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ABSTRACT

MULTI-PLAYER H∞ DIFFERENTIAL GAME USING ON-POLICY AND

OFF-POLICY REINFORCEMENT LEARNING

PEILIANG AN, MSc

The University of Texas at Arlington, 2021

Supervising Professor: Dr. Yan Wan

This work studies a multi-player H∞ differential game for systems of general

linear dynamics. In this game, multiple players design their control inputs to minimize

their cost functions in the presence of worst-case disturbances. We first derive the

optimal control and disturbance policies using the solutions to Hamilton-Jacobi-Isaacs

(HJI) equations. We then prove that the derived optimal policies stabilize the system

and constitute a Nash equilibrium solution. Two integral reinforcement learning

(IRL) -based algorithms, including the policy iteration IRL and off-policy IRL, are

developed to solve the differential game online. We show that the off-policy IRL can

solve the multi-player H∞ differential game online without using any system dynamics

information. Simulation studies are conducted to validate the theoretical analysis and

demonstrate the effectiveness of the developed learning algorithms.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Differential games [1, 2, 3, 4] have attracted increasing attentions in the control

community due to their wide applications in multi-robot systems [5, 6]. Differential

games provide a formal mathematical framework to study the coordination, conflict

and control of dynamical systems that involve multiple decision-makers (or players)

[7, 1, 2, 3, 4]. Two types of differential games, including the two-player zero-sum

games and multi-player nonzero-sum games, have been studied [1, 4]. The two-

player zero-sum games can be used to solve the pursuit-evasion type of problems,

i.e., there is a single performance index that one player tries to minimize while the

other tries to maximize [2, 8]. The two-player zero-sum games have also been used

to solve the H∞ control of systems subject to additive external disturbances [8, 1].

The other type of differential games, i.e., the multi-player nonzero-sum games, have

been developed to solve the leader-follower optimal tracking type of problems, where

there can generally exist more than two players and each player tries to minimize its

individual performance index [3]. In this work, we study a new type of differential

game, called the multi-player H∞ differential game, which takes features of the two

differential games aforementioned. In the multi-player H∞ game, each player seeks

to minimize its performance index in the presence of a worst-case disturbance. This

game provides a theoretical framework for optimal controller design of multi-player

systems subject to external disturbances. Per the knowledge of the authors, there

are very limited studies till now that study the multi-player H∞ differential game
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[9, 10]. Properties of such systems, e.g., stability and Nash equilibrium have not been

thoroughly analyzed.

Finding Nash equilibrium solutions to differential games is not an easy task [3].

In particular, solving zero-sum differential games relies on solving Hamilton-Jacobi-

Isaacs (HJI) equations, and solving nonzero-sum differential games relies on solving

Hamilton-Jacobi-Bellman (HJB) equations. It has been shown that solving these

equations directly in an analytical way is extremely difficult [11]. In addition, solving

these equations also requires the information of system dynamics, which is not always

available in real applications.

Reinforcement learning (RL) has emerged as an efficient numerical tool for solv-

ing optimal control problems online. The use of RL in control theory is documented

in [12] for continuous-time linear systems, [13, 14] for discrete-time linear systems,

[15, 16] for continuous-time nonlinear systems, and [17] for discrete-time nonlinear

systems. Of our interests, RL-based algorithms have also been developed for differ-

ential games. Interested readers please refer to [18, 19, 20, 8] for two-player zero-sum

games, and [21, 22] for multi-player nonzero-sum games. In particular, an off-policy

integral RL (IRL) was developed in [22] to solve the multi-player nonzero-sum games

without requiring any information of the system dynamics. In this work, we study

both on-policy and off-policy IRL solutions to the new multi-player H∞ differential

game.

The contributions of this work are three-fold. First, we formulate the multi-

player H∞ differential game subject to the worst-case external disturbance, and show

that the solution to the game stabilizes the system and constitutes a Nash equilib-

rium. Second, we develop a policy iteration-based learning algorithm to solve the

game online, using partial system dynamics information. Third, we further develop

an off-policy IRL algorithm that requires no information of the system dynamics.
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The results are documented in paper [23] published in the 16th IEEE International

Conference on Control & Automation.

The remainder of the thesis is structured as follows. Chapter 2 formulates

the multi-player H∞ differential game and provides preliminaries to facilitate the

analysis. In Chapter 3, properties of the multi-player H∞ game are studied, and two

IRL-based algorithms are developed to find the optimal solutions online. Chapter 4

presents simulation studies and Chapter 5 concludes the work.
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CHAPTER 2

Problem Formulation and Preliminaries

In this chapter, we formulate the multi-player H∞ differential game for a system

of general linear dynamics. We then provide preliminaries to facilitate the analysis

in Chapter 3.

2.0.1 Problem Formulation

Consider a general N -player linear time-invariant dynamical system given by

ẋ = Ax +
N∑
j=1

Bjuj +
N∑
j=1

Cjdj, (2.1)

where x = x(t) ∈ Rn is the state vector, uj = uj(t) ∈ Rm is the control input for

player j, and the dj = dj(t) ∈ Rq is the adversarial disturbance input for player

j. A, Bj, and Cj are the drift, control input, and disturbance input dynamics,

respectively. It is assumed that the system (2.1) is stabilizable. Many engineering

systems are governed by dynamics (2.1), for example, the aircraft launching, where x

is the aircraft speed, uj and dj are the control thrust force and the disturbance force

of the controller j, respectively.

Define the cost function to be optimized for player i (i = 1, 2, · · · , N) as

Ji(x(0),ui,u−i,di,d−i)

=

∫ ∞
0

ri(x,ui,u−i,di,d−i)dt

=

∫ ∞
0

(
xQix +

N∑
j=1

ujRijuj − γ2
N∑
j=1

‖dj‖2
)
dt,

(2.2)
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where u−i and d−i are the sets of control and disturbance policies for all players other

than player i. Qi and Rij (i 6= j) are positive semi-definite matrices, and Rii are

positive definite matrices.

The value function of player i is defined as

Vi(x(t))

=

∫ ∞
t

ri(x,ui,u−i,di,d−i)dτ

=

∫ ∞
t

(
xQix +

N∑
j=1

ujRijuj − γ2
N∑
j=1

‖dj‖2
)
dτ.

(2.3)

Define the multi-player H∞ differential game as

V ∗i (x(0)) = min
ui

max
di

Ji(x(0),ui,u−i,di,d−i), (2.4)

where V ∗i (x(0)) is the optimal value for player i. In the multi-player H∞ game, each

player tries to minimize its cost function by choosing a control policy ui, while the

disturbance di seeks to maximize this cost. Each player has access to the full state

of the system.

The problem is to find the optimal control and disturbance policies u∗i and d∗i

such that

u∗i =ui
Ji(x(0),ui,u−i,di,d−i),

d∗i =di
Ji(x(0),ui,u−i,di,d−i).

2.0.2 Preliminaries

[11] The system (2.1) is said to have L2-gain less than or equal to γ if the

following disturbance attenuation condition is satisfied for all dj ∈ L2[0,∞) with

x(0) = 0: ∫∞
t
‖z(τ)‖2dτ∫∞

t

(∑N
j=1 ‖dj‖2

)
dτ
≤ γ2,
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where ‖z(t)‖2 = xQix +
∑N

j=1 ujRijuj, dj(t) is the disturbance input, and γ is the

amount of attenuation.

It is assumed that γ in (2.2) satisfies γ ≥ γ∗, where γ∗ is the smallest γ, also

know as H∞ gain for system (2.1) [1], which satisfies the disturbance attenuation

condition.

[1] Policies {u∗1,d∗1,u∗2,d∗2, · · · ,u∗N ,d∗N} are said to constitute a Nash equilib-

rium solution to the N -player H∞ game if the following inequality holds:

Ji(x(0),u∗i ,u
∗
−i,di,d

∗
−i)

≤ J∗i (x(0),u∗i ,u
∗
−i,d

∗
i ,d

∗
−i)

≤ Ji(x(0),ui,u
∗
−i,d

∗
i ,d

∗
−i), ∀ui,∀di,∀i.

(2.5)
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CHAPTER 3

Multi-player H∞ Differential Game

This chapter derives the optimal solution to the N -player H∞ differential game.

Chapter 3.0.1 studies the stability and Nash equilibrium of the game. Two IRL-based

algorithms are then developed in Chapter 3.0.2 to solve the differential game online.

3.0.1 Stability and Nash Equilibrium

Differentiating the value function Vi(x(t)) defined in (2.3), one can obtain the

Bellman equation as follows,

xQix +
N∑
j=1

ujRijuj − γ2
N∑
j=1

‖dj‖2

+∇Vi

(
Ax +

N∑
j=1

Bjuj +
N∑
j=1

Cjdj

)
= 0,

(3.1)

where ∇Vi = ∂Vi/∂x . The boundary condition for this partial differential equation

is Vi(0) = 0. A solution to (3.1) is the value function Vi(x) for the feedback control

policy ui = ui(Vi(x)) and disturbance policy di = di(Vi(x)).
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Define the Hamiltonian function associated with the value function (2.3) as

Hi(x,∇Vi,ui,u−i,di,d−i)

= ri(x,ui,u−i,di,d−i)

+∇Vi

(
Ax +

N∑
j=1

Bjuj +
N∑
j=1

Cjdj

)

= xQix +
N∑
j=1

ujRijuj − γ2
N∑
j=1

‖dj‖2

+∇Vi

(
Ax +

N∑
j=1

Bjuj +
N∑
j=1

Cjdj

)
.

(3.2)

At the equilibrium point, applying the stationary conditions

∂Hi

∂ui

= 0 and
∂Hi

∂di

= 0

yields the optimal control and disturbance policies as functions of Vi(x):

u∗i = u∗i (Vi(x)) = −1

2
R−1ii Bi∇Vi, (3.3)

d∗i = d∗i (Vi(x)) =
1

2γ2
Ci∇Vi. (3.4)

Therefore, the value function Vi(x) in (2.3) is only a function of the state x(t). More-

over, the Hamiltonian function Hi attains a saddle point at the stationary point since

∂2Hi/∂u
2
i = 2Rii > 0 and ∂2Hi/∂d

2
i = −2γ2 < 0.

Substituting (3.3) and (3.4) into the Bellman Equation (3.1), the following

Hamilton-Jacobi-Isaacs (HJI) equation is obtained:

xQix +
1

4

N∑
j=1

∇VjBjR
−1
jj RijR

−1
jj Bj∇Vj −

1

4γ2

N∑
j=1

∇VjCjCj∇Vj

+∇Vi

(
Ax− 1

2

N∑
j=1

BjR
−1
jj Bj∇Vj +

1

2γ2

N∑
j=1

CjCj∇Vj

)
= 0.

(3.5)

Since the attenuation condition in Definition 2.0.2 is satisfied, the HJI equation (3.5)

has a positive semi-definite solution V ∗i (x(t)) [1].
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Note that for the optimal policies u∗i , d
∗
i and the corresponding V ∗i , the HJI

equation satisfies

Hi(x,∇V ∗i ,u∗i ,u∗−i,d∗i ,d∗−i) = 0. (3.6)

Assume the control and disturbance policies are optimal for all players other than

player i. Then for any admissible policies ui(x) and di(x), and any positive semi-

definite value function Vi(x), one has the following equation:

Hi(x,∇Vi,ui,u
∗
−i,di,d

∗
−i)

= Hi(x,∇Vi,u∗i ,u∗−i,d∗i ,d∗−i)

+ (ui − u∗i )
TRii(ui − u∗i )− γ2(di − d∗i )

T(di − d∗i ).

(3.7)

Taking u−i = u∗−i and d−i = d∗−i, the Hamiltonian function in (3.2) can be written

as

Hi(x,∇Vi,ui,u
∗
−i,di,d

∗
−i)

= xQix +
∑
j 6=i

u∗jRiju
∗
j + uiRiiui

− γ2
∑
j 6=i

‖d∗j‖2 − γ2didi

+∇Vi

(
Ax +

∑
j 6=i

Bju
∗
j + Biui +

∑
j 6=i

Cjd
∗
j + Cidi

)

9



= xQix +
∑
j

u∗jRiju
∗
j − γ2

∑
j

‖d∗j‖2

+∇Vi

(
Ax +

∑
j

Bju
∗
j +

∑
j

Cjd
∗
j

)

+ uiRiiui − u∗iRiiu
∗
i − γ2didi + γ2d∗id

∗
i

+∇Vi(Biui −Biu
∗
i + Cidi −Cd∗i )

= Hi(x,∇Vi,u∗i ,u∗−i,d∗i ,d∗−i) + uiRiiui − u∗iRiiu
∗
i

− γ2didi + γ2d∗id
∗
i + (ui − u∗i )Bi∇Vi

+ (di − d∗i )Ci∇Vi.

(3.8)

According to (3.3) and (3.4), one has

Bi∇Vi = −2Riiu
∗
i and Ci∇Vi = 2γ2d∗i .

As such, (3.8) can be further rewritten as

Hi(x,∇Vi,ui,u
∗
−i,di,d

∗
−i)

= Hi(x,∇Vi,u∗i ,u∗−i,d∗i ,d∗−i) + uiRiiui

− u∗iRiiu
∗
i − γ2didi + γ2d∗id

∗
i

− 2(ui − u∗i )Riiu
∗
i + 2γ2(di − d∗i )d

∗
i

= Hi(x,∇Vi,u∗i ,u∗−i,d∗i ,d∗−i)

+ (ui − u∗i )Rii(ui − u∗i )− γ2(di − d∗i )(di − d∗i ).

This result is next employed to show that the optimal policies given by (3.3) and

(3.4) in terms of coupled HJI solution V ∗i (x) constitute a Nash equilibrium solution.

Suppose V ∗i (x) are smooth continuous positive semi-definite functions that solve

the HJI equations (3.5). The control and disturbance policies u∗i and d∗i are given by

(3.3) and (3.4). Then the following two statements (a) and (b) hold.
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(a). The closed-loop system

ẋ = Ax +
N∑
j=1

Bju
∗
j +

N∑
j=1

Cjd
∗
j

= Ax− 1

2

N∑
j=1

BjR
−1
jj B

T

j∇V ∗j +
1

2γ2

N∑
j=1

CjC
T

j∇V ∗j

(3.9)

is asymptotically stable.

(b). Policies {u∗i , d∗i } constitute a Nash solution.

(a). With γ satisfying the attenuation condition, one has

Vi(x)

=

∫ ∞
t

(
xQix +

N∑
j=1

ujRijuj − γ2
N∑
j=1

‖dj‖2
)
dτ ≥ 0,

where Vi(x) = 0 if and only if x = 0.

Select Vi(x) as the Lyapunov function candidates. Differentiating Vi(x) yields

V̇i(x) = (∇Vi)

(
Ax +

N∑
j=1

Bjuj +
N∑
j=1

Cjdj

)

= −

(
xQix +

N∑
j=1

ujRijuj − γ2
N∑
j=1

‖dj‖2
)
≤ 0,

where V̇i(x) = 0 if and only if x = 0. Therefore, Vi(x) are Lynapunov functions and

the system (3.9) is asymptotically stable.
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(b). Since the system (3.9) is asymptotically stable, one has x(t)→ 0, and thus

Vi(x(t))→ 0, as time t→∞. The cost function (2.2) can be rewritten as

Ji(x(0),ui,u−i,di,d−i)

=

∫ ∞
0

(
xQix +

N∑
j=1

ujRijuj − γ2
N∑
j=1

‖dj‖2
)
dt

+

∫ ∞
0

V̇i dt− Vi(x(∞)) + Vi(x(0))

=

∫ ∞
0

(
xQix +

N∑
j=1

ujRijuj − γ2
N∑
j=1

‖dj‖2
)
dt

+

∫ ∞
0

∇Vi

(
Ax +

N∑
j=1

Bjuj +
N∑
j=1

Cjdj

)
dt

+ Vi(x(0))

=

∫ ∞
0

Hi(x,∇Vi,ui,u−i,di,d−i)dt+ Vi(x(0)).

Now let Vi(x) = V ∗i (x) satisfy the HJI equation (3.5), and u−i, d−i choose the optimal

policies. By Theorem 3.0.1 one has

Ji(x(0),ui,u
∗
−i,di,d

∗
−i)

=

∫ ∞
0

Hi(x,∇V ∗i ,ui,u
∗
−i,di,d

∗
−i)dt+ V ∗i (x(0))

=

∫ ∞
0

(
(ui − u∗i )Rii(ui − u∗i )− γ2(di − d∗i )

(di − d∗i )

)
dt+ V ∗i (x(0)),

which implies that (2.5) is satisfied and hence the system is in Nash equilibrium.

3.0.2 Approximated Solutions Using IRL

In Chapter 3.0.1, we develop the optimal policies for the multi-player H∞ dif-

ferential game. As one may notice, the key to finding the policies is solving V ∗i (x)

from the HJI Equation (3.5), which is, however, extremely difficult analytically [3].

As such, we propose two IRL-based algorithms to solve the HJI equation numerically.
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3.0.2.1 On-Policy IRL

The value function (2.3) can be written as

Vi(x(t))

=

∫ t+T

t

ri(x(τ),ui(τ),u−i(τ),di(τ),u−i(τ))dτ

+ Vi(x(t+ T )),

(3.10)

where T is the time interval. Assume that there exits a weight vector Wi such that

the value function can be approximated as

Vi(x) = Wiφi(x), (3.11)

where φi(x) is the basis function vector.

With the approximated value function, the optimal control and disturbance

policies can then be determined using RL, in particular, the Policy Iteration (PI)

algorithm [1, Page 474]. The PI algorithm constitutes two iterative steps: Policy

Evaluation step, to evaluate the value function by (3.10) and (3.11), and Policy

Improvement step, to find the optimal policies based on current value function by (3.3)

and (3.4). This PI algorithm for the multi-player H∞ differential game is summarized

in Algorithm 1.
Algorithm 1 Policy iteration algorithm for multi-player H∞ differential game

1: Initialize each player with admissible policies u
(1)
i and d

(1)
i , ∀i ∈ N .

2: For each iteration k, find the value function V
(k)
i (t) by

V
(k)
i (x(t)) =

∫ t+T

t

ri

(
x,u

(k)
i ,u

(k)
−i ,d

(k)
i ,d

(k)
−i

)
dτ

+ W
(k−1)
i φi(x(t+ T )).

(3.12)

3: Update the weight vector W
(k)
i according to the estimated V

(k)
i (x(t)) using the

least-squares method,

W
(k)
i φi(x(t)) = V

(k)
i (x(t)). (3.13)

13



4: Update the policies u
(k+1)
i and d

(k+1)
i for all players as

u
(k+1)
i = −1

2
R−1ii Bi

∂V
(k)
i

∂x
,

d
(k+1)
i =

1

2γ2
Ci

∂V
(k)
i

∂x
.

(3.14)

5: Repeat procedures 2− 4 until convergence.

3.0.2.2 Off-policy IRL

The on-policy algorithm requires the knowledge of the system dynamics, i.e.,

matrices Bi and Ci, for learning the optimal policies. In addition, the behavior

policies ui and di are required to be adjustable at every policy improvement step.

This subchapter develops an off-policy IRL algorithm to learn the optimal poli-

cies without any information of the system dynamics. The off-policy IRL learns the

optimal policies of the game online while the game is being played based on fixed

behavior policies ui and di, which are used to generate system data [11]. This result

is developed for the case when players have identical dynamics, i.e., Bj = B and

Cj = C, for all j = 1, 2, · · · , N .

We write the system dynamics in the following form:

ẋ =Ax +
N∑
j=1

Bu
(k)
j +

N∑
j=1

Cd
(k)
j

+
N∑
j=1

B
(
uj − u

(k)
j

)
+

N∑
j=1

C
(
dj − d

(k)
j

)
,

(3.15)

where u
(k)
j and d

(k)
j are the policies to be updated for the optimal solutions.
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Differentiation the value V
(k)
i (x(t)) along with the system dynamics (3.15) and

using (3.1), (3.14) yield

V̇
(k)
i (x(t))

= ∇V (k)
i

(
Ax +

N∑
j=1

Bu
(k)
j +

N∑
j=1

Cd
(k)
j

)

+∇V (k)
i

(
N∑
j=1

B
(
uj − u

(k)
j

)
+

N∑
j=1

C
(
dj − d

(k)
j

))

= −

(
xQix +

N∑
j=1

u
(k)
j Riju

(k)
j − γ2

N∑
j=1

‖d(k)
j ‖2

)

− 2u
(k+1)
i Rii

N∑
j=1

(
uj − u

(k)
j

)
+ 2γ2d

(k+1)
i

N∑
j=1

(
dj − d

(k)
j

)
.

(3.16)

Integrating (3.16) from both sides gives the following off-policy IRL Bellman

equation:

V
(k)
i (x(t+ T ))− V (k)

i (x(t))

=

∫ t+T

t

(
− xQix−

N∑
j=1

u
(k)
j Riju

(k)
j

+ γ2
N∑
j=1

‖d(k)
j ‖2

)
dτ

+

∫ t+T

t

(
− 2u

(k+1)
i Rii

N∑
j=1

(
uj − u

(k)
j

)
+ 2γ2d

(k+1)
i

N∑
j=1

(
dj − d

(k)
j

))
dτ.

(3.17)

Note that for any fixed admissible control and disturbance policies ui and di,

(3.17) can be solved for value function V
(k)
i and the updated policies u

(k+1)
i and d

(k+1)
i

simultaneously. To this end, three neural networks (NNs), i.e., the critic NN, the actor

15



NN, and the disturber NN, are used here for approximating the value function and

the updated control and disturbance policies respectively:

V
(k)
i (x) = W

(k)
i φi(x),

u
(k+1)
i (x) = W

(k+1)
u,i σi(x), (3.18)

d
(k+1)
i (x) = W

(k+1)
d,i ψi(x),

where φi(x), σi(x) and ψi(x) provide suitable basis function vectors, and W
(k)
i , W

(k+1)
u,i

and W
(k+1)
d,i are weight matrices with proper dimensions.

The implementation of the off-policy IRL algorithm is described in Algorithm

2.
Algorithm 2 Off-policy IRL algorithm for multi-player H∞ differential game

1: Initialize each player with admissible policies u
(1)
i and d

(1)
i , ∀i.

2: For each iteration k, solve (3.17) for V
(k)
i , u

(k+1)
i , and d

(k+1)
i simultaneously.

3: Update W
(k)
i , W

(k+1)
u,i and W

(k+1)
d,i according to the derived V

(k)
i , u

(k+1)
i , d

(k+1)
i by

(3.18) using the least-squares method.

4: Repeat procedures 2− 3 until convergence.
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CHAPTER 4

Simulation Studies

In this chapter, the two proposed algorithms are applied to a linear system

example to validate the theoretical analysis.

Consider a three-player H∞ game with a linear system described by the follow-

ing dynamics:

ẋ =

1 0.25

1 0

x +
3∑
j

1.3

0

uj +
3∑
j

1.3

0

dj, (4.1)

where x = [x1, x2].

The parameters in the value function (2.3) are selected as:

Q1 = Q2 = Q3 =

1 0

0 1

 ,
R12 = R13 = R21 = R23 = R31 = R32 = 1,

R11 = 2,R22 = 3,R33 = 5,

and γ = 5. The reinforcement learning interval T is chosen to be 0.1.

The on-policy PI algorithm (Algorithm 1) is implemented first. We select the

basis function φi = [x21, x1x2, x
2
2] with weight vector Wi = [Wi1,Wi2,Wi3], where

i = 1, 2, 3. Figure 4.1 and 4.2 show the evolution of the system states and value

function weights.

Figure 4.1 shows that the system states converge to 0 when the optimal policies

are applied to the system (4.1). Moreover, Figure 4.2 verifies the convergence of value

function weights, from which the optimal policies can be derived.

17



Then we simulate the off-policy IRL algorithm (Algorithm 2). Here, three NNs

are selected as follows: the critic NN φi = [x21, x1x2, x
2
2] with a weight vector Wi =

[Wi1,Wi2,Wi3]; the actor NN σi = [x1, x2] with a weight vector Wu,i = [Wu,i1,Wu,i2];

the disturber NN ψi = [x1, x2] with a weight vector Wd,i = [Wd,i1,Wd,i2], where

i = 1, 2, 3. The simulation results are shown in Figure 4.3 and Figure 4.4.

Figure 4.4 shows that the value function weights converge in limited time using

the proposed off-policy IRL algorithm, and the converged values are identical to the

ones derived from the on-policy algorithm. In addition, the system states converge to

0, which validate the asymptotic stability of the closed-loop system.In addition, we

find that the HJI Equation (3.5) holds after substituting the derived value function,

which verifies the correctness of the derived solutions (3.13), (3.14) and (3.18).
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Figure 4.1: The evolution of the system states using on-policy IRL.
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Figure 4.2: The derived value function weights using on-policy IRL.

20



0 50 100 150 200

Time

-2

0

2

4

6

S
ta

te

x
1

x
2

Figure 4.3: The evolution of the system states using off-policy IRL.
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Figure 4.4: The derived value function weights using off-policy IRL.
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CHAPTER 5

CONCLUSIONS

This work studies a new differential game that takes features of two existing

games, i.e., two-player zero-sum and multi-player nonzero-sum games, to solve the

optimal control problems of multi-player systems subject to external disturbances.

We showed that the optimal solutions to this differential game can be found by

solving the HJI equation, and the derived optimal solutions can make the system

asymptotically stable and in Nash equilibrium. Moreover, to solve the differential

games online, we designed two IRL-based algorithms, including the policy iteration

and off-policy IRLs. In particular, the designed off-policy IRL can find the Nash

solutions without using any information of the system dynamics. In the future, this

work can be generalized to systems with general nonlinear dynamics, and the designed

algorithms can be applied to the real-world applications.
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