhands) and the training, test, or validation set

also contains another triple (Tim Burton, film, Alice in Wonderland). If a model ranks Alice

in Wonderland higher than Edward Scissorhands, the filtered metrics will remove this film

from the ranked list so that the model would not be penalized for ranking (Tim Burton, film,

Edward Scissorhands) lower than (Tim Burton, film, Alice in Wonderland), both correct triples.

We note that, by definition, higher Hits@1↑ (FHits@1↑), Hits@10↑ (FHits@10↑) and

MRR↑ (FMRR↑), and lower MR↓ (FMR↓) indicate better accuracy.

22

CHAPTER 3

Inadequacy of Benchmarks
In this chapter we investigate the existence and impact of a few types of relations in

FB15k, WN18 and YAGO3-10, including reverse (and symmetric) relations, redundant re-

lations, and Cartesian product relations. The outcome suggests that triples in these relations

led to a substantial over-estimation of the accuracy of embedding models.

3.1 Identifying the Most Probable Freebase Snapshot Used for Pro-

ducing FB15k

In order to understand the various defects in FB15k and their root cause, we searched

for the same Freebase snapshot that was used to create FB15k. When it was active, Free-

base maintained periodic snapshots, more frequent than monthly. It is unclear from [14]

which snapshot was used to create FB15k.1 To derive the most probable timestamp of

the snapshot from which FB15k was produced, we compared the snapshots available at

https://commondatastorage.googleapis.com/freebase-public/ as of June 2019. Par-

ticularly, we considered the snapshots in the several months before [14] was published. We

analyzed to what degree these snapshots overlap with FB15k.

1We had email communication with the authors of [14]. They could not remember the exact date of the

Freebase snapshot used for producing FB15k.

23

The May 5, 2013 snapshot 2 has the largest overlap among these snapshots, as it

contains 99.54% of the triples in FB15k. We thus concluded that FB15k was most likely

drawn from a snapshot around May 5, 2013, which can be approximated by the snapshot

on that exact date.

3.1.1 Mediator Nodes

Mediator nodes, also called compound value type (CVT) nodes, are used in Freebase

to represent multiary relationships [27]. For example, Figure 3.1 shows several CVT nodes.

The rightmost CVT node is connected to an award, two nominee nodes and a work through

various relations. In the May 2013 Freebase snapshot, for many (but not all) CVT nodes,

additional concatenated edges were created. Specifically, for such a CVT node, multiple

triples were created, each a concatenation of two edges connected through the CVT node.

These binary relationships partly capture the multiary relationship represented by the CVT

node. For instance, the triples (Bafta Award For Best Film, award category/nominees, CVT)

and (CVT, award nomination/nominated for, A Room With A View) in Figure 3.1 would be

concatenated to form a triple between the award and the work nominated for the award.

The concatenation of two relations r1 and r2 is written as r1.r2. There are 54,541,700 con-

catenated triples in the May 2013 snapshot.

FB15k does not include any CVT nodes or edges adjacent to such nodes from Free-

base. However, it kept most concatenated edges (or maybe all, although we have no abso-

lute way to verify, since nowhere we can find all Freebase snapshots that have ever been

created). All the 707 concatenated relations in FB15k exist in the May 2013 snapshot.

Among the 592,213 triples in FB15k, 396,148 are concatenated and 394,947 of them could

be found in the snapshot.

2https://commondatastorage.googleapis.com/freebase-public/rdf/

freebase-rdf-2013-05-05-00-00.gz

24

Ismail
Merchant

A Room With A
View

CVT

award_nomination/
nominated_for

award_nominated_work/
award_nominations

Bafta
Award For
Best Film

James Ivory

aw
ard_nom

inee/
aw

ard_nom
inations

director/film

film/directed_by

CVT

aw
ard_w

inning_w
ork/

aw
ards_w

on

aw
ard_nom

ination/
aw

ard_nom
inee

National Board of
Review Award for

Best Film award_honor/
award_winner

award_winner/
awards_won

aw
ard_honor/

honored_for

award_honor/
award

award_category/
winners

English

Ruth Prawer
Jhabvala

aw
ard_nom

ination/
aw

ard

aw
ard_category/
nom

inees

film
/producer

film
/produced_by

award_nominee/

award_nominations

award_nomination/

award_nomineeDrama

film/language

film
/writte

n_bywriter/film

film/genrefilm_genre/
films_in_this_genre

CVT
person/

education

New York
University education/

institution

award_category/
winners

award_honor/
award_winner

award_honor/
award

educational_institution/
students_graduates

education/
student

award_winner/
awards_won

aw/ aw/
CVT

Figure 3.1: Mediator (CVT) nodes in Freebase

3.2 Data Redundancy

3.2.1 Data Leakage Due to Reverse Triples

(1) FB15k: In [21], Toutanova and Chen noted that the widely-used benchmark

dataset FB15k contains many reverse triples, i.e., it includes many pairs of (h, r, t) and (t,

r−1, h) where r−1 is the reverse of r. Freebase actually denotes reverse relations explicitly

using a special relation reverse property [27, 28].3 For instance, the triple (film/directed

3The relation’s full name is /type/property/reverse property. In Freebase, the full name of a relation

follows the template of /domain/entity type/relation. For instance, /tv/tv genre/programs represents a rela-

25

by, reverse property, director/film) in Freebase denotes that film/directed by and director/film

are reverse relations.4 Therefore, (A Room With A View, film/directed by, James Ivory) and

(James Ivory, director/film, A Room With A View) form a pair of reverse triples, as shown in

Figure 3.1. The reverse relation of a concatenated relation r1.r2 is the concatenation of the

corresponding reverse relations, i.e., r−1
2 .r−1

1 . For example, in Figure 3.1 award nominated

work/award nominations . award nomination/award (blue edges) and award category/nominees .

award nomination/nominated for (red edges) are two concatenated relations which are reverse

of each other.

Using the reverse relation information from the May 2013 snapshot of Freebase, out

of the 483,142 triples in the training set of FB15k, 338,340 triples form 169,170 reverse

pairs. Furthermore, for 41,529 out of the 59,071 triples (i.e., about 70.3%) in the test set

of FB15k, their reverse triples exist in the training set. These data characteristics suggest

that embedding models would have been biased toward learning reverse relations for link

prediction. More specifically, the task can largely become inferring whether two relations

r1 and r2 form a reverse pair. Given the abundant reverse triples in the dataset, this goal

could potentially be achieved without using a machine learning approach based on complex

embeddings of entities and relations. Instead, one may aim at deriving simple rules of the

form (h, r1, t)⇒ (t, r2, h) using statistics about the triples in the dataset. In fact, Dettmers

et al. [22] generated such a simple model which attained a 68.9% accuracy by the measure

FHits@1↑. We generated a similar model by finding the relations that have more then 80%

intersections. It attained an FHits@1↑ of 71.6%. This is even slightly better than the 70.3%

accuracy one may achieve using an oracle based on the reverse relations denoted in the

tion named programs belonging to domain tv. The subject of any instance triple of this relation belongs to

type tv genre. For simplicity of presentation, by default we omit the prefixes. In various places we retain the

entity type to avoid confusions due to identical relation names.
4Note that relations film/directed by and director/film are also special entities in (film/directed by,

reverse property, director/film).

26

May 2013 Freebase snapshot. The FHits@1↑ of the best performing embedding model on

FB15k is 73.8% (more details in Table 3.12 of Section 3.4).

(2) WN18: WN18 also suffers from data leakage, as 14 out of its 18 relations form 7

pairs of reverse relations, e.g., (europe, has part, republic of estonia) and (republic of estonia,

part of, europe) are two reverse triples in reverse relations has part and part of. There are

also 3 self-reciprocal (i.e., symmetric) relations: verb group, similar to, derivationally related

form. 4,658 out of the 5,000 test triples have their reverse triples available in the training

set. The training set itself contains 130,791 (about 92.5%) triples that are reverse of each

other. On WN18, we can achieve an FHits@1↑of 96.4% by the aforementioned simple rule-

based model (finding the relations that have more then 80% intersections) which is better

than the results obtained by the embedding models (Table 3.12 of Section 3.4).

In training a knowledge graph completion model using FB15k and WN18, we fall

into a form of overfitting in that the learned models are optimized for the reverse triples

which cannot be generalized to realistic settings. More precisely, this is a case of excessive

data leakage—the model is trained using features that otherwise would not be available

when the model needs to be applied for real prediction.

3.2.2 Other Redundant Triples

(1) FB15k: In addition to reverse relations, there are other types of semantically

redundant relations in FB15k. While it is infeasible to manually verify such semantic

redundancy, we used a simple method to automatically detect it. Given two relations r1 and

r2, we calculate how much their subject-object pairs overlap. Suppose |r| is the number of

instance triples in relation r and Tr denotes the set of subject-object pairs in r, i.e., Tr =

27

player position

football_player/
current_team

sports_team_roster/
position

team

football_roster_position/
player

sports_position/
players

football_position/players

year# goals

CVT

Figure 3.2: Duplicate relations

{(h, t) | r(h, t) ∈ G}. We say r1 and r2 are near-duplicate relations, simplified as duplicate

relations, if they satisfy the following condition:

|Tr1 ∩Tr2 |
|r1|

> θ1 and
|Tr1 ∩Tr2|
|r2|

> θ2 (3.1)

Moreover, T−1
r denotes the reverse entity pairs of Tr, i.e., T−1

r = {(t,h) | (h, t) ∈ Tr}. We

say r1 and r2 are reverse duplicate relations if they satisfy the following condition:

|Tr1 ∩T−1
r2
|

|r1|
> θ1 and

|Tr1 ∩T−1
r2
|

|r2|
> θ2 (3.2)

We have set θ1 and θ2 to 0.8 on FB15k.

For example football position/players (r1) and sports position/players.football roster posi-

tion/player (r2) are duplicate based on this definition, since
|Tr1∩Tr2 |
|r1| = 0.87 and

|Tr1∩Tr2 |
|r2| =

0.97. These two relations are displayed in Figure 3.2 using red and green edges, respec-

tively. The first relation records each football player’s position considering their overall

career. For the second relation, each instance triple is a concatenation of two edges con-

nected through a mediator node, representing a multiary relationship about the position

28

a player plays for a team as shown in Figure 3.2. Since most players play at the same

position throughout their careers, these two relations are redundant. Another example of

similar nature is that r1 and football player/current team . sports team roster/position (r3) are

reverse duplicate relations, because
|Tr1∩T−1

r3
|

|r1| = 0.88 and
|Tr1∩T−1

r3
|

|r3| = 0.97. In Figure 3.2

they are highlighted in red and blue, respectively.

For each test triple in FB15k, we use the methods explained to determine whether

it has 1) reverse triples, 2) duplicate or reverse duplicate triples in the training set, and

whether it has 3) reverse triples, 4) duplicate or reverse duplicate triples in the test set

itself. A triple may have redundant triples in any of these four categories. We use bitmap

encoding to represent different cases of redundancy. For example, 1100 is for a triple that

has both reverse triples and (reverse) duplicate triples in the training set. Hence, there

are 16 possible different combinatorial cases. Considering the test triples in FB15k, not

all 16 cases exist. Instead, 12 different cases exist. Figure 3.3 shows the percentages of

triples in different cases. The 7 cases smaller than 1% are combined in one slice. The

largest three slices are 1000 (triples with only reverse triples in the training set), 0000

(triples without any redundant triples), and 0010 (triples with only reverse triples in the

test set). In total, 41,529, 1,847 and 2,701 test triples have reverse, reverse duplicate and

duplicate triples in the training set, and 4,992, 249, and 328 test triples have these categories

of redundant triples in the test set itself. The data redundancy causes overestimation of

embedding models’ accuracy. For instance, the FMR↓, FHits@10↑, FHits@1↑, and FMRR↑ of

ConvE are 33.5, 88.8, 64.3, and 0.734 on such relations, whereas its performance using

these measures on relations without any redundancy is only 149, 61.2, 37.3, and 0.454,

respectively.

(2) YAGO3-10: With 1,079,040 training triples, this dataset is larger than FB15k and

WN18. However, among its 37 relations, the two most populated relations isAffiliatedTo (r1)

and playsFor (r2) account for 35% and 30% of the training triples, respectively. Although

29

1000
68%

0000
18%

0010
8%

0100
3%

1100
2%

Other cases
1%

Figure 3.3: Redundancy in the test set of FB15k

r1 semantically subsumes r2 in the real world, they appear as near-duplicate relations in

this particular dataset, as
|Tr1∩Tr2 |
|r1| = 0.75 and

|Tr1∩Tr2 |
|r2| = 0.87. In the training set, 557,696

triples find their duplicates in itself. 2,561 out of the 5,000 test triples have their duplicate

triples available in the training set. The various models achieved much stronger results

on r1 and r2 than other relations. For example, the FMR↓, FHits@10↑, FHits@1↑, and FMRR↑

of RotatE on these two relations are 225.84, 81.04, 50.43, and 0.612, in comparison with

4,540.65, 43.76, 23.38, and 0.304 on other relations. Furthermore, YAGO3-10 also has 3

semantically symmetric relations: hasNeighbor, isConnectedTo, and isMarriedTo. In its test

set, 118 triples belonging to these relations have their reverse triples available in the train-

ing set. The FHits@1↑of the simple rule-based model mentioned in Section 1 is 51.6% on

YAGO3-10, which outperforms embedding models, as can be seen in Table 3.11.

30

Table 3.1: The strong FMRR↑results on a few Cartesian product relations in FB15k-237

relation # of triples TransE DistMult ComplEx ConvE RotatE

/medals awarded./medal 16 1 1 1 1 1

nutrients./nutrient 105 0.83 0.73 0.72 0.82 0.79

climate./month 60 0.98 0.77 0.95 0.98 0.98

3.3 Cartesian Product Relations

We also discovered another issue with FB15k which makes existing performance

measures of embedding models unrealistic. This problem manifests in what we call Carte-

sian product relations. Given such a relation, the subject-object pairs from all instance

triples of the relation form a Cartesian product. In other words, there are a set of subjects

and a set of objects, and the relation exists from every subject in the first set to every object

in the second set. One example Cartesian product relation is climate, since (a, climate, b)

is a valid triple for every possible city a and month b. Another example is position, since

every team in a certain professional sports league has the same set of positions. The link

prediction problem for such relations thus becomes predicting whether a city has a climate

in, say, January, or whether an NFL team has the quarter-back position. Such a prediction

task is not very meaningful.

A few notes can be made about Cartesian product relations. (1) Similar to reverse re-

lations and other forms of data redundancy, the existence of these relations unrealistically

inflates a model’s link prediction accuracy. When a substantial subset of the aforemen-

tioned subject-object Cartesian product is available in the training set, it is relatively easy

for a model to attain strong accuracy. However, it is problematic to mix such straightfor-

ward test cases with more realistic, challenging cases. At least, the performance of a model

31

Table 3.2: Link prediction using Cartesian product property

TransE results

FB15k as ground truth

MR↓ H10↑ H1↑ MRR↑ FMR↓ FH10↑ FH1↑ FMRR↑

r1 19.97 43.33 3.33 0.14 1.39 99.17 83.33 0.9

r2 5 100 0 0.24 2.5 100 0 0.42

r3 6.5 100 0 0.22 2.5 100 0 0.42

r4 1784.25 25 0 0.09 1777 25 0 0.1

r5 12.74 58.82 11.76 0.31 1 100 100 1

r6 10.72 62.5 9.38 0.27 1.03 100 96.88 0.98

r7 7.75 50 25 0.35 2.75 100 25 0.51

r8 10.75 62.5 0 0.19 4.63 75 25 0.44

r9 15.59 53.13 18.75 0.34 1 100 100 1

Prediction using Cartesian product property

FB15k as ground truth Freebase as ground truth

MR↓ H10↑ H1↑ MRR↑ FMR↓ FH10↑ FH1↑ FMRR↑ FMR↓ FH10↑ FH1↑ FMRR↑

r1 16.52 52 6 0.18 1.46 100 70 0.83 1.40 100 71 0.84

r2 3.6 100 35 0.55 1.6 100 70 0.80 1.45 100 75 0.84

r3 3.6 100 40 0.57 1.45 100 70 0.82 1.4 100 70 0.83

r4 995.25 74 25 0.45 990.17 88 88 0.88 990.09 88 88 0.88

r5 364.03 60 17 0.35 352.03 94 94 0.94 352.03 94 94 0.94

r6 9.62 64 12 0.31 1 100 100 1 1 100 100 1

r7 1872.38 60 10 0.3 1865.72 75 25 0.43 1864.83 75 53 0.6

r8 6.63 74 14 0.37 2.69 100 60 0.7 2.09 100 64 0.74

r9 11.57 65 19 0.36 1 100 100 1 1 100 100 1

32

Table 3.3: Cartesian product relations used in Table 3.2

r1 travel destination/climate . travel destination monthly climate/month

r2 computer videogame/gameplay modes

r3 gameplay mode/games with this mode

r4 educational institution/sexes accepted . gender enrollment/sex

r5 olympic medal/medal winners . olympic medal honor/olympics

r6 x2010fifaworldcupsouthafrica/world cup squad/current world cup squad .

x2010fifaworldcupsouthafrica/current world cup squad/position

r7 dietary restriction/compatible ingredients

r8 ingredient/compatible with dietary restrictions

r9 olympic games/medals awarded . olympic medal honor/medal

should be separately evaluated on Cartesian product relations and non-Cartesian product

relations.

(2) Albeit not always meaningful, one may still perform link prediction on Carte-

sian product relations. However, a simpler approach can be more effective than learning

complex embedding models. For instance, by examining all instance triples of a rela-

tion r, a method can identify the sets of all subjects Sr = {h | ∃r(h, t) ∈ G} and objects

Or = {t | ∃r(h, t) ∈ G} in the instance triples. By observing a large percentage of possi-

ble subject-object pairs existing in the relation, the method can derive the relation might

be a Cartesian product relation. More specifically, if |r| / (|Sr| × |Or|) is greater than a

pre-determined threshold (0.8 in our study), we consider r a Cartesian product relation.

There are a total of 31,771 relations (375,387,927 instance triples) in the aforementioned

May 2013 Freebase snapshot, of which 3,568 relations have only one instance triple each.

Among the 28,203 remaining relations (375,384,359 instance triples), we detected 2,951

Cartesian product relations (2,605,338 instance triples) using this method. We also iden-

33

tified 142 Cartesian product relations in FB15k, with 13,038 triples. Although there are

not as many Cartesian product relations as reverse relations, we discovered that among

the relations on which embedding models attained the highest accuracy there are Cartesian

product relations. Table 3.1 shows such results on the relations using FMRR↑ on FB15k after

reverse triples are removed. 5 These are the Cartesian product relations among the top-12

relations ranked by FMRR↑ of ConvE on FB15k-237.

Once a relation r is detected as a Cartesian product relation, for link prediction, we

can predict triple (h, r, t) to be valid, given any h∈ Sr and t∈Or. We can further extend this

approach. If an entity type system exists (which is the case with Freebase), we can identify

the common type of all entities in Sr and Or, respectively, and then predict (h, r, t) valid for

all h and t belonging to the corresponding types.

(3) The existence of Cartesian product relations in FB15k is quite artificial. In fact,

many such relations are due to mediator nodes in Freebase and simplification in FB15k

for removing such nodes (see Section 3.1). The majority of relationships in Freebase are

multiary relationships connected through mediator nodes. For instance, a mediator node is

connected to Tokyo with an edge labeled climate and to January with an edge labeled month.

It is further connected to 34 with an edge labeled average min temp c, indicating that the

average low temperature in Tokyo is 34 degrees Fahrenheit in January. In fact, it is also

connected to other nodes for capturing the maximal temperature, rain fall, and so on. The

more realistic and useful prediction task is to predict the average temperature, rather than

whether a city has a temperature. Even though most real-world relationships are multi-

ary, the studies on link prediction have often simplified it as multiple binary relationships

5This dataset is called FB15k-237 and will be further discussed in Section 3.4. We want to inspect the

impact of Cartesian product relations after removing reverse relations, because the latter also causes over-

estimation of embedding models’ accuracy and they dominate Cartesian product relations in terms of number

of triples.

34

(which is lossful as the multiple binary relationships cannot be used to restore the identi-

cal original relationship). That is how FB15k entails the less meaningful prediction tasks.

In fact, out of the 2,951 Cartesian product relations mentioned in (2), 1,766 are concate-

nated relations. In the specific example above, the concatenated edge is between Tokyo and

January, connecting the original climate and month edges.

(4) The performance measures in Section 2.3.2 are based on the closed-world as-

sumption and thus have flaws when a model correctly predicts a triple that does not exist

in the ground-truth dataset. More specifically, if a corrupted triple of a given test triple

does not exist in the training, test, or validation set, it is considered incorrect. However,

the corrupted triple might be correct as well. If a model ranks the corrupted triple higher

than the test triple itself, its accuracy measures will be penalized, which contradicts with

the exact goal of link prediction—finding correct triples that do not already exist in the

dataset. While this defect of the accuracy measures is applicable on all types of relation, 6

it is more apparent in evaluating a method that is capable of leveraging the characteristics

of Cartesian product relations. Such a method would mark many triples non-existent in the

dataset as correct and further rank many of them higher than the test triples.

Table 3.2 uses several measures to show the accuracy of the prediction method based

on the Cartesian product property, as explained in (2). 7 The method’s accuracy is evalu-

ated using both FB15k and the larger Freebase snapshot as the ground truth. The table also

shows the results of using TransE. In all cases FB15k training set is used as the training

data for making predictions. The table presents the results on all 9 Cartesian product rela-

tions we detected from FB15k, which are listed in Table 5.9. Some of them are detected as

Cartesian product relations by applying the aforementioned process over the training set of

6Fundamentally it is because the models are evaluated by ranking instead of binary classification of triples.
7For coping with space limitations, we shortened the names of some measures, e.g., FHits@10↑is short-

ened as FH10↑.

35

FB15k and some are detected over the Freebase snapshot. We can make several observa-

tions regarding the results in Table 3.2. First, the performance of using Cartesian product

property is higher when Freebase instead of FB15k is the ground truth. This is because

Freebase subsumes FB15k and thus is affected less by the defect mentioned in (4). Second,

using Cartesian product property is more accurate than embedding models such as TransE,

especially when the Freebase snapshot is used as the ground truth to calculate filtered mea-

sures. (Note that using Freebase as the ground truth will not affect unfiltered measures such

as MR↓. Therefore we do not repeat those measures in the table.) For example, consider pre-

dicting triples in relation r2. We observed that the Cartesian product property attained a

FMRR↑ of 0.80 using FB15k as ground truth, in comparison to 0.42 by TransE. The accuracy

is further improved to 1 when using the Freebase snapshot as the ground truth.

3.4 Experiments

3.4.1 FB15k-237, WN18RR, YAGO3-10-DR

Among the first to document the data redundancy in FB15k, Toutanova and Chen [21]

created FB15k-237 from FB15k by removing such redundancy. They first limited the set of

relations in FB15k to the most frequent 401 relations. Their approach of removing redun-

dancy is essentially the same as the equations for detecting duplicate and reverse duplicate

relations in Section 3.2.2, likely with different thresholds. For each pair of such redun-

dant relations, only one was kept. This process decreased the number of relations to 237.

They also removed all triples in test and validation sets whose entity pairs were directly

linked in the training set through any relation. This step could incorrectly remove useful

information. For example, place of birth and place of death may have many overlapping

subject-object pairs, but they are not semantically redundant. Furthermore, the creation of

FB15k-237 did not resort to the absolutely accurate reverse relation information encoded

36

by reverse property. Finally, it does not identify Cartesian product relations. Nevertheless,

we used both FB15k-237 and FB15k in our experiments. This allows us to corroborate the

experiment results with those from a number of recent studies.

To remove the WN18 reverse relations mentioned in Section 3.2, Dettmers et al. [22]

created WN18RR by keeping just one relation from each pair of reverse relations. The re-

sulting dataset WN18RR has 40,943 entities in 11 relations. However, this dataset still con-

tains symmetric (i.e., self-reciprocal) relations—a special case of reverse relations where

a relation is the reverse of itself. Particularly, more than 34% of the training triples in

WN18RR belong to the symmetric relation derivationally related form which is for terms in

different syntactic categories that have the same morphological root. For instance, both

triples (question, derivationally related form, inquire) and (inquire, derivationally related form,

question) are in the training set. Among the 11 relations in WN18RR’s training set, 3 are

self-reciprocal, which account for 30,933 of the 86,835 training triples. 28,835 out of these

30,933 triples form reverse pairs. For the remaining 2,098 triples, 1,052 form reverse pairs

of with 1,052 triples (around 33.57%) of the test set.

As mentioned in Section 3.2, YAGO3-10 has two near-duplicate relations isAffiliat-

edTo and playsFor and 3 semantically symmetric relations hasNeighbor, isConnectedTo, and

isMarriedTo. We removed playsFor. In the training set, for each pair of redundant triples

belonging to symmetric relations, we only kept one. Moreover, we removed a triple from

the test and validation sets if it belongs to any symmetric relation and its entity pairs are

directly linked in the training set. We call the resulting dataset YAGO3-10-DR, of which

the statistics can be found in Table 2.2.

3.4.2 Experiment Setup

Our experiments were conducted on an Intel-based machine with an Intel Xeon E5-

2695 processor running at 2.1GHz, Nvidia Geforce GTX1080Ti GPU, and 256 GB RAM.

37

The experiments used source codes of various methods from several places, including

the OpenKE [44] repository which covers implementations of TransE, TransH, TransR,

TransD, RESCAL, DistMult, and ComplEx, as well as the source code releases of Com-

plEx (which also covers DistMult), ConvE, RotatE, and TuckER. The URLs of these im-

plementations can be found in Table 3.4.

The different models used in our experiments have different hyperparameters. We

used the same hyperparameter settings for FB15k, FB15k-237, WN18, WN18RR, and

YAGO3-10 that were used by the developers of the source codes. The details can be found

in the codes.

We also experimented with rule-based system AMIE [18]. AMIE rules were gen-

erated by applying the AMIE+ (https://bit.ly/2Vq2OIB) code released by the authors

of [45] on the training sets of FB15k, FB15k-237, WN18, WN18RR, and YAGO3-10. The

parameters of AMIE+ were set in the same way as in [46], for all datasets. For any link

prediction task (h, r, ?) or (?, r, t), all the rules that have relation r in the rule head are

employed. The instantiations of these rules are used to generate the ranked list of results.

For example, for test case (Bill Gates, place of birth, ?), the following rule will be employed:

(?a,places lived/location,?b) ⇒ (?a,place of birth,?b). Then the instantiations of variable ?b

are used to find the list of predictions. Several rules may generate the same answer entity.

It is imperative to combine the confidence of those rules in some way in order to score the

answer entities. We ranked the answer entities by the maximum confidence of the rules

instantiating them and broke ties by the number of applicable rules [46].

3.4.3 Results

Tables 3.4 and 3.5 display the results of link prediction on FB15k vs. FB15k-237

and WN18 vs. WN18RR for all compared methods, using both raw and filtered metrics

explained in Section 2.3.2. For each method, the table shows the original publication where

38

Table 3.4: Link prediction results on FB15k and FB15k-237

FB15k FB15k-237

Raw measures Filtered measures Raw measures Filtered measures

Model MR↓ H10↑ MRR↑ FMR↓ FH10↑ FMRR↑ MR↓ H10↑ MRR↑ FMR↓ FH10↑ FMRR↑

TransE [14] 243.0
199.9

34.9
44.3

–
0.227

125.0
68.8

47.1
62.4

–
0.391

–
363.3

–
32.2

–
0.169

–
223.4

–
47.5

–
0.288

TransH [31] 211.0
234.7

42.5
45.5

–
0.177

84.0
84.0

58.5
69.0

–
0.346

–
398.8

–
30.9

–
0.157

–
251.1

–
49.0

–
0.290

TransR [32] 226.0
231.9

43.8
48.8

–
0.236

78.0
78.2

65.5
72.9

–
0.471

–
391.3

–
31.4

–
0.164

–
240.2

–
51.0

–
0.314

TransD [33] 211.0
234.4

49.4
47.4

–
0.179

67.0
85.4

74.2
70.9

–
0.352

–
391.6

–
30.6

–
0.154

–
244.1

–
48.5

–
0.284

DistMult
[34]

–
313.0
264.3

–
45.1
50.3

–
0.206
0.240

–
159.6
106.3

57.7
71.4
82.8

0.35
0.423
0.651

–
566.3

–

–
30.3

–

–
0.151

–

–
418.5

–

–
41.8

–

–
0.238

–

ComplEx
[35]

–
350.3
250.6

–
43.8
49.2

0.242
0.205
0.233

–
192.3
90.0

84.0
72.7
83.2

0.692
0.516
0.685

–
656.4

–

–
29.9

–

–
0.158

–

–
508.5

–

–
42.3

–

–
0.249

–

ConvE [22] –
189.5

–
51.7

–
0.268

64.0
46.5

87.3
85.6

0.745
0.698

–
481.7

–
28.6

–
0.154

246.0
271.5

49.1
48.1

0.316
0.305

RotatE [26] –
190.4

–
50.6

–
0.256

40
41.1

88.4
88.1

0.797
0.791

–
333.4

–
31.7

–
0.169

177
179.1

53.3
53.2

0.338
0.337

TuckER [25] –
186.4

–
51.3

–
0.260

–
39.0

89.2
89.1

0.795
0.790

–
343.5

–
35.4

–
0.197

–
164.8

54.4
53.9

0.358
0.355

AMIE [18] 337.0 64.6 0.370 309.7 88.1 0.797 1909 36.2 0.201 1872 47.7 0.308

• Published results • OpenKE (https://github.com/thunlp/OpenKE) • ComplEx (https:
//github.com/ttrouill/complex) • ConvE (https://github.com/TimDettmers/ConvE) •
RotatE (https://github.com/DeepGraphLearning/KnowledgeGraphEmbedding) • TuckER
(https://github.com/ibalazevic/TuckER) • AMIE (produced by us)

39

Table 3.5: Link prediction results on WN18 and WN18RR

WN18 WN18RR

Raw measures Filtered measures Raw measures Filtered measures

Model MR↓ H10↑ MRR↑ FMR↓ FH10↑ FMRR↑ MR↓ H10↑ MRR↑ FMR↓ FH10↑ FMRR↑

TransE [14] 263.0
142.4

75.4
75.4

–
0.395

251.0
130.8

89.2
86.0

–
0.521

–
2414.7

–
47.2

–
0.176

–
2401.3

–
51.0

–
0.224

TransH [31] 318.0
190.1

75.4
76.2

–
0.434

303.0
178.7

86.7
86.1

–
0.570

–
2616

–
46.9

–
0.178

–
2602

–
50.4

–
0.224

TransR [32] 232.0
199.7

78.3
77.8

–
0.441

219.0
187.9

91.7
87.3

–
0.583

–
2847

–
48.1

–
0.184

–
2834

–
51.0

–
0.235

TransD [33] 242.0
202.5

79.2
79.5

–
0.421

229
190.6

92.5
91.0

–
0.569

–
2967

–
47.4

–
0.172

–
2954

–
50.6

–
0.219

DistMult
[34]

–
452.9
915.0

–
80.9
80.7

–
0.531
0.558

–
438.5
902.1

94.2
93.9
93.5

0.83
0.759
0.834

–
3798.1

–

–
46.2

–

–
0.264

–

–
3784

–

–
47.5

–

–
0.371

–

ComplEx
[35]

–
477.3
636.1

–
81.5
80.5

0.587
0.597
0.584

–
462.7
622.7

94.7
94.6
94.5

0.941
0.902
0.940

–
3755.9

–

–
46.7

–

–
0.276

–

–
3741.7

–

–
47.4

–

–
0.398

–

ConvE [22] –
413.1

–
80.6

–
0.574

504
396.6

95.5
95.5

0.94
0.945

–
5007.3

–
47.9

–
0.261

5277
4992.7

48.0
50.4

0.46
0.429

RotatE [26] –
286.2

–
81.1

–
0.584

309
269.7

95.9
96.0

0.949
0.950

–
3374

–
53.0

–
0.306

3340
3359.8

57.1
57.3

0.476
0.476

TuckER [25] –
484.7

–
80.6

–
0.576

–
468.1

95.8
95.8

0.953
0.950

–
6598

–
46.8

–
0.272

–
6584

52.6
50.2

0.470
0.451

AMIE [18] 1299.8 94.0 0.931 1299.1 94.0 0.940 12963 35.6 0.357 12957 35.6 0.357

• Published results • OpenKE (https://github.com/thunlp/OpenKE) • ComplEx (https://
github.com/ttrouill/complex) • ConvE (https://github.com/TimDettmers/ConvE) • Ro-
tatE (https://github.com/DeepGraphLearning/KnowledgeGraphEmbedding) • TuckER (https:
//github.com/ibalazevic/TuckER) • AMIE (produced by us)

40

it comes from. The values in black color are the results listed in the original publication,

while a hyphen under a measure indicates that the original publication did not list the

corresponding value. The values in other colors are obtained through our experiments

using various source codes, as listed in the tables.

Below we summarize and explain the results in Table 3.4 and Table 3.5. (1) The

overall observation is that the performance of all methods worsens considerably after re-

moval of reverse relations. For instance, the FMRR↑ of ConvE—one of the best performing

methods under many of the metrics—has decreased from 0.698 (on FB15k) to 0.305 (on

FB15k-237) and from 0.945 (on WN18) to 0.429 (on WN18RR). Its FMR↓ also became

much worse, from 46.5 (FB15k) to 271.5 (FB15k-237) and from 396.6 (WN18) to 4992.7

(WN18RR). This result verifies that embedding-based methods may only perform well on

reverse relations. However, a straightforward approach based on detection of reverse rela-

tions can achieve comparable or even better accuracy, as explained in Section 3.2.1.

(2) Many successors of TransE (e.g., DistMult, ComplEx, ConvE, RotatE, and TuckER)

were supposed to significantly outperform it. This was indeed verified by our experiment

results on FB15k and WN18. However, on FB15k-237, their margin over TransE became

much smaller. For example, by FMRR↑, TransE’s accuracy is 0.288, in comparison with

DistMult (0.238), ComplEx (0.249), ConvE (0.305), RotatE (0.337), and TuckER (0.355).

We hypothesize that these models improved the results mostly on reverse and duplicate

triples and hence, after removing those triples, they do not exhibit clear advantage. This

hypothesis can be verified by our finding that most of the test triples on which these mod-

els outperformed TransE have reverse or duplicate triples in the training set, as shown in

Table 3.6. The observations regarding WN18RR are similar, although the successors of

TransE demonstrated wider edge over TransE. We note that, however, this could be at-

tributed to the large number of reverse triples from symmetric relations that are retained in

WN18RR, as explained in Section 3.4.1.

41

Table 3.6: Percentages of test triples, among those on which various models outperformed
TransE, that have reverse and duplicate triples in training set

FB15k

Model FMR↓ FHits@10↑ FHits@1↑ FMRR↑

DistMult 82.17 % 90.78 % 95.16 % 85.88 %

ComplEx 81.24 % 90.14 % 94.98 % 84.67 %

ConvE 78.69 % 87.12 % 91.1 % 78.04 %

RotatE 78.61% 88.37% 94.41% 78.16%

TuckER 78.96% 87.76% 93.65% 78.87%

WN18

Model FMR↓ FHits@10↑ FHits@1↑ FMRR↑

DistMult 98.43 % 99.4 % 98.53 % 98.55 %

ComplEx 97.93 % 98.72 % 99.1 % 97.73 %

ConvE 96.42 % 96.7 % 98.96 % 95.85 %

RotatE 95.17% 95.82% 98.74% 94.00%

TuckER 95.75% 95.18% 98.45% 95.70%

(3) Tables 3.4 and 3.5 show that the performance of AMIE also substantially degen-

erates in the absence of data redundancy. For example, its FHits@10↑ has decreased from

88.1% (FB15k) to 47.7% (FB15k-237) and from 94.0% (WN18) to 35.6% (WN18RR).

(4) We further analyzed how the most-accurate models perform. There are 224, 11,

and 34 distinct relations in the test sets of FB15k-237, WN18RR, and YAGO3-10, respec-

tively. Table 3.7 shows, for each metric and each model, the number of distinct test relations

42

Table 3.7: Number of relations on which each model is the most accurate

FB15-237 WN18RR YAGO3-10

Model FMR↓ FH10↑ FH1↑ FMRR↑ FMR↓ FH10↑ FH1↑ FMRR↑ FMR↓ FH10↑ FH1↑ FMRR↑

TransE 17 43 23 19 8 2 0 1 9 10 3 3

DistMult 5 23 13 6 0 1 0 0 4 3 6 1

ComplEx 6 20 12 5 0 2 0 0 6 10 7 4

ConvE 8 41 30 15 1 3 3 3 4 7 7 2

RotatE 77 92 58 55 2 9 4 5 2 13 8 5

TuckER 95 112 101 91 2 2 6 4 5 13 10 10

AMIE 31 66 68 49 1 2 3 3 4 6 12 9

on which the model is the most accurate.8 Furthermore, the heatmap in Figure 3.4a (Fig-

ures 3.4b, and 3.4c resp.) shows, for each of the 224 (11, 34 resp.) relations in FB15k-237

(WN18RR, YAGO3-10 resp.), the percentage of test triples on which each model has the

best performance (i.e., the highest rank) in comparison with other models, using FMRR↑ as

the performance measure. What is particularly insightful about Figure 3.4b is that TuckER,

RotatE, and ConvE clearly dominated other models on relations derivationally related form,

similar to, and verb group. As explained in Section 3.4.1, these are all symmetric relations

where reverse triples are retained in WN18RR. This observation corroborates with the anal-

ysis in 2) above. It suggests that the state-of-the-art models might be particularly optimized

for reverse triples. On the other hand, the simple rule based on data statistics can attain an

FHits@1↑ of 97.85% on these 3 relations.
8We rounded all accuracy measures to the nearest hundredth except for MRR/FMRR which are rounded

to the nearest thousandth. Since there are ties in best performing models, the summation of each column can

be greater than 224, 11, and 34.

43

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220

TransE
DistMult
ComplEx

ConvE
RotatE

TuckER
0

20

40

60

80

100

(a) FB15k-237 results

_a
lso

_s
ee

_d
er

iv
at

io
na

lly
_r

el
at

ed
_f

or
m

_h
as

_p
ar

t

_h
yp

er
ny

m

_in
st

an
ce

_h
yp

er
ny

m

_m
em

be
r_

m
er

on
ym

_m
em

be
r_

of
_d

om
ai

n_
re

gi
on

_m
em

be
r_

of
_d

om
ai

n_
us

ag
e

_s
im

ila
r_

to

_s
yn

se
t_

do
m

ai
n_

to
pi

c_
of

_v
er

b_
gr

ou
p

TransE
DistMult
ComplEx

ConvE
RotatE

TuckER
0

20

40

60

80

100

(b) WN18RR results

ac
te

dI
n

cr
ea

te
d

de
al

sW
ith

di
ed

In
di

re
ct

ed
ed

ite
d

ex
po

rts
gr

ad
ua

te
dF

ro
m

ha
pp

en
ed

In
ha

sA
ca

de
m

icA
dv

iso
r

ha
sC

ap
ita

l
ha

sC
hi

ld
ha

sG
en

de
r

ha
sM

us
ica

lR
ol

e
ha

sN
ei

gh
bo

r
ha

sO
ffi

cia
lLa

ng
ua

ge
ha

sW
eb

sit
e

ha
sW

on
Pr

ize
in

flu
en

ce
s

isA
ffi

lia
te

dT
o

isC
iti

ze
nO

f
isC

on
ne

ct
ed

To
isI

nt
er

es
te

dI
n

isL
ea

de
rO

f
isL

oc
at

ed
In

isM
ar

rie
dT

o
isP

ol
iti

cia
nO

f
liv

es
In

ow
ns

pa
rti

cip
at

ed
In

pl
ay

sF
or

wa
sB

or
nI

n
wo

rk
sA

t
wr

ot
eM

us
icF

or
TransE

DistMult
ComplEx

ConvE
RotatE

TuckER
0

20

40

60

80

100

(c) YAGO3-10 results

Figure 3.4: Percentage of triples on which each method outperforms others, for each rela-
tion

44

(5) To better understand the strengths and weaknesses of each model, we further

broke down the numbers in the column FMRR↑of Table 3.7. The relations are categorized

into 4 different classes: 1-to-1, 1-to-n, n-to-1 and n-to-m, based on the average number

of heads per tail and tails per head. An average number less than 1.5 is marked as “1”

and “n” otherwise [14]. Among the 224 distinct relations in the test set of FB15k-237,

5.8% are 1-to-1, 11.6% are 1-to-n, 33.9% are n-1, and 48.7% are n-to-m relations. The

numbers of test triples belonging to these 4 types of relations are 192, 1,293, 4,285 and

14,696, respectively. In WN18RR, the 11 distinct relations in the test set are distributed as

2, 4, 3, and 2 in these four classes, and the numbers of test triples are 42, 475, 1,487, and

1,130, respectively. Figure 3.5a shows the break-down of relations on which each method

has the best result for FB15k-237. Figure 3.5b shows the break-down of best performing

models within each type of relations. Overall, RotatE and TuckER outperformed other

models, with RotatE particularly excelling on 1-to-1 and 1-to-n relations and TuckER on n-

to-1 and n-to-m relations. TransE still demonstrated its robust strength on 1-to-1 relations.

Figure 3.6 shows the results on WN18RR. We can see that TransE has good performance

on 1-to-n relations, and while Tucker is one of the best performing models on this dataset,

it is weaker than other models on 1-to-n relations.

(6) We further computed the FHits@10↑ for head and tail predictions separately for

each relation type of FB15k-237 and WN18RR, as in Tables 3.8 and 3.9. The first and

second best results are shown with boldface and underline, respectively. All the methods

performed better at predicting the “1” side of 1-to-n and n-to-1 relations on both datasets.

On FB15k-237, RotatE and TransE are the first and second best performing models on

1-to-1 relations, respectively. RoataE and TuckER have the highest performance on 1-to-

n, n-to-1, and n-to-m relations. Performance of TuckER, RotatE, and AMIE is the best

in predicting the side n of 1-to-n and n-to-1 relations which are more complicated. On

WN18RR, almost all models have very high accuracy on 1-to-1 and n-to-m relations. Note

45

TransE DistMult ComplEx ConvE RotatE TuckER AMIE

0

20

40

N
um

be
ro

fr
el

at
io

ns

1-to-1
1-to-n
n-to-1
n-to-m

(a) Categorizing the relations on which each method has the best result

1-to-1 1-to-n n-to-1 n-to-m

0

20

40

%

TransE
DistMult
ComplEx

ConvE
RotatE

TuckER
AMIE

(b) Break-down of methods achieving best performance on each type of relations

Figure 3.5: Models with best FMRR↑ on FB15k-237

that self-reciprocal relations derivationally related form, similar to, and verb group belong to

these categories.

(7) As mentioned in Section 3.2.2, YAGO3-10 is dominated by two relations isAffi-

latedTo and playsFor which are effectively duplicate relations. The results on this dataset for

some the best performing models are shown in Table 3.11. AMIE achieved better perfor-

mance than embedding models on FHits@1↑and FMRR↑. Similar to (5) and (6), we generated

detailed results on this dataset, shown in Figure 3.7 and Table 3.10. Figure 3.7 shows that

46

TransE DistMult ComplEx ConvE RotatE TuckER

0

0.5

1

1.5

2
N

um
be

ro
fr

el
at

io
ns

1-to-1
1-to-n
n-to-1
n-to-m

(a) Categorizing the relations on which each method has the best result

1-to-1 1-to-n n-to-1 n-to-m

0

50

100

%

TransE
DistMult
ComplEx

ConvE
RotatE

TuckER

(b) Break-down of methods achieving best performance on each type of relations

Figure 3.6: Models with best FMRR↑ on WN18RR

AMIE outperformed other models on 1-to-1 and n-to-m relations while TuckER was on

par with AMIE on 1-to-1 relations. RotatE and TuckER outperformed others in 1-to-n and

n-to-1 relations. Table 3.10 shows that embedding models have very similar results partic-

ularly on 1-to-1 and n-to-m relations. We note that the duplicate relations isAffilatedTo and

playsFor belong to n-to-m and the self-reciprocal relation isMarriedTo belongs to 1-to-1.

(8) The results on YAGO3-10-DR are also shown in Table 3.11. Same as what we ob-

served on FB15k-237 and WN18RR, the performance of all models dropped significantly

47

Table 3.8: FHits@10↑ by category of relations on FB15k-237

1-to-1 1-to-n n-to-1 n-to-m

Model Left
FH10↑

Right
FH10↑

Left
FH10↑

Right
FH10↑

Left
FH10↑

Right
FH10↑

Left
FH10↑

Right
FH10↑

TransE 55.21 55.21 60.40 9.59 11.74 84.60 40.52 56.12

DistMult 47.92 46.35 43.62 3.63 4.34 76.06 36.09 51.48

ComplEx 47.40 46.88 36.66 3.94 5.13 75.82 36.95 52.48

ConvE 27.60 26.56 59.63 11.29 14.38 85.34 41.20 56.73

RotatE 59.38 58.85 67.52 13.61 17.08 87.49 47.38 61.49

TuckER 55.21 52.60 65.58 15.62 21.52 87.84 48.14 61.54

AMIE 43.23 44.27 46.17 13.07 18.20 80.49 42.45 55.19

after removal of duplicate and reverse triples. Hence, we recommend YAGO3-10-DR for

evaluating embedding models instead of YAGO3-10.

(9) Table 3.12 compares various methods using FHits@1↑, which is a more demand-

ing measure than FHits@10↑, since it only considers whether a model ranks a correct an-

swer at the very top. The results show that embedding models and AMIE have comparable

performance on FB15k and WN18 as these datasets contain relations that clearly can be

predicted by rules. On FB15k-237 and WN18RR, embedding models RotatE and TuckER

stand out.

48

Table 3.9: FHits@10↑ by category of relations on WN18RR

1-to-1 1-to-n n-to-1 n-to-m

Model Left
FH10↑

Right
FH10↑

Left
FH10↑

Right
FH10↑

Left
FH10↑

Right
FH10↑

Left
FH10↑

Right
FH10↑

TransE 92.86 92.86 42.32 15.79 14.32 34.90 92.92 93.72

DistMult 97.62 92.86 24.21 6.32 5.78 33.83 95.75 95.75

ComplEx 97.62 97.62 29.47 7.58 5.72 33.02 95.84 95.31

ConvE 97.62 97.62 44.63 16.84 11.57 31.34 95.22 94.96

RotatE 97.62 97.62 53.68 28.84 20.98 43.04 96.11 95.58

TuckER 97.62 97.62 40.21 18.95 15.13 30.26 94.96 91.77

AMIE 97.62 97.62 1.26 1.26 1.41 1.41 92.83 92.83

Table 3.10: FHits@10↑ by category of relations on YAGO31-0

1-to-1 1-to-n n-to-1 n-to-m

Model Left
FH10↑

Right
FH10↑

Left
FH10↑

Right
FH10↑

Left
FH10↑

Right
FH10↑

Left
FH10↑

Right
FH10↑

TransE 76.67 80.00 48.31 32.58 3.89 78.34 63.82 80.23

DistMult 83.33 83.33 49.44 29.21 6.09 55.67 60.21 79.77

ComplEx 90.00 83.33 55.06 31.46 5.75 29.10 62.26 80.47

ConvE 83.33 80.00 43.82 39.33 3.21 74.11 65.31 80.98

RotatE 83.33 83.33 55.06 38.20 6.43 77.66 61.66 80.68

TuckER 86.67 90.00 42.70 39.33 5.25 72.59 60.72 79.67

AMIE 73.33 73.33 13.48 11.24 6.26 7.45 67.44 64.24

49

TransE DistMult ComplEx ConvE RotatE TuckER AMIE

0

2

4

6

N
um

be
ro

fr
el

at
io

ns

1-to-1
1-to-n
n-to-1
n-to-m

(a) Categorizing the relations on which each method has the best result

1-to-1 1-to-n n-to-1 n-to-m

0

20

40

%

TransE
DistMult
ComplEx

ConvE
RotatE

TuckER
AMIE

(b) Break-down of methods achieving best performance on each type of relations

Figure 3.7: Models with best FMRR↑ on YAGO3-10

50

Table 3.11: Link prediction results on YAGO3-10

YAGO3-10 YAGO3-10-DR

Model FH1↑ FMR↓ FH10↑ FMRR↑ FH1↑ FMR↓ FH10↑ FMRR↑

TransE –
40.7

–
1193.4

–
67.9

–
0.504

–
11.7

–
2355.9

–
32.3

–
0.19

DistMult
–

34.2
42.4

–
1712.8
2685.1

–
64.9
66.0

–
0.448
0.51

–
9.6
13.3

–
7509.3
5553.2

–
28.8
30.7

–
0.161
0.192

ComplEx
–

35.5
44.9

–
3076.4
2911.7

–
64.6
67.8

–
0.455
0.53

–
9.7
14.3

–
8498.1
6077

–
28.8
31.5

–
0.162
0.201

ConvE 45.0
46.2

2792
1598.8

66.0
68.6

0.52
0.542

–
14.7

–
4453.3

–
31.5

–
0.204

RotatE 40.2
40.5

1767
1809.4

67.0
67.4

0.495
0.499

–
15.3

–
3084.2

–
33.2

–
0.214

TuckER –
40.7

–
2293.8

–
66.1

–
0.496

–
14.8

–
6068.8

–
32

–
0.207

AMIE 55.8 24133 57.96 0.565 – – – –

Table 3.12: FHits@1↑ results

Model FB15k FB15k-237 WN18 WN18RR

TransE –
26.9

–
19.1

–
31.1

–
5.1

DistMult
–
–

54.1

–
15.5

–

–
–

75.2

–
29.1

–

ComplEX
59.9

–
59.5

–
15.9

–

93.6
–

93.7

–
34.0

–

ConvE 67.0
60.7

23.9
23.13

93.5
93.9

39.0
39.2

RotatE 74.6
73.8

24.1
23.9

94.4
94.4

42.8
42.5

TuckER 74.1
72.9

26.6
26.2

94.9
94.6

44.3
42.8

AMIE –
75.1

–
22.5

–
93.9

–
35.6

Simple Model
(generated by us)

71.6 1.1 96.4 34.8

51

CHAPTER 4

Inadequacy of Evaluation Metrics
In this chapter, we investigate and demonstrate the inadequacy of existing evaluation

metrics. The frequently used ranking based metrics discussed in Section 2.3.2 have flaws in

measuring the performance of the models. These flaws are due to closed-world assumption

and aggregation of different prediction tasks. We will explain these problems and show

how they impact the results. We also provide the results of type filtering – removing type

inconsistent results from the ranked list.

To conduct the experiments in this chapter, we used the LibKGE library [47]. 1

Ruffinelli et al. [48] conducted an extensive experimental study to find the impact of hy-

perparameter optimization and training strategies on the performance of the models. They

found that these factors significantly affect models’ progress and could be as crucial as

models’ architecture. They provided pretrained models that were generated using a com-

mon experiment setup with extensive hyperparameter tuning as part of their open source

LibKGE framework. Hence, to alleviate the impact of different training strategies in our

experiments, we used the pretrained models from LibKGE.

4.1 Colsed-World Assumption

As it is briefly explained in Section 3.3, the performance measures in Section 2.3.2

are based on the closed-world assumption in which unknown facts are considered false. The

terms open- and closed-world assumptions were first introduced by Reiter [29, 49]. Sup-

1https://github.com/uma-pi1/kge

52

pose that the total knowledge of a domain is available. Then it is not necessary to explicitly

represent negative facts; they are inferred from the absence of their positive counterparts.

Reiter [29] called this the closed-world assumption. It can be stated as “if P is not provable

from the knowledge base, assume ¬P”, where P is a positive fact. As mentioned earlier,

this assumption is far from realistic due to the incompleteness of general real-world knowl-

edge graphs and thus have flaws when a model correctly predicts a triple that does not exist

in the benchmark dataset. More specifically, if a corrupted triple of a given test triple does

not exist in the current dataset, it is considered incorrect. However, the corrupted triple

might be correct as well. If a model ranks the corrupted triple higher than the test triple

itself, its accuracy measures will be penalized, which contradicts the exact goal of link

prediction—finding correct triples that do not already exist in the dataset [1, 50, 24].

As it was explained in Section 2.3.2, to calculate the filtered measures, corrupted

triples that are already in training, test, or validation sets do not participate in the ranking.

In this way, a model is not penalized for ranking other correct triples higher than a test triple.

However, there might still be some other correct triples in the ranking list that do not exist

in the benchmark dataset. This section used the original Freebase knowledge graph from

Section 3.1 to check whether the predicted triples not present in the current dataset exist in

the Freebase or not and filtered the correct responses to attain a more realistic evaluation of

the models. Freebase is more comprehensive than FB15k-237, so this approach can verify

whether models are penalized by closed-world assumptions. However, we should notice

Freebase is still far from complete, and we cannot determine the true performance of the

models by using it to calculate the measures.

Table 4.1 shows the obtained results. As it can be seen, using Freebase to filter out

the correct predictions from the ranked list led to better performance, and models’ FMRR↑

has improved by various degrees, from 5.75% to 7%, for different models. This proves that

53

Table 4.1: Results after using FB15k-237 vs. Freebase to filter out the correct predictions
from the ranked list

FB15k-237 Freebase

Model FMRR↑ FH1↑ FH3↑ FH10↑ FMRR↑ FH1↑ FH3↑ FH10↑

RESCAL 0.356 0.263 0.393 0.541 0.378 (6.18%) 0.289 0.415 0.553

TransE 0.313 0.221 0.347 0.497 0.331 (5.75%) 0.241 0.366 0.508

DistMult 0.343 0.250 0.378 0.531 0.367 (7%) 0.278 0.403 0.544

ComplEx 0.348 0.253 0.384 0.536 0.372 (6.9%) 0.281 0.408 0.547

ConvE 0.339 0.248 0.369 0.521 0.360 (6.19%) 0.273 0.392 0.532

RotatE 0.333 0.240 0.368 0.522 0.355 (6.61%) 0.264 0.388 0.533

models are penalized for predicting correct responses, and metrics based on closed-world

assumption underestimated models’ accuracy.

Addressing this problem is challenging, because ideally we will need an absolute

ground-truth dataset which entails the impossible work of manually labeling all possible

predictions, given any large-scale knowledge graph. Furthermore, such a ground-truth

dataset will not require completion, from a practical viewpoint.

4.2 Global Metrics

Another limitation of the current metrics is that they aggregate the predictions’ ac-

curacy of all triples into a single value which makes it impossible to discern the specific

strengths and weaknesses of the models. We suggest computing the left and right entity

link prediction results per relation separately and comparing models by analyzing the dis-

tribution of those results instead of examining the overall average of test triples’ prediction

accuracy. Figures 4.1 and 4.2 as well as Figures 4.3a and 4.3b show such results on FB15k-

237. We can observe that left and right entity predictions ((?, r, t) and (h, r, ?), respectively)

54

(a) Density plot

(b) Average

Figure 4.1: Density plot of left FMRR↑ per relation vs. the average of left FMRR↑ for all test
triples on FB15k-237

differ considerably on FB15k-237. Models have higher accuracy on right entity predictions

than on left entity predictions. The left and right results clearly have different distributions.

The distribution of the right results is bimodal and has two peaks, one peak around 0.1 and

another one around 1 while the left distribution has one peak around 0.1.

Yet another problem of the global metrics is that they measure the micro average of

all predictions’ accuracy. Figures 4.4a and 4.4b show the frequency of relations in training

and test set of FB15k-237. As it can be observed, this dataset is highly skewed with a few

relations of high frequency and a large number of relations with low frequency. Hence,

we suggest using the macro average of per-relation accuracy, in order to treat all relations

equally in evaluation. Table 4.2 compares the results of micro averaging vs. macro av-

55

(a) Density plot

(b) Average

Figure 4.2: Density plot of right FMRR↑ per relation vs. the average of right FMRR↑ for all test
triples on FB15k-237

eraging for left and right FMRR↑. As observed, FMRR↑ of all models improves when macro

averaging is used, which shows there are low-frequency relations in the dataset on which

the models have high accuracy.

4.3 Type Filtering

Freebase has millions of topics about real-world entities like people, places, and

things. Each entity in Freebase has one or more types [27]. For example Bob Dylan has

types such as singer, performer, book author, and actor. Types themselves are grouped into

domains. For example, the Actor type is in the Film domain. Type information is stated

by a special relation object/type in Freebase, e.g., (Bob Dylan, object/type, singer). We can

extract these type and domain definitions from Freebase and use them to filter out the type-

inconsistent predictions. For example, when we want to predict the University which a

56

RESCAL TransE DistMult ComplEx ConvE RotatE
0.0

0.2

0.4

0.6

0.8

1.0

Le
ft

FM
RR

(a) Left FMRR↑
RESCAL TransE DistMult ComplEx ConvE RotatE

0.0

0.2

0.4

0.6

0.8

1.0

Ri
gh

t F
M

RR

(b) Right FMRR↑

Figure 4.3: Box Plot of FMRR↑ per relation on FB15k-237 with multiple models

Table 4.2: Micro averaging vs. macro averaging

Micro average Macro average

Model Left FMRR↑ Right FMRR↑ Left FMRR↑ Right FMRR↑

RESCAL 0.260 0.452 0.316 0.483

TransE 0.208 0.418 0.261 0.436

DistMult 0.246 0.439 0.305 0.465

ComplEx 0.250 0.445 0.310 0.472

ConvE 0.239 0.439 0.298 0.461

RotatE 0.229 0.438 0.290 0.458

person is graduated from, we can only rank the entities with the type University. This sec-

tion provides link prediction results on FB15k-237 after removing type inconsistent entities

from the ranked list of predictions. Table 4.3 shows a slight improvement in the results after

conducting type filtering. It proves that there are a few type inconsistent predictions in the

ranked list placed before the test triple. However, it seems that models are usually able to

capture entity types.

57

0 4000 8000 12000 16000

/award/award_nominee/award_nominati…
/people/person/nationality

/education/educational_institution/stude…
/music/instrument/instrumentalists

/people/person/religion
/film/film/written_by

/sports/sports_team/colors
/american_football/football_team/curren…

/location/hud_county_place/place
/olympics/olympic_sport/athletes./olympi…

/business/business_operation/industry
/education/educational_degree/people_…
/music/artist/contribution./music/recordi…
/film/film/runtime./film/film_cut/film_rel…
/sports/sports_league/teams./sports/spor…

/location/country/capital
/people/ethnicity/geographic_distribution
/government/politician/government_posi…
/film/special_film_performance_type/film…

FREQUENCY OF RELATIONS

(a) Training set of FB15k-237

0 200 400 600 800 1000 1200 1400

/film/film/release_date_s./film/film_regio…
/location/location/contains

/award/award_category/winners./award/…
/people/person/religion

/film/film/music
/film/film/executive_produced_by

/music/performance_role/track_performa…
/business/business_operation/industry

/base/popstra/celebrity/friendship./base/…
/baseball/baseball_team/team_stats./bas…
/sports/sports_position/players./sports/sp…
/base/aareas/schema/administrative_are…

/location/country/official_language
/location/statistical_region/places_export…
/film/film/personal_appearances./film/pe…
/soccer/football_team/current_roster./so…
/olympics/olympic_sport/athletes./olympi…
/location/statistical_region/gdp_nominal./…
/sports/sports_team/roster./basketball/b…

FREQUENCY OF RELATIONS

(b) Test set of FB15k-237

Figure 4.4: Frequency of relations in FB15k-237

58

Table 4.3: Type filtering results

Original Results (LibKGE) Type Filtering

Model FMRR↑ FH1↑ FH3↑ FH10↑ FMRR↑ FH1↑ FH3↑ FH10↑

RESCAL 0.356 0.263 0.393 0.541 0.357 0.263 0.393 0.541

TransE 0.313 0.221 0.347 0.497 0.317 0.226 0.351 0.5

DistMult 0.343 0.25 0.378 0.531 0.344 0.249 0.38 0.532

ComplEx 0.348 0.253 0.384 0.536 0.349 0.254 0.385 0.537

ConvE 0.339 0.248 0.369 0.521 0.339 0.248 0.37 0.522

RotatE 0.333 0.24 0.368 0.522 0.336 0.242 0.37 0.524

59

CHAPTER 5

Problems of the Generic Evaluation Protocol (Link

Prediction)
In this chapter, we discuss the problems associated with link prediction as a widely-

used evaluation protocol employed to measure the performance of the embedding models.

We also provide the results of some alternative evaluation protocols, such as entity-pair

ranking, property prediction, and triple classification. The performance of the models on

these evaluation protocols is unsatisfactory. There is also a mismatch between link predic-

tion results and performance on these other tasks. Based on results of experiments con-

ducted using the LibKGE library, RESCAL has the strongest link prediction performance.

However, on entity-pair ranking and property prediction, RotatE is the best performing

model; DistMult and ComplEx have better performance on triple classification. The evalu-

ation results using these protocols suggest that better knowledge graph completion methods

and training strategies are needed.

5.1 Entity-Pair Ranking

Link prediction, the most generic knowledge graph embedding evaluation protocol,

verifies that models prioritize correct answers over wrong ones for a question that is already

known to have an answer. This evaluation setup can be misleading as we cannot verify if

a model ranks false or nonsensical triples lower than correct triples. For example, consider

a test triple (James Ivory, director/film, A Room With A View). Evaluation by link prediction

60

Table 5.1: Pair-ranking results on FB15K-237. Results in blue color are taken from [1].

Model MAP@100↑ WMAP@100↑ P@100↑ WP@100↑

RESCAL –
0.048

0.067
0.070

–
6.1

15.0
11.1

TransE –
0.043

0.079
0.054

–
5.1

17.6
9.1

DistMult –
0.003

0.030
0.002

–
1.1

4.2
1.4

ComplEx –
0.062

0.071
0.073

–
6.8

16.6
11.4

ConvE –
0.017

–
0.021

–
2.3

–
3.8

RotatE –
0.067

–
0.069

–
5.5

–
8.9

only seeks responses to two sensible questions: “who directed the movie A Room With A

View?”, i.e., (?, director/film, A Room With A View), and “which movie is directed by James

Ivory?”, i.e., (James Ivory, director/film, ?). It does not verify if a model would rank false or

nonsensical triples such as (A Room With A View, director/film, James Ivory) lower than the

correct one. Wang et al. [1] discussed this problem and proposed to use an alternative pro-

tocol called entity-pair ranking to rank all possible triples for a specific relation. Following

this evaluation protocol, we would create all possible combinations of entities for a relation

and then rank created triples based on their scores. To measure a model’s performance,

Wang et al. [1] proposed using weighted Mean Average Precision (WMAP@K↑) and weighted

precision (WP@K↑). These two metrics are defined as:

WMAP@K = ∑
r∈R

APr@K× min(K, |Tr|)
∑r′∈Rmin(K, |Tr′|)

(5.1)

61

Table 5.2: Pair-ranking results on WN18RR. Results in blue color are taken from [1].

Model MAP@100↑ WMAP@100↑ P@100↑ WP@100↑

RESCAL –
0.191

0.131
0.225

–
20.1

13.8
26.1

TransE –
0.003

0.020
0.004

–
1.9

1.3
2.8

DistMult –
0.249

0.141
0.170

–
12.6

17.8
15.1

ComplEx –
0.228

0.168
0.170

–
17.5

20.0
21.8

ConvE –
0.041

–
0.060

–
6.0

–
8.8

RotatE –
0.172

–
0.121

–
15.4

–
21.1

where APr@K is the average precision of the top K predictions for relation r and |Tr| rep-

resents the number of test triples for r, and

WP@K = ∑
r∈R

Pr@K× min(K, |Tr|)
∑r′∈Rmin(K, |Tr′|)

(5.2)

where Pr@K is the fraction of correct predictions among top K predictions for relation r.

We used the same metrics to measure the performance of the models. However,

we report the unweighted version, which is equivalent to macro averaging, treating each

relation equally. We define APr@K and MAP@K as follows:

APr@K =
1

NPr
∑
k∈K

Pr@k× relvr[k],

MAP@K = ∑
r∈R

APr@K
(5.3)

62

where NPr is minimum of K and |Tr|, Pr@k is the precision among top k predictions, and

relr[k] represents whether the kth prediction is correct or not. It will be 1 if the prediction

is correct and 0 otherwise. Also, P@K is defined as:

P@K = ∑
r∈R

Pr@K (5.4)

We used the LibKGE pretrained models [47] and evaluated the models by the pair-

ranking protocol. Tables 5.1 and 5.2 show the results. The overall observation is that the

models have low performance on entity-pair ranking. DistMult and ConvE are the worst-

performing models on FB15k-237, while ComplEx has the best performance. On WN18-

RR, RESCAL outperforms other models, while TransE has the lowest accuracy. All the

relations with APr@100
↑ higher than 0.5 on FB15k-237 for each model can be found in Ta-

bles 5.3- 5.7. ”# of rel” in tables indicates the number of test triples with a specific relation.

When using DistMult on entity-pair ranking, the APr@100
↑ for all relations is less than 0.05.

Therefore, we are not showing such a table for DistMult. As the tables show, some of the

relations with the best APr@100
↑ are Cartesian product relations, e.g., /olympic games/medals

awarded./olympic medal honor/medal and /travel destination/climate./travel destination monthly

climate/month. Table 5.8 and Figure 5.1 show the APr@100
↑ of each relation in WN18-

RR for all the models. The models have high performance on 3 symmetric relations #1 (

derivationally related form), #2 (similar to), and #3 (verb group), while on other relations

their accuracy is zero or close to zero.

5.2 Property Prediction

The current evaluation protocol of link prediction is based on the assumption that

the presence of a particular property on an entity is already known. The evaluation focuses

on whether a model can derive the correct property values. In reality, though, it remains

a challenge to determine whether a property is valid for a given entity in the first place.
63

Table 5.3: RESCAL best results

Relations with APr@100
↑ greater than 0.5

Relation # of rel APr@100
↑ Pr@100

↑

/person/gender 436 0.95 0.98

/event/instance of recurring event 11 0.82 0.09

/award category/winners./award honor/ceremony 323 0.75 0.88

/person/nationality 494 0.64 0.8

/person/profession 1311 0.55 0.73

Table 5.4: TransE best results

Relations with APr@100
↑ greater than 0.5

Relation # of rel APr@100
↑ Pr@100

↑

/olympic games/medals awarded./olympic medal

honor/medal

16 1 0.16

/film/language 314 0.86 0.92

/event/instance of recurring event 11 0.80 0.09

/food/nutrients./nutrition fact/nutrient 105 0.56 0.66

Therefore, we propose the property prediction task as another evaluation protocol. For

conducting this task, we have changed the test set of FB15k-237. We just need (h, r) pairs

in the test set. We kept a pair (h, r) in test data if triples of the form (h, r, t’) are not available

in the training set— since we want to predict the property r for entity h, we must make sure

this information is not already available in the training set. After this procedure, there are

4,755 test cases of (h, r) with 3,825 distinct entities and 163 distinct relations in the test

set. The test set of WN18RR is changed in the same way, and 1,140 instances of (h, r) with

1,136 entities and 9 relations remained. To conduct property prediction, given a test case

(h1,r1), we calculate the score of triples (h1, r’, t’) where t’ ∈ E and r’ ∈R. Then, the triple

64

Table 5.5: ComplEx best results

Relations with APr@100
↑ greater than 0.5

Relation # of rel APr@100
↑ Pr@100

↑

/event/instance of recurring event 11 0.80 0.09

/olympic games/medals awarded./olympic medal

honor/medal

16 0.75 0.16

/person/profession 1311 0.73 0.84

/award category/category of 20 0.63 0.15

/tv program/languages 24 0.63 0.22

/person/nationality 494 0.61 0.77

/non profit organization/registered with./non profit

registration/registering agency

22 0.61 0.19

/aareas/schema/administrative area/administrative

area type

20 0.59 0.2

/baseball team/team stats./baseball team

stats/season

27 0.56 0.26

/politician/government positions held./government

position held/legislative sessions

30 0.52 0.25

/food/nutrients./nutrition fact/nutrient 105 0.50 0.73

with the highest score is saved. Finally, the relation of the triple with the highest score is

selected as the property of the entity h1.

The results of Table 5.10 show that models have deficient performance on the task of

property prediction. The FMRR↑ of the best performing model, RotatE, is 0.182. It indicates

that models are mainly unable to predict the property of an entity. The overall performance

of the models on WN18RR is considerably better than results on FB15K-237. However,

we should notice that the number of candidate properties in WN18RR is 11, while it is 237

in FB15K-237.

65

Table 5.6: ConvE best results

Relations with APr@100
↑ greater than 0.5

Relation # of rel APr@100
↑ Pr@100

↑

/food/nutrients./nutrition fact/nutrient 105 0.75 0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
P
@
1
0
0

rescal transe distmult complex conve rotate

Figure 5.1: APr@100
↑ of each relation of WN18-RR

5.3 Triple Classification

Another way of evaluation is to find the models’ performance on triple classification.

This task is the binary classification of triples regarding whether they are true or false

facts. To conduct triple classification, we need to create negative samples for the test and

validation sets and then learn a classification threshold for each relation on validation data.

After learning the thresholds, each test triple with a score higher than the specific threshold

for its relation is considered positive and negative otherwise. Some of the earlier knowledge

66

Table 5.7: RotatE best results

Relations with APr@100
↑ greater than 0.5

Relation # of rel APr@100
↑ Pr@100

↑

/olympic games/medals awarded./olympic medal

honor/medal

16 1 0.16

/aareas/schema/administrative area/administrative

area type

20 0.93 0.2

/travel destination/climate./travel destination

monthly climate/month

60 0.91 0.57

/event/instance of recurring event 11 0.82 0.09

/non profit organization/registered with./non profit

registration/registering agency

22 0.82 0.18

/petbreeds/city with dogs/top

breeds./petbreeds/dog city relationship/dog breed

21 0.70 0.21

/film/language 314 0.62 0.77

/olympic participating country/medals

won./olympic medal honor/medal

38 0.57 0.3

graph embedding models were evaluated using triple classification [30, 31]. However,

their negative triples were generated by randomly corrupting head or tail entities of test

and validation triples. These randomly generated negative test cases are not challenging,

leading to overestimated classification accuracy. Pezeshkpour et al. [51] and Safavi et

al. [52] noted this problem and created some hard negative samples for their generated

benchmark datasets. Inspired by their work, we created two sets of negative samples for

test and validation sets of FB15K-237. One set complies with type constraints and the other

violates such constraints. As it was explained in Section 4.3, each entity in Freebase has

one or more types and these types are denoted by the special relation object/type. The types

of entities were extracted from Freebase using this relation. Then, we used the extracted

67

Table 5.8: Entity-pair ranking results for each relation of WN18-RR using APr@100
↑

Relation # of rel RESCAL TransE DistMult ComplEx ConvE RotatE

r1 1251 0.324 0 0 0.004 0 0.038

r2 1074 1 0.013 0.917 0.953 0.451 0.680

r3 122 0 0 0 0.061 0 0.069

r4 56 0.034 0 0 0.003 0 0.045

r5 253 0.081 0 0 0 0 0

r6 114 0.002 0.014 0 0.065 0 0.064

r7 172 0.004 0 0 0.002 0 0

r8 24 0 0 0 0.044 0 0

r9 26 0 0 0 0 0 0

r10 39 0.659 0 0.824 0.371 0 0

r11 3 0 0 1 1 0 1

Table 5.9: Relations used in Table 5.8

r1 hypernym

r2 derivationally related form

r3 instance hypernym

r4 also see

r5 member meronym

r6 synset domain topic of

r7 has part

r8 member of domain usage

r9 member of domain region

r10 verb group

r11 similar to

68

Table 5.10: Property prediction results on FB15K-237

Model FMR↓ FMRR↑

RESCAL 41.99 0.028

TransE 145.8 0.019

DistMult 23.1 0.126

ComplEx 22.89 0.131

ConvE 44.72 0.161

RotatE 18.21 0.182

Table 5.11: Property prediction results on WN18RR

Model FMR↓ FMRR↑

RESCAL 2.48 0.592

TransE 5.82 0.198

DistMult 3.43 0.492

ComplEx 2.79 0.610

ConvE 4.75 0.400

RotatE 1.90 0.740

type information and the ranked list of predictions generated by an embedding model for

tail or head entity link prediction to generate both of the aforementioned sets. To generate

a type consistent negative triple for a test triple (h, r, t), we scan the ranked list generated

for tail entity prediction to find the first entity t’ in the list that has the same type as t. We

then verify that the corrupted triple (h, r, t’) is negative by checking whether it exists in

the labeled dataset FB15K-237 as well as the original Freebase snapshot from Section 3.1.

If it does not exist in any of them, triple (h, r, t’) is added to the set of type consistent

negative triples for tail entities. We repeat the same procedure and create another set of

69

Table 5.12: Triple classification results

consistent h inconsistent h

Model Precision Recall Acc F1 Precision Recall Acc F1

RESCAL 0.59 0.37 0.55 0.45 0.95 0.83 0.89 0.89

TransE 0.52 0.59 0.52 0.55 0.81 0.69 0.76 0.74

DistMult 0.53 0.51 0.53 0.52 0.94 0.87 0.91 0.90

ComplEx 0.54 0.48 0.53 0.51 0.94 0.88 0.91 0.91

ConvE 0.54 0.53 0.54 0.53 0.57 0.72 0.59 0.64

RotatE 0.52 0.53 0.52 0.52 0.89 0.83 0.87 0.86

consistent t inconsistent t

Model Precision Recall Acc F1 Precision Recall Acc F1

RESCAL 0.64 0.45 0.60 0.53 0.95 0.86 0.91 0.90

TransE 0.58 0.54 0.57 0.56 0.90 0.82 0.86 0.86

DistMult 0.59 0.55 0.58 0.57 0.95 0.89 0.92 0.92

ComplEx 0.60 0.56 0.59 0.58 0.95 0.90 0.93 0.92

ConvE 0.62 0.41 0.58 0.49 0.95 0.83 0.89 0.88

RotatE 0.60 0.47 0.58 0.53 0.87 0.78 0.83 0.82

type consistent negative triples by corrupting the head entities. The same procedure is used

to create negative samples for validation data. To generate type-violating negative triples

we just make sure that the type of the entity that is used to corrupt a positive triple is

different from the original entity’s type.

The results of triple classification on all these new test sets are presented in Ta-

ble 5.12. The first observation is that the models have low performance on type-consistent

negative samples while their performance on type-violating ones is satisfactory. The scores

of positive and negative triples differ clearly when negative samples are type violating. An-

70

other observation is that the models’ precision is higher than their recall. As in the case of

knowledge graphs, we care more about avoiding false positives and thus the lower recall of

the models may be of less concern.

71

CHAPTER 6

Conclusions
In this dissertation, we extensively investigated data redundancy in the widely-used

benchmark datasets FB15k, WN18, and YAGO3-10 and its impact on the performance of

link prediction models. The majority of triples in these datasets form reverse or dupli-

cate pairs on which link prediction task is trivial. Our experiments demonstrate that, in

the absence of straightforward prediction tasks, the performance of the embedding mod-

els degenerates significantly. The results show that state-of-the-art embedding models lack

sufficient performance to be deployed in a truly automated setting for conducting link pre-

diction. Moreover, given the data characteristics, a simple rule-based model derived from

data statistics can often challenge the accuracy of complex machine learning models.

A more fundamental defect of these models is that the link prediction scenario, given

such data, is nonexistent in the real world. In Freebase, which was used to produce FB15k,

when a new fact is inserted, it would be added as a pair of reverse triples. The relations

of the two reverse triples are denoted explicitly by a particular relation in Freebase called

reverse property [27, 28]. For such reverse relations always curated into the datasets as pairs,

there is never a scenario in which one needs to predict a triple while its reverse is already

in the knowledge graph. This is a form of overfitting as the learned model is optimized for

the reverse triples and cannot be generalized to realistic settings. More precisely, this is a

case of excessive data leakage, and the models are tested on data that is already observed

in the training data in some capacity. Thus the accuracy of the models is inflated.

72

We identified Cartesian product relations in FB15k, which also lead to unrealistic

evaluation performance. Given such a relation, there are a set of subjects and a set of

objects, and the relation is valid from every subject in the first set to every object in the

second set. Cartesian product relations in FB15k are due to the concatenation of edges on

CVT nodes and present unrealistic cases of link prediction. Moreover, if the goal is to do

link prediction on such relations, a straightforward model could be employed instead of

embedding models. We can view a relation as a bipartite graph between its subjects and

objects. The simple method declares a relation as a Cartesian product if the graph is close

to a complete bipartite graph based on a threshold. For link prediction, the simple method

considers every edge in the complete bipartite graph to be true.

We also demonstrated the inadequacy of existing evaluation metrics that penalize a

method for generating correct predictions not available in the labeled dataset. The commonly-

used evaluation metrics are based on the closed-world assumption. Under the closed-world

assumption, non-observed triples are considered wrong. Thus if a model’s predictions are

correct but do not exist in the benchmark dataset, then the model’s accuracy may decrease.

We used a May 2013 snapshot of Freebase to verify whether a model’s predictions are

correct and observed improvement in the evaluation measures. We also showed that aggre-

gating a model’s performance on all triples into a single accuracy value will hide specific

strengths and weaknesses of the models. We presented detailed results of models, calcu-

lated performance per relation, demonstrated results distribution and results on relations of

different levels of difficulty to provide more insights into embedding models.

As link prediction, the most generic evaluation protocol, has different issues, we

reported the performance of the models on some other protocols called entity-pair ranking,

property prediction, and triple classification. The performance of the models using all these

evaluation protocols is unsatisfactory. It suggests that better knowledge graph embedding

models or training strategies are needed.

73

REFERENCES
[1] Y. Wang, D. Ruffinelli, R. Gemulla, S. Broscheit, and C. Meilicke, “On evaluating

embedding models for knowledge base completion,” in Proceedings of the 4th Work-

shop on Representation Learning for NLP (RepL4NLP-2019), pp. 104–112, 2019.

[2] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor, “Freebase: a collabora-

tively created graph database for structuring human knowledge,” in Proceedings of the

2008 ACM international conference on Management of data (SIGMOD), pp. 1247–

1250, 2008.

[3] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives, “Dbpedia: A

nucleus for a web of open data,” in Proceedings of the 6th International Semantic Web

Conference and 2nd Asian Semantic Web Conference (ISWC + ASWC), pp. 722–735,

2007.

[4] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. Hruschka Jr, and T. M. Mitchell,

“Toward an architecture for never-ending language learning,” in Proceedings of the

24th AAAI Conference on Artificial Intelligence (AAAI), pp. 1306–1313, 2010.

[5] D. Vrandečić and M. Krötzsch, “Wikidata: a free collaborative knowledgebase,”

Communications of the ACM, vol. 57, no. 10, pp. 78–85, 2014.

[6] F. M. Suchanek, G. Kasneci, and G. Weikum, “Yago: A large ontology from

wikipedia and wordnet,” Web Semantics, vol. 6, no. 3, pp. 203–217, 2008.

[7] X. Yao and B. Van Durme, “Information extraction over structured data: Question an-

swering with freebase,” in Proceedings of the 52nd Annual Meeting of the Association

for Computational Linguistics (ACL), vol. 1, pp. 956–966, 2014.

74

[8] W.-t. Yih, M.-W. Chang, X. He, and J. Gao, “Semantic parsing via staged query

graph generation: Question answering with knowledge base,” in Proceedings of the

53rd Annual Meeting of the Association for Computational Linguistics and the 7th

International Joint Conference on Natural Language Processing (ACL + IJCNLP),

pp. 1321–1331, July 2015.

[9] K. Xu, S. Reddy, Y. Feng, S. Huang, and D. Zhao, “Question answering on free-

base via relation extraction and textual evidence,” in In Proceedings of the 54th An-

nual Meeting of the Association for Computational Linguistics (ACL), pp. 2326–2336,

Aug. 2016.

[10] J. S. Eder, “Knowledge graph based search system,” June 21 2012. US Patent App.

13/404,109.

[11] Q. Guo, F. Zhuang, C. Qin, H. Zhu, X. Xie, H. Xiong, and Q. He, “A survey on

knowledge graph-based recommender systems,” IEEE Transactions on Knowledge

and Data Engineering, 2020.

[12] M. Rotmensch, Y. Halpern, A. Tlimat, S. Horng, and D. Alexander Sontag, “Learning

a health knowledge graph from electronic medical records,” Scientific Reports, vol. 7,

12 2017.

[13] M. Nickel, K. Murphy, V. Tresp, and E. Gabrilovich, “A review of relational machine

learning for knowledge graphs,” Proceedings of the IEEE, vol. 104, no. 1, pp. 11–33,

2016.

[14] A. Bordes, N. Usunier, A. Garcia-Durán, J. Weston, and O. Yakhnenko, “Translating

embeddings for modeling multi-relational data,” in Proceedings of the 26th Interna-

tional Conference on Neural Information Processing Systems (NeurIPS), pp. 2787–

2795, 2013.

75

[15] M. Nickel, V. Tresp, and H.-P. Kriegel, “A three-way model for collective learning

on multi-relational data,” in Proceedings of the 28th International Conference on Ma-

chine Learning (ICML), pp. 809–816, 2011.

[16] H. Cai, V. W. Zheng, and K. C.-C. Chang, “A comprehensive survey of graph embed-

ding: Problems, techniques, and applications,” IEEE Transactions on Knowledge and

Data Engineering (TKDE), vol. 30, no. 9, pp. 1616–1637, 2018.

[17] A. Rossi, D. Barbosa, D. Firmani, A. Matinata, and P. Merialdo, “Knowledge graph

embedding for link prediction: A comparative analysis,” ACM Trans. Knowl. Discov.

Data, vol. 15, Jan. 2021.

[18] L. A. Galárraga, C. Teflioudi, K. Hose, and F. Suchanek, “Amie: association rule

mining under incomplete evidence in ontological knowledge bases,” in Proceedings

of the 22nd international conference on World Wide Web (WWW), pp. 413–422, 2013.

[19] N. Lao and W. W. Cohen, “Relational retrieval using a combination of path-

constrained random walks,” Machine learning, vol. 81, no. 1, pp. 53–67, 2010.

[20] G. A. Miller, “Wordnet: A lexical database for english,” Communications of the ACM,

vol. 38, pp. 39–41, Nov. 1995.

[21] K. Toutanova and D. Chen, “Observed versus latent features for knowledge base and

text inference,” in Proceedings of the 3rd Workshop on Continuous Vector Space Mod-

els and their Compositionality, pp. 57–66, 2015.

[22] T. Dettmers, M. Pasquale, S. Pontus, and S. Riedel, “Convolutional 2d knowledge

graph embeddings,” in Proceedings of the 32nd AAAI Conference on Artificial Intel-

ligence (AAAI), pp. 1811–1818, February 2018.

[23] F. Akrami, L. Guo, W. Hu, and C. Li, “Re-evaluating embedding-based knowledge

graph completion methods,” in Proceedings of the 27th ACM International Confer-

ence on Information and Knowledge Management (CIKM), pp. 1779–1782, 2018.

76

[24] F. Akrami, M. S. Saeef, Q. Zhang, W. Hu, and C. Li, “Realistic re-evaluation of

knowledge graph completion methods: An experimental study,” in Proceedings of the

2020 ACM SIGMOD International Conference on Management of Data, SIGMOD

’20, (New York, NY, USA), p. 1995–2010, Association for Computing Machinery,

2020.

[25] I. Balažević, C. Allen, and T. M. Hospedales, “Tucker: Tensor factorization for

knowledge graph completion,” in Proceedings of the 2019 Conference on Empirical

Methods in Natural Language Processing and the 9th International Joint Conference

on Natural Language Processing (EMNLP + IJCNLP), pp. 5185–5194, 2019.

[26] Z. Sun, Z.-H. Deng, J.-Y. Nie, and J. Tang, “Rotate: Knowledge graph embedding by

relational rotation in complex space,” in Proceedings of the International Conference

on Learning Representations (ICLR), pp. 926–934, 2019.

[27] T. Pellissier Tanon, D. Vrandečić, S. Schaffert, T. Steiner, and L. Pintscher, “From

Freebase to Wikidata: The great migration,” in Proceedings of the 25th International

Conference on World Wide Web (WWW), pp. 1419–1428, 2016.

[28] M. Färber, Semantic Search for Novel Information. Amsterdam, The Netherlands,

The Netherlands: IOS Press, 2017.

[29] R. Reiter, “On closed world data bases,” in Gallaire H., Minker J. (eds) Logic and

Data Bases, pp. 55–76, 1978.

[30] R. Socher, D. Chen, C. D. Manning, and A. Ng, “Reasoning with neural tensor net-

works for knowledge base completion,” in Proceedings of the 26th International Con-

ference on Neural Information Processing Systems (NeurIPS), pp. 926–934, 2013.

[31] Z. Wang, J. Zhang, J. Feng, and Z. Chen, “Knowledge graph embedding by translat-

ing on hyperplanes,” in Proceedings of the 28th AAAI Conference on Artificial Intel-

ligence (AAAI), pp. 1112–1119, 2014.

77

[32] Y. Lin, Z. Liu, M. Sun, Y. Liu, and X. Zhu, “Learning entity and relation embeddings

for knowledge graph completion.,” in Proceedings of the 29th AAAI Conference on

Artificial Intelligence (AAAI), pp. 2181–2187, 2015.

[33] G. Ji, S. He, L. Xu, K. Liu, and J. Zhao, “Knowledge graph embedding via dynamic

mapping matrix,” in Proceedings of the 53rd Annual Meeting of the Association for

Computational Linguistics and the 7th International Joint Conference on Natural

Language Processing (ACL + IJCNLP), pp. 687–696, 2015.

[34] B. Yang, W.-t. Yih, X. He, J. Gao, and L. Deng, “Embedding entities and relations

for learning and inference in knowledge bases,” in Proceedings of the International

Conference on Learning Representations (ICLR), 2015.

[35] T. Trouillon, J. Welbl, S. Riedel, É. Gaussier, and G. Bouchard, “Complex embed-

dings for simple link prediction,” in Proceedings of the 33rd International Conference

on Machine Learning (ICML), pp. 2071–2080, 2016.

[36] L. R. Tucker et al., “The extension of factor analysis to three-dimensional matrices,”

Contributions to mathematical psychology, vol. 110119, 1964.

[37] S. K. Mohamed, E. Muñoz, and V. Novacek, “On training knowledge graph embed-

ding models,” Information, vol. 12, no. 4, 2021.

[38] S. Muggleton and L. De Raedt, “Inductive logic programming: Theory and methods,”

The Journal of Logic Programming, vol. 19, pp. 629–679, 1994.

[39] P. Hitzler, M. Krötzsch, B. Parsia, P. F. Patel-Schneider, and S. Rudolph, “OWL 2

web ontology language primer,” W3C recommendation, vol. 27, no. 1, p. 123, 2009.

[40] F. Mahdisoltani, J. Biega, and F. M. Suchanek, “Yago3: A knowledge base from mul-

tilingual wikipedias,” in Conference on Innovative Data Systems Research (CIDR),

2015.

78

[41] Y. Lin, Z. Liu, H. Luan, M. Sun, S. Rao, and S. Liu, “Modeling relation paths for rep-

resentation learning of knowledge bases,” in Proceedings of the 2015 Conference on

Empirical Methods in Natural Language Processing (EMNLP), pp. 705–714, 2015.

[42] J. Weston, A. Bordes, O. Yakhnenko, and N. Usunier, “Connecting language and

knowledge bases with embedding models for relation extraction,” in Proceedings

of the 2013 Conference on Empirical Methods in Natural Language Processing

(EMNLP), pp. 1366–1371, 2013.

[43] B. Shi and T. Weninger, “Proje: Embedding projection for knowledge graph comple-

tion,” in Proceedings of the 31st AAAI Conference on Artificial Intelligence (AAAI),

pp. 1236–1242, 2017.

[44] X. Han, S. Cao, X. Lv, Y. Lin, Z. Liu, M. Sun, and J. Li, “Openke: An open toolkit for

knowledge embedding,” in Proceedings of the 2018 Conference on Empirical Meth-

ods in Natural Language Processing: System Demonstrations (EMNLP), pp. 139–

144, 2018.

[45] L. Galárraga, C. Teflioudi, K. Hose, and F. M. Suchanek, “Fast rule mining in onto-

logical knowledge bases with amie++,” The VLDB Journal, vol. 24, pp. 707–730,

Dec. 2015.

[46] C. Meilicke, M. Fink, Y. Wang, D. Ruffinelli, R. Gemulla, and H. Stuckenschmidt,

“Fine-grained evaluation of rule-and embedding-based systems for knowledge graph

completion,” in International Semantic Web Conference (ISWC), 2018.

[47] S. Broscheit, D. Ruffinelli, A. Kochsiek, P. Betz, and R. Gemulla, “LibKGE - A

knowledge graph embedding library for reproducible research,” in Proceedings of the

2020 Conference on Empirical Methods in Natural Language Processing: System

Demonstrations, pp. 165–174, 2020.

79

[48] D. Ruffinelli, S. Broscheit, and R. Gemulla, “You CAN teach an old dog new tricks!

on training knowledge graph embeddings,” in International Conference on Learning

Representations, 2020.

[49] R. Reiter, “Deductive question-answering on relational data bases,” in Logic and data

bases, pp. 149–177, Springer, 1978.

[50] T. Safavi, D. Koutra, and E. Meij, “Evaluating the Calibration of Knowledge Graph

Embeddings for Trustworthy Link Prediction,” in Proceedings of the 2020 Confer-

ence on Empirical Methods in Natural Language Processing (EMNLP), (Online),

pp. 8308–8321, Association for Computational Linguistics, Nov. 2020.

[51] P. Pezeshkpour, Y. Tian, and S. Singh, “Revisiting evaluation of knowledge base com-

pletion models,” in Automated Knowledge Base Construction, 2020.

[52] T. Safavi and D. Koutra, “CoDEx: A Comprehensive Knowledge Graph Comple-

tion Benchmark,” in Proceedings of the 2020 Conference on Empirical Methods in

Natural Language Processing (EMNLP), (Online), pp. 8328–8350, Association for

Computational Linguistics, Nov. 2020.

80

