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ABSTRACT

A STUDY ON APPROXIMATIONS OF TOTALLY ACYCLIC COMPLEXES

Tyler Dean Anway, Ph.D.

The University of Texas at Arlington, 2021

Supervising Professor: Dr. David Jorgensen

Let R be a commutative local ring to which we associate the subcategory

Ktac(R) of the homotopy category of R-complexes, consisting of totally acyclic

complexes. Further suppose there exists a surjection of Gorenstein local rings Q
ϕ−→→ R

such that R can be viewed as a Q-module with finite projective dimension. Under

these assumptions, Bergh, Jorgensen, and Moore define the notion of approximations

of totally acyclic complexes. In this dissertation we make extensive use of these

approximations and define several novel applications. In particular, we extend

Auslander-Reiten theory from the category of R-modules over a Henselian Gorenstein

ring and show that under the same assumptions, the triangulated category Ktac(R)

has only finitely many distinct indecomposable totally acyclic complexes. We then

present a classification scheme for this category based upon the decomposition

into indecomposable complexes. Furthermore, we prove the existence of minimal

approximations in the category. The authors above also apply the idea of right

approximations to create resolutions of totally acyclic complexes. We provide further

results with respect to these resolutions and introduce a minimality condition. Lastly,
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we prove the uniqueness of such minimal resolutions and show several more properties

which extend nicely from the module category.
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Introduction

The goal of this dissertation is to explore the theory of, and applications for,

approximations of totally acyclic complexes. Given a commutative local ring R, the

category of totally acyclic complexes, Ktac(R), is a full triangulated subcategory of

the (more well-known) homotopy category of chain complexes over R. Although first

defined for totally acyclic complexes by Bergh, Jorgensen, and Moore in their 2019

paper Totally Acyclic Approximations (see [2]), the notion of approximations is hardly

a novel concept as many categories exhibit objects with approximations associated to

them. Right approximations, otherwise known as pre-covers and left approximations

for pre-envelopes, are constructions developed as early as 1953 by Eckman and Schopf

in [22]. They show that each module over any ring has an injective envelope or

minimal left approximation. The dual analogue, a projective cover or minimal right

approximation, was then given by Bass [24] in 1960 and each module over any perfect

ring has a projective cover. In fact, given a pair of adjoint functors between any two

categories, we may always obtain a pre-cover and pre-envelope via the counit and

unit maps, respectively.

The modern, more categorical, notion of approximations was first defined by

Auslander and Smalø in 1980 [17], with Enochs also defining them independently in

1981 [18]. The authors of [2] use this definition and utilize a pair of adjoint functors,

between rings Q and R (where Q � R and R has finite projective dimension as a

Q-module), to demonstrate existence of approximations for the category of totally

acyclic complexes. In this dissertation, we take this one step further and show that

under reasonable assumptions, minimal approximations also exist in this category.
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To do this, we make use of categorical similarities between Ktac(R) and the stable

category of totally reflexive R-modules denoted TR(R). Specifically, Buchweitz [21]

proved in 1986 that the stable module category of maximal Cohen-Macaulay Q-

modules, denoted MCM(Q), is a triangulated category and is equivalent to Ktac(Q)

and the singularity category, denoted Db
sg(Q). Furthermore, the same equivalences

also apply to the categories TR(R) and Ktac(R). Later, in [25] Bergh, Jorgensen,

and Oppermann show that the functor from Ktac(R) to Db
sg(R) is fully faithful as

depicted in the bottom right of the following diagram.

MCM(Q)

��

Ktac(Q)
∼= //

∼=oo

��

Db
sg(Q)

��
TR(R)

OO

Ktac(R) �
� //

∼=
oo

OO

Db
sg(R)

OO

In essence, this communicates a deep connection between Ktac(R) and TR(R),

as well as between Ktac(Q) and MCM(Q), thus giving reason to use structural

properties of one to inspire what properties hold for the other. Therefore, we take

the existence of covers in the stable category of totally reflexive modules as a “proof

of concept” for the existence of covers in Ktac(R).

We begin this thesis by recalling some basic facts and definitions in Chapter

One. Specifically, we give the full definition of a triangulated category and show the

previously mentioned fact that Ktac(R) is a triangulated subcategory.

As stated by the authors of [2], the idea behind these approximations is to

relate more complicated totally acyclic complexes with possibly infinite complexity to

simpler, possibly periodic complexes. As such, we begin Chapter Two of this thesis

by examining a class of rings for which there are only finitely many totally acyclic

complexes to use as approximations. Namely, we extend the notion of Auslander-

Reiten theory and finite Cohen-Macaulay (CM) type to the category of totally acyclic
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complexes. Furthermore, we provide a full account of all such finite quivers and show

that they are completely analogous to those in the module category. All of which are

discussed briefly, for the module case, at the end of Chapter One and to which the

diligent reader may refer to [5] for a more thorough coverage.

In Chapter Three we aim to give a partial answer to a question posed in [2]:

Can one classify the objects of Ktac(R) with finite data, in terms of the objects of

HMF(P, x) when Q has finite Cohen-Macaulay type? Specifically, we provide a

classification scheme of totally acyclic complexes by grouping them based on their

decomposition into indecomposable components. That is, we count the number of

indecomposables in the minimal approximation of each complex, and if the tuples are

the same, we call them Arnold equivalent. However, before giving these definitions,

we prove the existence of minimal right approximations in Ktac(R) via a slightly more

general subcategory than that used by the authors of [2]. Originally intended to be

defined for complexes whose approximations stem from rings of finite TAC type (rings

with only finitely many distinct indecomposable totally acyclic complexes), we instead

give the definition more generally in terms of a Henselian Gorenstein local ring. One

clear advantage of the original setting is that there are only finitely many options for

the summands, which in turn implies that the tuple is always finite. Nevertheless, in

the more general scenario, the tuple will still always have only finitely many nonzero

terms.

In the final chapter of this thesis, we turn towards the goal of developing the

theory related to resolutions of complexes via approximations and mapping cones,

first defined in §4.9 of [2]. The authors employed the categorical structure of Ktac(R)

to build a resolution which describes a totally acyclic complex, similarly to how a

free resolution describes a finitely generated R-module. Of course, just as in the

latter construct, these new triangle resolutions are not unique unless we impose a
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condition of minimality. For this reason, we develop the notion of a minimal triangle

resolution and prove their existence for any object in Ktac(R). In the process of

doing so, we employ the existence of minimal right approximations of totally acyclic

complexes previously mentioned. Lastly, along with the development of minimal

triangle resolutions, we provide properties that extend the classical constructions of

free resolutions, such as an analogous notion to Betti numbers.
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CHAPTER 1

Preliminaries

In this chapter we give some of the necessary background information upon

which this thesis is built. We start by introducing the basic ideas and definitions of

categories and, in particular, triangulated categories and chain complexes. We then

discuss the homotopy category of chain complexes, K(R), with special attention to

the subcategory comprised of totally acyclic complexes, Ktac(R). Furthermore, we

discuss many properties this subcategory possesses. Finally we give a brief overview

of Auslander-Reiten theory, provide the quivers, and talk about the structures they

exhibit.

1.1 Preliminaries on Rings and Modules

In order to provide context to this thesis, we begin by giving some preliminaries

on ring and module theory. In particular, we recall definitions for specific types of

rings and modules that will be used extensively in this, and later, chapters. We refer

the interested reader to [29] and [30] for a more in-depth accounting of the definitions

in this section.

Definition 1 (cf. [29]). A commutative local ring R is a commutative ring with a

unique maximal ideal, say m. In this case we may unambiguously define the residue

field k = R/m and denote the whole affair by (R,m, k).

Throughout this dissertation, we will assume that our rings are commutative

Noetherian local rings and our modules are always finitely generated. Under these

conditions, we recall a few more definitions. (The reader may note that these
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conditions may not be necessary for all definitions and results in this thesis, but shall

be assumed anyway.)

Definition 2 (cf. [30]). Let R be a commutative ring. We call x1, ..., xc a regular

sequence if the sequence satisfies the following:

◦ xi ∈ R is a non-zero-divisor on R/(x1, ..., xi−1) for all i = 1, ..., c

◦ (x1, ..., xc) 6= R

Furthermore, for an R-module M , we call a sequence x1, x2, ..., xc in R an M -regular

sequence if:

◦ xi is a non-zero-divisor on M/(x1, ..., xi−1)M for all i = 1, ..., c

◦ M/(x1, x2, ..., xc)M 6= 0

With this definition established, we recall what is meant by depth of a module

and what it is to be a Cohen-Macaulay ring.

Definition 3 (cf. [30]). Let (R,m, k) be a Noetherian local ring. For a finitely

generated R-module M , all maximal M -regular sequences x1, x2, ..., xc, where all

xi ∈ m, have the same length, n, equal to the m-depth of M , denoted depth(M).

A finitely generated R-moduleM is called Cohen-Macaulay (CM) if depth(M) =

dim(M), where dim(M) is the Krull dimension of M . Similarly, we call a ring R,

Cohen-Macaulay if R is Cohen-Macaulay as an R-module over itself. Furthermore, we

say a module M is maximal Cohen-Macaulay (MCM) if its depth is maximal and M

is Cohen Macaulay; i.e. depth(M) = dim(M) = dim(R). We now recall the definition

of a Gorenstein local ring, as these rings will play an important role throughout this

dissertation.

Definition 4 (cf. [30]). Let R be a commutative Noetherian local ring. We call such

a ring Gorenstein if R has finite injective dimension as an R-module. If any ring is

Gorenstein then it is also a CM ring. (see [30])
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In order to discuss the Auslander-Reiten theory established later in this chap-

ter, we further recall the following definitions. A local ring R is Henselian if any

commutative R-algebra which is module-finite over R is a direct product of local

R-algebras. Moreover, an R-module is called indecomposable if it has no nontrivial

direct summands. In other words, an R-module M is indecomposable if whenever

M = M ′ ⊕M ′′, either M ′ = 0 or M ′′ = 0. We now state Proposition 1.18 from [5]

which connects these two ideas and introduces a notion of decomposition for arbitrary

R-modules.

Proposition 5. [5, Proposition 1.18] Let R be a Henselian local ring and let M

be an R-module. Then M is indecomposable if and only if the endomorphism ring

EndR(M) is a local algebra; that is, sums of non-units in EndR(M) are non-units. This

assures us that the category of finitely generated R-modules admits the Krull-Schmidt

theorem. Namely, any R-module is uniquely a finite direct sum of indecomposable

R-modules.

This proposition will be applied any time we discuss AR theory in the module

case during this thesis. In fact, we later provide, and prove, an analogous proposition,

38, for totally acyclic complexes in a triangulated category.

1.2 Triangulated Categories

Much of the theory in this thesis involves properties that are derived from the

categorical structure of the objects and morphisms we study. It would then behoove

us to briefly discuss some basic category theory so that we may talk more in depth

about the main type of category we work in – a triangulated category. Originally

defined in Verdier’s thesis [32] in the 1963, triangulated categories offer extra structure

onto already existing additive categories. In particular, the triangulated structure

comes about from a chosen suspension functor and a set of distinguished triangles
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which satisfy five axioms. As a matter of fact, a given additive category can have

multiple triangulated structures. We again refer the reader [8] and [31] for more

information on the topics in the following three sections.

Definition 6. [8, Definition 1.1] A category A is called an additive category if the

following conditions hold:

i) For every pair of objects X, Y the set of morphisms HomA(X, Y ) is an abelian

group and the composition of morphisms

HomA(Y, Z)× HomA(X, Y )→ HomA(X,Z)

is bilinear over the integers.

ii) A contains a zero object, 0.

iii) For every pair of objects X, Y in A there exists a coproduct X ⊕ Y in A.

Furthermore, an additive category A is called an abelian category if the following

axioms are satisfied:

i) Every morphism in A has a kernel and cokernel.

ii) For every morphism f : X → Y in A, the natural morphism Coim(f)→ Im(f)

is an isomorphism.

A functor, Σ, between additive categories is called an additive functor if for every

pair of objects X, Y the map HomA(X, Y )→ HomA(ΣX,ΣY ) is a homomorphism

of abelian groups. Now, let T be an additive category together with an invertible

additive functor Σ : T → T called a translation or suspension functor. A triangle in

T is a sequence of objects and morphisms of the form

X
u−→ Y

v−→ Z
w−→ ΣX.
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A morphism of triangles is a triple (f, g, h) of morphisms such that the following

diagram commutes:

X
u //

f
��

Y
v //

g
��

Z
w //

h
��

ΣX

Σf
��

X ′ u′ // Y ′ v′ // Z ′ w′ // ΣX ′

We now have the necessary background information to define a triangulated category.

Definition 7. [8, Definition 3.1] A triangulated category is an additive category T

together with an invertible endofunctor Σ, the translation or shift functor, and a

collection of distinguished triangles satisfying the following axioms:

(TR0) Any triangle isomorphic to a distinguished triangle is again a distinguished

triangle.

(TR1) For every object X in T , the triangle X
IdX−−→ X → 0→ ΣX is a distinguished

triangle.

(TR2) For every morphism f : X → Y in T there is a distinguished triangle of the

form X
f−→ Y → Z → ΣX.

(TR3) If X
u−→ Y

v−→ Z
w−→ ΣX is a distinguished triangle, then also Y

v−→ Z
w−→

ΣX
−Σu−−→ ΣY is a distinguished triangle, and vice versa.

(TR4) Given distinguished triangles X
u−→ Y

v−→ Z
w−→ ΣX and X ′

u′−→ Y ′
v′−→ Z ′

w′−→ ΣX ′,

then each commutative diagram:

X u //

f
��

Y v //

g
��

Z w //

��

ΣX

Σf
��

X ′
u′ // Y ′

v′ // Z ′
w′ // ΣX ′

can be completed to a morphism of triangles (but not necessarily uniquely).

(TR5) Given distinguished triangles

X
u−→ Y → Z ′ → ΣX,

Y
v−→ Z → X ′ → ΣY and
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X
vu−→ Z → Y ′ → ΣX,

there exists a distinguished triangle Z ′ → Y ′ → X ′ → ΣZ ′ making the following

diagram commute:

X
u //

IdX
��

Y //

v
��

Z ′ //

��

ΣX

IdΣX

��
X

vu //

u
��

Z //

IdZ
��

Y ′ //

��

ΣX

Σu
��

Y v //

��

Z //

��

X ′ //

Id′X
��

ΣY

��
Z ′ // Y ′ // X ′ // ΣZ ′

A functor F : T → S between triangulated categories is called a triangle functor

if it is an additive functor together with natural isomorphisms for each X ∈ T :

ΦX : FΣ(X)→ ΣF(X)

such that for any distinguished triangle

X
u−→ Y

v−→ Z
w−→ ΣX

in T , the triangle:

F(X)
F(u)−−→ F(Y )

F(v)−−→ F(Z)
F(w)−−−→ ΣF(X)

is distinguished in S.

1.3 Chain Complexes

Since the notion of a triangulated category is quite abstract, we look to a more

specific example to study. To do this we must first recall a few definitions.
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Definition 8. [8, Section 1.1] A complex over an additive category A is a family

X = (Xn, ∂
X
n )n∈Z where Xn ∈ A and ∂Xn : Xn → Xn−1 are morphisms such that

∂n ◦ ∂n−1 = 0 for all n. A complex is usually written as follows:

· · · → Xn+1

∂Xn+1−−−→ Xn
∂Xn−→ Xn−1 → · · ·

Let Y = (Yn, ∂
Y
n ) be another A-complex, then a morphism of complexes f : X → Y

is a family of morphisms (fn : Xn → Yn)n∈Z satisfying ∂Yn ◦fn = fn−1 ◦ ∂Xn for all n.

In other words, we have the following commutative diagram

· · · // Xn+1

∂Xn+1 //

fn+1

��

Xn
∂Xn //

fn
��

Xn−1
//

fn−1

��

· · ·

· · · // Yn+1
∂Yn+1

// Yn
∂Yn

// Yn−1
// · · ·

We must also recall a notion that will be instrumental in the subsequent chapters,

namely, the mapping cone of a morphism of complexes. While the mapping cone

can be defined for a morphism between any two complexes, it plays a particularly

important role in the homotopy category of chain complexes, which will become

apparent in the next section.

Definition 9. [8, Definition 6.3] Let f be a morphism between complexes X =

(Xn, ∂
X
n ) and Y = (Yn, ∂

Y
n ). The mapping cone, cone(f), is the complex defined by

cone(f)n = Xn−1 ⊕ Yn and ∂cone(f)
n :=

[
− ∂Xn−1 0

fn−1 ∂Yn

]
.

For a local ring (R,m, k) we say that a complex C is minimal if Im(∂Cn ) ⊆ mCn−1

for all n ∈ Z. We also call C contractible if the identity morphism IdC is null homotopic.

(see Definition 12)

“Zooming out”, if we take the collection of complexes over an abelian category

A, together with the morphisms between them, it forms an abelian category called

the category of complexes over A and is denoted by C(A).
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We now state a pair of lemmas, the proofs of which can be found in [6]:

Lemma 10. [6, Theorem B.54] Let C be a complex of projective R-modules such

that R is a ring over which every finitely generated left module has a projective cover.

Then we may write C = M ⊕ T where M is a minimal complex and T is contractible.

Lemma 11. [6, Theorem B.54(a)] The complex M from the previous lemma is unique

in the following sense: If one also has C = M ′ ⊕ T ′, where M ′ is minimal and T ′ is

contractible, then M ′ is isomorphic to M .

1.4 The Category of Totally Acyclic Complexes

Let A be an additive category and f, g : X → Y morphisms in C(A).

Definition 12. [8, Definition] The morphism f : X → Y is called null homotopic,

denoted f ∼ 0, if there exists a family of morphisms (σn : Xn → Yn+1)n∈Z such that

fn = ∂Yn+1 σn + σn−1 ∂
X
n

for all n.

Furthermore, we say that the morphisms f, g : X → Y are homotopic if

f − g ∼ 0. In fact, it is well known that ∼ forms an equivalence relation.

Definition 13. [8, Definition 1.6] Let A be an additive category. The homotopy

category K(A) has the same objects as the category, C(A), of complexes over A. The

morphisms in the homotopy category are the equivalence classes of morphisms in

C(A) modulo homotopy; that is:

HomK(A)(X, Y ) := HomC(A)(X, Y )/ ∼ .

Proposition 14. [8, Theorem 6.7] Let A be an additive category. The homotopy

category, K(A), with the suspension functor, Σ, defined by shifting one degree to the

left. i.e.,

(ΣX)n = Xn−1 where ∂ΣX
n = − ∂Xn−1 and Σfn = fn−1

8



is a triangulated category.

Over an abelian category A, for a complex C ∈ C(A) the requirement that

∂Cn ◦ ∂Cn+1 = 0 for all n is equivalent to saying Im ∂Cn+1 ⊆ Ker ∂Cn for all n. This means

that we may consider the quotient module Ker ∂Cn / Im ∂Cn+1 which we call the nth

homology, denoted Hn(C).

Definition 15. [10, Section 2] Let R be a ring and C a complex of R-modules. We

say that C is an acyclic complex if Hn(C) = 0 for all n. Furthermore, if each Cn

is a projective module and Hn(HomR(C,R)) = 0 = Hn(C), we say that C is totally

acyclic. In other words, a complex of projective modules C is totally acyclic if both

the complex and its dual HomR(C,R) are exact in each degree.

Since the ring R is local, each projective module in the complex C is free. We

may then consider the ranks at each degree, which we call the Betti number and

denote βi(C). In other words,

βRi (C) = rank(Ci).

Furthermore, we can describe the growth of the Betti sequence via the notion of

complexity. This is of particular importance if the sequence of Betti numbers is

non-zero for infinitely many i.

Definition 16. [26, Section 2] Let C be a complex of finitely generated free R-

modules, then the complexity of C, denoted cxR C, is defined as

cxR C := inf{t ∈ N ∪ {0} | ∃ a ∈ R s.t. βn(C) ≤ ant−1 ∀ n� 0}.

Let us now consider the idea of subcategories and specific types thereof that have

useful properties. We say that a subcategory C of a category T is a full subcategory if

HomC(X, Y ) = HomT (X, Y )
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whenever X, Y ∈ C. If T is a triangulated category, we say that a full subcategory

C is triangulated if it is closed under (de)suspensions and contains some mapping

cone for each morphism between any two objects in the subcategory. We additionally

say that a triangulated subcategory C ⊆ T is thick if whenever C contains an object

isomorphic to X ⊕ Y , then it also contains both X and Y .

Moreover, Avramov and Iyengar give a construction in [9] of the smallest

thick subcategory containing a collection of objects, Ω, in a triangulated category T ,

denoted

thickT (Ω).

We do this in a series of steps.

For each n ≥ 0 we define a full subcategory thicknT (Ω) called the nth thickening of Ω

as follows:

◦ thick0
T (Ω) = {0}.

◦ The objects of thick1
T (Ω) are the retracts of finite direct sums of shifts of

elements in Ω.

◦ For each n ≥ 2, the objects of thicknT (Ω) are the retracts of those C ∈ T that

appear in some exact triangle

C ′ → C → C ′′ → ΣC ′

with C ′ ∈ thickn−1
T (Ω) and C ′′ ∈ thick1

T (Ω).

Then

thickT (Ω) =
⋃
n∈N

thicknT (Ω)

Of particular importance to this thesis is the first thickening. While not thick itself,

it is a full subcategory, closed under direct sums.

We now turn our attention to the object of focus in our studies throughout this

thesis:
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Definition 17. [2, Section 1] Let R be a ring and K(R) the homotopy category of

R-complexes. Define the full subcategory Ktac(R) of K(R) whose objects are the

totally acyclic complexes and the morphisms are the the homotopy equivalence classes

of R-complex chain maps.

For lack of a good reference, we now show that Ktac(R) has all the useful

properties set forth in the previous paragraphs.

Proposition 18. Ktac(R) is a thick, triangulated subcategory of the homotopy

category.

Proof. We begin by showing that Ktac(R) is a triangulated subcategory of K(R).

Given a totally acyclic complex X it is clear that ΣiX is totally acyclic for all

i ∈ Z. Thus Ktac(R) is closed under (de)suspensions, therefore it suffices to show

that cone(f) ∈ Ktac(R) for any morphism f ∈ HomKtac(R)(X, Y ). Since cone(f) is a

complex we already have that

Im(∂
cone(f)
n+1 ) ⊆ Ker(∂cone(f)

n ).

To see the reverse containment, suppose (x, y) ∈ Ker(∂cone(f)
n ). That is to say(

− ∂Xn−1(x), fn−1(x) + ∂Yn (y)
)

= (0, 0) (1.1)

By (1.1) we have that x ∈ Ker(− ∂Xn−1) = Im(− ∂Xn ) and there exists α ∈ Xn such

that − ∂Xn (α) = x. Furthermore, fn−1(x) = − ∂Yn (y). Now, as f is a chain map we

have that fn−1 ∂
X
n − ∂Yn fn = 0. In particular we have that

0 = fn−1 ∂
X
n (α)− ∂Yn fn(α) =

−fn−1(x)− ∂Yn fn(α) =

∂Yn (y)− ∂Yn fn(α) = ∂Yn (y − fn(α)).

Thus, y − fn(α) ∈ Ker(∂Yn ) = Im(∂Yn+1) so there is a β ∈ Yn+1 such that ∂Yn+1(β) =

y − fn(α).
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Finally, consider the element (α, β) ∈ Xn ⊕ Yn+1. Then

∂
cone(f)
n+1 (α, β) =

(
− ∂Xn (α), fn(α) + ∂Yn+1(β)

)
= (x, fn(α) + y − fn(α)) = (x, y) .

Thus,

Im(∂
cone(f)
n+1 ) = Ker(∂cone(f)

n )

and the mapping cone cone(f) is acyclic. It follows that cone(f)∗ = HomR(cone(f), R)

is acyclic from the fact that HomR(X,R) and HomR(Y,R) are exact by assumption

and a similar argument to the previous one. We now turn our attention to proving

that Ktac(R) is a thick subcategory. To do this, assume that X ⊕ Y is a totally

acyclic complex. Then, since homology respects finite coproducts we have that for

each n ∈ Z:

0 = Hn(X ⊕ Y ) ∼= Hn(X)⊕ Hn(Y ).

Thus, X and Y are both acyclic. Furthermore, since HomR(−, R) respects finite

coproducts as well, we have that:

0 = Hn(HomR(X ⊕ Y,R)) ∼=

Hn(HomR(X,R)⊕ HomR(Y,R)) ∼=

Hn(HomR(X,R))⊕ Hn(HomR(Y,R))

for each n ∈ Z. This proves the statement.

Furthermore, Ktac(R) has an interesting connection to the category of R-

modules. Indeed, given a finitely generated module M over a Gorenstein ring, we

may extend M to a totally acyclic complex C ∈ Ktac(R) via a complete resolution.

Definition 19. [10, Section 3] A complete resolution of a finitely generated R-module

M is a diagram

C
ρ−→ P

π−→M

12



such that C ∈ Ktac(R), P is a projective resolution of M , ρ is a morphism of R-

complexes, and ρn is bijective for all n � 0. We will often abuse terminology and

call C a complete resolution of M .

Though originally defined by Buchweitz in [21], the construction of complete

resolutions is given by Avramov and Martsinkovsky in 3.6 and 3.7 in [10] and, for

such a complete resolution it holds that ρn = IdPn for all n� 0. We also have the

following lemma relating each totally acyclic complex with its minimal complex which

follows easily using such complete resolutions.

Lemma 20. Let C ∈ Ktac(R) such that C = C ⊕ T where C is the minimal complex.

Then C and C are homotopically equivalent.

Proof. Let C ∈ Ktac(R). If C is minimal, we are done, therefore assume that C

is non-minimal. We also know that C is the complete resolution of the R-module

X = Im(∂C0 ). However, we may also extend X to a complete resolution minimally

by choosing the free resolution P ′ of X to be minimal. We then obtain the totally

acyclic complex C and the complete resolution C → P ′ → X. Then by Lemma 29 in

§2.1, which shall be proven in time, we get the following commutative diagram

C //

'
��

P //

'
��

X

C // P ′ // X

which shows that C ' C.

1.5 A Gentle Introduction to AR Theory

In the next chapter we provide an extension of Auslander-Reiten theory to the

category of Ktac(R). However, in order to fully contextualize this extension, we now

give some preliminaries on AR theory in R-mod and introduce the notions of finite

Cohen-Macaulay type and AR quivers. Throughout the rest of this section we have
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that (R,m, k) is a Henselian hyper-surface defined by a nonzero divisor f in a regular

local ring S:

R = S/(f).

In order to set the stage for the following definitions and descriptions we recall what

is meant by a simple singularity from [5].

Definition 21. [5, Definition 8.1] Let S be a regular local ring. For a hypersurface

R = S/(f), consider the following ideals in S:

c(f) =
{
I | I is a proper ideal of S with f ∈ I2

}
We call such a ring R a simple singularity if the set c(f) is finite.

We now state a classification, given in Theorem 8.8 in [5], for simple singularities

which gives an explicit description for the possible forms of f . Let k be an algebraically

closed field of characteristic 0 and S = k[[x, y, z2, z3..., zd]]. If R = S/(f) is a simple

singularity then f is equal to one of the following:

(An) x2 + yn+1 + z2
2 + z2

3 + ...+ z2
d (n ≥ 1),

(Dn) x2y + yn−1 + z2
2 + z2

3 + ...+ z2
d (n ≥ 4),

(E6) x3 + y4 + z2
2 + z2

3 + ...+ z2
d,

(E7) x3 + xy3 + z2
2 + z2

3 + ...+ z2
d,

(E8) x3 + y5 + z2
2 + z2

3 + ...+ z2
d.

In order to give the definition of an AR quiver, we must first establish some

notation. Let C(R) be the full subcategory of R-mod consisting of MCM modules.

Then for two indecomposable modules M,N ∈ C(R) the radical of M and N is the

submodule of HomR(M,N) consisting of all non-invertible morphisms f : M → N

and is denoted rad(M,N). Furthermore,

rad2(M,N) =
∑

rad(L,N) rad(M,L)
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as L ranges over the subcategory C(R). We may now define the submodule of

irreducible morphisms as follows:

Irr(M,N) =
rad(M,N)

rad2(M,N)
.

We note that if f ∈ Irr(M,N) then for any L ∈ C(R) and diagram of the form

L

��
M

>>

f // N

f cannot be decomposed otherwise it would be factored out. Furthermore, we note

that Irr(M,N) is a vector space over k and thus, has a k-dimension; which over the

a fore mentioned rings is always finite and we define as:

irr(M,N) = dimk(Irr(M,N)).

Another important aspect of AR quivers is the encoded notions of AR sequences

and AR translates. For an indecomposable CM module M ∈ C(R), we define a set of

short exact sequences S(M) as follows:

S(M) =

{s : 0→ Ns → Es →M → 0 | s a nonsplit S.E.S. in C(R) with Ns indecomposable} .

By Lemma 2.2 of [5], S(M) is nonempty if M is an indecomposable maximal Cohen

Macaulay module. Furthermore, we may impose a partial ordering on this set of

short exact sequences via the following definition.

Definition 22. [5, Definition 2.3] Let s and t be two elements of S(M). We write

s > t if there is an f ∈ HomR(Ns, Nt) such that Ext1
R(M, f)(s) = t. In this case we
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say that s is bigger than t or t is smaller than s. This is equivalent to the existence

of a commutative diagram:

0 // Ns
//

f
��

Es //

��

M // 0

0 // Nt
// Et //M // 0

We write s ∼ t if f is an isomorphism above. We often identify s with t when s ∼ t.

We make use of this partially ordered set of short exact sequences to recall the

following definition:

Definition 23 (Definition 2.8 , [5]). Let M be an indecomposable CM module over

R. If a short exact sequence

s : 0→ Ns → Es →M → 0

ending in M is the minimum element in S(M) then, if it exists, is uniquely determined

by M . Such a short exact sequence is called an AR sequence. In particular, the

modules Ns and Es are also unique up to an isomorphism. If s is the AR sequence

ending in M , then we denote Ns by τ(M) and call it the AR translation of M .

We may now, finally, define an AR quiver.

Definition 24. [5, Definition 5.3] The AR quiver Γ of C(R) for a simple singularity

R is a directed graph where:

◦ each vertex corresponds to a non-isomorphic, indecomposable CM module,

◦ the number of arrows from vertex M to vertex N corresponds to the integer

irr(M,N),

◦ also, to encode the information of the AR translation τ(M), we connect the

vertex M to the vertex N with a dotted line if N = τ(M) such that there is an

AR sequence 0→ τ(M)→ E →M → 0 for some E.
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1.6 AR Quivers Over Rings of Finite Type

We now give a full accounting of the AR quivers when R is a 1-dimensional

ring of finite CM type.

Let R = k[[x, y]]/(f) as a special case of the previous description.

• For An with n even we have that the AR quiver is:

R //M1oo //M2oo // · · ·oo //Mn
2

oo

• For An with n odd we have that the AR quiver is:

N−

||
R //M1

//oo M2
//oo · · · //oo Mn−1

2
oo

<<

""
N+

bb

For both odd and even n, M0
∼= R and Mj = Cokerϕj where

ϕj =

 x yj

yn+1−j −x

 , 1 ≤ j <
n+ 1

2
.

In the case that n is odd we write n = 2k − 1. In this case, N+ = R/(yk + ix),

N− = R/(yk − ix) and Mk = N+ ⊕N−.

• For Dn, n odd, the AR quiver is:

A

��

Y1
oo //

xx

M1
//

��

Y2
//

��

· · · //

��

Mn−3
2

##

��

R

&&

· · · Xn−3
2

cc

{{
B

GG

X1
oo // N1

//

WW

X2
//

WW

· · · //

WW

Nn−3
2

;;

XX
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• For Dn, n even, the AR quiver is:

C+

||
A

��

Y1
oo //

ww

M1
//

��

Y2
//

��

M2
//

��

· · · //

��

Yn−2
2

//

��

��

D+

��

R

''

· · ·

B

GG

X1
oo // N1

//

XX

X2
//

XX

N2
//

XX

· · · //

XX

Xn−2
2

//

HH

YY

C−

YY

D−

bb

For both even and odd n let

(α, β) = (y, x2 + y2l−2),

(γ+, δ+) = (y(x+ iyl−1), x− iyl−1),

(γ−, δ−) = (y(x− iyl−1), x+ iyl−1).

Then

A = Cokerα, B = Coker β,

C+ = Coker γ+, C− = Coker γ−,

D+ = Coker δ+, D− = Coker δ−.

Furthermore, for the matrices:

ϕj =

 x yj

yn−j−2 −x

 , ψj =

 xy yj+1

yn−j−1 −xy

 , ξj =

 x yj

yn−j−1 −xy

 , ηj =

 xy yj

yn−j−1 −x


we have that:

Mj = Cokerϕj, Nj = Cokerψj, Xj = Coker ξj and Yj = Coker ηj.
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• For E6 the AR quiver is:

B

��

//M1

��

M2
//
Xoo

??

��

R

``

A

__

// N1

>>

XX

Take the matrices:

ϕ1 =

 x y

y3 −x2

 , ψ1 =

x2 y

y3 −x

 ,
ϕ2 =

 x y2

y2 −x2

 , ψ2 =

x2 y2

y2 −x

 ,

α =


y3 x2 xy2

xy −y2 x2

x2 −xy −y3

 , β =


y 0 x

x −y2 0

0 x −y


Then

Mi = Cokerϕi, Ni = Cokerψi, (i = 1, 2)

A = Cokerα and B = Coker β.

• For E7 the AR quiver is:

C

��

D

��
A //M2

//

��

Y2
//

��

Y3
//

}}

``

Y1
//

~~

M1

��

R

``

B // N2
//

XX

X2
//

XX

X3
//

XX

II

X1
//

XX

N1

>>

XX
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Take the matrices:

α = x, β = x2 + y3,

γ =

 x2 yx

xy2 −x2

 , δ =

 x y

y2 −x

 ,
ϕ1 =

 x y

xy2 −x2

 , ψ1 =

 x2 y

xy2 −x

 ,
ϕ2 =

 x y2

xy −x2

 , ψ2 =

x2 y2

xy −x

 ,

ξ1 =


xy2 x2 −x2y

xy y2 −x2

x2 xy xy2

 , η1 =


y 0 x

−x xy 0

0 −x y

 ,

ξ2 =


x2 −y2 −xy

xy x −y2

xy2 xy x2

 , η2 =


x 0 y

−xy x2 0

0 −xy x

 ,

ξ3 =

γ ε

0 δ

 , η3 =

δ −ε
0 γ


where

ε =

y 0

0 y

 .
Then

Mi = Cokerϕi, Ni = Cokerψi, (i = 1, 2)

Xi = Coker ξi, Yi = Coker ηi, (i = 1, 2)

A = Cokerα, B = Coker β

C = Coker γ, D = Coker δ.
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• For E8 the AR quiver is:

A2

��

B2

��
N2

// D2
//

��

X1
//

``

}}

X2
//

}}

C1
//

��

B1
//

��

N1

  

��

R

~~
M2

// C2
//

XX

Y1
//

XX

II

Y2
//

XX

D1
//

XX

A1
//

XX

M1

XX

Take the matrices:

ϕ1 =

 x y

y4 −x2

 , ψ1 =

x2 y

y4 −x

 ,
ϕ2 =

 x y2

y3 −x2

 , ψ2 =

x2 y2

y3 −x

 ,

α1 =


y −x 0

0 y −x

x 0 y2

 , β1 =


y4 xy3 x2

−x2 y4 xy

−xy −x2 y2

 ,

α2 =


y −x 0

0 y2 −x

x 0 y2

 , β2 =


y4 xy3 x2

−x2 y4 xy

−xy −x2 y2

 ,

γ1 =



y −x 0 y3

x 0 −y3 0

−y2 0 −x2 0

0 −y2 −xy −x2


, δ1 =



0 x2 −y3 0

−x2 xy 0 −y3

0 −y2 −x 0

y2 0 y −x


,
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γ2 =



x y2 0 y

y3 −x2 −xy2 0

0 0 x2 y2

0 0 y3 −x


, δ2 =



x2 y2 0 xy

y3 −x −y2 0

0 0 x y2

0 0 y3 −x2


,

ξ1 =



y4 xy2 x2 0 0 xy

−x2 y3 xy −x 0 0

−xy2 −x2 y3 0 −xy 0

0 0 0 y −x 0

0 0 0 0 y2 −x

0 0 0 x 0 y2


, η1 =



y −x 0 0 0 −x

0 y2 −x xy 0 0

x 0 y2 0 xy 0

0 0 0 y4 xy2 x2

0 0 0 −x2 y3 xy

0 0 0 −xy2 −x2 y3


,

ξ2 =



y4 x2 0 −xy2 0

−x2 xy 0 −y3 0

0 −y2 −x 0 y3

−xy2 y3 0 x2 0

−y3 0 −y2 xy −x2


, η2 =



y −x 0 0 0

x 0 0 y2 0

−y2 0 −x2 0 −y3

0 −y2 0 x 0

0 0 y2 y −x



Then

Mi = Cokerϕi, Ni = Cokerψi,

Ai = Cokerαi, Bi = Coker βi,

Ci = Coker γi, Di = Coker δi,

Xi = Coker ξi, Yi = Coker ηi

for i = 1, 2.
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CHAPTER 2

The Extension of AR Quivers

In this section we describe the extension of AR quivers from the category of

Q-modules to the triangulated category Ktac(Q). In order to facilitate this extension

we first define the notions of split and irreducible morphisms in Ktac(Q). We spend

much of this chapter proving several lemmas in order to show that these notions

extend nicely from the module category. In fact, we give a partial converse to Lemma

5.3 from [10], which we make extensive use of throughout this dissertation. We then

describe how the vocabulary of AR theory in the module case extends to a triangulated

category; namely, the ideas of AR triangles and AR translates. Furthermore, we not

only show that these notions exist in Ktac(Q), but also provide concrete descriptions

of both. Finally, we give a full accounting of the associated quivers and describe the

corresponding vertices.

2.1 Split and Irreducible Morphisms

Let Q be a CM local ring with maximal ideal m and residue field k. We first

define what it means to be a split monomorphism and split epimorphism of complexes

in the category Ktac(Q).

Definition 25. Let f : C → D be a morphism of totally acyclic complexes. We say

that f is a split monomorphism if there exists a morphism of complexes γ : D → C

such that γ ◦ f ∼ IdC . Similarly, we say that f is a split epimorphism if there exists

a morphism of complexes λ : D → C such that f ◦ λ ∼ IdD.
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When the distinction is irrelevant, we will often refer to a morphism which is

either a split monomorphism or a split epimorphism as simply a split morphism. In

particular, a morphism which does not split is a morphism which is neither a split

epimorphism nor a split monomorphism.

Definition 26. [19, Section 4.3] Let C and D be totally acyclic complexes over R,

and let f : C → D be a morphism of complexes. Then we say that f is an irreducible

chain morphism if the following two conditions are satisfied:

i) f is not a split epimorphism nor a split monomorphism,

ii) if f can be decomposed as f ∼ h ◦ g then either g is a split monomorphism or

h is a split epimorphism.

One should note that this definition is simply a restriction of Happel’s definition

from [19] for an arbitrary category. We now give the definition of an irreducible

morphism of totally acyclic complexes. The definitions of split and irreducible

morphisms are analogous to those in the module category. The next few propositions

will show that under certain conditions, an irreducible/split morphism in the category

R-mod extends to one in Ktac(R) and vice-versa.

Lemma 27. Assume the chain maps p, q : C → D are homotopic with a homotopy

morphism σ. Then p is a split epimorphism or a split monomorphism if and only if q

is as well.

Proof. If p ∼ q then for each n ∈ Z,

pn − qn = σn−1∂
C
n + ∂Dn+1σn. (2.1)

Now assume that p is a split monomorphism, then there exists a chain map γ : D → C

and homotopy τ such that

IdCn −γnpn = τn−1∂
C
n + ∂Cn+1τn (2.2)
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for each n. Then by composing equation (2.1) on the right by γn we obtain

γnpn − γnqn = γnσn−1∂
C
n + γn∂

D
n+1σn (2.3)

and by substituting equation (2.2) into (2.3) we obtain

IdCn −τn−1∂
C
n − ∂Cn+1τn − γnqn = γnσn−1∂

C
n + γn∂

D
n+1σn.

Rearranging the previous equations and making the appropriate substitutions, we see

that

IdCn −γnqn = γnσn−1∂
C
n + τn−1∂

C
n + ∂Cn+1γn+1σn + ∂Cn+1τn

which gives

IdCn −γnqn = ηn−1∂
C
n + ∂Cn+1ηn

where ηn = γn+1σn + τn. Thus, IdC ∼ γq and q is a split monomorphism.

Assume now that p is a split epimorphism. Then there exists a chain map

λ : D → C and homotopy τ such that

IdDn −pnλn = τn−1∂
D
n + ∂Dn+1τn

for each n. Then, via an almost identical process, we obtain

IdDn −qnλn = νn−1∂
D
n + ∂Dn+1νn

where νn = σnλn + τn. Thus, IdD ∼ qλ and q is a split epimorphism. The reverse

statement holds by switching p and q, which proves the statement.

Proposition 28. Assume there exist chain maps f, g : C → D such that f ∼ g. If f

is an irreducible chain map, then so is g.

Proof. Let f be an irreducible morphism. Since f is not a split monomorphism nor a

split epimorphism by Lemma 27, neither is g. Now suppose g decomposes so that
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g ∼ k ◦ h and note that by transitivity, f ∼ k ◦ h. Now since f is an irreducible

morphism which decomposes, we must have that either k is a split monomorphism or

h is a split epimorphism. This proves that g is an irreducible morphism.

We will now show that under particular assumptions, f : M → N is an

irreducible morphism of R-modules if and only if the chain map f̂ : C → D is

irreducible (where C and D are complete resolutions of M and N , respectively). We

first state Lemma 5.3 from [10].

Lemma 29. [10, Lemma 5.3] Let C
ρ−→ P

π−→ M and D
ρ′−→ P ′

π′−→ N be complete

resolutions of finitely generated R-modules M and N , respectively. Further assume

f : M → N is an R-module homomorphism, then there exists a unique (up to

homotopy) morphism of R-complexes f̄ , making the right-hand square of the diagram

C
ρ //

f̂
��

P π //

f̄
��

M

f
��

D
ρ′ // P ′

π′ // N

commute, and for each choice of f̄ there exists a unique up to homotopy morphism f̂

making the left-hand square commute up to homotopy. If two such f̄ are homotopic,

then so are the respective f̂ . If f = 1M , then f̄ and f̂ are homotopy equivalences.

Effectively, this tells us that for each map f : M → N we have an induced

morphism f̂ of totally acyclic complexes. However, under certain conditions, we

may also obtain f : M → N from the morphism of totally acyclic complexes f̂ . In

effect, the following lemma is a converse to the previous one. This fact will play an

important role in later applications.

Lemma 30. Let R be a Gorenstein local ring, and let M,N be maximal Cohen-

Macaulay modules over R. Suppose further that C and D are the respective complete

resolutions of M and N . Then for a morphism of totally acyclic complexes f̂ : C → D
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we obtain morphisms f̄ : P → P ′ and f : M → N , such that the following diagram

commutes.

C
ρ //

f̂
��

P π //

f̄
��

M

f
��

D
ρ′ // P ′ π′ // N

Furthermore, these morphisms are unique in their respective categories.

Proof. Let M and N be maximal Cohen-Macaulay modules over a Gorenstein local

ring R. Then by Theorem 3.1 in [10], M and N have complete resolutions

C
ρ−→ P

π−→M

and

D
ρ′−→ P ′

π′−→ N

(respectively), such that ρn and ρ′n are bijective for all n ≥ 0. Now we define

f̄ : P → P ′ to be

f̄n = ρ′nf̂nρ
−1
n .

Our goal now is to show that f̄ is a chain map. To do this we make use of the

following diagram which we know commutes on all faces, save the bottom, which we

will begin with proving.

· · · // Cn+1 ∂Cn+1
//

f̂n+1

{{
ρn+1

��

Cn ∂Cn
//

f̂n
~~

ρn

��

Cn−1
//

f̂n−1

{{
ρn−1

��

· · ·

· · · // Dn+1 ∂Dn+1
//

ρ′n+1

��

Dn ∂Dn
//

ρ′n

��

Dn−1
//

ρ′n−1

��

· · ·

· · · // Pn+1 ∂Pn+1
//

f̄n+1

{{

Pn ∂Dn
//

f̄n
~~

Pn−1
//

f̄n−1

{{

· · ·

· · · // P ′n+1 ∂P
′

n+1
// P ′n ∂P

′
n

// P ′n−1
// · · ·

27



Observe,

f̄n ∂
P
n+1 = ρ′nf̂nρ

−1
n ∂Pn+1 =

ρ′nf̂n ∂
C
n+1 ρ

−1
n+1 = ρ′n ∂

D
n+1 f̂n+1ρ

−1
n+1 =

∂P
′

n+1 ρ
′
n+1f̂n+1ρ

−1
n+1 = ∂P

′

n+1 f̄n+1

as needed. We finally show that if f̂ ∼ f̂ ′ then their induced maps, f̄ and f̄ ′ are

homotopic as well. Let f̂ ∼ f̂ ′ so that there exists σ : C → ΣD such that for all n,

f̂n − f̂ ′n = σn−1 ∂
C
n + ∂Dn+1 σn.

Now then,

f̄n − f̄ ′n = ρ′nf̂nρ
−1
n − ρ′nf̂ ′nρ−1

n =

ρ′n(f̂n − f̂ ′n)ρ−1
n = ρ′n(σn−1 ∂

C
n + ∂Dn+1 σn)ρ−1

n =

ρ′nσn−1 ∂
C
n ρ
−1
n + ρ′n ∂

D
n+1 σnρ

−1
n =

ρ′nσn−1ρ
−1
n−1 ∂

P
n + ∂P

′

n+1 ρ
′
n+1σnρ

−1
n =

κn−1 ∂
P
n + ∂P

′

n+1 κn

for κn = ρ′n+1σnρ
−1
n . Thus we have that f̄ ∼ f̄ ′.

We now turn our attention to the existence of f : M → N . Consider the

diagram which we know commutes on all faces:

· · · // P1 ∂P1
//

f̄1

~~

��

P0
//

f̄0

~~

ε

��

0 //

��

��

· · ·

· · · // P ′1 ∂P
′

1
//

��

P ′0 //

ε′

��

0 //

��

· · ·

· · · // 0 //

}}

M //

f
}}

0 //

~~

· · ·

· · · // 0 // N // 0 // · · ·
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Since

· · · → P1
∂P1−→ P0

ε−→M → 0

is an exact sequence we have that ε is surjective. Thus, for each x ∈M there exists

p ∈ P0 such that ε(p) = x; so define f(x) = ε′f̄0(p). To show that f is well defined

take p, p′ ∈ P0 such that ε(p) = x = ε(p′). Then p− p′ ∈ ker ε = Im ∂P1 so there exists

y ∈ P1 such that ∂P1 (y) = p− p′. So we have that

ε′f̄0(p) =

ε′f̄0(∂P1 (y) + p′) = ε′f̄0 ∂
P
1 (y) + ε′f̄0(p′) = ε′ ∂P

′

1 f̄1(y) + ε′f̄0(p′)

= ε′f̄0(p′)

proving f is well defined. Furthermore, if f̄ ∼ f̄ ′ then their induced maps are equal.

To see this, note that there exists σ : P → ΣP ′ such that f̄0 − f̄ ′0 = ∂P
′

1 σ0 + 0. Then

f − f ′ = ε′f̄0 − ε′f̄ ′0 = ε′(f̄0 − f̄ ′0) = ε′ ∂P
′

1 σ0 = 0,

demonstrating that f = f ′, and therefore f is unique.

It should be noted that the maximal Cohen-Macaulay condition on modules in

the previous lemma is necessary, as otherwise the bijectivity of ρ0 is not guaranteed.

Lemma 31. Let R be a Gorenstein local ring, and let M,N be maximal Cohen-

Macaulay modules over R. Then an R-module homomorphism f : M → N is a split

monomorphism (resp. epimorphism) if and only if the induced morphism of totally

acyclic complexes f̂ : C → D is a split monomorphism (resp. epimorphism).

Proof. Let f : M → N be a split R-module homomorphism, which implies there

exists a g : N → M such that either gf = 1M or fg = 1N . By Lemma 29 we have

that there exist f̄ , ḡ, f̂ and ĝ such that the following diagram of complete resolutions

commutes:
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C
ρ //

f̂
��

P π //

f̄
��

M

f
��

1M

��

D
ρ′ //

ĝ
��

P ′
π′ //

ḡ
��

N

g

��
1N

��

C
ρ //

f̂
��

P
π //

f̄
��

M

f
��

D
ρ′ // P ′ π′ // N

Also by Lemma 29, if gf = IdM we must have that

ḡf̄ ∼ IdP and ĝf̂ ∼ IdC .

Similarly, if fg = IdN we have

f̄ ḡ ∼ IdP ′ and f̂ ĝ ∼ IdD .

This shows that if f is a split monomorphism (resp. split epimorphism) then f̂ is a

split monomorphism (resp. split epimorphism).

Now assume that f̂ : C → D is a split morphism of totally acyclic complexes.

Then there exists a ĝ : D → C such that either, ĝf̂ ∼ IdC or f̂ ĝ ∼ IdD. In other

words, there exists σ : C → ΣC such that

ĝf̂ − IdC = ∂Cn+1 σn + σn−1 ∂
C
n

or σ′ : D → ΣD such that

f̂ ĝ − IdD = ∂Dn+1 σ
′
n + σ′n−1 ∂

D
n .

By Lemma 30 we obtain the induced maps ḡ, f̄ , g and f such that f̄n = ρ′nf̂nρ
−1
n and

similarly, ḡn = ρnĝnρ
′−1
n , such that the following diagram commutes:
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C
ρ //

f̂
��

IdC

��

P π //

f̄
��

M

f
��

D
ρ′ //

ĝ
��

IdD

��

P ′
π′ //

ḡ
��

N

g

��
C

ρ //

f̂
��

P
π //

f̄
��

M

f
��

D
ρ′ // P ′ π′ // N

Now

ḡnf̄n =

(ρnĝnρ
′−1
n )(ρ′nf̂nρ

−1
n ) = ρnĝnρ

′−1
n ρ′nf̂nρ

−1
n =

ρnĝnf̂nρ
−1
n = ρn(IdCn + ∂Cn+1 σn + σn−1 ∂

C
n )ρ−1

n =

ρnIdCnρ
−1
n + ρn ∂

C
n+1 σnρ

−1
n + ρnσn−1 ∂

C
n ρ
−1
n =

IdPn + ∂Pn+1 ρn+1σnρ
−1
n + ρnσn−1ρ

−1
n−1 ∂

P
n

= IdPn + ∂Pn+1 τn + τn−1 ∂
P
n

where τn = ρn+1σnρ
−1
n . So we have that

ḡf̄ ∼ IdP .

We can similarly show that f̄ ḡ ∼ IdP ′ .

Thus far we have shown that if f̂ splits then f̄ splits as well. In other words we

have that f̄ ḡ ∼ IdP ′ or ḡf̄ ∼ IdP . In particular, we have that

ḡ0f̄0 − IdP0 = ∂P1 τ0 + 0

or

f̄0ḡ0 − IdP ′0 = ∂P
′

1 τ ′0 + 0.

From this we obtain the following commutative diagram:
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M

f

��

· · · // P1 ∂P1
//

f̄1

��

IdP1

��

P0
//

ε

>>

f̄0

��

IdP0

��

τ0

��

0

N

g

��

· · · // P ′1 ∂P
′

1
//

ḡ1

��

P ′0 //

ε′
>>

f̄0

��

0

M

· · · // P1 ∂P1
// P0

//

ε

>>

0

It should also be noted that g : N → M is given by g(y) = εḡ0(p
′) where

ε′(p′) = y and is well defined. Now if x ∈M then gf(x) = g(ε′f̄0(p)) where ε(p) = x

and p′ = f̄0(p). It follows that

g(ε′f̄0(p)) =

εḡ0f̄0(p) = ε(IdP0 + ∂P1 τ0)(p) = ε IdP0(p) + ε ∂P1 τ0(p)

= ε(p) = x

and therefore gf = IdM . We can similarly show that fg = IdN . Thus, we have

shown that if f̂ is a split monomorphism (resp. epimorphism) then f is a split

monomorphism (resp. epimorphism). Thus, f̂ splits if and only if f splits.

In the previous lemmas we have shown that the split and irreducible properties

are preserved under homotopy and that split morphisms can be extended to and from

the homotopy category of totally acyclic complexes. We now prove the last piece of

the puzzle linking AR quivers over R-mod and Ktac(R): that irreducible morphisms

can be extended as well.
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Proposition 32. Let R be a Gorenstein local ring, and let M,N be maximal

Cohen-Macaulay modules over R. Then an R-module homomorphism f : M → N is

irreducible if and only if the induced morphism of totally acyclic complexes f̂ : C → D

is irreducible.

Proof. Let f be an irreducible R-module homomorphism. By definition f : M → N

must not be a split morphism, so that by Lemma 31, the induced morphism f̂ : C → D

is not split either. Now assume that f decomposes as in the following diagram:

M
f //

g   

N

X
h

>>

In this case we must have that either g : M → X is a split monomorphism or

h : X → N is a split epimorphism. Now by Lemma 29 and its uniqueness property,

we have that there exist morphisms f̄ , ḡ, h̄ and f̂ , ĝ, ĥ such that each face of the

following diagram commutes.

C
ρ //

f̂

��

ĝ

��

P
π //

f̄

��

ḡ

  

M
g

  

f

��

A
ρ′′ //

ĥ
��

P ′′
π′′ //

h̄
~~

X

h

~~

Fig. 1

D
ρ′ // P ′ π′ // N

So, we have that

f̄ ∼ h̄ḡ and f̂ ∼ ĥĝ.

Now by Lemma 31, if g is a split monomorphism then so are ḡ and ĝ. Similarly, if h

is a split epimorphism then so are h̄ and ĥ. Thus, if f is irreducible, then so is f̂ .

Now assume that f̂ is an irreducible morphism of totally acyclic complexes. By

definition f̂ is not a split morphism and, by Lemma 31, neither is f . Also, we have
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that if f̂ ∼ ĥĝ, either ĝ is a split monomorphism or ĥ is a split epimorphism. Now,

by Lemma 30, there exist morphisms f̄ , ḡ, h̄ and f, g, h such that each face of Fig. 1

commutes. Therefore, we have that f̂ ∼ ĥĝ and f = hg. Furthermore, by Lemma 31

we have that if ĝ is a split monomorphism or ĥ is a split epimorphism, then so must

be g or h, respectively. Thus, if f̂ is irreducible then f is irreducible as well, proving

the statement.

2.2 Extension of AR Quivers to Ktac(Q)

The extension of AR quivers to Ktac(Q) begins by recalling the definition of an

AR triangle from [20]. See also [15].

Definition 33. [20, Section 3.1] A distinguished triangle

X
u−→ Y

v−→ Z
w−→ ΣX

is called an Auslander-Reiten triangle, or AR triangle, if the following conditions are

satisfied:

(AR1) X and Z are indecomposable objects,

(AR2) w 6= 0,

(AR3) If f : W → Z is not a retraction, then there exists f ′ : W → Y such that

vf ′ = f .

We say that a triangulated category T has AR triangles if, for any indecomposable

object Z of T , there exists an AR-triangle ending at Z :

X
u−→ Y

v−→ Z
w−→ ΣX.

In this case, the AR-triangle is unique up to triangle isomorphism inducing the

identity of Z. To show that Ktac(Q) has AR triangles, we must briefly discuss Serre

functors. As defined in [15], a Serre functor of a category T is an auto-equivalence
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ν : T → T together with an isomorphism DHomT (X,−) ' HomT (−, νX) for each

X ∈ T , where D is the duality, Homk(−, k). Applying Theorem 1.1.1 from [15] to

Ktac(Q) we may deduce that Ktac(Q) has a Serre functor ν.

In fact, as shown by Auslander [27] in 1978, the stable category of maximal

Cohen-Macaulay modules over a commutative isolated d-dimensional local Gorenstein

singularity is (d− 1) Calabi-Yau. (See also [28]) Since the rings we are dealing with

have dimension one, the Serre functor is given by ν = Id. To prove that Ktac(Q) has

AR triangles, consider the indecomposable totally acyclic complex Z. Then the AR

triangle ending in Z is given by

τZ → Y → Z → νZ

where τ , given by the composition τ = Σ−1ν, is the AR translate. In other words we

have the triangle:

Σ−1Z → Y → Z → ΣZ

Recall that in what follows the ring Q is a Henselian Gorenstein local ring of

finite CM type. In order to construct AR quivers in Ktac(Q) we note that if a maximal

Cohen-Macaulay module M is indecomposable then the totally acyclic complex C

induced from the complete resolution C → P →M is indecomposable as well. The

proof of this fact is held until the next chapter (see Proposition 36), but has a few

consequences we now mention. For one, we have that Q is of finite CM type if and only

if Q is of finite TAC type; in other words, it has only finitely many indecomposable

totally acyclic Q-complexes up to homotopy equivalence. Furthermore, by considering

the vertices in the AR quivers of the Q-module category and extending those to

totally acyclic complexes via their complete resolutions, we obtain the vertices of

the AR quivers in Ktac(Q). For the edges, we consider the irreducible morphisms

between the indecomposable modules. By applying Proposition 32 to each irreducible
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morphism in the AR quiver in Q-mod we obtain irreducible morphisms between the

indecomposable totally acyclic complexes. Hence, we obtain the edges of the AR

quiver in Ktac(Q).

Before presenting a full accounting of the AR quivers in the category Ktac(Q),

it may be illuminating to see a specific example.

Example 34. Consider the case (A3); that is, when Q = k[[x,y]]
(x2+y4)

. Then the AR

quiver in the module category is given by:

N−

}}
Q //M1oo

==

!!

N+

aa

where the vertices are given by:

M1 = Coker

 x y

y3 −x

,
N− = Coker (x− iy2),

N+ = Coker (x+ iy2).

Furthermore, the AR sequences ending in the modules M1, N+, N− are:

0→M1 → Q⊕N+ ⊕N− →M1 → 0,

0→ N− →M1 → N+ → 0,

0→ N+ →M1 → N− → 0

respectively.
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Then by extending the modules and irreducible morphisms to their associated

counterparts in Ktac(Q) we obtain the AR quiver:

E−

}}
E1

==

!!

E+

aa

where the totally acyclic complex associated to the module Q is the zero complex,

since pdQ(Q) = 0. The other vertices are given by the totally acyclic complexes:

E1 = · · · → Q2

1

[ x y
y3 −x

]
−−−−−→ Q2

0

[ x y
y3 −x

]
−−−−−→ Q2

−1
→ · · ·

E− = · · · → Q
1

(x−iy2)−−−−→ Q
0

(x+iy2)−−−−→ Q
−1
→ · · ·

E+ = · · · → Q
1

(x+iy2)−−−−→ Q
0

(x−iy2)−−−−→ Q
−1
→ · · ·

We may similarly extend the AR sequences to triangles given by:

E1 → E+ ⊕ E− → E1 → E1,

E− → E1 → E+ → E−,

E+ → E1 → E− → E+

respectively.

2.3 AR Quivers in Ktac(Q)

For completeness we now give the AR quivers for each case as we did previously.

One should note that these are completely analogous to those in the module category.

Let

Q =
k[[x, y]]

(f)
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• When f = x2 + yn+1 we have two cases, for (An) with n = 2l we have the quiver

E1
// E2oo // · · ·oo // En

2
−1oo // En

2
oo

where:

Ej = · · · → Q2


x yj

yn+1−j −x


−−−−−−−−−−→ Q2


x yj

yn+1−j −x


−−−−−−−−−−→ Q2 → · · ·

for 1 ≤ j ≤ n
2
.

For (An) with n = 2l − 1 we have the quiver

E−

||
E1

// E2
//oo · · · //oo En−1

2
oo

<<

""
E+

bb

where, similar to the above example:

Ej = · · · → Q2


x yj

yn+1−j −x


−−−−−−−−−−→ Q2


x yj

yn+1−j −x


−−−−−−−−−−→ Q2 → · · ·

E− = · · · → Q
(x−iyl)−−−−→ Q

(x+iyl)−−−−→ Q→ · · ·

E+ = · · · → Q
(x+iyl)−−−−→ Q

(x−iyl)−−−−→ Q→ · · ·

for 1 ≤ j ≤ n−1
2

.
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• When f = x2y + yn−1 we again have two cases, for (Dn) with n even we have

the quiver

E+

||
A

��

G1
oo // E1

//

��

G2
//

��

E2
//

��

· · · //

��

Gn−2
2

//

��

}}

F+

}}
B

@@

H1
oo // F1

//

__

H2
//

__

F2
//

__

· · · //

__

Hn−2
2

//

FF

aa

E−

aa

F−

bb

where the vertices are given by the following totally acyclic complexes:

A = · · · → Q
(y)−→ Q

(x2+yn−2)−−−−−−→ Q
(y)−→ Q→ · · ·

Ej = · · · → Q2


x yj

yn−j−2 −x


−−−−−−−−−−→ Q2


xy yj+1

yn−j−1 −xy


−−−−−−−−−−−→ Q2 → · · ·

Gj = · · · → Q2


x yj

yn−j−1 −xy


−−−−−−−−−−−→ Q2


xy yj

yn−j−1 −x


−−−−−−−−−−→ Q2 → · · ·

E+ = · · · → Q
y(x+iy

n−2
2 )−−−−−−−→ Q

(x−iy
n−2

2 )−−−−−−→ Q
y(x+iy

n−2
2 )−−−−−−−→ Q→ · · ·

E− = · · · → Q
y(x−iy

n−2
2 )−−−−−−−→ Q

(x+iy
n−2

2 )−−−−−−→ Q
y(x−iy

n−2
2 )−−−−−−−→ Q→ · · ·

B = Σ−1A,Fj = Σ−1Ej,

F+ = Σ−1E+, F− = Σ−1E−,

Hj = Σ−1Gj

for 1 ≤ j ≤ n− 3.

For (Dn) with n odd we have the quiver
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A

��

G1
oo // E1

//

��

G2
//

��

· · · //

��

En−3
2

%%

��

· · · Hn−1
2

ee

yy
B

EE

H1
oo // F1

//

YY

H2
//

YY

· · · //

YY

Fn−3
2

99

[[

where the vertices are the same as those in the even case, with the caveat that

Hn−1
2
' Gn−1

2

and as such, is its own AR translate.

• When f = x3 + y4 we have the case (E6) and the is quiver given by

B

{{

// E1

��

E2
// Hoo

;;

##
A

cc

// F1

ZZ

where the vertices are given by the following totally acyclic complexes:

E1 = · · · → Q2


x y

y3 −x2


−−−−−−−−→ Q2


x2 y

y3 −x


−−−−−−−→ Q2 → · · ·

E2 ' F2 = · · · → Q2


x y2

y2 −x2


−−−−−−−−→ Q2


x2 y2

y2 −x


−−−−−−−→ Q2 → · · ·

A = · · · → Q3



y3 x2 xy2

xy −y2 x2

x2 −xy −y3


−−−−−−−−−−−−−→ Q3



y 0 x

x −y2 0

0 x −y


−−−−−−−−−−−→ Q3 → · · ·
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H = · · · → Q4



x y2 0 y

y2 −x2 −xy 0

0 0 x2 y

0 0 y3 −x


−−−−−−−−−−−−−−−−→ Q4



x2 y 0 xy

y3 −x y 0

0 0 x y2

0 0 y2 −x2


−−−−−−−−−−−−−−−→ Q4 → · · ·

F1 = Σ−1E1, B = Σ−1A.

• When f = x3 + xy3 we have the case (E7) and the quiver is given by

C

��

D

��
A // E2

//

~~

G2
//

~~

G3
//

vv

aa

G1
//

vv

E1

~~
B // F2

//

``

H2
//

``

H3
//

aa

FF

H1
//

aa

F1

``

where the vertices are given by the following totally acyclic complexes:

A = · · · → Q
(x)−→ Q

(x2+y3)−−−−→ Q→ · · ·

C = · · · → Q2


x2 yx

xy2 −x2


−−−−−−−−−→ Q2


x y

y2 −x


−−−−−−−→ Q2 → · · ·

E1 = · · · → Q2


x y

xy2 −x2


−−−−−−−−−→ Q2


x2 y

xy2 −x


−−−−−−−−→ Q2 → · · ·

E2 = · · · → Q2


x y2

xy −x2


−−−−−−−−→ Q2


x2 y2

xy −x


−−−−−−−→ Q2 → · · ·
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G1 = · · · → Q3



y 0 x

−x xy 0

0 −x y


−−−−−−−−−−→ Q3



xy2 −x2 −x2y

xy y2 −x2

x2 xy xy2


−−−−−−−−−−−−−−→ Q3 → · · ·

G2 = · · · → Q3



y 0 x

−x xy 0

0 −x y


−−−−−−−−−−→ Q3



xy2 −x2 −x2y

xy y2 −x2

x2 xy xy2


−−−−−−−−−−−−−−→ Q3 → · · ·

G3 = · · · → Q4



x y −y 0

y2 −x 0 −y

0 0 x2 xy

0 0 xy2 −x2


−−−−−−−−−−−−−−−−→ Q4



x2 xy y 0

xy2 −x2 0 y

0 0 x y

0 0 y2 −x


−−−−−−−−−−−−−−−−→ Q4 → · · ·

B = Σ−1A,D = Σ−1C

and

Fi = Σ−1Ei , Hj = Σ−1Gj

for 1 ≤ i ≤ 2 and 1 ≤ j ≤ 3.

• Finally, when f = x3 + y5 we have the case (E8) and the quiver is given by

A2

��

B2

��
F2

// D2
//

~~

H1
//

aa

vv

H2
//

vv

C1
//

}}

B1
//

~~

F1

~~
E2

// C2
//

``

G1
//

aa

FF

G2
//

aa

D1
//

aa

A1
//

``

E1

``

where the vertices are given by the following totally acyclic complexes:
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A1 = · · · → Q3



y −x 0

0 y −x

x 0 y2


−−−−−−−−−−→ Q3



y4 xy3 x2

−x2 y4 xy

−xy −x2 y2


−−−−−−−−−−−−−→ Q3 → · · ·

A2 = · · · → Q3



y −x 0

0 y2 −x

x 0 y2


−−−−−−−−−−→ Q3



y4 xy3 x2

−x2 y4 xy

−xy −x2 y2


−−−−−−−−−−−−−→ Q3 → · · ·

E1 = · · · → Q2


x y

y4 −x2


−−−−−−−−→ Q2


x2 y

y4 −x


−−−−−−−→ Q2 → · · ·

E2 = · · · → Q2


x y2

y3 −x2


−−−−−−−−→ Q2


x2 y2

y3 −x


−−−−−−−→ Q2 → · · ·

C1 = · · · → Q



y −x 0 y3

x 0 −y3 0

−y2 0 −x2 0

0 −y2 −xy −x2


−−−−−−−−−−−−−−−−−−→ Q



0 x2 −y3 0

−x2 xy 0 −y3

0 −y2 −x 0

y2 0 y −x


−−−−−−−−−−−−−−−−−−→ Q→ · · ·

C2 = · · · → Q



x y2 0 y

y3 −x2 −xy2 0

0 0 x2 y2

0 0 y3 −x


−−−−−−−−−−−−−−−−−→ Q



x2 y2 0 xy

y3 −x −y2 0

0 0 x y2

0 0 y3 −x2


−−−−−−−−−−−−−−−−→ Q→ · · ·
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G1 = · · · → Q


y −x 0 0 0 −x
0 y2 −x xy 0 0
x 0 y2 0 xy 0
0 0 0 y4 xy2 x2

0 0 0 −x2 y3 xy
0 0 0 −xy2 −x2 y3


−−−−−−−−−−−−−−−→ Q


y4 xy2 x2 0 0 xy
−x2 y3 xy −x 0 0
−xy2 −x2 y3 0 −xy 0

0 0 0 y −x 0
0 0 0 0 y2 −x
0 0 0 x 0 y2


−−−−−−−−−−−−−−−−−→ Q→ · · ·

G2 = · · · → Q


y −x 0 0 0
x 0 0 y2 0
−y2 0 −x2 0 −y3

0 −y2 0 x 0
0 0 y2 y −x


−−−−−−−−−−−−−−→ Q


y4 x2 0 −xy2 0
−x2 xy 0 −y3 0

0 −y2 −x 0 y3

−xy2 y3 0 x2 0
−y3 0 −y2 xy −x2


−−−−−−−−−−−−−−−−−→ Q→ · · ·

and

Bj = Σ−1Aj, Dj = Σ−1Cj,

Fj = Σ−1Ej, Hj = Σ−1Gj,

for 1 ≤ j ≤ 2.

44



CHAPTER 3

Classification of Ktac(R)

In this section we define a classification scheme for totally acyclic complexes over

a ring R. Let Q be a Henselian Gorenstein local ring and Q
ϕ−→→ R be a surjective ring

homomorphism such that R has finite projective dimension as a Q-module. We start

by showing that over such a ring, Ktac(Q) is a Krull-Schmidt category. Afterward,

we make use of a pair of functors which induce approximations (discussed at length

in [2]), along with some basic properties of totally acyclic complexes to define an

Arnold-Tuple. As necessitated by this definition, we prove the existence of minimal

right approximations in the category of Ktac(R) as an inevitable extension of the

existence of a non-minimal approximation. We then show that this definition is well

defined up to homotopy, although a more “coarse” description than that of homotopy

equivalence. Lastly, by building upon the work of Bergh, Jorgensen, and Moore

in [3], we discuss an extension of their result which gives a concrete description of

approximations, to the relative codimension c ≥ 2 setting.

3.1 Ktac(Q) is a Krull-Schmidt category

To begin, we recall a definition by Claus Michael Ringel in [13]. We note that

in the first chapter we stated Proposition 5, which relates Henselian rings to the

Krull-Schmidt-Remak theorem. It is now that we build the previously advertised

extension to Ktac(R).
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Definition 35. [13, Section 2.2] A k-additive category T is called a Krull-Schmidt

category if the endomorphism ring End(X) of any indecomposable object C of T is a

local ring.

Let Q be a Henselian Gorenstein local ring, it is in this section we show that

Ktac(Q) is a Krull-Schmidt category. However, we first state two facts which hold in

this category.

Proposition 36. Let Q be a Henselian Gorenstein local ring and M be a maximal

Cohen Macaulay Q-module. Furthermore, let

C
ρ−→ P

π−→M

be the complete resolution of M with C ∈ Ktac(Q). Then we have that M is

indecomposable if and only if C is as well.

Proof. Assume for contraposition that M is decomposable, so that we may write

M = A⊕B with neither A nor B contractible. We can then consider the complete

resolution of A⊕B,

CA ⊕ CB
ρ′−→ PA ⊕ PB

π′−→ A⊕B,

which gives us the following diagram:

C
ρ //

µ̂
��

P
π //

µ̄
��

M

Id
��

CA ⊕ CB
ρ′ // PA ⊕ PB π′ // A⊕B

Then by Lemma 29 we have that µ̂ is a homotopy equivalence, and therefore C is

a decomposable complex in Ktac(Q). Similarly, if C is a decomposable complex in

Ktac(Q) we have that C ' CA ⊕ CB with neither CA nor CB contractible. Now let

A = Im ∂CA0 and B = Im ∂CB0 and note that by Lemma 30 in conjunction with the

previous diagram, we have that C ' CA ⊕ CB implies M = A ⊕ B. Thus, M is

decomposable as well.
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Proposition 37. Let Q be a Henselian Gorenstein local ring and M be an MCM

Q-module. Furthermore, let

C
ρ−→ P

π−→M

be the complete resolution of M with C ∈ Ktac(Q). Then EndKtac(Q)(C) ∼= EndQ(M)

as rings.

Proof. We begin by defining a map φ : EndKtac(Q)(C) → EndQ(M). Let f̂ ∈

EndKtac(Q)(C) and consider the following diagram:

· · · // C1

∂C1 //

f1

��

C0

∂C0 //

f0

��

Im ∂C0

f
��

· · · // C1

∂C1 // C0

∂C0 // Im ∂C0

Where Im ∂C0 = M and define φ as follows:

φ(f̂) = f where f(x) = ∂C0 f0(a) such that ∂C0 (a) = x.

To see that this map makes sense we first show that f is independent of the

choice in preimage of x. Suppose that ∂C0 (a) = x = ∂C0 (b) so that ∂C0 (a − b) = 0

implying a − b ∈ Ker(∂C0 ) = Im(∂C1 ) by exactness of C. Thus, there exists y ∈ C1

such that ∂C1 (y) = a− b, from which it follows that

∂C1 f1(y) = f0 ∂
C
1 (y) = f0(a− b). (3.1)

By composing (3.1) on the left with ∂C0 we obtain

∂C0 ∂
C
1 f1(y) = ∂C0 f0(a− b)

where the left-hand term is clearly zero. Thus, ∂C0 f0(a) = ∂C0 f0(b) as needed. Now

Lemma 30 states that two homotopic maps, f̂ , ĝ ∈ EndKtac(Q)(C), give the same

morphism in EndQ(M). Thus, φ is well defined.
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Next we define a map ψ : EndQ(M)→ EndKtac(Q)(C) by ψ(f) = f̂ where f̂ is

the morphism of complete resolutions described by Lemma 29.

Now we will show that

ψφ = IdEndKtac(Q)(C) and φψ = IdEndQ(M) .

Let f̂ ∈ EndKtac(Q)(C) so that ψφ(f̂) = ψf = f̂ ′ and by the uniqueness property of

Lemma 29, f̂ ∼ f̂ ′. Thus, ψφ = IdEndKtac(Q)(C). Now, if instead f ∈ EndQ(M) then

φψ(f) = φ(f̂) = f ′ and again by the uniqueness property of Lemma 30, f = f ′. Thus,

φψ = IdEndQ(M).

This proves the ring isomorphism EndKtac(Q)(C) ∼= EndQ(M).

Theorem 38. Let Q be a Henselian Gorenstein local ring. The category Ktac(Q) is

a Krull-Schmidt category.

Proof. Let Q be a Henselian Gorenstein local ring. We aim to show that for

any indecomposable totally acyclic complex C ∈ Ktac(Q), its endomorphism ring,

End Ktac(Q)(C), is local.

We first note that for two complexes C and D, HomKtac(Q)(C,D) is a Q-module

and composition of morphisms is Q-bilinear (cf. §1, [4]). Therefore, Ktac(Q) is a

Q-additive category.

Let C ∈ Ktac(Q) be an indecomposable totally acyclic complex. By Proposition

36, M = Im(∂C0 ) must also be an indecomposable Q-module. Since M is indecompos-

able, Proposition 5 implies that EndQ(M) is a local ring, which by Proposition 37

implies that EndKtac(Q)(C) is a local ring as well. Thus Ktac(Q) is a Krull-Schmidt

category, as stated.
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3.2 Approximations of Ktac(R)

We now work towards building the classification scheme previously mentioned,

although in order to fully contextualize what is to come, we must first recall a few

notions from [2]. We begin by establishing a connection between the categories

Ktac(Q) and Ktac(R). Recall the assumption that there exists a surjective ring

homomorphism Q
ϕ−→→ R such that R has finite injective dimension as a Q-module.

Under these conditions Bergh, Jorgensen and Moore define a pair of adjoint functors:

Ktac(Q)
Sϕ //Ktac(R).
Tϕ
oo

As it turns out, the descension functor, defined in §3 of [2], is relatively simple;

S = Sϕ : Ktac(Q)→ Ktac(R) is the change of rings functor defined by:

SC = R⊗Q C and Sf = R⊗Q f.

However, the ascension functor, defined in §2 of [2], is much more interesting; T = Tφ :

Ktac(R) → Ktac(Q) is defined as follows: On objects, say C ∈ Ktac(R), TC is the

complete resolution of Im(∂C0 ) as a Q-module. For a chain map f ∈ HomKtac(R)(C,C
′)

we have Tf = µ̂, the homotopy equivalence class of the lifting of the induced map

from Lemma 29.

Furthermore, the authors show that both functors are triangulated (See §2, §3)

and form an adjoint pair (See §3); specifically, they induce a unit and counit:

η : IdKtac(Q) → TS

and

ε : ST → IdKtac(R)

respectively.
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We now provide the definition of an approximation (given by Auslander and

Smalø, and independently by Enochs), the origins of which seem far more elusive

than the definition itself.

Definition 39. [2, Section 4] Given a full subcategory X of a category C. We define

a right X -approximation (pre-cover) of C ∈ C as a map φ : X → C such that for all

objects Y ∈ X and any map f : Y → C, there exists a map g : Y → X such that the

following diagram commutes:

Y

g
��

f

  
X

φ
// C

We define left X -approximations (pre-envelopes) dually.

Taking this idea one step further we may define a minimal approximation,

which provides some notion of uniqueness.

Definition 40. [2, Section 4] We define a minimal right X -approximation (cover)

to be a right X -approximation φ : X → C for C ∈ C such that for any diagram of

the form:

X

g
��

φ

  
X

φ
// C

we must have that g is an automorphism of X. A minimal left X -approximation

(envelope) is defined dually.

Indeed, any such minimal approximation is unique up to isomorphism.

Remark. Im(S) ⊂ Ktac(R) is contravariantly finite or, in other words, right Im(S)-

approximations exist in Ktac(R), and are given by the counit of the previously

mentioned adjoint functors.
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The existence of left approximations also holds, and is shown in Theorem 4.1

of [2]. The fact that both right and left approximations exists follows directly from

the fact that S and T are adjoint; however, we now provide a more in-depth proof.

We claim that the morphism εC : STC → C is the right approximation of C in

Ktac(R). To see this, let Y ∈ Ktac(Q) and f : SY → C be any morphism. We must

now find a morphism such that the following diagram commutes:

SY
f

""��
STC εC

// C

Now, by the naturality of ε : ST → IdKtac(R), we have the commutative diagram

STSY
ST (f) //

εSY
��

STC

εC
��

SY
f

// C

and therefore, we obtain the relation:

εC ◦ ST (f) ∼ f ◦ εSY . (3.2)

We then note that εSY ◦ SηY ∼ IdSY . By composing the relation in (3.2) on the right

with SηY , we see that

εC ◦ ST (f) ◦ SηY ∼ f ◦ εSY ◦ SηY ∼ f

and ST (f) ◦ SηY is the morphism we seek. This proves that εC is the right approxi-

mation of the totally acyclic complex C.

If we wish to ensure that the following definitions make sense, we need to show

that minimal approximations exist in the category Ktac(R). In order to show this,

we look to Proposition 2.5 from [16], and provide the following extension of the

previous remark. In particular, we make use of the fact that (possibly non-minimal)
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approximations exist, and show that they can be “reduced” in some way to a minimal

approximation.

Theorem 41. Let X be a full subcategory of Ktac(R) closed under direct summands

and suppose that R is Henselian.

i) Let N
ψ−→ X

φ−→ M → ΣN be a distinguished triangle in Ktac(R) where φ is a

precover of M . Then the following are equivalent:

(a) φ is not an X -cover.

(b) There exists a sub-complex L of N such that ψ(L) 6= 0 and is a direct

summand of X.

ii) The following are equivalent for a totally acyclic complex M :

(a) M has an X -precover.

(b) M has an X -cover.

Proof. i) We begin by showing that (b) implies (a). To this end, assume there exists a

sub-complex L of N such that ψ(L) 6= 0 and is also a direct summand of X. As ψ(L)

is a non-zero summand of X we may take X ′ to be its compliment. Let θ : X ′ → X

be the natural inclusion and π : X → X ′ the natural projection. Then set f = θπ

and note that, as ψ(L) would map to zero under φ, we have that φ = φf . Now,

suppose for contradiction that φ is an X -cover. It follows that f is an isomorphism

and hence, also θ and π. Therefore, we must have that ψ(L) = 0, contradicting our

assumption. Thus, φ is not an X -cover.

To show that (a) implies (b), assume that φ is not an X -cover. As such, there

exists a non-isomorphism f ∈ EndKtac(R)(X) such that φ = φf . Now, let S = R[f ]

be the subalgebra of EndKtac(R)(X) generated by f over R and note that S is a

commutative ring.
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Assuming S is a local ring, we will show that the approximation φ = 0. Since S

is local, set n as the unique maximal ideal. Then, as S is a finitely generated R-module,

the factor ring S/mS is an artinian local ring with maximal ideal n/mS. Hence,

nr ⊆ mS for some integer r. Since f ∈ n we have that f r = a0 +a1f +a2f
2 + ...+asf

s

with ai ∈ m for all i = 0, ..., s. Since φ = φf , and in particular, since φ = φf l for all

0 ≤ l ≤ ∞, we observe that

φ = φf r

= φ(a0 + a1f + a2f
2 + ...+ asf

s)

= a0 + a1φf + a2φf
2 + ...+ asφf

s

= (a0 + a1 + a2 + ...+ as)φ ∈ mφ.

It follows from Nakayama’s Lemma that φ = 0, and so the triangle N
ψ−→ X

0−→M → ·

splits. That is, we get the following commutative diagram:

N
ψ //

��

X
0 //

∼=
��

M //

∼=
��

ΣN

��
Σ−1M ⊕X // X //M //M ⊕ ΣX

Thus, by the triangulated five lemma N ∼= Σ−1M ⊕X and L := X satisfies condition

(b) in the statement.

We must now consider the case that S is not a local ring. Since R is Henselian,

the finite R-algebra S is a product of local rings, and hence there exists a non-trivial

idempotent,

e = b0 + b1f + ...+ btf
t ∈ S

where bi ∈ R for all i = 0, ..., t. By taking 1− e instead of e if b0 + b1 + ...+ bt ∈ m,

we may assume that it is not. In other words, b0 + b1 + ...+ bt is a unit of R.

Given the decomposition

X = Im(e)⊕ Im(1− e)
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and since e is not an isomorphism, we can see that Im(e) 6= 0 6= Im(1− e). We now

claim that Im(1−e) ⊆ Im(ψ). To see this, note that the triangle N
ψ−→ X

φ−→M → ΣN

induces a long exact sequence of abelian groups:

· · · → Hom(X,N)
ψ∗−→ Hom(X,X)

φ∗−→ Hom(X,M)→ · · ·

Since φe = φ(b0 + b1f + ...+ btf
t) = (b0 + b1 + ...+ bt)φ and b0 + b1 + ...+ bt is

a unit, we have that φ = (b0 + b1 + ...+ bt)
−1φe. Now take 1− e ∈ Hom(X,X), and

note that

φ∗(1− e) = φ(1− e)

= (b0 + b1 + ...+ bt)
−1φe(1− e)

= 0

showing that 1− e ∈ Kerφ∗ = Im(ψ∗). Thus there exists α ∈ Hom(X,N) such that

ψ∗(α) = 1− e. Then for x ∈ Im(1− e) there exists y ∈ X such that x = (1− e)(y).

Moreover, observe that,

x = (1− e)(y)

= ψ∗(α)(y)

= ψ(α(y)).

Therefore, we have shown that Im(1−e) ⊆ Im(ψ). Thus, L := ψ−1(Im(1−e)) satisfies

condition (b).

ii) It is trivial that (b) implies (a). Assume now that φ : X → M is an

X -precover. We will show that there exists an X -cover. Letting N = Σ−1 cone(φ),

we have the following distinguished triangle:

Σ−1 cone(φ)
ψ−→ X

φ−→M → cone(φ′)
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Suppose that φ is not an X -cover. Then from i) there exists a sub-complex L of

Σ−1 cone(φ) such that ψ(L) 6= 0 and is a direct summand of X. Let X ′ be the

complement of ψ(L) and φ′ : X ′ →M the induced map, noting that we also get the

following distinguished triangle:

Σ−1 cone(φ′)
ψ′−→ X ′

φ′−→M → cone(φ′)

Then as X is a thick subcategory, X ′ ∈ X . To show that X ′ is a X -precover, let

Y ∈ X and g ∈ HomKtac(R)(Y,M). Since we know that X is an X -precover we obtain

the following diagram:

Y
g

''
h
��
X

φ //

ι
��

M

X ′
φ′

77

where g = φ′ιh. Thus, X ′ is an X -precover. Since X ′ is strictly smaller than X,

we may repeat this process and eventually arrive at an X -cover. Indeed, since R is

Henselian, X is a finite sum of irreducible complexes, so this process must eventually

terminate. This proves the statement.

In other words, for a Henselian Gorenstein ring if the complex C belongs to

thick1
Ktac(R) Im(S), then the approximation is the identity map; otherwise we may

take any approximation and cut out the redundant summands. We leave the reader

with the following open question.

Question: For a totally acyclic complex C, is the approximation STC minimal

whenever C /∈ thick1
Ktac(R) Im(S)?
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3.3 Arnold-Tuples

Unless otherwise stated, we assume that Q is a Henselian Gorenstein local ring

and that there exists a surjective ring homomorphism ϕ : Q→ R. We may now state

the definition of an Arnold-tuple.

Definition 42 (Arnold-Tuple). Let Λ be the set of distinct, indecomposable totally

acyclic complexes in thick1
Ktac(R) Im(S). Then for any C ∈ Ktac(R) we may write

STC = (
⊕
E∈Λ

EkE)⊕ T

where STC is the minimal approximation, T is contractible and all but finitely many

kE are zero. Then the Arnold-tuple of C over Q is defined to be:

AQ(C) = (kE)E∈Λ.

One should note the condition that “all but finitely many kE are zero” in the

previous definition is ensured, as Ktac(R) is a Krull-Schmidt category. However, we

should check that if C and D are homotopic, then AQ(C) = AQ(D). The following

proposition confirms this.

Proposition 43. If C and D are totally acyclic complexes over R and C ' D, then

AQ(C) = AQ(D).

Proof. Let C and D be totally acyclic complexes in Ktac(R) such that C ' D.

Then for STC, STD ∈ Ktac(R) each has a decomposition into finite direct sums

of indecomposable complexes. Suppose that STC = (
⊕

E∈Λ E
kE)⊕ T and STD =

(
⊕

E∈ΛE
lE)⊕ T ′. Then by Lemmas 11 and 20,

⊕
E∈Λ

EkE ∼=
⊕
E∈Λ

ElE .

Now because Ktac(R) is a Krull-Schmidt category, we have unique decomposition, and

as such, for each E ∈ Λ that appears in the previous sums it holds that EkE ∼= ElE ,
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thus implying that k = l. Consequently, if C ' D then AQ(C) = AQ(D), and so

Arnold-tuples are well defined up to homotopy.

We may now state our classification scheme, which groups totally acyclic

complexes by their Arnold-Tuples. In other words, two totally acyclic complexes are

in the same class if they have the same Arnold-tuple, in which case we call two such

complexes Arnold equivalent.

Definition 44 (Arnold Equivalence). Let C,D ∈ KtacR, we say that C is Arnold

equivalent to D if AQ(C) = AQ(D). We denote this by

C 'Q D.

As Arnold equivalence is an equality of tuples, it should be clear that it forms

an equivalence relation. We also note that Arnold equivalence is a less restrictive

notion than that of homotopy. To illustrate this we provide an example exhibiting

two complexes which are Arnold equivalent but not homotopically equivalent.

Example 45. Let Q = k[[x, y]]/(x2) and R = Q/(y2), with:

M = Coker
( −x 0
y x

)
and,

N = Coker
(
x y 0 0
0 0 xy y2

)
.

Then the complete resolution of M ⊕M is:

C = · · · → R4

−x 0 0 0
y x 0 0
0 0 −x 0
0 0 y x


−−−−−−−−−→ R4

−x 0 0 0
y x 0 0
0 0 −x 0
0 0 y x


−−−−−−−−−→ R4

−x 0 0 0
y x 0 0
0 0 −x 0
0 0 y x


−−−−−−−−−→ R4 → · · ·

and the complete resolution of N is:

D = · · · → R7 ∂3−→ R5 ∂2−→ R3 ∂1−→ R2 ∂0−→ R3 ∂−1−−→ R5 ∂−2−−→ R7 → · · ·
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Hence, we note that C has complexity 1 and D has complexity 2; therefore, C and

D are clearly not homotopically equivalent. However, when we look at the minimal

approximations over the ring Q, we have the following complex for both C and D:

· · · → R4 → R4

−x 0 0 0
y x 0 0
0 0 −x 0
0 0 y x


−−−−−−−−−→ R4 → R4 → · · ·

Thus, while C 6' D, we have that AQ(C) = AQ(D) and so C 'Q D. Therefore, we

have that Arnold equivalence is a more coarse notion than that of homotopy.

3.4 Approximations and Mapping Cones

We now turn our attention to the approximation and classification of mapping

cones. For a simple example, consider the zero morphism, so that the mapping cone

is given by a direct sum of shifts of the source and target complexes. Thus, the

Arnold-tuple can easily be deduced. This is illustrated by the following example:

Example 46. Let Q = k[[x, y]]/(x2 + y2), type (A1), and R = Q/(x2). Then take

the zero map from E+ → E−:

· · · // R
x+iy //

0
��

R
x−iy //

0
��

R //

0
��

· · ·

· · · // R
x−iy

// R
x+iy

// R // · · ·

The mapping cone is then given by cone(f) = ΣE+ ⊕ E− with differential

∂cone(f) =
(
∂ΣE+ 0

0 ∂E−

)
.

However, as we have that ΣE+ = E−, the approximation of the mapping cone is in

fact the mapping cone itself, E− ⊕ E−, and therefore has an Arnold-tuple of (0,0,2).

In [2] the authors go further to describe the approximation of the mapping cone

in the case that R has relative codimension one.
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Proposition 47. [2, Corollary 6.4] Let f be a non-zero-divisor contained in the

maximal ideal of Q, R = Q/(f), and C ∈ Ktac(R). If [εC ] : STC → C is the right

approximation of C, then cone([εC ]) is isomorphic to Σ2C in Ktac(R), and we have

the distinguished triangle

STC
[εC ]−−→ C

[t]−→ Σ2C → ΣSTC.

We present a generalization of this theorem to codimension c as well as provide

a concrete description of approximations. Let Q be a Gorenstein local ring and

R = Q/(f̄) where f̄ = f1, ..., fc is a Q-regular sequence of length c. Then for any

C ∈ Ktac(R), its approximation, STC, has the following form:

STC : · · · →
c⊕
i=0

(Cn+1−i)
(ci) ∂n+1−−−→

c⊕
i=0

(Cn−i)
(ci) ∂n−→

c⊕
i=0

(Cn−1−i)
(ci) → · · · (3.3)

In an effort to understand the construction of the above form, we now state Theorem

5.1 from [3]

Theorem 48. [3, Theorem 5.1] Assume that R = Q/(f1, ..., fc), where f1, ..., fc is

a Q-regular sequence, and let C ∈ Ktac(R). Letting F = C, the complex F ⊗Q K

defined above is TC. That is, F ⊗Q K is a complete resolution of Im ∂C0 . It follows

that STC is (F ⊗Q K) ⊗Q R, and the morphism εC : STC → C is the map that

projects the copy F ⊗Q K0 of F in (F ⊗Q K)⊗Q R onto F = C.

In this theorem K denotes the Koszul complex on f1, ..., fc, which has the form:

0→
c∧

(Qc)→ · · · →
2∧

(Qc)→ Qc → Q→ R→ 0.

We note that
∧i(Qc) ∼= Q(ci) as Qc is a free module of rank c. Thus, K is equivalent

to the complex:

0→ Q(cc) → Q( c
c−1) → · · · → Q(c1) → Q(c0) → 0.
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To see that the approximation has the advertised form, let C ∈ Ktac(R), then

lift C to a graded module over Q, say C̃. Then the complex described in the theorem

above, C̃ ⊗Q K, would be TC. Here this complex has the form:

(C̃n ⊗Q K0) = (C̃n ⊗Q Q(c0)) = C̃
(c0)
n⊕ ⊕ ⊕

(C̃n−1 ⊗Q K1) = (C̃n−1 ⊗Q Q(c1)) = C̃
(c1)
n−1⊕ ⊕ ⊕

(C̃ ⊗Q K)n =
...

...
...⊕ ⊕ ⊕

(C̃n−c+1 ⊗Q Kc−1) = (C̃n−c+1 ⊗Q Q( c
c−1)) = C̃

( c
c−1)
n−c+1⊕ ⊕ ⊕

(C̃n−c ⊗Q Kc) = (C̃n−c ⊗Q Q(cc)) = C̃
(cc)
n−c

Alternatively presented in a more condensed format as,

(C̃ ⊗Q K)n =
c⊕
i=0

(C̃n−i)
(ci).

Then, again by Theorem 5.1 in [3], STC = (C̃ ⊗Q K)⊗Q R where:

((C̃ ⊗Q K)⊗Q R)n =
c⊕
i=0

(Cn−i)
(ci).

We now discuss the differentials on this approximation, although we refer the interested

reader to [3] for a more complete accounting. To begin, let B be a basis of the Koszul

complex together with 0:

B =
{
ei1 ∧ · · · ∧ eij |i1 < · · · < ij, 1 ≤ j ≤ c

}
∪ {0, 1} .

In order to obtain the desired differential we perturb the differential on C̃ ⊗Q K,

which is ∂C̃ ⊗K + C̃ ⊗ ∂K , to

∂ =
∑
α∈B

tα ⊗ sα
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where t0 = IdC̃ , t
1 = ∂C̃ , s0 = ∂K , tα are as defined by Lemma 2.2 in [3] for α 6= 0,

and sα is multiplication by α for α 6= 0.

Remark. The tα can be thought of as a set of Eisenbud operators when |α| = 1 and

“higher order” Eisenbud operators when |α| ≥ 2.

In general, providing a concrete description of this differential presents some

technical challenges. However, it will be informative to explore this concept in a

specific case, for instance, when the relative codimension is 3.

Example 49. Let Q and R be as before and let c = 3. In other words, R =

Q/(f1, f2, f3) where f1, f2, f3 is a Q-regular sequence. Let C ∈ Ktac(R) so that

C = · · · → Cn+1

∂Cn+1−−−→ Cn
∂Cn−→ Cn−1 → · · ·

and let C̃ be the lifting to a graded module over Q. Now, from the previous

construction we obtain the fact that TC has the form:

· · · → ∂C̃n+1⊕(∂C̃n )3 ⊕ (∂C̃n−1)3 ⊕ ∂C̃n−2

∂̃n+1−−−→ ∂C̃n ⊕(∂C̃n−1)3 ⊕ (∂C̃n−2)3 ⊕ ∂C̃n−3 → · · ·

and for each n the differential ∂̃ is given by the matrix:

∂̃n =



∂C̃n−3 (−1)nte1 (−1)n−1te2 (−1)nte3 te1∧e2 −te1∧e3 te2∧e3 (−1)3nte1∧e2∧e3

(−1)nf1 ∂C̃n−2 0 0 (−1)nte2 (−1)n−1te3 0 te2∧e3

(−1)n−1f2 0 ∂C̃n−2 0 (−1)nte1 0 (−1)n−1te3 te1∧e3

(−1)nf3 0 0 ∂C̃n−2 0 (−1)nte1 (−1)n−1te2 te1∧e2

0 (−1)n−1f2 (−1)n−1f1 0 ∂C̃n−1 0 0 (−1)nte3

0 (−1)n−1f3 0 (−1)nf1 0 ∂C̃n−1 0 (−1)nte2

0 0 (−1)n−1f3 (−1)n−1f2 0 0 ∂C̃n−1 (−1)nte1

0 0 0 0 (−1)nf3 (−1)nf2 (−1)nf1 ∂C̃n


Then by applying the functor S = −⊗Q R, we see that STC is given by:

· · · → ∂Cn+1⊕(∂Cn )3 ⊕ (∂Cn−1)3 ⊕ ∂Cn−2

∂n+1−−−→ ∂Cn ⊕(∂Cn−1)3 ⊕ (∂Cn−2)3 ⊕ ∂Cn−3 → · · ·
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wherein each nth differential is given by:

∂n =



∂Cn−3 (−1)nte1 (−1)n−1te2 (−1)nte3 te1∧e2 −te1∧e3 te2∧e3 (−1)3nte1∧e2∧e3

0 ∂Cn−2 0 0 (−1)nte2 (−1)n−1te3 0 te2∧e3

0 0 ∂Cn−2 0 (−1)nte1 0 (−1)n−1te3 te1∧e3

0 0 0 ∂Cn−2 0 (−1)nte1 (−1)n−1te2 te1∧e2

0 0 0 0 ∂Cn−1 0 0 (−1)nte3

0 0 0 0 0 ∂Cn−1 0 (−1)nte2

0 0 0 0 0 0 ∂Cn−1 (−1)nte1

0 0 0 0 0 0 0 ∂Cn


Furthermore, if we assume that the lifting of C to C̃ is actually a complex over

Q, we have that each tα is zero. In this case, the complex stays the same, but the

differentials are now given by:

∂n =



∂Cn−3 0 0 0 0 0 0 0

0 ∂Cn−2 0 0 0 0 0 0

0 0 ∂Cn−2 0 0 0 0 0

0 0 0 ∂Cn−2 0 0 0 0

0 0 0 0 ∂Cn−1 0 0 0

0 0 0 0 0 ∂Cn−1 0 0

0 0 0 0 0 0 ∂Cn−1 0

0 0 0 0 0 0 0 ∂Cn


and it is clear that the approximation complex is then

STC = Σ3C ⊕ (Σ2C)3 ⊕ (ΣC)3 ⊕ C.

Now, from Theorem 5.1, we note that the approximation of C is

εC : Σ3C ⊕ (Σ2C)3 ⊕ (ΣC)3 ⊕ C � C

which projects the copy of C in STC onto C. Moreover, the minimal subcomplex of

the mapping cone of the approximation can be given by

cone(εC) = Σ4C ⊕ (Σ3C)3 ⊕ (Σ2C)3.

In light of the previous example we make the following proposition.

Proposition 50. Assume Q is a Gorenstein local ring and R = Q/(f̄) where

f̄ = f1, ..., fc is a Q-regular sequence of length c. Further, let C ∈ Ktac(R) be
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a minimal complex such that its lifting to a graded Q-module is a Q-complex. Then

the approximation of C is given by:

εC :
c⊕
i=0

(ΣiC)(
c
i) � C

which projects the copy of C in STC to C. Furthermore, the minimal subcomplex of

the mapping cone, of the approximation of C is given by

cone(εC) '
c⊕
i=1

(Σi+1C)(
c
i). (3.4)

Proof. Let C ∈ Ktac(R) such that its lifting as a graded Q-module is a Q-complex.

We begin with reiterating that under these assumptions, each tα previously described

is zero. As such, and following from Theorem 5.1 in [3], it is easily seen that

the approximation of C is given by εC :
⊕c

i=0(Σ
iC)(

c
i) � C. Specifically, the

approximation is shown in the following diagram:

· · · //
⊕c

i=0(ΣiCn+1)(
c
i) ∂n+1 //

[ 1 0 ··· 0 ]

��

⊕c
i=0(ΣiCn)(

c
i) ∂n //

[ 1 0 ··· 0 ]

��

⊕c
i=0(ΣiCn−1)(

c
i) //

[ 1 0 ··· 0 ]

��

· · ·

· · · // Cn+1

∂Cn+1 // Cn
∂Cn // Cn−1

// · · ·
To find the mapping cone of the approximation, we simply apply the definition

to obtain

cone(εC) =
c⊕
i=0

(Σi+1C)(
c
i) ⊕ C

wherein the differential at each degree n is given by:



(−1)c+1 ∂Cn−(c+1) 0 · · · 0 0

0 Ec · · · 0 0

...
...

. . .
...

...

0 0 · · · E1 0

0 0 · · · 0 − ∂Cn−1

0

0 0 · · · 0 1 ∂Cn


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Here, Ej is a
(
c
j

)
×
(
c
j

)
matrix with (−1)j ∂Cn−1−j on the diagonal for all 1 ≤ j ≤ c.

We now wish to show that the minimal subcomplex is as previously stated; to do

this, we will exhibit a homotopy equivalence between the mapping cone and (3.4).

Consider the following diagram:

· · · //
⊕c

i=0(Σi+1Cn)(
c
i) ⊕ Cn+1

∂
cone(εC )
n+1 //

πn+1

��

⊕c
i=0(Σi+1Cn−1)(

c
i) ⊕ Cn //

πn
��

· · ·

· · · //
⊕c

i=1(Σi+1Cn)(
c
i)

∂Cn−i //

ιn+1

OO

⊕c
i=1(Σi+1Cn−1)(

c
i) //

ιn

OO

· · ·

where π and ι are the obvious projection and injection, respectively. It should be

clear that πnιn is the identity on the subcomplex for all n. However, to show that

ιnπn is homotopic to the identity on the mapping cone, we must look to homotopy

maps. Using the following (2c + 1)× (2c + 1) square matrices as homotopy maps:

σn =



0 0 · · · 0 0

...
...

. . .
...

...

0 0 · · · 0 0

0 0 · · · 0 −1

0 0 · · · 0 0


for all n, we can see that

cone(εC) '
c⊕
i=1

(Σi+1C)(
c
i)

as needed, thus proving the statement.
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CHAPTER 4

Triangle Resolutions

In this chapter we build on the notion of a resolution of totally acyclic complexes

outlined in Section 4.9 of [2]. We first describe the construction of such triangle

resolutions, after which we give the definition of a minimal resolution. In order to show

the existence of such minimal resolutions we call on the main theorem of the previous

chapter, Theorem 41, wherein we proved the existence of minimal approximations

in Ktac(R). Then, given such minimal resolutions, we exhibit the extension of a

few properties from the category of R-modules. Finally, we describe the notion a

triangulated Betti sequence and posit a conjecture.

4.1 Building a Triangle Resolution

In many respects, the construction of a triangle resolution is much like that of

a classical free resolution; the main exception being the lack of kernels with which to

do so. To get around this, the mapping cone of a morphism plays the analogous role

in a triangulated category. In the following construction we keep this in mind and

look to Definition 8.1.2 in [11]. We also discuss some basic properties of the resulting

triangle resolutions, many of which are completely analogous to those in the classical

case.

In Construction 4.9 of [2], the authors provide a construction of triangle resolu-

tions in Ktac(R) with approximating class Im(S). However, the following construction

is given in an arbitrary triangulated category T with a full subcategory X .
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For an object C ∈ T we can complete its X -approximation, φC : B0 → C, to a

triangle in T , and rotate it to obtain:

Σ−1 cone(φC) // B0
φC // C // cone(φC)

Having done so, we may now use the same method to approximate the complex

Σ−1 cone(φC). We can again complete and rotate the X -approximation φΣ−1 cone(φC) :

B1 → Σ−1 cone(φC) to a triangle thusly:

Σ−1 cone(φΣ−1 cone(φC))→ B1 → Σ−1 cone(φC)→ cone(φΣ−1 cone(φC))

Then, similar to the classical case in the construction of a free resolution, we

compose the maps as seen below:

B1
//

''

B0
// C

Σ−1 cone(φΣ−1 cone(φC))

55

Σ−1 cone(φC)

77

Repeating this process we arrive at a resolution of an object in Ktac(R):

B : · · · −→ B3 −→ B2 −→ B1 −→ B0 −→ C

where each Bi ∈ X and B0 is an approximation of C, B1 is an approximation of

Σ−1 cone(B0 → C), etc.

In general, a triangle resolution is not unique. To see this we first note that if

D ∈ Ktac(Q) then STSD is not a minimal approximation by Proposition 4.6 in [2].

However, the morphism IdSD is a minimal Im(S)-approximation. We illustrate the

non-uniqueness of triangle resolutions with an example.

Example 51. Let Q = k[[x,y]]
(x2)

and R = Q/(y2), then

D : · · · → Q2

[−x 0
y x

]
−−−−→ Q2

[−x 0
y x

]
−−−−→ Q2 → · · ·
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is a totally acyclic complex in Ktac(Q) and note SD ∈ Im(S). Its approximation,

STSD is given by:

· · · // R4

−x 0 0 0
y x 0 0
0 0 −x 0
0 0 y x


//

[ 1 0 0 0
0 1 0 0 ]
��

R4

−x 0 0 0
y x 0 0
0 0 −x 0
0 0 y x


//

[ 1 0 0 0
0 1 0 0 ]
��

R4 //

[ 1 0 0 0
0 1 0 0 ]
��

· · ·

· · · // R2 [−x 0
y x

] // R2 [−x 0
y x

] // R2 // · · ·

Then the mapping cone of the approximation is given by the complex:

· · · → R6


x 0 0 0 0 0
−y −x 0 0 0 0
0 0 −x 0 0 0
0 0 y x 0 0
1 0 0 0 −x 0
0 1 0 0 y x


−−−−−−−−−−−−→ R6


x 0 0 0 0 0
−y −x 0 0 0 0
0 0 −x 0 0 0
0 0 y x 0 0
1 0 0 0 −x 0
0 1 0 0 y x


−−−−−−−−−−−−→ R6 → · · ·

Of course, this complex is homotopically equivalent to SD, via the morphism:

[ 0 0 1 0 0 0
0 0 0 1 0 0 ] and,

[ 0 0
0 0
1 0
0 1
0 0
0 0

]
. Therefore, we have that the approximation of cone([ 1 0 0 0

0 1 0 0 ]) ∼

STSD and so, the triangle resolution can be given by:

· · · → STSD → STSD → STSD → SD.

However, since the minimal approximation of SD is given by ε : SD
IdSD−−−→ SD, we

see that cone(ε) ∼ 0. Thus, the triangle resolution can also be given by:

0→ STSD → SD.

This leads us to the necessity for defining the notion of a minimal triangle resolution,

which, in similar fashion to the classical case, encodes a notion of uniqueness.

4.2 Minimal Triangle Resolutions and Properties

Definition 52. Let X be a full subcategory of a triangulated category C, which is

closed under direct summands, such that for each C ∈ C there exists a minimal right
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X -approximation. We then have that the X -triangle resolution can be constructed

such that each X -approximation is a minimal right approximation. In this case we

say that the sequence of morphisms:

B : · · · → B2 → B1 → B0 → C

is a minimal X -triangle resolution.

For the previous definition to be of any consequence in this thesis, we should

first establish that Ktac(R) does, in fact, have minimal triangle resolutions. This fact

wholly relies on the existence of minimal approximations. The following corollary

follows directly from the definition of the first thickening and Theorem 41.

Corollary 53. Minimal (thick1
Ktac(R) Im(S))-triangle resolutions exist in Ktac(R).

We now look towards stating a few basic properties, but shall first establish

some notation to simplify proofs and allow for ease of understanding.

Given an X -triangle resolution of C, say

B : · · · → B2
∆2−→ B1

∆1−→ B0
∆0−→ C → 0

set

C0 = C

C1 = Σ−1 cone([εC ])

Cn = Σ−1 cone([εCn−1 ]) for n ≥ 2.

Note that each Cn fits into the following commutative diagram:

· · · // Bi+1
∆i+1 //

εCi+1$$

Bi
∆i //

εCi   

Bi−1
// · · · // B1

∆1 //

εC1 !!

B0
∆0 // C

Ci+1

ui+1

<<

Ci

ui
<<

C1

u1

==

where ∆i = uiεCi and εCi is the approximation of Ci. We also note that by construction

Ci+1 ui+1−−→ Bi

εCi−−→ Ci → · · ·
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We begin by discussing the uniqueness property of minimal triangle resolutions.

Proposition 54 (Uniqueness). A minimal triangle resolution, if it exists, is unique

in the sense that there exists a family of homotopy equivalences γi such that the

following diagram commutes.

· · · // B2
∆2 //

γ2

��

B1
∆1 //

γ1

��

B0
∆0 //

γ0

��

C

· · · // B′2
∆′2 // B′1

∆′1 // B′0
∆′0 // C

Proof. Let B′ be another minimal triangle resolution of C, say

B′ : · · · → B′2 → B′1 → B′0 → C → 0.

We will use induction on the degree of Bi. When i = 0, there exist homotopy

equivalences C0 → C0 (in this case the identity) and B0 ' B′0. The latter statement

follows from the fact that both are minimal approximations of C in conjunction with

the diagram below:

B0

γ0

�� ��
B′0 //

γ′0
��

C

B0

??

By definition of minimal approximation, γ0γ
′
0 ∼ IdB0 . Reversing the role of B0 and

B′0 gives the other condition for homotopy equivalence. Furthermore, by the definition

of approximations, we have that ∆′0γ0 ∼ IdC∆0.

69



To apply the inductive step, assume that there exist homotopy equivalences λi−1 :

Ci−1 '−→ C ′i−1 and γi−1 : Bi−1
'−→ B′i−1. Then we have the following diagram:

· · · // Bi
∆i //

εCi

  
γi

��

Bi−1
∆i−1 //

γi−1

��

εCi−1

##

Bi−2
//

��

· · ·

Ci

ui

<<

λi

��

Ci−1

ui−1

;;

λi−1

��

· · · // B′i
∆′i //

ε′
C′i
  

B′i−1

∆′i−1 //

ε′
C′i−1

##

B′i−2
// · · ·

C ′i

u′i

==

C ′i−1

u′i−1

;;

To show that Ci ' C ′i, we construct the diagram of triangles

Ci ui //

λi
��

Bi−1

εCi−1 //

γi−1

��

Ci−1
//

λi−1

��

ΣCi

C ′i
u′i

// B′i−1 ε′
C′i−1

// C ′i−1
// ΣC ′i

where, by TR3, a dashed arrow exists such that u′iλi ∼ γi−1ui and furthermore, by

the triangulated five lemma, it is a homotopy equivalence. Now, since Bi, B
′
i are

both minimal approximations of Ci−1, C ′i−1 (respectively) and Ci−1 ' C ′i−1, we

have that there exists γi : Bi ' B′i such that ε′C′iγi ∼ λiεCi . Now we will show that

∆′iγi ∼ γi−1∆i.

∆′iγi ∼

u′iε
′
C′i
γi ∼ u′iλiεCi ∼ γi−1uiεCi

∼ γi−1∆i

thus proving our statement.

In a triangulated category T , we unfortunately do not have the notion of

exactness. However, as with distinguished triangles, we can say something about the

composition of consecutive morphisms in a resolution.
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Proposition 55 (Composition of consecutive maps is 0). Let B be an X -triangle

resolution. Then ∆i∆i+1 = 0.

Proof. Let

· · · → Bi
∆i−→ Bi−1 → · · · → B1

∆1−→ B0
∆0−→ C

be a triangle resolution of the complex C. Then the composition ∆i∆i+1 is given by:

Bi+1

εCi+1−−−→ Ci+1 ui+1−−→ Bi

εCi−−→ Ci ui−→ Bi−1.

Since

Ci+1 ui+1−−→ Bi

εCi−−→ Ci → ΣCi+1

is a distinguished triangle and the composition of two maps in a triangle is zero, the

statement is proved.

Continuing with the similarities to resolutions in R-mod, we state the following

proposition.

Proposition 56 (Comparison Theorem). Let B : · · · → B2 → B1 → B0 → C and

D : · · · → D2 → D1 → D0 → E be X -Triangle Resolutions of C and E respectively

and let f : C → E be a morphism of objects in the category T . Then there exists a

family of morphisms (fi) : Bi → Di making the following diagram commute:

· · · // B2
//

��

B1
//

��

B0
//

��

C

f
��

· · · // D2
// D1

// D0
// E

Proof. We will proceed by induction on the degree. For the base case i = 0, consider

the diagram:

· · · // B2
∆2 // B1

∆1 // B0
∆0 //

��

C

f
��

· · · // D2

∆′2 // D1

∆′1 // D0

∆′0 // E
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Since D0 is an X -approximation of E, B0 ∈ X and f∆0 is a morphism from B0 → E,

there exists a morphism f0 : B0 → D0 such that ∆′0f0 ∼ f∆0. For the purpose of

induction, we must also show that there exists a morphism, say g1 : C1 → E1, making

the following diagram commute:

B1
∆1 //

εC1

!!

B0
∆0 //

f0

��

C

f

��

C1

u1

==

��

D1

∆′1 //

ε′
C′1
!!

D0

∆′0 // E

E1

u′1

==

In order to do so, we apply TR3 to the following diagram of triangles:

C1 u1 //

��

B0
∆0 //

f0

��

C //

f

��

ΣC1

E1
u′1 // D0

∆′0 // E // ΣE1

Thus we obtain the morphism g1 : C1 → E1 such that u′1g1 ∼ f0u1. Now, for

the inductive step, assume that there exist morphisms fi−1 : Bi−1 → Di−1 and

gi : Ci → Ei such that u′igi ∼ fi−1ui. Consider again the following commutative

diagram of complexes:

· · · // Bi
∆i //

εCi
  

fi

��

Bi−1
//

fi−1

��

· · ·

Ci

gi

��

ui

<<

· · · // Di

∆′i //

ε′
C′i
  

Di−1
// · · ·

Ei

u′i

<<
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Then giεCi is a morphism Bi → Ei where Bi ∈ X and since Di is an X -approximation

we have that there exists a morphism fi : Bi → Di such that giεCi ∼ ε′C′ifi. Now note

that

fi−1∆i ∼

fi−1uiεCi ∼ u′igiεCi ∼ u′iε
′
C′ifi

∼ ∆′ifi

which follows from the fact that homotopy is preserved under composition. Thus, the

statement is proved.

4.3 Triangle Betti Numbers

Seeing as we now have the notion of a minimal resolution in Ktac(R) we would

also like to establish some way of discussing the size of the complexes which comprise

it. This motivates a triangulated analogue of Betti numbers.

In a Krull-Schmidt category, objects have a unique decomposition into a finite

direct sum of indecomposable objects. This leads to a natural notion for the “rank”

of the complexes in the resolution; however, as opposed to copies of the ring, we use

the number of indecomposable components. Set Λ to be the collection of all such

indecomposable objects.

Definition 57. Assume T is a triangulated Krull-Schmidt category with a full

subcategory, X , closed under direct summands. Furthermore, let

B : · · · → B2 → B1 → B0 → C
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be a minimal X -triangle resolution of an object C ∈ T , and note for each i ≥ 0 we

can write Bi =
⊕

E∈ΛE
kE . Then we say that the ith triangle Betti number is defined

to be:

βTi (C) =
∑
E∈Λ

kE.

Remark: We note that the ith triangle Betti number is given by the sum of the entries

in the Arnold-tuple, AQ(Bi).

As a direct corollary to Theorem 6.1 in [1], any totally acyclic complex over a

hypersurface is periodic of period at most two, moreover, as previously mentioned,

any codimension-one approximation can be given by a shift of the original complex.

The more interesting examples arise when we consider instead a pair of rings with

codimension two or more; of course, this also comes with an added increase in difficulty

of providing interesting examples. However, of particular interest in the forthcoming

examples is the complexities of C, the approximations in the sequence, and that of

the triangle resolution itself. For context, we first define complexity of the triangle

resolution.

Definition 58. Let

B : · · · → B2 → B1 → B0 → C

be a minimal X -triangle resolution of an object C ∈ T . Then the complexity of the

triangle resolution is given by

cxT C := inf{t ∈ N ∪ {0} | ∃ a ∈ R s.t. βTn (C) ≤ ant−1 ∀ n� 0}

We now give a few examples:

Example 59. Let Q = k[[x,y]]
(x2)

and R = Q/(y2), and

D : · · · → Q2

[−x 0
y x

]
−−−−→ Q2

[−x 0
y x

]
−−−−→ Q2 → · · ·
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a totally acyclic complex in Ktac(Q). Consider the triangle resolution of SD given in

Example 51:

0→ SD → SD.

Here, the triangle Betti numbers are

β
Ktac(R)
i (SD) =


1 i = 0, 1

0 otherwise

therefore, cxKtac(R) SD = 0.

In the case of relative codimension one, we have that triangle resolutions will

always have complexity of at most one. This can be seen as an analogue of Eisenbud’s

Theorem 6.1 in [1], that complexes are periodic in this situation.

Example 60. Let Q = k[x, y]/(x2), R = Q/(y2), and C be the totally acyclic

R-complex with Im(∂C0 ) = Rxy ∼= k:

· · · → R3

[
x 0 −y
0 y x

]
−−−−−→ R2 [x y ]−−−→ R

xy−→ R
[xy ]
−−→ R2 → · · ·

Then the approximation of C with respect to Ktac(Q), is given by the map STC
εC−→ C,

depicted in the diagram below:

· · · // R2
[x −y0 x ]

//

[
1 0
0 0
0 1

]
��

R2
[x y0 x ]

//

[ 1 0
0 1 ]
��

R2
[x −y0 x ]

//

[ 1 0 ]

��

R2
[x y0 x ]

//

[ y 0 ]

��

R2 //

[
y 0
0 y

]
��

· · ·

· · · // R3 [
x 0 −y
0 y x

]// R2

[x y ]
// R xy

// R
[xy ]

// R2 // · · ·

with mapping cone:

cone(εC) : · · · → R5

−x −y 0 0 0
0 −x 0 0 0
1 0 x 0 −y
0 1 0 y x


−−−−−−−−−−→ R4

[−x y 0 0
0 −x 0 0
1 0 x y

]
−−−−−−−−→ R3

[−x −y 0
0 −x 0
y 0 xy

]
−−−−−−−→ R3

−x y 0
0 −x 0
y 0 x
0 y y


−−−−−−−→ R4 → · · ·

Furthermore, Proposition 6.5 in [2] tells us that the approximation of the mapping

cone is given by the complex ΣSTC. By repeating this process, we see that the
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mapping cone of the approximation of this mapping cone is given by Σ2STC = STC

(as STC is periodic of period two). Therefore, the triangle resolution is given by

· · · → ΣSTC → STC → ΣSTC → STC → C.

We note that β
Ktac(R)
i (C) = 1 for each i ∈ Z, thus cxKtac(R) C = 1.

Interestingly, we note that in each of the examples above, the complexity of

the original complex is equal to the sum of the complexity of the triangle resolution

plus the largest complexity of the complexes in the resolution. With this in mind, we

leave the reader with a final conjecture:

Conjecture: Let C ∈ Ktac(R) with minimal triangle resolution B = · · · → B1 →

B0 → C. Furthermore, set υ = sup {t | cxRBi = t, ∀ i ∈ N}. We then have the

following equality:

cxR C = cxKtac(R) B + υ.
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