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ABSTRACT

A STUDY ON APPROXIMATIONS OF TOTALLY ACYCLIC COMPLEXES

Tyler Dean Anway, Ph.D.

The University of Texas at Arlington, 2021

Supervising Professor: Dr. David Jorgensen

Let R be a commutative local ring to which we associate the subcategory
Kiac(R) of the homotopy category of R-complexes, consisting of totally acyclic
complexes. Further suppose there exists a surjection of Gorenstein local rings Q ~» R
such that R can be viewed as a ()-module with finite projective dimension. Under
these assumptions, Bergh, Jorgensen, and Moore define the notion of approximations
of totally acyclic complexes. In this dissertation we make extensive use of these
approximations and define several novel applications. In particular, we extend
Auslander-Reiten theory from the category of R-modules over a Henselian Gorenstein
ring and show that under the same assumptions, the triangulated category Ky,.(R)
has only finitely many distinct indecomposable totally acyclic complexes. We then
present a classification scheme for this category based upon the decomposition
into indecomposable complexes. Furthermore, we prove the existence of minimal
approximations in the category. The authors above also apply the idea of right
approximations to create resolutions of totally acyclic complexes. We provide further

results with respect to these resolutions and introduce a minimality condition. Lastly,

v



we prove the uniqueness of such minimal resolutions and show several more properties

which extend nicely from the module category.
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Introduction

The goal of this dissertation is to explore the theory of, and applications for,
approximations of totally acyclic complexes. Given a commutative local ring R, the
category of totally acyclic complexes, Ki..(R), is a full triangulated subcategory of
the (more well-known) homotopy category of chain complexes over R. Although first
defined for totally acyclic complexes by Bergh, Jorgensen, and Moore in their 2019
paper Totally Acyclic Approzimations (see [2]), the notion of approximations is hardly
a novel concept as many categories exhibit objects with approximations associated to
them. Right approximations, otherwise known as pre-covers and left approximations
for pre-envelopes, are constructions developed as early as 1953 by Eckman and Schopf
in [22]. They show that each module over any ring has an injective envelope or
minimal left approximation. The dual analogue, a projective cover or minimal right
approximation, was then given by Bass [24] in 1960 and each module over any perfect
ring has a projective cover. In fact, given a pair of adjoint functors between any two
categories, we may always obtain a pre-cover and pre-envelope via the counit and
unit maps, respectively.

The modern, more categorical, notion of approximations was first defined by
Auslander and Smalg in 1980 [17], with Enochs also defining them independently in
1981 [18]. The authors of [2] use this definition and utilize a pair of adjoint functors,
between rings @ and R (where Q — R and R has finite projective dimension as a
()-module), to demonstrate existence of approximations for the category of totally
acyclic complexes. In this dissertation, we take this one step further and show that

under reasonable assumptions, minimal approximations also exist in this category.
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To do this, we make use of categorical similarities between Ki,.(R) and the stable
category of totally reflexive R-modules denoted TR(R). Specifically, Buchweitz [21]
proved in 1986 that the stable module category of maximal Cohen-Macaulay Q-
modules, denoted MCM((Q), is a triangulated category and is equivalent to Kiae(Q)
and the singularity category, denoted Dgg(Q). Furthermore, the same equivalences
also apply to the categories TR(R) and Ky..(R). Later, in [25] Bergh, Jorgensen,
and Oppermann show that the functor from Kg,.(R) to Dgg(R) is fully faithful as

depicted in the bottom right of the following diagram.

MCM(Q) = Kiae(Q) — DL, (Q)
[
TR(R) =2 Kuac(R) = D,(R)

In essence, this communicates a deep connection between Ky, .(R) and TR(R),
as well as between Ki,.(Q)) and MCM(Q), thus giving reason to use structural
properties of one to inspire what properties hold for the other. Therefore, we take
the existence of covers in the stable category of totally reflexive modules as a “proof
of concept” for the existence of covers in Ky,.(R).

We begin this thesis by recalling some basic facts and definitions in Chapter
One. Specifically, we give the full definition of a triangulated category and show the
previously mentioned fact that Ki..(R) is a triangulated subcategory.

As stated by the authors of [2], the idea behind these approximations is to
relate more complicated totally acyclic complexes with possibly infinite complexity to
simpler, possibly periodic complexes. As such, we begin Chapter Two of this thesis
by examining a class of rings for which there are only finitely many totally acyclic
complexes to use as approximations. Namely, we extend the notion of Auslander-

Reiten theory and finite Cohen-Macaulay (CM) type to the category of totally acyclic
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complexes. Furthermore, we provide a full account of all such finite quivers and show
that they are completely analogous to those in the module category. All of which are
discussed briefly, for the module case, at the end of Chapter One and to which the
diligent reader may refer to [5] for a more thorough coverage.

In Chapter Three we aim to give a partial answer to a question posed in [2]:
Can one classify the objects of Kiac(R) with finite data, in terms of the objects of
HMF(P,z) when Q has finite Cohen-Macaulay type? Specifically, we provide a
classification scheme of totally acyclic complexes by grouping them based on their
decomposition into indecomposable components. That is, we count the number of
indecomposables in the minimal approximation of each complex, and if the tuples are
the same, we call them Arnold equivalent. However, before giving these definitions,
we prove the existence of minimal right approximations in Ki,.(R) via a slightly more
general subcategory than that used by the authors of [2]. Originally intended to be
defined for complexes whose approximations stem from rings of finite TAC type (rings
with only finitely many distinct indecomposable totally acyclic complexes), we instead
give the definition more generally in terms of a Henselian Gorenstein local ring. One
clear advantage of the original setting is that there are only finitely many options for
the summands, which in turn implies that the tuple is always finite. Nevertheless, in
the more general scenario, the tuple will still always have only finitely many nonzero
terms.

In the final chapter of this thesis, we turn towards the goal of developing the
theory related to resolutions of complexes via approximations and mapping cones,
first defined in §4.9 of [2]. The authors employed the categorical structure of Ky,.(R)
to build a resolution which describes a totally acyclic complex, similarly to how a
free resolution describes a finitely generated R-module. Of course, just as in the

latter construct, these new triangle resolutions are not unique unless we impose a
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condition of minimality. For this reason, we develop the notion of a minimal triangle
resolution and prove their existence for any object in Ki,.(R). In the process of
doing so, we employ the existence of minimal right approximations of totally acyclic
complexes previously mentioned. Lastly, along with the development of minimal
triangle resolutions, we provide properties that extend the classical constructions of

free resolutions, such as an analogous notion to Betti numbers.
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CHAPTER 1
Preliminaries

In this chapter we give some of the necessary background information upon
which this thesis is built. We start by introducing the basic ideas and definitions of
categories and, in particular, triangulated categories and chain complexes. We then
discuss the homotopy category of chain complexes, K(R), with special attention to
the subcategory comprised of totally acyclic complexes, Kiae(R). Furthermore, we
discuss many properties this subcategory possesses. Finally we give a brief overview
of Auslander-Reiten theory, provide the quivers, and talk about the structures they

exhibit.

1.1 Preliminaries on Rings and Modules

In order to provide context to this thesis, we begin by giving some preliminaries
on ring and module theory. In particular, we recall definitions for specific types of
rings and modules that will be used extensively in this, and later, chapters. We refer
the interested reader to [29] and [30] for a more in-depth accounting of the definitions
in this section.
Definition 1 (cf. [29]). A commutative local ring R is a commutative ring with a
unique maximal ideal, say m. In this case we may unambiguously define the residue
field k = R/m and denote the whole affair by (R, m, k).

Throughout this dissertation, we will assume that our rings are commutative
Noetherian local rings and our modules are always finitely generated. Under these

conditions, we recall a few more definitions. (The reader may note that these



conditions may not be necessary for all definitions and results in this thesis, but shall
be assumed anyway.)
Definition 2 (cf. [30]). Let R be a commutative ring. We call x4, ..., . a regular
sequence if the sequence satisfies the following:

o x; € R is a non-zero-divisor on R/(x1,...,x;_q) foralli=1,...;c

o (x1,....,x:) # R
Furthermore, for an R-module M, we call a sequence 1, xo, ..., . in R an M-regular
sequence if:

o x; is a non-zero-divisor on M /(xy,...,x;_1)M for alli =1,....c

o M/(x1,29,....,xc)M #0

With this definition established, we recall what is meant by depth of a module
and what it is to be a Cohen-Macaulay ring.

Definition 3 (cf. [30]). Let (R, m,k) be a Noetherian local ring. For a finitely
generated R-module M, all maximal M-regular sequences x, xs, ..., x., where all
x; € m, have the same length, n, equal to the m-depth of M, denoted depth(M).

A finitely generated R-module M is called Cohen-Macaulay (CM) if depth(M) =
dim(M), where dim(M) is the Krull dimension of M. Similarly, we call a ring R,
Cohen-Macaulay if R is Cohen-Macaulay as an R-module over itself. Furthermore, we
say a module M is mazimal Cohen-Macaulay (MCM) if its depth is maximal and M
is Cohen Macaulay; i.e. depth(M) = dim(M) = dim(R). We now recall the definition
of a Gorenstein local ring, as these rings will play an important role throughout this
dissertation.

Definition 4 (cf. [30]). Let R be a commutative Noetherian local ring. We call such
a ring Gorenstein if R has finite injective dimension as an R-module. If any ring is

Gorenstein then it is also a CM ring. (see [30])



In order to discuss the Auslander-Reiten theory established later in this chap-

ter, we further recall the following definitions. A local ring R is Henselian if any
commutative R-algebra which is module-finite over R is a direct product of local
R-algebras. Moreover, an R-module is called indecomposable if it has no nontrivial
direct summands. In other words, an R-module M is indecomposable if whenever
M =M & M", either M' =0 or M” = 0. We now state Proposition 1.18 from [5]
which connects these two ideas and introduces a notion of decomposition for arbitrary
R-modules.
Proposition 5. [5, Proposition 1.18] Let R be a Henselian local ring and let M
be an R-module. Then M is indecomposable if and only if the endomorphism ring
Endg(M) is a local algebra; that is, sums of non-units in Endg (M) are non-units. This
assures us that the category of finitely generated R-modules admits the Krull-Schmidt
theorem. Namely, any R-module is uniquely a finite direct sum of indecomposable
R-modules.

This proposition will be applied any time we discuss AR theory in the module
case during this thesis. In fact, we later provide, and prove, an analogous proposition,

38, for totally acyclic complexes in a triangulated category.

1.2 Triangulated Categories

Much of the theory in this thesis involves properties that are derived from the
categorical structure of the objects and morphisms we study. It would then behoove
us to briefly discuss some basic category theory so that we may talk more in depth
about the main type of category we work in — a triangulated category. Originally
defined in Verdier’s thesis [32] in the 1963, triangulated categories offer extra structure
onto already existing additive categories. In particular, the triangulated structure

comes about from a chosen suspension functor and a set of distinguished triangles
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which satisfy five axioms. As a matter of fact, a given additive category can have
multiple triangulated structures. We again refer the reader [8] and [31] for more
information on the topics in the following three sections.
Definition 6. [8, Definition 1.1] A category A is called an additive category if the
following conditions hold:

i) For every pair of objects X, Y the set of morphisms Hom 4(X,Y’) is an abelian

group and the composition of morphisms
Hom4(Y, Z) x Homy(X,Y) — Homy (X, Z2)

is bilinear over the integers.

ii) A contains a zero object, 0.

iii) For every pair of objects X,Y in A there exists a coproduct X @Y in A.
Furthermore, an additive category A is called an abelian category if the following
axioms are satisfied:

i) Every morphism in A has a kernel and cokernel.

ii) For every morphism f : X — Y in A, the natural morphism Coim(f) — Im(f)

is an isomorphism.

A functor, ¥, between additive categories is called an additive functor if for every
pair of objects X, Y the map Hom4(X,Y) — Homy4 (XX, XY) is a homomorphism
of abelian groups. Now, let 7 be an additive category together with an invertible
additive functor ¥ : T — T called a translation or suspension functor. A triangle in

T is a sequence of objects and morphisms of the form

u, v w

X—=Y—>7=3YX.



A morphism of triangles is a triple (f, g, h) of morphisms such that the following
diagram commutes:

X——Y ——=7—"3%X

T
Xyt Mg B

We now have the necessary background information to define a triangulated category.

Definition 7. [8, Definition 3.1] A triangulated category is an additive category T
together with an invertible endofunctor ¥, the translation or shift functor, and a
collection of distinguished triangles satisfying the following axioms:
(TRO) Any triangle isomorphic to a distinguished triangle is again a distinguished
triangle.
(TR1) For every object X in 7, the triangle X I Y 502X isa distinguished
triangle.
(TR2) For every morphism f: X — Y in 7 there is a distinguished triangle of the
form X LY - Z - BX.
(TR3) If X = Y = Z = ¥X is a distinguished triangle, then also Y — Z =
X 25 YY isa distinguished triangle, and vice versa.
(TR4) Given distinguished triangles X %Y % Z %% X and X' 5 V' % 2/ 25 ©X7,

then each commutative diagram:

XY -7 3X
|
!

pol

X ==Y =7 X

can be completed to a morphism of triangles (but not necessarily uniquely).

(TR5) Given distinguished triangles

X5Y =7 - 32X,

Y % 7 X' =YY and
5



X5 7Z5Y - XX,

there exists a distinguished triangle 7/ — Y’ — X’ — Y7’ making the following

diagram commute:

Idx v Idsx
X =7 Y’ ¥ X
u Idy Su
Y ——=7 X' MY
I1d)

Z' Y’ X' VA

A functor F : T — S between triangulated categories is called a triangle functor

if it is an additive functor together with natural isomorphisms for each X € T
Oy FY(X) = XF(X)

such that for any distinguished triangle

in T, the triangle:

is distinguished in S.

1.3 Chain Complexes
Since the notion of a triangulated category is quite abstract, we look to a more

specific example to study. To do this we must first recall a few definitions.



Definition 8. [8, Section 1.1] A complex over an additive category A is a family
X = (Xn,af)nez where X,, € A and 85 : X, — X,_1 are morphisms such that
0p00,-1 =0 for all n. A complex is usually written as follows:

R o
= X — X, &S X —

Let Y = (Y,,0Y) be another A-complex, then a morphism of complezes f : X — Y
is a family of morphisms (f, : X,, = Y, )nez satisfying 83{ ofp = fa_10 85 for all n.
In other words, we have the following commutative diagram

85-&-1 ax
e n+1ﬁXnﬁXn—1ﬁ”‘

lfn«kl Lfn jfnl

U > Intl 5 Yn v Yn—l
8')’H—l an

We must also recall a notion that will be instrumental in the subsequent chapters,
namely, the mapping cone of a morphism of complexes. While the mapping cone
can be defined for a morphism between any two complexes, it plays a particularly
important role in the homotopy category of chain complexes, which will become
apparent in the next section.

Definition 9. [8, Definition 6.3] Let f be a morphism between complexes X =

(X, ) and Y = (Y,,,0Y). The mapping cone, cone(f), is the complex defined by

n _6557 0
cone(f), = X,-1®Y, and 95° e(f) .— [ fn—ll 8{].

For a local ring (R, m, k) we say that a complex C' is minimal if Im(9$) C mC,,_,
for alln € Z. We also call C' contractible if the identity morphism Id¢ is null homotopic.
(see Definition 12)

“Zooming out”, if we take the collection of complexes over an abelian category
A, together with the morphisms between them, it forms an abelian category called

the category of complezes over A and is denoted by C(A).
7



We now state a pair of lemmas, the proofs of which can be found in [6]:
Lemma 10. [6, Theorem B.54] Let C' be a complex of projective R-modules such
that R is a ring over which every finitely generated left module has a projective cover.
Then we may write C'= M & T where M is a minimal complex and 7" is contractible.
Lemma 11. [6, Theorem B.54(a)] The complex M from the previous lemma is unique
in the following sense: If one also has C = M’ & T", where M’ is minimal and 7" is

contractible, then M’ is isomorphic to M.

1.4 The Category of Totally Acyclic Complexes
Let A be an additive category and f,g: X — Y morphisms in C(A).
Definition 12. [8, Definition] The morphism f: X — Y is called null homotopic,

denoted f ~ 0, if there exists a family of morphisms (o, : X;, = Y, 11)nez such that
Jn = 81};1 On + On—1 af

for all n.

Furthermore, we say that the morphisms f,g : X — Y are homotopic if
f— g~ 0. In fact, it is well known that ~ forms an equivalence relation.
Definition 13. [8, Definition 1.6] Let A be an additive category. The homotopy
category K(A) has the same objects as the category, C(A), of complexes over A. The
morphisms in the homotopy category are the equivalence classes of morphisms in

C(.A) modulo homotopy; that is:
Homg (4)(X,Y) := Homga)(X,Y)/ ~ .

Proposition 14. [8 Theorem 6.7] Let A be an additive category. The homotopy
category, K(A), with the suspension functor, 3, defined by shifting one degree to the
left. i.e.,

(XX), = X,,_1 where an = — 8571 and X f, = fn_1
8



is a triangulated category.
Over an abelian category A, for a complex C' € C(A) the requirement that

95 005, = 0 for all n is equivalent to saying Tm 95, ; C Ker 9 for all n. This means

that we may consider the quotient module Ker 9¢ /Im 8,?“ which we call the n”

homology, denoted H,,(C).
Definition 15. [10, Section 2] Let R be a ring and C' a complex of R-modules. We
say that C' is an acyclic complex if H,,(C') = 0 for all n. Furthermore, if each C,
is a projective module and H,,(Homg(C, R)) = 0 = H,(C), we say that C is totally
acyclic. In other words, a complex of projective modules C' is totally acyclic if both
the complex and its dual Hompg(C, R) are exact in each degree.

Since the ring R is local, each projective module in the complex C' is free. We
may then consider the ranks at each degree, which we call the Betti number and

denote £;(C). In other words,

BE(C) = rank(C;).

)

Furthermore, we can describe the growth of the Betti sequence via the notion of
complexity. This is of particular importance if the sequence of Betti numbers is
non-zero for infinitely many .

Definition 16. [26, Section 2| Let C' be a complex of finitely generated free R-

modules, then the complexity of C', denoted cxg C, is defined as
xpC:=inf{t eNU{0}| Fa €Rs.t. 3,(C) <an''Vn>0}

Let us now consider the idea of subcategories and specific types thereof that have

useful properties. We say that a subcategory C of a category T is a full subcategory if

Home(X,Y) = Hom7(X,Y)



whenever XY € C. If T is a triangulated category, we say that a full subcategory
C is triangulated if it is closed under (de)suspensions and contains some mapping
cone for each morphism between any two objects in the subcategory. We additionally
say that a triangulated subcategory C C T is thick if whenever C contains an object
isomorphic to X @ Y, then it also contains both X and Y.

Moreover, Avramov and Iyengar give a construction in [9] of the smallest
thick subcategory containing a collection of objects, €2, in a triangulated category 7T,
denoted

thicks(Q).

We do this in a series of steps.
For each n > 0 we define a full subcategory thick’s(Q2) called the n'" thickening of Q
as follows:
o thicky-(Q) = {0}.
o The objects of thick-(2) are the retracts of finite direct sums of shifts of
elements in ).
o For each n > 2, the objects of thick’+(2) are the retracts of those C' € T that

appear in some exact triangle
C'—C—C"—= 3

with O € thick’=(Q) and C” € thick} ().
Then
thicks(Q2) = | J thick}(€)

neN
Of particular importance to this thesis is the first thickening. While not thick itself,

it is a full subcategory, closed under direct sums.
We now turn our attention to the object of focus in our studies throughout this

thesis:
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Definition 17. [2, Section 1] Let R be a ring and K(R) the homotopy category of
R-complexes. Define the full subcategory Ki..(R) of K(R) whose objects are the
totally acyclic complexes and the morphisms are the the homotopy equivalence classes
of R-complex chain maps.

For lack of a good reference, we now show that K,.(R) has all the useful
properties set forth in the previous paragraphs.
Proposition 18. Ki,.(R) is a thick, triangulated subcategory of the homotopy

category.

Proof. We begin by showing that K,.(R) is a triangulated subcategory of K(R).
Given a totally acyclic complex X it is clear that X¢X is totally acyclic for all

i € Z. Thus Ki,.(R) is closed under (de)suspensions, therefore it suffices to show

that cone(f) € Kiac(R) for any morphism f € Homk,, (r)(X,Y’). Since cone(f) is a

complex we already have that

Im(95% 1)) € Ker(aemeW)),

To see the reverse containment, suppose (z,y) € Ker(9¢™)). That is to say

(= Ona(2), famr(2) + 05 () = (0,0) (1.1)
By (1.1) we have that 2 € Ker(—9_,) = Im(—0.) and there exists o € X,, such
that — 0 (o) = 2. Furthermore, f,_i(z) = — ) (y). Now, as f is a chain map we
have that f,,_; 82( — 8Z fn = 0. In particular we have that

0= fu-10, (@) =9, fula) =
—fu-1(2) = Oy fale) =

O (y) = 0y fula) = 0y (y — fule)).

Thus, y — f.(a) € Ker(d))) = Im(d)., ) so there is a 8 € Y,,,; such that 9),,(3) =

Yy— fn(a)
11



Finally, consider the element («, ) € X,, ® Y,,11. Then

01, B) = (= 0 (). fule) + 0,11 (9))

= (2, fu(@) +y = fula)) = (z,9).

Thus,
lm(8,777)) = Ker(277)

and the mapping cone cone( f) is acyclic. It follows that cone(f)* = Hompg(cone(f), R)
is acyclic from the fact that Hompg(X, R) and Hompg(Y, R) are exact by assumption
and a similar argument to the previous one. We now turn our attention to proving
that Ki..(R) is a thick subcategory. To do this, assume that X @Y is a totally
acyclic complex. Then, since homology respects finite coproducts we have that for
each n € Z:

0=H,(X®Y)=H,(X)®H,(Y).
Thus, X and Y are both acyclic. Furthermore, since Hompg(—, R) respects finite

coproducts as well, we have that:
0=H,(Homgr(X ®Y,R)) =
H,(Homg(X, R) ® Homg(Y, R)) =

H,(Homg(X, R)) ® H,,(Homg(Y, R))
for each n € Z. This proves the statement. O

Furthermore, Ki..(R) has an interesting connection to the category of R-
modules. Indeed, given a finitely generated module M over a Gorenstein ring, we
may extend M to a totally acyclic complex C' € Ky,.(R) via a complete resolution.
Definition 19. [10, Section 3] A complete resolution of a finitely generated R-module
M is a diagram

cLtrohM
12



such that C' € Kia(R), P is a projective resolution of M, p is a morphism of R-
complexes, and p, is bijective for all n > 0. We will often abuse terminology and
call C' a complete resolution of M.

Though originally defined by Buchweitz in [21], the construction of complete
resolutions is given by Avramov and Martsinkovsky in 3.6 and 3.7 in [10] and, for
such a complete resolution it holds that p,, = Idp, for all n > 0. We also have the
following lemma relating each totally acyclic complex with its minimal complex which
follows easily using such complete resolutions.

Lemma 20. Let C' € Kyae(R) such that C = C @ T where C is the minimal complex.

Then C and C are homotopically equivalent.

Proof. Let C € Kia(R). If C' is minimal, we are done, therefore assume that C
is non-minimal. We also know that C' is the complete resolution of the R-module
X = Im(ag ). However, we may also extend X to a complete resolution minimally
by choosing the free resolution P’ of X to be minimal. We then obtain the totally
acyclic complex C' and the complete resolution C' — P’ — X. Then by Lemma 29 in

§2.1, which shall be proven in time, we get the following commutative diagram

C——P—X

|l ]

C—=P—X
which shows that C' ~ C. O

1.5 A Gentle Introduction to AR Theory

In the next chapter we provide an extension of Auslander-Reiten theory to the
category of Ky,.(R). However, in order to fully contextualize this extension, we now
give some preliminaries on AR theory in R-mod and introduce the notions of finite

Cohen-Macaulay type and AR quivers. Throughout the rest of this section we have
13



that (R, m, k) is a Henselian hyper-surface defined by a nonzero divisor f in a regular

local ring S:

R=S5/(f).

In order to set the stage for the following definitions and descriptions we recall what
is meant by a simple singularity from [5].

Definition 21. [5, Definition 8.1] Let S be a regular local ring. For a hypersurface
R = 5/(f), consider the following ideals in S:

c(f) = {I | I is a proper ideal of S with f € ]2}

We call such a ring R a simple singularity if the set ¢(f) is finite.

We now state a classification, given in Theorem 8.8 in [5], for simple singularities
which gives an explicit description for the possible forms of f. Let k be an algebraically
closed field of characteristic 0 and S = k[z, vy, 22, 23..., 24]. If R = S/(f) is a simple

singularity then f is equal to one of the following:

(A,) Pyttt 2+ + .+ (n>1),
(D) Py+ynr 2422+ 422 (n>4),
(Es) Pyt 22422+ 22
(E;) i e A N R 5
(Es) Py 22422+ + 2

In order to give the definition of an AR quiver, we must first establish some
notation. Let €(R) be the full subcategory of R-mod consisting of MCM modules.
Then for two indecomposable modules M, N € €(R) the radical of M and N is the
submodule of Homg(M, N) consisting of all non-invertible morphisms f : M — N
and is denoted rad(M, N). Furthermore,

rad*(M, N) = Z rad(L, N)rad(M, L)
14



as L ranges over the subcategory €(R). We may now define the submodule of

irreducible morphisms as follows:

rad(M, N)

II'I'(M, N) = m

We note that if f € Irr(M, N) then for any L € €(R) and diagram of the form
L
/ s \

f cannot be decomposed otherwise it would be factored out. Furthermore, we note

M N

that Irr(M, N) is a vector space over k and thus, has a k-dimension; which over the

a fore mentioned rings is always finite and we define as:
irr(M, N) = dimy(Irr(M, N)).

Another important aspect of AR quivers is the encoded notions of AR sequences
and AR translates. For an indecomposable CM module M € €(R), we define a set of

short exact sequences S(M) as follows:

S(M) =

{s:0—= Ny — E; - M — 0| s anonsplit S.E.S. in €(R) with Ny indecomposable} .

By Lemma 2.2 of [5], S(M) is nonempty if M is an indecomposable maximal Cohen
Macaulay module. Furthermore, we may impose a partial ordering on this set of
short exact sequences via the following definition.

Definition 22. [5, Definition 2.3] Let s and ¢ be two elements of S(M). We write

s > t if there is an f € Homp(N,, N;) such that Extp(M, f)(s) = t. In this case we

15



say that s is bigger than ¢ or t is smaller than s. This is equivalent to the existence

of a commutative diagram:

0 N E; M 0

o]

0 Ny E, M 0

We write s ~ t if f is an isomorphism above. We often identify s with ¢ when s ~ t.
We make use of this partially ordered set of short exact sequences to recall the

following definition:

Definition 23 (Definition 2.8 , [5]). Let M be an indecomposable CM module over

R. If a short exact sequence
s:0—->N,—-FE,—M—0

ending in M is the minimum element in S(M) then, if it exists, is uniquely determined
by M. Such a short exact sequence is called an AR sequence. In particular, the
modules N, and E are also unique up to an isomorphism. If s is the AR sequence
ending in M, then we denote N by 7(M) and call it the AR translation of M.
We may now, finally, define an AR quiver.
Definition 24. [5, Definition 5.3] The AR quiver I' of €(R) for a simple singularity
R is a directed graph where:
o each vertex corresponds to a non-isomorphic, indecomposable CM module,
o the number of arrows from vertex M to vertex N corresponds to the integer
irr(M, N),
o also, to encode the information of the AR translation 7(M), we connect the
vertex M to the vertex N with a dotted line if N = 7(M) such that there is an

AR sequence 0 - 7(M) - E — M — 0 for some E.

16



1.6 AR Quivers Over Rings of Finite Type

We now give a full accounting of the AR quivers when R is a 1-dimensional
ring of finite CM type.
Let R = k[x,y]/(f) as a special case of the previous description.

e For A, with n even we have that the AR quiver is:

e For A, with n odd we have that the AR quiver is:

v
'2Q§§N

For both odd and even n, My = R and M; = Coker ¢; where

x oy  n+1
pj = : l<yj< :
yn+1—j —r

In the case that n is odd we write n = 2k — 1. In this case, Ny = R/(y* + ix),
N_=R/(y* —iz) and My = N, & N_.
e For D,, n odd, the AR quiver is:

><><>< \X
/ -
NN NN

17



e For D,, n even, the AR quiver is:

M, Y5 M;

For both even and odd n let

(OQB) = (y,xQ + y2l_2)7
(v+,04) = (y(z + iy 1),z —iy' ™),

(Y=, 0-) = (y(@ —iy' "),z + iy ).

Then

A = Cokera, B = Coker j3,
C, = Cokerv,, (C_ = Coker~y_,

D, = Cokerd,, D_ = Cokerd_.

Furthermore, for the matrices:

;= , Yy = , &= n; =

yn—j—Q —T yn—j—l —zy yn—j—l —zy yn—j—l

we have that:

M; = Coker ¢;, N; = Cokert;, X; = Coker§; and Y; = Cokern;.
18



e For Fg the AR quiver is:

/ N
\ A——>N,
Take the matrices:
2
T oy oy
Y1 = ) 2/}1 - )
yP o TR
2 2 .2
r oy =y
P2 = ) ¢2 = )
y? —a? T -
y3 o x? y 0 =z
o = Ty _y2 1'2 , ﬁ = |z _y2 0
2?2 —xy - 0 = —y

Then

M,; = Coker ¢;, N; = Cokerv;, (i =1,2)

A = Cokera and B = Coker f3.

e For F; the AR quiver is:




Take the matrices:

a =z,
2 yx
Y= )
xy? —a?
x Yy
Y1 = )
xy? —a?
r P
P2 = )
ry —a?
vyt 2t —a2%y

=y = —9*|,

v o€
{3 = ) ns =
0 o
where
€ =
Then
M; = Coker ¢;, N; = Coker ),
X; = Coker¢&;, Y, = Cokern;,

Y =

Yo =

m =

2 =

A = Cokera, B = Coker f3

C = Coker 7,
20

D = Coker é.

x Yy

ry? —x

22 2

xy —x

Y 0 =z
—x xy 0],
0 -z vy
x 0 v
—zy 2% 0
0 —xy x
0 —e€

0 v
(1=1,2)

(i=1,2)



e For Fg the AR quiver is:

My —=C——Y; Y,

Take the matrices:

z Yy
Y1 = )
gt —a?
x P
P2 = )
v —a?
y —x 0
=10 y —x|;
x 0 9P
y —x 0
ar =10 y?* —=x|,
x 0 9P
y —x 0 Y3
T 0 —y* 0
= )
-2 0 —a2%2 0
0 —y?* —axy —a2?

21




x P
v -
Y2 =
0 0
0 0
%
2
&1 =
0
0
0
%
& = 0
_y3
Then
fori=1,2.

M; = Coker y;,
A; = Coker q;,
Ci = Coker Yis

Xz' = Coker fi,

22

02

N; = Coker 1),
B; = Coker 3;,
D; = Coker ¢;,

Y; = Coker n;




CHAPTER 2
The Extension of AR Quivers

In this section we describe the extension of AR quivers from the category of
(-modules to the triangulated category Ki..(Q). In order to facilitate this extension
we first define the notions of split and irreducible morphisms in K..(Q). We spend
much of this chapter proving several lemmas in order to show that these notions
extend nicely from the module category. In fact, we give a partial converse to Lemma
5.3 from [10], which we make extensive use of throughout this dissertation. We then
describe how the vocabulary of AR theory in the module case extends to a triangulated
category; namely, the ideas of AR triangles and AR translates. Furthermore, we not
only show that these notions exist in Ky,.(Q), but also provide concrete descriptions
of both. Finally, we give a full accounting of the associated quivers and describe the

corresponding vertices.

2.1 Split and Irreducible Morphisms

Let @ be a CM local ring with maximal ideal m and residue field k. We first
define what it means to be a split monomorphism and split epimorphism of complexes
in the category Ki,.(Q).
Definition 25. Let f : C — D be a morphism of totally acyclic complexes. We say
that f is a split monomorphism if there exists a morphism of complexes v: D — C
such that v o f ~ Ide. Similarly, we say that f is a split epimorphism if there exists

a morphism of complexes A : D — C such that f o\ ~ Idp.
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When the distinction is irrelevant, we will often refer to a morphism which is
either a split monomorphism or a split epimorphism as simply a split morphism. In
particular, a morphism which does not split is a morphism which is neither a split
epimorphism nor a split monomorphism.

Definition 26. [19, Section 4.3] Let C' and D be totally acyclic complexes over R,
and let f : C' — D be a morphism of complexes. Then we say that f is an rreducible
chain morphism if the following two conditions are satisfied:

i) f is not a split epimorphism nor a split monomorphism,

ii) if f can be decomposed as f ~ h o g then either g is a split monomorphism or

h is a split epimorphism.

One should note that this definition is simply a restriction of Happel’s definition
from [19] for an arbitrary category. We now give the definition of an irreducible
morphism of totally acyclic complexes. The definitions of split and irreducible
morphisms are analogous to those in the module category. The next few propositions
will show that under certain conditions, an irreducible/split morphism in the category
R-mod extends to one in K,.(R) and vice-versa.

Lemma 27. Assume the chain maps p,q : C — D are homotopic with a homotopy
morphism o. Then p is a split epimorphism or a split monomorphism if and only if ¢

is as well.

Proof. 1f p ~ ¢ then for each n € Z,
Pn —dn = O-n—lag + aq’?Jrlo-n‘ (21)

Now assume that p is a split monomorphism, then there exists a chain map v : D — C

and homotopy 7 such that
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for each n. Then by composing equation (2.1) on the right by -, we obtain
VoPn = nln = Yn0n-105 + 10210, (2.3)
and by substituting equation (2.2) into (2.3) we obtain
Idg, —7,-105 — (9g+17'n — Vo = YnOn_105 + %anDHan.

Rearranging the previous equations and making the appropriate substitutions, we see
that
Idc, —Yndn = Yn0n-105 + Tn-105 + 051 Vns10n + 05117
which gives
Ide, —YnGn = 1105 + 0%, 1m0
where 1, = Y110, + T,. Thus, Idg ~ vg and ¢ is a split monomorphism.

Assume now that p is a split epimorphism. Then there exists a chain map

A: D — C and homotopy 7 such that
Idp, —PnAn = Tno102 + 87?“7'”
for each n. Then, via an almost identical process, we obtain
Idp, —gn\n = Vn_lc‘?f + 8,?“1/”
where v, = o, \, + 7,. Thus, Idp ~ ¢\ and ¢ is a split epimorphism. The reverse

statement holds by switching p and ¢, which proves the statement. O

Proposition 28. Assume there exist chain maps f,g: C' — D such that f ~ g. If f

is an irreducible chain map, then so is g.

Proof. Let f be an irreducible morphism. Since f is not a split monomorphism nor a

split epimorphism by Lemma 27, neither is g. Now suppose g decomposes so that
25



g ~ ko h and note that by transitivity, f ~ ko h. Now since f is an irreducible
morphism which decomposes, we must have that either k is a split monomorphism or

h is a split epimorphism. This proves that ¢ is an irreducible morphism. O

We will now show that under particular assumptions, f : M — N is an
irreducible morphism of R-modules if and only if the chain map f :C = D is
irreducible (where C' and D are complete resolutions of M and N, respectively). We
first state Lemma 5.3 from [10].

Lemma 29. [10, Lemma 5.3) Let C & P 5 M and D & P’ , N be complete
resolutions of finitely generated R-modules M and N, respectively. Further assume
f: M — N is an R-module homomorphism, then there exists a unique (up to

homotopy) morphism of R-complexes f, making the right-hand square of the diagram

C——P—M

P

Y o Y o

D-sp _T-N
commute, and for each choice of f there exists a unique up to homotopy morphism f
making the left-hand square commute up to homotopy. If two such f are homotopic,
then so are the respective f . If f =1y, then f and f are homotopy equivalences.

Effectively, this tells us that for each map f : M — N we have an induced

morphism f of totally acyclic complexes. However, under certain conditions, we
may also obtain f: M — N from the morphism of totally acyclic complexes f . In
effect, the following lemma is a converse to the previous one. This fact will play an
important role in later applications.
Lemma 30. Let R be a Gorenstein local ring, and let M, N be maximal Cohen-
Macaulay modules over R. Suppose further that C' and D are the respective complete

resolutions of M and N. Then for a morphism of totally acyclic complexes f :C—=D
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we obtain morphisms f : P — P’ and f : M — N, such that the following diagram
commutes.
C——L-P-"-M
| |
A
’ ¥ , A
D-t-pP - T-N
Furthermore, these morphisms are unique in their respective categories.

Proof. Let M and N be maximal Cohen-Macaulay modules over a Gorenstein local

ring R. Then by Theorem 3.1 in [10], M and N have complete resolutions

and

(respectively), such that p, and p/, are bijective for all n > 0. Now we define

f: P — P tobe
fn = p;zfnpgl'
Our goal now is to show that f is a chain map. To do this we make use of the

following diagram which we know commutes on all faces, save the bottom, which we

will begin with proving.

> n+1 a’rr‘rl Cn 32 Cnfl
e /7 | e |
fn+1 Pn+1 /fn Pn fn—l Pn—1
I Dn+1 0n 14 Dn E Dn—l -
p{fl+1 , Pil—l
—  Int41 e P, " P,
e 7 e
— 7 _ 7/ —
fn+1 /fn I /fnfl
y s y
P/ / N4 / .
—P ar P or P _,—




Observe,

P _ —1 P
fn an—&-l pnfn an—i—l -
1 £ aC -1 _ 1 9D ¢ -1
pnf'fl an—l—l Pn+1 = Pn 8n—l—l fn+1pn+1 -
P’ / £ -1
an+1 Pn+1fn+1pn+1 n+1 fn+1

as needed. We finally show that if f ~ f’ then their induced maps, f and f’ are

homotopic as well. Let f ~ f’ so that there exists 0 : C' = XD such that for all n,

~ o

fo— [l =0n_ 18 +an+1an

Now then,

o= Fr=pufupi = Pufrpnt =
Pu(fo = F)ont = P01 O + 071 00)p," =
O on1 (90 ot (9n+1 Tnpi
Pnan 1Pn 1 8 +an—|—1 Pn+10npn

K 18 —|—8n+1/1n

for K, = pl,1100p,". Thus we have that f ~ f'.
We now turn our attention to the existence of f : M — N. Consider the

diagram which we know commutes on all faces:

=
QD
=
=
(@]

/|

2"
™
N\
<
AN
N\
O <—




Since

P
P PSS M0

is an exact sequence we have that € is surjective. Thus, for each © € M there exists
p € Py such that e(p) = z; so define f(z) = € fo(p). To show that f is well defined
take p,p’ € Py such that e(p) = 2 = ¢(p'). Then p—p’ € kere = Im 7 so there exists

y € Py such that 07 (y) = p — p’. So we have that

proving f is well defined. Furthermore, if f ~ f’ then their induced maps are equal.

To see this, note that there exists o : P — Y P’ such that fy — fé = @fl 0o + 0. Then
f—=1= E/fo - E/fé = 6/(JFO - J?é) = E/aflffo =0,
demonstrating that f = f’, and therefore f is unique. ]

It should be noted that the maximal Cohen-Macaulay condition on modules in
the previous lemma is necessary, as otherwise the bijectivity of pg is not guaranteed.
Lemma 31. Let R be a Gorenstein local ring, and let M, N be maximal Cohen-
Macaulay modules over R. Then an R-module homomorphism f : M — N is a split
monomorphism (resp. epimorphism) if and only if the induced morphism of totally

acyclic complexes f : C'— D is a split monomorphism (resp. epimorphism).

Proof. Let f : M — N be a split R-module homomorphism, which implies there
exists a g : N — M such that either gf = 1), or fg = 1y. By Lemma 29 we have
that there exist f, g, f and ¢ such that the following diagram of complete resolutions

commutes:
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g g gl Y
r\

C—LsP_"o My
]
f f |/

Also by Lemma 29, if gf = Idy; we must have that
Gf ~1dp and §f ~ Idc .
Similarly, if fg = Idy we have
fg ~1dp and f§~Idp.

This shows that if f is a split monomorphism (resp. split epimorphism) then f isa
split monomorphism (resp. split epimorphism).

Now assume that f : C' — D is a split morphism of totally acyclic complexes.
Then there exists a g : D — C such that either, g}f ~ Id¢ or ff] ~ Idp. In other

words, there exists ¢ : C' — XC such that

gf —1de = 0%, 0 + 01 O
or o' : D — 3D such that

]Efl —Idp = a£+l o e 87?-

By Lemma 30 we obtain the induced maps g, f,¢ and f such that f, = p/, fnp,; L and

similarly, g, = pndnp’,, ' such that the following diagram commutes:
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Now

(Padnf'n ) (Pfupn) = pudnp'y dofupn =
prgnfupn = pu(Idc, + 0%y 00+ 001 09)p," =
pulde,py" + pn 05,y Onpyt + pron_1 05 p, =
Idp, + afﬂ Pri10npPp "+ PnOn 107ty 85

= ]dpn + (971;_1 Tn + Tn—1 85

where 7, = pn110,p, . So we have that

gf ~1dp.

We can similarly show that fg ~ Idp:.

Thus far we have shown that if f splits then f splits as well. In other words we
have that fg ~ Idp or gf ~ Idp. In particular, we have that
gofo — Idpo = 8f To + 0
or
f()go — Idpé = 8{3/ T(l) + 0.

From this we obtain the following commutative diagram:
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P or Py 0
/ 7
/ i
/ g
I fi I fo N
Idp, Idp, )
I S €
! A / g
[ g
~ P of — I 0
| |
| 7_(_-)’ |
\ (.
v g1 v Jfo M
\ ' \ /
v \
NY Y N
P 1 3{3 P, 0 0

It should also be noted that g : N — M is given by g(y) = €go(p’) where
¢ (p') = y and is well defined. Now if z € M then gf(z) = g(¢'fo(p)) where e(p) = z

and p' = fo(p). It follows that

9(€ fo(p)) =
egofo(p) = €(Idp, + 07 70)(p) = €ldp,(p) + € I7 To(p)

—e(p) =2

and therefore gf = Id,;. We can similarly show that fg = Idy. Thus, we have
shown that if f is a split monomorphism (resp. epimorphism) then f is a split

monomorphism (resp. epimorphism). Thus, f splits if and only if f splits. [

In the previous lemmas we have shown that the split and irreducible properties
are preserved under homotopy and that split morphisms can be extended to and from
the homotopy category of totally acyclic complexes. We now prove the last piece of
the puzzle linking AR quivers over R-mod and K,.(R): that irreducible morphisms

can be extended as well.
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Proposition 32. Let R be a Gorenstein local ring, and let M, N be maximal
Cohen-Macaulay modules over R. Then an R-module homomorphism f: M — N is
irreducible if and only if the induced morphism of totally acyclic complexes f :C—= D

is irreducible.

Proof. Let f be an irreducible R-module homomorphism. By definition f: M — N
must not be a split morphism, so that by Lemma 31, the induced morphism f :C—= D

is not split either. Now assume that f decomposes as in the following diagram:

M

! N
N

X
In this case we must have that either g : M — X is a split monomorphism or
h: X — N is a split epimorphism. Now by Lemma 29 and its uniqueness property,

we have that there exist morphisms f, g,k and f . 3, h such that each face of the

following diagram commutes.

C & P il M
. A" - pr - X Fig 1
p—2 p— " .N

So, we have that

fwﬁgandfwﬁg.
Now by Lemma 31, if g is a split monomorphism then so are g and g. Similarly, if A
is a split epimorphism then so are h and h. Thus, if f is irreducible, then so is f )

Now assume that f is an irreducible morphism of totally acyclic complexes. By

definition f is not a split morphism and, by Lemma 31, neither is f. Also, we have

33



that if f ~ ﬁg, either ¢ is a split monomorphism or his a split epimorphism. Now,
by Lemma 30, there exist morphisms f, g, h and f, g, h such that each face of Fig. 1
commutes. Therefore, we have that f ~ ﬁg and f = hg. Furthermore, by Lemma 31
we have that if § is a split monomorphism or his a split epimorphism, then so must
be g or h, respectively. Thus, if f is irreducible then f is irreducible as well, proving

the statement. W

2.2 Extension of AR Quivers to K..(Q)
The extension of AR quivers to Ky,.(Q) begins by recalling the definition of an
AR triangle from [20]. See also [15].

Definition 33. [20, Section 3.1] A distinguished triangle
X=Y—=7Z—=YXX

is called an Auslander-Reiten triangle, or AR triangle, if the following conditions are

satisfied:

(AR1) X and Z are indecomposable objects,

(AR2) w#0,

(AR3) If f: W — Z is not a retraction, then there exists f': W — Y such that
vf = f.

We say that a triangulated category 7 has AR triangles if, for any indecomposable

object Z of T, there exists an AR-triangle ending at Z :
X5y 575 %X,

In this case, the AR-triangle is unique up to triangle isomorphism inducing the
identity of Z. To show that Ky,.(Q) has AR triangles, we must briefly discuss Serre

functors. As defined in [15], a Serre functor of a category 7T is an auto-equivalence
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v:T — T together with an isomorphism D Homs (X, —) ~ Hom(—,vX) for each
X €T , where D is the duality, Homy(—, k). Applying Theorem 1.1.1 from [15] to
Kiac(Q) we may deduce that Ki,.(Q) has a Serre functor v.

In fact, as shown by Auslander [27] in 1978, the stable category of maximal
Cohen-Macaulay modules over a commutative isolated d-dimensional local Gorenstein
singularity is (d — 1) Calabi-Yau. (See also [28]) Since the rings we are dealing with
have dimension one, the Serre functor is given by v = Id. To prove that Ki..(Q) has
AR triangles, consider the indecomposable totally acyclic complex Z. Then the AR

triangle ending in Z is given by
T4 =Y = Z = vZ

where 7, given by the composition 7 = ¥ ~!v, is the AR translate. In other words we
have the triangle:

Y ZSY 57557

Recall that in what follows the ring () is a Henselian Gorenstein local ring of
finite CM type. In order to construct AR quivers in K;,.(Q)) we note that if a maximal
Cohen-Macaulay module M is indecomposable then the totally acyclic complex C
induced from the complete resolution C' — P — M is indecomposable as well. The
proof of this fact is held until the next chapter (see Proposition 36), but has a few
consequences we now mention. For one, we have that @ is of finite CM type if and only
if ) is of finite TAC type; in other words, it has only finitely many indecomposable
totally acyclic Q-complexes up to homotopy equivalence. Furthermore, by considering
the vertices in the AR quivers of the -module category and extending those to
totally acyclic complexes via their complete resolutions, we obtain the vertices of
the AR quivers in Ky,.(Q). For the edges, we consider the irreducible morphisms

between the indecomposable modules. By applying Proposition 32 to each irreducible
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morphism in the AR quiver in ()-mod we obtain irreducible morphisms between the
indecomposable totally acyclic complexes. Hence, we obtain the edges of the AR
quiver in Ki,.(Q).

Before presenting a full accounting of the AR quivers in the category Kia.(Q),
it may be illuminating to see a specific example.

Example 34. Consider the case (Aj); that is, when Q = (giﬂ) Then the AR

quiver in the module category is given by:

e

_l’_

where the vertices are given by:

T
M; = Coker ,

y -

N_ = Coker (z — iy?),

N, = Coker (x + iy?).
Furthermore, the AR sequences ending in the modules My, N, N_ are:

0—>M —-Q&N, ®&N_— M —0,
0—+N_—> M — N, =0,

00—+ Ny —= M —N_—0

respectively.
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Then by extending the modules and irreducible morphisms to their associated

counterparts in Ki,.(Q) we obtain the AR quiver:

d

where the totally acyclic complex associated to the module @) is the zero complex,

since pdg(Q) = 0. The other vertices are given by the totally acyclic complexes:

N ) R I e R
Elz"'_>Q \Q >Q — ...
1 0 -1
x—iy? x—+iy?
E_:---—>Q( y)Q(+y)Q_>...
1 0 —1
z+iy? z—iy?
E+:-~-—)612(+y)\602( y)\Q1_>...

We may similarly extend the AR sequences to triangles given by:

E1—>E+@E—_>El_>Ela
E_ —-FE —-F, = FE_|

EL—-F —-FE —E,

respectively.

2.3 AR Quivers in K;,.(Q)

For completeness we now give the AR quivers for each case as we did previously.

One should note that these are completely analogous to those in the module category.

Let




e When f = 2?4+ y"™! we have two cases, for (A,) with n = 2] we have the quiver

e
where:
T 3/ x 3/
Y1 T yn =i "
Ej=- —Q* > ()? Q? —
for 1 <5 <3.

For (A,) with n = 2l — 1 we have the quiver

. B ——F,

v

where, similar to the above example:

T 3/ T 3/
ntl—j o ynJrlfj o
Ej=-—Q* y » QF —
z—iy! z+iy!
E — —>Q( y)>Q(+y)Q_>
z+iyt z—iy!
E, — Q(+y) ( y)>Q_>

forlng"T_l.
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e When f = z%y + " we again have two cases, for (D,,) with n even we have

the quiver

where the vertices are given by the following totally acyclic complexes:

.’172 n—2
A= QW D g W ...
yn—j—Q —r yn—j—l —zy
Ej=- =@ = Q’ Lot
y I —ay y Il —a
Gj:..._>Q2 - \Q2 _>Q2—>"-
. n2 . n—2 . n=2
E+ SN Q y(:t:-&-lyT)\ Q (z—zyT)\ Q y(a:-i—lyT)\ Q N
E_=--5Q ya—iy ), Q (etiy 7 ), 0 yle—iy @), Q=

B=Y""AF; =%X""E,
F,=>"'"E., F_=%Y"'E_,

H; =%7'G,

for1<j<n-3.

For (D,,) with n odd we have the quiver
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Ae— Gy By =Gy Fus
OO

where the vertices are the same as those in the even case, with the caveat that
Hii ~Goa
2 2

and as such, is its own AR translate.

e When f = 23 + y* we have the case (Eg) and the is quiver given by

B—>E1

n :H< ><

A—>F1

where the vertices are given by the following totally acyclic complexes:

Ty 2?2y
- -
Ey=-—Q Q? >y Q° —
r o 2y
2 —a? S
By~ Fy = — Q? y Q? Q* —
y o 2? ay? y 0
vy —y?  a? r —y®> 0
22 —xy —1P 0 = —y
A= =@ Q? Q* —
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r P 0 Y _ZE2 y 0 xy

y? -2 —ay O v  —x oy 0

0o 0 22 gy 0 0 =z

0o 0 ¥ -—x 0 0 ¢y* —2a?
H=-..5Q'= = Q= S5t — -

F,=Y"'F,,B=Y"1A.

e When f = 23 + zy> we have the case (F7) and the quiver is given by

B

where the vertices are given by the following totally acyclic complexes:

T 12 3
A:...%QQ)Q%Q%...
> yx x oy
I 2 —r
C=- = > Q° Q* —
x Yy .']J2 Yy
xy? —a? xy? —w
Ei=-—=Q? = Q? = s Q% — -
T y2 332 y2
ry —a? xy —T
E2 - — Q2 - Q2 - \ QQ N
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y 0 =z _ny —z? -2y
—x xy 0 ry yr  —a?
0 —x vy N VR Ve
Gi=—Q° = Q° = N L
y 0 x_ _:EyQ — 2 —:BQy_
—z xy 0 ry y: -
0 —x vy 2wy wy?
o= @ 5 QF FQ
x y -y 0 _ _xQ ry y O
y? —x 0 —y ry? -2 0 vy
0 0 2 ay 0 0 z vy
0 0 ay*? —2? 0 0 v® —x
Gy=---— Q= = QY = Q-

B=Y"1'AD=x"'C

and

F,=Y""E,, H; =%7'G,

forl1<i<2and1<j<3.

e Finally, when f = 2 + 3° we have the case (Eg) and the quiver is given by

Hz C1 B1 Fl
Gy——>D——>= A —— E

where the vertices are given by the following totally acyclic complexes:
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y —x 0 yt o wy? a?
0 v —=z -2yt oy
xr 0 9 —zy —z* y?
A = —>Q3 - = Q3 = - Q?’_)
y —x 0 yt o oxyd 2
0 9> -z 22 oyt oy
x 0 9 —zy —a% y?
Ay == Q% = = Q° = = Q=
r oy 2y
gt g T a—
Bim o QP QP QP
T 2?2
T TR
Ey=- = Q" = = Q° = = Q=
y —x 0 y° 0 2 -y 0
T 0 —y* 0 —z* oy 0 =
-2 0 -2 0 0 —y> -z 0
0 —y* —azy —2? > 0 y -
Cr=r Q= Q- 5 Q-
r P 0 Y 22y 0 Yy
y3 —IQ —l’yQ 0 y3 —r _y2 0
0 0 T 0 0 z 9
0 0 v —x 0 0 9 —2?
Co=-—0Q— = Q — Q—
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CHAPTER 3
Classification of Ky,.(R)

In this section we define a classification scheme for totally acyclic complexes over
aring R. Let Q be a Henselian Gorenstein local ring and Q » R be a surjective ring
homomorphism such that R has finite projective dimension as a ()-module. We start
by showing that over such a ring, K;..(Q) is a Krull-Schmidt category. Afterward,
we make use of a pair of functors which induce approximations (discussed at length
in [2]), along with some basic properties of totally acyclic complexes to define an
Arnold-Tuple. As necessitated by this definition, we prove the existence of minimal
right approximations in the category of K;..(R) as an inevitable extension of the
existence of a non-minimal approximation. We then show that this definition is well
defined up to homotopy, although a more “coarse” description than that of homotopy
equivalence. Lastly, by building upon the work of Bergh, Jorgensen, and Moore
in [3], we discuss an extension of their result which gives a concrete description of

approximations, to the relative codimension ¢ > 2 setting.

3.1 Kia(Q) is a Krull-Schmidt category

To begin, we recall a definition by Claus Michael Ringel in [13]. We note that
in the first chapter we stated Proposition 5, which relates Henselian rings to the
Krull-Schmidt-Remak theorem. It is now that we build the previously advertised

extension to Ka.(R).
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Definition 35. [13, Section 2.2] A k-additive category 7 is called a Krull-Schmidt
category if the endomorphism ring End(X) of any indecomposable object C' of T is a
local ring.

Let @ be a Henselian Gorenstein local ring, it is in this section we show that
Kiac(Q) is a Krull-Schmidt category. However, we first state two facts which hold in
this category.

Proposition 36. Let () be a Henselian Gorenstein local ring and M be a maximal

Cohen Macaulay (Q-module. Furthermore, let
cHPL M

be the complete resolution of M with C' € Ki,.(Q). Then we have that M is

indecomposable if and only if C' is as well.

Proof. Assume for contraposition that M is decomposable, so that we may write
M = A @ B with neither A nor B contractible. We can then consider the complete
resolution of A & B,

CA@CBAPA@PBW—/>AEBB,

which gives us the following diagram:

C P P m M
| |
I | lld

y , % ,
Cr®Cp—2>P,&Pp=>AB

Then by Lemma 29 we have that [i is a homotopy equivalence, and therefore C' is
a decomposable complex in Kg,.(Q). Similarly, if C' is a decomposable complex in
Kiac(Q) we have that C' ~ Cy @ Cp with neither C4 nor Cp contractible. Now let
A=TImd5* and B = Imd5® and note that by Lemma 30 in conjunction with the
previous diagram, we have that C' ~ Cy ® Cp implies M = A& B. Thus, M is

decomposable as well. O
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Proposition 37. Let (Q be a Henselian Gorenstein local ring and M be an MCM
(Q-module. Furthermore, let

cHPL M
be the complete resolution of M with C' € Ki,.(Q). Then Endk,, (0)(C) = Endg(M)

as rings.

~

Proof. We begin by defining a map ¢ : Endk,, () (C) — Endg(M). Let f €

Endk,,.()(C) and consider the following diagram:

of a5,

Ch Co

|
jfl Lfo If
¢ o Y
01 : C() ° Im a((]}

Im 95

Where Im 95 = M and define ¢ as follows:
o(f) = f where f(z) = 85 fo(a) such that 85 (a) = 2.

To see that this map makes sense we first show that f is independent of the
choice in preimage of . Suppose that 05 (a) = = = 95 (b) so that 95 (a — b) = 0
implying a — b € Ker(9) = Im(9) by exactness of C. Thus, there exists y € C}

such that 9% (y) = a — b, from which it follows that

7 fily) = fo 07 (y) = fola—b). (3.1)

By composing (3.1) on the left with 95 we obtain
05 07 fi(y) = 95 fola—1b)

where the left-hand term is clearly zero. Thus, 95 fo(a) = 95 fo(b) as needed. Now
Lemma 30 states that two homotopic maps, f,§ € Endk,,.0)(C), give the same

morphism in Endg(M). Thus, ¢ is well defined.
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Next we define a map ¢ : Endg(M) — Endk,,.(q)(C) by ¥(f) = f where f is
the morphism of complete resolutions described by Lemma 29.

Now we will show that

Vo = IdEnthac(Q)(C) and ¢y = IdEndQ(M) .

Let f € Endk,,.()(C) so that 1¢( f )=f = f" and by the uniqueness property of
Lemma 29, fw f’. Thus, ¢ = IdEnth' (o) Now, if instead f € Endg (M) then

A

oY(f) = o(f) = f' and again by the uniqueness property of Lemma 30, f = f’. Thus,

¢¢ = IdEndQ(M)-

This proves the ring isomorphism Endk,, ()(C) = Endg(M). O

Theorem 38. Let () be a Henselian Gorenstein local ring. The category Ki..(Q) is

a Krull-Schmidt category.

Proof. Let @ be a Henselian Gorenstein local ring. We aim to show that for
any indecomposable totally acyclic complex C' € K,.(Q), its endomorphism ring,
End Ki,.(Q)(C), is local.

We first note that for two complexes C' and D, Homg,,.(o)(C, D) is a Q-module
and composition of morphisms is Q-bilinear (cf. §1, [4]). Therefore, K,.(Q) is a
(Q-additive category.

Let C' € Ki,.(Q) be an indecomposable totally acyclic complex. By Proposition
36, M = Im(f)oc) must also be an indecomposable ()-module. Since M is indecompos-
able, Proposition 5 implies that Endg(M) is a local ring, which by Proposition 37
implies that Endk,, (g)(C) is a local ring as well. Thus K,(Q) is a Krull-Schmidt

category, as stated. O
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3.2 Approximations of Ki..(R)

We now work towards building the classification scheme previously mentioned,
although in order to fully contextualize what is to come, we must first recall a few
notions from [2]. We begin by establishing a connection between the categories
Kiac(Q) and K, (R). Recall the assumption that there exists a surjective ring
homomorphism @ % R such that R has finite injective dimension as a Q-module.
Under these conditions Bergh, Jorgensen and Moore define a pair of adjoint functors:

KtaC(Q) <i—¢) Ktac(R) .

©

As it turns out, the descension functor, defined in §3 of [2], is relatively simple;

S =5, Kiac(Q) = Kiac(R) is the change of rings functor defined by:
SC=R®qgCand Sf=R®q [

However, the ascension functor, defined in §2 of [2], is much more interesting; 7' = T, :
Kiac(R) = Kiac(Q) is defined as follows: On objects, say C' € K,.(R), T'C is the
complete resolution of Im(8§’) as a Q-module. For a chain map f € Homk,, (r)(C,C")
we have T'f = i, the homotopy equivalence class of the lifting of the induced map
from Lemma 29.

Furthermore, the authors show that both functors are triangulated (See §2, §3)

and form an adjoint pair (See §3); specifically, they induce a unit and counit:
0 ldk.@ — TS

and

e: ST — Ithac(R)

respectively.
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We now provide the definition of an approximation (given by Auslander and
Smalg, and independently by Enochs), the origins of which seem far more elusive
than the definition itself.

Definition 39. [2, Section 4] Given a full subcategory X of a category C. We define
a right X -approximation (pre-cover) of C' € C as a map ¢ : X — C such that for all
objects Y € A and any map f : Y — (| there exists a map g : ¥ — X such that the
following diagram commutes:

Y

TN

¥

X — C
We define left X -approzimations (pre-envelopes) dually.

Taking this idea one step further we may define a minimal approximation,
which provides some notion of uniqueness.

Definition 40. [2, Section 4] We define a minimal right X'-approximation (cover)
to be a right X-approximation ¢ : X — C for C' € C such that for any diagram of

the form:

1N

X 5 C
we must have that ¢ is an automorphism of X. A minimal left X-approximation
(envelope) is defined dually.
Indeed, any such minimal approximation is unique up to isomorphism.
Remark. Im(S) C Kiac(R) is contravariantly finite or, in other words, right Im(.S)-
approximations exist in Ki,.(R), and are given by the counit of the previously

mentioned adjoint functors.
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The existence of left approximations also holds, and is shown in Theorem 4.1
of [2]. The fact that both right and left approximations exists follows directly from
the fact that S and T are adjoint; however, we now provide a more in-depth proof.
We claim that the morphism e : STC — C is the right approximation of C in
Kiac(R). To see this, let YV € Kiae(@Q) and f : SY — C be any morphism. We must

now find a morphism such that the following diagram commutes:

SY
: f
Y
STC —=C
€c

Now, by the naturality of € : ST — Idk,,.(r), Wwe have the commutative diagram

sTsy Y o
6SYj jGC
SY C

and therefore, we obtain the relation:

EcosT(f) ~ foesy. (32)

We then note that egy 0 .S,, ~ Idgy. By composing the relation in (3.2) on the right
with S

ny» We see that

ecoST(f)oS,, ~ foesy oSy, ~f

and ST(f) o S,, is the morphism we seek. This proves that ec is the right approxi-
mation of the totally acyclic complex C'

If we wish to ensure that the following definitions make sense, we need to show
that minimal approximations exist in the category Ky,.(R). In order to show this,
we look to Proposition 2.5 from [16], and provide the following extension of the

previous remark. In particular, we make use of the fact that (possibly non-minimal)
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approximations exist, and show that they can be “reduced” in some way to a minimal
approximation.
Theorem 41. Let X' be a full subcategory of Ki..(R) closed under direct summands
and suppose that R is Henselian.
i) Let N Y X% M SNbea distinguished triangle in K,.(R) where ¢ is a
precover of M. Then the following are equivalent:
(a) ¢ is not an X-cover.
(b) There exists a sub-complex L of N such that ¢(L) # 0 and is a direct
summand of X.
ii) The following are equivalent for a totally acyclic complex M:
(a) M has an X-precover.
(b) M has an X-cover.

Proof. i) We begin by showing that (b) implies (a). To this end, assume there exists a
sub-complex L of N such that (L) # 0 and is also a direct summand of X. As (L)
is a non-zero summand of X we may take X’ to be its compliment. Let 6 : X' — X
be the natural inclusion and 7 : X — X’ the natural projection. Then set f = O
and note that, as ¥(L) would map to zero under ¢, we have that ¢ = ¢f. Now,
suppose for contradiction that ¢ is an X'-cover. It follows that f is an isomorphism
and hence, also § and 7. Therefore, we must have that (L) = 0, contradicting our
assumption. Thus, ¢ is not an X-cover.

To show that (a) implies (b), assume that ¢ is not an X'-cover. As such, there
exists a non-isomorphism f € Endk,, (r)(X) such that ¢ = ¢f. Now, let S = R|f]
be the subalgebra of Endk,, (r)(X) generated by f over R and note that S is a

commutative ring.
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Assuming S is a local ring, we will show that the approximation ¢ = 0. Since S
is local, set n as the unique maximal ideal. Then, as S is a finitely generated R-module,
the factor ring S/mS is an artinian local ring with maximal ideal n/mS. Hence,
n” C mS for some integer r. Since f € n we have that f™ = ag+a1f+asf>+... +a.f*
with a; € m for all i = 0, ..., s. Since ¢ = ¢f, and in particular, since ¢ = ¢ f! for all

0 <[ < oo, we observe that
o=0of
= ¢(ag+ arf +asf’ + ... + a.f*)
=ao+ aof + axdf* + ... + a0 f°
= (ap+ a1 +as+ ... + as)p € mo.
It follows from Nakayama’s Lemma that ¢ = 0, and so the triangle N LN Gy Y

splits. That is, we get the following commutative diagram:

N—Y x_ % SN

Lk e

SIM e X X M Mo XX
Thus, by the triangulated five lemma N = XM @ X and L := X satisfies condition

1%
1%

(b) in the statement.

We must now consider the case that S is not a local ring. Since R is Henselian,
the finite R-algebra S is a product of local rings, and hence there exists a non-trivial
idempotent,

e=by+bf+..+bf s
where b; € R for all : =0, ..., t. By taking 1 — e instead of e if by + b1 + ... + by € m,
we may assume that it is not. In other words, by + by + ... + b; is a unit of R.
Given the decomposition

X =Im(e) ® Im(1 —e)
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and since e is not an isomorphism, we can see that Im(e) # 0 # Im(1 — e). We now
claim that Im(1—e) C Im(¢). To see this, note that the triangle N N X 5 M-EN

induces a long exact sequence of abelian groups:
.-+ — Hom(X, N) £ Hom(X, X) 25 Hom(X, M) — - --

Since ge = ¢(bo + b1 f + ... + b f") = (bo + by + ... + by)p and by + by + ... + by is
a unit, we have that ¢ = (by + by + ... + by) "'¢e. Now take 1 — e € Hom(X, X), and

note that

¢«(1—e) =o(1 —e)
= (bo+ by + ... + b)) e(l —e)

=0

showing that 1 — e € Ker ¢, = Im(¢),). Thus there exists a € Hom(X, N) such that
(o) =1 —e. Then for x € Im(1 — e) there exists y € X such that x = (1 — ¢)(y).

Moreover, observe that,

Therefore, we have shown that Im(1—e¢) C Im(z)). Thus, L := ¢! (Im(1 —e¢)) satisfies
condition (b).

i1) It is trivial that (b) implies (a). Assume now that ¢ : X — M is an
X-precover. We will show that there exists an X-cover. Letting N = X! cone(¢),

we have the following distinguished triangle:

¥ cone(o) HX 5 M- cone(q')
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Suppose that ¢ is not an X'-cover. Then from ) there exists a sub-complex L of
Y ~!cone(¢) such that (L) # 0 and is a direct summand of X. Let X’ be the
complement of (L) and ¢ : X’ — M the induced map, noting that we also get the

following distinguished triangle:
¥~ cone(¢) Yoxt Lo cone(q)

Then as X is a thick subcategory, X' € X. To show that X’ is a X-precover, let
Y € X and g € Homg,, (r)(Y, M). Since we know that X is an X'-precover we obtain

the following diagram:

Y

|5

X

|

X/
where g = ¢'th. Thus, X' is an X-precover. Since X' is strictly smaller than X,

>

M

we may repeat this process and eventually arrive at an X'-cover. Indeed, since R is
Henselian, X is a finite sum of irreducible complexes, so this process must eventually

terminate. This proves the statement. O

In other words, for a Henselian Gorenstein ring if the complex C belongs to
thick%{m( r Im(S), then the approximation is the identity map; otherwise we may
take any approximation and cut out the redundant summands. We leave the reader
with the following open question.

Question: For a totally acyclic complex C, is the approximation ST'C' minimal

whenever C' ¢ thick%(m( r) Im(S)?
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3.3 Arnold-Tuples

Unless otherwise stated, we assume that () is a Henselian Gorenstein local ring
and that there exists a surjective ring homomorphism ¢ : ) — R. We may now state
the definition of an Arnold-tuple.

Definition 42 (Arnold-Tuple). Let A be the set of distinct, indecomposable totally
acyclic complexes in thick%(m( r) Im(S). Then for any C € Kiac(R) we may write
STC = (@PE") a1
EeA
where STC is the minimal approximation, 7" is contractible and all but finitely many

kg are zero. Then the Arnold-tuple of C over () is defined to be:

AQ(C) = (kE)EEA-

One should note the condition that “all but finitely many kg are zero” in the
previous definition is ensured, as Ky,.(R) is a Krull-Schmidt category. However, we
should check that if C' and D are homotopic, then Ag(C) = Ag(D). The following
proposition confirms this.

Proposition 43. If C' and D are totally acyclic complexes over R and C' ~ D, then
Ao(C) = Ag(D).

Proof. Let C' and D be totally acyclic complexes in Ky,.(R) such that C' ~ D.
Then for STC,STD € K,.(R) each has a decomposition into finite direct sums
of indecomposable complexes. Suppose that STC = (g, E**) ® T and STD =
(B gep E'=) ® T'. Then by Lemmas 11 and 20,

P e = PHE"

EcA EeA

Now because Ki,.(R) is a Krull-Schmidt category, we have unique decomposition, and

as such, for each E € A that appears in the previous sums it holds that E*# = El#
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thus implying that k& = [. Consequently, if C' ~ D then Ag(C) = Ag(D), and so

Arnold-tuples are well defined up to homotopy. ]

We may now state our classification scheme, which groups totally acyclic
complexes by their Arnold-Tuples. In other words, two totally acyclic complexes are
in the same class if they have the same Arnold-tuple, in which case we call two such
complexes Arnold equivalent.

Definition 44 (Arnold Equivalence). Let C, D € Ky, R, we say that C is Arnold

equivalent to D if Ag(C) = Ag(D). We denote this by
C >0 D.

As Arnold equivalence is an equality of tuples, it should be clear that it forms
an equivalence relation. We also note that Arnold equivalence is a less restrictive
notion than that of homotopy. To illustrate this we provide an example exhibiting

two complexes which are Arnold equivalent but not homotopically equivalent.

Example 45. Let Q = k[[z,y]]/(2?) and R = Q/(y?), with:

M = Coker (77 ?) and,

Yy T

NzCoker(“’ 0 0).

00 2y y?

Then the complete resolution of M & M is:

and the complete resolution of N is:

0 0 0 le] 0— o
D= 5 RERBRBRLRUSR LR SR -
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Hence, we note that C' has complexity 1 and D has complexity 2; therefore, C' and
D are clearly not homotopically equivalent. However, when we look at the minimal
approximations over the ring (), we have the following complex for both C' and D:

—x0 0 0
y xz 0 0
0 0—20
00 y x

o RV R ——— LRV S RV

Thus, while C' % D, we have that Ag(C) = Ag(D) and so C ~¢g D. Therefore, we

have that Arnold equivalence is a more coarse notion than that of homotopy.

3.4 Approximations and Mapping Cones

We now turn our attention to the approximation and classification of mapping
cones. For a simple example, consider the zero morphism, so that the mapping cone
is given by a direct sum of shifts of the source and target complexes. Thus, the
Arnold-tuple can easily be deduced. This is illustrated by the following example:
Example 46. Let Q = k[[z, y]]/(z* + y?), type (A;), and R = Q/(z?). Then take

the zero map from £, — E_:

R R R
poop b
R R

T—1Y 41y

The mapping cone is then given by cone(f) = LET & E~ with differential

8cone(f) _ <32E+ 0 )

0 aE,

However, as we have that X F, = E_, the approximation of the mapping cone is in
fact the mapping cone itself, E_ @ E_, and therefore has an Arnold-tuple of (0,0,2).
In [2] the authors go further to describe the approximation of the mapping cone

in the case that R has relative codimension one.
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Proposition 47. [2, Corollary 6.4] Let f be a non-zero-divisor contained in the
maximal ideal of @, R = Q/(f), and C € Ky..(R). If [e¢] : STC — C is the right
approximation of C', then cone([e¢]) is isomorphic to 32C' in Ky,.(R), and we have

the distinguished triangle
src < o Bos2o s vsre

We present a generalization of this theorem to codimension c¢ as well as provide
a concrete description of approximations. Let () be a Gorenstein local ring and
R = Q/(f) where f = fi,..., f. is a Q-regular sequence of length c¢. Then for any

C € Kiac(R), its approximation, ST'C, has the following form:

C

STC : -+ = @ (Corr)D 22 D)) 25 PD(Crr-)) = - (33)
i=0 i=0 i=0
In an effort to understand the construction of the above form, we now state Theorem

5.1 from [3]

Theorem 48. [3, Theorem 5.1] Assume that R = Q/(f1, ..., f.), where fi,..., f. is
a Q-regular sequence, and let C' € Ky,.(R). Letting F = C, the complex F ®¢g K
defined above is TC. That is, F ®¢ K is a complete resolution of Tm d5. Tt follows
that STC is (F ®¢g K) ®¢ R, and the morphism e : STC — C' is the map that
projects the copy F ®¢ Ko of F in (F ®g K) ®g R onto F = C.

In this theorem K denotes the Koszul complex on f, ..., f., which has the form:

c 2
O—>/\(QC)—>~~~—>/\(QC)—>QC—>Q—>R—>O.
We note that A'(Q°) = Q(g) as Q° is a free module of rank c¢. Thus, K is equivalent

to the complex:

(& (&
c

O—>Q()—>Q(c51)%---—>Q(T>%Q(o)—>0.
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To see that the approximation has the advertised form, let C' € Ky,.(R), then

lift C' to a graded module over @), say C. Then the complex described in the theorem

above, C ®q K, would be T'C'. Here this complex has the form:

Co®oKo) =  (CuwoQl))
) )
(Co@o K1) =  (CoagQl))

D D

(5 Xq K)n =
87 &)
(5n76+1 ®Q chl) = (6n,c+1 ®q Q(cil))
b ®
(Cre @0 K.) = (Cr_e ®0 Q(Z))

Alternatively presented in a more condensed format as,

C

(C @ K)n =P (Coi) ).

=0

Then, again by Theorem 5.1 in [3], STC = (C ®q K) ®¢g R where:

C

((C 8q K) ®q R)w = @P(Co-) ).

1=0

D

o1}

i
L

We now discuss the differentials on this approximation, although we refer the interested

reader to [3] for a more complete accounting. To begin, let B be a basis of the Koszul

complex together with 0:

B={e, A Neylip <--- <ij,1<j<ec}u{0,1}.

In order to obtain the desired differential we perturb the differential on C ®q K,

which is 8¢ 9K + C ® 9%, to

8:Zt°‘®sa

a€eB
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where ° = Idg, t! = 85, so = 0%, t* are as defined by Lemma 2.2 in [3] for o # 0,
and s, is multiplication by « for o # 0.

Remark. The t* can be thought of as a set of Eisenbud operators when |a| = 1 and
“higher order” Eisenbud operators when |a| > 2.

In general, providing a concrete description of this differential presents some
technical challenges. However, it will be informative to explore this concept in a
specific case, for instance, when the relative codimension is 3.

Example 49. Let ) and R be as before and let ¢ = 3. In other words, R =

Q/(f1, f2, f3) where fi, fa, f3 is a @Q-regular sequence. Let C' € Ki..(R) so that
angl ¢
C= s Oy 20 20 s

and let C' be the lifting to a graded module over (). Now, from the previous

construction we obtain the fact that T'C' has the form:

o500, 000 @ (00 @0, 2 00 (00 )P @ (07, @ 0, — -

and for each n the differential o is given by the matrix:

¢ 4 (—1)mter (—1)nlge2 (—1)nees gerfe2  _gerfes feates  (—1)3nge1feahes
—orp 89S, 0 0 (=D (—1)nles 0 teanes
(=)= 1 fy 0 876?_2 0 (=1)"te1 0 (—1)n—1¢e3 te1hes
gn _ | =D 0 0 aC_, 0 (=1)mter  (—1)n—1ge2 te1nes
0 (D" (1) MA 0 05, 0 0 (—1)"te3
0 (=1)"lfs 0 (V)" fr 0 oC | 0 (—1)mge2
0 0 (=) (=) 20 0 aC (—1)"te
L 0 0 0 0 (D"fs (=1)"f2  (=1)"f o< ]

Then by applying the functor S = — ®q R, we see that ST'C' is given by:

5 0%, 000 @ (00 @0, 2 00 (00 @ (09, @ 0y — -
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wherein each n'* differential is given by:

6g73 (71)“1‘,51 (71)n—1t62 (71)nt63 te1/\eg _te1/e3 tea\es3 (71)3nt€1/\62/\&3 T
0o 99, 0 0 (=1)nte2 (—1)n—lee3 0 teaies
0 0 % 4 0 (—1)mter 0 (—1)7—1ges te1/\es
0. — 0 0 0 oS _, 0 (—1)mter (—1)nlgez te1hes
no 0 0 0 0 ¢ | 0 0 (=1)"tes
0 0 0 0 0 ¢ | 0 (=1)"te2
0 0 0 0 0 0 oS, (=1)"tet

| 0 0 0 0 0 0 0 g ]

Furthermore, if we assume that the lifting of C to C is actually a complex over
(@, we have that each t* is zero. In this case, the complex stays the same, but the
differentials are now given by:

[6C , 0
05 s
B

[un
O O O O o o o

[o5)
cjQc 0o oo oo

[

oo oo oo o
c o oo oo
Q
cocojfoc ocoo
-
oofqooooo

Q
3Q

and it is clear that the approximation complex is then
STC =¥3C @ (220 e (2C)P @ C.
Now, from Theorem 5.1, we note that the approximation of C' is
0 X0 @ (20 e (XCP el - C

which projects the copy of C'in ST'C' onto C'. Moreover, the minimal subcomplex of

the mapping cone of the approximation can be given by
cone(ec) = X*C @ (B3C)* @ (X2C)%.

In light of the previous example we make the following proposition.

Proposition 50. Assume @ is a Gorenstein local ring and R = Q/(f) where

f = fi,.., fo is a Q-regular sequence of length c. Further, let C' € K,.(R) be
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a minimal complex such that its lifting to a graded ()-module is a Q)-complex. Then

the approximation of C'is given by:
€c: @(210)(2) — C
i=0
which projects the copy of C'in STC to C'. Furthermore, the minimal subcomplex of

the mapping cone, of the approximation of C' is given by

C

cone(ec) = @(E10) 0. (3.4)

i=1
Proof. Let C € Kiae(R) such that its lifting as a graded @-module is a Q-complex.
We begin with reiterating that under these assumptions, each t* previously described
is zero. As such, and following from Theorem 5.1 in [3], it is easily seen that

the approximation of C' is given by eo : @fzo(EiC’)(i) — (. Specifically, the

approximation is shown in the following diagram:

c i ) On c i c On c i c
D (E Cn-l-l)(Z) - i=0(Z Cn)<l) —=P._ (= Cn_1)<z) _—..
[10- 0] l[lom 0] [10 . 0]
¢ c
Crt1 e C, i c. .

To find the mapping cone of the approximation, we simply apply the definition

to obtain

cone(ec) = @(2”16’)(?) ®C
i=0
wherein the differential at each degree n is given by:

(D)0 (g O - 0 0
0 E. 0 0
0
0 0 E, 0
0 0 0 -0,
0 0 01 oS




Here, £ is a (;) X (Jc) matrix with (—=1)7 9%

n—1—; on the diagonal for all 1 < j <c.

We now wish to show that the minimal subcomplex is as previously stated; to do
this, we will exhibit a homotopy equivalence between the mapping cone and (3.4).
Consider the following diagram:

cone(ecr)

T @E:O(Eiﬂcn)(g) @ Cpp1 —— @?:O(Eﬂ_lcn—l)(?) &C, —---

Ln+1]l7rn+1 LnTLﬂ'n

D,z ) () e (e, )

where 7 and ¢ are the obvious projection and injection, respectively. It should be
clear that m,t, is the identity on the subcomplex for all n. However, to show that
L, Ty, is homotopic to the identity on the mapping cone, we must look to homotopy

maps. Using the following (2°+ 1) x (2 + 1) square matrices as homotopy maps:

00 -- 0 0
Oon=100 --- 0 O
00 - 0 -1
00 -+ 0 0

for all n, we can see that

c

cone(eg) ~ @(2”10)(?)

i=1

as needed, thus proving the statement. O
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CHAPTER 4
Triangle Resolutions

In this chapter we build on the notion of a resolution of totally acyclic complexes
outlined in Section 4.9 of [2]. We first describe the construction of such triangle
resolutions, after which we give the definition of a minimal resolution. In order to show
the existence of such minimal resolutions we call on the main theorem of the previous
chapter, Theorem 41, wherein we proved the existence of minimal approximations
in Kiac(R). Then, given such minimal resolutions, we exhibit the extension of a
few properties from the category of R-modules. Finally, we describe the notion a

triangulated Betti sequence and posit a conjecture.

4.1 Building a Triangle Resolution

In many respects, the construction of a triangle resolution is much like that of
a classical free resolution; the main exception being the lack of kernels with which to
do so. To get around this, the mapping cone of a morphism plays the analogous role
in a triangulated category. In the following construction we keep this in mind and
look to Definition 8.1.2 in [11]. We also discuss some basic properties of the resulting
triangle resolutions, many of which are completely analogous to those in the classical
case.

In Construction 4.9 of [2], the authors provide a construction of triangle resolu-
tions in Ky,.(R) with approximating class Im(.S). However, the following construction

is given in an arbitrary triangulated category T with a full subcategory X.
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For an object C € T we can complete its X-approximation, ¢¢c : By — C, to a

triangle in 7, and rotate it to obtain:

7! cone(pc) B, cone(¢c)

Having done so, we may now use the same method to approximate the complex
Y71 cone(¢¢). We can again complete and rotate the X-approximation @s-1 cone(sc) :

By — Y7t cone(¢¢) to a triangle thusly:

»! cone(ds-1cone(pe)) — B1 — Y cone(po) — cone(ds-1 cone(pc))

Then, similar to the classical case in the construction of a free resolution, we

compose the maps as seen below:

Bl """"""""""""""""""""""""""""" >BO$C

O

S cone(ds-1 cone(e)) Y71 cone(¢c)

Repeating this process we arrive at a resolution of an object in Ki,.(R):

B:.--—B3s—By— B — By—(C

where each B; € X and B, is an approximation of C', B; is an approximation of
Y~ cone(By — C), ete.

In general, a triangle resolution is not unique. To see this we first note that if
D € Kiao(@) then ST'SD is not a minimal approximation by Proposition 4.6 in [2].
However, the morphism Idgp is a minimal Im(S)-approximation. We illustrate the
non-uniqueness of triangle resolutions with an example.
Example 51. Let Q = k[ ’y] and R = Q/(y?), then
rkipes el

)Qz_)...

N Q2
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is a totally acyclic complex in Kg,.(Q) and note SD € Im(S). Its approximation,
STSD is given by:

—x0 0 0 -0 0 0

y x 00 y z 00

|:O 0—$0:| |:0 0—x0:|
R4 00y x R4 00 vy «x R4

oo loesy wose
2 2 2
R [—ZO] R [—xO] R
Yy Yy T

z 0 0 0 0O z 0 0 0 0O
—-y—2x 0 0 0 O —y—x 0 0 0 O
0 0 —z0 0 O 0 0 —z0 0 O
0 0 vz 0O 0 0 yx 0O
1 0 0 0—-=x0 1 0 0 0—-=z0
; 0 1 00 x 0 1 00 x 3
R() Y \Rﬁ Y >R6—>"‘

Of course, this complex is homotopically equivalent to SD, via the morphism:
[666160] and, [

STSD and so, th

. Therefore, we have that the approximation of cone([§ 99 8]) ~

D cocoro
+OOoO—ROOO

riangle resolution can be given by:
oo = STSD = STSD — STSD — SD.

However, since the minimal approximation of SD is given by € : SD Usp, SD, we

see that cone(e) ~ 0. Thus, the triangle resolution can also be given by:
0—STSD — SD.

This leads us to the necessity for defining the notion of a minimal triangle resolution,

which, in similar fashion to the classical case, encodes a notion of uniqueness.

4.2 Minimal Triangle Resolutions and Properties

Definition 52. Let X be a full subcategory of a triangulated category C, which is

closed under direct summands, such that for each C' € C there exists a minimal right
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X-approximation. We then have that the X-triangle resolution can be constructed
such that each X-approximation is a minimal right approximation. In this case we

say that the sequence of morphisms:
B:.--—+By— B = By—~C

is a minimal X -triangle resolution.

For the previous definition to be of any consequence in this thesis, we should
first establish that K..(R) does, in fact, have minimal triangle resolutions. This fact
wholly relies on the existence of minimal approximations. The following corollary
follows directly from the definition of the first thickening and Theorem 41.
Corollary 53. Minimal (thickktac( r) Im(S))-triangle resolutions exist in Kiac(R).

We now look towards stating a few basic properties, but shall first establish
some notation to simplify proofs and allow for ease of understanding.

Given an X-triangle resolution of C', say
B: - =B, 2% B 25 B, 2% C =0
set
c'=C
C' = ¥ cone([ec))
C" =¥ cone([egn-1]) for n > 2.

Note that each C™ fits into the following commutative diagram:

JAVER] A Aq A

Biy—-—DB

v —=Bip B;
&

7% 7 ? 7
Czt\l /’L+1 CZ\ /ul Cl{ /u1

Cz‘+1 Cz‘ Cl

where A; = u;eqi and eqi is the approximation of C. We also note that by construction

: U €
ChLl%legcl%
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We begin by discussing the uniqueness property of minimal triangle resolutions.

Proposition 54 (Uniqueness). A minimal triangle resolution, if it exists, is unique

in the sense that there exists a family of homotopy equivalences ; such that the

following diagram commutes.

Ao Aq

Ap

B, B, By C
| | |
172 171 1 Y0 H
Y / Y ’ Y /
A A A
/ 2 / 1 / 0
B2 Bl BO

Proof. Let B’ be another minimal triangle resolution of C, say

B :.-..— B,— B — B, —C—0.

We will use induction on the degree of B;. When i = 0, there exist homotopy

equivalences C° — C° (in this case the identity) and By ~ Bj. The latter statement

follows from the fact that both are minimal approximations of C' in conjunction with

the diagram below:

By

"\

B)—~C

1

By

By definition of minimal approximation, vyy, ~ Idg,. Reversing the role of By and

B gives the other condition for homotopy equivalence. Furthermore, by the definition

of approximations, we have that Ajyy ~ IdcAy.
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To apply the inductive step, assume that there exist homotopy equivalences \;_; :

Ci=1' 5 " Vand v,_1 : Bi_y = B!_,. Then we have the following diagram:

C«/z C/ifl
To show that C ~ C"*, we construct the diagram of triangles

i Ui €oi—1 i
C"—— Bi—l —_— Ci—l —3C

|
I i Yi—1 Ai—1
Y

C"—B_ | —=(C'—=2C"
Uy €ori—1
where, by TR3, a dashed arrow exists such that u;\; ~ v;_;u; and furthermore, by

the triangulated five lemma, it is a homotopy equivalence. Now, since B;, B. are

1i—1 11—1

both minimal approximations of C*~1 C"""" (respectively) and C*~! ~ C""7", we

have that there exists v; : B; ~ Bj such that e,7; ~ Aieci. Now we will show that
A ~ -1
A;%‘ ~
u;e'cﬂi ~ UNEC ~ Vi1 UiEC

~ Vi1
thus proving our statement. O]

In a triangulated category 7T, we unfortunately do not have the notion of
exactness. However, as with distinguished triangles, we can say something about the

composition of consecutive morphisms in a resolution.
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Proposition 55 (Composition of consecutive maps is 0). Let B be an X-triangle

resolution. Then A;A;; = 0.

Proof. Let

A A A
—>BZ—>Bl_1—>—>Bl—1>B0—O)C

be a triangle resolution of the complex C'. Then the composition A;A; ;1 is given by:

6ci+1 ; Ui+1 6ci S U,
B’H—l > CH_I o B, — Cc' = B;_1.

Since

; Uq € i . .
Ol M g 1 ¢ pot

is a distinguished triangle and the composition of two maps in a triangle is zero, the

statement is proved. O

Continuing with the similarities to resolutions in R-mod, we state the following
proposition.
Proposition 56 (Comparison Theorem). Let B:--- — By — B; — By — C and
D:---—= Dy — Dy = Dy — E be X-Triangle Resolutions of C' and E respectively
and let f: C' — E be a morphism of objects in the category 7. Then there exists a

family of morphisms (f;) : B; — D; making the following diagram commute:

B B, By C
I I I
I I I lf
Y Y Y
D2 Dl Do FE

Proof. We will proceed by induction on the degree. For the base case ¢ = 0, consider

the diagram:

By B By C
|
T
’ / Y ’
D,—22.p, 2L p, 20 E




Since Dy is an X-approximation of £, By € X and fA, is a morphism from By — F,

there exists a morphism fy : By — Dy such that Ajfy ~ fAg. For the purpose of

induction, we must also show that there exists a morphism, say ¢; : O — E', making

the following diagram commute:

B,y By C
\C\ /"/
lel fo f
|
At A
D, ! Dy FE
N,
Ny
El

In order to do so, we apply TR3 to the following diagram of triangles:

' By . ¢
VI’ lfo Lf
oy W I

xC!

Y E!

Thus we obtain the morphism g, : C' — E' such that u}g, ~ fou;. Now, for

the inductive step, assume that there exist morphisms f;_; : B,y — D; 1 and

gi : C* — E* such that ulg; ~ fi_ju;. Consider again the following commutative

diagram of complexes:

B; Bi g ——
|
| Xoi Uz/
N
I fi c? fi—1
|
| )
v N gi
D; : Di_y ——
N\, //
€0 | /uL
L



Then g;ec: is a morphism B; — E° where B; € X’ and since D; is an X-approximation
we have that there exists a morphism f; : B; — D; such that g;eci ~ e’C,Z- fi. Now note

that

fi—lAi ~
/ 1t
fi_luiECi ~ U;gi€ci ~ szcxifi

~ A;fz

which follows from the fact that homotopy is preserved under composition. Thus, the

statement is proved. O

4.3 'Triangle Betti Numbers

Seeing as we now have the notion of a minimal resolution in Kg,.(R) we would
also like to establish some way of discussing the size of the complexes which comprise
it. This motivates a triangulated analogue of Betti numbers.

In a Krull-Schmidt category, objects have a unique decomposition into a finite
direct sum of indecomposable objects. This leads to a natural notion for the “rank”
of the complexes in the resolution; however, as opposed to copies of the ring, we use
the number of indecomposable components. Set A to be the collection of all such
indecomposable objects.

Definition 57. Assume 7T is a triangulated Krull-Schmidt category with a full

subcategory, X, closed under direct summands. Furthermore, let

B:.--—+By— B —> By—~C
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be a minimal AX-triangle resolution of an object C' € T, and note for each ¢ > 0 we
can write B; = @ 5, E*2_ Then we say that the i*" triangle Betti number is defined

to be:

@T(C) = Z kg.

EecA

Remark: We note that the " triangle Betti number is given by the sum of the entries
in the Arnold-tuple, Ag(B;).

As a direct corollary to Theorem 6.1 in [1], any totally acyclic complex over a
hypersurface is periodic of period at most two, moreover, as previously mentioned,
any codimension-one approximation can be given by a shift of the original complex.
The more interesting examples arise when we consider instead a pair of rings with
codimension two or more; of course, this also comes with an added increase in difficulty
of providing interesting examples. However, of particular interest in the forthcoming
examples is the complexities of C, the approximations in the sequence, and that of
the triangle resolution itself. For context, we first define complexity of the triangle
resolution.

Definition 58. Let
B:---—By,— B —-By—~C

be a minimal X-triangle resolution of an object C' € 7. Then the complexity of the

triangle resolution is given by
cxr C:=1inf{t c NU{0}| Fa€Rs.t. B7(C) <an'"' ¥V n >0}

We now give a few examples:

Example 59. Let ) = % and R = Q/(y*), and

el o [32]

D;..._>Q2 ,Q2_>...

Q2
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a totally acyclic complex in Ki..(Q). Consider the triangle resolution of SD given in
Example 51:
0—>SD— SD.

Here, the triangle Betti numbers are

1 i=0,1
B (D) =

0 otherwise

therefore, cxk,,.(r) SD = 0.

In the case of relative codimension one, we have that triangle resolutions will
always have complexity of at most one. This can be seen as an analogue of Eisenbud’s
Theorem 6.1 in [1], that complexes are periodic in this situation.

Example 60. Let Q = k[z,y]/(2?), R = Q/(y?), and C be the totally acyclic
R-complex with Tm(95) = Ray = k:
[6y <] (4]

s R R g g Wlopr

Then the approximation of C' with respect to Kia.(Q), is given by the map STC -5 C,

depicted in the diagram below:

W B B L B, B
10
B8] e jme o[
R3 R? R— R — R?
R
with mapping cone:
—xz—y 00 O -z y 0
0 —z00 O -z y 00 -z -y 0 0 —z0
|:1 0x0yj| |:(1]—0wg0:| [0 —OxIO:| |:g Ox:|
cone(eg) : -+ — RP SERLEEN 5 S Ry S R vy

Furthermore, Proposition 6.5 in [2] tells us that the approximation of the mapping

cone is given by the complex XST'C. By repeating this process, we see that the
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mapping cone of the approximation of this mapping cone is given by 22STC = STC

(as ST'C' is periodic of period two). Therefore, the triangle resolution is given by

e > 2NSTC — STC — XSTC — STC — C.

We note that /BiKtaC(R)(C) =1 for each ¢ € Z, thus cxk,,.(r) C = 1.

Interestingly, we note that in each of the examples above, the complexity of
the original complex is equal to the sum of the complexity of the triangle resolution
plus the largest complexity of the complexes in the resolution. With this in mind, we

leave the reader with a final conjecture:

Conjecture: Let C € Kioo(R) with minimal triangle resolution B = -+ — By —
By — C. PFurthermore, set v = sup{t |cxg B; =1t, Vi€ N}. We then have the
following equality:

cxr C = cxk,,.(r) B +v.
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